content
stringlengths
22
815k
id
int64
0
4.91M
def weight_variable_glorot(input_dim, output_dim, name=""): """Create a weight variable with Glorot & Bengio (AISTATS 2010) initialization. """ init_range = np.sqrt(6.0 / (input_dim + output_dim)) initial = tf.random_uniform([input_dim, output_dim], minval=-init_range, maxval=init_range, dtype=tf.float32) return tf.Variable(initial, name=name)
14,800
def pareto_plot(column: pd.Series, use_given_index: bool = False, figsize: Tuple[int, int] = (12, 8), return_freq_df: bool = False): """ Draw Pareto plot for categorical variable Arguments: ---------- column: pd.Series Categorical input figsize: Tuple size of the figure return_freq_df: bool Returns frequency dataframe if True Example: -------- >>> pareto_plot(df['state'], figsize=(20, 10)) >>> df = pareto_plot(df['area code'], return_freq_df=True) >>> df label frequency cumpercentage 0 415 1655 49.654965 1 510 840 74.857486 2 408 838 100.000000 """ freq = column.copy() if use_given_index: freq = column.value_counts().sort_values(ascending=False) freq_df = pd.DataFrame({'label': freq.index, 'frequency': freq.values}) freq_df['cumpercentage'] = freq_df['frequency'].cumsum()/freq_df['frequency'].sum()*100 # plot fig, ax = plt.subplots(figsize=figsize) ax.bar(freq_df.index, freq_df['frequency'], color='C0') ax2 = ax.twinx() ax2.plot(freq_df.index, freq_df['cumpercentage'], color='C1', marker='D', ms=7) ax2.yaxis.set_major_formatter(PercentFormatter()) ax.set_xticks(freq_df.index) ax.set_xticklabels(freq_df['label'], fontsize=10, rotation=35) ax.tick_params(axis='y', colors='C0') ax2.tick_params(axis='y', colors='C1') plt.show() if return_freq_df: return freq_df
14,801
def get_openshift_installer( version=None, bin_dir=None, force_download=False, ): """ Download the OpenShift installer binary, if not already present. Update env. PATH and get path of the openshift installer binary. Args: version (str): Version of the installer to download bin_dir (str): Path to bin directory (default: config.RUN['bin_dir']) force_download (bool): Force installer download even if already present Returns: str: Path to the installer binary """ version = version or config.DEPLOYMENT["installer_version"] bin_dir = os.path.expanduser(bin_dir or config.RUN["bin_dir"]) installer_filename = "openshift-install" installer_binary_path = os.path.join(bin_dir, installer_filename) if os.path.isfile(installer_binary_path) and force_download: delete_file(installer_binary_path) if os.path.isfile(installer_binary_path): log.debug(f"Installer exists ({installer_binary_path}), skipping download.") # TODO: check installer version else: version = expose_ocp_version(version) log.info(f"Downloading openshift installer ({version}).") prepare_bin_dir() # record current working directory and switch to BIN_DIR previous_dir = os.getcwd() os.chdir(bin_dir) tarball = f"{installer_filename}.tar.gz" url = get_openshift_mirror_url(installer_filename, version) download_file(url, tarball) run_cmd(f"tar xzvf {tarball} {installer_filename}") delete_file(tarball) # return to the previous working directory os.chdir(previous_dir) installer_version = run_cmd(f"{installer_binary_path} version") log.info(f"OpenShift Installer version: {installer_version}") return installer_binary_path
14,802
async def activate_prompt_toolkit_async_mode() -> None: """Configure prompt toolkit to use the asyncio event loop. Needs to be async, so we use the right event loop in py 3.5""" global ACTIVATED_ASYNC_MODE if not is_prompt_toolkit_3(): # Tell prompt_toolkit to use asyncio for the event loop. from prompt_toolkit.eventloop import use_asyncio_event_loop use_asyncio_event_loop() ACTIVATED_ASYNC_MODE = True
14,803
def parse_arguments(): """ Parse input arguments and store them in a global variable. Returns: Parsed arguments. """ parser = argparse.ArgumentParser(description='Generates a lexicon for gender recognition.') parser.add_argument('dataset', help='file with JSON objects to be processed') parser.add_argument('--faces', action='store_true', help='apply facial recognition over profile images') parser.add_argument('--confidence', metavar='N', type=float, default=0.75, help="minimal confidence for a valid recognition (default=0.75)") parser.add_argument('--lexicon-percentage', metavar='N', type=float, default=0.5, help="Percentage of words to get from the generated lexicon") parser.add_argument('--surnames', action='store_true', help='require fullnames (at least one surname)') parser.add_argument('--remove-outliers', action='store_true', help='remove outliers before generate training and test datasets') return parser.parse_args()
14,804
def remove_external_id( role_name: str, dir_path: Optional[str], session=None, client=None, backup_policy: Optional[str] = "", bucket: Optional[str] = None, ) -> Dict: """The remove_external_id method takes a role_name as a string to allow the removal of an externalId condition. """ if session: iam_client = session.client("iam") elif client: iam_client = client else: iam_client = boto3.client("iam") role = iam_client.get_role(RoleName=role_name) arpd = role["Role"]["AssumeRolePolicyDocument"] if backup_policy: if backup_policy.lower() == "local": if dir_path: retain_policy( policy=arpd, role_name=role_name, location_type="local", dir_path=dir_path, ) else: retain_policy(policy=arpd, role_name=role_name, location_type="local") elif backup_policy.lower() == "s3": retain_policy( policy=arpd, role_name=role_name, location_type="s3", bucket=bucket ) arpd["Statement"][0]["Condition"] = {} try: iam_client.update_assume_role_policy( RoleName=role_name, PolicyDocument=json.dumps(arpd) ) return arpd except ClientError as error: raise error
14,805
def find_binaries(fw_path): """ Gets a list of possible binaries within a firmare sample. The list might contain false positives, angr will ignore them. :param fw_path: firmware path :return: a list of binaries """ cmd = "find \""+ fw_path + "\"" cmd += " -executable -type f -exec file {} \; | grep -iv image | grep -iv text | awk -F':' '{print $1}'" p = sp.Popen(cmd, stdout=sp.PIPE, stderr=sp.PIPE, shell=True) o, e = p.communicate() if o: return o.split('\n') return []
14,806
def get_core_count(): """ Find out how many CPU cores this system has. """ try: cores = str(compat.enum_cpus()) # 3.4 and up except NotImplementedError: cores = "1" # 3.2-3.3 else: if compat.enum_cpus() is None: cores = "1" return cores
14,807
def test_artefact_update() -> None: """Test updating a const artefact.""" db = Redis() store = RedisStorage(db) art = _graph.constant_artefact(db, store, b"bla bla") with pytest.raises(TypeError): _graph.set_data(db, store, art.hash, b"b", _graph.ArtefactStatus.done)
14,808
def ASTTailrec(func): """ This approach involves modifying the ast tree so we can just stick a decorator on such as ``` @ASTTailrec def fac(n, k=1): if n == 1: return k return fac(n-1, k*n) ``` This function has been heavily inspired by Robin Hillard's pipeop library at https://github.com/robinhilliard/pipes. It was used as reference when developing this decorator """ if isclass(func): raise TypeError("Cannot apply tail recursion to a class") in_context = func.__globals__ new_context = {"Tailrec": Tailrec, "Tailcall": Tailcall} # these need to be included in the imports else we're gonna have some trouble # if they've already been imported, let that import hold precedence. new_context.update(in_context) # now let's try and get the source source = getsource(func) # we get the tree tree = ast.parse(dedent(source)) # update for debugger first_line_number = func.__code__.co_firstlineno ast.increment_lineno(tree, first_line_number - 1) # let's grab the name of the function here. func.__name__ is not reliable in case # of other decorators and no use of `functools.wraps` func_name = tree.body[0].name # we want to replace with the standard tailrec decorator here replace_decorator(tree) # now every time we find the function, let's replace with func_name.recur # as in the standard case tree = TailTransformer(func_name).visit(tree) # now the tree has been modified satisfactorily, let's compile code = compile(tree, filename=new_context['__file__'], mode='exec') # exec the code in the scope of the new_context exec(code, new_context) # and return the function return new_context[func_name]
14,809
def vec2str(vec): """ transform the vector to captcha str""" _str = "" for i in range(4): v = vec[i*43: (i+1)*43] _str += chr(np.argwhere(v == 1)[0][0] + ord('0')) return _str
14,810
def mnist(path=None, batchsize=20, xpreptrain=None, ypreptrain=None, dataset="train", **kwargs): """ Legacy MNIST loader. :type path: str :param path: Path to MNIST pickle file. :type batchsize: int :param batchsize: Batch size (no shit sherlock) :type xpreptrain: prepkit.preptrain :param xpreptrain: Train of preprocessing functions on X. See preptrain's documentation in prepkit. :type ypreptrain: prepkit.preptrain :param ypreptrain: Train of preprocessing functions on Y. Can be set to -1 to channel X,Y through xpreptrain. :type dataset: str :param dataset: Which dataset to use ('train', 'test' or 'validate') :rtype: tincan """ # Compatibility patch if "preptrain" in kwargs.keys(): xpreptrain = kwargs["preptrain"] # Parse path if path is None: path = "/Users/nasimrahaman/Documents/Python/DeepBrain/Datasets/mnist.pkl" # Unpickle data data = pkl.load(open(path)) # Load the correct X and Y data assert dataset in ["train", "test", "validate"], "Dataset can be either of the three strings: " \ "'train', 'test', 'validate'. " datindex = 0 if dataset is "train" else 1 if dataset is "test" else 2 X, Y = data[datindex] # Generate MNIST tincan return tincan(data=(X, Y), numclasses=10, batchsize=batchsize, xpreptrain=xpreptrain, ypreptrain=ypreptrain, xhowtransform=['b', 1, 's', 's'], yhowtransform=['b', 'nc', 1, 1])
14,811
def aseta_hiiri_kasittelija(kasittelija): """ Asettaa funktion, jota käytetään hiiren klikkausten käsittelyyn. Käsittelijää kutsutaan aina, kun hiiren nappi painetaan alas missä tahansa peli-ikkunan sisällä. Käsittelijän tulee olla funktio, jolla on tasan neljä parametria: x, y, nappi sekä muokkausnäppäimet. Näistä x ja y määrittävät klikkauksen sijainnin ruudulla ja nappi kertoo mitä nappia painettiin (saa arvoja HIIRI_VASEN, HIIRI_KESKI, HIIRI_OIKEA). Muokkausnäppäimet on selitetty moduulin dokumentaatiossa ja niitä ei pitäisi tarvita perustoteutuksessa. Eli koodissasi sinun tulee määritellä funktio def hiiri_kasittelija(x, y, nappi, muokkausnapit): # asioita tapahtuu ja sen jälkeen rekisteröidä se: haravasto.aseta_hiiri_kasittelija(hiiri_kasittelija) Tällä tavalla pystyt vastaanottamaan hiiren klikkaukset koodissasi. :param function kasittelija: käsittelijäfunktio klikkauksille """ if grafiikka["ikkuna"]: grafiikka["ikkuna"].on_mouse_press = kasittelija else: print("Ikkunaa ei ole luotu!")
14,812
def rand_pad(ctvol): """Introduce random padding between 0 and 15 pixels on each of the 6 sides of the <ctvol>""" randpad = np.random.randint(low=0,high=15,size=(6)) ctvol = np.pad(ctvol, pad_width = ((randpad[0],randpad[1]), (randpad[2],randpad[3]), (randpad[4], randpad[5])), mode = 'constant', constant_values = np.amin(ctvol)) return ctvol
14,813
def images(stack_ref, region, output, field, hide_older_than, show_instances): """Show all used AMIs and available Taupage AMIs""" stack_refs = get_stack_refs(stack_ref) region = get_region(region) check_credentials(region) ec2 = boto3.resource("ec2", region) instances_by_image = collections.defaultdict(list) for inst in ec2.instances.all(): if inst.state["Name"] == "terminated": # do not count TERMINATED EC2 instances continue stack_name = get_tag(inst.tags, "aws:cloudformation:stack-name") if not stack_refs or matches_any(stack_name, stack_refs): instances_by_image[inst.image_id].append(inst) images = {} for image in ec2.images.filter(ImageIds=list(instances_by_image.keys())): images[image.id] = image if not stack_refs: for channel in taupage.CHANNELS.values(): filters = [ {"Name": "name", "Values": [channel.ami_wildcard]}, {"Name": "state", "Values": ["available"]}, ] for image in ec2.images.filter(Filters=filters): images[image.id] = image rows = [] cutoff = datetime.datetime.now() - datetime.timedelta(days=hide_older_than) for image in images.values(): row = image.meta.data.copy() creation_time = parse_time(image.creation_date) row["creation_time"] = creation_time row["instances"] = ", ".join(sorted(i.id for i in instances_by_image[image.id])) row["total_instances"] = len(instances_by_image[image.id]) stacks = set() for instance in instances_by_image[image.id]: stack_name = get_tag(instance.tags, "aws:cloudformation:stack-name") # EC2 instance might not be part of a CF stack if stack_name: stacks.add(stack_name) row["stacks"] = ", ".join(sorted(stacks)) if creation_time is None: continue if creation_time > cutoff.timestamp() or row["total_instances"]: rows.append(row) rows.sort(key=lambda x: x.get("Name")) with OutputFormat(output): instances_column_name = "instances" if show_instances else "total_instances" columns = filter_output_columns( [ "ImageId", "Name", "OwnerId", "Description", "stacks", instances_column_name, "creation_time", ], field, ) print_table(columns, rows, titles=TITLES, max_column_widths=MAX_COLUMN_WIDTHS)
14,814
def store_event(event: AddProcessStatus) -> None: """Store an :class:`.AddProcessStatus` event.""" try: db.session.add(ProcessStatusEvent( created=event.created, event_id=event.event_id, submission_id=event.submission_id, process_id=event.process_id, process=event.process, status=event.status, reason=event.reason, agent_type=event.creator.agent_type, agent_id=event.creator.native_id )) db.session.commit() except OperationalError as e: db.session.rollback() raise Unavailable('Caught op error') from e
14,815
def test_nbconvert(container, test_file, output_format): """Check if nbconvert is able to convert a notebook file""" host_data_dir = os.path.join(THIS_DIR, "data") cont_data_dir = "/home/jovyan/data" output_dir = "/tmp" LOGGER.info( f"Test that the example notebook {test_file} can be converted to {output_format} ..." ) command = f"jupyter nbconvert {cont_data_dir}/{test_file}.ipynb --output-dir {output_dir} --to {output_format}" c = container.run( volumes={host_data_dir: {"bind": cont_data_dir, "mode": "ro"}}, tty=True, command=["start.sh", "bash", "-c", command], ) rv = c.wait(timeout=30) logs = c.logs(stdout=True).decode("utf-8") LOGGER.debug(logs) assert rv == 0 or rv["StatusCode"] == 0, f"Command {command} failed" expected_file = f"{output_dir}/{test_file}.{output_format}" assert expected_file in logs, f"Expected file {expected_file} not generated"
14,816
def _improve(tour: np.ndarray, matrix: np.ndarray, neighbours: np.ndarray, dlb: np.ndarray, it1: int, t1: int, solutions: set, k: int) -> Tuple[float, np.ndarray]: """ Последовательный 2-opt для эвристики Лина-Кернига tour: список городов matrix: матрица весов neighbours: набор кандидатов dlb: don't look bits it1, t1: индекс, значение города, с которого начинать solutions: полученные ранее туры set_x, set_y: наборы удаленных, добавленных ребер k: k-opt, k - кол-во сколько можно сделать последовательных улучшений return: выигрыш, новый тур """ around_t1 = around(tour, it1) for it2, t2 in around_t1: set_x = {make_pair(t1, t2)} for t3 in neighbours[t2]: gain = matrix[t1][t2] - matrix[t2][t3] if t3 == around_t1[0][1] or t3 == around_t1[1][1] or not gain > 1.e-10: continue set_y = {make_pair(t2, t3)} it3 = np.where(tour == t3)[0][0] _gain, _tour = __choose_t4(tour, matrix, it1, it2, it3, neighbours, gain, set_x, set_y, dlb, solutions, k) if _gain > 1.e-10: return _gain, _tour return 0., tour
14,817
def plot_step_with_errorbar(lefts, widths, y_coords, y_errs, errors_enabled=True, use_errorrects_for_legend=False, **kwargs): """Makes a step plot with error bars.""" lefts.append(lefts[-1] + widths[-1]) y_coords.append(y_coords[-1]) # prevent that we have labels for the step and the errorbar, # otherwise we have two legend entries per data set step_kwargs = dict(kwargs) rect_kwargs = dict(kwargs) if errors_enabled and "label" in kwargs: if use_errorrects_for_legend: del step_kwargs["label"] else: del rect_kwargs["label"] # delete kw args that are not defined for plt.step try: del step_kwargs["hatch"] except KeyError: pass step_result = plt.step(lefts, y_coords, where='post', **step_kwargs) if errors_enabled: try: ecolor = rect_kwargs["color"] del rect_kwargs["color"] except KeyError: ecolor = plt.gca().lines[-1].get_color() # do not use the next color from the color cycle try: del rect_kwargs["marker"] except KeyError: pass try: del rect_kwargs["zorder"] except KeyError: pass zorder = plt.gca().lines[-1].get_zorder() - 1 # make sure it's drawn below errorrects_result = plot_errorrects(lefts, y_coords, y_errs, ecolor, zorder, **rect_kwargs) # x_mids = [left + width / 2.0 for left, width in zip(lefts[:-1], widths)] # plt.errorbar(x_mids, y_coords[:-1], fmt='none', yerr=y_errs, ecolor=ecolor) else: errorrects_result = None return step_result, errorrects_result
14,818
def giveKarma(bot, trigger): """Increases/decreases a user's karma - no spaces allowed""" nick = trigger.group(1) nickdb = nick.lower() change = [0,1][trigger.group(2) == '++'] # command user matches karma target - or multiple karma in single line if (nickdb == trigger.nick.lower()) or trigger.count(['--','++'][change]) > 1 or ('--' in trigger and '++' in trigger): bot.reply("Nice try.") return try: current_plus = int(bot.db.get_nick_value(nickdb, KPLUS, 0)) current_minus = int(bot.db.get_nick_value(nickdb, KMINUS, 0)) except NameError: current_plus, current_minus = 0, 0 if change > 0: bot.db.set_nick_value(nickdb, KPLUS, current_plus + 1) karma_val = int(current_plus - current_minus + 1) else: bot.db.set_nick_value(nickdb, KMINUS, current_minus + 1) karma_val = int(current_plus - current_minus - 1) bot.say("%s's karma is now %d" % (nick, karma_val))
14,819
def intensity_modification(x): """ Intensity modification Parameters x: Tensor Returns x: Tensor """ x = x + tf.random.uniform(shape=[], minval=-0.05, maxval=0.05, dtype=tf.dtypes.float32) return x
14,820
def show_learning_curve( est: BaseEstimator, conf_mat_labels: List, X_train: DataFrame, y_train: Series, X_test: DataFrame, y_test: Series, scoring_metric: str = "f1_micro", cv: StratifiedKFold = StratifiedKFold(n_splits=12), sizes: np.linspace = np.linspace(0.3, 1.0, 10), fig_size: Tuple = (8, 8), savefig: Path = Path().cwd() / "reports" / "figures" / "cm.png", ) -> None: """Plot the learning curve""" fig, ax = plt.subplots(figsize=fig_size) cm = LearningCurve( est, cv=cv, scoring=scoring_metric, train_sizes=sizes, n_jobs=-1 ) cm = LearningCurve(est, classes=conf_mat_labels, ax=ax) cm.fit(X_train, y_train) cm.score(X_test, y_test) cm.finalize() if not savefig.is_file(): fig.savefig(savefig, bbox_inches="tight", dpi=300)
14,821
def test_pype_get_arguments_group_str_interpolate(): """Parse group as interpolated str input from context.""" context = Context({ 'group': 'gr', 'pype': { 'name': 'pipe name', 'groups': '{group}', } }) with get_arb_pipeline_scope(context): (pipeline_name, args, out, use_parent_context, pipe_arg, skip_parse, raise_error, loader, groups, success_group, failure_group, py_dir, parent) = pype.get_arguments(context) assert pipeline_name == 'pipe name' assert args is None assert out is None assert use_parent_context assert isinstance(use_parent_context, bool) assert pipe_arg is None assert skip_parse assert isinstance(skip_parse, bool) assert raise_error assert isinstance(raise_error, bool) assert loader is None assert groups == ['gr'] assert success_group is None assert failure_group is None assert py_dir is None assert parent is None
14,822
def FormIdProperty(expression, **kwargs): """ Create a StringProperty that references a form ID. This is necessary because form IDs change when apps are copied so we need to make sure we update any references to the them. :param expression: jsonpath expression that can be used to find the field :param kwargs: arguments to be passed to the underlying StringProperty """ path_expression = parse(expression) assert isinstance(path_expression, jsonpath.Child), "only child path expressions are supported" field = path_expression.right assert len(field.fields) == 1, 'path expression can only reference a single field' form_id_references.append(path_expression) return StringProperty(**kwargs)
14,823
def remember_subreddit(name=None): """Add current subreddit to history.""" if name: last = wf.cached_data('--last', max_age=0, session=True) or {} sr = last.get(name) if not sr: # must be a multi sr = dict(name=name, title=name, type="public", url=subreddit_url(name)) else: sr = subreddit_from_env() if not sr: log.debug('no subreddit to save to history') return subreddits = wf.cached_data('__history', max_age=0) or [] log.debug('%d subreddit(s) in history', len(subreddits)) for d in subreddits: if sr['name'].lower() == d['name'].lower(): log.debug('%r already in history', sr['name']) return subreddits.append(sr) wf.cache_data('__history', subreddits) log.debug('added %r to history', sr['name']) log.debug('%d subreddit(s) in history', len(subreddits))
14,824
def gen_lang(lang, queue): """generate data for a language""" try: start_time = time.time() print("Lang: %s: generating..." % lang) # list(str) all_words = init_words(lang) output_filename = "output/%s.csv" % lang make_file_dirs(output_filename) with open(output_filename, "w") as output: last_start_level = 1 used_words = set() for batch, levels_conf in enumerate(conf.LEVELS): gen_levels( lang, all_words, output, used_words, batch + 1, last_start_level, levels_conf ) last_start_level = levels_conf[0] + 1 used_time = time.time() - start_time print("Lang: %s: generated in:%.2fs." % (lang, used_time)) queue.put(True) except Exception as e: print("Lang: %s: EXCEPTION: %s!" % (lang, e)) queue.put(False)
14,825
def do_roll(dice: int, sides: int, _: int): """Given an amount of dice and the number of sides per die, simulate a dice roll and return a list of ints representing the outcome values. Modifier is ignored. """ dice = dice or 1 sides = sides or 1 values = sorted(((secrets.randbelow(sides) + 1) for _ in range(0, dice)), reverse=True) return values
14,826
def compute_logp_independent_block(X, alpha=None): """Compute the analytical log likelihood of a matrix under the assumption of independence. """ if alpha is None: alpha = np.ones(X.shape[1]) logp_ib = gammaln(alpha.sum()) - (gammaln(alpha)).sum() logp_ib += gammaln(X.sum(0) + alpha).sum() - gammaln(X.sum() + alpha.sum()) logp_ib += gammaln(X.sum(1) + 1).sum() - gammaln(X + 1).sum() return logp_ib
14,827
def check_validity_label(labels): """ Check to see whether it makes a valid tuple Parameters: ----------- labels: A tuple of labels (Object_1, Object_2, Object_3, Return: ------- """ # Event is None -> All other values are None if labels[3] == 0: for i in xrange(5): if labels[i] != 0: return False return True # If two roles have the same object return False for i in xrange(3): for j in xrange(3): if i != j and labels[i] == labels[j] and labels[i] != 0: return False # If there is a Theme, there needs to be a Preposition and vice versa if labels[2] != 0 and labels[4] == 0: return False if labels[2] == 0 and labels[4] != 0: return False return True
14,828
def flat_proj(v1, v2): """ Returns the flat projection of direction unit vector, v1 onto v2 """ temp1 = np.cross(v1, v2) temp2 = np.cross(temp1, v1) return proj(temp2, v2)
14,829
def marching_cubes_naive( volume_data_batch: torch.Tensor, isolevel: Optional[float] = None, spacing: int = 1, return_local_coords: bool = True, ) -> Tuple[List[torch.Tensor], List[torch.Tensor]]: """ Runs the classic marching cubes algorithm, iterating over the coordinates of the volume_data and using a given isolevel for determining intersected edges of cubes of size `spacing`. Returns vertices and faces of the obtained mesh. This operation is non-differentiable. This is a naive implementation, and is not optimized for efficiency. Args: volume_data_batch: a Tensor of size (N, D, H, W) corresponding to a batch of 3D scalar fields isolevel: the isosurface value to use as the threshold to determine whether points are within a volume. If None, then the average of the maximum and minimum value of the scalar field will be used. spacing: an integer specifying the cube size to use return_local_coords: bool. If True the output vertices will be in local coordinates in the range [-1, 1] x [-1, 1] x [-1, 1]. If False they will be in the range [0, W-1] x [0, H-1] x [0, D-1] Returns: verts: [(V_0, 3), (V_1, 3), ...] List of N FloatTensors of vertices. faces: [(F_0, 3), (F_1, 3), ...] List of N LongTensors of faces. """ volume_data_batch = volume_data_batch.detach().cpu() batched_verts, batched_faces = [], [] D, H, W = volume_data_batch.shape[1:] volume_size_xyz = volume_data_batch.new_tensor([W, H, D])[None] if return_local_coords: # Convert from local coordinates in the range [-1, 1] range to # world coordinates in the range [0, D-1], [0, H-1], [0, W-1] local_to_world_transform = Translate( x=+1.0, y=+1.0, z=+1.0, device=volume_data_batch.device ).scale((volume_size_xyz - 1) * spacing * 0.5) # Perform the inverse to go from world to local world_to_local_transform = local_to_world_transform.inverse() for i in range(len(volume_data_batch)): volume_data = volume_data_batch[i] curr_isolevel = ( ((volume_data.max() + volume_data.min()) / 2).item() if isolevel is None else isolevel ) edge_vertices_to_index = {} vertex_coords_to_index = {} verts, faces = [], [] # Use length - spacing for the bounds since we are using # cubes of size spacing, with the lowest x,y,z values # (bottom front left) for x in range(0, W - spacing, spacing): for y in range(0, H - spacing, spacing): for z in range(0, D - spacing, spacing): cube = Cube((x, y, z), spacing) new_verts, new_faces = polygonise( cube, curr_isolevel, volume_data, edge_vertices_to_index, vertex_coords_to_index, ) verts.extend(new_verts) faces.extend(new_faces) if len(faces) > 0 and len(verts) > 0: verts = torch.tensor(verts, dtype=torch.float32) # Convert vertices from world to local coords if return_local_coords: verts = world_to_local_transform.transform_points(verts[None, ...]) verts = verts.squeeze() batched_verts.append(verts) batched_faces.append(torch.tensor(faces, dtype=torch.int64)) return batched_verts, batched_faces
14,830
def get_reshaped_ann_input(begin_state, new_state, action, pieces_player_begin, dice): """ save STATE and ACTION into 1-dimensional np.array. This should be an input to a ANN """ # look for the position of the given pawn before and after a move current_player = 0 input_ann = np.array(begin_state) input_ann = input_ann.reshape((240, 1)) """TODO: To estimate the $Q(s,a)$ with a neural network, it is needed for its input to consist the information of transitioning from the previous to the next state with visible action taken. Every action is represented as a tuple (x_0 / 60, x_f / 60), where x_0 is the initial position and x_f is the final position. The components are divided by 58 in order to obtain a number between 0 and 1 """ tile_piece_before, tile_piece_after = get_before_after_tile_id(pieces_player_begin, begin_state, new_state, action, dice) # action_tuple = (begin_state[current_player][action] / 60, new_state[current_player][action] / 60) action_tuple = (tile_piece_before / 59, tile_piece_after / 59) # print(input_ann.shape) input_ann = np.append(input_ann, action_tuple) return input_ann
14,831
def _test_series(case, site, url, expected): """ Helper to use in site-specific test cases. See test_kissmanga.py for usage. """ resp = site.get_manga_seed_page(url) if resp.status_code != 200: raise Exception('Failed to download series html') html = resp.text series = site.series_info(html) chapters = expected.pop('chapters', None) for key, val in expected.items(): case.assertEqual(getattr(series, key), val) if chapters is None: return case.assertEqual(series.chapters[-1], chapters['first']) if 'last' in chapters: case.assertEqual(series.chapters[0], chapters['last'])
14,832
def gc_resnet101(num_classes): """Constructs a ResNet-101 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(GCBottleneck, [3, 4, 23, 3], num_classes=num_classes) model.avgpool = nn.AdaptiveAvgPool2d(1) return model
14,833
def _write_data(x, y, sett, jtv=None): """ Format algorithm output. Args: jtv (torch.tensor, optional): Joint-total variation image, defaults to None. Returns: dat_y (torch.tensor): Reconstructed image data, (dim_y, C). pth_y ([str, ...]): Paths to reconstructed images. label : (dim_y) tensor: Reconstructed label image pth_label : str, Paths to reconstructed label image. """ # Output orientation matrix mat = y[0].mat # Output directory dir_out = sett.dir_out if dir_out is None: # No output directory given, use directory of input data if x[0][0].direc is None: dir_out = 'UniRes-output' else: dir_out = x[0][0].direc print(dir_out) if sett.write_out and not os.path.isdir(dir_out): os.makedirs(dir_out, exist_ok=True) prefix_y = sett.prefix pth_y = [] pth_label = None label = None for c in range(len(x)): dat = y[c].dat mn = inf mx = -inf for n in range(len(x[c])): if torch.min(x[c][n].dat) < mn: mn = torch.min(x[c][n].dat) if torch.max(x[c][n].dat) > mx: mx = torch.max(x[c][n].dat) dat[dat < mn] = mn dat[dat > mx] = mx if sett.write_out and sett.mat is None: # Write reconstructed images (as separate niftis, because given as separate niftis) if x[c][0].nam is None: nam = str(c) + '.nii.gz' else: nam = x[c][0].nam fname = os.path.join(dir_out, prefix_y + nam) pth_y.append(fname) _write_image(dat, fname, bids=sett.bids, mat=mat, file=x[c][0].file) if y[c].label is not None: # Do label image pth_label = os.path.join(dir_out, prefix_y + 'label_' + nam) label = y[c].label _write_image(label, pth_label, bids=sett.bids, mat=mat, file=x[c][0].label[1]) if c == 0: dat_y = dat[..., None].clone() else: dat_y = torch.cat((dat_y, dat[..., None]), dim=3) if sett.write_out and sett.mat is not None: # Write reconstructed images as 4D volume (because given as 4D volume) c = 0 if x[c][0].nam is None: nam = str(c) + '.nii.gz' else: nam = x[c][0].nam fname = os.path.join(dir_out, prefix_y + nam) pth_y.append(fname) _write_image(dat_y, fname, bids=sett.bids, mat=mat, file=x[c][0].file) if sett.write_jtv and jtv is not None: # Write JTV if x[c][0].nam is None: nam = str(c) + '.nii.gz' else: nam = x[c][0].nam fname = os.path.join(dir_out, 'jtv_' + prefix_y + nam) _write_image(jtv, fname, bids=sett.bids, mat=mat) return dat_y, pth_y, label, pth_label
14,834
def compute_seatable_votes(votes, votetypes): """Compute the seatable votes. Parameters ---------- votes: pandas.DataFrame the votes of the seatable votes. votetypes: dict the information of the different types of vote variables. Returns ------- seatable_votes: numpy.ndarray the variables which have votes which can be transformed into seats. """ votetypes = prepare_votetypes(votes, votetypes) seatable_votes = votes[votetypes['seatable']] return seatable_votes
14,835
async def read_cookie(refresh_token: Optional[str] = Cookie(None)) -> JSONResponse: """Reads a cookie. Args: refresh_token: Name of the cookie. Returns: JSONResponse: Returns the value of the cookie as a json blurb. """ if refresh_token: return JSONResponse( content={ "refresh_token": refresh_token }, status_code=200, headers=RESET_HEADERS ) else: return JSONResponse( content={ "refresh_token": status.HTTP_404_NOT_FOUND }, status_code=404, headers=RESET_HEADERS )
14,836
def test_sort_values_simple_no_order(): """ It should sort dataframe """ data = pd.DataFrame( [ {'variable': 'toto', 'Category': 2, 'value': 300}, {'variable': 'toto', 'Category': 3, 'value': 100}, {'variable': 'toto', 'Category': 4, 'value': 250}, {'variable': 'toto', 'Category': 1, 'value': 450}, ] ) expected = [450, 300, 100, 250] output = sort(data, 'Category') assert output['value'].tolist() == expected
14,837
def get_role_output(role_id: Optional[pulumi.Input[str]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> pulumi.Output[GetRoleResult]: """ Use this data source to access information about an existing resource. """ ...
14,838
def readAirfoilFile(fileName, bluntTe=False, bluntTaperRange=0.1, bluntThickness=0.002): """Load the airfoil file""" f = open(fileName) line = f.readline() # Read (and ignore) the first line r = [] try: r.append([float(s) for s in line.split()]) except Exception: pass while 1: line = f.readline() if not line: break # end of file if line.isspace(): break # blank line r.append([float(s) for s in line.split()]) rr = np.array(r) x = rr[:, 0] y = rr[:, 1] npt = len(x) xMin = min(x) # There are 4 possibilites we have to deal with: # a. Given a sharp TE -- User wants a sharp TE # b. Given a sharp TE -- User wants a blunt TE # c. Given a blunt TE -- User wants a sharp TE # d. Given a blunt TE -- User wants a blunt TE # (possibly with different TE thickness) # Check for blunt TE: if bluntTe is False: if y[0] != y[-1]: print("Blunt Trailing Edge on airfoil: %s" % (fileName)) print("Merging to a point over final %f ..." % (bluntTaperRange)) yAvg = 0.5 * (y[0] + y[-1]) xAvg = 0.5 * (x[0] + x[-1]) yTop = y[0] yBot = y[-1] xTop = x[0] xBot = x[-1] # Indices on the TOP surface of the wing indices = np.where(x[0 : npt // 2] >= (1 - bluntTaperRange))[0] for i in range(len(indices)): fact = (x[indices[i]] - (x[0] - bluntTaperRange)) / bluntTaperRange y[indices[i]] = y[indices[i]] - fact * (yTop - yAvg) x[indices[i]] = x[indices[i]] - fact * (xTop - xAvg) # Indices on the BOTTOM surface of the wing indices = np.where(x[npt // 2 :] >= (1 - bluntTaperRange))[0] indices = indices + npt // 2 for i in range(len(indices)): fact = (x[indices[i]] - (x[-1] - bluntTaperRange)) / bluntTaperRange y[indices[i]] = y[indices[i]] - fact * (yBot - yAvg) x[indices[i]] = x[indices[i]] - fact * (xBot - xAvg) elif bluntTe is True: # Since we will be rescaling the TE regardless, the sharp TE # case and the case where the TE is already blunt can be # handled in the same manner # Get the current thickness curThick = y[0] - y[-1] # Set the new TE values: xBreak = 1.0 - bluntTaperRange # Rescale upper surface: for i in range(0, npt // 2): if x[i] > xBreak: s = (x[i] - xMin - xBreak) / bluntTaperRange y[i] += s * 0.5 * (bluntThickness - curThick) # Rescale lower surface: for i in range(npt // 2, npt): if x[i] > xBreak: s = (x[i] - xMin - xBreak) / bluntTaperRange y[i] -= s * 0.5 * (bluntThickness - curThick) return x, y
14,839
def batchRenderBegin(info, userData, *args, **kwargs): """ Hook called before a render begins. The render will be blocked until this function returns. :param info: Empty dictionary for now. Might have parameters in the future. :param userData: Object that will be carried over into the render end hooks. This can be used by the hook to pass black box data around. :note: This hook is available in Flame 2019.1 and up only. """ import sgtk engine = sgtk.platform.current_engine() # We can't do anything without the Shotgun engine. # The engine is None when the user decides to not use the plugin for the project. if engine is None: return engine.clear_export_info() engine.trigger_batch_callback("batchRenderBegin", info)
14,840
def get_args(): """ Return the args from the arg parser. :return: args (arg parser object). """ arg_parser = argparse.ArgumentParser() arg_parser.add_argument('-d', dest='debug', action='store_true', default=False, help='Enable debug mode for logging messages') arg_parser.add_argument('-q', dest='queuename', required=True, help='Queue name (e.g., AGLT2_TEST-condor') arg_parser.add_argument('-w', dest='workdir', required=False, default=os.getcwd(), help='Working directory') arg_parser.add_argument('--scopes', dest='scopes', required=True, help='List of Rucio scopes (e.g., mc16_13TeV,mc16_13TeV') arg_parser.add_argument('--lfns', dest='lfns', required=True, help='LFN list (e.g., filename1,filename2') arg_parser.add_argument('--eventtype', dest='eventtype', required=True, help='Event type') arg_parser.add_argument('--localsite', dest='localsite', required=True, help='Local site') arg_parser.add_argument('--remotesite', dest='remotesite', required=True, help='Remote site') arg_parser.add_argument('--produserid', dest='produserid', required=True, help='produserid') arg_parser.add_argument('--jobid', dest='jobid', required=True, help='PanDA job id') arg_parser.add_argument('--taskid', dest='taskid', required=True, help='PanDA task id') arg_parser.add_argument('--jobdefinitionid', dest='jobdefinitionid', required=True, help='Job definition id') arg_parser.add_argument('--eventservicemerge', dest='eventservicemerge', type=str2bool, default=False, help='Event service merge boolean') arg_parser.add_argument('--usepcache', dest='usepcache', type=str2bool, default=False, help='pcache boolean from queuedata') arg_parser.add_argument('--no-pilot-log', dest='nopilotlog', action='store_true', default=False, help='Do not write the pilot log to file') return arg_parser.parse_args()
14,841
def run( input_file=parser.get_default("input_file"), event_level=parser.get_default("event_level"), ): """ The inner loop for sending syslog lines as events and breadcrumbs to Sentry. Expects the Sentry Python logging integration to be initialized before being called. """ for syslog_line in input_file: try: log_syslog_line(syslog_line[:-1], event_level) except Exception: logger.exception( "Exception raised while tyring to log syslog line:\n%s", syslog_line )
14,842
def depListToArtifactList(depList): """Convert the maven GAV to a URL relative path""" regexComment = re.compile('#.*$') #regexLog = re.compile('^\[\w*\]') artifactList = [] for nextLine in depList: nextLine = regexComment.sub('', nextLine) nextLine = nextLine.strip() gav = maven_repo_util.parseGATCVS(nextLine) if gav: artifactList.append(MavenArtifact.createFromGAV(gav)) return artifactList
14,843
def configure_plugins_plugin_install_to_version(request, pk, version): """ View rendering for the install to version modal interface :param request: Request :param pk: The primary key for the plugin :param version: The version to install :return: a renderer """ plugin = get_object_or_404(Plugin, pk=pk) action = reverse( "api_dispatch_install_to_version", kwargs={ "api_name": "v1", "resource_name": "plugin", "pk": pk, "version": version, }, ) _installVersionedName = Plugin(name=plugin.name, version=version).versionedName() ctx = RequestContext( request, { "method": "POST", "action": action, "i18n": { "title": ugettext_lazy( "configure_plugins_plugin_install_to_version.title" ), # 'Confirm Install Plugin' "confirmmsg": ugettext_lazy( "configure_plugins_plugin_install_to_version.messages.confirmmsg.singular" ) % { # 'Are you sure you want to install %(versionedName)s?' "versionedName": _installVersionedName }, "submit": ugettext_lazy( "configure_plugins_plugin_install_to_version.action.submit" ), # 'Yes, Upgrade!' "cancel": ugettext_lazy("global.action.modal.cancel"), "submitmsg": ugettext_lazy( "configure_plugins_plugin_install_to_version.messages.submitmsg" ), # 'Now upgrading, please wait.' }, }, ) return render_to_response( "rundb/configure/modal_confirm_plugin_install_to_version.html", context_instance=ctx, )
14,844
def save_model(model, model_filepath): """Stores the model in a pickle file.""" pkl_filename = model_filepath with open(pkl_filename, 'wb') as file: pickle.dump(model, file)
14,845
def test_certificates(host, site): """Validate that the letsencrypt certificates are set up """ assert host.file(f"/etc/letsencrypt/live/{site}/fullchain.pem").exists assert host.file(f"/etc/letsencrypt/live/{site}/privkey.pem").exists site_conf = host.file(f"/etc/nginx/sites-available/{site}") assert site_conf.exists assert site_conf.contains( f"/etc/letsencrypt/live/{site}/fullchain.pem") assert site_conf.contains(f"/etc/letsencrypt/live/{site}/privkey.pem")
14,846
def _parameters_to_vector(parameters): """ This fix is required for pytorch >= 1.6.0, due to the change in memory format promotion rule. For more info, check: * https://github.com/pytorch/pytorch/pull/37968 * https://github.com/pytorch/pytorch/releases/tag/v1.6.0 and search "Note: BC-breaking memory format changes" """ parameters = [p.contiguous() for p in parameters] return th.nn.utils.parameters_to_vector(parameters)
14,847
def create_app(config, enable_config_file=False): """ 创建应用 :param config: 配置信息对象 :param enable_config_file: 是否允许运行环境中的配置文件覆盖已加载的配置信息 :return: 应用 """ app = create_flask_app(config, enable_config_file) # 创建Snowflake ID worker from utils.snowflake.id_worker import IdWorker app.id_worker = IdWorker(app.config['DATACENTER_ID'], app.config['WORKER_ID'], app.config['SEQUENCE']) # 限流器 from utils.limiter import limiter as lmt lmt.init_app(app) # 配置日志 from utils.logging import create_logger create_logger(app) # 注册url转换器 from utils.converters import register_converters register_converters(app) from redis.sentinel import Sentinel _sentinel = Sentinel(app.config['REDIS_SENTINELS']) app.redis_master = _sentinel.master_for(app.config['REDIS_SENTINEL_SERVICE_NAME']) app.redis_slave = _sentinel.slave_for(app.config['REDIS_SENTINEL_SERVICE_NAME']) from rediscluster import StrictRedisCluster app.redis_cluster = StrictRedisCluster(startup_nodes=app.config['REDIS_CLUSTER']) # rpc # app.rpc_reco = grpc.insecure_channel(app.config['RPC'].RECOMMEND) # Elasticsearch app.es = Elasticsearch( app.config['ES'], # sniff before doing anything sniff_on_start=True, # refresh nodes after a node fails to respond sniff_on_connection_fail=True, # and also every 60 seconds sniffer_timeout=60 ) # socket.io # app.sio = socketio.KombuManager(app.config['RABBITMQ'], write_only=True) # MySQL数据库连接初始化 from models import db db.init_app(app) # # 添加请求钩子 # from utils.middlewares import jwt_authentication # app.before_request(jwt_authentication) # 注册用户模块蓝图 from .resources.user import user_bp app.register_blueprint(user_bp) # 注册新闻模块蓝图 from .resources.news import news_bp app.register_blueprint(news_bp) # 注册通知模块 from .resources.notice import notice_bp app.register_blueprint(notice_bp) # 搜索 from .resources.search import search_bp app.register_blueprint(search_bp) return app
14,848
def select_variables(expr): """When called on an expression, will yield selectors to the variable. A selector will either return the variable (or equivalent fragment) in an expression, or will return an entirely new expression with the fragment replaced with the value of `swap`. e.g. >>> from qiime2.core.type.tests.test_grammar import (MockTemplate, ... MockPredicate) >>> Example = MockTemplate('Example', fields=('x',)) >>> Foo = MockTemplate('Foo') >>> Bar = MockPredicate('Bar') >>> T = TypeMatch([Foo]) >>> U = TypeMatch([Bar]) >>> select_u, select_t = select_variables(Example[T] % U) >>> t = select_t(Example[T] % U) >>> assert T is t >>> u = select_u(Example[T] % U) >>> assert U is u >>> frag = select_t(Example[Foo] % Bar) >>> assert frag is Foo >>> new_expr = select_t(Example[T] % U, swap=frag) >>> assert new_expr == Example[Foo] % U """ if type(expr) is TypeVarExp: def select(x, swap=None): if swap is not None: return swap return x yield select return if type(expr) is not TypeExp: return if type(expr.full_predicate) is TypeVarExp: def select(x, swap=None): if swap is not None: return x.duplicate(predicate=swap) return x.full_predicate yield select for idx, field in enumerate(expr.fields): for sel in select_variables(field): # Without this closure, the idx in select will be the last # value of the enumerate, same for sel # (Same problem as JS with callbacks inside a loop) def closure(idx, sel): def select(x, swap=None): if swap is not None: new_fields = list(x.fields) new_fields[idx] = sel(x.fields[idx], swap) return x.duplicate(fields=tuple(new_fields)) return sel(x.fields[idx]) return select yield closure(idx, sel)
14,849
def get_login(name_p: str, pass_p: str, auth_error: bytes = b'') -> Callable: """Decorator to ensure a player's login information is correct.""" # NOTE: this function does NOT verify whether the arguments have # been passed into the connection, and assumes you have already # called the appropriate decorator above, @required_x. def wrapper(f: Callable) -> Callable: # modify the handler code to get the player # object before calling the handler itself. @wraps(f) async def handler(conn: Connection) -> Optional[bytes]: # args may be provided in regular args # or multipart, but only one at a time. argset = conn.args or conn.multipart_args if not ( p := await glob.players.get_login( name = unquote(argset[name_p]), pw_md5 = argset[pass_p] ) ): # player login incorrect return auth_error # login verified, call the handler return await f(p, conn) return handler return wrapper
14,850
def map_visualize(df: gpd.GeoDataFrame, lyrs='s', scale=0.5, figsize = (12,9), color = "red", ax = None, fig=None, *args, **kwargs): """Draw the geodataframe with the satellite image as the background Args: `df` (gpd.GeoDataFrame): the gpd.GeoDataFrame need to plot `ax`: the ax define to draw `lyrs` (str, optional): [ m 路线图; t 地形图; p 带标签的地形图; s 卫星图; y 带标签的卫星图; h 标签层(路名、地名等)]. Defaults to 'p'. `scale` (float): border percentage `color`: the color the the geometry drawed Returns: [ax]: [description] """ # lyrs='y';scale=0.5;figsize = (12,9); color = "red";ax = None;fig=None; if ax is None: fig, ax = plt.subplots(1, 1, figsize=figsize) df.plot(color = color, ax=ax, zorder=1, *args, **kwargs) # df.plot(color = color, zorder=1) [x0, x1], [y0, y1] = plt.xlim(), plt.ylim() gap_x, gap_y = (x1-x0), (y1-y0) [a, b, c, d] = df.total_bounds if a == c: x0, x1 = a - 0.001, c + 0.001 gap_x = x1- x0 if b == d: y0, y1 = b - 0.001, d + 0.001 gap_y = y1 - y0 if not 0.4 <= gap_y / gap_x <= 2.5: mid_x, mid_y = (x1+x0)/2, (y1+y0)/2 gap = max(gap_x, gap_y) * (1 + scale) / 2 [x0, y0, x1, y1] = [mid_x - gap, mid_y - gap, mid_x + gap, mid_y + gap] else: [x0, y0, x1, y1] = [x0-(x1-x0) * scale, y0+(y0-y1) * scale, x1+(x1-x0) * scale, y1-(y0-y1) * scale] zoom = 15 - int(math.log2(haversine((x0, y1), (x1, y0))/3)) # print([x0, x1], [y0, y1], haversine((x0, y1), (x1, y0))/3) # warming: if zoom big than 19 then there will be somthing wrong zoom = 19 if zoom > 19 else zoom img = tile.Tiles() f_lst, img_bbox = img.get_tiles_by_bbox([x0, y1, x1, y0], zoom, lyrs) to_image = merge_tiles(f_lst) background, _ = clip_background( to_image, img_bbox, [x0, y1, x1, y0], False) ax.imshow(background, extent=[x0, x1, y0, y1], alpha=.6, zorder=0) plt.xlim(x0, x1) plt.ylim(y0, y1) # 去除科学记数法 ax.get_xaxis().get_major_formatter().set_useOffset(False) ax.get_yaxis().get_major_formatter().set_useOffset(False) # set_major_locator # ax.xaxis.set_major_locator(plt.NullLocator()) # ax.yaxis.set_major_locator(plt.NullLocator()) return fig, ax
14,851
def unorm_to_byte(x): """float x in [0, 1] to an integer [0, 255]""" return min(int(256 * x), 255)
14,852
def eigh(a, largest: bool = False): """ Get eigenvalues / eigenvectors of hermitian matrix a. Args: a: square hermitian float matrix largest: if True, return order is based on descending eigenvalues, otherwise ascending. Returns: w: [m] eigenvalues v: [m, m] eigenvectors """ return _eigh(a, largest)
14,853
def test_param_reorder(): """Parameters can be reordered and doesn't affect the outcome.""" standard = pytest.mark.parametrize( argnames="foo,bar,baz", argvalues=[ (3, "something", 777), (None, -100, "aaaaa"), ([10, 20, 30], ..., 0), ], ) wrapped = parametrize_cases( Case(foo=3, bar="something", baz=777), Case(bar=-100, baz="aaaaa", foo=None), Case(baz=0, bar=..., foo=[10, 20, 30]), ) assert wrapped == standard
14,854
def lowpass(x, dt, fc, order=5): """ Low pass filter data signal x at cut off frequency fc, blocking harmonic content above fc. Parameters ---------- x : array_like Signal dt : float Signal sampling rate (s) fc : float Cut off frequency (Hz) order : int, optional Butterworth filter order. Default 5. Returns ------- array Filtered signal See Also -------- scipy.signal.butter, scipy.signal.filtfilt """ nyq = 0.5 * 1. / dt # nyquist frequency normal_cutoff = fc / nyq # normalized cut off frequency b, a = butter(order, normal_cutoff, btype='lowpass', analog=False) y = filtfilt(b, a, x) return y
14,855
def doRunFixPlanets(msName): """Generate code for running fixplanets on fields with (0,0) coordinates""" print('\n*** doRunFixPlanets ***') fieldIds = sfsdr.getFieldsForFixPlanets(msName) if len(fieldIds) != 0: casaCmd = '' mytb = aU.createCasaTool(tbtool) mytb.open(msName+'/FIELD') fieldNames = mytb.getcol('NAME') mytb.close() fieldNames = ['%s' %fieldNames[i] for i in fieldIds] fieldNames = ','.join(fieldNames) fieldIds = ['%s' %i for i in fieldIds] fieldIds = ','.join(fieldIds) casaCmd = casaCmd + "fixplanets(vis = '"+msName+"',\n" casaCmd = casaCmd + " field = '"+fieldIds+"', # "+fieldNames+"\n" casaCmd = casaCmd + " fixuvw = True)\n" return casaCmd
14,856
def add_name_suffix( suffix, obj_names=None, filter_type=None, add_underscore=False, search_hierarchy=False, selection_only=True, **kwargs): """ Add prefix to node name :param suffix: str, string to add to the end of the current node :param obj_names: str or list(str), name of list of node names to rename :param filter_type: str, name of object type to filter the objects to apply changes ('Group, 'Joint', etc) :param add_underscore: bool, Whether or not to add underscore before the suffix :param search_hierarchy: bool, Whether to search objects in hierarchies :param selection_only: bool, Whether to search only selected objects or all scene objects :param kwargs: """ rename_shape = kwargs.get('rename_shape', True) if filter_type: return name.add_suffix_by_filter( suffix=suffix, filter_type=filter_type, add_underscore=add_underscore, rename_shape=rename_shape, search_hierarchy=search_hierarchy, selection_only=selection_only, dag=False, remove_maya_defaults=True, transforms_only=True) else: return name.add_suffix( suffix=suffix, obj_names=obj_names, add_underscore=add_underscore, rename_shape=rename_shape)
14,857
def checksum(hdpgroup: list, algorithm: str = 'CRC32', chktag: str = '\'α') -> list: """List of checksums-like for detection of Non-intentional data corruption See https://en.wikipedia.org/wiki/Cksum See https://en.wikipedia.org/wiki/Checksum Args: hdpgroup (list): list of HDP-like objects type (str): The type of checker htag (str): select only by special tags (for complex documents) mixing several hashings. See hashable() Returns: list: List of strings optimized to be used as input for hashing >>> import hxlm.core as HXLm >>> UDUR_LAT = HXLm.util.load_file(HXLm.HDATUM_UDHR + '/udhr.lat.hdp.yml') >>> checksum(UDUR_LAT) ['(CRC32 \\'\\'α "3839021470")'] >>> UDUR_RUS = HXLm.util.load_file(HXLm.HDATUM_UDHR + '/udhr.rus.hdp.yml') >>> checksum(UDUR_RUS) ['(CRC32 \\'\\'α "3839021470")'] """ if algorithm != 'CRC32': raise NotImplementedError('algorithm [' + str(algorithm) + '] not implemented') # Escape ' is not an walk in the park. Just to simplify, we will replace # double '' with ' if chktag.find("''") > -1: chktag = chktag.replace("''", "'") result = [] for hsilo in hdpgroup: hashable_str = hashable([hsilo])[0] hashable_code = _get_checksum(hashable_str, chktag=chktag) result.append(hashable_code) return result
14,858
def run_job(runner, runner_thread, queue, function, input): """ Call this to start a new job """ runner.job_function = function runner.job_input = input runner.comm_queue = queue runner_thread.start()
14,859
def install(): """Install Storyboard Pro specific functionality of avalon-core. This function is called automatically on calling `api.install(storyboardpro)`. """ print("Installing Avalon Storyboard Pro...") pyblish.api.register_host("storyboardpro")
14,860
def dsum(i0,i1,step = 1, box=[]): """ for a range of fits files compute the mean and dispersion from the mean """ for i in range(i0,i1+1,step): ff = 'IMG%05d.FIT' % i h1, d1 = getData(ff,box) #very specific for 16 bit data, since we want to keep the data in uint16 bzero = h1['BZERO'] bscale = h1['BSCALE'] if i == i0: sum0 = 1.0 sum1 = d1*bscale+bzero sum2 = sum1*sum1 #sum1 = d1 #sum2 = d1*d1 h = h1 nx = d1.shape[1] ny = d1.shape[0] nz = i1 + 1 - i0 c = np.zeros((nz, ny, nx)) c[0,:,:] = d1.reshape(ny,nx) else: sum0 = sum0 + 1.0 sum1 = sum1 + (d1 * bscale + bzero) sum2 = sum2 + (d1 * bscale + bzero) * (d1 * bscale + bzero) #sum2 = sum2+d1*d1 c[i - i0,:,:] = d1.reshape(ny,nx) sum1 = sum1 / sum0 sum2 = sum2 / sum0 - sum1*sum1 print (type(sum1), type(sum2)) return (h,sum1,np.sqrt(sum2),c)
14,861
def test_sync_buckets(db): """ Test that bucket syncing only pulls study buckets """ client = boto3.client("s3") bucket1 = client.create_bucket(Bucket="not-a-study") bucket2 = client.create_bucket(Bucket="kf-dev-sd-00000000") assert Bucket.objects.count() == 0 sync_buckets() assert Bucket.objects.count() == 1 assert Bucket.objects.first().name == "kf-dev-sd-00000000"
14,862
def _env_translate_obs(obs): """ This should only be used for the Tiger ENV. Parameters ---------- obs : list or array-like The observation to be translated. Returns ------- str A representation of the observation in English. """ if obs[0] == 1: return 'GROWL_LEFT' elif obs[1] == 1: return 'GROWL_RIGHT' elif obs[2] == 1: return 'START' elif obs[3] == 1: return 'END' else: raise ValueError('Invalid observation: '.format(obs))
14,863
def voter(address): """ Returns voter credentials. Parameters: address: address Returns: list of three values addresss (str), is_voter (bool), voted (bool). """ return contract.functions.voters(address).call()
14,864
def E_disp_z(m, N, j_star=3.): """Vertical displacement as a function of vertical wavenumber.""" num = E0*b**3*N0**2 den = 2*j_star*np.pi*N**2 * (1 + m/beta_star(N, j_star))**2 return num/den
14,865
def get_stereo_image(): """Retrieve one stereo camera image Returns: (mat): cv2 image """ img = core.get_stereo_image() if img is not None: return img else: return None
14,866
def f(): """<caret> class Class: """ bar """
14,867
def request_set_arm_state(token: str, arm_state: str): """Request set arm state.""" headers = { 'Authorization': 'Bearer %s' % token, 'Content-Type': 'application/json' } payload = { "Created": int(time.time()), "AppVersion": APP_VERSION, "AppType": APPTYPE, "App": APP } response = requests.post( _build_url('Location/{}'.format(arm_state)), headers=headers, json=payload) response.raise_for_status() return response.json()
14,868
def get_all_config(filename=None): """ Set default configuration options for configparse Config with defaults settings if no file will be passed Also with defaults sections and defaults keys for missing options in config :param filename: options config file to read :return: configparser object with default config for missing sections """ _config = parse_config2(filename) default_config = set_defaults() # Verify each section in default_config for s in range(len(default_config.sections())): section = default_config.sections()[s] # Add the missing section to the config obtained if not _config.has_section(section): _config.add_section(section) # Add missing keys to config obtained for key in default_config[section]: if not _config.has_option(section, key): _config[section][key] = default_config[section][key] return _config
14,869
def check_for_end_or_abort(e): """Return a closure checking for END or ABORT notifications Arguments: e -- event to signal when the action is completed (will be set when an END or ABORT occurs) """ def check(notification, e = e): print("EVENT : " + \ Base_pb2.ActionEvent.Name(notification.action_event)) if notification.action_event == Base_pb2.ACTION_END \ or notification.action_event == Base_pb2.ACTION_ABORT: e.set() return check
14,870
def check_vacancy_at_cell(house_map, cell): """ Return True if the given cell is vacant. Vacancy is defined as a '0' in the house map at the given coordinates. (i.e. there is no wall at that location) """ x = cell[0] y = cell[1] if not 0 <= x < MAP_WIDTH: return False if not 0 <= y < MAP_HEIGHT: return False return house_map[y][x] == '0'
14,871
def extract_text_and_vertices(x: Dict[str, str]): """Extracts all annotations and bounding box vertices from a single OCR output from Google Cloud Vision API. The first element is the full OCR. It's equivalent to the output of `extract_full_text_annotation` for the same OCR output. Args: x (Dict[str, str]): whole OCR output. Returns: list where each item is a tuple where the first element is the text and the second are the 4 vertices of the corresponding bounding box. """ blocks = [] for annotation in x["textAnnotations"]: text = annotation['description'] vertices = [ tuple(x.values()) for x in annotation['boundingPoly']['vertices'] ] blocks.append((text, vertices)) return blocks
14,872
def _set(name, par, val): """Set a source parameter.""" import sherpa.astro.ui as sau sau.set_par('{name}.{par}'.format(**locals()), val) # try: # exec(name + '.' + par + '=' + str(val)) # except Exception as e: # print e
14,873
def test_grid_queue(): """Test GridQueue""" queue = GridQueue(40, 2, "B") push1 = queue.push() push2 = queue.push() with pytest.raises(GridSiteException): queue.push() pop1 = queue.pop() pop2 = queue.pop() with pytest.raises(GridSiteException): queue.pop() assert push1 == pop1 assert push2 == pop2
14,874
def cspace3(obs, bot, theta_steps): """ Compute the 3D (x, y, yaw) configuration space obstacle for a lit of convex 2D obstacles given by [obs] and a convex 2D robot given by vertices in [bot] at a variety of theta values. obs should be a 3D array of size (2, vertices_per_obstacle, num_obstacles) bot should be a 2d array of size (2, num_bot_vertices) theta_steps can either be a scalar, in which case it specifies the number of theta values, evenly spaced between -pi and +pi; or it can be a vector of theta values. """ bot = -np.array(bot) if np.isscalar(theta_steps): thetas = np.linspace(-np.pi, np.pi, num=theta_steps) else: thetas = theta_steps c_obs = [] for k in range(obs.shape[2]): for j in range(len(thetas)-1): th0 = thetas[j] th1 = thetas[j+1] bot_rot0 = rotmat(th0).dot(bot) c_obs0 = minkowski_sum(bot_rot0, obs[:,:,k]) bot_rot1 = rotmat(th1).dot(bot) c_obs1 = minkowski_sum(bot_rot1, obs[:,:,k]) c_pts = np.vstack((np.hstack((c_obs0, c_obs1)), np.hstack((th0 + np.zeros(c_obs0.shape[1]), th1 + np.zeros(c_obs1.shape[1]))))) c_obs.append(c_pts) if len(c_obs) == 0: return np.zeros((3, bot.shape[1] * 2, 0)) max_n_vert = max((x.shape[1] for x in c_obs)) return np.dstack((np.pad(c, pad_width=((0,0), (0,max_n_vert-c.shape[1])), mode='edge') for c in c_obs))
14,875
def Graph(backend:Optional[str]=None) -> BaseGraph: """Returns an instance of an implementation of :class:`~pyzx.graph.base.BaseGraph`. By default :class:`~pyzx.graph.graph_s.GraphS` is used. Currently ``backend`` is allowed to be `simple` (for the default), or 'graph_tool' and 'igraph'. This method is the preferred way to instantiate a ZX-diagram in PyZX. Example: To construct an empty ZX-diagram, just write:: g = zx.Graph() """ if backend is None: backend = 'simple' if backend not in backends: raise KeyError("Unavailable backend '{}'".format(backend)) if backend == 'simple': return GraphS() if backend == 'graph_tool': return GraphGT() if backend == 'igraph': return GraphIG() if backend == 'quizx-vec': return quizx.VecGraph() # type: ignore return GraphS()
14,876
def describe_stack_events(StackName=None, NextToken=None): """ Returns all stack related events for a specified stack in reverse chronological order. For more information about a stack's event history, go to Stacks in the AWS CloudFormation User Guide. See also: AWS API Documentation :example: response = client.describe_stack_events( StackName='string', NextToken='string' ) :type StackName: string :param StackName: The name or the unique stack ID that is associated with the stack, which are not always interchangeable: Running stacks: You can specify either the stack's name or its unique stack ID. Deleted stacks: You must specify the unique stack ID. Default: There is no default value. :type NextToken: string :param NextToken: A string that identifies the next page of events that you want to retrieve. :rtype: dict :return: { 'StackEvents': [ { 'StackId': 'string', 'EventId': 'string', 'StackName': 'string', 'LogicalResourceId': 'string', 'PhysicalResourceId': 'string', 'ResourceType': 'string', 'Timestamp': datetime(2015, 1, 1), 'ResourceStatus': 'CREATE_IN_PROGRESS'|'CREATE_FAILED'|'CREATE_COMPLETE'|'DELETE_IN_PROGRESS'|'DELETE_FAILED'|'DELETE_COMPLETE'|'DELETE_SKIPPED'|'UPDATE_IN_PROGRESS'|'UPDATE_FAILED'|'UPDATE_COMPLETE', 'ResourceStatusReason': 'string', 'ResourceProperties': 'string', 'ClientRequestToken': 'string' }, ], 'NextToken': 'string' } """ pass
14,877
def set_param(component, param, value): """ Sets the specified parameter to a particular value. Args: component (`BondGraphBase`): The particular component. param: The parameter to set value: The value to assign it to, may be None """ component.set_param(param, value)
14,878
def get_carb_data(data, offset=0): """ Load carb information from an issue report cached_carbs dictionary Arguments: data -- dictionary containing cached carb information offset -- the offset from UTC in seconds Output: 3 lists in (carb_values, carb_start_dates, carb_absorption_times) format """ carb_values = [float(dict_.get("quantity")) for dict_ in data] start_dates = [ datetime.strptime( dict_.get("startDate"), " %Y-%m-%d %H:%M:%S %z" ) + timedelta(seconds=offset) for dict_ in data ] absorption_times = [ float(dict_.get("absorptionTime")) / 60 if dict_.get("absorptionTime") is not None else None for dict_ in data ] assert len(start_dates) == len(carb_values) == len(absorption_times),\ "expected input shapes to match" return (start_dates, carb_values, absorption_times)
14,879
def _discover_bounds(cdf, tol=1e-7): """ Uses scipy's general continuous distribution methods which compute the ppf from the cdf, then use the ppf to find the lower and upper limits of the distribution. """ class DistFromCDF(stats.distributions.rv_continuous): def cdf(self, x): return cdf(x) dist = DistFromCDF() # the ppf is the inverse cdf lower = dist.ppf(tol) upper = dist.ppf(1. - tol) return lower, upper
14,880
def ml_app_instances_ml_app_instance_id_get(ml_app_instance_id): # noqa: E501 """ml_app_instances_ml_app_instance_id_get # noqa: E501 :param ml_app_instance_id: MLApp instance identifier :type ml_app_instance_id: str :rtype: None """ return 'do some magic!'
14,881
def transcribe_file_with_word_time_offsets(speech_file,output_path): """Transcribe the given audio file synchronously and output the word time offsets.""" from google.cloud import speech from google.cloud.speech import enums from google.cloud.speech import types client = speech.SpeechClient() with io.open(speech_file, 'rb') as audio_file: content = audio_file.read() audio = types.RecognitionAudio(content=content) config = types.RecognitionConfig( encoding=enums.RecognitionConfig.AudioEncoding.LINEAR16, sample_rate_hertz=44100, language_code='es-CL', enable_word_time_offsets=True) response = client.recognize(config, audio) file_name = basename(speech_file) file_name = file_name[:-4]+'.txt' transcription_folder = join(output_path,'transcription') confidence_folder = join(output_path,'confidence') word_offset_folder = join(output_path,'word_offset') if not isdir(transcription_folder): mkdir(transcription_folder) if not isdir(confidence_folder): mkdir(confidence_folder) if not isdir(word_offset_folder): mkdir(word_offset_folder) transcription = open(join(output_path,'transcription',file_name),'w') confidence = open(join(output_path,'confidence',file_name),'w') word_offset = open(join(output_path,'word_offset',file_name),'w') for result in response.results: alternative = result.alternatives[0] transcription.write(alternative.transcript.encode('utf-8')) confidence.write(str(alternative.confidence)) for word_info in alternative.words: word = word_info.word start_time = word_info.start_time end_time = word_info.end_time a_str = ",".join([word,str(start_time.seconds + start_time.nanos * 1e-9),str(end_time.seconds + end_time.nanos * 1e-9)]).encode('utf-8')+'\n' word_offset.write(a_str) transcription.close() confidence.close() word_offset.close()
14,882
def plot_distribution2D(results,n_qubits,savepath,title = None, clear_fig = True): """plots diffusion for 2D data""" plt.rcParams.update({'figure.figsize': (10,10)}) y,x,probability_density = results["dimension_0"],results["dimension_1"],results["probability_density"] axes_limit = (2**n_qubits)-1 if title is None: title = "diffusion on an {0}x{0} grid".format(axes_limit+1) if sys.version_info >= (3, 7): alpha = [i**(1/4) for i in probability_density] else: alpha = None plt.cla() plt.scatter(x,y,alpha=alpha,linewidths=[20*i**0.5 for i in probability_density], s = [400*i**0.5 for i in probability_density]) plt.xlim(0,axes_limit) plt.ylim(0,axes_limit) plt.xlabel('X') plt.ylabel('Y') plt.title(title) plt.savefig(savepath,dpi = 300) if clear_fig: plt.cla()
14,883
def generate_name(style: str = 'underscore', seed: int = None) -> str: """Generate a random name.""" if seed is not None: random.seed(seed) return format_names(random_names(), style=style)
14,884
def argunique(a, b): """ 找出a--b对应体中的唯一对应体,即保证最终输出的aa--bb没有重复元素,也没有多重对应 :param a: :param b: :return: aaa, bbb 使得aaa-bbb是唯一对 """ # 先对a中元素进行逐个检查,如果第一次出现,那么添加到aa中,如果不是第一次,那么检查是否一致,不一致则设置成-1 # 设置成-1,代表a中当前元素i有过一对多纪录,剔除。同时-1也不会被再匹配到 seta = {} for i, j in zip(a, b): if i not in seta: seta[i] = j elif seta[i] != j: seta[i] = -1 aa = [i for i in seta if seta[i] != -1] bb = [seta[i] for i in seta if seta[i] != -1] # 再反过来做一遍,以b为索引,剔除重复项 setb = {} for i, j in zip(aa, bb): if j not in setb: setb[j] = i elif setb[j] != i: setb[j] = -1 aaa = [setb[j] for j in setb if setb[j] != -1] bbb = [j for j in setb if setb[j] != -1] return aaa, bbb
14,885
def create_config_flow(hass: core.HomeAssistant, host: str) -> None: """Start a config flow.""" hass.async_create_task( hass.config_entries.flow.async_init( DOMAIN, context={"source": SOURCE_IMPORT}, data={"host": host}, ) )
14,886
def move(obj, direction): """ Moves object by (dx, dy). Returns true if move succeeded. """ goal = obj.pos + direction if (goal.x < 0 or goal.y < 0 or goal.x >= obj.current_map.width or goal.y >= obj.current_map.height): # try_ catches this for the player, but need to # check here for NPCs return False if not obj.current_map.is_blocked_from(obj.pos, goal): obj.pos = goal if obj.fighter: obj.fighter.exhaustion += MOVE_EXHAUSTION return True return False
14,887
def addMedicine(medicine: object): """Data required are "name", "description", "price", "quantity", "medicalId" """ return mr.makePostRequest(mr.API + "/medicine/", medicine)
14,888
def get_train(): """ Training data generator """ for file in train_files: print("Train File: ", file) img = ( np.array(nc.Dataset(file, "r")["ims"][0:1])[0], np.array(nc.Dataset(file, "r")["migrants"][0:1]) ) yield img
14,889
def begin(command, project, ename, group): """ Begin a run in the database log. Args: command: The command that will be executed. pname: The project name we belong to. ename: The experiment name we belong to. group: The run group we belong to. Returns: (run, session), where run is the generated run instance and session the associated transaction for later use. """ from benchbuild.utils.db import create_run from benchbuild.utils import schema as s from benchbuild.settings import CFG from datetime import datetime db_run, session = create_run(command, project, ename, group) db_run.begin = datetime.now() db_run.status = 'running' log = s.RunLog() log.run_id = db_run.id log.begin = datetime.now() log.config = repr(CFG) session.add(log) session.commit() return db_run, session
14,890
def test_ultrasound_distance() -> None: """Test that we can read an ultrasound distance.""" backend = SBArduinoConsoleBackend( "TestBoard", console_class=MockConsole, ) backend._console.next_input = "1.23" # type: ignore metres = backend.get_ultrasound_distance(3, 4) assert metres is not None assert isclose(metres, 1.23) # Check backend updated its view of what modes the pins are in now. assert backend.get_gpio_pin_mode(3) is GPIOPinMode.DIGITAL_OUTPUT assert backend.get_gpio_pin_digital_state(3) is False assert backend.get_gpio_pin_mode(4) is GPIOPinMode.DIGITAL_INPUT
14,891
def fortran_library_item(lib_name, sources, **attrs ): #obsolete feature """ Helper function for creating fortran_libraries items. """ build_info = {'sources':sources} known_attrs = ['module_files','module_dirs', 'libraries','library_dirs'] for key,value in attrs.items(): if key not in known_attrs: raise TypeError,\ "fortran_library_item() got an unexpected keyword "\ "argument '%s'" % key build_info[key] = value return (lib_name,build_info)
14,892
def drawPolygon(t,r,n): """ draw a polygon of n sides, centered at (0,0) r is radius of the circle that would circumscribe the polygon leave turtle at position (0,0) facing right """ # pick up the pen, move to the starting point, and put down the pen t.up(); t.goto(r,0); t.down() # connect the dots for all the points for i in range(1,n+1): # gives points 1 through n-1 t.goto( ithOfNPointsOnCircleX(i%n,n,r), ithOfNPointsOnCircleY(i%n,n,r) ) # Now pick up the pen, and move back to 0,0, facing east t.up(); t.goto(0,0); t.setheading(0);
14,893
def copy_generator(generator): """Copy an existing numpy (random number) generator. Parameters ---------- generator : numpy.random.Generator or numpy.random.RandomState The generator to copy. Returns ------- numpy.random.Generator or numpy.random.RandomState In numpy <=1.16 a ``RandomState``, in 1.17+ a ``Generator``. Both are copies of the input argument. """ if isinstance(generator, np.random.RandomState): return _copy_generator_np116(generator) return _copy_generator_np117(generator)
14,894
def uptime(): """Returns a datetime.timedelta instance representing the uptime in a Windows 2000/NT/XP machine""" import os, sys import subprocess if not sys.platform.startswith('win'): raise RuntimeError, "This function is to be used in windows only" cmd = "net statistics server" p = subprocess.Popen(cmd, shell=True, stdin=subprocess.PIPE, stdout=subprocess.PIPE) (child_stdin, child_stdout) = (p.stdin, p.stdout) lines = child_stdout.readlines() child_stdin.close() child_stdout.close() lines = [line.strip() for line in lines if line.strip()] date, time, ampm = lines[1].split()[2:5] #print date, time, ampm m, d, y = [int(v) for v in date.split('/')] H, M = [int(v) for v in time.split(':')] if ampm.lower() == 'pm': H += 12 import datetime now = datetime.datetime.now() then = datetime.datetime(y, m, d, H, M) diff = now - then return diff
14,895
def sort_from_avro(df: 'pd.DataFrame', cur_filename: str, order_folder: str) -> 'pd.DataFrame': """Shuffle a dataframe with the given seed :param df: the input dataframe :type df: pandas.DataFrame :param cur_filename: the initial file name :type cur_filename: str :param order_folder: the order_folder path :type order_folder: str :return: the shuffled dataframe :rtype: pandas.DataFrame """ real_filename = cur_filename.split(".", 1)[0].replace("results_", "") ord_df = None for root, _, files in walk(order_folder): for file_ in files: if file_.find(real_filename) != -1: ord_df = pd.read_csv(path.join(root, file_)) ord_df.rename(columns={'FileName': "Filename"}, inplace=True) if ord_df is None: return None print( f"{STATUS_ARROW}[File:{STATUS_WARNING(cur_filename)}][Order dataframe with avro indexes]") df_mask = df.Filename.duplicated(keep=False) ord_df_mask = ord_df.Filename.duplicated(keep=False) # Add counter number for unique indexes df.loc[df_mask, 'Filename'] += "_#" + \ df.groupby('Filename').cumcount().add(1).astype(str) ord_df.loc[ord_df_mask, 'Filename'] += "_#" + \ ord_df.groupby('Filename').cumcount().add(1).astype(str) # Change indexes df = df.set_index("Filename") ord_df = ord_df.set_index("Filename") # Reindex new_index = df.reindex_like(ord_df, method=None).dropna() df.set_index(new_index.index, inplace=True) df.reset_index(inplace=True) ord_df.reset_index(inplace=True) # Remove duplicate counters df.Filename = df.Filename.apply(lambda elm: elm.rsplit("_#", 1)[ 0] if elm.find("_#") else elm) ord_df.Filename = ord_df.Filename.apply(lambda elm: elm.rsplit("_#", 1)[ 0] if elm.find("_#") else elm) if not all(ord_df.Filename.eq(df.Filename)): print("File name not equal...") exit(-1) return df
14,896
def test_pages_kingdom_successful(args, protein_gen_success, cazy_home_url, monkeypatch): """Test parse_family_by_kingdom() when all is successful.""" test_fam = Family("famName", "CAZyClass", "http://www.cazy.org/GH14.html") def mock_get_pag(*args, **kwargs): return ["http://www.cazy.org/GH14_all.html"] def mock_get_pages(*args, **kwargs): return protein_gen_success monkeypatch.setattr(get_cazy_pages, "get_pagination_pages_kingdom", mock_get_pag) monkeypatch.setattr(get_cazy_pages, "get_html_page", mock_get_pages) get_cazy_pages.parse_family_by_kingdom( family=test_fam, cazy_home=cazy_home_url, args=args["args"], kingdoms=["Bacteria"], )
14,897
def convert_yolo( df: pd.DataFrame, root: Union[str, os.PathLike, PosixPath], copy_images: bool = False, save_under: Optional[str] = None, output_dir: Optional[Union[str, os.PathLike, PosixPath]] = None, ): """converts to yolo from master dataframe Args: df (pd.DataFrame): the master df root (Union[str, os.PathLike, PosixPath]): root directory of the source format has_image_split (bool, optional): If the images are arranged under the splits. Defaults to False. copy_images (bool, optional): Whether to copy the images to a different directory. Defaults to False. save_under (str, optional): Name of the folder to save the target annotations. Defaults to "labels". output_dir (Optional[Union[str, os.PathLike, PosixPath]], optional): Output directory for the target annotation. Defaults to ``None``. """ save_under = ifnone(save_under, "yolo") output_imagedir, output_labeldir = _makedirs(root, save_under, output_dir) splits = df.split.unique().tolist() lbl = LabelEncoder() dataset = dict() for split in splits: output_subdir = output_labeldir / split if len(splits) > 1 else output_labeldir output_subdir.mkdir(parents=True, exist_ok=True) split_df = df.query("split == @split").copy() # drop images missing width or height information hw_missing = split_df[pd.isnull(split_df["image_width"]) | pd.isnull(split_df["image_height"])] if len(hw_missing) > 0: warnings.warn( f"{hw_missing['image_id'].nunique()} has height/width information missing in split `{split}`. " + f"{len(hw_missing)} annotations will be removed." ) split_df = split_df[pd.notnull(split_df["image_width"]) & pd.notnull(split_df["image_height"])] split_df["x_center"] = split_df["x_min"] + split_df["width"] / 2 split_df["y_center"] = split_df["y_min"] + split_df["height"] / 2 # normalize split_df["x_center"] = split_df["x_center"] / split_df["image_width"] split_df["y_center"] = split_df["y_center"] / split_df["image_height"] split_df["width"] = split_df["width"] / split_df["image_width"] split_df["height"] = split_df["height"] / split_df["image_height"] split_df["class_index"] = lbl.fit_transform(split_df["category"]) split_df["yolo_string"] = ( split_df["class_index"].astype(str) + " " + split_df["x_center"].astype(str) + " " + split_df["y_center"].astype(str) + " " + split_df["width"].astype(str) + " " + split_df["height"].astype(str) ) ds = split_df.groupby("image_id")["yolo_string"].agg(lambda x: "\n".join(x)).reset_index() image_ids = ds["image_id"].tolist() yolo_strings = ds["yolo_string"].tolist() dataset[split] = str(Path(root) / "images" / split) for image_id, ystr in tqdm(zip(image_ids, yolo_strings), total=len(image_ids), desc=f"split: {split}"): write_yolo_txt(image_id, output_subdir, ystr) if copy_images: dest_dir = output_imagedir / split dest_dir.mkdir(parents=True, exist_ok=True) _fastcopy(split_df["image_path"].unique().tolist(), dest_dir) dataset["nc"] = len(lbl._map) dataset["names"] = list(lbl._map.keys()) with open(Path(output_labeldir).joinpath("dataset.yaml"), "w") as f: yaml.dump(dataset, f, default_flow_style=None, allow_unicode=True)
14,898
def _truncate_and_pad_token_ids(token_ids, max_length): """Truncates or pads the token id list to max length.""" token_ids = token_ids[:max_length] padding_size = max_length - len(token_ids) if padding_size > 0: token_ids += [0] * padding_size return token_ids
14,899