content
stringlengths
22
815k
id
int64
0
4.91M
def test_uncrustify_tool_plugin_found(): """Test that the plugin manager can find the uncrustify plugin.""" manager = PluginManager() # Get the path to statick_tool/__init__.py, get the directory part, and # add 'plugins' to that to get the standard plugins dir manager.setPluginPlaces([os.path.join(os.path.dirname(statick_tool.__file__), 'plugins')]) manager.setCategoriesFilter({ "Tool": ToolPlugin, }) manager.collectPlugins() # Verify that a plugin's get_name() function returns "uncrustify" assert any(plugin_info.plugin_object.get_name() == 'uncrustify' for plugin_info in manager.getPluginsOfCategory("Tool")) # While we're at it, verify that a plugin is named Uncrustify Tool Plugin assert any(plugin_info.name == 'Uncrustify Tool Plugin' for plugin_info in manager.getPluginsOfCategory("Tool"))
20,400
def objective_func(x, cs_objects, cs_data): """ Define the objective function :param x: 1D array containing the voltages to be set :param args: tuple containing all extra parameters needed :return: average count rate for 100 shots """ x = np.around(x,2) try: flag_range = 0 for i in xrange(len(x)): if (x[i] <= float(cs_objects[i,4])) or (x[i] >= float(cs_objects[i,5])): flag_range = 1 raise ValueError for i in xrange(len(x)): if flag_range == 0: if int(cs_objects[i,2]) != -1: cs.call_process2(cs_objects[i,0], cs_objects[i,1], "I:1,D:1", cs.pack_ch_val([int(cs_objects[i,2])], [x[i]])) else: cs.call_process2(cs_objects[i,0], cs_objects[i,1], "D:1", cs.pack_val([x[i]])) else: return time.sleep(1) flag = 0 value = total_counts(flag, *cs_data) # value = scop.rosen(x) return value except ValueError: print "Value error : value went out of bound"
20,401
def getHPELTraceLogAttribute(nodename, servername, attributename): """ This function returns an attribute of the HPEL Trace Log for the specified server. Function parameters: nodename - the name of the node on which the server to be configured resides. servername - the name of the server whose HPEL Trace is to be configured. attributename - the following attribute names can be specified: - 'dataDirectory' - Specifies the name of the directory where the HPEL logs will be stored. - 'bufferingEnabled' - Specifies whether or not log record buffering should be enabled. Valid values are 'true' and 'false'. - 'fileSwitchEnabled' - Specifies whether or not a new log file should be started each day. Valid values are 'true' and 'false'. - 'fileSwitchTime' - If 'fileSwitchEnabled' is set to 'true', this field specifies the time that new log file should be started. A value from 0 - 23 should be specified. A value of 0 means 12 AM 1 means 1 AM, 2 means 2 AM, ..., 23 means 11 PM. If a value greater than 23 is entered, this field will be set to 0 (12 AM). - 'memoryBufferSize' - Specifies the size (in MB) of the memory trace buffer. - 'outOfSpaceAction' - Specifies which action to take if the hard disk runs out of space. Valid values are 'StopLogging', 'StopServer', and 'PurgeOld'. - 'purgeBySizeEnabled' - Specifies whether or not to purge the logs based on size. Valid values are 'true' and 'false'. - 'purgeByTimeEnabled' - Specifies whether or not to purge the logs based on time. Valid values are 'true' and 'false'. - 'purgeMaxSize' - Specifies the maximum total size of the logs (in MB). - 'purgeMinTime' - Specifies the minimum amount of time to keep the logs (in hours). - 'storageType' - Specifies whether the trace log should be written to a directory or to memory. Valid values are 'DIRECTORY' and 'MEMORYBUFFER'. """ m = "getHPELTraceLogAttribute:" sop (m, "Entering function...") sop (m, "Calling getNodeId() with nodename = %s." % (nodename)) nodeID = getNodeId(nodename) sop (m, "Returned from getNodeID; returned nodeID = %s" % nodeID) if nodeID == "": raise "Could not find node name '%s'" % (nodename) else: sop (m, "Calling getServerId() with nodename = %s and servername = %s." % (nodename, servername)) serverID = getServerId(nodename, servername) sop (m, "Returned from getServerID; returned serverID = %s" % serverID) if serverID == None: raise "Could not find server '%s' on node '%s'" % (servername, nodename) else: serviceName = "HighPerformanceExtensibleLogging" sop (m, "Calling AdminConfig.list with serviceName = %s and serverID = %s." % (serviceName, serverID)) HPELID = AdminConfig.list(serviceName, serverID) sop (m, "Returned from AdminConfig.list; HPELID = %s" % HPELID) sop (m, "Calling AdminConfig.list to get the config ID of the HPEL Trace object.") HPELTraceID = AdminConfig.list("HPELTrace", HPELID) sop (m, "Returned from AdminConfig.list; HPELTraceID = %s" % HPELTraceID) sop(m, "Calling AdminConfig.showAttribute to get the value of attribute = %s" % ( attributename )) attributevalue = AdminConfig.showAttribute(HPELTraceID, attributename) sop (m, "Returned from AdminConfig.showAttribute; attributevalue = %s" % ( attributevalue )) sop (m, "Exiting function...") return attributevalue #endif #endif
20,402
def dispersionTable(adata): """ Parameters ---------- adata Returns ------- """ if adata.uns["ispFitInfo"]["blind"] is None: raise ("Error: no dispersion model found. Please call estimateDispersions() before calling this function") disp_df = pd.DataFrame({"gene_id": adata.uns["ispFitInfo"]["blind"]["disp_table"]["gene_id"], "mean_expression": adata.uns["ispFitInfo"]["blind"]["disp_table"]["mu"], "dispersion_fit": adata.uns["ispFitInfo"]["blind"]["disp_table"]["blind"]["mu"], "dispersion_empirical": adata.uns["ispFitInfo"]["blind"]["disp_table"]["disp"]}) return disp_df
20,403
def L10_indicator(row): """ Determine the Indicator of L10 as one of five indicators """ if row < 40: return "Excellent" elif row < 50: return "Good" elif row < 61: return "Fair" elif row <= 85: return "Poor" else: return "Hazard"
20,404
def create_ip_record( heartbeat_df: pd.DataFrame, az_net_df: pd.DataFrame = None ) -> IpAddress: """ Generate ip_entity record for provided IP value. Parameters ---------- heartbeat_df : pd.DataFrame A dataframe of heartbeat data for the host az_net_df : pd.DataFrame Option dataframe of Azure network data for the host Returns ------- IP Details of the IP data collected """ ip_entity = IpAddress() # Produce ip_entity record using available dataframes ip_hb = heartbeat_df.iloc[0] ip_entity.Address = ip_hb["ComputerIP"] ip_entity.hostname = ip_hb["Computer"] # type: ignore ip_entity.SourceComputerId = ip_hb["SourceComputerId"] # type: ignore ip_entity.OSType = ip_hb["OSType"] # type: ignore ip_entity.OSName = ip_hb["OSName"] # type: ignore ip_entity.OSVMajorersion = ip_hb["OSMajorVersion"] # type: ignore ip_entity.OSVMinorVersion = ip_hb["OSMinorVersion"] # type: ignore ip_entity.ComputerEnvironment = ip_hb["ComputerEnvironment"] # type: ignore ip_entity.OmsSolutions = [ # type: ignore sol.strip() for sol in ip_hb["Solutions"].split(",") ] ip_entity.VMUUID = ip_hb["VMUUID"] # type: ignore ip_entity.SubscriptionId = ip_hb["SubscriptionId"] # type: ignore geoloc_entity = GeoLocation() # type: ignore geoloc_entity.CountryName = ip_hb["RemoteIPCountry"] # type: ignore geoloc_entity.Longitude = ip_hb["RemoteIPLongitude"] # type: ignore geoloc_entity.Latitude = ip_hb["RemoteIPLatitude"] # type: ignore ip_entity.Location = geoloc_entity # type: ignore # If Azure network data present add this to host record if az_net_df is not None and not az_net_df.empty: if len(az_net_df) == 1: priv_addr_str = az_net_df["PrivateIPAddresses"].loc[0] ip_entity["private_ips"] = convert_to_ip_entities(priv_addr_str) pub_addr_str = az_net_df["PublicIPAddresses"].loc[0] ip_entity["public_ips"] = convert_to_ip_entities(pub_addr_str) else: if "private_ips" not in ip_entity: ip_entity["private_ips"] = [] if "public_ips" not in ip_entity: ip_entity["public_ips"] = [] return ip_entity
20,405
def batch_render(voxel_dir, dest_dir, voxel_processor=None): """Render a bunch of voxel tensors stored as npy files in the voxel_dir. Args: voxel_dir: A directory containing voxel tensors stored in npy files. voxel_processor: Function that processes the voxels before rendering """ npy_files = glob.glob(os.path.join(voxel_dir, '*.npy')) batch_render_voxels(npy_files, dest_dir, write_txt=True, voxel_processor=voxel_processor) render_nrrd('logs/generation/results/nrrd_output/nrrd_filenames.txt', dest_dir, check=False)
20,406
def extract_version(version_file_name): """Extracts the version from a python file. The statement setting the __version__ variable must not be indented. Comments after that statement are allowed. """ regex = re.compile(r"^__version__\s*=\s*['\"]([^'\"]*)['\"]\s*(#.*)?$") with open(version_file_name, "r") as version_file: lines = version_file.read().splitlines() for line in reversed(lines): version_match = regex.match(line) if version_match: return version_match.group(1) else: raise RuntimeError("Unable to find version string.")
20,407
def test_image_dictionary(test_link): """ Test if the image_dictionary method returns dictinary in correct format. """ url = 'https://example.com' filename = 'example.com' result = {'url' : url, 'filename' : filename} assert test_link.image_dictionary(url, filename) == result
20,408
def test_invalid_stdout(): """invalid utf-8 byte in stdout.""" # https://en.wikipedia.org/wiki/UTF-8#Codepage_layout # 0x92 continuation byte if six.PY3: cmd = [python, "-c", "import sys;sys.stdout.buffer.write(b'\\x92')"] else: cmd = [python, "-c", "import sys;sys.stdout.write(b'\\x92')"] p = EasyProcess(cmd).call() assert p.return_code == 0 assert p.stdout == "" # 0xFF must never appear in a valid UTF-8 sequence if six.PY3: cmd = [python, "-c", "import sys;sys.stdout.buffer.write(b'\\xFF')"] else: cmd = [python, "-c", "import sys;sys.stdout.write(b'\\xFF')"] p = EasyProcess(cmd).call() assert p.return_code == 0 assert p.stdout == ""
20,409
def batteryRoutine(): """ Creates a routine to the robot thats checks the battery and sends the robot to the dock station for charging purpouses """ # The "get Charged" routine getChargedTask = Selector("getChargedTask") # Add the check battery condition checkBatteryTask = MonitorTask("checkBattery", "battery_level", Float32, check_battery) # Add the recharge task chargeRobotTask = ServiceTask("chargeRobot", "battery_simulator/set_battery_level", SetBatteryLevel, 100, result_cb=recharge_cb) # Add the movement routine to the dock coords = global_vars.black_board.getCoords('dock') goal = MoveBaseGoal() goal.target_pose.header.frame_id = 'map' goal.target_pose.header.stamp = rospy.Time.now() goal.target_pose.pose = coords moveToDockTask = SimpleActionTask("MoveToDock", "move_base", MoveBaseAction, goal, reset_after=True, feedback_cb=update_robot_position, result_timeout=100) checkLocation = checkLocationTask("dock") NavigationTask = Selector("Nav", [checkLocation, moveToDockTask] ) # Build the recharge sequence using inline syntax rechargeTask = Sequence("recharge", [NavigationTask, chargeRobotTask]) # Add the check battery and recharge tasks to the stay healthy selector getChargedTask.add_child(checkBatteryTask) getChargedTask.add_child(rechargeTask) #Add the routine to the black board global_vars.black_board.setRoutine(getChargedTask)
20,410
def get_object_combinations(objects: Collection[Object], types: Sequence[Type]) -> Iterator[List[Object]]: """Get all combinations of objects satisfying the given types sequence.""" sorted_objects = sorted(objects) choices = [] for vt in types: this_choices = [] for obj in sorted_objects: if obj.is_instance(vt): this_choices.append(obj) choices.append(this_choices) for choice in itertools.product(*choices): yield list(choice)
20,411
def powerlaw_loglike(data, theta): """Return the natural logarithm of the likelihood P(data | theta) for our model of the ice flow. data is expected to be a tuple of numpy arrays = (x, y, sigma) theta is expected to be an array of parameters = (intercept, slope) """ x, y, sigma = data n = len(x) model = powerlaw_model(x, theta) lnlike = -0.5 * (n*np.log(2.*np.pi) + np.sum(2.*np.log(errs) + ( y-model)**2 / sigma**2)) return lnlike
20,412
def get_conv(dim=3): """Chooses an implementation for a convolution layer.""" if dim == 3: return nn.Conv3d elif dim == 2: return nn.Conv2d else: raise ValueError('dim has to be 2 or 3')
20,413
def resolve_path(path, parent=None): """Resolves the absolute path of the specified file. Args: path (str): Path to resolve. parent (str): The directory containing ``path`` if ``path`` is relative. Returns: The absolute path. Raises: IOError: if the path does not exist. """ apath = abspath(path) if not os.path.exists(apath) and parent is not None: apath = abspath(os.path.join(parent, path)) if not os.path.exists(apath): raise IOError(errno.ENOENT, "%s does not exist" % apath, apath) return apath
20,414
def notebook_metadata(): """Attempts to query jupyter for the path and name of the notebook file""" error_message = "Failed to query for notebook name, you can set it manually with the WANDB_NOTEBOOK_NAME environment variable" try: import ipykernel from notebook.notebookapp import list_running_servers kernel_id = re.search('kernel-(.*).json', ipykernel.connect.get_connection_file()).group(1) servers = list(list_running_servers()) # TODO: sometimes there are invalid JSON files and this blows up except Exception: logger.error(error_message) return {} for s in servers: try: if s['password']: raise ValueError("Can't query password protected kernel") res = requests.get(urljoin(s['url'], 'api/sessions'), params={'token': s.get('token', '')}).json() except (requests.RequestException, ValueError): logger.error(error_message) return {} for nn in res: # TODO: wandb/client#400 found a case where res returned an array of strings... if isinstance(nn, dict) and nn.get("kernel") and 'notebook' in nn: if nn['kernel']['id'] == kernel_id: return {"root": s['notebook_dir'], "path": nn['notebook']['path'], "name": nn['notebook']['name']} return {}
20,415
async def create_mute_role(bot, ctx): """Create the mute role for a guild""" perms = discord.Permissions( send_messages=False, read_messages=True) mute_role = await ctx.guild.create_role( name='Muted', permissions=perms, reason='Could not find a muted role in the process of muting or unmuting.') await bot.config.update_one({"_id": ctx.guild.id}, {'$set': {"mute_role": mute_role.id}}, upsert=True) for channel in ctx.guild.channels: try: await channel.set_permissions(mute_role, read_messages=True, send_messages=False) except discord.Forbidden: continue except discord.HTTPException: continue return mute_role
20,416
def build_request_data(useralias, req_node): """build_request_data :param useralias: user alias for directory name :param req_node: simulated request node """ if "file" not in req_node: return None use_uniques = req_node["unique_names"] use_file = req_node["file"].format( useralias) use_data = json.loads(open(use_file, 'r').read()) if use_uniques: if "title" in use_data: use_data["title"] = "{}_{}".format( use_data["title"], str(uuid.uuid4())) if "full_file" in use_data: use_data["full_file"] = \ use_data["full_file"].format( str(uuid.uuid4())) if "clean_file" in use_data: use_data["clean_file"] = \ use_data["clean_file"].format( str(uuid.uuid4())) if "csv_file" in use_data: use_data["csv_file"] = \ use_data["csv_file"].format( str(uuid.uuid4())) if "meta_file" in use_data: use_data["meta_file"] = \ use_data["meta_file"].format( str(uuid.uuid4())) if "meta_suffix" in use_data: use_data["meta_suffix"] = \ use_data["meta_suffix"].format( str(uuid.uuid4())) return use_data
20,417
def main(): """ Entry point """ parser = argparse.ArgumentParser(COMMAND) parser.add_argument( "dbt_dir", type=str, help="dbt root directory") parser.add_argument( "-b", "--backup", action="store_true", help="When set, take a back up of existing schema.yml and docs.md") args = parser.parse_args() _run(args.dbt_dir, args.backup)
20,418
def _get_stmt_lists(self): """ Returns a tuple of the statement lists contained in this `ast.stmt` node. This method should only be called by an `ast.stmt` node. """ if self.is_simple(): return () elif self.is_body(): return (self.body,) elif self.is_body_orelse(): return (self.body, self.orelse) elif self.is_body_finally(): return (self.body, self.finalbody) else: # Every statement has to be simple or complex. assert(False)
20,419
def get_article(name): """a general function to get an article, returns None if doesn't exist """ article = None if name is not None: try: article = Article.objects.get(name=name) except Article.DoesNotExist: pass return article
20,420
def _CreateNginxConfigMapDir(): """Returns a TemporaryDirectory containing files in the Nginx ConfigMap.""" if FLAGS.nginx_conf: nginx_conf_filename = FLAGS.nginx_conf else: nginx_conf_filename = ( data.ResourcePath('container/kubernetes_nginx/http.conf')) temp_dir = tempfile.TemporaryDirectory() config_map_filename = os.path.join(temp_dir.name, 'default') shutil.copyfile(nginx_conf_filename, config_map_filename) return temp_dir
20,421
def abbreviateLab(lab): """Lab names are very long and sometimes differ by punctuation or typos. Abbreviate for easier comparison.""" labAbbrev = apostropheSRe.sub('', lab) labAbbrev = firstLetterRe.sub(r'\1', labAbbrev, count=0) labAbbrev = spacePunctRe.sub('', labAbbrev, count=0) return labAbbrev
20,422
def backproject(depth, intrinsics, instance_mask): """ Back-projection, use opencv camera coordinate frame. """ cam_fx = intrinsics[0, 0] cam_fy = intrinsics[1, 1] cam_cx = intrinsics[0, 2] cam_cy = intrinsics[1, 2] non_zero_mask = (depth > 0) final_instance_mask = np.logical_and(instance_mask, non_zero_mask) idxs = np.where(final_instance_mask) z = depth[idxs[0], idxs[1]] x = (idxs[1] - cam_cx) * z / cam_fx y = (idxs[0] - cam_cy) * z / cam_fy pts = np.stack((x, y, z), axis=1) return pts, idxs
20,423
def if_any( _data, *args, _names=None, _context=None, **kwargs, ): """Apply the same predicate function to a selection of columns and combine the results True if any element is True. See Also: [`across()`](datar.dplyr.across.across) """ if not args: args = (None, None) elif len(args) == 1: args = (args[0], None) _cols, _fns, *args = args _data = _context.meta.get("input_data", _data) return IfAny( _data, _cols, _fns, _names, args, kwargs, ).evaluate(_context)
20,424
def get_inpgen_para_from_xml(inpxmlfile, inpgen_ready=True): """ This routine returns an python dictionary produced from the inp.xml file, which can be used as a calc_parameters node by inpgen. Be aware that inpgen does not take all information that is contained in an inp.xml file :param inpxmlfile: and xml etree of a inp.xml file :param inpgen_ready: Bool, return a dict which can be inputed into inpgen while setting atoms :return new_parameters: A Dict, which will lead to the same inp.xml (in case if other defaults, which can not be controlled by input for inpgen, were changed) """ # TODO: convert econfig # TODO: parse kpoints, somehow count is bad (if symmetry changes), mesh is not known, path cannot be specified # Disclaimer: this routine needs some xpath expressions. these are hardcoded here, # therefore maintainance might be needed, if you want to circumvent this, you have # to get all the paths from somewhere. ####### # all hardcoded xpaths used and attributes names: # input film_xpath = '/fleurInput/atomGroups/atomGroup/filmPos/' # check for film pos # atom, for each species\ species_xpath = '/fleurInput/atomSpecies/species' atom_id_xpath = '' # is reconstruction possible at all now? atom_z_xpath = '@atomicNumber' atom_rmt_xpath = 'mtSphere/@radius' atom_dx_xpath = 'mtSphere/@logIncrement' atom_jri_xpath = 'mtSphere/@gridPoints' atom_lmax_xpath = 'atomicCutoffs/@lmax' atom_lnosph_xpath = 'atomicCutoffs/@lnonsphr' #atom_ncst_xpath = '@coreStates' atom_econfig_xpath = 'electronConfig' # converting todo atom_bmu_xpath = '@magMom' atom_lo_xpath = 'lo' # converting todo atom_element_xpath = '@element' atom_name_xpath = '@name' # comp jspins_xpath = 'calculationSetup/magnetism/@jspins' frcor_xpath = 'calculationSetup/coreElectrons/@frcor' ctail_xpath = 'calculationSetup/coreElectrons/@ctail' kcrel_xpath = 'calculationSetup/coreElectrons/@kcrel' gmax_xpath = 'calculationSetup/cutoffs/@Gmax' gmaxxc_xpath = 'calculationSetup/cutoffs/@GmaxXC' kmax_xpath = 'calculationSetup/cutoffs/@Kmax' # exco exco_xpath = 'xcFunctional/@name' # film # soc l_soc_xpath = '//calculationSetup/soc/@l_soc' theta_xpath = '//calculationSetup/soc/@theta' phi_xpath = '//calculationSetup/soc/@phi' # qss # kpt title_xpath = '/fleurInput/comment/text()' # text ######## new_parameters = {} #print('parsing inp.xml without XMLSchema') #tree = etree.parse(inpxmlfile) tree = inpxmlfile root = tree.getroot() # Create the cards # &input # most things are not needed for AiiDA here. or we ignor them for now. # film is set by the plugin depended on the structure # symor per default = False? to avoid input which fleur can't take # &comp # attrib = get_xml_attribute( comp_dict = {} comp_dict = set_dict_or_not(comp_dict, 'jspins', convert_to_int(eval_xpath(root, jspins_xpath), suc_return=False)) comp_dict = set_dict_or_not(comp_dict, 'frcor', convert_from_fortran_bool(eval_xpath(root, frcor_xpath))) comp_dict = set_dict_or_not(comp_dict, 'ctail', convert_from_fortran_bool(eval_xpath(root, ctail_xpath))) comp_dict = set_dict_or_not(comp_dict, 'kcrel', eval_xpath(root, kcrel_xpath)) comp_dict = set_dict_or_not(comp_dict, 'gmax', convert_to_float(eval_xpath(root, gmax_xpath), suc_return=False)) comp_dict = set_dict_or_not(comp_dict, 'gmaxxc', convert_to_float(eval_xpath(root, gmaxxc_xpath), suc_return=False)) comp_dict = set_dict_or_not(comp_dict, 'kmax', convert_to_float(eval_xpath(root, kmax_xpath), suc_return=False)) new_parameters['comp'] = comp_dict # &atoms species_list = eval_xpath2(root, species_xpath) for i, species in enumerate(species_list): atom_dict = {} atoms_name = 'atom{}'.format(i) atom_z = convert_to_int(eval_xpath(species, atom_z_xpath), suc_return=False) atom_rmt = convert_to_float(eval_xpath(species, atom_rmt_xpath), suc_return=False) atom_dx = convert_to_float(eval_xpath(species, atom_dx_xpath), suc_return=False) atom_jri = convert_to_int(eval_xpath(species, atom_jri_xpath), suc_return=False) atom_lmax = convert_to_int(eval_xpath(species, atom_lmax_xpath), suc_return=False) atom_lnosph = convert_to_int(eval_xpath(species, atom_lnosph_xpath), suc_return=False) #atom_ncst = convert_to_int(eval_xpath(species, atom_ncst_xpath), suc_return=False) atom_econfig = eval_xpath(species, atom_econfig_xpath) atom_bmu = convert_to_float(eval_xpath(species, atom_bmu_xpath), suc_return=False) atom_lo = eval_xpath(species, atom_lo_xpath) atom_element = eval_xpath(species, atom_element_xpath) atom_name_2 = eval_xpath(species, atom_name_xpath) if not inpgen_ready: atom_dict = set_dict_or_not(atom_dict, 'z', atom_z) #atom_dict = set_dict_or_not(atom_dict, 'name', atom_name_2) #atom_dict = set_dict_or_not(atom_dict, 'ncst', atom_ncst) (deprecated) atom_dict = set_dict_or_not(atom_dict, 'rmt', atom_rmt) atom_dict = set_dict_or_not(atom_dict, 'dx', atom_dx) atom_dict = set_dict_or_not(atom_dict, 'jri', atom_jri) atom_dict = set_dict_or_not(atom_dict, 'lmax', atom_lmax) atom_dict = set_dict_or_not(atom_dict, 'lnonsph', atom_lnosph) atom_dict = set_dict_or_not(atom_dict, 'econfig', atom_econfig) atom_dict = set_dict_or_not(atom_dict, 'bmu', atom_bmu) if atom_lo is not None: atom_dict = set_dict_or_not(atom_dict, 'lo', convert_fleur_lo(atom_lo)) atom_dict = set_dict_or_not(atom_dict, 'element', '{}'.format(atom_element)) new_parameters[atoms_name] = atom_dict # &soc attrib = convert_from_fortran_bool(eval_xpath(root, l_soc_xpath)) theta = convert_to_float(eval_xpath(root, theta_xpath), suc_return=False) phi = convert_to_float(eval_xpath(root, phi_xpath), suc_return=False) if attrib: new_parameters['soc'] = {'theta': theta, 'phi': phi} # &kpt #attrib = convert_from_fortran_bool(eval_xpath(root, l_soc_xpath)) #theta = eval_xpath(root, theta_xpath) #phi = eval_xpath(root, phi_xpath) # if kpt: # new_parameters['kpt'] = {'theta' : theta, 'phi' : phi} # # ['nkpt', 'kpts', 'div1', 'div2', 'div3', 'tkb', 'tria'], # title title = eval_xpath(root, title_xpath) # text if title: new_parameters['title'] = title.replace('\n', '').strip() # &exco #TODO, easy exco_dict = {} exco_dict = set_dict_or_not(exco_dict, 'xctyp', eval_xpath(root, exco_xpath)) # 'exco' : ['xctyp', 'relxc'], new_parameters['exco'] = exco_dict # &film # TODO # &qss # TODO # lattice, not supported? return new_parameters
20,425
def confirm_revocation(cert): """Confirm revocation screen. :param cert: certificate object :type cert: :class: :returns: True if user would like to revoke, False otherwise :rtype: bool """ return util(interfaces.IDisplay).yesno( "Are you sure you would like to revoke the following " "certificate:{0}{cert}This action cannot be reversed!".format( os.linesep, cert=cert.pretty_print()))
20,426
def main(config_path): """main entry point, load and validate config and call generate""" with open(config_path) as handle: config = json.load(handle) http_config = config.get("http", {}) misc_config = config.get("misc", {}) data_config = config.get("data", {}) logger.debug("http config: {0}\nmisc config: {1}\ndata config: {2}".format(http_config, misc_config, data_config)) interval_ms = misc_config.get("interval_ms", 5000) verbose = misc_config.get("verbose", False) host = http_config.get("host", "127.0.0.1") port = http_config.get("port", 8083) token = http_config.get("token", "KkFSogMUNDcKd5M30KzW") file_path = data_config.get("file_path") # columns = data_config.get("columns").split(",") # token needs to be added in generate function if ThingsBoard is to be included generate(host, port, token, loaddata(file_path), interval_ms, verbose)
20,427
def Gaussian(y, model, yerr): """Returns the loglikelihood for a Gaussian distribution. In this calculation, it is assumed that the parameters are true, and the loglikelihood that the data is drawn from the distribution established by the parameters is calculated Parameters ---------- model : array_like theoretical model data to be compared against y : array_like data points yerr : standard deviations on individual data points, assumed to be gaussian Returns ------- float loglikelihood for the data.""" inv_sigma2 = 1.0/(yerr**2.0) return -0.5*(np.sum((y-model)**2*inv_sigma2 - np.log(inv_sigma2)))
20,428
def clean_us_demographics(us_demographics_spark, spark_session): """ Clean data from us_demographics Args: us_demographics (object): Pyspark dataframe object spark_session (object): Pyspark session Returns: (object): Pyspark dataframe with cleaned data """ spark = spark_session us_demographics_spark.createOrReplaceTempView('us_demographics') dum = spark.sql(""" SELECT City, State, cast(`Median Age` as float) as Median_Age, cast(`Male Population` as int) as Male_Population, cast(`Female Population` as int) as Female_Population, cast(`Total Population` as int) as Total_Population, cast(`Number of Veterans` as int) as Number_of_Veterans, cast(`Foreign-born` as int) as Foregin_born, cast(`Average Household Size` as float) as Average_Household_Size, `State Code` as State_Code,Race, cast(Count as int) FROM us_demographics """) us_demographics_spark_cleaned = dum.dropDuplicates() us_demographics_spark_cleaned = us_demographics_spark_cleaned.na.drop() us_demographics_spark_race = us_demographics_spark_cleaned.groupBy(['City','State']).pivot("Race").agg(F.first("Count")) us_demographics_spark_race = us_demographics_spark_race.select('City', 'State', F.col('American Indian and Alaska Native').alias('American_Indian_and_Alaska_Native'), 'Asian', F.col('Black or African-American').alias('Black_or_African_American'), F.col('Hispanic or Latino').alias('Hispanic_or_Latino'), 'White') us_demographics_spark_cleaned = us_demographics_spark_cleaned.drop('Race', 'Count') us_demographics_spark_cleaned = us_demographics_spark_cleaned.dropDuplicates() us_demographics_spark_cleaned = us_demographics_spark_cleaned.join(us_demographics_spark_race, ['State', 'City']) us_demographics_spark_cleaned = us_demographics_spark_cleaned.fillna( {'American_Indian_and_Alaska_Native':0, 'Asian':0, 'Black_or_African_American':0, 'Hispanic_or_Latino':0, 'White':0}) us_demographics_spark_cleaned = us_demographics_spark_cleaned.orderBy(['City','State']) return us_demographics_spark_cleaned
20,429
def parse_date(date=None): """ Parse a string in YYYY-MM-DD format into a datetime.date object. Throws ValueError if input is invalid :param date: string in YYYY-MM-DD format giving a date :return: a datetime.date object corresponding to the date given """ if date is None: raise ValueError fields = date.split('-') if len(fields) != 3: raise ValueError return datetime.date(year=int(fields[0]), month=int(fields[1]), day=int(fields[2]))
20,430
def torch_save(path, model): """Function to save torch model states :param str path: file path to be saved :param torch.nn.Module model: torch model """ if hasattr(model, 'module'): torch.save(model.module.state_dict(), path) else: torch.save(model.state_dict(), path)
20,431
def status(): """ Incoming status handler: forwarded by ForwardServerProvider """ req = jsonex_loads(request.get_data()) status = g.provider._receive_status(req['status']) return {'status': status}
20,432
def cli(env, identifier, uri, ibm_api_key): """Export an image to object storage. The URI for an object storage object (.vhd/.iso file) of the format: swift://<objectStorageAccount>@<cluster>/<container>/<objectPath> or cos://<regionName>/<bucketName>/<objectPath> if using IBM Cloud Object Storage """ image_mgr = SoftLayer.ImageManager(env.client) image_id = helpers.resolve_id(image_mgr.resolve_ids, identifier, 'image') result = image_mgr.export_image_to_uri(image_id, uri, ibm_api_key) if not result: raise exceptions.CLIAbort("Failed to export Image")
20,433
def test_TimeSeriesEvent(): """Test basic getters and setters.""" event = ktk.TimeSeriesEvent() event.time = 1 event.name = 'one' assert event.time == 1 assert event.name == 'one'
20,434
def get_feature_extractor_info(): """Return tuple of pretrained feature extractor and its best-input image size for the extractor""" return get_pretrained_feature_extractor(), K_MODEL_IMAGE_SIZE
20,435
def _alembic_connect(db_path: Path, enforce_foreign_keys=True) -> Iterator[Config]: """Context manager to return an instance of an Alembic configuration. The profiles's database connection is added in the `attributes` property, through which it can then also be retrieved, also in the `env.py` file, which is run when the database is migrated. """ with create_sqla_engine(db_path, enforce_foreign_keys=enforce_foreign_keys).connect() as connection: config = _alembic_config() config.attributes['connection'] = connection # pylint: disable=unsupported-assignment-operation def _callback(step: MigrationInfo, **kwargs): # pylint: disable=unused-argument """Callback to be called after a migration step is executed.""" from_rev = step.down_revision_ids[0] if step.down_revision_ids else '<base>' MIGRATE_LOGGER.report(f'- {from_rev} -> {step.up_revision_id}') config.attributes['on_version_apply'] = _callback # pylint: disable=unsupported-assignment-operation yield config
20,436
def compare_flowcorr( self, blocks=False ): """ Plots the flowcorr against the slopes data. Creates two files: a 2d histogram and a point map if blocks is set to true, then it breaks the result down by block and writes a unified HTML table """ if not ( hasattr( self, 'flowcorr') and hasattr( self, 'slopes' ) ): self.annotate( 'Cannot compare slopes and flowcorr', 0 ) return if blocks and isinstance( self, ( ECC_Analysis, Thumbnail ) ): # Setup the limits for each block lims = [] for x in np.arange( 0, self.chiptype.chipC, self.macroC ): for y in np.arange( 0, self.chiptype.chipR, self.macroR ): lims.append( ( y, y+self.macroR, x, x+self.macroR) ) # Setup directory to save each file dirname = 'slopes_flowcorr' system.makedir( os.path.join( self.analysisdir, dirname ) ) else: lims = [ ( None, None, None, None ) ] dirname = '' # Calculate the medians only once flowcorr_norm = np.median( self.flowcorr ) slopes_norm = np.median( self.slopes ) for l in lims: # Get the data range xdata = self.flowcorr[ l[0]:l[1], l[2]:l[3] ].flatten() / flowcorr_norm ydata = self.slopes[ l[0]:l[1], l[2]:l[3] ].flatten() / slopes_norm # Calculate the blockname if blocks: blockname = 'block_X%i_Y%i_' % ( l[2], l[0] ) else: blockname = '' # Make the point plot filename = '%s/%s/%s%s.png' % ( self.analysisdir, dirname, blockname, 'slopes_flowcorr_raw' ) f = plt.figure( facecolor='w' ) plt.plot( xdata, ydata, '.', markersize=1 ) plt.xlabel( 'flowcorr/median' ) plt.ylabel( 'slopes/median' ) plt.xlim( (0,3) ) plt.ylim( (0,3) ) f.savefig( filename ) plt.close( f ) filename = '%s/%s/%s%s.png' % ( self.analysisdir, dirname, blockname, 'slopes_flowcorr' ) bins = np.arange(0,2.01,0.05) H, x, y = np.histogram2d( ydata, xdata, bins=bins ) f = plt.figure() extent = [0, 2, 0, 2] plt.imshow( H, origin='lower', aspect='equal', interpolation='nearest', extent=extent ) plt.xlabel( 'flowcorr/median' ) plt.ylabel( 'slopes/median' ) f.savefig( filename ) plt.close( f ) if blocks: self._make_slopes_flowcorr_html()
20,437
def nx_find_connected_limited(graph, start_set, end_set, max_depth=3): """Return the neurons in end_set reachable from start_set with limited depth.""" reverse_graph = graph.reverse() reachable = [] for e in end_set: preorder_nodes = list( ( networkx.algorithms.traversal.depth_first_search.dfs_preorder_nodes( reverse_graph, source=e, depth_limit=max_depth ) ) ) for s in start_set: if s in preorder_nodes: reachable.append(e) break return reachable
20,438
def hexbyte_2integer_normalizer(first_int_byte, second_int_btye): """Function to normalize integer bytes to a single byte Transform two integer bytes to their hex byte values and normalize their values to a single integer Parameters __________ first_int_byte, second_int_byte : int integer values to normalize (0 to 255) Returns _______ integer: int Single normalized integer """ first_hex = f'{hex(first_int_byte)}'.lstrip('0x') second_hex = f'{hex(second_int_btye)}'.lstrip('0x') first_hex = first_hex if len(f'{first_hex}') == 2 else f'0{first_hex}' second_hex = second_hex if len(f'{second_hex}') == 2 else f'0{second_hex}' hex_string = f'{first_hex}{second_hex}' integer = int(hex_string, 16) return integer
20,439
def wrapAngle(angle): """ Ensures angle is between -360 and 360 arguments: angle - float angle that you want to be between -360 and 360 returns: float - angle between -360 and 360 """ printDebug("In wrapAngle, angle is " + str(angle), DEBUG_INFO) if angle >= 0: return angle % 360 else: return angle % -360
20,440
def batch(iterable, batch_size): """Yields lists by batch""" b = [] for i, t in enumerate(iterable): b.append(t) if (i + 1) % batch_size == 0: yield b b = [] if len(b) > 0: yield b
20,441
def _save_first_checkpoint(keras_model, custom_objects, config): """Save first checkpoint for the keras Estimator. Args: keras_model: an instance of compiled keras model. custom_objects: Dictionary for custom objects. config: Estimator config. Returns: The path where keras model checkpoint is saved. """ # save checkpoint into subdirectory to allow warm start keras_model_dir = os.path.join(config.model_dir, 'keras') # Load weights and save to checkpoint if there is no checkpoint latest_path = checkpoint_management.latest_checkpoint(keras_model_dir) if not latest_path: keras_weights = None if _any_weight_initialized(keras_model): keras_weights = keras_model.get_weights() if not gfile.IsDirectory(keras_model_dir): gfile.MakeDirs(keras_model_dir) with ops.Graph().as_default(): random_seed.set_random_seed(config.tf_random_seed) training_util.create_global_step() model = _clone_and_build_model(model_fn_lib.ModeKeys.TRAIN, keras_model, custom_objects) # save to checkpoint with session.Session(config=config.session_config) as sess: if keras_weights: model.set_weights(keras_weights) # Make update ops and initialize all variables. if not model.train_function: # pylint: disable=protected-access model._make_train_function() K._initialize_variables(sess) # pylint: enable=protected-access saver = saver_lib.Saver() latest_path = os.path.join(keras_model_dir, 'keras_model.ckpt') saver.save(sess, latest_path) return latest_path
20,442
def query_pubmed_mod_updates(): """ :return: """ populate_alliance_pmids() # query_pmc_mgi() # find pmc articles for mice and 9 journals, get pmid mappings and list of pmc without pmid # download_pmc_without_pmid_mgi() # download pmc xml for pmc without pmid and find their article type query_mods() # query pubmed for mod references
20,443
def build_reference_spectrum_list_from_config_file(config): """ Read reference spectrum file glob(s) from configuration file to create and return a list of ReferenceSpectrum instances. :param config: configparser instance :return: list of ReferenceSpectrum instances """ log = logging.getLogger(name=__name__) references = config.items("references") log.debug(references) reference_spectrum_list, _ = ReferenceSpectrum.read_all( [ os.path.expanduser(reference_file_glob) for reference_file_glob, _ in references ] ) if len(reference_spectrum_list) == 0: raise ConfigurationFileError( 'no reference spectrum files were found using globs "{}"'.format(references) ) else: return reference_spectrum_list
20,444
def make_window(signal, sample_spacing, which=None, alpha=4): """Generate a window function to be used in PSD analysis. Parameters ---------- signal : `numpy.ndarray` signal or phase data sample_spacing : `float` spacing of samples in the input data which : `str,` {'welch', 'hann', None}, optional which window to produce. If auto, attempts to guess the appropriate window based on the input signal alpha : `float`, optional alpha value for welch window Notes ----- For 2D welch, see: Power Spectral Density Specification and Analysis of Large Optical Surfaces E. Sidick, JPL Returns ------- `numpy.ndarray` window array """ s = signal.shape if which is None: # attempt to guess best window ysamples = int(round(s[0] * 0.02, 0)) xsamples = int(round(s[1] * 0.02, 0)) corner1 = signal[:ysamples, :xsamples] == 0 corner2 = signal[-ysamples:, :xsamples] == 0 corner3 = signal[:ysamples, -xsamples:] == 0 corner4 = signal[-ysamples:, -xsamples:] == 0 if corner1.all() and corner2.all() and corner3.all() and corner4.all(): # four corners all "black" -- circular data, Welch window is best # looks wrong but 2D welch takes x, y while indices are y, x y, x = (e.arange(N) - (N / 2) for N in s) which = window_2d_welch(x, y) else: # if not circular, square data; use Hanning window y, x = (e.hanning(N) for N in s) which = e.outer(y, x) else: if type(which) is str: # known window type wl = which.lower() if wl == 'welch': y, x = (e.arange(N) - (N / 2) for N in s) which = window_2d_welch(x, y, alpha=alpha) elif wl in ('hann', 'hanning'): y, x = (e.hanning(N) for N in s) which = e.outer(y, x) else: raise ValueError('unknown window type') return which
20,445
def set_units( df: pd.DataFrame, units: Dict[str, Union[pint.Unit, str]] ) -> pd.DataFrame: """Make dataframe unit-aware. If dataframe is already unit-aware, convert to specified units. If not, assume values are in specified unit. Parameters ---------- df : pd.DataFrame units : Dict[str, Union[pint.Unit, str]] key = column name, value = unit to set to that column Returns ------- pd.DataFrame Same as input dataframe, but with specified units. """ df = df.copy() # don't change incoming dataframe for name, unit in units.items(): df[name] = set_unit(df[name], unit) return df
20,446
def makeTokensTable(medidasTokens__instance, table_dir="/home/r/repos/artigoTextoNasRedes/tables/",fname="tokensInline.tex",tag=None): """Tabela de medidas de tokens TTM""" tms=medidasTokens__instance mvars=("tokens", "tokens_diff", "knownw", "knownw_diff", "stopw", "punct", "contract") tms_=[[tms[j][i] for j in range(4)] for i in mvars] labelsh=("","g.","p.","i.","h.") labels=(r"$tokens$", r"$tokens_{\%}$", r"$tokens \neq$", r"$\frac{knownw}{tokens}$", r"$\frac{knownw \neq}{knownw}$", r"$\frac{stopw}{knownw}$", r"$\frac{punct}{tokens}$", r"$\frac{contrac}{tokens}$", ) caption=r"""tokens in each Erd\"os sector ({{\bf p.}} for periphery, {{\bf i.}} for intermediary, {{\bf h.}} for hubs).""" data=tms_ ntoks=data[0] ntoks_=perc_(ntoks) data=n.array(data[1:]) data=n.vstack((ntoks,ntoks_,data*100)) fname_=mkName(table_dir,fname,tag) g.lTable(labels,labelsh,data,caption,fname_,"textGeral") ME(fname_[:-4],"\\bf",[(0,i) for i in range(1,5)]) DL(fname_[:-4]+"_",[1],[1],[2,3,5,7,8])
20,447
def address_repr(buf, reverse: bool = True, delimit: str = "") -> str: """Convert a buffer into a hexlified string.""" order = range(len(buf) - 1, -1, -1) if reverse else range(len(buf)) return delimit.join(["%02X" % buf[byte] for byte in order])
20,448
def _highlight(line1, line2): """Returns the sections that should be bolded in the given lines. Returns: two tuples. Each tuple indicates the start and end of the section of the line that should be bolded for line1 and line2 respectively. """ start1 = start2 = 0 match = re.search(r'\S', line1) # ignore leading whitespace if match: start1 = match.start() match = re.search(r'\S', line2) if match: start2 = match.start() length = min(len(line1), len(line2)) - 1 bold_start1 = start1 bold_start2 = start2 while (bold_start1 <= length and bold_start2 <= length and line1[bold_start1] == line2[bold_start2]): bold_start1 += 1 bold_start2 += 1 match = re.search(r'\s*$', line1) # ignore trailing whitespace bold_end1 = match.start() - 1 match = re.search(r'\s*$', line2) bold_end2 = match.start() - 1 while (bold_end1 >= bold_start1 and bold_end2 >= bold_start2 and line1[bold_end1] == line2[bold_end2]): bold_end1 -= 1 bold_end2 -= 1 if bold_start1 - start1 > 0 or len(line1) - 1 - bold_end1 > 0: return (bold_start1 + 1, bold_end1 + 2), (bold_start2 + 1, bold_end2 + 2) return None, None
20,449
def test_memtable_flush_writer_blocked(): """verify flush writer blocked""" analyzer = recs.Engine() stage = recs.Stage( name="MemtableFlushWriter", pending=0, active=0, local_backpressure=0, completed=0, blocked=1, all_time_blocked=0, ) reason, rec = analyzer.analyze_stage(stage) assert rec == "lower memtable_cleanup_threshold in cassandra.yaml" assert reason == "memtable flush writers blocked greater than zero" stage.blocked = 0 reason, rec = analyzer.analyze_stage(stage) assert not rec assert not reason
20,450
def get_comrec_build(pkg_dir, build_cmd=build_py): """ Return extended build command class for recording commit The extended command tries to run git to find the current commit, getting the empty string if it fails. It then writes the commit hash into a file in the `pkg_dir` path, named ``COMMIT_INFO.txt``. In due course this information can be used by the package after it is installed, to tell you what commit it was installed from if known. To make use of this system, you need a package with a COMMIT_INFO.txt file - e.g. ``myproject/COMMIT_INFO.txt`` - that might well look like this:: # This is an ini file that may contain information about the code state [commit hash] # The line below may contain a valid hash if it has been substituted during 'git archive' archive_subst_hash=$Format:%h$ # This line may be modified by the install process install_hash= The COMMIT_INFO file above is also designed to be used with git substitution - so you probably also want a ``.gitattributes`` file in the root directory of your working tree that contains something like this:: myproject/COMMIT_INFO.txt export-subst That will cause the ``COMMIT_INFO.txt`` file to get filled in by ``git archive`` - useful in case someone makes such an archive - for example with via the github 'download source' button. Although all the above will work as is, you might consider having something like a ``get_info()`` function in your package to display the commit information at the terminal. See the ``pkg_info.py`` module in the nipy package for an example. """ class MyBuildPy(build_cmd): ''' Subclass to write commit data into installation tree ''' def run(self): build_cmd.run(self) import subprocess proc = subprocess.Popen('git rev-parse HEAD', stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) repo_commit, _ = proc.communicate() # Fix for python 3 repo_commit = str(repo_commit) # We write the installation commit even if it's empty cfg_parser = ConfigParser() cfg_parser.read(pjoin(pkg_dir, 'COMMIT_INFO.txt')) cfg_parser.set('commit hash', 'install_hash', repo_commit) out_pth = pjoin(self.build_lib, pkg_dir, 'COMMIT_INFO.txt') cfg_parser.write(open(out_pth, 'wt')) return MyBuildPy
20,451
def get_detected_objects_new(df, siglim=5, Terr_lim=3, Toffset=2000): """ Get a dataframe with only the detected objects. :param df: A DataFrame such as one output by get_ccf_summary with N > 1 :param siglim: The minimum significance to count as detected :param Terr_lim: The maximum number of standard deviations of (Measured - Actual) to allow for detected objects :param Toffset: The absolute difference to allow between the true and measured temperature. :return: A dataframe similar to df, but with fewer rows """ S = get_initial_uncertainty(df) S['Tdiff'] = S.Tmeas - S.Tactual mean, std = S.Tdiff.mean(), S.Tdiff.std() detected = S.loc[(S.significance > siglim) & (S.Tdiff - mean < Terr_lim * std) & (abs(S.Tdiff) < Toffset)] return pd.merge(detected[['Primary', 'Secondary']], df, on=['Primary', 'Secondary'], how='left')
20,452
def test_refresh_repositories(nexus_mock_client): """ Ensure the method retrieves latest repositories and sets the class attribute. """ repositories = nexus_mock_client.repositories.raw_list() x_repositories = nexus_mock_client._request.return_value._json nexus_mock_client._request.assert_called_with('get', 'repositories') assert repositories == x_repositories
20,453
def cmp(a, b): """ Python 3 does not have a cmp function, this will do the cmp. :param a: first object to check :param b: second object to check :return: """ # convert to lower case for string comparison. if a is None: return -1 if type(a) is str and type(b) is str: a = a.lower() b = b.lower() # if list has string element, convert string to lower case. if type(a) is list and type(b) is list: a = [x.lower() if type(x) is str else x for x in a] b = [x.lower() if type(x) is str else x for x in b] a.sort() b.sort() return (a > b) - (a < b)
20,454
def pe(cmd, shell=True): """ Print and execute command on system """ ret = [] for line in execute(cmd, shell=shell): ret.append(line) print(line, end="") return ret
20,455
def create_photo(user_id, text: str, greencolor: bool): # color: tuple(R,G,B) """ :param user_id: int or str :param text: str :param greencolor: bool True = зеленый (204, 255, 204) False = серый (240, 238, 237) """ color = (204, 255, 204) if not greencolor: color = (240, 238, 237) fontname = os.path.join(dirs['font'], 'OpenSans-Regular.ttf') fontsize = 14 font = ImageFont.truetype(fontname, fontsize) preimg = Image.new('RGB', (2000, 1000), color) text_draw = ImageDraw.Draw(preimg) text_width, text_height = text_draw.multiline_textsize(text, font) text_draw.multiline_text((10, 10), text, fill="black", font=font) img = preimg.crop((0, 0, text_width + 20, text_height + 24)) path = os.path.join(dirs['images'], f'{user_id}.png') img.save(path, "PNG") return path
20,456
def mark_production_ready(config, incident, team, artifact, tag, url): """ Manually mark image as production ready. """ pierone_url = set_pierone_url(config, url) registry = get_registry(pierone_url) image = DockerImage(registry, team, artifact, tag) if incident.startswith("INC-"): # if it's a JIRA ticket, mark image as production ready in Pierone api = PierOne(pierone_url) api.mark_production_ready(image, incident) else: meta = DockerMeta() meta.mark_production_ready(image, incident) if team in ["ci", "automata", "torch"]: click.echo("🧙 ", nl=False) click.echo( "Marked {} as `production_ready` due to incident {}.".format( format_full_image_name(image), incident ) )
20,457
def crop(image): """ Method to crop out the uncessary white parts of the image. Inputs: image (numpy array): Numpy array of the image label. Outputs: image (numpy array): Numpy array of the image label, cropped. """ image = ImageOps.invert(image) imageBox = image.getbbox() image = image.crop(imageBox) return ImageOps.invert(image)
20,458
def test(dataset): """Test the solving algorithm against a dataset""" reader = csv.reader(dataset) total_problems = sum(1 for row in reader) solved_problems = 0 dataset.seek(0) print_progress(solved_problems, total_problems) try: for row in reader: problem = row[0] solution = row[1] sudoku = Sudoku(problem) sudoku = solve_sudoku(sudoku) if str(sudoku) != solution: raise SudokuSolvingError( 'Incorrect solution: {} != {}.'.format( sudoku, solution)) solved_problems += 1 print_progress(solved_problems, total_problems) print('\nDone!') except SudokuSolvingError as error: # We need two line breaks because of the progress bar print('\n\n' + str(error))
20,459
def copy_param(code, target, source): """ Copy a parameter from source reg to preferred slot in the target reg. For params in slot 0, this is just and add immediate. For params in other slots, the source is rotated. Note that other values in the source are copied, too. """ if source[SLOT] != 0: code.add(spu.rotqbyi(target, source[REG], source[SLOT] * 4)) else: code.add(spu.ai(target, source[REG], 0)) return
20,460
def all_pairs_normalized_distances(X): """ We can't really compute distances over incomplete data since rows are missing different numbers of entries. The next best thing is the mean squared difference between two vectors (a normalized distance), which gets computed only over the columns that two vectors have in common. If two vectors have no features in common then their distance is infinity. Parameters ---------- X : np.ndarray Data matrix of shape (n_samples, n_features) with missing entries marked using np.nan Returns a (n_samples, n_samples) matrix of pairwise normalized distances. """ n_rows, n_cols = X.shape # matrix of mean squared difference between between samples D = np.ones((n_rows, n_rows), dtype="float32", order="C") * np.inf # we can cheaply determine the number of columns that two rows share # by taking the dot product between their finite masks observed_elements = np.isfinite(X).astype(int) n_shared_features_for_pairs_of_rows = np.dot( observed_elements, observed_elements.T) no_overlapping_features_rows = n_shared_features_for_pairs_of_rows == 0 number_incomparable_rows = no_overlapping_features_rows.sum(axis=1) row_overlaps_every_other_row = (number_incomparable_rows == 0) row_overlaps_no_other_rows = number_incomparable_rows == n_rows valid_rows_mask = ~row_overlaps_no_other_rows valid_row_indices = np.where(valid_rows_mask)[0] # preallocate all the arrays that we would otherwise create in the # following loop and pass them as "out" parameters to NumPy ufuncs diffs = np.zeros_like(X) missing_differences = np.zeros_like(diffs, dtype=bool) valid_rows = np.zeros(n_rows, dtype=bool) ssd = np.zeros(n_rows, dtype=X.dtype) for i in valid_row_indices: x = X[i, :] np.subtract(X, x.reshape((1, n_cols)), out=diffs) np.isnan(diffs, out=missing_differences) # zero out all NaN's diffs[missing_differences] = 0 # square each difference diffs **= 2 observed_counts_per_row = n_shared_features_for_pairs_of_rows[i] if row_overlaps_every_other_row[i]: # add up all the non-missing squared differences diffs.sum(axis=1, out=D[i, :]) D[i, :] /= observed_counts_per_row else: np.logical_not(no_overlapping_features_rows[i], out=valid_rows) # add up all the non-missing squared differences diffs.sum(axis=1, out=ssd) ssd[valid_rows] /= observed_counts_per_row[valid_rows] D[i, valid_rows] = ssd[valid_rows] return D
20,461
def forward_pass(model, target_angle, mixed_data, conditioning_label, args): """ Runs the network on the mixed_data with the candidate region given by voice """ target_pos = np.array([ FAR_FIELD_RADIUS * np.cos(target_angle), FAR_FIELD_RADIUS * np.sin(target_angle) ]) data, _ = utils.shift_mixture( torch.tensor(mixed_data).to(args.device), target_pos, args.mic_radius, args.sr) data = data.float().unsqueeze(0) # Batch size is 1 # Normalize input data, means, stds = normalize_input(data) # Run through the model valid_length = model.valid_length(data.shape[-1]) delta = valid_length - data.shape[-1] padded = F.pad(data, (delta // 2, delta - delta // 2)) output_signal = model(padded, conditioning_label) output_signal = center_trim(output_signal, data) output_signal = unnormalize_input(output_signal, means, stds) output_voices = output_signal[:, 0] # batch x n_mics x n_samples output_np = output_voices.detach().cpu().numpy()[0] energy = librosa.feature.rms(output_np).mean() return output_np, energy
20,462
async def get_event_by_code(code: str, db: AsyncSession) -> Event: """ Get an event by its code """ statement = select(Event).where(Event.code == code) result = await db.execute(statement) event: Optional[Event] = result.scalars().first() if event is None: raise HTTPException( status_code=HTTPStatus.BAD_REQUEST, detail="invalid attendance code", ) # Check that the code is still valid with tracer.start_as_current_span("check-validity"): now = datetime.now(tz=pytz.utc) if not event.enabled or now < event.valid_from or now > event.valid_until: raise HTTPException(status_code=HTTPStatus.FORBIDDEN, detail="invalid code") return event
20,463
def get(name): """Returns an OpDef for a given `name` or None if the lookup fails.""" with _sync_lock: return _registered_ops.get(name)
20,464
def angle_detect_dnn(img, adjust=True): """ 文字方向检测 """ h, w = img.shape[:2] ROTATE = [0, 90, 180, 270] if adjust: thesh = 0.05 xmin, ymin, xmax, ymax = int(thesh * w), int(thesh * h), w - int(thesh * w), h - int(thesh * h) img = img[ymin:ymax, xmin:xmax] ##剪切图片边缘 inputBlob = cv2.dnn.blobFromImage(img, scalefactor=1.0, size=(224, 224), swapRB=True, mean=[103.939, 116.779, 123.68], crop=False); angleNet.setInput(inputBlob) pred = angleNet.forward() index = np.argmax(pred, axis=1)[0] return ROTATE[index]
20,465
def get_correct_line(df_decisions): """ The passed df has repeated lines for the same file (same chemin_source). We take the most recent one. :param df_decisions: Dataframe of decisions :return: Dataframe without repeated lines (according to the chemin_source column) """ return df_decisions.sort_values('timestamp_modification').drop_duplicates('chemin_source', keep='last')
20,466
def fix_1(lst1, lst2): """ Divide all of the elements in `lst1` by each element in `lst2` and return the values in a list. >>> fix_1([1, 2, 3], [0, 1]) [1.0, 2.0, 3.0] >>> fix_1([], []) [] >>> fix_1([10, 20, 30], [0, 10, 10, 0]) [1.0, 2.0, 3.0, 1.0, 2.0, 3.0] """ out = [] for div in lst2: for num in lst1: try: out.append(num / div) # add try-except block except ZeroDivisionError: pass return out
20,467
def sleep_countdown(duration, print_step=2): """Sleep for certain duration and print remaining time in steps of print_step Args: duration (int): duration of timeout print_step (int): steps to print countdown Returns None: Countdown in console """ for i in range(duration, 0, -print_step): time.sleep(print_step) sys.stdout.write(str(i - print_step) + " ") sys.stdout.flush()
20,468
def user_wants_upload(): """ Determines whether or not the user wants to upload the extension :return: boolean """ choice = input("Do you want to upload your extension right now? :") if "y" in choice or "Y" in choice: return True else: return False
20,469
def has_genus_flag(df, genus_col="mhm_Genus", bit_col="mhm_HasGenus", inplace=False): """ Creates a bit flag: `mhm_HasGenus` where 1 denotes a recorded Genus and 0 denotes the contrary. Parameters ---------- df : pd.DataFrame A mosquito habitat mapper DataFrame genus_col : str, default="mhm_Genus" The name of the column in the mosquito habitat mapper DataFrame that contains the genus records. bit_col : str, default="mhm_HasGenus" The name of the column which will store the generated HasGenus flag inplace : bool, default=False Whether to return a new DataFrame. If True then no DataFrame copy is not returned and the operation is performed in place. Returns ------- pd.DataFrame A DataFrame with the HasGenus flag. If `inplace=True` it returns None. """ if not inplace: df = df.copy() df[bit_col] = (~pd.isna(df[genus_col].to_numpy())).astype(int) if not inplace: return df
20,470
def record_point_cloud(target, file_name): """Record a raw point cloud and print the number of received bytes. If the record_to_file parameter is set with a path and a filename, the stream will be recorded to this file. :param target: hostname or IP address of the device :param file_name: file path to record to """ device = blickfeld_scanner.scanner(args.target) # Connect to the device raw_stream = device.record_point_cloud_stream(file_name) # Create a raw point cloud stream object while True: raw_file = raw_stream.recv_bytes() # Receive a raw file bytes print(f"Got {len(raw_file)} bytes") raw_file = raw_stream.stop() print(f"Got {len(raw_file)} bytes and stopped")
20,471
def interact_model( model_name='124M', seed=int(_seed()[:-2]), nsamples=8, batch_size=1, length=None, temperature=1, top_k=50, top_p=0.93, models_dir='models', ): """ Interactively run the model :model_name=124M : String, which model to use :seed=None : Integer seed for random number generators, fix seed to reproduce results :nsamples=1 : Number of samples to return total :batch_size=1 : Number of batches (only affects speed/memory). Must divide nsamples. :length=None : Number of tokens in generated text, if None (default), is determined by model hyperparameters :temperature=1 : Float value controlling randomness in boltzmann distribution. Lower temperature results in less random completions. As the temperature approaches zero, the model will become deterministic and repetitive. Higher temperature results in more random completions. :top_k=0 : Integer value controlling diversity. 1 means only 1 word is considered for each step (token), resulting in deterministic completions, while 40 means 40 words are considered at each step. 0 (default) is a special setting meaning no restrictions. 40 generally is a good value. :models_dir : path to parent folder containing model subfolders (i.e. contains the <model_name> folder) """ print(seed) models_dir = os.path.expanduser(os.path.expandvars(models_dir)) if batch_size is None: batch_size = 1 assert nsamples % batch_size == 0 enc = encoder.get_encoder(model_name, models_dir) hparams = model.default_hparams() with open(os.path.join(models_dir, model_name, 'hparams.json')) as f: hparams.override_from_dict(json.load(f)) if length is None: length = random.randint(9, 93) elif length > hparams.n_ctx: raise ValueError("Can't get samples longer than window size: %s" % hparams.n_ctx) with tf.Session(graph=tf.Graph()) as sess: context = tf.placeholder(tf.int32, [batch_size, None]) np.random.seed(seed) tf.set_random_seed(seed) output = sample.sample_sequence( hparams=hparams, length=length, context=context, batch_size=batch_size, temperature=temperature, top_k=top_k, top_p=top_p ) output2 = sample.sample_sequence( hparams=hparams, length=length, context=context, batch_size=batch_size, temperature=temperature, top_k=top_k, top_p=top_p ) output3 = sample.sample_sequence( hparams=hparams, length=length, context=context, batch_size=batch_size, temperature=temperature, top_k=top_k, top_p=top_p ) saver = tf.train.Saver() ckpt = tf.train.latest_checkpoint(os.path.join(models_dir, model_name)) saver.restore(sess, ckpt) # print('seed: ' + str(seed)) # k = 0 i = 0 count = 0 while True: raw_text = input("> ") while not raw_text: raw_text = input("> ") filename = str(seed) + str(calendar.timegm(time.gmtime())) + ".txt" o = open("../TXT/TXZ/GEN/" + filename, 'w') context_tokens = enc.encode(raw_text) generated = 0 o.write("-----\n" + raw_text + "\n-----\n\n") for _ in range(nsamples // batch_size): out = sess.run(output, feed_dict={ context: [context_tokens for _ in range(batch_size)] })[:, len(context_tokens):] generated2 = 0 for i in range(batch_size): generated += 1 text = enc.decode(out[i]) context_tokens2 = enc.encode(text) o.write(raw_text + " " + text + "\n----") print(raw_text + " " + text + "\n----") for _ in range(nsamples // batch_size): out2 = sess.run(output2, feed_dict={ context: [context_tokens2 for _ in range(batch_size)] })[:, len(context_tokens2):] for j in range(batch_size): generated2 += 1 text2 = enc.decode(out2[i]) o.write(text + " " + text2 + "\n\n") o.write("---\n\n") o.flush() o.write("-------\n\n\n\n") o.flush() raw_text = U2V(squished(raw_text)) raw_text_squished = raw_text context_tokens = enc.encode(raw_text) generated = 0 o.write("-----\n" + raw_text + "\n-----\n\n") for _ in range(nsamples // batch_size): out = sess.run(output, feed_dict={ context: [context_tokens for _ in range(batch_size)] })[:, len(context_tokens):] generated2 = 0 for i in range(batch_size): generated += 1 text = enc.decode(out[i]) context_tokens2 = enc.encode(text) o.write(raw_text + " " + text + "\n----") print(raw_text + " " + text + "\n----") for _ in range(nsamples // batch_size): out2 = sess.run(output2, feed_dict={ context: [context_tokens2 for _ in range(batch_size)] })[:, len(context_tokens2):] for j in range(batch_size): generated2 += 1 text2 = enc.decode(out2[i]) o.write(text + " " + text2 + "\n\n") o.write("---\n\n") o.flush() o.write("-------\n\n\n\n") o.flush() twr = trxtwr(raw_text, 3) twrstr = trxtwrstr(trxtwr(raw_text, 3)) raw_text = twrstr context_tokens = enc.encode(raw_text) generated = 0 o.write("-----\n" + raw_text + "\n-----\n\n") for _ in range(nsamples // batch_size): out = sess.run(output, feed_dict={ context: [context_tokens for _ in range(batch_size)] })[:, len(context_tokens):] generated2 = 0 for i in range(batch_size): generated += 1 text = enc.decode(out[i]) context_tokens2 = enc.encode(text) print(raw_text + " " + text + "\n----") o.write(raw_text + " " + text + "\n----") for _ in range(nsamples // batch_size): out2 = sess.run(output2, feed_dict={ context: [context_tokens2 for _ in range(batch_size)] })[:, len(context_tokens2):] for j in range(batch_size): generated2 += 1 text2 = enc.decode(out2[i]) o.write(text + " " + text2 + "\n\n") o.write("---\n\n") o.flush() twr = trxtwr(raw_text_squished, 3) twrstr = trxtwrstr(trxtwr(raw_text, 3)) mtwr = magicVVVDecTower(twr) mtwrstr = trxtwrstr(mtwr) newTwr = [] i = 0 for level in mtwr: newLvl = level + twr[i] i = i + 1 newTwr.append(newLvl) raw_text = trxtwrstr(newTwr) context_tokens = enc.encode(raw_text) generated = 0 o.write("-----\n" + raw_text + "\n-----\n\n") for _ in range(nsamples // batch_size): out = sess.run(output, feed_dict={ context: [context_tokens for _ in range(batch_size)] })[:, len(context_tokens):] generated2 = 0 for i in range(batch_size): generated += 1 text = enc.decode(out[i]) context_tokens2 = enc.encode(text) print(raw_text + " " + text + "\n----") o.write(raw_text + " " + text + "\n----") for _ in range(nsamples // batch_size): out2 = sess.run(output2, feed_dict={ context: [context_tokens2 for _ in range(batch_size)] })[:, len(context_tokens2):] for j in range(batch_size): generated2 += 1 text2 = enc.decode(out2[i]) o.write(text + " " + text2 + "\n\n") o.write("---\n\n") o.flush() o.write("-------\n\n\n\n") o.flush() o.close() print("done")
20,472
def compass( size: Tuple[float, float] = (4.0, 2.0), layer: Layer = gf.LAYER.WG, port_type: str = "electrical", ) -> Component: """Rectangular contact pad with centered ports on rectangle edges (north, south, east, and west) Args: size: rectangle size layer: tuple (int, int) port_type: """ c = gf.Component() dx, dy = size points = [ [-dx / 2.0, -dy / 2.0], [-dx / 2.0, dy / 2], [dx / 2, dy / 2], [dx / 2, -dy / 2.0], ] c.add_polygon(points, layer=layer) c.add_port( name="e1", midpoint=[-dx / 2, 0], width=dy, orientation=180, layer=layer, port_type=port_type, ) c.add_port( name="e2", midpoint=[0, dy / 2], width=dx, orientation=90, layer=layer, port_type=port_type, ) c.add_port( name="e3", midpoint=[dx / 2, 0], width=dy, orientation=0, layer=layer, port_type=port_type, ) c.add_port( name="e4", midpoint=[0, -dy / 2], width=dx, orientation=-90, layer=layer, port_type=port_type, ) c.auto_rename_ports() return c
20,473
def get_service(vm, port): """Return the service for a given port.""" for service in vm.get('suppliedServices', []): if service['portRange'] == port: return service
20,474
def test_create_mutant_with_cache(binop_file, stdoutIO): """Change ast.Add to ast.Mult in a mutation including pycache changes.""" genome = Genome(source_file=binop_file) # this target is the add_five() function, changing add to mult target_idx = LocIndex(ast_class="BinOp", lineno=10, col_offset=11, op_type=ast.Add) mutation_op = ast.Mult mutant = genome.mutate(target_idx, mutation_op, write_cache=True) # uses the redirection for stdout to capture the value from the final output of binop_file with stdoutIO() as s: exec(mutant.mutant_code) assert int(s.getvalue()) == 25 tag = sys.implementation.cache_tag expected_cfile = binop_file.parent / "__pycache__" / ".".join([binop_file.stem, tag, "pyc"]) assert mutant.src_file == binop_file assert mutant.cfile == expected_cfile assert mutant.src_idx == target_idx
20,475
def write_ef_tree_solution(ef, solution_directory_name, scenario_tree_solution_writer=scenario_tree_solution_writer): """ Write a tree solution directory, if available, to the solution_directory_name provided Args: ef : A Concrete Model of the Extensive Form (output of create_EF). We assume it has already been solved. solution_file_name : filename to write the solution to scenario_tree_solution_writer (optional) : custom scenario solution writer function NOTE: This utility is replicating WheelSpinner.write_tree_solution for EF """ if not haveMPI or (global_rank==0): os.makedirs(solution_directory_name, exist_ok=True) for scenario_name, scenario in ef_scenarios(ef): scenario_tree_solution_writer(solution_directory_name, scenario_name, scenario, bundling=False)
20,476
async def async_setup_entry(hass, config_entry): """Set up AirVisual as config entry.""" entry_updates = {} if not config_entry.unique_id: # If the config entry doesn't already have a unique ID, set one: entry_updates["unique_id"] = config_entry.data[CONF_API_KEY] if not config_entry.options: # If the config entry doesn't already have any options set, set defaults: entry_updates["options"] = DEFAULT_OPTIONS if entry_updates: hass.config_entries.async_update_entry(config_entry, **entry_updates) websession = aiohttp_client.async_get_clientsession(hass) hass.data[DOMAIN][DATA_CLIENT][config_entry.entry_id] = AirVisualData( hass, Client(websession, api_key=config_entry.data[CONF_API_KEY]), config_entry ) try: await hass.data[DOMAIN][DATA_CLIENT][config_entry.entry_id].async_update() except InvalidKeyError: _LOGGER.error("Invalid API key provided") raise ConfigEntryNotReady hass.async_create_task( hass.config_entries.async_forward_entry_setup(config_entry, "sensor") ) async def refresh(event_time): """Refresh data from AirVisual.""" await hass.data[DOMAIN][DATA_CLIENT][config_entry.entry_id].async_update() hass.data[DOMAIN][DATA_LISTENER][config_entry.entry_id] = async_track_time_interval( hass, refresh, DEFAULT_SCAN_INTERVAL ) config_entry.add_update_listener(async_update_options) return True
20,477
def rotation_point_cloud(pc): """ Randomly rotate the point clouds to augment the dataset rotation is per shape based along up direction :param pc: B X N X 3 array, original batch of point clouds :return: BxNx3 array, rotated batch of point clouds """ # rotated_data = np.zeros(pc.shape, dtype=np.float32) rotation_angle = np.random.uniform() * 2 * np.pi cosval = np.cos(rotation_angle) sinval = np.sin(rotation_angle) # rotation_matrix = np.array([[cosval, 0, sinval], # [0, 1, 0], # [-sinval, 0, cosval]]) rotation_matrix = np.array([[1, 0, 0], [0, cosval, -sinval], [0, sinval, cosval]]) # rotation_matrix = np.array([[cosval, -sinval, 0], # [sinval, cosval, 0], # [0, 0, 1]]) rotated_data = np.dot(pc.reshape((-1, 3)), rotation_matrix) return rotated_data
20,478
def alliance_system_oneday(mongohandle, alliance_id, system): """find by corp and system - one day""" allkills = mongohandle.allkills system = int(system) timeframe = 24 * 60 * 60 gmtminus = time.mktime(time.gmtime()) - timeframe cursor = allkills.find({"alliance_id": alliance_id, "solar_system_id": system, "unix_kill_time": { "$gte": gmtminus}}, {"ship": 1, "items": 1, "_id": 0}).hint('alliancesystemtime') (ships, items, ammos) = parsecursor.ships_and_items(cursor) return (ships, items, ammos)
20,479
def execute(**kwargs): """ Airflowのpython_operatorからcall :param kwargs: :return: """ print('Record ID:{}'.format(kwargs['record_id'])) record_id = int(kwargs['record_id']) analyzer = LaneAnalyzer() analyzer.execute(imported_data_id=record_id)
20,480
def slit_select(ra, dec, length, width, center_ra=0, center_dec=0, angle=0): """ :param ra: angular coordinate of photon/ray :param dec: angular coordinate of photon/ray :param length: length of slit :param width: width of slit :param center_ra: center of slit :param center_dec: center of slit :param angle: orientation angle of slit, angle=0 corresponds length in RA direction :return: bool, True if photon/ray is within the slit, False otherwise """ ra_ = ra - center_ra dec_ = dec - center_dec x = np.cos(angle) * ra_ + np.sin(angle) * dec_ y = - np.sin(angle) * ra_ + np.cos(angle) * dec_ if abs(x) < length / 2. and abs(y) < width / 2.: return True else: return False
20,481
def login(): """ Logs in user """ req = flask.request.get_json(force=True) username = req.get('username', None) password = req.get('password', None) user = guard.authenticate(username, password) ret = {'access_token': guard.encode_jwt_token(user)} return ret, 200
20,482
def acor(value, bounds, nparams, nants=None, archive_size=None, maxit=1000, diverse=0.5, evap=0.85, seed=None): """ Minimize the objective function using ACO-R. ACO-R stands for Ant Colony Optimization for Continuous Domains (Socha and Dorigo, 2008). Parameters: * value : function Returns the value of the objective function at a given parameter vector * bounds : list The bounds of the search space. If only two values are given, will interpret as the minimum and maximum, respectively, for all parameters. Alternatively, you can given a minimum and maximum for each parameter, e.g., for a problem with 3 parameters you could give `bounds = [min1, max1, min2, max2, min3, max3]`. * nparams : int The number of parameters that the objective function takes. * nants : int The number of ants to use in the search. Defaults to the number of parameters. * archive_size : int The number of solutions to keep in the solution archive. Defaults to 10 x nants * maxit : int The number of iterations to run. * diverse : float Scalar from 0 to 1, non-inclusive, that controls how much better solutions are favored when constructing new ones. * evap : float The pheromone evaporation rate (evap > 0). Controls how spread out the search is. * seed : None or int Seed for the random number generator. Yields: * i, estimate, stats: * i : int The current iteration number * estimate : 1d-array The current best estimated parameter vector * stats : dict Statistics about the optimization so far. Keys: * method : stf The name of the optimization algorithm * iterations : int The total number of iterations so far * objective : list Value of the objective function corresponding to the best estimate per iteration. """ stats = dict(method="Ant Colony Optimization for Continuous Domains", iterations=0, objective=[]) numpy.random.seed(seed) # Set the defaults for number of ants and archive size if nants is None: nants = nparams if archive_size is None: archive_size = 10 * nants # Check is giving bounds for each parameter or one for all bounds = numpy.array(bounds) if bounds.size == 2: low, high = bounds archive = numpy.random.uniform(low, high, (archive_size, nparams)) else: archive = numpy.empty((archive_size, nparams)) bounds = bounds.reshape((nparams, 2)) for i, bound in enumerate(bounds): low, high = bound archive[:, i] = numpy.random.uniform(low, high, archive_size) # Compute the inital pheromone trail based on the objetive function value trail = numpy.fromiter((value(p) for p in archive), dtype=numpy.float) # Sort the archive of initial random solutions order = numpy.argsort(trail) archive = [archive[i] for i in order] trail = trail[order].tolist() stats['objective'].append(trail[0]) # Compute the weights (probabilities) of the solutions in the archive amp = 1. / (diverse * archive_size * numpy.sqrt(2 * numpy.pi)) variance = 2 * diverse ** 2 * archive_size ** 2 weights = amp * numpy.exp(-numpy.arange(archive_size) ** 2 / variance) weights /= numpy.sum(weights) for iteration in range(maxit): for k in range(nants): # Sample the propabilities to produce new estimates ant = numpy.empty(nparams, dtype=numpy.float) # 1. Choose a pdf from the archive pdf = numpy.searchsorted( numpy.cumsum(weights), numpy.random.uniform()) for i in range(nparams): # 2. Get the mean and stddev of the chosen pdf mean = archive[pdf][i] std = (evap / (archive_size - 1)) * numpy.sum( abs(p[i] - archive[pdf][i]) for p in archive) # 3. Sample the pdf until the samples are in bounds for atempt in range(100): ant[i] = numpy.random.normal(mean, std) if bounds.size == 2: low, high = bounds else: low, high = bounds[i] if ant[i] >= low and ant[i] <= high: break pheromone = value(ant) # Place the new estimate in the archive place = numpy.searchsorted(trail, pheromone) if place == archive_size: continue trail.insert(place, pheromone) trail.pop() archive.insert(place, ant) archive.pop() stats['objective'].append(trail[0]) stats['iterations'] += 1 yield iteration, archive[0], copy.deepcopy(stats)
20,483
def devicePanel(q=1,e=1,ctl=1,cp="string",cs=1,dt="string",dtg="string",es=1,ex=1,init=1,iu=1,l="string",mrl=1,mbv=1,ni=1,p="string",pmp="script",rp="string",to=1,toc="string",tor=1,up=1,ut="string"): """ http://help.autodesk.com/cloudhelp/2019/ENU/Maya-Tech-Docs/CommandsPython/devicePanel.html ----------------------------------------- devicePanel is undoable, queryable, and editable. This command is now obsolete. It is included only for the purpose of file compatibility. It creates a blank panel. ----------------------------------------- Return Value: string name of panel In query mode, return type is based on queried flag. ----------------------------------------- Flags: ----------------------------------------- ctl : control [boolean] ['query'] Returns the top level control for this panel. Usually used for getting a parent to attach popup menus. CAUTION: panels may not have controls at times. This flag can return "" if no control is present. ----------------------------------------- cp : copy [string] ['edit'] Makes this panel a copy of the specified panel. Both panels must be of the same type. ----------------------------------------- cs : createString [boolean] ['edit'] Command string used to create a panel ----------------------------------------- dt : defineTemplate [string] [] Puts the command in a mode where any other flags and arguments are parsed and added to the command template specified in the argument. They will be used as default arguments in any subsequent invocations of the command when templateName is set as the current template. ----------------------------------------- dtg : docTag [string] ['query', 'edit'] Attaches a tag to the Maya panel. ----------------------------------------- es : editString [boolean] ['edit'] Command string used to edit a panel ----------------------------------------- ex : exists [boolean] [] Returns whether the specified object exists or not. Other flags are ignored. ----------------------------------------- init : init [boolean] ['edit'] Initializes the panel's default state. This is usually done automatically on file -new and file -open. ----------------------------------------- iu : isUnique [boolean] ['query'] Returns true if only one instance of this panel type is allowed. ----------------------------------------- l : label [string] ['query', 'edit'] Specifies the user readable label for the panel. ----------------------------------------- mrl : menuBarRepeatLast [boolean] ['query', 'edit'] Controls whether clicking on the menu header with the middle mouse button would repeat the last selected menu item. ----------------------------------------- mbv : menuBarVisible [boolean] ['query', 'edit'] Controls whether the menu bar for the panel is displayed. ----------------------------------------- ni : needsInit [boolean] ['query', 'edit'] (Internal) On Edit will mark the panel as requiring initialization. Query will return whether the panel is marked for initialization. Used during file -new and file -open. ----------------------------------------- p : parent [string] [] Specifies the parent layout for this panel. ----------------------------------------- pmp : popupMenuProcedure [script] ['query', 'edit'] Specifies the procedure called for building the panel's popup menu(s). The default value is "buildPanelPopupMenu". The procedure should take one string argument which is the panel's name. ----------------------------------------- rp : replacePanel [string] ['edit'] Will replace the specified panel with this panel. If the target panel is within the same layout it will perform a swap. ----------------------------------------- to : tearOff [boolean] ['query', 'edit'] Will tear off this panel into a separate window with a paneLayout as the parent of the panel. When queried this flag will return if the panel has been torn off into its own window. ----------------------------------------- toc : tearOffCopy [string] [] Will create this panel as a torn of copy of the specified source panel. ----------------------------------------- tor : tearOffRestore [boolean] ['edit'] Restores panel if it is torn off and focus is given to it. If docked, becomes the active panel in the docked window. This should be the default flag that is added to all panels instead of -to/-tearOff flag which should only be used to tear off the panel. ----------------------------------------- up : unParent [boolean] ['edit'] Specifies that the panel should be removed from its layout. This (obviously) cannot be used with query. ----------------------------------------- ut : useTemplate [string] Forces the command to use a command template other than the current one. """
20,484
def statuses_filter(auth, **params): """ Collect tweets from the twitter statuses_filter api. """ endpoint = "https://stream.twitter.com/1.1/statuses/filter.json" if "follow" in params and isinstance(params["follow"], (list, tuple)): params["follow"] = list_to_csv(params["follow"]) if "track" in params and isinstance(params["track"], (list, tuple)): params["track"] = list_to_csv(params["track"]) params.setdefault("delimited", 0) params.setdefault("stall_warnings", 1) return stream_call(endpoint, auth, params, "post")
20,485
def adjust_hue(image, hue_factor): """Adjusts hue of an image. The image hue is adjusted by converting the image to HSV and cyclically shifting the intensities in the hue channel (H). The image is then converted back to original image mode. `hue_factor` is the amount of shift in H channel and must be in the interval `[-0.5, 0.5]`. Args: image (PIL.Image): PIL Image to be adjusted. hue_factor (float): How much to shift the hue channel. Should be in [-0.5, 0.5]. 0.5 and -0.5 give complete reversal of hue channel in HSV space in positive and negative direction respectively. 0 means no shift. Therefore, both -0.5 and 0.5 will give an image with complementary colors while 0 gives the original image. Returns: PIL.Image: Hue adjusted image. """ if not (-0.5 <= hue_factor <= 0.5): raise ValueError('hue_factor ({}) is not in [-0.5, 0.5].'.format(hue_factor)) dtype = image.dtype image = image.astype(np.uint8) hsv_img = cv2.cvtColor(image, cv2.COLOR_RGB2HSV_FULL) h, s, v = cv2.split(hsv_img) alpha = np.random.uniform(hue_factor, hue_factor) h = h.astype(np.uint8) # uint8 addition take cares of rotation across boundaries with np.errstate(over="ignore"): h += np.uint8(alpha * 255) hsv_img = cv2.merge([h, s, v]) return cv2.cvtColor(hsv_img, cv2.COLOR_HSV2RGB_FULL).astype(dtype)
20,486
def lambda_handler(event, context): """Sample pure Lambda function Parameters ---------- event: dict, required API Gateway Lambda Proxy Input Format Event doc: https://docs.aws.amazon.com/apigateway/latest/developerguide/set-up-lambda-proxy-integrations.html#api-gateway-simple-proxy-for-lambda-input-format context: object, required Lambda Context runtime methods and attributes Context doc: https://docs.aws.amazon.com/lambda/latest/dg/python-context-object.html Returns ------ API Gateway Lambda Proxy Output Format: dict Return doc: https://docs.aws.amazon.com/apigateway/latest/developerguide/set-up-lambda-proxy-integrations.html """ #print("Received event: " + json.dumps(event, indent=2)) body = json.loads(event['body']) print(f"Body is: {body}") url = body['url'] print(f"Getting image from URL: {url}") response = requests.get(url) print("Load image into memory") img = PILImage.create(BytesIO(response.content)) print("Doing forward pass") start = time.time() pred,pred_idx,probs = learn.predict(img) end = time.time() inference_time = np.round((end - start) * 1000, 2) print(f'class: {pred}, probability: {probs[pred_idx]:.04f}') print(f'Inference time is: {str(inference_time)} ms') return { "statusCode": 200, "body": json.dumps( { "class": pred, "probability": "%.4f" % probs[pred_idx] } ), }
20,487
def compareDict(a, b): """ Compare two definitions removing the unique Ids from the entities """ ignore = ['Id'] _a = [hashDict(dict(x), ignore) for x in a] _b = [hashDict(dict(y), ignore) for y in b] _a.sort() _b.sort() return _a == _b
20,488
def create_twitter_auth(cf_t): """Function to create a twitter object Args: cf_t is configuration dictionary. Returns: Twitter object. """ # When using twitter stream you must authorize. # these tokens are necessary for user authentication # create twitter API object auth = OAuth(cf_t['access_token'], cf_t['access_token_secret'], cf_t['consumer_key'], cf_t['consumer_secret']) try: # create twitter API object twitter = Twitter(auth = auth) except TwitterHTTPError: traceback.print_exc() time.sleep(cf_t['sleep_interval']) return twitter
20,489
def main(): """Entry point.""" debug = False try: argparser = ArgumentParser(description=modules[__name__].__doc__) argparser.add_argument('device', nargs='?', default='ftdi:///?', help='serial port device name') argparser.add_argument('-S', '--no-smb', action='store_true', default=False, help='use regular I2C mode vs. SMBbus scan') argparser.add_argument('-P', '--vidpid', action='append', help='specify a custom VID:PID device ID, ' 'may be repeated') argparser.add_argument('-V', '--virtual', type=FileType('r'), help='use a virtual device, specified as YaML') argparser.add_argument('-v', '--verbose', action='count', default=0, help='increase verbosity') argparser.add_argument('-d', '--debug', action='store_true', help='enable debug mode') args = argparser.parse_args() debug = args.debug if not args.device: argparser.error('Serial device not specified') loglevel = max(DEBUG, ERROR - (10 * args.verbose)) loglevel = min(ERROR, loglevel) if debug: formatter = Formatter('%(asctime)s.%(msecs)03d %(name)-20s ' '%(message)s', '%H:%M:%S') else: formatter = Formatter('%(message)s') FtdiLogger.log.addHandler(StreamHandler(stderr)) FtdiLogger.set_formatter(formatter) FtdiLogger.set_level(loglevel) if args.virtual: #pylint: disable-msg=import-outside-toplevel from pyftdi.usbtools import UsbTools # Force PyUSB to use PyFtdi test framework for USB backends UsbTools.BACKENDS = ('pyftdi.tests.backend.usbvirt', ) # Ensure the virtual backend can be found and is loaded backend = UsbTools.find_backend() loader = backend.create_loader()() loader.load(args.virtual) try: add_custom_devices(Ftdi, args.vidpid) except ValueError as exc: argparser.error(str(exc)) I2cBusScanner.scan(args.device, not args.no_smb) except (ImportError, IOError, NotImplementedError, ValueError) as exc: print('\nError: %s' % exc, file=stderr) if debug: print(format_exc(chain=False), file=stderr) exit(1) except KeyboardInterrupt: exit(2)
20,490
def _project(doc, projection): """Return new doc with items filtered according to projection.""" def _include_key(key, projection): for k, v in projection.items(): if key == k: if v == 0: return False elif v == 1: return True else: raise ValueError('Projection value must be 0 or 1.') if projection and key != '_id': return False return True return {k: v for k, v in doc.items() if _include_key(k, projection)}
20,491
def test_null_model(objective: str, expectation: float) -> None: """ It outputs the mean/modal training value for all training predictors. Args: objective: The objective of the model (classification or regression). expectation: The expected prediction of the model. """ # Data X_train = np.empty((5, 2)) y_train = np.array([2, 2, 3, 4, 4]) X_test = np.empty((2, 2)) # Model mod = NullModel(objective=objective) mod.fit(X_train, y_train) y_pred = mod.apply(X_test) # Testing y_test = np.full(2, expectation) assert np.allclose(y_pred, y_test)
20,492
def random_swap(words, n): """ Randomly swap two words in the sentence n times Args: words ([type]): [description] n ([type]): [description] Returns: [type]: [description] """ def swap_word(new_words): random_idx_1 = random.randint(0, len(new_words) - 1) random_idx_2 = random_idx_1 counter = 0 while random_idx_2 == random_idx_1: random_idx_2 = random.randint(0, len(new_words) - 1) counter += 1 if counter > 3: return new_words new_words[random_idx_1], new_words[random_idx_2] = ( new_words[random_idx_2], new_words[random_idx_1], ) return new_words new_words = words.copy() for _ in range(n): new_words = swap_word(new_words) return new_words
20,493
def get_dist_for_angles(dict_of_arrays, clusters, roll, pitch, yaw, metric='3d', kind='max'): """ Calculate a single distance metric for a combination of angles """ if (dict_of_arrays['yaw_corr'] == 0).all(): rot_by_boresight = apply_boresight_same(dict_of_arrays, roll, pitch, yaw) else: rot_by_boresight = apply_boresight_yaw_correct(dict_of_arrays, roll, pitch, yaw) rot_to_real_world = rotate_to_real_world(rot_by_boresight) real_wrld_coords = shift_to_real_world(rot_to_real_world) if kind == 'mean': distance = get_mean_3D_distance(real_wrld_coords, clusters, metric) elif kind == 'median': distance = get_median_3D_distance(real_wrld_coords, clusters, metric) else: distance = get_max_3D_distance(real_wrld_coords, clusters, metric) return distance
20,494
def test_extra_yaml(): """Test loading extra yaml file""" load(settings, filename=YAML) yaml = """ example: helloexample: world """ settings.set("YAML", yaml) settings.execute_loaders(env="EXAMPLE") assert settings.HELLOEXAMPLE == "world"
20,495
async def stream(): """Main streaming loop for PHD""" while True: if phd_client.is_connected and manager.active_connections: response = await phd_client.get_responses() if response is not None: # Add to the websocket queue # If it is the initial data, put in variable if response.get('Event') == 'Version': phd_client.initial_data = response q.put_nowait(response) await asyncio.sleep(STREAM_INTERVAL) return None
20,496
def filter_camera_angle(places, angle=1.): """Filter pointclound by camera angle""" bool_in = np.logical_and((places[:, 1] * angle < places[:, 0]), (-places[:, 1] * angle < places[:, 0])) return places[bool_in]
20,497
def main(): """Carry out model performance estimation. """ parser = ArgumentParser() parser.add_argument('--config', '-c', type=str, required=True, help='Path to config file') args = parser.parse_args() assert exists(args.config) task_monitor = get_monitor(args.config) task_monitor.performance()
20,498
def load_nifti(path: str) \ -> tuple[np.ndarray, np.ndarray, nib.nifti1.Nifti1Header]: """ This function loads a nifti image using the nibabel library. """ # Extract image img = nib.load(path) img_aff = img.affine img_hdr = img.header # Extract the actual data in a numpy array data = img.get_fdata() return data, img_aff, img_hdr
20,499