content
stringlengths
22
815k
id
int64
0
4.91M
def linspace( start, stop, num=50, endpoint=True, retstep=False, dtype=None, split=None, device=None, comm=None, ): """ Returns num evenly spaced samples, calculated over the interval [start, stop]. The endpoint of the interval can optionally be excluded. Parameters ---------- start: scalar, scalar-convertible The starting value of the sample interval, maybe a sequence if convertible to scalar stop: scalar, scalar-convertible The end value of the sample interval, unless is set to False. In that case, the sequence consists of all but the last of num + 1 evenly spaced samples, so that stop is excluded. Note that the step size changes when endpoint is False. num: int, optional Number of samples to generate, defaults to 50. Must be non-negative. endpoint: bool, optional If True, stop is the last sample, otherwise, it is not included. Defaults to True. retstep: bool, optional If True, return (samples, step), where step is the spacing between samples. dtype: dtype, optional The type of the output array. split: int, optional The axis along which the array is split and distributed, defaults to None (no distribution). device : str, ht.Device or None, optional Specifies the device the tensor shall be allocated on, defaults to None (i.e. globally set default device). comm: Communication, optional Handle to the nodes holding distributed parts or copies of this tensor. Returns ------- samples: ht.DNDarray There are num equally spaced samples in the closed interval [start, stop] or the half-open interval [start, stop) (depending on whether endpoint is True or False). step: float, optional Size of spacing between samples, only returned if retstep is True. Examples -------- >>> ht.linspace(2.0, 3.0, num=5) tensor([ 2. , 2.25, 2.5 , 2.75, 3. ]) >>> ht.linspace(2.0, 3.0, num=5, endpoint=False) tensor([ 2. , 2.2, 2.4, 2.6, 2.8]) >>> ht.linspace(2.0, 3.0, num=5, retstep=True) (array([ 2. , 2.25, 2.5 , 2.75, 3. ]), 0.25) """ # sanitize input parameters start = float(start) stop = float(stop) num = int(num) if num <= 0: raise ValueError( "number of samples 'num' must be non-negative integer, but was {}".format(num) ) step = (stop - start) / max(1, num - 1 if endpoint else num) # sanitize device and comm device = devices.sanitize_device(device) comm = sanitize_comm(comm) # infer local and global shapes gshape = (num,) split = sanitize_axis(gshape, split) offset, lshape, _ = comm.chunk(gshape, split) balanced = True # compose the local tensor start += offset * step stop = start + lshape[0] * step - step data = torch.linspace(start, stop, lshape[0], device=device.torch_device) if dtype is not None: data = data.type(types.canonical_heat_type(dtype).torch_type()) # construct the resulting global tensor ht_tensor = dndarray.DNDarray( data, gshape, types.canonical_heat_type(data.dtype), split, device, comm, balanced ) if retstep: return ht_tensor, step return ht_tensor
19,500
def _h1_cmp_chi2_ ( h1 , h2 , density = False ) : """Compare histograms by chi2 >>> h1 = ... ## the first histo >>> h2 = ... ## the second histo (or function or anything else) >>> chi2ndf , probability = h1.cmp_chi2 ( h2 ) """ assert isinstance ( h1 , ROOT.TH1 ) and 1 == h1.dim () , \ "cmp_dist: invalid type of h1 %s/%s" % ( h1 , type ( h1 ) ) if isinstance ( h2 , ROOT.TH1 ) : assert 1 == h2.dim () , "cmp_dist: invalid type of h2 %s/%s" % ( h2 , type ( h2 ) ) if density : h1_ = h1.density() if hasattr ( h1 , 'density' ) else h1 h2_ = h2.density() if hasattr ( h2 , 'density' ) else h2 cmp = _h1_cmp_chi2_ ( h1_ , h2_ , density = False ) if h1_ is not h1 : del h1_ if h2_ is not h2 : del h2_ return cmp chi2 = 0.0 ndf = 0 for i , x , v1 in h1.items() : v2 = h2 ( x.value() ) chi2 += v1.chi2 ( v2 ) ndf += 1 c2ndf = chi2/ndf return c2ndf, ROOT.TMath.Prob ( chi2 , ndf )
19,501
def _questionnaire_metric(name, col): """Returns a metrics SQL aggregation tuple for the given key/column.""" return _SqlAggregation( name, """ SELECT {col}, COUNT(*) FROM participant_summary WHERE {summary_filter_sql} GROUP BY 1; """.format( col=col, summary_filter_sql=_SUMMARY_FILTER_SQL ), lambda v: QuestionnaireStatus.lookup_by_number(v).name, None, )
19,502
def xyzToAtomsPositions(xyzFileOrStr): """ Returns atom positions (order) given a molecule in an xyz format. Inchi-based algorithm. Use this function to set the atoms positions in a reference molecule. The idea is to assign the positions once and to never change them again. Arguments: ---------- xyzFileOrStr : str input xyz molecule (either file path or xyz string) Returns: ---------- atomsPositions: dict dictionary whose keys correspond to atoms positions in xyz file and values to the newly assigned positions """ # get inchi with extra auxiliary log if ioutils.fileExists(xyzFileOrStr): xyzFileOrStr= ioutils.readFile(xyzFileOrStr) xyzFileOrStr = xyzToIntertialFrame(xyzFileOrStr) # swap all hydrogens with a heavy atom, here I picked Cl, but any other halogen atom # should also work. this atom swap is to force inchi to considered all the atoms in its # connectivity algorithm. note that atoms from the first group (e..g Na, Li) wont work # as they produce solids and thus the inchi string is significantly changed xyzFileOrStr = '\n'.join([xyz_line.replace('H','Cl') for xyz_line in xyzFileOrStr.split('\n')]) inchiWithAux = obconverter.obConvert(inputMol=xyzFileOrStr,inputMolFormat='xyz', outputMolFormat='inchi', options=['-xa']) inchi, inchiAux = inchiWithAux.split('\n') # find connectivity info in the inchi string - used to detect the # presence of heavy atoms. atomsInchiConnectivity = re.search(r'/c(\d+?\*)?(.*?)(?=/|$)',inchi) # read the mapping between heavy atoms (+ lone hydrogens) in xyz and inchi # from the auxiliary log atomsInchiAuxMap = re.search(r'/N:(.*?)(?=/|$)',inchiAux) atomsInchiAuxEquivMap = re.search(r'/E:(.*?)(?=/|$)',inchiAux) # create the rdkit mol object rdkitMolFromMol = xyzconverters.xyzToMolToRdkitMol(xyzFileOrStr, removeHs=False) numAtoms = rdkitMolFromMol.GetNumAtoms() # initialise the atoms position dict atomsPositions = {k:None for k in range(numAtoms)} nextAtomId = 0 mol_frags = rdkitmolutils.rdkitMolToMolFrags(rdkitMolFromMol) if mol_frags: print(f'Warning: Provided xyz file contains {len(mol_frags)} molecular fragments.') #return atomsPositions # get the atoms based on the inchi connectivity info if atomsInchiConnectivity is not None: # process the atomsInchiAuxMap and extract the atoms mapping atomsInchiAuxMap= atomsInchiAuxMap.groups()[0] \ .replace('/','').replace(';',',').split(',') atomsInchiMatch = {int(atomId)-1: i for i, atomId in enumerate(atomsInchiAuxMap)} atomsInchiMatchList = list(map(lambda x: int(x)-1, atomsInchiAuxMap)) if atomsInchiMatch: # now disambiguate any equivalent atoms if atomsInchiAuxEquivMap: atomsInchiAuxEquivMap= atomsInchiAuxEquivMap.groups()[0] \ .replace('/','').replace(')(','#').replace(')','') \ .replace('(','').split('#') for i in range(len(atomsInchiAuxEquivMap)): atomsInchiAuxEquivMap[i] = list(map(lambda x: int(x)-1, atomsInchiAuxEquivMap[i].split(','))) atomsInchiAuxEquivMap[i] = list(map(lambda x: atomsInchiMatchList[x], atomsInchiAuxEquivMap[i])) for equivAtomsList in atomsInchiAuxEquivMap: atomsXYZ = rdkitmolutils.getAtomsXYZs(rdkitMolFromMol, equivAtomsList) atomsXYZ = (atomsXYZ * 1e7).astype(int) atomsX = atomsXYZ[:,0].tolist() atomsY = atomsXYZ[:,1].tolist() atomsZ = atomsXYZ[:,2].tolist() _atomsDist = rdkitmolutils.rdkitSumAllAtomsDistFromAtoms(rdkitMolFromMol, equivAtomsList) _atomsDist = [int(dist * 1e7) for dist in _atomsDist] # use four invariants to disambiguate atoms equivAtomsOrder = np.lexsort((atomsZ,atomsY,atomsX,_atomsDist)).tolist() currentAtomsOrder = sorted([atomsInchiMatch[equivAtomId] for equivAtomId in equivAtomsList]) for equivAtomPos in equivAtomsOrder: atomsInchiMatch[equivAtomsList[equivAtomPos]] = currentAtomsOrder.pop(0) # add the atoms positions to the overall atomsPosition dictionary atomsPositions = {**atomsPositions, **atomsInchiMatch} nextAtomId = len(atomsInchiMatch) # assign posititions to any atoms that are left if nextAtomId < numAtoms: loneAtomsIds = [atomId for atomId, refId in atomsPositions.items() if refId is None] loneAtomsMap = {} atomsXYZ = rdkitmolutils.getAtomsXYZs(rdkitMolFromMol, loneAtomsIds) atomsXYZ = (atomsXYZ * 1e7).astype(int) atomsX = atomsXYZ[:,0].tolist() atomsY = atomsXYZ[:,1].tolist() atomsZ = atomsXYZ[:,2].tolist() _atomsDist = rdkitmolutils.rdkitSumAllAtomsDistFromAtoms(rdkitMolFromMol, loneAtomsIds) _atomsDist = [int(dist * 1e7) for dist in _atomsDist] loneAtomsOrder = np.lexsort((atomsZ,atomsY,atomsX,_atomsDist)).tolist() for loneAtomPos in loneAtomsOrder: loneAtomsMap[loneAtomsIds[loneAtomPos]] = nextAtomId nextAtomId += 1 # add the remaining positions to the overall atoms positions atomsPositions = {**atomsPositions, **loneAtomsMap} # check for duplicate and None values at the end hasDuplicates = len(atomsPositions.values()) > len(set(atomsPositions.values())) hasNones = None in atomsPositions.values() if hasDuplicates or hasNones: print('Error: atom canoncial positions algorithm has failed.') atomsPositions= {} return atomsPositions
19,503
def read_LFW(fname): """ read LFW dataset annotation information with names and labels... """ # dir = os.getcwd() # os.chdir(dirname) if not os.path.exists(fname): raise ValueError('LFW File :' + fname + 'does not exist') lines = open(fname).readlines(); print lines for l in lines: print l
19,504
async def modify_video_favorite_list( media_id: int, title: str, introduction: str = '', private: bool = False, credential: Credential = None): """ 修改视频收藏夹信息。 Args: media_id (int) : 收藏夹 ID. title (str) : 收藏夹名。 introduction (str, optional) : 收藏夹简介. Defaults to ''. private (bool, optional) : 是否为私有. Defaults to False. credential (Credential, optional): Credential. Defaults to None. Returns: dict: API 调用结果。 """ if credential is None: credential = Credential() credential.raise_for_no_sessdata() credential.raise_for_no_bili_jct() api = API["operate"]["modify"] data = { "title": title, "intro": introduction, "privacy": 1 if private else 0, "cover": "", "media_id": media_id } return await request("POST", api["url"], data=data, credential=credential)
19,505
def get_salesforce_log_files(): """Helper function to get a list available log files""" return { "totalSize": 2, "done": True, "records": [ { "attributes": { "type": "EventLogFile", "url": "/services/data/v32.0/sobjects/EventLogFile/0ATD00001bROAQ" }, "Id": "0ATD000000001bROAQ", "EventType": "API", "LogFile": "/services/data/v32.0/sobjects/EventLogFile/0ATD00001bROAQ/LogFile", "LogDate": "2014-03-14T00:00:00.000+0000", "LogFileLength": 2692.0 }, { "attributes": { "type": "EventLogFile", "url": "/services/data/v32.0/sobjects/EventLogFile/0ATD000000001SdOAI" }, "Id": "0ATD000000001SdOAI", "EventType": "API", "LogFile": "/services/data/v32.0/sobjects/EventLogFile/0ATD00001SdOAI/LogFile", "LogDate": "2014-03-13T00:00:00.000+0000", "LogFileLength": 1345.0 } ] }
19,506
def remove_true_false_edges(dict_snapshots, dict_weights, index): """ Remove chosen true edges from the graph so the embedding could be calculated without them. :param dict_snapshots: Dict where keys are times and values are a list of edges for each time stamp. :param dict_weights: Dict where keys are times and values are list of weights for each edge in the time stamp, order corresponds to the order of edges in dict_snapshots. :param index: Index of pivot time- until pivot time (including) it is train set, afterwards it is test set. :return: Updated dict_snapshots and dict_weights. """ times = list(dict_snapshots.keys()) mapping = {i: times[i] for i in range(len(times))} keys = list(mapping.keys()) for key in keys: if key < index: continue else: del dict_snapshots[mapping[key]] del dict_weights[mapping[key]] return dict_snapshots, dict_weights
19,507
def _make_mutable(obj): """ Context manager that makes the tree mutable. """ with _MUTABLE_CONTEXT.update(prev_mutable={}): try: apply(_make_mutable_fn, obj, inplace=True) yield finally: apply(_revert_mutable_fn, obj, inplace=True)
19,508
def addFavoriteDir(name:str, directory:str, type:str=None, icon:str=None, tooltip:str=None, key:str=None): """ addFavoriteDir(name, directory, type, icon, tooltip, key) -> None. Add a path to the file choosers favorite directory list. The path name can contain environment variables which will be expanded when the user clicks the favourites button @param name: Favourite path entry ('Home', 'Desktop', etc.). @param directory: FileChooser will change to this directory path. @param type: Optional bitwise OR combination of nuke.IMAGE, nuke.SCRIPT, nuke.FONT or nuke.GEO. @param icon: Optional filename of an image to use as an icon. @param tooltip: Optional short text to explain the path and the meaning of the name. @param key: Optional shortcut key. @return: None. """ return None
19,509
def save(data): """Save cleanup annotations.""" data_and_frames = data.split("_") data = data_and_frames[0] frames = data_and_frames[1] if len(data) == 1: removed = [] else: removed = [int(f) for f in data[1:].split(':')] frames = [int(f) for f in frames[:].split(':')] #fname = APP.basedir + '/' + APP.dlist[APP.targetid] + '/planttag.npz' fname = APP.basedir + '/' + APP.dlist[APP.targetid] + '/' + APP.tag_name + '.npz' if len(removed) == 0: # Before: if len(removed) == 0 idx = np.zeros((np.amax(APP.lbls) + 1,), APP.lbls.dtype) _id = 1 for i in range(1, len(idx)): if i not in removed: idx[i] = _id _id = _id + 1 lbls = idx[APP.lbls] else: lbls = APP.lbls for j in range(len(removed)): rem = removed[j] frame = frames[j] # Remove that label from the frame onwards: if APP.tag_type == "deletion-onwards": lbls[:,:,frame:][lbls[:,:,frame:] == rem] = 0 elif APP.tag_type == "deletion-upto": lbls[:,:,:frame][lbls[:,:,:frame] == rem] = 0 elif APP.tag_type == "deletion-single": lbls[:,:,frame][lbls[:,:,frame] == rem] = 0 # tag = [-1]*lbls.max() for i in range(len(removed)): tag[removed[i]] = frames[i] npz = {'removed': np.asarray(removed, np.int16), 'labels': lbls, "frames": np.asarray(frames, np.int16), \ APP.tag_name: tag} np.savez_compressed(fname, **npz) return ' '
19,510
def search(search_term): """Searches the FRED database using a user provided search term.""" continue_search = True page_num = 1 while continue_search: complete_search_term = ' '.join(search_term) metadata = api.search_fred(complete_search_term, page=page_num) data = metadata['data'] current_page = metadata['current_page'] total_pages = metadata['total_pages'] click.clear() printable_table= table.make_table(data) click.echo(printable_table) click.echo() click.echo(f'Page: {current_page} / {total_pages} | next page (n), prev page (b), exit (e) ') click.echo() character_pressed = click.getchar() if character_pressed == 'n' and current_page != total_pages: page_num += 1 elif character_pressed == 'b' and current_page != 1: page_num -= 1 elif character_pressed == 'e': continue_search = False else: print('Incorrect input, please try again. Press any key to try again.') click.pause() pass
19,511
def download_data(date_string): """Download weekly prices in XLS and save them to file""" main_url = 'http://fcainfoweb.nic.in/PMSver2/Reports/Report_Menu_web.aspx' params = 'MainContent_ToolkitScriptManager1_HiddenField=%3B%3BAjaxControlToolkit%2C+Version%3D4.1.51116.0%2C+Culture%3Dneutral%2C+PublicKeyToken%3D28f01b0e84b6d53e%3Aen-US%3Afd384f95-1b49-47cf-9b47-2fa2a921a36a%3A475a4ef5%3Aaddc6819%3A5546a2b%3Ad2e10b12%3Aeffe2a26%3A37e2e5c9%3A5a682656%3Ac7029a2%3Ae9e598a9&__EVENTTARGET=&__EVENTARGUMENT=&__LASTFOCUS=&__VIEWSTATE=nAMJC3oD4TO5c%2B7jRiFrnarRMv05i2lEZsHM0VriP9iU1WnwdzPV8exn2HaN0Pdpqabt5BHGcBqsu1HG28ilmfBCvWehOqVKrbzbTksxY9OriToU7o5%2Fg0Rxp8sEPjxUFYjwo10BjIRiBuuu80dXQR3a023BYcloCxn0OeYH1ceGHo%2BteEphPeiVlgJ3UgGb7D1IB9VToTL3JZ%2Bi8CSwOcwfCZWVcQv8e0JJ5Ylocffk0MtEfgkhxop4ViipoLcy5dplKkzNdskRsgep%2FmvnsU6opOnepjIO0oYberxVoyEjM2zcdggVqXIfmNy%2F1EtcsO9HVGn0cqeVWgYtT3sPR35sQZQMsZjT9bSxXX%2BDlTmTF%2B6rv7ZdQu9OXpwz4Ta9lpAAcZfcU2J2ozk%2FsyDjeVEkkhyJyjmV7tOO4jiKJJzWpE6E9Tf5bs7fSFUzJgOl%2F5F7iOJg0S3pisif1F1a%2B1qVg7uud5p%2F8HatGeDd53eaDPci1yAVGuviyb1fn4KTyubqUbGNK9mQYRIuiMRjwaWBcKdZdLk4z1u1POSm5to%3D&__VIEWSTATEENCRYPTED=&__EVENTVALIDATION=jFcAc4ikcRQ1k1z9MQ6d0udWfcwWaQtx9e3Gx0d7tlPQMpNoCBZmVmk0O5%2FUl5FmUkP2a7%2FQKdKnB8XaqaFUgPgTZ0sZlbpTzTenH%2Fnp4iywH8oi3jGUGMcORoGXaTgF7%2B3t5QIsK4VfiI20cik3DQSGE8P7uhGrccO%2BluXGZWVuopXv40JTT2nExb0ix4gmAcYL6tdryuw61vvqjHkxo04hMKrAoUMTVxjaUyOpeguI0BZdYWk46943BzFetIxjYK%2F4QhYGJrMbdz%2FM%2FfeEajod34m2dqISVmhCEa%2Fu2N8jgqTcsHqDLCwhaNoMiZDA2yW1Yzcli4mAQMGcPqy%2FZd8Ta7ZajpdPlupVtFNK%2BWXrlY54irp8MKRl1IsPyT3y&ctl00%24MainContent%24Ddl_Rpt_type=#{TXTPRICE}&ctl00%24MainContent%24Rbl_Rpt_type=Price+report&ctl00%24MainContent%24Ddl_Rpt_Option0=Daily+Prices&ctl00%24MainContent%24Txt_FrmDate=#{TXTDATE}&ctl00%24MainContent%24btn_getdata1=Get+Data' params = params.replace('#{TXTDATE}', date_string) params = params.replace('#{TXTPRICE}', price_type) opener = urllib2.build_opener() opener.addheaders.append(('Cookie', 'ASP.NET_SessionId=' + cookie)) req = opener.open(main_url, params) result_html = req.read() save_downloaded_data(date_string, result_html)
19,512
def list_runs_in_swestore(path, pattern=RUN_RE, no_ext=False): """ Will list runs that exist in swestore :param str path: swestore path to list runs :param str pattern: regex pattern for runs """ try: status = check_call(['icd', path]) proc = Popen(['ils'], stdout=PIPE) contents = [c.strip() for c in proc.stdout.readlines()] runs = [r for r in contents if re.match(pattern, r)] if no_ext: runs = [r.split('.')[0] for r in runs] return runs except CalledProcessError: return []
19,513
def linear_regression( XL: ArrayLike, YP: ArrayLike, Q: ArrayLike ) -> LinearRegressionResult: """Efficient linear regression estimation for multiple covariate sets Parameters ---------- XL [array-like, shape: (M, N)] "Loop" covariates for which N separate regressions will be run YP [array-like, shape: (M, O)] Continuous traits that have had core covariates eliminated through orthogonal projection. Q [array-like, shape: (M, P)] Orthonormal matrix computed by applying QR factorization to covariate matrix Returns ------- Dataclass containing: beta : [array-like, shape: (N, O)] Beta values associated with each loop covariate and outcome t_value : [array-like, shape: (N, O)] T statistics for each beta p_value : [array-like, shape: (N, O)] P values as float in [0, 1] """ if set([x.ndim for x in [XL, YP, Q]]) != {2}: raise ValueError("All arguments must be 2D") n_core_covar, n_loop_covar, n_obs, n_outcome = ( Q.shape[1], XL.shape[1], YP.shape[0], YP.shape[1], ) dof = n_obs - n_core_covar - 1 if dof < 1: raise ValueError( "Number of observations (N) too small to calculate sampling statistics. " "N must be greater than number of core covariates (C) plus one. " f"Arguments provided: N={n_obs}, C={n_core_covar}." ) # Apply orthogonal projection to eliminate core covariates # Note: QR factorization or SVD should be used here to find # what are effectively OLS residuals rather than matrix inverse # to avoid need for MxM array; additionally, dask.lstsq fails # with numpy arrays LS = Q @ (Q.T @ XL) assert XL.shape == LS.shape XLP = XL - LS assert XLP.shape == (n_obs, n_loop_covar) # Estimate coefficients for each loop covariate # Note: A key assumption here is that 0-mean residuals # from projection require no extra terms in variance # estimate for loop covariates (columns of G), which is # only true when an intercept is present. XLPS = (XLP ** 2).sum(axis=0, keepdims=True).T assert XLPS.shape == (n_loop_covar, 1) B = (XLP.T @ YP) / XLPS assert B.shape == (n_loop_covar, n_outcome) # Compute residuals for each loop covariate and outcome separately YR = YP[:, np.newaxis, :] - XLP[..., np.newaxis] * B[np.newaxis, ...] assert YR.shape == (n_obs, n_loop_covar, n_outcome) RSS = (YR ** 2).sum(axis=0) assert RSS.shape == (n_loop_covar, n_outcome) # Get t-statistics for coefficient estimates T = B / np.sqrt(RSS / dof / XLPS) assert T.shape == (n_loop_covar, n_outcome) # Match to p-values # Note: t dist not implemented in Dask so this must be delayed, # see https://github.com/dask/dask/issues/6857 P = da.map_blocks( lambda t: 2 * stats.distributions.t.sf(np.abs(t), dof), map_blocks_asnumpy(T), dtype="float64", ) assert P.shape == (n_loop_covar, n_outcome) P = np.asarray(P, like=T) return LinearRegressionResult(beta=B, t_value=T, p_value=P)
19,514
def wait_for_visible_link(driver): """ Wait for any link of interest to be visible. """ wait_time = 0 while wait_time < MAX_WAIT_SECONDS: for link in LINKS: if is_link_visible(driver, link): return time.sleep(1) wait_time += 1 raise TimeoutException
19,515
def scrape(domains, links): """ Scrape the given list of links and pickle the output to a file containing a dict of <category, dict of link, document> pairs and a dict of {link, set(links)}. args: domains - list of base urls links - list of page paths """ pool = Pool(10) results = pool.map(call_scraper, zip(domains, links)) categories = {} link_edges = {} for index, result in enumerate(results): documents, edges = result link_edges = dict(link_edges.items() + edges.items()) categories[links[index]] = documents # save the data so that we don't have # to put a bunch of load on wikipedia's servers if we run again. import pickle pickle.dump(categories, open(PATH + "categories.pickle", "wb")) pickle.dump(link_edges, open(PATH + "link_edges.pickle", "wb"))
19,516
def orthogonal_decomposition(C, tr_error, l_exp): """ Orthogonal decomposition of the covariance matrix to determine the meaningful directions :param C: covariance matrix :param tr_error: allowed truncation error :param l_exp: expansion order :return: transformation matrix Wy, number of terms N_t and meaningful directions k """ # eigenvalues and eigenvectors v, w = np.linalg.eig(C) v_sum = np.sum(v) err_v = 1 k = 0 # meaningful directions while err_v > tr_error: err_v = 1 - v[k] / v_sum k += 1 N_t = int(math.factorial(l_exp + k) / (math.factorial(k) * math.factorial(l_exp))) # number of terms Wy = w[:,:k] # and for now, do not define Wz return Wy, N_t, k
19,517
def get_data(): """Reads the current state of the world""" server = http.client.HTTPConnection(URL) server.request('GET','/data') response = server.getresponse() if (response.status == 200): data = response.read() response.close() return json.loads(data.decode()) else: return UnexpectedResponse(response)
19,518
def chi_angles(filepath, model_id=0): """Calculate chi angles for a given file in the PDB format. :param filepath: Path to the PDB file. :param model_id: Model to be used for chi calculation. :return: A list composed by a list of chi1, a list of chi2, etc. """ torsions_list = _sidechain_torsions(filepath, model_id) chis = [item[2] for item in torsions_list] return list(zip(*chis))
19,519
def callback(ch, method, properties, body): """Callback that has the message that was received""" vol_prefix = os.getenv('VOL_PREFIX', '') workers = load_workers() d = setup_docker() pipeline = json.loads(body.decode('utf-8')) worker_found = False status = {} extra_workers = {} for worker in workers['workers']: file_path = pipeline['file_path'] if 'id' in pipeline and (('results' in pipeline and pipeline['results']['tool'] in worker['inputs']) or ('file_type' in pipeline and pipeline['file_type'] in worker['inputs'])): uid = str(uuid.uuid4()).split('-')[-1] name = worker['name'] + '_' + uid image = worker['image'] ports = None if 'version' in worker: image += ':' + worker['version'] command = [] if 'command' in worker: command = worker['command'] command.append(file_path) environment = pipeline if 'environment' in worker: environment.update(worker['environment']) if 'rabbit' not in pipeline: pipeline['rabbit'] = 'true' if 'ports' in worker: ports = worker['ports'] keep_images = os.getenv('KEEPIMAGES', '0') remove = True if keep_images == '1': remove = False try: d.containers.run(image=image, name=name, network=worker['stage'], volumes={ vol_prefix + '/opt/poseidon_files': {'bind': '/files', 'mode': 'rw'}}, environment=environment, remove=remove, command=command, ports=ports, detach=True) print(' [Create container] %s UTC %r:%r:%r:%r' % (str(datetime.datetime.utcnow()), method.routing_key, pipeline['id'], image, pipeline)) status[worker['name']] = json.dumps( {'state': 'In progress', 'timestamp': str(datetime.datetime.utcnow())}) worker_found = True except Exception as e: # pragma: no cover print('failed: {0}'.format(str(e))) status[worker['name']] = json.dumps( {'state': 'Error', 'timestamp': str(datetime.datetime.utcnow())}) else: extra_workers[worker['name']] = json.dumps( {'state': 'Queued', 'timestamp': str(datetime.datetime.utcnow())}) if 'id' in pipeline and 'results' in pipeline and pipeline['type'] == 'data': print(' [Data] %s UTC %r:%r:%r' % (str(datetime.datetime.utcnow()), method.routing_key, pipeline['id'], pipeline['results'])) status[pipeline['results']['tool']] = json.dumps( {'state': 'In progress', 'timestamp': str(datetime.datetime.utcnow())}) elif 'id' in pipeline and 'results' in pipeline and pipeline['type'] == 'metadata': if 'data' in pipeline and pipeline['data'] != '': print(' [Metadata] %s UTC %r:%r:%r' % (str(datetime.datetime.utcnow()), method.routing_key, pipeline['id'], pipeline['results'])) status[pipeline['results']['tool']] = json.dumps( {'state': 'In progress', 'timestamp': str(datetime.datetime.utcnow())}) else: print(' [Finished] %s UTC %r:%r' % (str(datetime.datetime.utcnow()), method.routing_key, pipeline)) status[pipeline['results']['tool']] = json.dumps( {'state': 'Complete', 'timestamp': str(datetime.datetime.utcnow())}) elif not worker_found: print(' [X no match] %s UTC %r:%r' % (str(datetime.datetime.utcnow()), method.routing_key, pipeline)) ch.basic_ack(delivery_tag=method.delivery_tag) # store state of status in redis r = setup_redis() print('redis: {0}'.format(status)) if r: try: r.hmset('status', status) statuses = r.hgetall('status') for s in statuses: statuses[s] = json.loads(statuses[s]) for worker in extra_workers: if worker not in statuses: status[worker] = extra_workers[worker] r.hmset('status', status) r.close() except Exception as e: # pragma: no cover print('Failed to update Redis because: {0}'.format(str(e)))
19,520
def surface_sphere(radius): """ """ phi, theta = np.mgrid[0.0:np.pi:100j, 0.0:2.0*np.pi:100j] x_blank_sphere = radius*np.sin(phi)*np.cos(theta) y_blank_sphere = radius*np.sin(phi)*np.sin(theta) z_blank_sphere = radius*np.cos(phi) sphere_surface = np.array(([x_blank_sphere, y_blank_sphere, z_blank_sphere])) return sphere_surface
19,521
def p_domain(p): """domain : domain_def requirements_def types_def predicates_def action_def | domain_def requirements_def types_def predicates_def function_def action_def""" if len(p) == 6: p[0] = Domain(p[1], p[2], p[3], p[4], p[5]) else: p[0] = Domain(p[1], p[2], p[3], p[4], p[6], p[5])
19,522
def test_create_layout(): """Checks if axes for regular and detailed plots were created properly. Summary ------- We pass different stages and plot levels to pipeline.create_layout, and check the resulting axes. Expected -------- - pipeline.create_layout(1, 0) should not return axes. - pipeline.create_layout(3, 2) should return all seven axes (ax_main, ax_bin, ax_poi, ax_structure, ax_signal, ax_fourier, ax_tags). - pipeline.create_layout(3, 1) should return a list with three axes and four None. """ axes = pipeline.create_layout(1, 0) assert axes is None axes = pipeline.create_layout(3, 2) for ax in axes: assert ax axes = pipeline.create_layout(3, 1) for ax in axes[:3]: assert ax for ax in axes[3:]: assert ax is None
19,523
def schema_upgrades(): """schema upgrade migrations go here.""" # ### commands auto generated by Alembic - please adjust! ### op.alter_column('build', 'git_tag', new_column_name='vcs_ref') op.add_column('build', sa.Column('ver', sa.String(), nullable=False, server_default='0.0.0.0')) op.alter_column('build', 'ver', server_default=None) # ### end Alembic commands ###
19,524
def format_bucket_objects_listing(bucket_objects): """Returns a formated list of buckets. Args: buckets (list): A list of buckets objects. Returns: The formated list as string """ import re import math out = "" i = 1 for o in bucket_objects: # Shorten to 24 chars max, remove linebreaks name = re.sub(r'[\n\r]', ' ', o.name[:63] + '..' if len(o.name) > 65 else o.name) size = sizeof_fmt(o.size) time = f"{o.time_modified:%Y-%m-%d %H:%M}" \ if o.time_modified is not None else "" out += (f"{i:>4} {name:65} {size:8} {time:16}\n") i += 1 return out
19,525
def load_white_list() -> None: """Loads the whitelist.""" with OpenJson(PLAYERS_DATA_PATH + "whitelist.json") as whitelist_file: data = whitelist_file.load() for account_id in data: CacheData.whitelist.append(account_id)
19,526
def test_decode_ssdp_packet_v6(): """Test SSDP response decoding.""" msg = ( b"HTTP/1.1 200 OK\r\n" b"Cache-Control: max-age=1900\r\n" b"Location: http://[fe80::2]:80/RootDevice.xml\r\n" b"Server: UPnP/1.0 UPnP/1.0 UPnP-Device-Host/1.0\r\n" b"ST:urn:schemas-upnp-org:service:WANCommonInterfaceConfig:1\r\n" b"USN: uuid:...::WANCommonInterfaceConfig:1\r\n" b"EXT:\r\n\r\n" ) request_line, headers = decode_ssdp_packet(msg, ("fe80::1", 123, 0, 3)) assert request_line == "HTTP/1.1 200 OK" assert headers == { "cache-control": "max-age=1900", "location": "http://[fe80::2%3]:80/RootDevice.xml", "server": "UPnP/1.0 UPnP/1.0 UPnP-Device-Host/1.0", "st": "urn:schemas-upnp-org:service:WANCommonInterfaceConfig:1", "usn": "uuid:...::WANCommonInterfaceConfig:1", "ext": "", "_location_original": "http://[fe80::2]:80/RootDevice.xml", "_host": "fe80::1%3", "_port": 123, "_udn": "uuid:...", "_timestamp": ANY, }
19,527
def charts(chart_type, cmid, start_date, end_date=None): """ Get the given type of charts for the artist. https://api.chartmetric.com/api/artist/:id/:type/charts **Parameters** - `chart_type`: string type of charts to pull, choose from 'spotify_viral_daily', 'spotify_viral_weekly', 'spotify_top_daily', 'spotify_top_weekly', 'applemusic_top', 'applemusic_daily', 'applemusic_albums', 'itunes_top', 'itunes_albums', 'shazam', 'beatport' - `cmid`: string or int Chartmetric artist ID - `start_date`: string of start data in ISO format - `end_date`: string of end date in ISO format **Returns** A list of dictionaries of specific type of charts for the given artist. """ urlhandle = f"/artist/{cmid}/{chart_type}/charts" params = { "since": start_date, "until": end_date if end_date else utilities.strDateToday(), } data = utilities.RequestData(urlhandle, params) return utilities.RequestGet(data)["data"]
19,528
def session_setup(request): """ Auto session resource fixture """ pass
19,529
def test_condition_one_condition_pair(): """ GIVEN PolicyStatementCondition object. WHEN Created PolicyStatementCondition object with 'condition_operator','condition_statements attributes. THEN Object created with desired attributes. """ cond_statement = PolicyStatementCondition( condition_operator='StringEquals', condition_statements={'ec2:Vpc': 'arn:aws:ec2:region:account:vpc/vpc-11223344556677889'} ) desired_result = { 'StringEquals': { 'ec2:Vpc': 'arn:aws:ec2:region:account:vpc/vpc-11223344556677889' } } assert cond_statement.get_condition() == desired_result
19,530
def config(): """Do various things related to config."""
19,531
def fake_traceback(exc_value, tb, filename, lineno): """Produce a new traceback object that looks like it came from the template source instead of the compiled code. The filename, line number, and location name will point to the template, and the local variables will be the current template context. :param exc_value: The original exception to be re-raised to create the new traceback. :param tb: The original traceback to get the local variables and code info from. :param filename: The template filename. :param lineno: The line number in the template source. """ if tb is not None: # Replace the real locals with the context that would be # available at that point in the template. locals = get_template_locals(tb.tb_frame.f_locals) locals.pop("__jinja_exception__", None) else: locals = {} globals = { "__name__": filename, "__file__": filename, "__jinja_exception__": exc_value, } # Raise an exception at the correct line number. code = compile("\n" * (lineno - 1) + "raise __jinja_exception__", filename, "exec") # Build a new code object that points to the template file and # replaces the location with a block name. try: location = "template" if tb is not None: function = tb.tb_frame.f_code.co_name if function == "root": location = "top-level template code" elif function.startswith("block_"): location = 'block "%s"' % function[6:] # Collect arguments for the new code object. CodeType only # accepts positional arguments, and arguments were inserted in # new Python versions. code_args = [] for attr in ( "argcount", "posonlyargcount", # Python 3.8 "kwonlyargcount", # Python 3 "nlocals", "stacksize", "flags", "code", # codestring "consts", # constants "names", "varnames", ("filename", filename), ("name", location), "firstlineno", "lnotab", "freevars", "cellvars", ): if isinstance(attr, tuple): # Replace with given value. code_args.append(attr[1]) continue try: # Copy original value if it exists. code_args.append(getattr(code, "co_" + attr)) except AttributeError: # Some arguments were added later. continue code = CodeType(*code_args) except Exception: # Some environments such as Google App Engine don't support # modifying code objects. pass # Execute the new code, which is guaranteed to raise, and return # the new traceback without this frame. try: exec(code, globals, locals) except BaseException: return sys.exc_info()[2].tb_next
19,532
def search_candidates(api_key, active_status="true"): """ https://api.open.fec.gov/developers#/candidate/get_candidates_ """ query = """https://api.open.fec.gov/v1/candidates/?sort=name&sort_hide_null=false&is_active_candidate={active_status}&sort_null_only=false&sort_nulls_last=false&page=1&per_page=20&api_key={api_key}""".format( api_key=api_key, active_status=active_status ) return get_response( query=query )
19,533
def load_dat(file_name): """ carga el fichero dat (Matlab) especificado y lo devuelve en un array de numpy """ data = loadmat(file_name) y = data['y'] X = data['X'] ytest = data['ytest'] Xtest = data['Xtest'] yval = data['yval'] Xval = data['Xval'] return X,y,Xtest,ytest,Xval,yval
19,534
def get_specific_pos_value(img, pos): """ Parameters ---------- img : ndarray image data. pos : list pos[0] is horizontal coordinate, pos[1] is verical coordinate. """ return img[pos[1], pos[0]]
19,535
def postorder(dirUp,catchment,node,catch,dirDown): """ routine to run a postoder tree traversal :param dirUp: :param catchment: :param node: :param catch: :param dirDown: :return: dirDown and catchment """ if dirUp[node] != []: postorder(dirUp,catchment,dirUp[node][0],catch,dirDown) catchment[dirUp[node][0]]=catch dirDown.append(dirUp[node][0]) if len(dirUp[node])>1: postorder(dirUp,catchment,dirUp[node][1],catch,dirDown) catchment[dirUp[node][1]]=catch dirDown.append(dirUp[node][1]) if len(dirUp[node])>2: postorder(dirUp,catchment,dirUp[node][2],catch,dirDown) catchment[dirUp[node][2]]=catch dirDown.append(dirUp[node][2]) if len(dirUp[node])>3: postorder(dirUp,catchment,dirUp[node][3],catch,dirDown) catchment[dirUp[node][3]]=catch dirDown.append(dirUp[node][3]) if len(dirUp[node])>4: postorder(dirUp,catchment,dirUp[node][4],catch,dirDown) catchment[dirUp[node][4]]=catch dirDown.append(dirUp[node][4]) if len(dirUp[node])>5: postorder(dirUp,catchment,dirUp[node][5],catch,dirDown) catchment[dirUp[node][5]]=catch dirDown.append(dirUp[node][5]) if len(dirUp[node])>6: postorder(dirUp,catchment,dirUp[node][6],catch,dirDown) catchment[dirUp[node][6]]=catch dirDown.append(dirUp[node][6]) if len(dirUp[node])>7: postorder(dirUp,catchment,dirUp[node][7],catch,dirDown) catchment[dirUp[node][7]]=catch dirDown.append(dirUp[node][7])
19,536
def transpose_tokens( cards: List[MTGJSONCard] ) -> Tuple[List[MTGJSONCard], List[Dict[str, Any]]]: """ Sometimes, tokens slip through and need to be transplanted back into their appropriate array. This method will allow us to pluck the tokens out and return them home. :param cards: Cards+Tokens to iterate :return: Cards, Tokens as two separate lists """ # Order matters with these, as if you do cards first # it will shadow the tokens lookup # Single faced tokens are easy tokens = [ scryfall.download(scryfall.SCRYFALL_API_CARD + card.get("scryfallId")) for card in cards if card.get("layout") in ["token", "emblem"] ] # Do not duplicate double faced tokens done_tokens: Set[str] = set() for card in cards: if ( card.get("layout") == "double_faced_token" and card.get("scryfallId") not in done_tokens ): tokens.append( scryfall.download(scryfall.SCRYFALL_API_CARD + card.get("scryfallId")) ) done_tokens.add(card.get("scryfallId")) # Remaining cards, without any kind of token cards = [ card for card in cards if card.get("layout") not in ["token", "double_faced_token", "emblem"] ] return cards, tokens
19,537
def test_jdbc_query_executor_failed_query_event(sdc_builder, sdc_executor, database): """Simple JDBC Query Executor test for failed-query event type. Pipeline will try to insert records into a non-existing table and the query would fail. Event records are verified for failed-query event type. This is achieved by using a deduplicator which assures us that there is only one ingest to database. The pipeline looks like: dev_raw_data_source >> record_deduplicator >> jdbc_query_executor >= wiretap record_deduplicator >> trash2 """ table_name = get_random_string(string.ascii_lowercase, 20) table = _create_table(table_name, database) DATA = ['id,name'] + [','.join(str(item) for item in rec.values()) for rec in ROWS_IN_DATABASE] pipeline_builder = sdc_builder.get_pipeline_builder() dev_raw_data_source = pipeline_builder.add_stage('Dev Raw Data Source') dev_raw_data_source.set_attributes(data_format='DELIMITED', header_line='WITH_HEADER', raw_data='\n'.join(DATA), stop_after_first_batch=True) invalid_table = "INVALID_TABLE" query_str = f"INSERT INTO {invalid_table} (name, id) VALUES ('${{record:value('/name')}}', '${{record:value('/id')}}')" jdbc_query_executor = pipeline_builder.add_stage('JDBC Query', type='executor') if Version(sdc_builder.version) < Version('3.14.0'): jdbc_query_executor.set_attributes(sql_query=query_str) else: jdbc_query_executor.set_attributes(sql_queries=[query_str]) record_deduplicator = pipeline_builder.add_stage('Record Deduplicator') wiretap = pipeline_builder.add_wiretap() trash2 = pipeline_builder.add_stage('Trash') dev_raw_data_source >> record_deduplicator >> jdbc_query_executor >= wiretap.destination record_deduplicator >> trash2 pipeline = pipeline_builder.build(title='JDBC Query Executor').configure_for_environment(database) sdc_executor.add_pipeline(pipeline) try: sdc_executor.start_pipeline(pipeline).wait_for_finished() event_records = wiretap.output_records assert len(event_records) == 3 assert 'failed-query' == event_records[0].header['values']['sdc.event.type'] assert 'failed-query' == event_records[1].header['values']['sdc.event.type'] assert 'failed-query' == event_records[2].header['values']['sdc.event.type'] result = database.engine.execute(table.select()) data_from_database = sorted(result.fetchall(), key=lambda row: row[1]) # order by id result.close() assert data_from_database == [] finally: logger.info('Dropping table %s in %s database ...', table_name, database.type) table.drop(database.engine)
19,538
def from_local(local_dt, timezone=None): """Converts the given local datetime to a universal datetime.""" if not isinstance(local_dt, datetime.datetime): raise TypeError('Expected a datetime object') if timezone is None: a = arrow.get(local_dt) else: a = arrow.get(local_dt, timezone) return a.to('UTC').naive
19,539
def mrefresh_to_relurl(content): """Get a relative url from the contents of a metarefresh tag""" urlstart = re.compile('.*URL=') _, url = content.split(';') url = urlstart.sub('', url) return url
19,540
def mock_mikrotik_api(): """Mock an api.""" with patch("librouteros.connect"): yield
19,541
def simclr_loss_func( z1: torch.Tensor, z2: torch.Tensor, temperature: float = 0.1, extra_pos_mask=None, ) -> torch.Tensor: """Computes SimCLR's loss given batch of projected features z1 from view 1 and projected features z2 from view 2. Args: z1 (torch.Tensor): NxD Tensor containing projected features from view 1. z2 (torch.Tensor): NxD Tensor containing projected features from view 2. temperature (float): temperature factor for the loss. Defaults to 0.1. extra_pos_mask (Optional[torch.Tensor]): boolean mask containing extra positives other than normal across-view positives. Defaults to None. Returns: torch.Tensor: SimCLR loss. """ device = z1.device b = z1.size(0) z = torch.cat((z1, z2), dim=0) z = F.normalize(z, dim=-1) logits = torch.einsum("if, jf -> ij", z, z) / temperature logits_max, _ = torch.max(logits, dim=1, keepdim=True) logits = logits - logits_max.detach() # positive mask are matches i, j (i from aug1, j from aug2), where i == j and matches j, i pos_mask = torch.zeros((2 * b, 2 * b), dtype=torch.bool, device=device) pos_mask[:, b:].fill_diagonal_(True) pos_mask[b:, :].fill_diagonal_(True) # if we have extra "positives" if extra_pos_mask is not None: pos_mask = torch.bitwise_or(pos_mask, extra_pos_mask) # all matches excluding the main diagonal logit_mask = torch.ones_like(pos_mask, device=device).fill_diagonal_(0) exp_logits = torch.exp(logits) * logit_mask log_prob = logits - torch.log(exp_logits.sum(1, keepdim=True)) # compute mean of log-likelihood over positives mean_log_prob_pos = (pos_mask * log_prob).sum(1) / pos_mask.sum(1) # loss loss = -mean_log_prob_pos.mean() return loss
19,542
def find_node_types(G, edge_type): """ :param G: NetworkX graph. :param edge_type: Edge type. :return: Node types that correspond to the edge type. """ for e in G.edges: if G[e[0]][e[1]][e[2]]['type'] == edge_type: u, v = e[0], e[1] break utype = G.nodes[u]['type'] vtype = G.nodes[v]['type'] try: if int(utype) > int(vtype): return utype, vtype else: return vtype, utype except: return utype, vtype
19,543
def distance_point_point(p1, p2): """Calculates the euclidian distance between two points or sets of points >>> distance_point_point(np.array([1, 0]), np.array([0, 1])) 1.4142135623730951 >>> distance_point_point(np.array([[1, 1], [0, 0]]), np.array([0, 1])) array([1., 1.]) >>> distance_point_point(np.array([[1, 0], [0, 0]]), np.array([[0, 0], [0, -3]])) array([1., 3.]) """ return scipy.spatial.minkowski_distance(p1, p2)
19,544
def plotInfluential ( InferenceObject ): """Diagnostic plot for detecting influential observations Determining influential observations follows a different logic for bootstrap and for bayes inference. A block is labelled an influential observation if the fit for a dataset without that point is significantly different from the fit including that point. For BootstrapInference objects, this is quantified using a normed distance of the maximum likelihood fit including the block and withouth that block. This distance is normed in the following way: If the maximum likelihood fit for the reduced dataset remains inside the 95% confidence limits of the maximum likelihood fit for the full dataset, the influence value is below 1. Thus, influence values large than 1 indicate a problem with the data set. For BayesInference objects, the influence of a block is simply quantified as the Kullbach-Leibler divergence of the posterior for the full data set from the posterior for the reduced data set. :Parameters: *InferenceObject* : Data set for which the influential observations are to be plotted """ maxinfl = N.argmax(InferenceObject.infl) ind = range ( InferenceObject.data.shape[0] ) ind.pop(maxinfl) # influencedDataset = psignidata.BootstrapInference( InferenceObject.data[ind,:], # sample=False, **(InferenceObject.model)) # influencedDataset = psignidata.BayesInference ( InferenceObject.data[ind,:], **(InferenceObject.model) ) est = interface.mapestimate ( InferenceObject.data[ind,:], start=InferenceObject.estimate, **(InferenceObject.model) )[0] x = N.mgrid[InferenceObject.data[:,0].min():InferenceObject.data[:,0].max():100j] influencedPMF = interface.diagnostics ( x, est, nafc = InferenceObject.model["nafc"], sigmoid = InferenceObject.model["sigmoid"], core = InferenceObject.model["core"] ) p.figure ( figsize=(6,8) ) # ax = p.axes ( (0.0,.5,.9,.5) ) ax = prepare_axes ( p.subplot ( 2,1,1 ) ) ax.set_ylabel ( r"$\Psi(x)$" ) if InferenceObject.__repr__().split()[1] in ["BayesInference","ASIRInference"]: InferenceObject.drawposteriorexamples ( ax=ax ) plotPMF ( InferenceObject, ax=ax, showaxes=True, showdesc=False, color="b", linewidth=2 ) ax.plot ( [InferenceObject.data[maxinfl,0]], [InferenceObject.data[maxinfl,1].astype("d")/InferenceObject.data[maxinfl,2]], 'rx', markersize=20, markeredgewidth=5 ) # ax = plotPMF ( influencedDataset, ax=ax, showdesc=False, showaxes=True, color="r", markertype=([(0,0)],0), linewidth=2 )[-1] ax.plot ( x, influencedPMF, color="r", linewidth=2 ) xl = list(ax.get_xlim ()) # ax = p.axes ( (0.0, 0., .9, .5) ) ax = p.subplot ( 2,1,2, sharex=ax ) if InferenceObject.__repr__().split()[1] == "BootstrapInference": ax.plot ( [InferenceObject.data[:,0].min(),InferenceObject.data[:,0].max()], [1,1], 'k:' ) yname = "Influence" else: yname = "D_KL( full || reduced )" ax.plot ( InferenceObject.data[:,0], InferenceObject.infl, 'bo' ) ax.set_xlim(xl) drawaxes ( ax, ax.get_xticks(), "%g", ax.get_yticks(), "%g", r"stimulus intensity $x$", yname )
19,545
def switch( confs=None, remain=False, all_checked=False, _default=None, **kwargs ): """ Execute first statement among conf where task result is True. If remain, process all statements conf starting from the first checked conf. :param confs: task confs to check. Each one may contain a task action at the key 'action' in conf. :type confs: str or dict or list :param bool remain: if True, execute all remaining actions after the first checked condition. :param bool all_checked: execute all statements where conditions are checked. :param _default: default task to process if others have not been checked. :type _default: str or dict :return: statement result or list of statement results if remain. :rtype: list or object """ # init result result = [] if remain else None # check if remain and one task has already been checked. remaining = False if confs is not None: if isinstance(confs, string_types) or isinstance(confs, dict): confs = [confs] for conf in confs: # check if task has to be checked or not check = remaining if not check: # try to check current conf check = run(conf=conf, **kwargs) # if task is checked or remaining if check: if STATEMENT in conf: # if statements exist, run them statement = conf[STATEMENT] statement_result = run(statement, **kwargs) # save result if not remain: # if not remain, result is statement_result result = statement_result else: # else, add statement_result to result result.append(statement_result) # if remain if remain: # change of remaining status if not remaining: remaining = True elif all_checked: pass else: # leave execution if one statement has been executed break # process _default statement if necessary if _default is not None and (remaining or (not result) or all_checked): last_result = run(_default, **kwargs) if not remain: result = last_result else: result.append(last_result) return result
19,546
def makeProcesses(nChildren): """ Create and start all the worker processes """ global taskQueue,resultsQueue,workers if nChildren < 0: print 'makeProcesses: ',nChildren, ' is too small' return False if nChildren > 3: print 'makeProcesses: ',nChildren, ' is too large' return False # Create a task queue for each worker to receive the image segment taskQueue = [] for k in range(nChildren): taskQueue.append(Queue()) resultsQueue = Queue() # Single results queue #Create and start the workers workers = [] for k in range(nChildren): p = Process(target=worker, args=(k,taskQueue[k],resultsQueue)) workers.append(p) for p in workers: p.start() time.sleep(2) return True
19,547
def create_moleculenet_model(model_name): """Create a model. Parameters ---------- model_name : str Name for the model. Returns ------- Created model """ for func in [create_bace_model, create_bbbp_model, create_clintox_model, create_esol_model, create_freesolv_model, create_hiv_model, create_lipophilicity_model, create_muv_model, create_pcba_model, create_sider_model, create_tox21_model, create_toxcast_model]: model = func(model_name) if model is not None: return model return None
19,548
def detect_daml_lf_dir(paths: "Collection[str]") -> "Optional[str]": """ Find the biggest Daml-LF v1 version in the set of file names from a Protobuf archive, and return the path that contains the associated files (with a trailing slash). If there is ever a Daml-LF 2, then this logic will need to be revisited; however, when that happens, there are likely to be even larger changes required so we won't worry about this too much right now. :param paths: The paths in a Protobuf zipfile to examine. :return: The root directory of a target Daml-LF protobuf version, stripped of a prefix. >>> detect_daml_lf_dir([ ... "protos-1.15.0/com/daml/daml_lf_1_10/something.proto", ... "protos-1.15.0/com/daml/daml_lf_1_9/something.proto", ... "protos-1.15.0/com/daml/daml_lf_dev/something.proto", ... "protos-1.15.0/com/daml/daml_lf_1_what/something.proto", ... ]) 'com/daml/daml_lf_1_10/' """ daml_lf_prefix = "com/daml/daml_lf_1_" minor_versions = set() # type: Set[int] for p in paths: _, _, truncated_path = p.partition("/") if truncated_path.startswith(daml_lf_prefix): version_str, _, _ = truncated_path[len(daml_lf_prefix) :].partition("/") try: minor_versions.add(int(version_str)) except ValueError: # skip over unrecognized directory names pass if minor_versions: return f"{daml_lf_prefix}{max(minor_versions)}/" else: return None
19,549
def random_mini_batches(X, Y, mini_batch_size): """ Creates a list of random minibatches from (X, Y) Arguments: X -- input data, of shape (m, n_H, n_W, c) Y -- true "label" vector of shape (m, num_classes) mini_batch_size -- size of mini-batches, integer Returns: mini_batches -- list of synchronous (mini_batch_X, mini_batch_Y) """ # Extract the input data shapes. m = X.shape[0] num_classes = Y.shape[1] # Instantiate an empty list to hold mini batch X-Y tuples with size batch_size. mini_batches = [] # Shuffle X and Y. permutation = list(np.random.permutation(m)) shuffled_X = X[permutation, :, :, :] shuffled_Y = Y[permutation, :] # Divide (shuffled_X, shuffled_Y) into batches minus the end case. num_complete_minibatches = m // mini_batch_size for k in range(0, num_complete_minibatches): mini_batch_X = shuffled_X[ k*mini_batch_size:(k+1)*mini_batch_size, :,:,:] mini_batch_Y = shuffled_Y[ k*mini_batch_size:(k+1)*mini_batch_size, :] mini_batch = (mini_batch_X, mini_batch_Y) mini_batches.append(mini_batch) # Handle the end case if the last mini-batch < mini_batch_size. if m % mini_batch_size != 0: mini_batch_X = shuffled_X[ num_complete_minibatches*mini_batch_size: , :,:,:] mini_batch_Y = shuffled_Y[ num_complete_minibatches*mini_batch_size: , :] mini_batch = (mini_batch_X, mini_batch_Y) mini_batches.append(mini_batch) return mini_batches
19,550
def classifyContent(text): """ Uses the NLP provider's SDK to perform a content classification operation. Arguments: text {String} -- Text to be analyzed. """ document = types.Document( content=text, type=enums.Document.Type.PLAIN_TEXT, language='en') try: response = client.classify_text(document=document) values = [] for category in response.categories: values.append({ "category": category.name, "confidence": category.confidence }) return(Classiciation(values, "")) except Exception as e: return Classiciation([], str(e.args))
19,551
def print_matrix(matrice: np.ndarray): """Stampa a video della Mappa""" str_ = "" for i in range(len(matrice)): for j in range(len(matrice)): if matrice[i][j] == 0: str_ += Back.BLACK + " " elif matrice[i][j] == 1: str_ += Back.WHITE + " " elif matrice[i][j] == 2: str_ += Back.RED + " " elif matrice[i][j] == 3: str_ += Back.BLUE + " " elif matrice[i][j] == 4: str_ += Back.GREEN + " " str_ += Back.BLACK + "\n" print(str_)
19,552
def print_instance_summary(instance, use_color='auto'): """ Print summary info line for the supplied instance """ colorize_ = partial(colorize, use_color=use_color) name = colorize_(instance.name, "yellow") instance_type = instance.extra['gonzo_size'] if instance.state == NodeState.RUNNING: status_colour = "green" else: status_colour = "red" instance_status = NodeState.tostring(instance.state) status = colorize_(instance_status, status_colour) if 'owner' in instance.extra['gonzo_tags']: owner = instance.extra['gonzo_tags']['owner'] else: owner = "---" uptime = format_uptime(instance.extra['gonzo_created_time']) uptime = colorize_(uptime, "blue") availability_zone = instance.extra['gonzo_az'] result_list = [ name, instance_type, status, owner, uptime, availability_zone, ] return result_list
19,553
def cli(input_file=None, part=None): """ CLI entry point """ result = process(input_file, part) print(result)
19,554
def test_local_time_string_raises_v_020_010(): """local_time_string() with bad t_format type raises SimplEthError""" bad_format_type = 100 with pytest.raises(SimplEthError) as excp: Convert().local_time_string(bad_format_type) assert excp.value.code == 'V-020-010'
19,555
def generate_blob_sas_token(blob, container, blob_service, permission=BlobPermissions.READ): """Generate a blob URL with SAS token.""" sas_token = blob_service.generate_blob_shared_access_signature( container, blob.name, permission=permission, start=datetime.datetime.utcnow() - datetime.timedelta(minutes=15), expiry=datetime.datetime.utcnow() + datetime.timedelta(days=FileUtils.SAS_EXPIRY_DAYS)) return blob_service.make_blob_url(container, quote(blob.name.encode('utf-8')), sas_token=sas_token)
19,556
def rewrite_complex_signature(function, signature: Sequence[tf.TensorSpec]): """Compatibility layer for testing complex numbers.""" if not all([spec.dtype.is_complex for spec in signature]): raise NotImplementedError("Signatures with mixed complex and non-complex " "tensor specs are not supported.") # Rewrite the signature, replacing all complex tensors with pairs of real # and imaginary tensors. real_imag_signature = [] for spec in signature: new_dtype = tf.float32 if spec.dtype.size == 8 else tf.float64 real_imag_signature.append(tf.TensorSpec(spec.shape, new_dtype)) real_imag_signature.append(tf.TensorSpec(spec.shape, new_dtype)) return _complex_wrapper(function), real_imag_signature
19,557
def get_args(argv: list): """gets the args and dictionarize them""" if len(argv) not in [5,7]: Errors.args_error() data = {} # getting the type of the title if "-" in argv[1]: data["type"] = "series" if argv[1] == "-s" else "movie" if argv[1] == "-m" else None else: Errors.args_error() # getting the title itself data["title"] = argv[2] data["format"] = argv[3] data["language"] = argv[4] if data["type"] == "series": if len(argv) != 7: Errors.args_error() try: data["season"] = int(argv[5]) data["episode"] = int(argv[6]) except: Errors.args_error() return data
19,558
def random( reason: str, current_dir: Path = Path("."), ) -> None: """Roll the dice and email the result.""" logger = getLogger(__name__) config = MailsConfig.from_global_paths(GlobalPaths.from_defaults(current_dir)) names = list(config.to) name = choice(names) logger.info(f"I've drawn {name} randomly from {', '.join(names)}") sendgrid_email = Mail( from_email=config.mail, to_emails=list(config.to.values()), subject=f"[deckz random] {reason}: {name} got picked", plain_text_content="See subject :)", ) client = SendGridAPIClient(config.api_key) client.send(sendgrid_email)
19,559
def fund_with_erc20( to_fund_address, erc20_token_contract, ether_amount=0.1, account=None ): """Send a specified amount of an ERC20 token to an address. Args: to_fund_address (address): Address to send to the tokens to. erc20_token_contract (Contract): Contract of the ERC20 token. ether_amount (float, optional): Amount to be sent, in ETHER. Defaults to 0.1. account (address, optional): Account from which to send the transaction. Defaults to None. Returns: TransactionReceipt """ account = account if account else get_account() print( f"Funding {to_fund_address} with {ether_amount} {erc20_token_contract.symbol()}..." ) tx = erc20_token_contract.transfer( to_fund_address, Web3.toWei(ether_amount, "ether"), {"from": account}, ) tx.wait(1) print( f"Funded {to_fund_address} with {ether_amount} {erc20_token_contract.symbol()}." ) return tx
19,560
def test_tensor_from_cache_empty(tensor_key): """Test get works returns None if tensor key is not in the db.""" db = TensorDB() cached_nparray = db.get_tensor_from_cache(tensor_key) assert cached_nparray is None
19,561
async def test_form(opp): """Test we get the form.""" await setup.async_setup_component(opp, "persistent_notification", {}) result = await opp.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) assert result["type"] == "form" assert result["errors"] == {} c4_account = _get_mock_c4_account() c4_director = _get_mock_c4_director() with patch( "openpeerpower.components.control4.config_flow.C4Account", return_value=c4_account, ), patch( "openpeerpower.components.control4.config_flow.C4Director", return_value=c4_director, ), patch( "openpeerpower.components.control4.async_setup_entry", return_value=True, ) as mock_setup_entry: result2 = await opp.config_entries.flow.async_configure( result["flow_id"], { CONF_HOST: "1.1.1.1", CONF_USERNAME: "test-username", CONF_PASSWORD: "test-password", }, ) await opp.async_block_till_done() assert result2["type"] == "create_entry" assert result2["title"] == "control4_model_00AA00AA00AA" assert result2["data"] == { CONF_HOST: "1.1.1.1", CONF_USERNAME: "test-username", CONF_PASSWORD: "test-password", "controller_unique_id": "control4_model_00AA00AA00AA", } assert len(mock_setup_entry.mock_calls) == 1
19,562
def energy_adj_ground_to_sig_end(ds): """ Waveform energy from the ground peak. We calculated senergy_whrc as the energy of the waveform (in digital counts) from the ground peak to the signal end multiplied by two. Ground peak defined as whichever of the two lowest peaks has greater amplitude. We then applied the following linear transformation in order to calculate on the same scale as data published by Margolis et al. (2015) senergy = -4.397006 + 0.006208 * senergy_whrc """ from carbonplan_trace.v1.glas_preprocess import select_valid_area # avoid circular import path = 'gs://carbonplan-climatetrace/inputs/volt_table.csv' volt_table = pd.read_csv(path) volt_to_digital_count = volt_table.set_index('volt_value')['ind'].to_dict() wf_in_digital_count = xr.apply_ufunc( volt_to_digital_count.__getitem__, ds.rec_wf.astype(float).round(6).fillna(-0.195279), vectorize=True, dask='parallelized', output_dtypes=[int], ) ds = get_dist_metric_value(ds, metric='adj_ground_peak_dist_actual_wf') # the processed wf is from sig beg to sig end, select adj ground peak to sig end instead ground_energy = select_valid_area( bins=ds.rec_wf_sample_dist, wf=wf_in_digital_count, signal_begin_dist=ds.adj_ground_peak_dist_actual_wf, signal_end_dist=ds.sig_end_dist, ) # make sure dimensions matches up dims = ds.processed_wf.dims ground_energy = ground_energy.transpose(dims[0], dims[1]) senergy_whrc = ground_energy.sum(dim="rec_bin") * 2 return -4.397006 + 0.006208 * senergy_whrc
19,563
def profile(args, model, model_info, device): """ Profile. :param model: :param model_info: :return: """ import copy from torch.profiler import profile, record_function, ProfilerActivity model = copy.deepcopy(model) model = model.to(device) model.eval() inputs = tuple( torch.ones((args.batch_size,) + model_info["input_shapes"][k][1:], dtype=torch.float32).to( device ) for k in model_info["input_names"] ) for x in inputs: print(x.shape, x.device) def trace_handler(p): output = p.key_averages().table(sort_by="self_cuda_time_total", row_limit=50) print(output) p.export_chrome_trace("/tmp/trace_" + str(p.step_num) + ".json") with profile( activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA], schedule=torch.profiler.schedule(wait=2, warmup=2, active=6, repeat=2), on_trace_ready=trace_handler, ) as p: for idx in range(100): model(*inputs) p.step()
19,564
def get_previous_version(versions: dict, app: str) -> str: """Looks in the app's .version_history to retrieve the prior version""" try: with open(f"{app}/.version_history", "r") as fh: lines = [line.strip() for line in fh] except FileNotFoundError: logging.warning(f"No .version_history for {app}") return "" if versions[app] != lines[-1]: logging.warning( f"Mismatch in data:\n\tCurrent version is {versions[app]}" f" but most recent line in .version_history is {lines[-1]}" ) return "" elif len(lines) < 2: logging.warning("No prior version recorded") return "" return lines[-2]
19,565
def validate_marktlokations_id(self, marktlokations_id_attribute, value): """ A validator for marktlokations IDs """ if not value: raise ValueError("The marktlokations_id must not be empty.") if not _malo_id_pattern.match(value): raise ValueError(f"The {marktlokations_id_attribute.name} '{value}' does not match {_malo_id_pattern.pattern}") expected_checksum = _get_malo_id_checksum(value) actual_checksum = value[10:11] if expected_checksum != actual_checksum: # pylint: disable=line-too-long raise ValueError( f"The {marktlokations_id_attribute.name} '{value}' has checksum '{actual_checksum}' but '{expected_checksum}' was expected." )
19,566
def healthcheck() -> bool: """FastAPI server healthcheck.""" return True
19,567
def test_unsigned_short_enumeration004_1782_unsigned_short_enumeration004_1782_v(mode, save_output, output_format): """ TEST :Facet Schemas for string : facet=enumeration and value=0 1 234 and document value=0 """ assert_bindings( schema="msData/datatypes/Facets/unsignedShort/unsignedShort_enumeration004.xsd", instance="msData/datatypes/Facets/unsignedShort/unsignedShort_enumeration004.xml", class_name="Test", version="1.1", mode=mode, save_output=save_output, output_format=output_format, structure_style="filenames", )
19,568
def copy_media_files(from_dir, to_dir, exclude=None, dirty=False): """ Recursively copy all files except markdown and exclude[ed] files into another directory. `exclude` accepts a list of Unix shell-style wildcards (`['*.py', '*.pyc']`). Note that `exclude` only operates on file names, not directories. """ for (source_dir, dirnames, filenames) in os.walk(from_dir, followlinks=True): relative_path = os.path.relpath(source_dir, from_dir) output_dir = os.path.normpath(os.path.join(to_dir, relative_path)) # Filter file names using Unix pattern matching # Always filter file names starting with a '.' exclude_patterns = ['.*'] exclude_patterns.extend(exclude or []) for pattern in exclude_patterns: filenames = [f for f in filenames if not fnmatch.fnmatch(f, pattern)] # Filter the dirnames that start with a '.' and update the list in # place to prevent us walking these. dirnames[:] = [d for d in dirnames if not d.startswith('.')] for filename in filenames: if not is_markdown_file(filename): source_path = os.path.join(source_dir, filename) output_path = os.path.join(output_dir, filename) # Do not copy when using --dirty if the file has not been modified if dirty and (modified_time(source_path) < modified_time(output_path)): continue copy_file(source_path, output_path)
19,569
def frames_to_masks( nproc: int, out_paths: List[str], colors_list: List[List[np.ndarray]], poly2ds_list: List[List[List[Poly2D]]], with_instances: bool = True, ) -> None: """Execute the mask conversion in parallel.""" with Pool(nproc) as pool: pool.starmap( partial(frame_to_mask, with_instances=with_instances), tqdm( zip(out_paths, colors_list, poly2ds_list), total=len(out_paths), ), )
19,570
def test_branched_history_with_mergepoint(pytester): """Branched history can be navigated, when there's a mergepoint present.""" run_pytest(pytester, passed=5)
19,571
def ToHexStr(num): """ 将返回的错误码转换为十六进制显示 :param num: 错误码 字符串 :return: 十六进制字符串 """ chaDic = {10: 'a', 11: 'b', 12: 'c', 13: 'd', 14: 'e', 15: 'f'} hexStr = "" if num < 0: num = num + 2**32 while num >= 16: digit = num % 16 hexStr = chaDic.get(digit, str(digit)) + hexStr num //= 16 hexStr = chaDic.get(num, str(num)) + hexStr return hexStr
19,572
def getSBMLFromBiomodelsURN(urn): """ Get SBML string from given BioModels URN. Searches for a BioModels identifier in the given urn and retrieves the SBML from biomodels. For example: urn:miriam:biomodels.db:BIOMD0000000003.xml Handles redirects of the download page. :param urn: :return: SBML string for given model urn """ if ":" not in urn: raise ValueError("The URN", urn, "is not in the correct format: it must be divided by colons in a format such as 'urn:miriam:biomodels.db:BIOMD0000000003.xml'.") core = urn.split(":")[-1].split(".")[0] url = "https://www.ebi.ac.uk/biomodels/model/download/" + core + "?filename="+ core + "_url.xml" response = requests.get(url, allow_redirects=True) response.raise_for_status() sbml = response.content # bytes array in py3 try: sbml_str = str(sbml.decode("utf-8")) except: sbml_str = str(sbml) return sbml_str
19,573
def dataclass_validate(instance: Any) -> None: """Ensure values in a dataclass are correct types. Note that this will always fail if a dataclass contains field types not supported by this module. """ _dataclass_validate(instance, dataclasses.asdict(instance))
19,574
def draw(k, n): """ Select k things from a pool of n without replacement. """ # At k == n/4, an extra 0.15*k draws are needed to get k unique draws if k > n/4: result = rng.permutation(n)[:k] else: s = set() result = np.empty(k, 'i') for i in range(k): p = rng.randint(n) while p in s: p = rng.randint(n) s.add(p) result[i] = p return result
19,575
def print_version(args): """Print the version (short or long)""" # Long version if len(args) > 0 and args[0] == '--full': apk_version = dtfglobals.get_generic_global( dtfglobals.CONFIG_SECTION_CLIENT, 'apk_version') bundle_version = dtfglobals.get_generic_global( dtfglobals.CONFIG_SECTION_BINDINGS, 'version') python_version = constants.VERSION print("Python Version: %s" % python_version) print("dtfClient Version: %s" % apk_version) print("Bindings Version Date: %s" % bundle_version) else: print(constants.VERSION) return 0
19,576
async def test_get_start_entries_by_race_id( client: _TestClient, mocker: MockFixture, token: MockFixture, race: dict, start_entry: dict, ) -> None: """Should return OK and a valid json body.""" START_ENTRY_ID = start_entry["id"] mocker.patch( "race_service.adapters.start_entries_adapter.StartEntriesAdapter.get_start_entries_by_race_id", return_value=[start_entry], ) with aioresponses(passthrough=["http://127.0.0.1"]) as m: m.post("http://users.example.com:8081/authorize", status=204) resp = await client.get(f'races/{race["id"]}/start-entries') assert resp.status == 200 assert "application/json" in resp.headers[hdrs.CONTENT_TYPE] start_entries = await resp.json() assert type(start_entries) is list assert len(start_entries) > 0 assert START_ENTRY_ID == start_entries[0]["id"]
19,577
def naturalTimeDifference(value): """ Finds the difference between the datetime value given and now() and returns appropriate humanize form """ from datetime import datetime if isinstance(value, datetime): delta = datetime.now() - value if delta.days > 6: return value.strftime("%b %d") # May 15 if delta.days > 1: return value.strftime("%A") # Wednesday elif delta.days == 1: return 'yesterday' # yesterday elif delta.seconds > 3600: if delta.seconds < 7200: return '1 hour ago' else: return str(delta.seconds / 3600 ) + ' hours ago' # 3 hours ago elif delta.seconds > 60: if delta.seconds < 120: return '1 minute ago' else: return str(delta.seconds/60) + ' minutes ago' # 29 minutes ago elif delta.seconds > 10: return str(delta.seconds) + ' seconds ago' # 15 seconds ago else: return 'a moment ago' # a moment ago return defaultfilters.date(value) else: return str(value)
19,578
def test_specific_location(client, user, db_setup, tag_data): """specific_location is an optional field. If it is included in the posted data, it will be correctly associated with the recovery object in the database. """ report = Report.objects.get(reported_by__first_name="Homer") url = reverse("tfat:create_recovery", kwargs={"report_id": report.id}) specific_location = "Right here. Exactly here." tag_data["specific_location"] = specific_location client.login(username=user.email, password="Abcd1234") response = client.post(url, tag_data, follow=True) assert response.status_code == 200 recoveries = Recovery.objects.all() assert len(recoveries) == 1 assert recoveries[0].specific_location == specific_location
19,579
def raises_Invalid(function): """A decorator that asserts that the decorated function raises dictization_functions.Invalid. Usage: @raises_Invalid def call_validator(*args, **kwargs): return validators.user_name_validator(*args, **kwargs) call_validator(key, data, errors) """ def call_and_assert(*args, **kwargs): with pytest.raises(df.Invalid): function(*args, **kwargs) return call_and_assert
19,580
def load_dataset(dataset_path: Path) -> [Instruction]: """Returns the program as a list of alu instructions.""" with open_utf8(dataset_path) as file: program = [] for line in file: if len(line.strip()) > 0: instruction = line.strip().split(" ") if len(instruction) == 2: instruction.append(None) # No b value else: try: # B instruction is constant. instruction[2] = int(instruction[2]) except ValueError: pass # B instruction is string reference. program.append( Instruction( func=getattr(alu, instruction[0]), a=instruction[1], b=instruction[2], ) ) return program
19,581
def test_document_delete1(flask_client, user8, dev_app): """document() DELETE should delete one item.""" doc = user8.documents.first() access_token = api.create_token(user8, dev_app.client_id) response = flask_client.delete( "/api/documents/" + str(doc.id), headers={"authorization": "Bearer " + access_token} ) json_data = response.get_json() # have to do it this way because session is no longer available docs = models.Documents.query.filter_by(user_id=user8.id).all() assert ( response.status_code == 200 and json_data["message"] == "Item deleted." and len(docs) == 3 )
19,582
def process_info(args): """ Process a single json file """ fname, opts = args with open(fname, 'r') as f: ann = json.load(f) f.close() examples = [] skipped_instances = 0 for instance in ann: components = instance['components'] if len(components[0]['poly']) < 3: continue if 'class_filter'in opts.keys() and instance['label'] not in opts['class_filter']: continue # if instance['image_url'].find('Bhoomi') == -1: # continue candidates = [c for c in components] instance['components'] = candidates if candidates: examples.append(instance) return examples, skipped_instances
19,583
def test_uncharge(): """All charges should be neutralized.""" assert _uncharge_smiles("CNCC([O-])C[O-]") == "CNCC(O)CO"
19,584
def logout(): """ 退出登录 :return: """ # pop是移除session中的数据(dict),pop会有一个返回值,如果移除的key不存在返回None session.pop('user_id', None) session.pop('mobile', None) session.pop('nick_name', None) # 要清除is_admin的session值,不然登录管理员后退出再登录普通用户又能访问管理员后台 session.pop('is_admin', None) return jsonify(errno=RET.OK, errmsg="退出成功")
19,585
def test_dun_depth_method_on_single_bst(bst): """Test the _depth method on single bst.""" assert bst._depth(bst.root) == 1
19,586
def lift_to_dimension(A,dim): """ Creates a view of A of dimension dim (by adding dummy dimensions if necessary). Assumes a numpy array as input :param A: numpy array :param dim: desired dimension of view :return: returns view of A of appropriate dimension """ current_dim = len(A.shape) if current_dim>dim: raise ValueError('Can only add dimensions, but not remove them') if current_dim==dim: return A else: return A.reshape([1]*(dim-current_dim)+list(A.shape))
19,587
def search(keyword=None): """ Display search results in JSON format Parameters ---------- keyword : str Search keyword. Default None """ return get_json(False, keyword)
19,588
def min_offerings(heights: List[int]) -> int: """ Get the max increasing sequence on the left and the right side of current index, leading upto the current index. current index's value would be the max of both + 1. """ length = len(heights) if length < 2: return length left_inc = [0] * length right_inc = [0] * length for index in range(1, length): if heights[index] > heights[index - 1]: left_inc[index] = left_inc[index - 1] + 1 if heights[length - 1 - index] > heights[length - index]: right_inc[length - 1 - index] = right_inc[length - index] + 1 return sum(1 + max(left_inc[index], right_inc[index]) for index in range(length))
19,589
def pretty(value, width=80, nl_width=80, sep='\n', **kw): # type: (str, int, int, str, **Any) -> str """Format value for printing to console.""" if isinstance(value, dict): return '{{{0} {1}'.format(sep, pformat(value, 4, nl_width)[1:]) elif isinstance(value, tuple): return '{}{}{}'.format( sep, ' ' * 4, pformat(value, width=nl_width, **kw), ) else: return pformat(value, width=width, **kw)
19,590
def get_csv_file_path(file_name: str) -> str: """ Get absolute path to csv metrics file Parameters ---------- file_name Name of metrics file Returns ------- file_path Full path to csv file """ return os.path.join(os.getcwd(), file_name)
19,591
def test_drop_mrel_column(pipeline, clean_db): """ Verify that we can't drop matrel columns """ pipeline.create_stream('mrel_drop_s', x='integer') q = """ SELECT x, sum(x), avg(x), count(*) FROM mrel_drop_s GROUP BY x """ pipeline.create_cv('mrel_drop_cv', q) for col in ('x', 'sum', 'avg', 'count'): with pytest.raises(psycopg2.InternalError): pipeline.execute('ALTER TABLE mrel_drop_cv_mrel DROP COLUMN %s' % col)
19,592
def failed(config: dict, app_logger: logger.Logger) -> bool: """ Set migration status to FAILED. :param config: pymigrate configuration. :param app_logger: pymigrate configured logger. :return: True on success, False otherwise. """ app_logger.log_with_ts('Running status_failed action for migration {0}'.format(config['MIGRATION_ID']), logger.Levels.DEBUG) migrations_directory_path = os.path.join(os.pardir, config['PROJECT_DIR'] + '/' + config['MIGRATIONS_DIR']) return migration.set_status_failed(config['MIGRATION_ID'], app_logger, migrations_directory_path)
19,593
async def test_face_event_call_no_confidence(mock_config, hass, aioclient_mock): """Set up and scan a picture and test faces from event.""" face_events = await setup_image_processing_face(hass) aioclient_mock.get(get_url(hass), content=b"image") common.async_scan(hass, entity_id="image_processing.demo_face") await hass.async_block_till_done() state = hass.states.get("image_processing.demo_face") assert len(face_events) == 3 assert state.state == "4" assert state.attributes["total_faces"] == 4 event_data = [ event.data for event in face_events if event.data.get("name") == "Hans" ] assert len(event_data) == 1 assert event_data[0]["name"] == "Hans" assert event_data[0]["confidence"] == 98.34 assert event_data[0]["gender"] == "male" assert event_data[0]["entity_id"] == "image_processing.demo_face"
19,594
def niceNumber(v, maxdigit=6): """Nicely format a number, with a maximum of 6 digits.""" assert(maxdigit >= 0) if maxdigit == 0: return "%.0f" % v fmt = '%%.%df' % maxdigit s = fmt % v if len(s) > maxdigit: return s.rstrip("0").rstrip(".") elif len(s) == 0: return "0" else: return s
19,595
def query_incident(conditions: list, method=None, plan_status="A", mulitple_fields=False): """ Queries incidents in Resilient/CP4S :param condition_list: list of conditions as [field_name, field_value, method] or a list of list conditions if multiple_fields==True :param method: set all field conditions to this method (save user from typing it for each field) :param plan_status: "A" == Active, "C" == Closed :param multiple_fields: query more than one field """ def buildConditionDict(conditions, method=method): return { 'field_name': conditions[0], 'value': conditions[1], "method": method if method else conditions[2], } conditionList = [] query_uri = u"/incidents/query?return_level=normal" if not mulitple_fields: conditionList.append(buildConditionDict(conditions)) query_uri += u"&field_handle={}".format(conditions[0]) else: for condition in conditions: conditionList.append(buildConditionDict(condition)) query_uri += u"&field_handle={}".format(condition[0]) conditionList.append({ 'field_name': 'plan_status', 'method': 'equals', 'value': plan_status }) query = { 'filters': [{ 'conditions': conditionList }], "sorts": [{ "field_name": "create_date", "type": "desc" }] } client = create_authenticated_client() return client.post(query_uri, query)
19,596
def test_no_value(): """When no value is given we should return Failure.""" test = [[], '-'] with pytest.raises(UnwrapFailedError): apply_separator(*test).unwrap()
19,597
def get_banner(): """Return a banner message for the interactive console.""" global _CONN result = '' # Note how we are connected result += 'Connected to %s' % _CONN.url if _CONN.creds is not None: result += ' as %s' % _CONN.creds[0] # Give hint about exiting. Most people exit with 'quit()' which will # not return from the interact() method, and thus will not write # the history. result += '\nPress Ctrl-D to exit' return result
19,598
def generate_fish( n, channel, interaction, lim_neighbors, neighbor_weights=None, fish_max_speeds=None, clock_freqs=None, verbose=False, names=None ): """Generate some fish Arguments: n {int} -- Number of fish to generate channel {Channel} -- Channel instance interaction {Interaction} -- Interaction instance lim_neighbors {list} -- Tuple of min and max neighbors neighbor_weight {float|list} -- List of neighbor weights fish_max_speeds {float|list} -- List of max speeds clock_freqs {int|list} -- List of clock speeds names {list} -- List of names for your fish """ if neighbor_weights is None: neighbor_weights = [1.0] * n elif not isinstance(neighbor_weights, list): neighbor_weights = [neighbor_weights] * n if fish_max_speeds is None: fish_max_speeds = [1.0] * n elif not isinstance(fish_max_speeds, list): fish_max_speeds = [fish_max_speeds] * n if clock_freqs is None: clock_freqs = [1] * n elif not isinstance(clock_freqs, list): clock_freqs = [clock_freqs] * n if names is None: names = ['Unnamed'] * n fish = [] for i in range(n): fish.append(Fish( id=i, channel=channel, interaction=interaction, lim_neighbors=lim_neighbors, neighbor_weight=neighbor_weights[i], fish_max_speed=fish_max_speeds[i], clock_freq=clock_freqs[i], verbose=verbose, name=names[i] )) return fish
19,599