content
stringlengths
22
815k
id
int64
0
4.91M
def create_pipeline(pipeline_name: Text, pipeline_root: Text, data_root: Text, beam_pipeline_args: Text) -> pipeline.Pipeline: """Custom component demo pipeline.""" examples = external_input(data_root) # Brings data into the pipeline or otherwise joins/converts training data. example_gen = CsvExampleGen(input=examples) hello = component.HelloComponent( input_data=example_gen.outputs['examples'], name=u'HelloWorld') # Computes statistics over data for visualization and example validation. statistics_gen = StatisticsGen(examples=hello.outputs['output_data']) return pipeline.Pipeline( pipeline_name=pipeline_name, pipeline_root=pipeline_root, components=[example_gen, hello, statistics_gen], enable_cache=True, beam_pipeline_args=beam_pipeline_args )
19,000
def toggleAction(*args, **kwargs): """A decorator which identifies a class method as a toggle action. """ return ActionFactory(ToggleAction, *args, **kwargs)
19,001
def getHistograph(dataset = {}, variable = ""): """ Calculates a histogram-like summary on a variable in a dataset and returns a dictionary. The keys in the dictionary are unique items for the selected variable. The values of each dictionary key, is the number of times the unique item occured in the data set """ data = getDatalist(dataGraph = dataset['DATA'], varGraph = dataset['VARIABLES'], variable = variable) return histograph(data)
19,002
async def test_update_system_data_v3( event_loop, v3_server, v3_sensors_json, v3_settings_json, v3_subscriptions_json ): """Test getting updated data for a v3 system.""" async with v3_server: v3_server.add( "api.simplisafe.com", f"/v1/users/{TEST_USER_ID}/subscriptions", "get", aresponses.Response(text=json.dumps(v3_subscriptions_json), status=200), ) v3_server.add( "api.simplisafe.com", f"/v1/ss3/subscriptions/{TEST_SUBSCRIPTION_ID}/sensors", "get", aresponses.Response(text=json.dumps(v3_sensors_json), status=200), ) v3_server.add( "api.simplisafe.com", f"/v1/ss3/subscriptions/{TEST_SUBSCRIPTION_ID}/settings/pins", "get", aresponses.Response(text=json.dumps(v3_settings_json), status=200), ) async with aiohttp.ClientSession(loop=event_loop) as websession: api = await API.login_via_credentials(TEST_EMAIL, TEST_PASSWORD, websession) systems = await api.get_systems() system = systems[TEST_SYSTEM_ID] await system.update() assert system.serial == TEST_SYSTEM_SERIAL_NO assert system.system_id == TEST_SYSTEM_ID assert system.api._access_token == TEST_ACCESS_TOKEN assert len(system.sensors) == 21
19,003
def p_expr_list_not_empty(p): """ expr_list_not_empty : expr COMMA expr_list_not_empty | expr """ if len(p) == 4: p[0] = [p[1]] + p[3] else: p[0] = [p[1]]
19,004
def _get_client_by_settings( client_cls, # type: Type[BaseClient] bk_app_code=None, # type: Optional[str] bk_app_secret=None, # type: Optional[str] accept_language=None, # type: Optional[str] **kwargs ): """Returns a client according to the django settings""" client = client_cls(**kwargs) client.update_bkapi_authorization( bk_app_code=bk_app_code or settings.get(SettingKeys.APP_CODE), bk_app_secret=bk_app_secret or settings.get(SettingKeys.APP_SECRET), ) # disable global https verify if settings.get(SettingKeys.BK_API_CLIENT_ENABLE_SSL_VERIFY): client.disable_ssl_verify() if accept_language: client.session.set_accept_language(accept_language) return client
19,005
def watch(process): """Watch the log output from a process using tail -f.""" with lcd(root_dir): local('tail -f logs/%s.log -s 0.5' % process)
19,006
def create_and_configure_jinja_environment( dirs, autoescape=True, handler=None, default_locale='en_US'): """Sets up an environment and gets jinja template.""" # Defer to avoid circular import. from controllers import sites locale = None app_context = sites.get_course_for_current_request() if app_context: locale = app_context.get_current_locale() if not locale: locale = app_context.default_locale if not locale: locale = default_locale jinja_environment = create_jinja_environment( jinja2.FileSystemLoader(dirs), locale=locale, autoescape=autoescape) jinja_environment.filters['gcb_tags'] = get_gcb_tags_filter(handler) return jinja_environment
19,007
def bootstrap_cost(target_values, class_probability_matrix, cost_function, num_replicates): """Bootstraps cost for one set of examples. E = number of examples K = number of classes B = number of bootstrap replicates :param target_values: length-E numpy array of target values (integers in range 0...[K - 1]). :param class_probability_matrix: E-by-K numpy array of predicted probabilities. :param cost_function: Cost function, used to evaluate predicted probabilities. Must be negatively oriented (so that lower values are better), with the following inputs and outputs. Input: target_values: Same as input to this method. Input: class_probability_matrix: Same as input to this method. Output: cost: Scalar value. :param num_replicates: Number of bootstrap replicates. :return: cost_values: length-B numpy array of cost values. """ error_checking.assert_is_integer(num_replicates) error_checking.assert_is_geq(num_replicates, 1) cost_values = numpy.full(num_replicates, numpy.nan) if num_replicates == 1: cost_values[0] = cost_function(target_values, class_probability_matrix) else: for k in range(num_replicates): _, these_indices = bootstrapping.draw_sample(target_values) cost_values[k] = cost_function( target_values[these_indices], class_probability_matrix[these_indices, ...] ) print('Average cost = {0:.4f}'.format(numpy.mean(cost_values))) return cost_values
19,008
def jdeblend_bob(src_fm, bobbed): """ Stronger version of jdeblend() that uses a bobbed clip to deblend. Parameters: clip src_fm: Source after field matching, must have field=3 and low cthresh. clip src: Bobbed source. Example: src = from havsfunc import QTGMC qtg = QTGMC(src, TFF=True, SourceMatch=3) vfm = src.vivtc.VFM(order=1, field=3, cthresh=3) dblend = jdeblend_bob(vfm, qtg) dblend = jdeblend_kf(dblend, vfm) """ bob0 = bobbed.std.SelectEvery(2, 0) bob1 = bobbed.std.SelectEvery(2, 1) ab0, bc0, c0 = bob0, bob0[1:] + bob0[-1], bob0[2:] + bob0[-2] a1, ab1, bc1 = bob1[0] + bob1[:-1], bob1, bob1[1:] + bob1[-1] dbd = core.std.Expr([a1, ab1, ab0, bc1, bc0, c0], 'y x - z + b c - a + + 2 /') dbd = core.std.ShufflePlanes([bc0, dbd], [0, 1, 2], vs.YUV) select_src = [src_fm.std.SelectEvery(5, i) for i in range(5)] select_dbd = [dbd.std.SelectEvery(5, i) for i in range(5)] inters = _inter_pattern(select_src, select_dbd) return core.std.FrameEval(src_fm, partial(_jdeblend_eval, src=src_fm, inters=inters), [src_fm, src_fm[0]+src_fm[:-1]])
19,009
def ParseArgs(): """Parse the command line options, returning an options object.""" usage = 'Usage: %prog [options] LIST|GET|LATEST' option_parser = optparse.OptionParser(usage) AddCommandLineOptions(option_parser) log_helper.AddCommandLineOptions(option_parser) options, args = option_parser.parse_args() if not options.repo_url: option_parser.error('--repo-url is required') if len(args) == 1: action = args[0].lower() if action in ('list', 'latest', 'get'): return options, action option_parser.error( 'A single repository action (LIST, GET, or LATEST) is required')
19,010
def generate_table_definition(schema_and_table, column_info, primary_key=None, foreign_keys=None, diststyle=None, distkey=None, sortkey=None): """Return a CREATE TABLE statement as a string.""" if not column_info: raise Exception('No columns specified for {}'.format(schema_and_table)) out = io.StringIO() out.write('CREATE TABLE {} (\n'.format(schema_and_table)) columns_count = len(column_info) for i, (column, type_) in enumerate(column_info): out.write(' "{}" {}'.format(column, type_)) if (i < columns_count - 1) or primary_key or foreign_keys: out.write(',') out.write('\n') if primary_key: out.write(' PRIMARY KEY({})'.format(primary_key)) if foreign_keys: out.write(',') out.write('\n') foreign_keys = foreign_keys or [] foreign_keys_count = len(foreign_keys) for i, (key, reftable, refcolumn) in enumerate(foreign_keys): out.write(' FOREIGN KEY({}) REFERENCES {}({})'.format( key, reftable, refcolumn )) if i < foreign_keys_count - 1: out.write(',') out.write('\n') out.write(')\n') if diststyle: out.write('DISTSTYLE {}\n'.format(diststyle)) if distkey: out.write('DISTKEY({})\n'.format(distkey)) if sortkey: if isinstance(sortkey, str): out.write('SORTKEY({})\n'.format(sortkey)) elif len(sortkey) == 1: out.write('SORTKEY({})\n'.format(sortkey[0])) else: out.write('COMPOUND SORTKEY({})\n'.format(', '.join(sortkey))) return out.getvalue()
19,011
def gradient_descent_update(x, gradx, learning_rate): """ Performs a gradient descent update. """ # Return the new value for x return x - learning_rate * gradx
19,012
def nth_permutation(n, size=0): """nth permutation of 0..size-1 where n is from 0 to size! - 1 """ lehmer = int_to_lehmer(n, size) return lehmer_to_permutation(lehmer)
19,013
def signin(request): """ Method for log in of the user """ if request.user.is_authenticated: return_var = render(request, '/') if request.method == 'POST': username = request.POST['username'] password = request.POST['password'] user = authenticate(request, username=username, password=password) if user is not None: login(request, user) return_var = redirect('/') else: form = AuthenticationForm(request.POST) return_var = render(request, 'registration/login.html', {'form': form}) else: form = AuthenticationForm() return_var = render(request, 'registration/login.html', {'form': form}) return return_var
19,014
def PlotDensity(data_list, ax, args): """ Plot one dimensional data as density curves. Args: data_list: a list of Data objects ax: a matplotlib axis object args: an argparse arguments object """ # first create density list, then pass that to PlotLineScatter density_list = [] for data in data_list: d = Data() d.label = data.label density = gaussian_kde(data.y) x_data = numpy.linspace(numpy.min(data.y), numpy.max(data.y), args.density_num_bins) if args.density_covariance is not None: density.covariance_factor = lambda : args.density_covariance density._compute_covariance() # bad mojo calling privates like this d.x = numpy.array(x_data) d.y = numpy.array(density(x_data)) density_list.append(d) PlotLineScatter(density_list, ax, args)
19,015
def write_video(filename, video_array, fps, video_codec='libx264', options=None): """ Writes a 4d tensor in [T, H, W, C] format in a video file Parameters ---------- filename : str path where the video will be saved video_array : Tensor[T, H, W, C] tensor containing the individual frames, as a uint8 tensor in [T, H, W, C] format fps : Number frames per second """ _check_av_available() video_array = torch.as_tensor(video_array, dtype=torch.uint8).numpy() container = av.open(filename, mode='w') stream = container.add_stream(video_codec, rate=fps) stream.width = video_array.shape[2] stream.height = video_array.shape[1] stream.pix_fmt = 'yuv420p' if video_codec != 'libx264rgb' else 'rgb24' stream.options = options or {} for img in video_array: frame = av.VideoFrame.from_ndarray(img, format='rgb24') frame.pict_type = 'NONE' for packet in stream.encode(frame): container.mux(packet) # Flush stream for packet in stream.encode(): container.mux(packet) # Close the file container.close()
19,016
def unconfigure_ip_prefix_list(device, prefix_list_name, seq, ip_address): """ unconfigure prefix-list Args: device (`obj`): device to execute on prefix_list_name (`int`): prefix-list name seq (`int`): Sequence number of a prefix list ip_address (`str`): ip address to be pass Return: None Raises: SubCommandFailure """ try: device.configure( "no ip prefix-list {prefix_list_name} seq {seq} permit " "{ip_address}/32".format(prefix_list_name=prefix_list_name, seq=seq, ip_address=ip_address) ) except SubCommandFailure as e: raise SubCommandFailure( "Failed to unconfigure prefix-list {prefix_list_name} for " "{ip_address}, Error: {error}".format( prefix_list_name=prefix_list_name, ip_address=ip_address, error=e ) )
19,017
def compare_features(f1, f2): """Comparison method for feature sorting.""" def get_prefix(feature): if feature.startswith('e1-'): return 'e1' if feature.startswith('e2-'): return 'e2' if feature.startswith('e-'): return 'e' if feature.startswith('t-'): return 't' return 'x' prefixes = {'e': 1, 't': 2, 'e1': 3, 'e2': 4} p1 = get_prefix(f1) p2 = get_prefix(f2) prefix_comparison = cmp(p1, p2) return cmp(f1, f2) if prefix_comparison == 0 else prefix_comparison
19,018
def set_backup_count(backup_count): """ Set maximum number of files of logs to rotate for rotating logging. If parameter is not an int number then the function does not change any value. :param backup_count: int number of how many files to keep to rotate logs. :return: None """ global _backup_count try: _backup_count = int(backup_count) except ValueError: pass
19,019
def localized_index(lang): """ Example view demonstrating rendering a simple HTML page. """ context = make_context() context['lang'] = lang context['content'] = context['COPY']['content-%s' % lang] context['form'] = context['COPY']['form-%s' % lang] context['share'] = context['COPY']['share-%s' % lang] context['calendar'] = context['COPY']['calendar-%s' % lang] context['initial_card'] = context['COPY']['config']['initial_card'].__unicode__() context['cards'] = _make_card_list(lang) context['us_states'] = us.states.STATES return make_response(render_template('index.html', **context))
19,020
def build_output_unit_vqa(q_encoding, m_last, num_choices, apply_dropout, scope='output_unit', reuse=None): """ Apply a 2-layer fully-connected network to predict answers. Apply dropout if specified. Input: q_encoding: [N, d], tf.float32 m_last: [N, d], tf.float32 Return: vqa_scores: [N, num_choices], tf.float32 """ output_dim = cfg.MODEL.VQA_OUTPUT_DIM with tf.variable_scope(scope, reuse=reuse): if cfg.MODEL.VQA_OUTPUT_USE_QUESTION: fc1 = fc_elu( 'fc1', tf.concat([q_encoding, m_last], axis=1), output_dim=output_dim) else: fc1 = fc_elu('fc1_wo_q', m_last, output_dim=output_dim) if apply_dropout: fc1 = tf.nn.dropout(fc1, cfg.TRAIN.DROPOUT_KEEP_PROB) fc2 = fc('fc2', fc1, output_dim=num_choices, biases_initializer=tf.constant_initializer( cfg.TRAIN.VQA_SCORE_INIT)) vqa_scores = fc2 return vqa_scores
19,021
def coding_problem_16(length): """ You run a sneaker website and want to record the last N order ids in a log. Implement a data structure to accomplish this, with the following API: record(order_id): adds the order_id to the log get_last(i): gets the ith last element from the log. i is guaranteed to be smaller than or equal to N. You should be as efficient with time and space as possible. Example: >>> log = coding_problem_16(10) >>> for id in xrange(20): ... log.record(id) >>> log.get_last(0) [] >>> log.get_last(1) [19] >>> log.get_last(5) [15, 16, 17, 18, 19] >>> log.record(20) >>> log.record(21) >>> log.get_last(1) [21] >>> log.get_last(3) [19, 20, 21] """ class OrdersLog(object): def __init__(self, num): self.circular_buffer = [None] * num self.current_index = 0 def record(self, order_id): self.circular_buffer[self.current_index] = order_id self.current_index += 1 if self.current_index == len(self.circular_buffer): self.current_index = 0 def get_last(self, num): start_index = self.current_index - num if start_index < 0: # wrap around return self.circular_buffer[start_index:] + self.circular_buffer[:self.current_index] else: # no wrapping required return self.circular_buffer[start_index:self.current_index] return OrdersLog(length)
19,022
def _check_dimensions(n_grobs, nrow = None, ncol = None): """ Internal function to provide non-Null nrow and ncol numbers given a n_number of images and potentially some information about the desired nrow/ncols. Arguments: ---------- n_grobs: int, number of images to be organized nrow: int, number of rows user wants (Default is None) ncol: int, number of columns user wants (Default is None) Returns: -------- (nrow, ncol) tuple that meets user desires or errors if cannot meet users expectation """ if nrow is None and ncol is None: nrow = int(np.ceil(np.sqrt(n_grobs))) ncol = int(np.ceil(n_grobs/nrow)) if nrow is None: nrow = int(np.ceil(n_grobs/ncol)) if ncol is None: ncol = int(np.ceil(n_grobs/nrow)) assert n_grobs <= nrow * ncol, \ "nrow * ncol < the number of grobs, please correct" return nrow, ncol
19,023
def year_parse(s: str) -> int: """Parses a year from a string.""" regex = r"((?:19|20)\d{2})(?:$|[-/]\d{2}[-/]\d{2})" try: year = int(re.findall(regex, str(s))[0]) except IndexError: year = None return year
19,024
def sampleDistribution(d): """ Expects d to be a list of tuples The first element should be the probability If the tuples are of length 2 then it returns the second element Otherwise it returns the suffix tuple """ # {{{ import random z = float(sum(t[0] for t in d)) if z == 0.0: eprint("sampleDistribution: z = 0") eprint(d) r = random.random() u = 0.0 for index, t in enumerate(d): p = t[0] / z # This extra condition is needed for floating-point bullshit if r <= u + p or index == len(d) - 1: if len(t) <= 2: return t[1] else: return t[1:] u += p assert False
19,025
def logout(): """ `/register` endpoint Logs out a user and redirects to the index page. """ logout_user() flash("You are logged out.", "info") return redirect(url_for("main.index"))
19,026
def convertExcelToUe(): """ Convert CSV exported file from Excel to a CSV file readable by UE4 for String Tables """ for f in csvFiles: fName = splitext(f)[0] try: file = open(join(inputPath, f), "r", encoding="utf8") fContent = file.read() lines = fContent.split("\n") newF = open(join(outputPath, fName + newFileSuffix), "w", encoding="utf-16le") for l in lines: l = reformatLine(l) newLine = l.replace(';', ',', 1) + '\n' newF.write(newLine) # Close files file.close() newF.close() # File created message print("[+] " + fName + newFileSuffix + " created in Output folder.") except Exception as e: print('[-] An error occured: ' + e) quit()
19,027
def players_season_totals(season_end_year, playoffs=False, skip_totals=False, output_type=None, output_file_path=None, output_write_option=None, json_options=None): """ scrape the "Totals" stats of all players from a single year Args: season_end_year (int): year in which the season ends, e.g. 2019 for 2018-2019 season playoffs (bool): whether to grab the playoffs (True) or regular season (False) table skip_totals (bool): whether (True) or not (False) to skip the rows representing for the complete year of a player that is traded (no effect for the playoffs) output_type (str): either csv or json, if you want to save that type of file output_file_path (str): file you want to save to output_write_option (str): whether to write (default) or append json_options (dict): dictionary of options to pass to the json writer Returns: a list of rows; each row is a dictionary with items named from COLUMN_RENAMER """ try: values = http_client.players_season_totals(season_end_year, skip_totals=skip_totals, playoffs=playoffs) except requests.exceptions.HTTPError as http_error: if http_error.response.status_code == requests.codes.not_found: raise InvalidSeason(season_end_year=season_end_year) else: raise http_error return output.output( values=values, output_type=output_type, output_file_path=output_file_path, output_write_option=output_write_option, csv_writer=output.players_season_totals_to_csv, encoder=BasketballReferenceJSONEncoder, json_options=json_options, )
19,028
def array_shuffle(x,axis = 0, random_state = 2020): """ 对多维度数组,在任意轴打乱顺序 :param x: ndarray :param axis: 打乱的轴 :return:打乱后的数组 """ new_index = list(range(x.shape[axis])) random.seed(random_state) random.shuffle(new_index) x_new = np.transpose(x, ([axis]+[i for i in list(range(len(x.shape))) if i is not axis])) x_new = x_new[new_index][:] new_dim = list(np.array(range(axis))+1)+[0]+list(np.array(range(len(x.shape)-axis-1))+axis+1) x_new = np.transpose(x_new, tuple(new_dim)) return x_new
19,029
def cat(out_media_fp, l_in_media_fp): """ Args: out_media_fp(str): Output Media File Path l_in_media_fp(list): List of Media File Path Returns: return_code(int): """ ref_vcodec = get_video_codec(l_in_media_fp[0]) ref_acodec = get_audio_codec(l_in_media_fp[0]) ref_vscale = get_video_scale(l_in_media_fp[0]) for f in l_in_media_fp: if ref_vcodec != get_video_codec(f): logger.error('Video Codecs are different.') return -1 if ref_acodec != get_audio_codec(f): logger.error('Audio Codecs are different.') return -1 if ref_vscale != get_video_scale(f): logger.error('Video Scales are different.') return -1 ffmpeg = FFmpeg.FFmpeg() ffmpeg.set_output_file(out_media_fp) ffmpeg.set_input_format('concat') ffmpeg.set_video_encoder('copy') ffmpeg.set_audio_encoder('copy') ffmpeg.set_safe(0) try: fpath = tempfile.mkstemp()[1] with open(fpath, 'w') as fp: for media_fp in l_in_media_fp: fp.write('file \'{}\'\n'.format(os.path.abspath(media_fp))) ffmpeg.add_input_file(fpath) with ffmpeg.build().run() as proc: out, err = proc.communicate() logger.error(err.decode("utf-8")) os.remove(fpath) return proc.returncode except subprocess.CalledProcessError: logger.error('FFmpeg failed.')
19,030
def get_recent_activity_rows(chase_driver): """Return the 25 most recent CC transactions, plus any pending transactions. Returns: A list of lists containing the columns of the Chase transaction list. """ _goto_link(chase_driver, "See activity") time.sleep(10) rows = chase_driver.find_elements_by_css_selector("tr.summary") trans_list = [] for row in rows: tds = row.find_elements_by_tag_name('td') tds = tds[1:] # skip the link in first cell trans_list.append([td.text for td in tds]) return trans_list
19,031
def test_forecast_url_good(): """ Test valid and invalid sets of data passed to the create forecast url """ assert get_noaa_forecast_url(44099) is not None
19,032
def evaluate(test_loader, model, test_img_num): """ Evaluate. :param test_loader: DataLoader for test data :param model: model """ # Make sure it's in eval mode model.eval() # Lists to store detected and true boxes, labels, scores det_boxes = list() det_labels = list() det_scores = list() true_boxes = list() true_labels = list() true_difficulties = list() # it is necessary to know which objects are 'difficult', see 'calculate_mAP' in utils.py with torch.no_grad(): f1_max = 0 ap_max = 0 ar_max = 0 for min_score in [0.1]: for max_overlap in [0.8]: # Batches f1 = 0 ap = 0 ar = 0 images_num = 0 for i, (images, boxes, labels) in enumerate(tqdm(test_loader, desc='Evaluating')): if i < test_img_num: images = images.to(device) # (N, 3, 300, 300) print(images) print(images.size) # Forward prop. predicted_locs, predicted_scores = model(images) # Detect objects in SSD output det_boxes_batch, det_labels_batch, det_scores_batch = model.detect_objects(predicted_locs, predicted_scores, min_score=min_score, max_overlap=max_overlap, top_k=200, original_image = images, max_OCR_overlap=0.2, max_OCR_pixel=245) # Evaluation MUST be at min_score=0.01, max_overlap=0.45, top_k=200 for fair comparision with the paper's results and other repos # Store this batch's results for mAP calculation boxes = [b.to(device) for b in boxes] labels = [l.to(device) for l in labels] det_boxes.extend(det_boxes_batch) det_labels.extend(det_labels_batch) det_scores.extend(det_scores_batch) true_boxes.extend(boxes) true_labels.extend(labels) f1_0, ap_0, ar_0 = calc_f1(det_boxes_batch[0], boxes[0], iou_thresh=0.5) # print() # print("F1: ", f1_0) # print("AP: ", ap_0) # print("AR: ", ar_0) f1 += f1_0 ap += ap_0 ar += ar_0 images_num += 1 if f1 / images_num > f1_max: f1_max = f1/ images_num f1_max_par = [min_score, max_overlap] print('f1 max:' ,f1_max) print('f1 max par:', f1_max_par ) if ap / images_num > ap_max: ap_max = ap/ images_num ap_max_par = [min_score, max_overlap] print('ap max:' ,ap_max) print('ap max par:', ap_max_par ) if ar / images_num > ar_max: ar_max = ar/ images_num ar_max_par = [min_score, max_overlap] print('ar max:' ,ar_max) print('ar max par:', ar_max_par ) # Calculate mAP # APs, mAP = calculate_mAP(det_boxes, det_labels, det_scores, true_boxes, true_labels) # print("Final F1: ", f1 / images_num) # print("Final AP: ", ap / images_num) # print("Final AR: ", ar / images_num) # Print AP for each class # pp.pprint(APs) #print('\nMean Average Precision (mAP): %.3f' % mAP)
19,033
def loglikelihood(x, mean, var, pi): """ 式(9.28) """ lkh = [] for mean_k, var_k, pi_k in zip(mean, var, pi): lkh.append(pi_k * gaussian_pdf(x, mean_k, var_k)) return np.sum(np.log(np.sum(lkh, 0)))
19,034
def calc_E_ST_GJ(E_star_ST): """基準一次エネルギー消費量(GJ/年)の計算 (2) Args: E_star_ST(float): 基準一次エネルギー消費量(J/年) Returns: float: 基準一次エネルギー消費量(GJ/年) """ # 小数点以下一位未満の端数があるときはこれを切り上げる return ceil(E_star_ST / 100) / 10
19,035
def next_line(grd_file): """ next_line Function returns the next line in the file that is not a blank line, unless the line is '', which is a typical EOF marker. """ done = False while not done: line = grd_file.readline() if line == '': return line, False elif line.strip(): return line, True
19,036
def look_for(room, position, main, sub=None): """ :type room: rooms.room_mind.RoomMind """ if not room.look_at: raise ValueError("Invalid room argument") if position.pos: position = position.pos if sub: return _.find(room.look_at(LOOK_FLAGS, position), lambda f: f.color == main_to_flag_primary[main] and f.secondaryColor == sub_to_flag_secondary[sub]) else: flag_def = flag_definitions[main] if not flag_def: # TODO: This is a hack because a common pattern is # look_for(room, pos, flags.MAIN_DESTRUCT, flags.structure_type_to_flag_sub[structure_type]) # if there is no flag for a given structure, sub will be undefined, and thus this side will be called # and not the above branch. return [] return _.find(room.look_at(LOOK_FLAGS, position), lambda f: f.color == flag_def[0] and f.secondaryColor == flag_def[1])
19,037
def test_measure_simple(mcp): """ Asserts that the result of a measurement is a set of three bytes, and that no more than 3 bytes are returned """ desiredMeasurements = 1 measuredData = mcp['device'].measure() assert_equal(len(measuredData), 3)
19,038
def test_searchparam_type_date_period_le(store: FHIRStore, index_resources): """Handle date search parameters on FHIR data type "period" The date format is the standard XML format, though other formats may be supported prefix le: the range below the search value intersects (i.e. overlaps) with the range of the target value or the range of the search value fully contains the range of the target value """ result = store.search("Encounter", query_string="date=le2015-01-17T16:15:00") assert result.total == 1 result = store.search("Encounter", query_string="date=le2015-01-17") assert result.total == 1 result = store.search("Encounter", query_string="date=le2015-01-17T15:15:00") assert_empty_bundle(result)
19,039
def grayScaleHist(image): """ this function will convert color image into grayscale and show the histogram for that grayscale image """ gray_scale = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) cv2.imshow('Grayscale Image', gray_scale) hist = cv2.calcHist([gray_scale],[0], None, [256], [0,256]) _ = plt.figure() _ = plt.title('Grayscale Histogram') _ = plt.xlabel('Bins from 0 - 255') _ = plt.ylabel('# of pixels') _ = plt.plot(hist) _ = plt.xlim([0,256]) plt.show() cv2.waitKey(0)
19,040
def get_proto(proto): """ Returns a protocol number (in the /etc/protocols sense, e.g. 6 for TCP) for the given input value. For the protocols that have PROTO_xxx constants defined, this can be provided textually and case-insensitively, otherwise the provided value gets converted to an integer and returned. Returns None if this conversion failed. """ protos = { "ICMP": PROTO_ICMP, "ICMP6": PROTO_ICMP6, "SCTP": PROTO_SCTP, "TCP": PROTO_TCP, "UDP": PROTO_UDP, } try: return protos[proto.upper()] except (KeyError, AttributeError): pass try: return int(proto) except ValueError: pass return None
19,041
def f5_update_policy_cookie_command(client: Client, policy_md5: str, cookie_id: str, cookie_name: str, perform_staging: bool, parameter_type: str, enforcement_type: str, attack_signatures_check: bool) -> CommandResults: """ Update a given cookie of a specific policy Args: client (Client): f5 client. policy_md5 (str): MD5 hash of the policy. cookie_id (str): ID of the cookie. cookie_name (str): The new cookie name to add. perform_staging (bool): Indicates if the user wishes the new file type to be at staging. parameter_type (str): Type of the new parameter. enforcement_type (str): Enforcement type. attack_signatures_check (bool): Should attack signatures be checked. If enforcement type is set to 'enforce', this field will not get any value. """ result = client.update_policy_cookie(policy_md5, cookie_id, cookie_name, perform_staging, parameter_type, enforcement_type, attack_signatures_check) outputs, headers = build_output(OBJECT_FIELDS, result) readable_output = tableToMarkdown('f5 data for updating cookie:', outputs, headers, removeNull=True) command_results = CommandResults( outputs_prefix='f5.Cookies', outputs_key_field='id', readable_output=readable_output, outputs=remove_empty_elements(outputs), raw_response=result ) return command_results
19,042
def test_value_error(): """ Test value error """ with pytest.raises(ValueError): snell_angle(0, 0, 0)
19,043
def ping(): """ Determine if the container is working and healthy. In this sample container, we declare it healthy if we can load the model successfully. :return: """ health = False try: health = model is not None # You can insert a health check here except: pass status = 200 if health else 404 return flask.Response(response='\n', status=status, mimetype='application/json')
19,044
def random( shape, density=0.01, random_state=None, data_rvs=None, format='coo' ): """ Generate a random sparse multidimensional array Parameters ---------- shape: Tuple[int] Shape of the array density: float, optional Density of the generated array. random_state : Union[numpy.random.RandomState, int], optional Random number generator or random seed. If not given, the singleton numpy.random will be used. This random state will be used for sampling the sparsity structure, but not necessarily for sampling the values of the structurally nonzero entries of the matrix. data_rvs : Callable Data generation callback. Must accept one single parameter: number of :code:`nnz` elements, and return one single NumPy array of exactly that length. format: str The format to return the output array in. Returns ------- SparseArray The generated random matrix. See Also -------- :obj:`scipy.sparse.rand` Equivalent Scipy function. :obj:`numpy.random.rand` Similar Numpy function. Examples -------- >>> from sparse import random >>> from scipy import stats >>> rvs = lambda x: stats.poisson(25, loc=10).rvs(x, random_state=np.random.RandomState(1)) >>> s = random((2, 3, 4), density=0.25, random_state=np.random.RandomState(1), data_rvs=rvs) >>> s.todense() # doctest: +NORMALIZE_WHITESPACE array([[[ 0, 0, 0, 0], [ 0, 34, 0, 0], [33, 34, 0, 29]], <BLANKLINE> [[30, 0, 0, 34], [ 0, 0, 0, 0], [ 0, 0, 0, 0]]]) """ # Copied, in large part, from scipy.sparse.random # See https://github.com/scipy/scipy/blob/master/LICENSE.txt from .coo import COO elements = np.prod(shape) nnz = int(elements * density) if random_state is None: random_state = np.random elif isinstance(random_state, Integral): random_state = np.random.RandomState(random_state) if data_rvs is None: data_rvs = random_state.rand # Use the algorithm from python's random.sample for k < mn/3. if elements < 3 * nnz: ind = random_state.choice(elements, size=nnz, replace=False) else: ind = np.empty(nnz, dtype=np.min_scalar_type(elements - 1)) selected = set() for i in range(nnz): j = random_state.randint(elements) while j in selected: j = random_state.randint(elements) selected.add(j) ind[i] = j data = data_rvs(nnz) ar = COO(ind[None, :], data, shape=nnz).reshape(shape) return ar.asformat(format)
19,045
def file_md5_is_valid(fasta_file: Path, checksum: str) -> bool: """ Checks if the FASTA file matches the MD5 checksum argument. Returns True if it matches and False otherwise. :param fasta_file: Path object for the FASTA file. :param checksum: MD5 checksum string. :return: boolean indicating if the file validates. """ md5_hash = hashlib.md5() with fasta_file.open(mode="rb") as fh: # Read in small chunks to avoid memory overflow with large files. while chunk := fh.read(8192): md5_hash.update(chunk) return md5_hash.hexdigest() == checksum
19,046
def combine_to_int(values): """Combine several byte values to an integer""" multibyte_value = 0 for byte_id, byte in enumerate(values): multibyte_value += 2**(4 * byte_id) * byte return multibyte_value
19,047
def zip_images(image_dir, out_dir, threshold=700_000, factor=0.75): """Shrink and rotate images and then put them into a zip file.""" os.makedirs(out_dir, exist_ok=True) manifest = out_dir / (out_dir.name + '_manifest.csv') with open(manifest, 'w') as out_file: writer = csv.writer(out_file) writer.writerow(['name']) for src in tqdm(image_dir.iterdir()): writer.writerow([src.name]) dst = out_dir / src.name copy(src, dst) # There has to be a better way while dst.stat().st_size > threshold: image = Image.open(dst) image = image.resize(( int(image.size[0] * factor), int(image.size[1] * factor))) image.save(dst)
19,048
def loss_fn(x, results, is_valtest=False, **kwargs): """ Loss weight (MCAE): - sni: snippet reconstruction loss - seg: segment reconstruction loss - cont: smooth regularization - reg: sparsity regularization - con: constrastive loss - cls: auxilliary classification loss <not used for MCAE-MP> Loss weight (joint): - skcon: contrastive loss on the concatenated representation of all joints - skcls: auxilliary classification loss """ default_lsw = dict.fromkeys( [ 'sni', 'seg', 'cont', 'reg', 'con', 'skcon', 'skcls' ], 1.0) loss_weights = kwargs.get('loss_weights', default_lsw) losses = {} mcae_losses = [] sk_pres = results['sk_pres'] sk_lgts = results['sk_lgts'] sk_y = kwargs.get('y', None) if 'mcae' in results.keys(): mcae_results = results['mcae'] for r in mcae_results: mcae_losses.append( mcae_loss(r['x'], r, loss_weights=loss_weights, is_valtest=is_valtest)) for key in loss_weights.keys(): losses[key] = 0 if key in mcae_losses[0][0].keys(): for i in range(len(mcae_results)): losses[key] += mcae_losses[i][0][key] else: losses.pop(key) elif 'mcae_3d' in results.keys(): r = results['mcae_3d'] mcae_loss_ = mcae_loss(r['x'], r, loss_weights=loss_weights, is_valtest=is_valtest)[0] for key in loss_weights.keys(): losses[key] = 0 if key in mcae_loss_.keys(): losses[key] += mcae_loss_[key] else: losses.pop(key) if loss_weights.get('skcon', 0) > 0 and not is_valtest: B = sk_pres.shape[0] _L = int(B/2) tau = 0.1 trj_pres = sk_pres.reshape(B, -1) ori, aug = trj_pres.split(_L, 0) dist_grid = 1 - cosine_distance(ori, aug) dist_grid_exp = torch.exp(dist_grid/tau) losses['skcon'] = -torch.log( torch.diag(dist_grid_exp) / dist_grid_exp.sum(1)).mean() if loss_weights.get('skcls', 0) > 0: losses['skcls'] = F.nll_loss(F.log_softmax(sk_lgts, -1), sk_y) return losses, default_lsw
19,049
def _as_uint32(x: int) -> QVariant: """Convert the given int to an uint32 for DBus.""" variant = QVariant(x) successful = variant.convert(QVariant.UInt) assert successful return variant
19,050
def svcs_tang_u(Xcp,Ycp,Zcp,gamma_t,R,m,Xcyl,Ycyl,Zcyl,ntheta=180, Ground=False): """ Computes the velocity field for nCyl*nr cylinders, extending along z: nCyl: number of main cylinders nr : number of concentric cylinders within a main cylinder INPUTS: Xcp,Ycp,Zcp: cartesian coordinates of control points where the velocity field is not be computed gamma_t: array of size (nCyl,nr), distribution of gamma for each cylinder as function of radius R : array of size (nCyl,nr), m : array of size (nCyl,nr), Xcyl,Ycyl,Zcyl: array of size nCyl) giving the center of the rotor Ground: boolean, True if ground effect is to be accounted for All inputs (except Ground) should be numpy arrays """ Xcp=np.asarray(Xcp) Ycp=np.asarray(Ycp) Zcp=np.asarray(Zcp) ux = np.zeros(Xcp.shape) uy = np.zeros(Xcp.shape) uz = np.zeros(Xcp.shape) nCyl,nr = R.shape print('Tang. (skewed) ',end='') for i in np.arange(nCyl): Xcp0,Ycp0,Zcp0=Xcp-Xcyl[i],Ycp-Ycyl[i],Zcp-Zcyl[i] if Ground: YcpMirror = Ycp0+2*Ycyl[i] Ylist = [Ycp0,YcpMirror] else: Ylist = [Ycp0] for iy,Y in enumerate(Ylist): for j in np.arange(nr): if iy==0: print('.',end='') else: print('m',end='') if np.abs(gamma_t[i,j]) > 0: ux1,uy1,uz1 = svc_tang_u(Xcp0,Y,Zcp0,gamma_t[i,j],R[i,j],m[i,j],ntheta=ntheta,polar_out=False) ux = ux + ux1 uy = uy + uy1 uz = uz + uz1 print('') return ux,uy,uz
19,051
def np_to_o3d_images(images): """Convert numpy image list to open3d image list Parameters ---------- images : list[numpy.ndarray] Returns o3d_images : list[open3d.open3d.geometry.Image] ------- """ o3d_images = [] for image in images: image = np_to_o3d_image(image) o3d_images.append(image) return o3d_images
19,052
def compute_mse(y_true, y_pred): """ignore zero terms prior to comparing the mse""" mask = np.nonzero(y_true) mse = mean_squared_error(y_true[mask], y_pred[mask]) return mse
19,053
def test_enable_caching_specific(configure_caching): """ Check that using enable_caching for a specific identifier works. """ identifier = 'some_ident' with configure_caching({'default_enabled': False}): with enable_caching(identifier=identifier): assert get_use_cache(identifier=identifier)
19,054
def image2d(math_engine, batch_len, batch_width, height, width, channels, dtype="float32"): """Creates a blob with two-dimensional multi-channel images. :param neoml.MathEngine.MathEngine math_engine: the math engine that works with this blob. :param batch_len: the **BatchLength** dimension of the new blob. :type batch_len: int, > 0 :param batch_width: the **BatchWidth** dimension of the new blob. :type batch_width: int, > 0 :param height: the image height. :type height: int, > 0 :param width: the image width. :type width: int, > 0 :param channels: the number of channels in the image format. :type channels: int, > 0 :param dtype: the type of data in the blob. :type dtype: str, {"float32", "int32"}, default="float32" """ if dtype != "float32" and dtype != "int32": raise ValueError('The `dtype` must be one of {`float32`, `int32`}.') if batch_len < 1: raise ValueError('The `batch_len` must be > 0.') if batch_width < 1: raise ValueError('The `batch_width` must be > 0.') if height < 1: raise ValueError('The `height` must be > 0.') if width < 1: raise ValueError('The `width` must be > 0.') if channels < 1: raise ValueError('The `channels` must be > 0.') shape = np.array((batch_len, batch_width, 1, height, width, 1, channels), dtype=np.int32, copy=False) return Blob(PythonWrapper.tensor(math_engine._internal, shape, dtype))
19,055
def error_response(error, message): """ returns error response """ data = { "status": "error", "error": error, "message": message } return data
19,056
def graph_to_text( graph: MultiDiGraph, quoting: bool = True, verbose: bool = True ) -> str: """Turns a graph into its text representation. Parameters ---------- graph : MultiDiGraph Graph to text. quoting : bool If true, quotes will be added. verbose : bool If true, a progress bar will be displayed. Examples -------- >>> import cfpq_data >>> g = cfpq_data.labeled_cycle_graph(2, edge_label="a", verbose=False) >>> cfpq_data.graph_to_text(g, verbose=False) "'0' 'a' '1'\\n'1' 'a' '0'\\n" >>> cfpq_data.graph_to_text(g, quoting=False, verbose=False) '0 a 1\\n1 a 0\\n' Returns ------- text : str Graph text representation. """ text = "" for u, v, edge_labels in tqdm( graph.edges(data=True), disable=not verbose, desc="Generation..." ): if len(edge_labels.values()) > 0: for label in edge_labels.values(): if quoting: text += f"'{u}' '{label}' '{v}'\n" else: text += f"{u} {label} {v}\n" else: if quoting: text += f"'{u}' '{v}'\n" else: text += f"{u} {v}\n" return text
19,057
def test_has_valid_dir_structure(): """Check if the specified dir structure is valid""" def recurse_contents(contents): if contents is None: return None else: for key, value in contents.items(): assert(isinstance(key, str)) if value is None: return None elif "dir" in value: recurse_contents(value["dir"]) elif "file" in value: assert(value["file"] is None or isinstance(value["file"], str) or callable(value["file"])) if callable(value["file"]): generator = value["file"] assert(isinstance(generator("test"), str)) else: raise Exception(""" Every entry in the directory structure must be either a directory or a file. """) recurse_contents(skeleton.dir_structure)
19,058
def create_user(username, password, firstname, lastname): """Create an user.""" pwd_hash = pwd_context.encrypt(password) with db_conn.cursor() as cur: cur.execute(""" INSERT INTO AdminUser (username, password, firstname, lastname) VALUES (%s, %s, %s, %s)""", (username, pwd_hash, firstname, lastname)) db_conn.commit()
19,059
def getFBA(fba): """AC factory. reads a fileobject and creates a dictionary for easy insertation into a postgresdatabase. Uses Ohlbergs routines to read the files (ACfile) """ word = fba.getSpectrumHead() while word is not None: stw = fba.stw mech = fba.Type(word) datadict = { 'stw': stw, 'mech_type': mech, } return datadict raise EOFError
19,060
def logtimestamp(): """ returns a formatted datetime object with the curren year, DOY, and UT """ return DT.datetime.utcnow().strftime("%Y-%j-%H:%M:%S")
19,061
def get_most_common_non_ascii_char(file_path: str) -> str: """Return first most common non ascii char""" with open(file_path, encoding="raw_unicode_escape") as f: non_ascii = {} for line in f: for char in line: if not char.isascii(): if char in non_ascii: non_ascii[char] += 1 else: non_ascii[char] = 1 if non_ascii: return max(non_ascii, key=non_ascii.get) else: return "No non ascii chars in the file"
19,062
def compute_noise_from_target_epsilon( target_epsilon, target_delta, epochs, batch_size, dataset_size, alphas=None, approx_ratio=0.01, ): """ Takes a target epsilon (eps) and some hyperparameters. Returns a noise scale that gives an epsilon in [0.99 eps, eps]. The approximation ratio can be tuned. If alphas is None, we'll explore orders. """ steps = compute_steps(epochs, batch_size, dataset_size) sampling_rate = batch_size / dataset_size if alphas is None: alphas = ALPHAS def get_eps(noise): rdp = privacy_analysis.compute_rdp(sampling_rate, noise, steps, alphas) epsilon, order = privacy_analysis.get_privacy_spent( alphas, rdp, delta=target_delta ) return epsilon # Binary search bounds noise_min = MIN_NOISE noise_max = MAX_NOISE # Start with the smallest epsilon possible with reasonable noise candidate_noise = noise_max candidate_eps = get_eps(candidate_noise) if candidate_eps > target_epsilon: raise ("Cannot reach target eps. Try to increase MAX_NOISE.") # Search up to approx ratio while ( candidate_eps < (1 - approx_ratio) * target_epsilon or candidate_eps > target_epsilon ): if candidate_eps < (1 - approx_ratio) * target_epsilon: noise_max = candidate_noise else: noise_min = candidate_noise candidate_noise = (noise_max + noise_min) / 2 candidate_eps = get_eps(candidate_noise) print("Use noise {} for epsilon {}".format(candidate_noise, candidate_eps)) return candidate_noise
19,063
def cart2pol(x, y): """ author : Dr. Schaeffer """ rho = np.sqrt(x**2 + y**2) phi = np.arctan2(y, x) return(rho, phi)
19,064
def set_seed(seed: int) -> None: """ Seeds various random generators. Args: seed: Seed to use. """ random.seed(seed) np.random.seed(seed) torch.seed(seed) torch.cuda.manual_seed_all(seed)
19,065
def requires_site(site): """Skip test based on where it is being run""" skip_it = bool(site != SITE) return pytest.mark.skipif(skip_it, reason='SITE is not %s.' % site)
19,066
def set_error_redirect(request, error_redirect): """ Convenience method to set the Location redirected to after an error. Should be used at the top of views. You could call set_error_redirect on the interia object directly but you need to check that the inertia object is actually there. """ if hasattr(request, "inertia"): request.inertia.set_error_redirect(error_redirect)
19,067
def handle_error(e): """ Handle errors, formatting them as JSON if requested """ error_type = type(e).__name__ message = str(e) trace = None description = None status_code = 500 if isinstance(e, werkzeug.exceptions.HTTPException): status_code = e.code description = e.description if app.debug: trace = traceback.format_exc() if request_wants_json(): details = { 'message': message, 'type': error_type, } if description is not None: details['description'] = description if trace is not None: details['trace'] = trace.split('\n') return flask.jsonify({'error': details}), status_code else: message = message.replace('\\n', '<br />') if isinstance(e, digits.frameworks.errors.NetworkVisualizationError): trace = message message = '' return flask.render_template('error.html', title=error_type, message=message, description=description, trace=trace, ), status_code
19,068
def iou(bbox_1, bbox_2): """Computes intersection over union between two bounding boxes. Parameters ---------- bbox_1 : np.ndarray First bounding box, of the form (x_min, y_min, x_max, y_max). bbox_2 : np.ndarray Second bounding box, of the form (x_min, y_min, x_max, y_max). Returns ------- float Intersection over union value between both bounding boxes. """ x_min = np.maximum(bbox_1[0], bbox_2[0]) y_min = np.maximum(bbox_1[1], bbox_2[1]) x_max = np.minimum(bbox_1[2], bbox_2[2]) y_max = np.minimum(bbox_1[3], bbox_2[3]) width = np.maximum(0.0, x_max - x_min) height = np.maximum(0.0, y_max - y_min) intersection = width * height return ( intersection ) / ( (bbox_1[2] - bbox_1[0]) * (bbox_1[3] - bbox_1[1]) + (bbox_2[2] - bbox_2[0]) * (bbox_2[3] - bbox_2[1]) - intersection )
19,069
def _create_directory_structure_if_necessary(folders): """ Ensure basic file structure in project. """ site_folder = folders['site'] if not env.exists(site_folder): # base deployment folder env.run('mkdir -p {site_folder}'.format(site_folder=site_folder,)) # set linux user group. env.sudo('chown :{group} {site_folder}'.format(group=LINUXGROUP, site_folder=site_folder)) # set folder priveleges - 6*** means group and user sticky bits are set, and subfolders and files. # will inherit parent folder's group and user. # 770 means read, write and execute for folder is enabled for owner and group. env.run('chmod 6770 {site_folder}'.format(site_folder=site_folder,)) # Make folders for static files, virtual environment and so on. # -p flag means that folder is only created if it doesn't exist, # and parent directories are also created if needed. env.run('mkdir -p {folder_paths}'.format(folder_paths=' '.join(folders.values())))
19,070
def GetIntensityArray(videofile, threshold, scale_percent): """Finds pixel coordinates within a videofile (.tif, .mp4) for pixels that are above a brightness threshold, then accumulates the brightness event intensities for each coordinate, outputting it as a 2-D array in the same size as the video frames Input: -videofile: file containing an image stack of fluorescent events -threshold: minimum brightness for detection -scale_percent: helps resize image for faster computing speeds Output: 2-d Array of accumulated intensity values for each pixel above a calculated brightness threshold in the video""" # Reading video file and convert to grayscale ret, img = cv2.imreadmulti(videofile, flags=cv2.IMREAD_GRAYSCALE) # Setting Resizing Dimensions width = int(img[0].shape[1] * scale_percent / 100) height = int(img[0].shape[0] * scale_percent / 100) dim = (width, height) img_resized = cv2.resize(img[0], dim, interpolation=cv2.INTER_AREA) # Creating empty array to add intensity values to int_array = np.zeros(np.shape(img_resized)) for frame in range(len(img)): # Resize Frame frame_resized = cv2.resize(img[frame], dim, interpolation=cv2.INTER_AREA) intensity = GetIntensityValues(frame_resized, threshold) if len(np.where(intensity >= 1)) > 0: # Get coordinates of the single pixel counts row, col = np.where(intensity >= 1) for i in range(len(row)): for j in range(len(col)): # Add single count to freq_array in location of event int_array[row[i], col[j]] += intensity[row[i], col[j]] else: pass return int_array
19,071
def test_unicode_handling(username, password): """ With a unicode string for the password, set and verify the Authorization header. """ header_dict = {} authorizer = BasicAuthorizer(username, password) authorizer.set_authorization_header(header_dict) assert header_dict["Authorization"][:6] == "Basic " decoded = base64.b64decode(header_dict["Authorization"][6:].encode("utf-8")).decode( "utf-8" ) assert decoded == f"{username}:{password}"
19,072
def _check_data(handler, data): """Check the data.""" if 'latitude' not in data or 'longitude' not in data: handler.write_text("Latitude and longitude not specified.", HTTP_UNPROCESSABLE_ENTITY) _LOGGER.error("Latitude and longitude not specified.") return False if 'device' not in data: handler.write_text("Device id not specified.", HTTP_UNPROCESSABLE_ENTITY) _LOGGER.error("Device id not specified.") return False if 'id' not in data: handler.write_text("Location id not specified.", HTTP_UNPROCESSABLE_ENTITY) _LOGGER.error("Location id not specified.") return False if 'trigger' not in data: handler.write_text("Trigger is not specified.", HTTP_UNPROCESSABLE_ENTITY) _LOGGER.error("Trigger is not specified.") return False return True
19,073
def get_soup(page_url): """ Returns BeautifulSoup object of the url provided """ try: req = requests.get(page_url) except Exception: print('Failed to establish a connection with the website') return if req.status_code == 404: print('Page not found') return content = req.content soup = BeautifulSoup(content, 'html.parser') return soup
19,074
def check_energybal(ec_dataset, timeseries=None, dailyaverage=False, monthlyaverage=False, monthly_cumulative=False): """ :param ec_dataset: the full dataset from the EC tower :param timeseries: a series of datetimes :return: a plot of the energy balance closure over time for the Eddy Covariance tower. """ # if not dailyaverage: # Rn = ec_dataset['NETRAD'] # H = ec_dataset['H'] # LE = ec_dataset['LE'] # closure_check(ec_dataset, Rn, H, LE, timeseries) # ===== daily averaging ===== if dailyaverage: timeseries = timeseries.values Rn = ec_dataset['NETRAD'].values H = ec_dataset['H'].values LE = ec_dataset['LE'].values # indexed_datetimes = pd.DataFrame(pd.DatetimeIndex(timeseries)) # recreate a dataframe of the variables you want to time average on a dialy timestep halfhour_data = pd.DataFrame({'timeseries':timeseries, 'Rn':Rn, 'LE':LE, 'H':H}) # resample the dataframe by making the timeseries column into the index and using .resample('d') for day halfhour_data = halfhour_data.set_index(pd.DatetimeIndex(halfhour_data['timeseries'])) daily_time = halfhour_data.resample('d').mean() # Get the values of the datetime index as an array timeseries_daily = daily_time.index.values # Net Radiation Rn_av = daily_time['Rn'] # Heat H_av = daily_time['H'] LE_av = daily_time['LE'] closure_check(ec_dataset, Rn_av, H_av, LE_av, timeseries_daily, daily_average=True) # ===== monthly averaging ===== elif monthlyaverage: timeseries = timeseries.values Rn = ec_dataset['NETRAD'].values H = ec_dataset['H'].values LE = ec_dataset['LE'].values # indexed_datetimes = pd.DataFrame(pd.DatetimeIndex(timeseries)) # recreate a dataframe of the variables you want to time average on a monthly timestep halfhour_data = pd.DataFrame({'timeseries': timeseries, 'Rn': Rn, 'LE': LE, 'H': H}) # resample the dataframe by making the timeseries column into the index and using .resample('d') for day halfhour_data = halfhour_data.set_index(pd.DatetimeIndex(halfhour_data['timeseries'])) monthly_time = halfhour_data.resample('m').mean() # Get the values of the datetime index as an array timeseries_daily = monthly_time.index.values # Net Radiation Rn_av = monthly_time['Rn'] # Heat H_av = monthly_time['H'] LE_av = monthly_time['LE'] # closure_check(ec_dataset, Rn_av, H_av, LE_av, timeseries_daily, daily_average=True) # ===== cumulative monthly ===== elif monthly_cumulative: timeseries = timeseries.tolist() # print 'timeseries\n', timeseries Rn = ec_dataset['NETRAD'].values H = ec_dataset['H'].values LE = ec_dataset['LE'].values # indexed_datetimes = pd.DataFrame(pd.DatetimeIndex(timeseries)) # recreate a dataframe of the variables you want to time average on a monthly timestep halfhour_data = pd.DataFrame({'timeseries': timeseries, 'Rn': Rn, 'LE': LE, 'H': H}) # set the timeseries column to the index so groupby function can group by year and month of the index. halfhour_data = halfhour_data.set_index(pd.DatetimeIndex(halfhour_data['timeseries'])) halfhour_data['mmh20'] = halfhour_data['LE'] * 7.962e-4 monthly_cumulative = halfhour_data.groupby([lambda x: x.year, lambda x: x.month]).sum() print 'monthly cumulative \n', monthly_cumulative print 'cum index', monthly_cumulative.index # last_month = (halfhour_data.index[-1].year, halfhour_data.index[-1].month) # last_date = date(last_month[0], last_month[1], 1) # monthly_time_series = [] # for year in monthly_cumulative.index.levels[0]: # for month in monthly_cumulative.index.levels[1]: # # print year, month, 1 # year_month = date(year, month, 1) # if year_month <= last_date: # monthly_time_series.append(year_month) # # TODO - NEEDS TO STOP AT 2018 04 monthly_list = monthly_time_parse(timeseries) # print 'the monthly cumulatives \n', monthly_cumulative.index.values.tolist # print 'the time series \n', monthly_time_series print 'length of the month', len(monthly_list) print 'lenght of the monthly cumulatives', len(monthly_cumulative.LE) # try plotting plt.plot(monthly_list, monthly_cumulative.mmh20) plt.scatter(monthly_list, monthly_cumulative.mmh20) plt.show() # # Get the values of the datetime index as an array # timeseries_daily = monthly_time.index.values # # # Net Radiation # Rn_av = monthly_time['Rn'] # # # Heat # H_av = monthly_time['H'] # LE_av = monthly_time['LE']
19,075
def foreign_key_constraint_sql(table): """Return the SQL to add foreign key constraints to a given table""" sql = '' fk_names = list(table.foreign_keys.keys()) for fk_name in sorted(fk_names): foreign_key = table.foreign_keys[fk_name] sql += "FOREIGN KEY({fn}) REFERENCES {tn}({kc}), ".format( fn=foreign_key.from_col, tn=foreign_key.to_table.name, kc=foreign_key.to_col ) return sql
19,076
def expandDimConst(term: AST.PPTerm, ntId: int) -> Optional[AST.PPTerm]: """ Expand dimension constant to integer constants (Required for fold zeros) """ nt = ASTUtils.getNthNT(term, ntId) if type(nt.sort) != AST.PPDimConst: return None subTerm = AST.PPIntConst(nt.sort.value) termExpanded = ReprUtils.replaceNthNT(term, ntId, subTerm) return termExpanded
19,077
def _fit_amplitude_scipy(counts, background, model, optimizer='Brent'): """ Fit amplitude using scipy.optimize. Parameters ---------- counts : `~numpy.ndarray` Slice of count map. background : `~numpy.ndarray` Slice of background map. model : `~numpy.ndarray` Model template to fit. flux : float Starting value for the fit. Returns ------- amplitude : float Fitted flux amplitude. niter : int Number of function evaluations needed for the fit. """ from scipy.optimize import minimize_scalar args = (counts, background, model) amplitude_min, amplitude_max = _amplitude_bounds_cython(counts, background, model) try: result = minimize_scalar(f_cash, bracket=(amplitude_min, amplitude_max), args=args, method=optimizer, tol=10) return result.x, result.nfev except ValueError: result = minimize_scalar(f_cash, args=args, method=optimizer, tol=0.1) return result.x, result.nfev
19,078
def account_key__sign(data, key_pem=None, key_pem_filepath=None): """ This routine will use crypto/certbot if available. If not, openssl is used via subprocesses :param key_pem: (required) the RSA Key in PEM format :param key_pem_filepath: (optional) the filepath to a PEM encoded RSA account key file. """ log.info("account_key__sign >") if openssl_crypto: pkey = openssl_crypto.load_privatekey(openssl_crypto.FILETYPE_PEM, key_pem) if PY3: if not isinstance(data, bytes): data = data.encode() signature = pkey.to_cryptography_key().sign( data, cryptography.hazmat.primitives.asymmetric.padding.PKCS1v15(), cryptography.hazmat.primitives.hashes.SHA256(), ) return signature log.debug(".account_key__sign > openssl fallback") _tmpfile = None try: if key_pem_filepath is None: _tmpfile = new_pem_tempfile(key_pem) key_pem_filepath = _tmpfile.name with psutil.Popen( [openssl_path, "dgst", "-sha256", "-sign", key_pem_filepath], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, ) as proc: if PY3: if not isinstance(data, bytes): data = data.encode() signature, err = proc.communicate(data) if proc.returncode != 0: raise IOError("account_key__sign\n{0}".format(err)) return signature finally: if _tmpfile: _tmpfile.close()
19,079
def get_world_paths() -> list: """ Returns a list of paths to the worlds on the server. """ server_dir = Path(__file__).resolve().parents[1] world_paths = [] for p in server_dir.iterdir(): if p.is_dir and (p / "level.dat").is_file(): world_paths.append(p.absolute()) return world_paths
19,080
def xml_ff_bond_force(data, prm, ff_prefix): """ Add Bond Force into Element (data) Parameters ---------- data : xml.etree.ElementTree.Element prm : OpenMM.AmberPrmtop ff_prefix : string """ bnd_k0 = prm._raw_data["BOND_FORCE_CONSTANT"] bnd_r0 = prm._raw_data["BOND_EQUIL_VALUE"] prm_atom_type = prm._raw_data['AMBER_ATOM_TYPE'] forceConstConversionFactor = (kilocalorie_per_mole/(angstrom*angstrom) ).conversion_factor_to(kilojoule_per_mole/(nanometer*nanometer)) lengthConversionFactor = angstrom.conversion_factor_to(nanometer) ff_bnd_frc = ET.SubElement(data, 'HarmonicBondForce') raw_data = prm._raw_data["BONDS_WITHOUT_HYDROGEN"] \ + prm._raw_data["BONDS_INC_HYDROGEN"] typ_list = [] for ii in range(0, len(raw_data), 3): ibnd = int(raw_data[ii])//3 jbnd = int(raw_data[ii+1])//3 ityp = int(raw_data[ii+2])-1 r0 = "%10.6f" % (float(bnd_r0[ityp])*lengthConversionFactor) # amber (k (x-x0)^2) ---> openmm (0.5 k' (x-x0)^2) : k' = 2k k0 = "%20.6f" % (float(bnd_k0[ityp])*forceConstConversionFactor*2.0) if not ityp in typ_list: typ_list.append(ityp) ff_bnd = ET.SubElement(ff_bnd_frc, 'Bond') itypeName = prm_atom_type[ibnd].upper() jtypeName = prm_atom_type[jbnd].upper() if itypeName > jtypeName: (itypeName, jtypeName) = (jtypeName, itypeName) ff_bnd.set('type1', ff_prefix+"-"+itypeName) ff_bnd.set('type2', ff_prefix+"-"+jtypeName) ff_bnd.set('length', r0.strip()) ff_bnd.set('k', k0.strip())
19,081
def derivative_p(α_L, α_G, ρ_G, v_L, v_G): # (1) """ Calculates pressure spatial derivative to be pluged into the expression for pressure at the next spatial step (see first equation of the model). It returns the value of pressure spatial derivative at the current time step and, hence, takes as arguments volume fractions, velocities, and gas density at the current spatial step. Args: α_L (float) - liquid phase volume fraction. Can assume any value from 0 to 1. α_G (float) - gaseous phase volume fraction. Can assume any value from 0 to 1. ρ_G (float) - gaseous phase density. Can assume any positive value. v_L (float) - liquid phase velocity. Can assume either positive or negative values. v_G (float) - gaseous phase velocity. Can assume any positive value. Returns: float: the return value (pressure derivative at the current spatial step). Can assume any value from negative infinity to 0. """ derivative_p = (-1)*(ρ_L*α_L + ρ_G*α_G) \ * ( g + (2*f/D) * (α_L*v_L + α_G*v_G)**2 ) # line continuation operator return(derivative_p)
19,082
def write_populate_schemas(writer): """ Writes out a __SCHEMAS dict which contains all RecordSchemas by their full name. Used by get_schema_type :param writer: :return: """ writer.write('\n__SCHEMAS = dict((n.fullname.lstrip("."), n) for n in six.itervalues(__NAMES.names))\n')
19,083
def fit_sigmoid(colors, a=0.05): """Fits a sigmoid to raw contact temperature readings from the ContactPose dataset. This function is copied from that repo""" idx = colors > 0 ci = colors[idx] x1 = min(ci) # Find two points y1 = a x2 = max(ci) y2 = 1-a lna = np.log((1 - y1) / y1) lnb = np.log((1 - y2) / y2) k = (lnb - lna) / (x1 - x2) mu = (x2*lna - x1*lnb) / (lna - lnb) ci = np.exp(k * (ci-mu)) / (1 + np.exp(k * (ci-mu))) # Apply the sigmoid colors[idx] = ci return colors
19,084
def deprecated(func): """Decorator for reporting deprecated function calls Use this decorator sparingly, because we'll be charged if we make too many Rollbar notifications """ @wraps(func) def wrapped(*args, **kwargs): # try to get a request, may not always succeed request = get_current_request() # notify a maximum of once per function per request/session if request: if DEPRECATED_ROLLBAR_NOTIFIED not in request.session: deprecated_notifications = {} request.session[DEPRECATED_ROLLBAR_NOTIFIED] = deprecated_notifications deprecated_notifications = request.session[DEPRECATED_ROLLBAR_NOTIFIED] key = '%s' % func # first get it already_notified = deprecated_notifications.get(key, False) # then mark it deprecated_notifications[key] = True else: already_notified = False if not already_notified: rollbar.report_message('Deprecated function call warning: %s' % func, 'warning', request) return func(*args, **kwargs) return wrapped
19,085
def read_file(path_file: path) -> str: """ Reads the content of the file at path_file :param path_file: :return: """ content = None with open(path_file, 'r') as file: content = file.read() return content
19,086
def absorptionCoefficient_Voigt(Components=None,SourceTables=None,partitionFunction=PYTIPS, Environment=None,OmegaRange=None,OmegaStep=None,OmegaWing=None, IntensityThreshold=DefaultIntensityThreshold, OmegaWingHW=DefaultOmegaWingHW, ParameterBindings=DefaultParameterBindings, EnvironmentDependencyBindings=DefaultEnvironmentDependencyBindings, GammaL='gamma_air', HITRAN_units=True, LineShift=True, File=None, Format=None, OmegaGrid=None): """ INPUT PARAMETERS: Components: list of tuples [(M,I,D)], where M - HITRAN molecule number, I - HITRAN isotopologue number, D - abundance (optional) SourceTables: list of tables from which to calculate cross-section (optional) partitionFunction: pointer to partition function (default is PYTIPS) (optional) Environment: dictionary containing thermodynamic parameters. 'p' - pressure in atmospheres, 'T' - temperature in Kelvin Default={'p':1.,'T':296.} OmegaRange: wavenumber range to consider. OmegaStep: wavenumber step to consider. OmegaWing: absolute wing for calculating a lineshape (in cm-1) IntensityThreshold: threshold for intensities OmegaWingHW: relative wing for calculating a lineshape (in halfwidths) GammaL: specifies broadening parameter ('gamma_air' or 'gamma_self') HITRAN_units: use cm2/molecule (True) or cm-1 (False) for absorption coefficient File: write output to file (if specified) Format: c-format of file output (accounts significant digits in OmegaStep) OUTPUT PARAMETERS: Omegas: wavenumber grid with respect to parameters OmegaRange and OmegaStep Xsect: absorption coefficient calculated on the grid --- DESCRIPTION: Calculate absorption coefficient using Voigt profile. Absorption coefficient is calculated at arbitrary temperature and pressure. User can vary a wide range of parameters to control a process of calculation (such as OmegaRange, OmegaStep, OmegaWing, OmegaWingHW, IntensityThreshold). The choise of these parameters depends on properties of a particular linelist. Default values are a sort of guess which gives a decent precision (on average) for a reasonable amount of cpu time. To increase calculation accuracy, user should use a trial and error method. --- EXAMPLE OF USAGE: nu,coef = absorptionCoefficient_Voigt(((2,1),),'co2',OmegaStep=0.01, HITRAN_units=False,GammaL='gamma_self') --- """ # warn user about too large omega step if OmegaStep>0.1: warn('Too small omega step: possible accuracy decline') # "bug" with 1-element list Components = listOfTuples(Components) SourceTables = listOfTuples(SourceTables) # determine final input values Components,SourceTables,Environment,OmegaRange,OmegaStep,OmegaWing,\ IntensityThreshold,Format = \ getDefaultValuesForXsect(Components,SourceTables,Environment,OmegaRange, OmegaStep,OmegaWing,IntensityThreshold,Format) # get uniform linespace for cross-section #number_of_points = (OmegaRange[1]-OmegaRange[0])/OmegaStep + 1 #Omegas = linspace(OmegaRange[0],OmegaRange[1],number_of_points) if OmegaGrid is not None: Omegas = npsort(OmegaGrid) else: Omegas = arange(OmegaRange[0],OmegaRange[1],OmegaStep) number_of_points = len(Omegas) Xsect = zeros(number_of_points) # reference temperature and pressure Tref = __FloatType__(296.) # K pref = __FloatType__(1.) # atm # actual temperature and pressure T = Environment['T'] # K p = Environment['p'] # atm # create dictionary from Components ABUNDANCES = {} NATURAL_ABUNDANCES = {} for Component in Components: M = Component[0] I = Component[1] if len(Component) >= 3: ni = Component[2] else: try: ni = ISO[(M,I)][ISO_INDEX['abundance']] except KeyError: raise Exception('cannot find component M,I = %d,%d.' % (M,I)) ABUNDANCES[(M,I)] = ni NATURAL_ABUNDANCES[(M,I)] = ISO[(M,I)][ISO_INDEX['abundance']] # precalculation of volume concentration if HITRAN_units: factor = __FloatType__(1.0) else: factor = volumeConcentration(p,T) # SourceTables contain multiple tables for TableName in SourceTables: # get line centers nline = LOCAL_TABLE_CACHE[TableName]['header']['number_of_rows'] # loop through line centers (single stream) for RowID in range(nline): # get basic line parameters (lower level) LineCenterDB = LOCAL_TABLE_CACHE[TableName]['data']['nu'][RowID] LineIntensityDB = LOCAL_TABLE_CACHE[TableName]['data']['sw'][RowID] LowerStateEnergyDB = LOCAL_TABLE_CACHE[TableName]['data']['elower'][RowID] MoleculeNumberDB = LOCAL_TABLE_CACHE[TableName]['data']['molec_id'][RowID] IsoNumberDB = LOCAL_TABLE_CACHE[TableName]['data']['local_iso_id'][RowID] #Gamma0DB = LOCAL_TABLE_CACHE[TableName]['data']['gamma_air'][RowID] #Gamma0DB = LOCAL_TABLE_CACHE[TableName]['data']['gamma_self'][RowID] Gamma0DB = LOCAL_TABLE_CACHE[TableName]['data'][GammaL][RowID] TempRatioPowerDB = LOCAL_TABLE_CACHE[TableName]['data']['n_air'][RowID] #TempRatioPowerDB = 1.0 # for planar molecules if LineShift: Shift0DB = LOCAL_TABLE_CACHE[TableName]['data']['delta_air'][RowID] else: Shift0DB = 0 # filter by molecule and isotopologue if (MoleculeNumberDB,IsoNumberDB) not in ABUNDANCES: continue # partition functions for T and Tref # TODO: optimize SigmaT = partitionFunction(MoleculeNumberDB,IsoNumberDB,T) SigmaTref = partitionFunction(MoleculeNumberDB,IsoNumberDB,Tref) # get all environment dependences from voigt parameters # intensity LineIntensity = EnvironmentDependency_Intensity(LineIntensityDB,T,Tref,SigmaT,SigmaTref, LowerStateEnergyDB,LineCenterDB) # FILTER by LineIntensity: compare it with IntencityThreshold # TODO: apply wing narrowing instead of filtering, this would be more appropriate if LineIntensity < IntensityThreshold: continue # doppler broadening coefficient (GammaD) # V1 >>> #GammaDDB = cSqrtLn2*LineCenterDB/cc*sqrt(2*cBolts*T/molecularMass(MoleculeNumberDB,IsoNumberDB)) #GammaD = EnvironmentDependency_GammaD(GammaDDB,T,Tref) # V2 >>> cMassMol = 1.66053873e-27 # hapi #cMassMol = 1.6605402e-27 # converter m = molecularMass(MoleculeNumberDB,IsoNumberDB) * cMassMol * 1000 GammaD = sqrt(2*cBolts*T*log(2)/m/cc**2)*LineCenterDB # lorentz broadening coefficient Gamma0 = EnvironmentDependency_Gamma0(Gamma0DB,T,Tref,p,pref,TempRatioPowerDB) # get final wing of the line according to Gamma0, OmegaWingHW and OmegaWing # XXX min or max? OmegaWingF = max(OmegaWing,OmegaWingHW*Gamma0,OmegaWingHW*GammaD) # shift coefficient Shift0 = Shift0DB*p/pref # XXX other parameter (such as Delta0, Delta2, anuVC etc.) will be included in HTP version #PROFILE_VOIGT(sg0,GamD,Gam0,sg) # sg0 : Unperturbed line position in cm-1 (Input). # GamD : Doppler HWHM in cm-1 (Input) # Gam0 : Speed-averaged line-width in cm-1 (Input). # sg : Current WaveNumber of the Computation in cm-1 (Input). # XXX time? BoundIndexLower = bisect(Omegas,LineCenterDB-OmegaWingF) BoundIndexUpper = bisect(Omegas,LineCenterDB+OmegaWingF) lineshape_vals = PROFILE_VOIGT(LineCenterDB+Shift0,GammaD,Gamma0,Omegas[BoundIndexLower:BoundIndexUpper])[0] Xsect[BoundIndexLower:BoundIndexUpper] += factor / NATURAL_ABUNDANCES[(MoleculeNumberDB,IsoNumberDB)] * \ ABUNDANCES[(MoleculeNumberDB,IsoNumberDB)] * \ LineIntensity * lineshape_vals if File: save_to_file(File,Format,Omegas,Xsect) return Omegas,Xsect
19,087
def stellar_mags_scatter_cube_pair(file_pair, min_relative_flux=0.5, save=False): """Return the scatter in stellar colours within a star datacube pair.""" hdulist_pair = [pf.open(path, 'update') for path in file_pair] flux = np.vstack( [hdulist[0].data for hdulist in hdulist_pair]) noise = np.sqrt(np.vstack( [hdulist['VARIANCE'].data for hdulist in hdulist_pair])) wavelength = np.hstack( [get_coords(hdulist[0].header, 3) for hdulist in hdulist_pair]) smoothed_flux = flux.copy() smoothed_flux[~np.isfinite(smoothed_flux)] = 0.0 smoothed_flux = median_filter(smoothed_flux, (201, 1, 1)) image = np.sum(smoothed_flux, 0) keep = (image >= (min_relative_flux * np.max(image))) flux = flux[:, keep] noise = noise[:, keep] mags = [] for flux_i, noise_i in zip(flux.T, noise.T): mags_i = measure_mags(flux_i, noise_i, wavelength) mags.append([mags_i['g'], mags_i['r']]) mags = np.array(mags) colour = mags[:, 0] - mags[:, 1] scatter = np.std(colour) if save: for hdulist in hdulist_pair: hdulist[0].header['COLORSTD'] = ( scatter, 'Scatter in g-r within cubes') hdulist.flush() for hdulist in hdulist_pair: hdulist.close() return scatter
19,088
def get_data_filename(relative_path): """Get the full path to one of the reference files shipped for testing In the source distribution, these files are in ``examples/*/``, but on installation, they're moved to somewhere in the user's python site-packages directory. Parameters ---------- relative_path : str Name of the file to load, with respect to the yank egg folder which is typically located at something like ``~/anaconda/lib/python3.6/site-packages/yank-*.egg/examples/`` Returns ------- fn : str Resource Filename """ fn = resource_filename('yank', relative_path) if not os.path.exists(fn): raise ValueError("Sorry! {} does not exist. If you just added it, you'll have to re-install".format(fn)) return fn
19,089
def is_valid_webhook_request(webhook_token: str, request_body: str, webhook_signature_header: str) -> bool: """This method verifies that requests to your Webhook URL are genuine and from Buycoins. Args: webhook_token: your webhook token request_body: the body of the request webhook_signature_header: the X-Webhook-Signature header from BuyCoins Returns: a Boolean stating whether the request is valid or not """ hmac_request_body = hmac.new(webhook_token.encode(), request_body.encode(), hashlib.sha1) return hmac.compare_digest(hmac_request_body.hexdigest(), webhook_signature_header)
19,090
def logsigsoftmax(logits): """ Computes sigsoftmax from the paper - https://arxiv.org/pdf/1805.10829.pdf """ max_values = torch.max(logits, 1, keepdim=True)[0] exp_logits_sigmoided = torch.exp(logits - max_values) * torch.sigmoid(logits) sum_exp_logits_sigmoided = exp_logits_sigmoided.sum(1, keepdim=True) log_probs = logits - max_values + F.logsigmoid(logits) - torch.log(sum_exp_logits_sigmoided) return log_probs
19,091
def multi(dispatch_fn): """Initialise function as a multimethod""" def _inner(*args, **kwargs): return _inner.__multi__.get( dispatch_fn(*args, **kwargs), _inner.__multi_default__ )(*args, **kwargs) _inner.__multi__ = {} _inner.__multi_default__ = lambda *args, **kwargs: None # Default default return _inner
19,092
def choose_key(somemap, default=0, prompt="choose", input=input, error=default_error, lines=LINES, columns=COLUMNS): """Select a key from a mapping. Returns the key selected. """ keytype = type(print_menu_map(somemap, lines=lines, columns=columns)) while 1: try: userinput = get_input(prompt, default, input) except EOFError: return default if not userinput: return default try: idx = keytype(userinput) except ValueError: error("Not a valid entry. Please try again.") continue if idx not in somemap: error("Not a valid selection. Please try again.") continue return idx
19,093
def delete_nodes(ctx, name, node_names, force): """Delete node(s) in a cluster that uses native Kubernetes provider.""" try: restore_session(ctx) client = ctx.obj['client'] cluster = Cluster(client) result = cluster.delete_nodes(ctx.obj['profiles'].get('vdc_in_use'), name, node_names, force) stdout(result, ctx) except Exception as e: stderr(e, ctx)
19,094
def test_validate_err(): """An erroneous Thing Description raises error on validation.""" update_funcs = [ lambda x: x.update({"properties": [1, 2, 3]}) or x, lambda x: x.update({"actions": "hello-interactions"}) or x, lambda x: x.update({"events": {"overheating": {"forms": 0.5}}}) or x, lambda x: x.update({"events": {"Invalid Name": {}}}) or x, lambda x: x.update({"events": {100: {"label": "Invalid Name"}}}) or x ] for update_func in update_funcs: td_err = update_func(copy.deepcopy(TD_EXAMPLE)) with pytest.raises(InvalidDescription): ThingDescription.validate(doc=td_err)
19,095
def set_api_key(token_name, api_key, m=None): """Sets an API key as an environment variable. Args: token_name (str): The token name. api_key (str): The API key. m (ipyleaflet.Map | folium.Map, optional): A Map instance.. Defaults to None. """ os.environ[token_name] = api_key if m is not None: m.api_keys[token_name] = api_key
19,096
def test_dist(ctx): """Test both sdist and bdist wheel and install.""" test_sdist(ctx) test_bdist_wheel(ctx)
19,097
def test_pds4_orbnum_generated_list(self): """Test inclusion of ORBNUM in kernel list. Test ORBNUM file generation with automatic plan generation, when the plan is not provided by the user. """ post_setup(self) config = "../config/maven.xml" shutil.copy( "../data/misc/orbnum/maven_orb_rec_210101_210401_v1.orb", "misc/orbnum/" ) main(config, faucet=self.faucet, silent=self.silent, log=True)
19,098
def _ValidateFieldValues(field_values, metadata): """Checks that the given sequence of field values is valid. Args: field_values: A sequence of values for a particular metric's fields. metadata: MetricMetadata for the metric. The order of fields in the metadata should match the field values. Raises: ValueError: If the number of field values doesn't match the number of fields the metric has. """ # Field values are always arranged in the order in which the # the respective fields are defined in metadata. if len(field_values) != len(metadata.fields_defs): raise ValueError( "Value for metric %s has %d field values, yet the metric " "was defined to have %d fields." % (metadata.metric_name, len(field_values), len(metadata.field_defs)))
19,099