content
stringlengths 22
815k
| id
int64 0
4.91M
|
|---|---|
def elementwise(op: Callable[..., float], *ds: D) -> NumDict:
"""
Apply op elementwise to a sequence of numdicts.
If any numdict in ds has None default, then default is None, otherwise the
new default is calculated by running op on all defaults.
"""
keys: set = set()
keys.update(*ds)
grouped: dict = {}
defaults: list = []
for d in ds:
defaults.append(d.default)
for k in keys:
grouped.setdefault(k, []).append(d[k])
if any([d is None for d in defaults]):
default = None
else:
default = op(defaults)
return NumDict({k: op(grouped[k]) for k in grouped}, default)
| 13,800
|
def test_get_closed_class_vague_meaning_count():
"""Test get_closed_class_vague_meaning_count method."""
result = discourse_markers.get_closed_class_vague_meaning_count(
Doc(
[
Text("En realidad la pandemia no es mala."),
Text("En contra de lo que se cree no es tan mortal."),
]
)
)
assert result == 2
| 13,801
|
def sigmoid_focal_loss(
inputs: torch.Tensor,
targets: torch.Tensor,
alpha: float = -1,
gamma: float = 2,
reduction: str = "none",
) -> torch.Tensor:
"""
Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002.
Args:
inputs: A float tensor of arbitrary shape.
The predictions for each example.
targets: A float tensor with the same shape as inputs. Stores the binary
classification label for each element in inputs
(0 for the negative class and 1 for the positive class).
alpha: (optional) Weighting factor in range (0,1) to balance
positive vs negative examples. Default = -1 (no weighting).
gamma: Exponent of the modulating factor (1 - p_t) to
balance easy vs hard examples.
reduction: 'none' | 'mean' | 'sum'
'none': No reduction will be applied to the output.
'mean': The output will be averaged.
'sum': The output will be summed.
Returns:
Loss tensor with the reduction option applied.
"""
p = torch.sigmoid(inputs)
ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none")
p_t = p * targets + (1 - p) * (1 - targets)
loss = ce_loss * ((1 - p_t) ** gamma)
if alpha >= 0:
alpha_t = alpha * targets + (1 - alpha) * (1 - targets)
loss = alpha_t * loss
if reduction == "mean":
loss = loss.mean()
elif reduction == "sum":
loss = loss.sum()
return loss
| 13,802
|
def test_fullImport():
""" Test that we can import the full dataset. """
tensor, matrix, patient_data = form_tensor()
assert isinstance(tensor, np.ndarray)
assert isinstance(matrix, np.ndarray)
assert tensor.shape[0] == matrix.shape[0]
assert isinstance(patient_data, pd.DataFrame)
| 13,803
|
def test_liquidbulk_01():
"""Test to see if object initialisation works properly"""
import opentisim
Smallhydrogen = opentisim.liquidbulk.Vessel(**opentisim.liquidbulk.smallhydrogen_data)
assert Smallhydrogen.call_size == opentisim.liquidbulk.smallhydrogen_data['call_size']
assert Smallhydrogen.LOA == opentisim.liquidbulk.smallhydrogen_data['LOA']
assert Smallhydrogen.draft == opentisim.liquidbulk.smallhydrogen_data['draft']
assert Smallhydrogen.beam == opentisim.liquidbulk.smallhydrogen_data['beam']
| 13,804
|
def arcsin(x):
"""Return the inverse sine or the arcsin.
INPUTS
x (Variable object or real number)
RETURNS
if x is a Variable, then return a Variable with val and der.
if x is a real number, then return the value of arcsin(x).
EXAMPLES
>>> x = Variable(0, name='x')
>>> t = arcsin(x)
>>> print(t.val, t.der['x'])
0.0 1.0
"""
try:
val = np.arcsin(x.val)
ders = defaultdict(float)
sec_ders = defaultdict(float)
for key in x.der:
ders[key] += 1/((1 - x.val**2)**0.5) * (x.der[key])
sec_ders[key] += (x.val*x.der[key]**2-x.sec_der[key]*(x.val**2-1))/((1-x.val**2)**1.5)
return Variable(val, ders, sec_ders)
except AttributeError:
return np.arcsin(x)
| 13,805
|
def preprocessing(texts, words, label, coef=0.3, all_tasks=False, include_repeat=True, progressbar=True):
"""
the function returns the processed array for the Spacy standard
"""
train = []
enit = {}
assert 0 < coef <= 1, f"The argument must be in the range (0 < coef <= 1) --> {coef}"
if all_tasks:
words_f = unique(flatten(words, coef))
if coef == 1:
include_repeat = False
else:
assert len(texts) == len(words), f"Data must be same length: ({len(texts)}, {len(words)})"
print("\n\033[31mcoef is ignored because you are using all_tasks=False")
for i in tqdm(range((len(texts))), disable=not progressbar):
if all_tasks:
if include_repeat:
words_f = unique(chain(words_f, words[i]))
enit['entities'] = to_format(texts[i], words_f, label)
else:
enit['entities'] = to_format(texts[i], words[i], label)
train.append((texts[i], deepcopy(enit)))
return train
| 13,806
|
def rotate(
input,
angle,
axes=(1, 0),
reshape=True,
output=None,
order=3,
mode="constant",
cval=0.0,
prefilter=True,
*,
allow_float32=True,
):
"""Rotate an array.
The array is rotated in the plane defined by the two axes given by the
``axes`` parameter using spline interpolation of the requested order.
Args:
input (cupy.ndarray): The input array.
angle (float): The rotation angle in degrees.
axes (tuple of 2 ints): The two axes that define the plane of rotation.
Default is the first two axes.
reshape (bool): If ``reshape`` is True, the output shape is adapted so
that the input array is contained completely in the output. Default
is True.
output (cupy.ndarray or ~cupy.dtype): The array in which to place the
output, or the dtype of the returned array.
order (int): The order of the spline interpolation. If it is not given,
order 1 is used. It is different from :mod:`scipy.ndimage` and can
change in the future. The order has to be in the range 0-5.
mode (str): Points outside the boundaries of the input are filled
according to the given mode (``'constant'``, ``'nearest'``,
``'mirror'`` or ``'opencv'``). Default is ``'constant'``.
cval (scalar): Value used for points outside the boundaries of
the input if ``mode='constant'`` or ``mode='opencv'``. Default is
0.0
prefilter (bool): It is not used yet. It just exists for compatibility
with :mod:`scipy.ndimage`.
Returns:
cupy.ndarray or None:
The rotated input.
Notes
-----
This implementation handles boundary modes 'wrap' and 'reflect' correctly,
while SciPy prior to release 1.6.0 does not. So, if comparing to older
SciPy, some disagreement near the borders may occur.
For ``order > 1`` with ``prefilter == True``, the spline prefilter boundary
conditions are implemented correctly only for modes 'mirror', 'reflect'
and 'grid-wrap'.
.. seealso:: :func:`scipy.ndimage.zoom`
"""
_check_parameter("rotate", order, mode)
if mode == "opencv":
mode = "_opencv_edge"
input_arr = input
axes = list(axes)
if axes[0] < 0:
axes[0] += input_arr.ndim
if axes[1] < 0:
axes[1] += input_arr.ndim
if axes[0] > axes[1]:
axes = [axes[1], axes[0]]
if axes[0] < 0 or input_arr.ndim <= axes[1]:
raise ValueError("invalid rotation plane specified")
ndim = input_arr.ndim
rad = numpy.deg2rad(angle)
sin = math.sin(rad)
cos = math.cos(rad)
# determine offsets and output shape as in scipy.ndimage.rotate
rot_matrix = numpy.array([[cos, sin], [-sin, cos]])
img_shape = numpy.asarray(input_arr.shape)
in_plane_shape = img_shape[axes]
if reshape:
# Compute transformed input bounds
iy, ix = in_plane_shape
out_bounds = rot_matrix @ [[0, 0, iy, iy], [0, ix, 0, ix]]
# Compute the shape of the transformed input plane
out_plane_shape = (out_bounds.ptp(axis=1) + 0.5).astype(int)
else:
out_plane_shape = img_shape[axes]
out_center = rot_matrix @ ((out_plane_shape - 1) / 2)
in_center = (in_plane_shape - 1) / 2
output_shape = img_shape
output_shape[axes] = out_plane_shape
output_shape = tuple(output_shape)
matrix = numpy.identity(ndim)
matrix[axes[0], axes[0]] = cos
matrix[axes[0], axes[1]] = sin
matrix[axes[1], axes[0]] = -sin
matrix[axes[1], axes[1]] = cos
offset = numpy.zeros(ndim, dtype=float)
offset[axes] = in_center - out_center
matrix = cupy.asarray(matrix)
offset = cupy.asarray(offset)
return affine_transform(
input,
matrix,
offset,
output_shape,
output,
order,
mode,
cval,
prefilter,
allow_float32=allow_float32,
)
| 13,807
|
def default():
""" Run all default tasks to test, and build lib and docs. """
pass
| 13,808
|
def generate_url_fragment(title, blog_post_id):
"""Generates the url fragment for a blog post from the title of the blog
post.
Args:
title: str. The title of the blog post.
blog_post_id: str. The unique blog post ID.
Returns:
str. The url fragment of the blog post.
"""
lower_title = title.lower()
hyphenated_title = lower_title.replace(' ', '-')
lower_id = blog_post_id.lower()
return hyphenated_title + '-' + lower_id
| 13,809
|
def update_cluster(cluster, cluster_args, args,
api=None, path=None, session_file=None):
"""Updates cluster properties
"""
if api is None:
api = bigml.api.BigML()
message = dated("Updating cluster. %s\n" %
get_url(cluster))
log_message(message, log_file=session_file,
console=args.verbosity)
cluster = api.update_cluster(cluster, cluster_args)
check_resource_error(cluster, "Failed to update cluster: %s"
% cluster['resource'])
cluster = check_resource(cluster, api.get_cluster, query_string=FIELDS_QS)
if is_shared(cluster):
message = dated("Shared cluster link. %s\n" %
get_url(cluster, shared=True))
log_message(message, log_file=session_file, console=args.verbosity)
if args.reports:
report(args.reports, path, cluster)
return cluster
| 13,810
|
def calculate_FLOPs_scale(model, input_size, multiply_adds=False, use_gpu=False):
"""
forked from FishNet @ github
https://www.zhihu.com/question/65305385/answer/256845252
https://blog.csdn.net/u011501388/article/details/81061024
https://blog.csdn.net/xidaoliang/article/details/88191910
no bias: K^2 * IO * HW
multiply_adds : False in FishNet Paper, but True in DenseNet paper
"""
assert isinstance(model, torch.nn.Module)
USE_GPU = use_gpu and torch.cuda.is_available()
def conv_hook(self, input, output):
batch_size, input_channels, input_height, input_width = input[0].size()
output_channels, output_height, output_width = output[0].size()
kernel_ops = self.kernel_size[0] * self.kernel_size[1] * (self.in_channels / self.groups) * (
2 if multiply_adds else 1)
bias_ops = 1 if self.bias is not None else 0
params = output_channels * (kernel_ops + bias_ops)
flops = batch_size * params * output_height * output_width
list_conv.append(flops)
def deconv_hook(self, input, output):
batch_size, input_channels, input_height, input_width = input[0].size()
output_channels, output_height, output_width = output[0].size()
kernel_ops = self.kernel_size[0] * self.kernel_size[1] * (self.in_channels / self.groups) * (
2 if multiply_adds else 1)
bias_ops = 1 if self.bias is not None else 0
params = output_channels * (kernel_ops + bias_ops)
flops = batch_size * params * output_height * output_width
list_deconv.append(flops)
def linear_hook(self, input, output):
batch_size = input[0].size(0) if input[0].dim() == 2 else 1
weight_ops = self.weight.nelement() * (2 if multiply_adds else 1)
bias_ops = self.bias.nelement()
flops = batch_size * (weight_ops + bias_ops)
list_linear.append(flops)
def bn_hook(self, input, output):
list_bn.append(input[0].nelement())
def relu_hook(self, input, output):
list_relu.append(input[0].nelement())
def pooling_hook(self, input, output):
batch_size, input_channels, input_height, input_width = input[0].size()
output_channels, output_height, output_width = output[0].size()
kernel_ops = self.kernel_size * self.kernel_size
bias_ops = 0
params = output_channels * (kernel_ops + bias_ops)
flops = batch_size * params * output_height * output_width
list_pooling.append(flops)
def foo(net):
childrens = list(net.children())
if not childrens:
if isinstance(net, torch.nn.Conv2d):
net.register_forward_hook(conv_hook)
if isinstance(net, torch.nn.ConvTranspose2d):
net.register_forward_hook(deconv_hook)
if isinstance(net, torch.nn.Linear):
net.register_forward_hook(linear_hook)
if isinstance(net, torch.nn.BatchNorm2d):
net.register_forward_hook(bn_hook)
if isinstance(net, torch.nn.ReLU):
net.register_forward_hook(relu_hook)
if isinstance(net, torch.nn.MaxPool2d) or isinstance(net, torch.nn.AvgPool2d):
net.register_forward_hook(pooling_hook)
return
for c in childrens:
foo(c)
multiply_adds = multiply_adds
list_conv, list_deconv, list_bn, list_relu, list_linear, list_pooling = [], [], [], [], [], []
foo(model)
input = torch.rand(2, 3, input_size, input_size)
if USE_GPU:
input = input.cuda()
model = model.cuda()
_ = model(input)
total_flops = (sum(list_conv) + sum(list_deconv) + sum(list_linear)
+ sum(list_bn) + sum(list_relu) + sum(list_pooling))
print(' + Number of FLOPs: %.5fG' % (total_flops / 1e9 / 2))
| 13,811
|
def save_Ps_and_Ts(data_filename, Fs = 1000, f_range = (6,12)):
"""
Saves the indices corresponding to oscillatory peaks and trough into a new numpy file
"""
# Load data
x = np.load(data_filename)
# Calculate peaks and troughs
Ps, Ts = nonshape.findpt(x, f_range, Fs = Fs)
# Save peaks and troughs
save_dict = {'Ps':Ps, 'Ts':Ts}
for key in save_dict.keys():
filename_save = './out/'+key+'_'+os.path.basename(data_filename)
np.save(filename_save, save_dict[key])
| 13,812
|
def calcfirst(dfas, first, name):
"""Recursive function that mutates first."""
dfa = dfas[name]
first[name] = None # dummy to detect left recursion
state = dfa[0]
totalset = {}
overlapcheck = {}
for label, _ in state.arcs.items():
if label in dfas:
if label in first:
fset = first[label]
if fset is None:
raise ValueError("recursion for rule %r" % name)
else:
calcfirst(dfas, first, label)
fset = first[label]
totalset.update(fset)
overlapcheck[label] = fset
else:
totalset[label] = 1
overlapcheck[label] = {label: 1}
inverse = {}
for label, itsfirst in overlapcheck.items():
for symbol in itsfirst:
if symbol in inverse:
raise ValueError("rule %s is ambiguous; %s is in the"
" first sets of %s as well as %s" %
(name, symbol, label, inverse[symbol]))
inverse[symbol] = label
first[name] = totalset
| 13,813
|
def get_post_by_user(user_id: int, database: Session) -> Post:
"""
"""
post = database.query(Post).filter(
Post.user == user_id).order_by(Post.id.desc()).all()
logger.info("FOI RETORNADO DO BANCO AS SEGUINTES CONTRIBUIÇÕES: %s", post)
return post
| 13,814
|
def unformat_bundle(formattedBundle):
"""
Converts a push-ready bundle into a structured object by changing
stringified yaml of 'customResourceDefinitions', 'clusterServiceVersions',
and 'packages' into lists of objects.
Undoing the format helps simplify bundle validation.
:param formattedBundle: A push-ready bundle
"""
bundle = BuildCmd()._get_empty_bundle()
if 'data' not in formattedBundle:
return bundle
if 'customResourceDefinitions' in formattedBundle['data']:
customResourceDefinitions = yaml.safe_load(
formattedBundle['data']['customResourceDefinitions'])
if customResourceDefinitions:
bundle['data']['customResourceDefinitions'] = customResourceDefinitions
if 'clusterServiceVersions' in formattedBundle['data']:
clusterServiceVersions = yaml.safe_load(
formattedBundle['data']['clusterServiceVersions'])
if clusterServiceVersions:
bundle['data']['clusterServiceVersions'] = clusterServiceVersions
if 'packages' in formattedBundle['data']:
packages = yaml.safe_load(formattedBundle['data']['packages'])
if packages:
bundle['data']['packages'] = packages
return bundle
| 13,815
|
def supports_box_chars() -> bool:
"""Check if the encoding supports Unicode box characters."""
return all(map(can_encode, "│─└┘┌┐"))
| 13,816
|
def calculate_intersection_over_union(box_data, prior_boxes):
"""Calculate intersection over union of box_data with respect to
prior_boxes.
Arguments:
ground_truth_data: numpy array with shape (4) indicating x_min, y_min,
x_max and y_max coordinates of the bounding box.
prior_boxes: numpy array with shape (num_boxes, 4).
Returns:
intersections_over_unions: numpy array with shape (num_boxes) which
corresponds to the intersection over unions of box_data with respect
to all prior_boxes.
"""
x_min = box_data[0]
y_min = box_data[1]
x_max = box_data[2]
y_max = box_data[3]
prior_boxes_x_min = prior_boxes[:, 0]
prior_boxes_y_min = prior_boxes[:, 1]
prior_boxes_x_max = prior_boxes[:, 2]
prior_boxes_y_max = prior_boxes[:, 3]
# calculating the intersection
intersections_x_min = np.maximum(prior_boxes_x_min, x_min)
intersections_y_min = np.maximum(prior_boxes_y_min, y_min)
intersections_x_max = np.minimum(prior_boxes_x_max, x_max)
intersections_y_max = np.minimum(prior_boxes_y_max, y_max)
intersected_widths = intersections_x_max - intersections_x_min
intersected_heights = intersections_y_max - intersections_y_min
intersected_widths = np.maximum(intersected_widths, 0)
intersected_heights = np.maximum(intersected_heights, 0)
intersections = intersected_widths * intersected_heights
# calculating the union
prior_box_widths = prior_boxes_x_max - prior_boxes_x_min
prior_box_heights = prior_boxes_y_max - prior_boxes_y_min
prior_box_areas = prior_box_widths * prior_box_heights
box_width = x_max - x_min
box_height = y_max - y_min
ground_truth_area = box_width * box_height
unions = prior_box_areas + ground_truth_area - intersections
intersection_over_union = intersections / unions
return intersection_over_union
| 13,817
|
def get_report(analytics, start_date, end_date = 'today'):
"""Queries the Analytics Reporting API V4.
Args:
analytics: An authorized Analytics Reporting API V4 service object.
Returns: The Analytics Reporting API V4 response.
"""
return analytics.reports().batchGet(
body={
'reportRequests': [
{
'viewId': VIEW_ID,
'dateRanges': [{'startDate': start_date, 'endDate': end_date}],
'metrics': [{'expression': 'ga:userTimingValue'}],
'dimensions': [ {'name': 'ga:userTimingVariable'}]
}]
}
).execute()
| 13,818
|
def write_pinout_xml(pinout, out_xml=None):
"""
write the pinout dict to xml format with no attributes. this is verbose
but is the preferred xml format
"""
ar = []
for k in sort_alpha_num(pinout.keys()):
d = pinout[k]
d['number'] = k
# ar.append({'pin': d})
ar.append( d)
# x = dicttoxml(pinout, custom_root='pin_map', attr_type=True)
my_item_func = lambda x: 'pin'
# x = dicttoxml(ar, custom_root='pin_map', attr_type=False)
x = dicttoxml(ar, custom_root='pin_map', item_func=my_item_func, attr_type=False)
reparsed = minidom.parseString(x)
xml_pretty = reparsed.toprettyxml(indent=" ")
if out_xml != None:
fo = open(out_xml, "w")
fo.write(xml_pretty)
fo.close()
return xml_pretty
| 13,819
|
def get_solution(request, level=1):
"""Returns a render of answers.html"""
context = RequestContext(request)
cheat_message = '\\text{Ulovlig tegn har blitt brukt i svar}'
required_message = '\\text{Svaret ditt har ikke utfylt alle krav}'
render_to = 'game/answer.html'
if request.method == 'POST':
form = QuestionForm(request.POST)
if form.is_valid():
form_values = form.process()
template = Template.objects.get(pk=form_values['primary_key'])
user_answer = form_values['user_answer']
try:
disallowed = json.loads(template.disallowed)
except ValueError:
disallowed = []
try:
required = json.loads(template.required)
except ValueError:
required = []
context_dict = make_answer_context_dict(form_values)
if (cheat_check(user_answer, disallowed, form_values['variable_dictionary'].split('§'))) and\
(form_values['template_type'] == 'normal') and (context_dict['user_won']):
context_dict['answer'] = cheat_message
return render_to_response(render_to, context_dict, context)
elif (required_check(user_answer, required, form_values['variable_dictionary'].split('§'))) and \
(form_values['template_type'] == 'normal') and (context_dict['user_won']):
context_dict['answer'] = required_message
return render_to_response(render_to, context_dict, context)
if request.is_ajax():
new_user_rating, new_star = change_level_rating(template, request.user, context_dict['user_won'],
form_values['template_type'], level)
context_dict['chapter_id'] = request.POST['chapter_id']
context_dict['ulp'] = int(new_user_rating)
context_dict['new_star'] = new_star
context_dict['stars'] = get_user_stars_for_level(request.user, Level.objects.get(pk=level))
return render_to_response(render_to, context_dict, context)
else:
change_elo(template, request.user, context_dict['user_won'], form_values['template_type'])
render_to_response(render_to, context_dict, context)
else:
print(form.errors)
| 13,820
|
def build_UNIST_tree():
"""
This function returns a (linked) binary tree that contains (a simplified and fictitious version of)
the organisational structure of schools and departments at UNIST.
In particular, this function should return the following tree:
UNIST
--Engineering
----Management Engineering
------Big datastore
------Business process management
----Materials Engineering
------Wood
------Plastic
--Business
----Business Administration
"""
root = LinkedBinaryTree()
| 13,821
|
def get_work_log_queue():
""" json格式为::
{'func':'transform',
'kw':{ ... # 和前面task_queue相同
},
"runtime":{ # 队列运行相关信息
'created':12323423 #进入原始队列时间
'queue':'q01' # 是在哪个原子原子队列
'start':123213123 #转换开始时间
'end':123213123 #转换结束时间
'worker':'w01', # 转换器名
'thread':'131231', #
'return':-1, # 返回的错误代号, 0表示成功
'reason':'失败原因' # 详细的原因
}
}
"""
work__log_queue = "ztq:queue:worker_log"
return get_limit_queue(work__log_queue, 200)
| 13,822
|
def azure_project_train_status_handler(**kwargs):
"""
Listen on azure_training.models.Project change.
If a Project is created, create a Train(Training Status) as well.
"""
logger.info("Azure Project changed.")
logger.info("Checking...")
if 'sender' not in kwargs or kwargs['sender'] != Project:
logger.info("'sender' not in kwargs or kwargs['sender'] != Project")
logger.info("nothing to do")
return
if 'instance' not in kwargs:
logger.info("'instance' not in kwargs:'")
logger.info("Nothing to do")
return
instance = kwargs['instance']
if Train.objects.filter(project_id=instance.id).count() < 1:
Train.objects.update_or_create(
project_id=instance.id,
defaults={
"status": "ok",
"log": "Status : Has not configured",
"performance": ""
},
)
| 13,823
|
def is_first_buy(ka, ka1, ka2=None, pf=False):
"""确定某一级别一买
注意:如果本级别上一级别的 ka 不存在,无法识别本级别一买,返回 `无操作` !!!
一买识别逻辑:
1)必须:上级别最后一个线段标记和最后一个笔标记重合且为底分型;
2)必须:上级别最后一个向下线段内部笔标记数量大于等于6,且本级别最后一个线段标记为底分型;
3)必须:本级别向下线段背驰 或 本级别向下笔背驰;
4)辅助:下级别向下线段背驰 或 下级别向下笔背驰。
:param ka: KlineAnalyze
本级别
:param ka1: KlineAnalyze
上级别
:param ka2: KlineAnalyze
下级别,默认为 None
:param pf: bool
pf 为 precision first 的缩写, 控制是否使用 `高精度优先模式` ,默认为 False ,即 `高召回优先模式`。
在 `高精度优先模式` 下,会充分利用辅助判断条件提高识别准确率。
:return: dict
"""
detail = {
"标的代码": ka.symbol,
"操作提示": "无操作",
"出现时间": None,
"基准价格": None,
"其他信息": None
}
if not isinstance(ka1, KlineAnalyze):
return detail
# 上级别最后一个线段标记和最后一个笔标记重合且为底分型;
if len(ka1.xd) >= 2 and ka1.xd[-1]['xd'] == ka1.bi[-1]['bi'] \
and ka1.xd[-1]['fx_mark'] == ka1.bi[-1]['fx_mark'] == 'd':
bi_inside = [x for x in ka1.bi if ka1.xd[-2]['dt'] <= x['dt'] <= ka1.xd[-1]['dt']]
# 上级别最后一个向下线段内部笔标记数量大于等于6,且本级别最后一个线段标记为底分型;
if len(bi_inside) >= 6 and ka.xd[-1]['fx_mark'] == 'd':
# 本级别向下线段背驰 或 本级别向下笔背驰;
if (ka.xd_bei_chi() or
(ka.bi[-1]['fx_mark'] == 'd' and ka.bi_bei_chi())):
detail['操作提示'] = "一买"
detail['出现时间'] = ka.xd[-1]['dt']
detail['基准价格'] = ka.xd[-1]['xd']
if pf and detail["操作提示"] == "一买" and isinstance(ka2, KlineAnalyze):
# 下级别线段背驰 或 下级别笔背驰
if not ((ka2.xd[-1]['fx_mark'] == 'd' and ka2.xd_bei_chi()) or
(ka2.bi[-1]['fx_mark'] == 'd' and ka2.bi_bei_chi())):
detail['操作提示'] = "无操作"
return detail
| 13,824
|
def AddInitialRefugees(e, d, loc):
""" Add the initial refugees to a location, using the location name"""
num_refugees = int(d.get_field(loc.name, 0, FullInterpolation=True))
for i in range(0, num_refugees):
e.addAgent(location=loc)
| 13,825
|
def preprocess(path, l_pass=0.7, h_pass=0.01, bandpass=True, short_ch_reg=False, tddr=True, negative_correlation=False, verbose=False, return_all=False):
"""
Load raw data and preprocess
:param str path: path to the raw data
:param float l_pass: low pass frequency
:param float h_pass: high pass frequency
:param bool bandpass: apply bandpass filter
:param bool short_ch_reg: apply short channel regression
:param bool tddr: apply tddr
:param bool negative_correlation: apply negative correlation
:param bool verbose: print progress
:return: preprocessed data
"""
if verbose:
ic("Loading ", path)
raw_intensity = mne.io.read_raw_snirf(path, preload=True)
step_od = mne.preprocessing.nirs.optical_density(raw_intensity)
# sci = mne.preprocessing.nirs.scalp_coupling_index(raw_od, l_freq=0.7, h_freq=1.5)
# raw_od.info['bads'] = list(compress(raw_od.ch_names, sci < 0.5))
if verbose:
ic("Apply short channel regression.")
if short_ch_reg:
step_od = mne_nirs.signal_enhancement.short_channel_regression(step_od)
if verbose:
ic("Do temporal derivative distribution repair on:", step_od)
if tddr:
step_od = mne.preprocessing.nirs.tddr(step_od)
if verbose:
ic("Convert to haemoglobin with the modified beer-lambert law.")
step_haemo = beer_lambert_law(step_od, ppf=6)
if verbose:
ic("Apply further data cleaning techniques and extract epochs.")
if negative_correlation:
step_haemo = mne_nirs.signal_enhancement.enhance_negative_correlation(
step_haemo)
if not return_all:
if verbose:
ic("Separate the long channels and short channels.")
short_chs = get_short_channels(step_haemo)
step_haemo = get_long_channels(step_haemo)
if verbose:
ic("Bandpass filter on:", step_haemo)
if bandpass:
step_haemo = step_haemo.filter(
h_pass, l_pass, h_trans_bandwidth=0.3, l_trans_bandwidth=h_pass*0.25)
return step_haemo
| 13,826
|
def geomapi_To2d(*args):
"""
* To intersect a curve and a surface. This function builds (in the parametric space of the plane P) a 2D curve equivalent to the 3D curve C. The 3D curve C is considered to be located in the plane P. Warning The 3D curve C must be of one of the following types: - a line - a circle - an ellipse - a hyperbola - a parabola - a Bezier curve - a BSpline curve Exceptions Standard_NoSuchObject if C is not a defined type curve.
:param C:
:type C: Handle_Geom_Curve &
:param P:
:type P: gp_Pln
:rtype: Handle_Geom2d_Curve
"""
return _GeomAPI.geomapi_To2d(*args)
| 13,827
|
def validate(epoch, model, criterion, data_loader, tb_writer, args):
"""Routine to validate an epoch.
"""
model.eval()
# dataset loop
pbar = tqdm(enumerate(data_loader))
loss = 0.0
for batch_id, batch_data in pbar:
# retrieve data from loader and copy data to device
images = batch_data['images'].to(args.device)
labels = batch_data['labels'].to(args.device)
# inference model
outputs = model(images)
# compute the loss
loss += criterion(outputs, labels)
# print statistics at the end of the validation epoch
if args.tensorboard:
assert tb_writer is not None, "ERROR: tb_writer is None"
global_step = len(data_loader) * epoch + batch_id
tb_writer.add_scalar('val/loss', loss.detach(), global_step)
# update logger bar
pbar.set_description("## VALIDATION ## Epoch: {0} Batch: {1}/{2} Loss: {3:.4f}"
.format(epoch, batch_id, len(data_loader),
loss.detach()))
| 13,828
|
def play(
q_values, env, num_episodes, grid_cells, state_bounds,
suppress_print=False, episode_length=None
):
"""Renders gym environment under greedy policy.
The gym environment will be rendered and executed according to the greedy
policy induced by the state-action value function. NOTE: After you use an
environment to play you'll need to make a new environment instance to
use it again because the close function is called.
Args:
q_values (np.ndarray): State-action values, which is of dimension
(grid_cells, env.action_space.n).
env (gem.Env): Environment to interact with that hasn't been closed yet.
num_episodes (int): How many episode to run for.
grid_cells (tuple of ints): the ith value is the number of grid_cells
for ith dimension of state.
state_bounds (list of tuples): the ith tuple contains the min and max
value for ith dimension of state.
suppress_print (bool, optional): Suppress print statements about
current episode if True. Defaults to False.
episode_length (int, optional): #timesteps that counts as solving an
episode, also acts as max episode timesteps. Defaults to None.
"""
for i in range(num_episodes):
obv = env.reset()
t = 0
done = False
while not done:
if episode_length and t >= episode_length:
break
state = state_to_index(grid_cells, state_bounds, obv)
action = select_action(q_values, state, env, epsilon=0)
obv, reward, done, _ = env.step(action)
env.render()
t += 1
if not suppress_print:
print("episode", i, "lasted", t, "timesteps.")
# This is required to prevent the script from crashing after closing the
# window.
env.close()
| 13,829
|
def get_object_list():
"""Returns the object name list for APC2015.
Args:
None.
Returns:
objects (list): List of object name.
"""
pkg_path = rospkg.RosPack().get_path(PKG)
yaml_file = osp.join(pkg_path, 'data/object_list.yml')
with open(yaml_file) as f:
objects = yaml.load(f)
return objects
| 13,830
|
def write_spec_to_h5(specfile, h5file, h5path='/',
mode="a", overwrite_data=False,
link_type="hard", create_dataset_args=None):
"""Write content of a SpecFile in a HDF5 file.
:param specfile: Path of input SpecFile or :class:`SpecH5` object
:param h5file: Path of output HDF5 file or HDF5 file handle
(`h5py.File` object)
:param h5path: Target path in HDF5 file in which scan groups are created.
Default is root (``"/"``)
:param mode: Can be ``"r+"`` (read/write, file must exist),
``"w"`` (write, existing file is lost), ``"w-"`` (write, fail
if exists) or ``"a"`` (read/write if exists, create otherwise).
This parameter is ignored if ``h5file`` is a file handle.
:param overwrite_data: If ``True``, existing groups and datasets can be
overwritten, if ``False`` they are skipped. This parameter is only
relevant if ``file_mode`` is ``"r+"`` or ``"a"``.
:param link_type: ``"hard"`` (default) or ``"soft"``
:param create_dataset_args: Dictionary of args you want to pass to
``h5py.File.create_dataset``. This allows you to specify filters and
compression parameters. Don't specify ``name`` and ``data``.
These arguments don't apply to scalar datasets.
The structure of the spec data in an HDF5 file is described in the
documentation of :mod:`silx.io.spech5`.
"""
if not isinstance(specfile, SpecH5):
sfh5 = SpecH5(specfile)
else:
sfh5 = specfile
if not h5path.endswith("/"):
h5path += "/"
writer = SpecToHdf5Writer(h5path=h5path,
overwrite_data=overwrite_data,
link_type=link_type,
create_dataset_args=create_dataset_args)
if not isinstance(h5file, h5py.File):
# If h5file is a file path, open and close it
with h5py.File(h5file, mode) as h5f:
writer.write(sfh5, h5f)
else:
writer.write(sfh5, h5file)
| 13,831
|
def gtMakeTAKBlobMsg(callsign, text, aesKey=False):
"""
Assemble an ATAK plugin compatible chat message blob
(suitable for feeding to gtMakeAPIMsg() )
With optional AES encryption, if a key is provided
"""
body = (callsign + b': ' + text)[:230]
# Apply optional encryption (and base64 encoding only for chats)
if aesKey:
body = b64encode(aesEncrypt(body, aesKey))
return gtMakeGTABlobMsg(body, 'A')
| 13,832
|
def validate_json_with_extensions(value, rule_obj, path):
""" Performs the above match, but also matches a dict or a list. This it
just because it seems like you can't match a dict OR a list in pykwalify
"""
validate_extensions(value, rule_obj, path)
if not isinstance(value, (list, dict)):
raise BadSchemaError("Error at {} - expected a list or dict".format(path))
def nested_values(d):
if isinstance(d, dict):
for v in d.values():
if isinstance(v, dict):
for v_s in v.values():
yield v_s
else:
yield v
else:
yield d
if any(isinstance(i, ApproxScalar) for i in nested_values(value)):
# If this is a request data block
if not re.search(r"^/stages/\d/(response/body|mqtt_response/json)", path):
raise BadSchemaError(
"Error at {} - Cannot use a '!approx' in anything other than an expected http response body or mqtt response json".format(
path
)
)
return True
| 13,833
|
def artists_by_rating(formatter, albums):
"""Returns the artists sorted by decreasing mean album rating.
Only artists with more than 1 reviewed albums are considered.
"""
artist_tags = set([album["artist_tag"] for album in albums])
artists = []
# build the list of artists and compute their ratings
for artist_tag in artist_tags:
specific_albums = [x for x in albums if x["artist_tag"] == artist_tag]
if len(specific_albums) > 1:
rating = compute_artist_rating([x["rating"] for x in specific_albums])
artists.append(
{
"artist_tag": artist_tag,
"artist": specific_albums[0]["artist"],
"rating": rating,
}
)
sorted_artists = sorted(
artists, key=lambda x: (x["rating"], x["artist"]), reverse=True
)
return formatter.parse_list(sorted_artists, formatter.format_artist_rating)
| 13,834
|
def st_max(*args):
"""Max function.
Parameters
----------
x : float, int, MissingValue instance, or None
(2 or more such inputs allowed)
Returns
-------
max(x1, x2, ...) if any x is non-missing (with missing values ignored).
Otherwise, MISSING (".") returned.
"""
if len(args) <= 1:
raise TypeError("need at least 2 arguments")
vectors = [a for a in args if isinstance(a, StataVarVals)]
scalars = [
a for a in args if not isinstance(a, StataVarVals) and not _is_missing(a)
]
if len(vectors) != 0:
sca_max = max(scalars) if not len(scalars) == 0 else None
return StataVarVals([_max(*v, sub_max=sca_max) for v in zip(*vectors)])
elif len(scalars) == 0:
return mv
return max(scalars)
| 13,835
|
def build_vocab(data_root: str, dataset: str, data_select_ratio: float, vocab_limit_size: int, save_root: str):
"""Build vocab for dataset with random selected client
Args:
data_root (str): string path for data saving root
dataset (str): string of dataset name to build vocab
data_select_ratio (float): random select clients ratio
vocab_limit_size (int): limit max number of vocab size
save_root (str): string of path to save built vocab
Returns:
save vocab.pck for dataset
"""
save_root = Path(save_root)
save_root.mkdir(parents=True, exist_ok=True)
save_file_path = save_root / f"{dataset}_vocab.pickle"
if save_file_path.exists():
print('There has been a built vocab file for {} dataset in {}, '
'please delete it before re-building'.format(dataset, Path))
return
data_sample = DataSample(dataset=dataset, data_root=data_root, select_ratio=data_select_ratio)
vocab = Vocab(origin_data_tokens=data_sample.data_token, vocab_limit_size=vocab_limit_size)
with open(save_file_path, "wb") as save_file:
pickle.dump(vocab, save_file)
print('sample data to build vocab for {} dataset is completed!'.format(dataset))
| 13,836
|
def is_button_controller(device: Device) -> bool:
"""Return true if the device is a stateless button controller."""
return (
CAP_PUSHABLE_BUTTON in device.capabilities
or CAP_HOLDABLE_BUTTON in device.capabilities
or CAP_DOUBLE_TAPABLE_BUTTON in device.capabilities
)
| 13,837
|
def gen_acq_noddi(in_file, epi_params, alt_epi_params, readout, readout_alt):
"""
This is a function to generate the FSL topup acq.txt file
:param in_file:
:param epi_params:
:param alt_epi_params:
:param readout:
:param readout_alt:
:return:
"""
import numpy as np
import os
import nibabel as nb
out_file = os.path.abspath('acq.txt')
vols = nb.load(in_file).get_data().shape[-1]
arr = np.ones([vols, 4])
for i in range(vols):
if i < vols/2:
if epi_params['enc_dir'] == 'y-':
arr[i, :] = np.array((0, -1, 0, readout))
elif epi_params['enc_dir'] == 'y':
arr[i, :] = np.array((0, 1, 0, readout))
elif epi_params['enc_dir'] == 'x':
arr[i, :] = np.array((0, 1, 0, readout))
elif epi_params['enc_dir'] == 'x-':
arr[i, :] = np.array((0, -1, 0, readout))
elif epi_params['enc_dir'] == 'z':
arr[i, :] = np.array((0, 1, 0, readout))
elif epi_params['enc_dir'] == 'x-':
arr[i, :] = np.array((0, -1, 0, readout))
else:
if alt_epi_params['enc_dir_alt'] == 'y-':
arr[i, :] = np.array((0, -1, 0, readout_alt))
elif alt_epi_params['enc_dir_alt'] == 'y':
arr[i, :] = np.array((0, 1, 0, readout_alt))
elif alt_epi_params['enc_dir_alt'] == 'x':
arr[i, :] = np.array((0, 1, 0, readout_alt))
elif alt_epi_params['enc_dir_alt'] == 'x-':
arr[i, :] = np.array((0, -1, 0, readout_alt))
elif alt_epi_params['enc_dir_alt'] == 'z':
arr[i, :] = np.array((0, 1, 0, readout_alt))
elif alt_epi_params['enc_dir_alt'] == 'x-':
arr[i, :] = np.array((0, -1, 0, readout_alt))
np.savetxt(out_file, arr)
return out_file
| 13,838
|
def list_parts(bucket, key, upload_id):
"""Lists the parts that have been uploaded for a specific multipart upload.
This operation must include the upload ID, which you obtain by
sending the initiate multipart upload request (see
CreateMultipartUpload ). This request returns a maximum of 1,000
uploaded parts. The default number of parts returned is 1,000
parts. You can restrict the number of parts returned by specifying
the max-parts request parameter. If your multipart upload consists
of more than 1,000 parts, the response returns an IsTruncated
field with the value of true, and a NextPartNumberMarker
element. In subsequent ListParts requests you can include the
part-number-marker query string parameter and set its value to the
NextPartNumberMarker field value from the previous response.
See:
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/s3.html#S3.Client.list_parts
Request Syntax
--------------
response = client.list_parts(
Bucket='string',
Key='string',
MaxParts=123,
PartNumberMarker=123,
UploadId='string',
RequestPayer='requester',
ExpectedBucketOwner='string'
)
Response Syntax
---------------
{
'AbortDate': datetime(2015, 1, 1),
'AbortRuleId': 'string',
'Bucket': 'string',
'Key': 'string',
'UploadId': 'string',
'PartNumberMarker': 123,
'NextPartNumberMarker': 123,
'MaxParts': 123,
'IsTruncated': True|False,
'Parts': [
{
'PartNumber': 123,
'LastModified': datetime(2015, 1, 1),
'ETag': 'string',
'Size': 123
},
],
'Initiator': {
'ID': 'string',
'DisplayName': 'string'
},
'Owner': {
'DisplayName': 'string',
'ID': 'string'
},
'StorageClass': 'STANDARD'|'REDUCED_REDUNDANCY'|'STANDARD_IA'|'ONEZONE_IA'|'INTELLIGENT_TIERING'|'GLACIER'|'DEEP_ARCHIVE'|'OUTPOSTS',
'RequestCharged': 'requester'
}
Parameters
----------
bucket : str
Name of the S3 bucket
key : str
Name of the key for the multipart upload
upload_id : str
The unique identifier returned on creation of the multipart upload
Returns
-------
response : obj
A requests.Response object
"""
client = boto3.client("s3")
try:
response = client.list_parts(
Bucket=bucket,
Key=key,
UploadId=upload_id,
)
logger.info(
f"Listed parts for multipart upload {upload_id} for key {key} in bucket {bucket}"
)
except Exception as e:
logger.error(
f"Could not list parts for multipart upload {upload_id} for key {key} in bucket {bucket}: {e}"
)
return response
| 13,839
|
def leap_year():
"""
This functions seeks to return a leap year after user input << integer(4).
Rules for a leap year:
As you surely know, due to some astronomical reasons, years may be leap or common.
The former are 366 days long, while the latter are 365 days long.
Since the introduction of the Gregorian calendar (in 1582), the following rule is used to determine the kind of year:
-->if the year number isn't divisible by four, it's a common year;
-->otherwise, if the year number isn't divisible by 100, it's a leap year;
-->otherwise, if the year number isn't divisible by 400, it's a common year;
-->otherwise, it's a leap year.
:return: Year --> Integer
"""
year = int(input("Enter a year: "))
mess_1 = 'It\'s a common year!'
mess_2 = 'It\'s a leap year!'
if year <= 1582:
return f'{year} does not fall under Gregorian Calendar!!'
elif year % 4 != 0:
return mess_1
elif year % 100 != 0:
return mess_2
elif year % 400 != 0:
return mess_1
else:
return mess_2
| 13,840
|
def parse(files, **kwargs):
"""Parse all BAM files."""
parsed = []
if kwargs["meta"].has_field("base_coverage"):
cov_range = kwargs["meta"].field_meta("base_coverage")["range"]
else:
cov_range = [math.inf, -math.inf]
if kwargs["meta"].has_field("read_coverage"):
read_cov_range = kwargs["meta"].field_meta("read_coverage")["range"]
else:
read_cov_range = [math.inf, -math.inf]
names = base_names(files)
for file in names:
if ".json" in file:
fields = parse_json_cov(
file, **kwargs, cov_range=cov_range, read_cov_range=read_cov_range
)
else:
fields = parse_bam(
file, **kwargs, cov_range=cov_range, read_cov_range=read_cov_range
)
if "cov" in fields:
parsed.append(fields["cov"])
cov_range = fields["cov_range"]
if "y" not in kwargs["meta"].plot:
kwargs["meta"].plot.update({"y": fields["cov_id"]})
if "read_cov" in fields:
parsed.append(fields["read_cov"])
read_cov_range = fields["read_cov_range"]
return parsed
| 13,841
|
def check_latest_version():
""" checks for the latest version of cumulusci from pypi, max once per hour """
check = True
with timestamp_file() as f:
timestamp = float(f.read() or 0)
delta = time.time() - timestamp
check = delta > 3600
if check:
try:
latest_version = get_latest_final_version()
except requests.exceptions.RequestException as e:
click.echo("Error checking cci version:", err=True)
click.echo(str(e), err=True)
return
result = latest_version > get_installed_version()
if result:
click.echo(
f"""An update to CumulusCI is available. To install the update, run this command: {get_cci_upgrade_command()}""",
err=True,
)
| 13,842
|
def test_username_match(string: str) -> None:
"""Test that the username regex matches correct strings."""
assert USERNAME.fullmatch(string)
| 13,843
|
def login(request):
"""Login view for GET requests."""
logged_in = request.authenticated_userid is not None
if logged_in:
return {'logged_in': True,
'form_enabled': False,
'status': u'Already logged in',
'status_type': u'info'}
status = u''
status_type = u''
return {
'form_enabled': True,
'status_type': status_type,
'status': status,
'logged_in': False,
'username': request.params.get('username', u''),
}
| 13,844
|
def of_type(_type, value_1, *args) -> bool:
"""
Check if a collection of values are of the same type.
Parameters:
_type (any): The type to check for.
value_1 (any): The first value to check.
*args (any): Rest of values to check against given type.
Returns:
(bool) whether or not all inputs of given type.
"""
all_of_type = isinstance(value_1, _type)
i = len(args)
while i > 0 and all_of_type != False:
all_of_type = isinstance(args[i-1], _type)
i -= 1
return all_of_type
| 13,845
|
def configuration(parent_package='', top_path=None):
"""[Placeholder].
Parameters
----------
parent_package :
top_path :
Returns
-------
configuration :
"""
build_path = build_mlpack()
config = Configuration('mlpack', parent_package, top_path)
libraries = ['mlpack', 'boost_serialization']
if os.name == 'posix':
libraries.append('m')
for pyx in ['_arma_numpy.pyx', '_det.pyx']:
config.add_extension(
pyx.split('.')[0],
sources=[pyx],
language='c++',
include_dirs=[numpy.get_include(), os.path.join(build_path, 'include')],
# Needed for arma_numpy.pyx
library_dirs=[os.path.join(build_path, 'lib')],
libraries=libraries,
extra_compile_args=('-DBINDING_TYPE=BINDING_TYPE_PYX '
'-std=c++11 -Wall -Wextra -ftemplate-depth=1000 '
'-O3 -fopenmp').split(' '),
extra_link_args=['-fopenmp'],
undef_macros=[] if len("") == 0 else ''.split(';')
)
# Cythonize files (i.e. create .cpp files and return cpp sources)
config.ext_modules = cythonize(config.ext_modules)
config.add_subpackage('tests')
return config
| 13,846
|
def read_config(path):
"""
Reads the Kong config file (YAML).
"""
if path is None:
raise Exception(
"empty path provided. please provide a path using `--config=<config.yml>`"
)
with open(path, "r") as stream:
try:
return yaml.safe_load(stream)
except yaml.YAMLError as exc:
raise exc
| 13,847
|
def generate_grid_world(grid, prob, pos_rew, neg_rew, gamma=.9, horizon=100):
"""
This Grid World generator requires a .txt file to specify the
shape of the grid world and the cells. There are five types of cells: 'S' is
the starting position where the agent is; 'G' is the goal state; '.' is a
normal cell; '*' is a hole, when the agent steps on a hole, it receives a
negative reward and the episode ends; '#' is a wall, when the agent is
supposed to step on a wall, it actually remains in its current state. The
initial states distribution is uniform among all the initial states
provided.
The grid is expected to be rectangular.
Args:
grid (str): the path of the file containing the grid structure;
prob (float): probability of success of an action;
pos_rew (float): reward obtained in goal states;
neg_rew (float): reward obtained in "hole" states;
gamma (float, .9): discount factor;
horizon (int, 100): the horizon.
Returns:
A FiniteMDP object built with the provided parameters.
"""
grid_map, cell_list = parse_grid(grid)
p = compute_probabilities(grid_map, cell_list, prob)
r = compute_reward(grid_map, cell_list, pos_rew, neg_rew)
mu = compute_mu(grid_map, cell_list)
return FiniteMDP(p, r, mu, gamma, horizon)
| 13,848
|
def sqrt_quadrature_scheme(N_poly, N_poly_log):
""" Returns quadrature rule that is exact on 0^1 for
p(x) + q(x)sqrt(x) for deg(p) <= N_poly and deg(q) <= N_poly_sqrt.
"""
nodes, weights = sqrt_quadrature_rule(N_poly, N_poly_log)
return QuadScheme1D(nodes, weights)
| 13,849
|
def check_dataset_update(args, dataset):
"""Checks if the dataset information must be updated.
"""
return (args.dataset_attributes or
args.import_fields or
(args.shared_flag and r.shared_changed(args.shared, dataset)) or
(((hasattr(args, 'max_categories') and args.max_categories > 0) or
(hasattr(args, 'multi_label') and args.multi_label)) and
args.objective_field))
| 13,850
|
def get_package_extras(provider_package_id: str) -> Dict[str, List[str]]:
"""
Finds extras for the package specified.
:param provider_package_id: id of the package
"""
if provider_package_id == 'providers':
return {}
with open(DEPENDENCIES_JSON_FILE) as dependencies_file:
cross_provider_dependencies: Dict[str, List[str]] = json.load(dependencies_file)
extras_dict = (
{
module: [get_pip_package_name(module)]
for module in cross_provider_dependencies[provider_package_id]
}
if cross_provider_dependencies.get(provider_package_id)
else {}
)
provider_yaml_dict = get_provider_yaml(provider_package_id)
additional_extras = provider_yaml_dict.get('additional-extras')
if additional_extras:
for key in additional_extras:
if key in extras_dict:
extras_dict[key].append(additional_extras[key])
else:
extras_dict[key] = additional_extras[key]
return extras_dict
| 13,851
|
def e(a: float, b: float) -> float:
"""
e = sqrt(1 + (b * b) / (a * a))
:param a: semi-major axis
:type a: float
:param b: semi-minor axis
:type b: float
:return: eccentricity
:rtype: float
"""
return np.sqrt(1 + (b * b) / (a * a))
| 13,852
|
def remove_extra_citation_metadata(graph) -> None:
"""Remove superfluous metadata associated with a citation (that isn't the db/id).
Best practice is to add this information programmatically.
"""
for u, v, k in graph.edges(keys=True):
if CITATION not in graph[u][v][k]:
continue
for key in list(graph[u][v][k][CITATION]):
if key not in _CITATION_KEEP_KEYS:
del graph[u][v][k][CITATION][key]
| 13,853
|
def parse_note(path: Path) -> dict:
""" convert note in plain text to a dictionary.
Line #1 ~ #5 are meta data of the note.
Line #9 to end is the body.
"""
header_line_number = 5
body_start_line = 9
res = {}
with open(path) as f:
for x in range(header_line_number):
the_line = next(f).strip()
if the_line.endswith(':'):
the_line += ' ' # fix 'Tags: ' striped to 'Tags:' problem
header_sections = the_line.split(': ')
assert len(header_sections) == 2, f'Please fix header {the_line} of note {path}'
res[header_sections[0]] = header_sections[1]
body = sh.sed('-n', f'{body_start_line},$p', path).stdout.decode('utf-8')
res['body'] = body
return res
| 13,854
|
def get_previous_sle_for_warehouse(last_sle, exclude_current_voucher=False):
"""get stock ledger entries filtered by specific posting datetime conditions"""
last_sle['time_format'] = '%H:%i:%s'
if not last_sle.get("posting_date"):
last_sle["posting_date"] = "1900-01-01"
if not last_sle.get("posting_time"):
last_sle["posting_time"] = "00:00"
sle = frappe.db.sql("""
select *, timestamp(posting_date, posting_time) as "timestamp"
from `tabStock Ledger Entry`
where item_code = %(item_code)s
and warehouse = %(warehouse)s
and is_cancelled = 0
and timestamp(posting_date, time_format(posting_time, %(time_format)s)) < timestamp(%(posting_date)s, time_format(%(posting_time)s, %(time_format)s))
order by timestamp(posting_date, posting_time) desc, creation desc
limit 1
for update""", last_sle, as_dict=1)
return sle[0] if sle else frappe._dict()
| 13,855
|
def write_visfile(discr, io_fields, visualizer, vizname,
step=0, t=0, overwrite=False, vis_timer=None):
"""Write VTK output for the fields specified in *io_fields*.
Parameters
----------
visualizer:
A :class:`meshmode.discretization.visualization.Visualizer`
VTK output object.
io_fields:
List of tuples indicating the (name, data) for each field to write.
"""
from contextlib import nullcontext
from mirgecom.io import make_rank_fname, make_par_fname
comm = discr.mpi_communicator
rank = 0
if comm:
rank = comm.Get_rank()
rank_fn = make_rank_fname(basename=vizname, rank=rank, step=step, t=t)
if rank == 0:
import os
viz_dir = os.path.dirname(rank_fn)
if viz_dir and not os.path.exists(viz_dir):
os.makedirs(viz_dir)
if comm:
comm.barrier()
if vis_timer:
ctm = vis_timer.start_sub_timer()
else:
ctm = nullcontext()
with ctm:
visualizer.write_parallel_vtk_file(
comm, rank_fn, io_fields,
overwrite=overwrite,
par_manifest_filename=make_par_fname(
basename=vizname, step=step, t=t
)
)
| 13,856
|
def forest_str(graph, with_labels=True, sources=None, write=None, ascii_only=False):
"""
Creates a nice utf8 representation of a directed forest
Parameters
----------
graph : nx.DiGraph | nx.Graph
Graph to represent (must be a tree, forest, or the empty graph)
with_labels : bool
If True will use the "label" attribute of a node to display if it
exists otherwise it will use the node value itself. Defaults to True.
sources : List
Mainly relevant for undirected forests, specifies which nodes to list
first. If unspecified the root nodes of each tree will be used for
directed forests; for undirected forests this defaults to the nodes
with the smallest degree.
write : callable
Function to use to write to, if None new lines are appended to
a list and returned. If set to the `print` function, lines will
be written to stdout as they are generated. If specified,
this function will return None. Defaults to None.
ascii_only : Boolean
If True only ASCII characters are used to construct the visualization
Returns
-------
str | None :
utf8 representation of the tree / forest
Example
-------
>>> graph = nx.balanced_tree(r=2, h=3, create_using=nx.DiGraph)
>>> print(nx.forest_str(graph))
╙── 0
├─╼ 1
│ ├─╼ 3
│ │ ├─╼ 7
│ │ └─╼ 8
│ └─╼ 4
│ ├─╼ 9
│ └─╼ 10
└─╼ 2
├─╼ 5
│ ├─╼ 11
│ └─╼ 12
└─╼ 6
├─╼ 13
└─╼ 14
>>> graph = nx.balanced_tree(r=1, h=2, create_using=nx.Graph)
>>> print(nx.forest_str(graph))
╙── 0
└── 1
└── 2
>>> print(nx.forest_str(graph, ascii_only=True))
+-- 0
L-- 1
L-- 2
"""
import networkx as nx
printbuf = []
if write is None:
_write = printbuf.append
else:
_write = write
# Define glphys
# Notes on available box and arrow characters
# https://en.wikipedia.org/wiki/Box-drawing_character
# https://stackoverflow.com/questions/2701192/triangle-arrow
if ascii_only:
glyph_empty = "+"
glyph_newtree_last = "+-- "
glyph_newtree_mid = "+-- "
glyph_endof_forest = " "
glyph_within_forest = ": "
glyph_within_tree = "| "
glyph_directed_last = "L-> "
glyph_directed_mid = "|-> "
glyph_undirected_last = "L-- "
glyph_undirected_mid = "|-- "
else:
glyph_empty = "╙"
glyph_newtree_last = "╙── "
glyph_newtree_mid = "╟── "
glyph_endof_forest = " "
glyph_within_forest = "╎ "
glyph_within_tree = "│ "
glyph_directed_last = "└─╼ "
glyph_directed_mid = "├─╼ "
glyph_undirected_last = "└── "
glyph_undirected_mid = "├── "
if len(graph.nodes) == 0:
_write(glyph_empty)
else:
if not nx.is_forest(graph):
raise nx.NetworkXNotImplemented("input must be a forest or the empty graph")
is_directed = graph.is_directed()
succ = graph.succ if is_directed else graph.adj
if sources is None:
if is_directed:
# use real source nodes for directed trees
sources = [n for n in graph.nodes if graph.in_degree[n] == 0]
else:
# use arbitrary sources for undirected trees
sources = [
min(cc, key=lambda n: graph.degree[n])
for cc in nx.connected_components(graph)
]
# Populate the stack with each source node, empty indentation, and mark
# the final node. Reverse the stack so sources are popped in the
# correct order.
last_idx = len(sources) - 1
stack = [(node, "", (idx == last_idx)) for idx, node in enumerate(sources)][
::-1
]
seen = set()
while stack:
node, indent, islast = stack.pop()
if node in seen:
continue
seen.add(node)
if not indent:
# Top level items (i.e. trees in the forest) get different
# glyphs to indicate they are not actually connected
if islast:
this_prefix = indent + glyph_newtree_last
next_prefix = indent + glyph_endof_forest
else:
this_prefix = indent + glyph_newtree_mid
next_prefix = indent + glyph_within_forest
else:
# For individual tree edges distinguish between directed and
# undirected cases
if is_directed:
if islast:
this_prefix = indent + glyph_directed_last
next_prefix = indent + glyph_endof_forest
else:
this_prefix = indent + glyph_directed_mid
next_prefix = indent + glyph_within_tree
else:
if islast:
this_prefix = indent + glyph_undirected_last
next_prefix = indent + glyph_endof_forest
else:
this_prefix = indent + glyph_undirected_mid
next_prefix = indent + glyph_within_tree
if with_labels:
label = graph.nodes[node].get("label", node)
else:
label = node
_write(this_prefix + str(label))
# Push children on the stack in reverse order so they are popped in
# the original order.
children = [child for child in succ[node] if child not in seen]
for idx, child in enumerate(children[::-1], start=1):
islast_next = idx <= 1
try_frame = (child, next_prefix, islast_next)
stack.append(try_frame)
if write is None:
# Only return a string if the custom write function was not specified
return "\n".join(printbuf)
| 13,857
|
def rotated_shower(shower, alt, az):
"""
Return a rotated shower object from a shower object and a direction (alt, az)
Parameters
----------
shower: shower class object
Returns
-------
copy of the given shower but rotated
"""
rot_shower = copy(shower)
rot_shower.particles = shower_array_rot(shower.particles, shower.alt, shower.az)
return rot_shower
| 13,858
|
def write_output_report(dataframe):
"""Report workspace set-up statuses and create output tsv file from provided dataframe."""
# create timestamp and use to label output file
timestamp = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
output_filename = f"{timestamp}_workspaces_published_status.tsv"
dataframe.to_csv(output_filename, sep="\t", index=False)
# count success and failed workspaces and report to stdout
successes = dataframe.final_workspace_status.str.count("Success").sum()
fails = dataframe.final_workspace_status.str.count("Failed").sum()
total = successes + fails
print(f"Number of workspaces passed set-up: {successes}/{total}")
print(f"Number of workspaces failed set-up: {fails}/{total}")
print(f"All workspace set-up (success or fail) details available in output file: {output_filename}")
| 13,859
|
def cv_project(c):
"""Create CV project from cookiecutter
"""
with c.cd(dir_path):
c.run(
f"cookiecutter cvbpcc --no-input type=cv project_name={cc_project_name}",
pty=True,
)
_fake_update(os.path.join(dir_path, cc_project_name))
| 13,860
|
def summary(clf, X, y, xlabels=None):
"""
Output summary statistics for a fitted regression model.
Parameters
----------
clf : sklearn.linear_model
A scikit-learn linear model classifier with a `predict()` method.
X : numpy.ndarray
Training data used to fit the classifier.
y : numpy.ndarray
Target training values, of shape = [n_samples].
xlabels : list, tuple
The labels for the predictors.
"""
# Check and/or make xlabels
ncols = X.shape[1]
if xlabels is None:
xlabels = np.array(
['x{0}'.format(i) for i in range(1, ncols + 1)], dtype='str')
elif isinstance(xlabels, (tuple, list)):
xlabels = np.array(xlabels, dtype='str')
# Make sure dims of xlabels matches dims of X
if xlabels.shape[0] != ncols:
raise AssertionError(
"Dimension of xlabels {0} does not match "
"X {1}.".format(xlabels.shape, X.shape))
# Create data frame of coefficient estimates and associated stats
coef_df = pd.DataFrame(
index=['_intercept'] + list(xlabels),
columns=['Estimate', 'Std. Error', 't value', 'p value']
)
coef_df['Estimate'] = np.concatenate(
(np.round(np.array([clf.intercept_]), 6), np.round((clf.coef_), 6)))
coef_df['Std. Error'] = np.round(coef_se(clf, X, y), 6)
coef_df['t value'] = np.round(coef_tval(clf, X, y), 4)
coef_df['p value'] = np.round(coef_pval(clf, X, y), 6)
# Create data frame to summarize residuals
resids = residuals(clf, X, y, r_type='raw')
resids_df = pd.DataFrame({
'Min': pd.Series(np.round(resids.min(), 4)),
'1Q': pd.Series(np.round(np.percentile(resids, q=25), 4)),
'Median': pd.Series(np.round(np.median(resids), 4)),
'3Q': pd.Series(np.round(np.percentile(resids, q=75), 4)),
'Max': pd.Series(np.round(resids.max(), 4)),
}, columns=['Min', '1Q', 'Median', '3Q', 'Max'])
# Output results
print("Residuals:")
print(resids_df.to_string(index=False))
print('\n')
print('Coefficients:')
print(coef_df.to_string(index=True))
print('---')
print('R-squared: {0:.5f}, Adjusted R-squared: {1:.5f}'.format(
metrics.r2_score(y, clf.predict(X)), adj_r2_score(clf, X, y)))
print('F-statistic: {0:.2f} on {1} features'.format(
f_stat(clf, X, y), ncols))
| 13,861
|
def angle2circle(angles):
"""from degree to radians multipled by 2"""
return np.deg2rad(2 * (np.array(angles) + 7.5))
| 13,862
|
def test_string():
""" Test incomplete string """
inp = load('js/incomplete_string.js')
exp = load('js/incomplete_string.min.js')
# save('js/incomplete_string.min.js', py_jsmin(inp))
assert py_jsmin(inp) == exp
assert py_jsmin2(inp) == exp
assert c_jsmin(inp) == exp
inp = inp.decode('latin-1')
exp = exp.decode('latin-1')
assert py_jsmin(inp) == exp
assert py_jsmin2(inp) == exp
assert c_jsmin(inp) == exp
| 13,863
|
def _make_source(cls_source: str, cls_name: str, instance_method: str):
"""Converts a class source to a string including necessary imports.
Args:
cls_source (str): A string representing the source code of a user-written class.
cls_name (str): The name of the class cls_source represents.
instance_method (str): The method within the class that should be called from __main__
Returns:
A string representing a user-written class that can be written to a file in
order to yield an inner script for the ModelBuilder SDK. The only difference
between the user-written code and the string returned by this method is that
the user has the option to specify a method to call from __main__.
"""
src = "\n".join(["import torch", "import pandas as pd", cls_source])
src = src + "if __name__ == '__main__':\n" + f"\t{cls_name}().{instance_method}()"
return src
| 13,864
|
def prepend_pass_statement(line: str) -> str:
"""Prepend pass at indent level and comment out the line."""
colno = num_indented(line)
right_side = line[colno:]
indent = " " * colno
return indent + "pass # " + right_side
| 13,865
|
def main():
"""Start execution of the script"""
MiscUtil.PrintInfo("\n%s (PyMOL v%s; %s) Starting...\n" % (ScriptName, pymol.cmd.get_version()[1], time.asctime()))
(WallClockTime, ProcessorTime) = MiscUtil.GetWallClockAndProcessorTime()
# Retrieve command line arguments and options...
RetrieveOptions()
# Process and validate command line arguments and options...
ProcessOptions()
# Perform actions required by the script...
CalculatePhysicochemicalProperties()
MiscUtil.PrintInfo("\n%s: Done...\n" % ScriptName)
MiscUtil.PrintInfo("Total time: %s" % MiscUtil.GetFormattedElapsedTime(WallClockTime, ProcessorTime))
| 13,866
|
def init_session_values():
"""
Start with some reasonable defaults for date and time ranges.
Note this must be run in app context ... can't call from main.
"""
# Default date span = tomorrow to 1 week from now
now = arrow.now('local') # We really should be using tz from browser
tomorrow = now.replace(days=+1)
nextweek = now.replace(days=+7)
flask.session["begin_date"] = tomorrow.floor('day').isoformat()
flask.session["end_date"] = nextweek.ceil('day').isoformat()
flask.session["daterange"] = "{} - {}".format(
tomorrow.format("MM/DD/YYYY"),
nextweek.format("MM/DD/YYYY"))
| 13,867
|
def clear_cache(user=None, doctype=None):
"""clear cache"""
import frappe.sessions
if doctype:
import frappe.model.meta
frappe.model.meta.clear_cache(doctype)
reset_metadata_version()
elif user:
frappe.sessions.clear_cache(user)
else: # everything
import translate
frappe.sessions.clear_cache()
translate.clear_cache()
reset_metadata_version()
frappe.local.role_permissions = {}
| 13,868
|
def download_spot_by_dates(start=datetime(2011, 1, 1)):
"""
下载数据,存储为csv文件
:param start: 2011-01-01 最早数据
:return: True 下载文件 False 没有下载文件
"""
file_index = get_download_file_index(SPREAD_DIR, start=start)
if file_index.empty:
return False
for date in file_index:
date_str = date.strftime('%Y-%m-%d')
file_path = SPREAD_DIR / '{}.csv'.format(date_str)
if file_path.exists():
continue
table = download_spot_by_date(date_str)
if len(table) != 0:
print(date)
spread_df = pd.DataFrame(table, columns=HEADER)
spread_df.to_csv(str(file_path), index=False, encoding='gb2312')
time.sleep(np.random.rand() * 5)
return True
| 13,869
|
def run_dataset(prob_label):
"""Run the experiment"""
sample_source, n = get_sample_source(prob_label)
# /////// submit jobs //////////
# create folder name string
home = os.path.expanduser("~")
foldername = os.path.join(home, "freqopttest_slurm", 'e%d'%ex)
logger.info("Setting engine folder to %s" % foldername)
# create parameter instance that is needed for any batch computation engine
logger.info("Creating batch parameter instance")
batch_parameters = BatchClusterParameters(
foldername=foldername, job_name_base="e%d_"%ex, parameter_prefix="")
# Use the following line if Slurm queue is not used.
#engine = SerialComputationEngine()
engine = SlurmComputationEngine(batch_parameters)
n_methods = len(method_job_funcs)
# repetitions x #methods
aggregators = np.empty((reps, n_methods ), dtype=object)
d = sample_source.dim()
for r in range(reps):
for mi, f in enumerate(method_job_funcs):
# name used to save the result
func_name = f.__name__
fname = '%s-%s-J%d_r%d_d%d_a%.3f_trp%.2f.p' \
%(prob_label, func_name, J, r, d, alpha, tr_proportion)
if not is_rerun and glo.ex_file_exists(ex, prob_label, fname):
logger.info('%s exists. Load and return.'%fname)
test_result = glo.ex_load_result(ex, prob_label, fname)
sra = SingleResultAggregator()
if test_result is SingleResult:
sra.submit_result(test_result)
else:
sra.submit_result(SingleResult(test_result))
aggregators[r, mi] = sra
else:
# result not exists or rerun
job = Ex4Job(SingleResultAggregator(), prob_label, r, n, f)
agg = engine.submit_job(job)
aggregators[r, mi] = agg
# let the engine finish its business
logger.info("Wait for all call in engine")
engine.wait_for_all()
# ////// collect the results ///////////
logger.info("Collecting results")
test_results = np.empty((reps, n_methods), dtype=object)
for r in range(reps):
for mi, f in enumerate(method_job_funcs):
logger.info("Collecting result (%s, r=%d)" % (f.__name__, r ))
# let the aggregator finalize things
aggregators[r, mi].finalize()
# aggregators[i].get_final_result() returns a SingleResult instance,
# which we need to extract the actual result
test_result = aggregators[r, mi].get_final_result().result
if isinstance(test_result, SingleResult):
test_result = test_result.result
if isinstance(test_result, SingleResult):
test_result = test_result.result
if isinstance(test_result, SingleResult):
test_result = test_result.result
test_results[r, mi] = test_result
func_name = f.__name__
fname = '%s-%s-J%d_r%d_d%d_a%.3f_trp%.2f.p' \
%(prob_label, func_name, J, r, d, alpha, tr_proportion)
glo.ex_save_result(ex, test_result, prob_label, fname)
func_names = [f.__name__ for f in method_job_funcs]
func2labels = exglobal.get_func2label_map()
method_labels = [func2labels[f] for f in func_names if f in func2labels]
# save results
results = {'results': test_results, 'n': n, 'data_fname':label2fname[prob_label],
'alpha': alpha, 'J': J, 'sample_source': sample_source,
'tr_proportion': tr_proportion, 'method_job_funcs': method_job_funcs,
'prob_label': prob_label, 'method_labels': method_labels}
# class name
fname = 'ex%d-%s-me%d_J%d_rs%d_nma%d_d%d_a%.3f_trp%.2f.p' \
%(ex, prob_label, n_methods, J, reps, n, d, alpha, tr_proportion)
glo.ex_save_result(ex, results, fname)
logger.info('Saved aggregated results to %s'%fname)
| 13,870
|
def truncate_range(data, percMin=0.25, percMax=99.75, discard_zeros=True):
"""Truncate too low and too high values.
Parameters
----------
data : np.ndarray
Image to be truncated.
percMin : float
Percentile minimum.
percMax : float
Percentile maximum.
discard_zeros : bool
Discard voxels with value 0 from truncation.
Returns
-------
data : np.ndarray
"""
if discard_zeros:
msk = ~np.isclose(data, 0)
pMin, pMax = np.nanpercentile(data[msk], [percMin, percMax])
else:
pMin, pMax = np.nanpercentile(data, [percMin, percMax])
temp = data[~np.isnan(data)]
temp[temp < pMin], temp[temp > pMax] = pMin, pMax # truncate min and max
data[~np.isnan(data)] = temp
if discard_zeros:
data[~msk] = 0 # put back masked out voxels
return data
| 13,871
|
def update_dashboards(modules, horizon_config, installed_apps):
"""Imports dashboard and panel configuration from modules and applies it.
The submodules from specified modules are imported, and the configuration
for the specific dashboards is merged, with the later modules overriding
settings from the former. Then the configuration is applied to
horizon_config and installed_apps, in alphabetical order of files from
which the configurations were imported.
For example, given this setup:
| foo/__init__.py
| foo/_10_baz.py
| foo/_20_qux.py
| bar/__init__.py
| bar/_30_baz_.py
and being called with ``modules=[foo, bar]``, we will first have the
configuration from ``_10_baz`` and ``_30_baz`` merged, then the
configurations will be applied in order ``qux``, ``baz`` (``baz`` is
second, because the most recent file which contributed to it, ``_30_baz``,
comes after ``_20_qux``).
Panel specific configurations are stored in horizon_config. Dashboards
from both plugin-based and openstack_dashboard must be registered before
the panel configuration can be applied. Making changes to the panel is
deferred until the horizon autodiscover is completed, configurations are
applied in alphabetical order of files where it was imported.
"""
config_dashboards = horizon_config.get('dashboards', [])
if config_dashboards or horizon_config.get('default_dashboard'):
logging.warning(
'"dashboards" and "default_dashboard" in (local_)settings is '
'DEPRECATED now and may be unsupported in some future release. '
'The preferred way to specify the order of dashboards and the '
'default dashboard is the pluggable dashboard mechanism (in %s).',
', '.join([os.path.abspath(module.__path__[0])
for module in modules])
)
enabled_dashboards = []
disabled_dashboards = []
exceptions = horizon_config.get('exceptions', {})
apps = []
angular_modules = []
js_files = []
js_spec_files = []
scss_files = []
panel_customization = []
header_sections = []
update_horizon_config = {}
for key, config in import_dashboard_config(modules):
if config.get('DISABLED', False):
if config.get('DASHBOARD'):
disabled_dashboards.append(config.get('DASHBOARD'))
continue
_apps = config.get('ADD_INSTALLED_APPS', [])
apps.extend(_apps)
_header_sections = config.get('ADD_HEADER_SECTIONS', [])
header_sections.extend(_header_sections)
if config.get('AUTO_DISCOVER_STATIC_FILES', False):
for _app in _apps:
module = import_module(_app)
base_path = os.path.join(module.__path__[0], 'static/')
file_discovery.populate_horizon_config(horizon_config,
base_path)
add_exceptions = config.get('ADD_EXCEPTIONS', {}).items()
for category, exc_list in add_exceptions:
exceptions[category] = tuple(set(exceptions.get(category, ())
+ exc_list))
angular_modules.extend(config.get('ADD_ANGULAR_MODULES', []))
# avoid pulling in dashboard javascript dependencies multiple times
existing = set(js_files)
js_files.extend([f for f in config.get('ADD_JS_FILES', [])
if f not in existing])
js_spec_files.extend(config.get('ADD_JS_SPEC_FILES', []))
scss_files.extend(config.get('ADD_SCSS_FILES', []))
update_horizon_config.update(
config.get('UPDATE_HORIZON_CONFIG', {}))
if config.get('DASHBOARD'):
dashboard = key
enabled_dashboards.append(dashboard)
if config.get('DEFAULT', False):
horizon_config['default_dashboard'] = dashboard
elif config.get('PANEL') or config.get('PANEL_GROUP'):
config.pop("__builtins__", None)
panel_customization.append(config)
# Preserve the dashboard order specified in settings
dashboards = ([d for d in config_dashboards
if d not in disabled_dashboards] +
[d for d in enabled_dashboards
if d not in config_dashboards])
horizon_config['panel_customization'] = panel_customization
horizon_config['header_sections'] = header_sections
horizon_config['dashboards'] = tuple(dashboards)
horizon_config.setdefault('exceptions', {}).update(exceptions)
horizon_config.update(update_horizon_config)
horizon_config.setdefault('angular_modules', []).extend(angular_modules)
horizon_config.setdefault('js_files', []).extend(js_files)
horizon_config.setdefault('js_spec_files', []).extend(js_spec_files)
horizon_config.setdefault('scss_files', []).extend(scss_files)
# apps contains reference to applications declared in the enabled folder
# basically a list of applications that are internal and external plugins
# installed_apps contains reference to applications declared in settings
# such as django.contribe.*, django_pyscss, compressor, horizon, etc...
# for translation, we are only interested in the list of external plugins
# so we save the reference to it before we append to installed_apps
horizon_config.setdefault('plugins', []).extend(apps)
installed_apps[0:0] = apps
| 13,872
|
def test_reset_threshold():
"""
Test the model threshold can be reset.
Performance metric should be recalculated and also predictions should be changed based on the new threshold.
"""
# import data
airlines = h2o.import_file(path=pyunit_utils.locate("smalldata/airlines/modified_airlines.csv"))
# convert columns to factors
airlines["Year"] = airlines["Year"].asfactor()
airlines["Month"] = airlines["Month"].asfactor()
airlines["DayOfWeek"] = airlines["DayOfWeek"].asfactor()
airlines["Cancelled"] = airlines["Cancelled"].asfactor()
airlines['FlightNum'] = airlines['FlightNum'].asfactor()
# set the predictor names and the response column name
predictors = ["Origin", "Dest", "Year", "UniqueCarrier", "DayOfWeek", "Month", "Distance", "FlightNum"]
response = "IsDepDelayed"
# split into train and validation sets
train, valid = airlines.split_frame(ratios = [.8], seed = 1234)
# initialize the estimator
model = H2OGradientBoostingEstimator(seed = 1234, ntrees=5)
# train the model
model.train(x=predictors, y=response, training_frame=train)
old_threshold = model._model_json['output']['default_threshold']
# predict
preds = model.predict(airlines)
# reset the threshold and get the old one
new_threshold = 0.6917189903082518
old_returned = reset_model_threshold(model, new_threshold)
reset_model = h2o.get_model(model.model_id)
reset_threshold = reset_model._model_json['output']['default_threshold']
# predict with reset model
preds_reset = reset_model.predict(airlines)
# compare thresholds
assert old_threshold == old_returned
assert new_threshold == reset_threshold
assert reset_threshold != old_threshold
# compare predictions
preds_local = preds.as_data_frame()
preds_reset_local = preds_reset.as_data_frame()
print("old threshold:", old_threshold, "new_threshold:", new_threshold)
for i in range(airlines.nrow):
if old_threshold <= preds_local.iloc[i, 2] < new_threshold:
assert preds_local.iloc[i, 0] != preds_reset_local.iloc[i, 0]
else:
assert preds_local.iloc[i, 0] == preds_reset_local.iloc[i, 0]
| 13,873
|
async def payment_list(request):
"""
---
description: Show outgoing payments, regarding {bolt11} or {payment_hash} if set Can only specify one of {bolt11} or {payment_hash}
tags:
- payments
produces:
- application/json
parameters:
- in: body
name: body
required: false
schema:
type: object
properties:
bolt11:
type: string
payment_hash:
type: string
responses:
"200":
description: successful operation.
"""
data = await request.json()
bolt11 = data.get('bolt11', None)
payment_hash = data.get('payment_hash', None)
return web.json_response(request.app['rpc'].listpayments(bolt11=bolt11, payment_hash=payment_hash))
| 13,874
|
def write_opened(dir, file_dict, data_dict, verbose=True):
"""
read in dictionary with open files as values
and write data to files
"""
for game_id, vals in data_dict.items():
f = file_dict.get(game_id)
if not f:
fn = dir + str(game_id) + ".csv"
f = io.init_csv(fn, header=bm.LINE_COLUMNS, close=False)
file_dict[game_id] = f
io.write_list(f, vals)
if verbose:
print(f"writing {vals} to game [{game_id}]")
return file_dict
| 13,875
|
def get_accessible_cases(item, user):
"""Return all accessible for a cohort and user."""
return getattr(item, "get_accessible_cases_for_user")(user)
| 13,876
|
def run_main():
"""
这是主函数
"""
cluster_number = args.cluster_number
dataset_path = os.path.abspath(args.dataset_path)
result_path = os.path.abspath(args.yolo_anchors_path)
kmeans = YOLO_KMeans(cluster_number, dataset_path)
kmeans.txt2clusters(result_path)
| 13,877
|
def aux_conv5(A, B, n, idx):
"""
Performs the convolution of A and B where B = A* (enumerate-for-loop)
:param A: Coefficients matrix 1 (orders, buses)
:param B: Coefficients matrix 2 (orders, buses)
:param c: last order of the coefficients in while loop
:param indices: bus indices array
:return: Array with the convolution for the buses given by "indices"
"""
suma = np.zeros(len(idx), dtype=nb.complex128)
for m in range(0, n):
for i, k in enumerate(idx):
suma[i] += A[m, k] * B[n-1-m, k]
return suma.real
| 13,878
|
def plot_phaseogram(phaseogram, phase_bins, time_bins, unit_str='s', ax=None,
**plot_kwargs):
"""Plot a phaseogram.
Parameters
----------
phaseogram : NxM array
The phaseogram to be plotted
phase_bins : array of M + 1 elements
The bins on the x-axis
time_bins : array of N + 1 elements
The bins on the y-axis
Other Parameters
----------------
unit_str : str
String indicating the time unit (e.g. 's', 'MJD', etc)
ax : `matplotlib.pyplot.axis` instance
Axis to plot to. If None, create a new one.
plot_kwargs : dict
Additional arguments to be passed to pcolormesh
Returns
-------
ax : `matplotlib.pyplot.axis` instance
Axis where the phaseogram was plotted.
"""
if ax is None:
plt.figure('Phaseogram')
ax = plt.subplot()
ax.pcolormesh(phase_bins, time_bins, phaseogram.T, **plot_kwargs)
ax.set_ylabel('Time ({})'.format(unit_str))
ax.set_xlabel('Phase')
ax.set_xlim([0, np.max(phase_bins)])
ax.set_ylim([np.min(time_bins), np.max(time_bins)])
return ax
| 13,879
|
def load_rapidSTORM_track_header(path):
"""
Load xml header from a rapidSTORM (track) single-molecule localization file and identify column names.
Parameters
----------
path : str, bytes, os.PathLike, file-like
File path for a rapidSTORM file to load.
Returns
-------
list of str
A list of valid dataset property keys as derived from the rapidSTORM identifiers.
"""
# read xml part in header
with open_path_or_file_like(path) as file:
return _read_rapidSTORM_track_header(file)
| 13,880
|
def hex_to_byte(hexStr):
""" Convert hex strings to bytes. """
bytes = []
hexStr = ''.join(hexStr.split(" "))
for i in range(0, len(hexStr), 2):
bytes.append(chr(int(hexStr[i:i + 2], 16)))
return ''.join(bytes)
| 13,881
|
def _vital_config_update(cfg, cfg_in):
"""
Treat a vital Config object like a python dictionary
Args:
cfg (kwiver.vital.config.config.Config): config to update
cfg_in (dict | kwiver.vital.config.config.Config): new values
"""
# vital cfg.merge_config doesnt support dictionary input
if isinstance(cfg_in, dict):
for key, value in cfg_in.items():
if cfg.has_value(key):
cfg.set_value(key, str(value))
else:
raise KeyError('cfg has no key={}'.format(key))
else:
cfg.merge_config(cfg_in)
return cfg
| 13,882
|
def SubscriberReceivedStartEncKeyVector(builder, numElems):
"""This method is deprecated. Please switch to Start."""
return StartEncKeyVector(builder, numElems)
| 13,883
|
def _read_extended_field_value(value, rawdata):
"""Used to decode large values of option delta and option length
from raw binary form."""
if value >= 0 and value < 13:
return (value, rawdata)
elif value == 13:
return (rawdata[0] + 13, rawdata[1:])
elif value == 14:
return (struct.unpack('!H', rawdata[:2])[0] + 269, rawdata[2:])
else:
raise ValueError("Value out of range.")
| 13,884
|
def add_uint(a, b):
"""Returns the sum of two uint256-ish tuples."""
a = from_uint(a)
b = from_uint(b)
c = a + b
return to_uint(c)
| 13,885
|
def get_dcgan_args(parser, args=[]):
"""
parameters determing the DCGAN parameters
"""
# DCGAN:
# ------------------------------------------------------------------------
parser.add_argument(
"--lam", type=float, default=10, help="Factor for scaling gradient penalty"
)
parser.add_argument(
"--wgan",
type=bool,
default=False,
help="Determine if WGAN training should be activated",
)
parser.add_argument(
"--p_drop",
type=float,
default=0.1,
help="Dropout probability for the Discriminator network",
)
# ------------------------------------------------------------------------
return parser
| 13,886
|
def test_file_upload_with_users(svc_client, identity_headers):
"""Check successful file upload and listing based on user auth header."""
headers_user1 = copy.deepcopy(identity_headers)
headers_user1.pop("Content-Type")
filename = uuid.uuid4().hex
jwt_data = {
"aud": ["renku"],
"email_verified": False,
"preferred_username": "user1@platform2.com",
"given_name": "user",
"family_name": "user one",
"name": "User One",
"email": "user1@platform2.com",
"sub": "8d1f08e2-b136-4c93-a38f-d5f36a5919d9",
}
headers_user2 = {
"Renku-User": jwt.encode(jwt_data, JWT_TOKEN_SECRET, algorithm="HS256"),
"Authorization": identity_headers["Authorization"],
}
response = svc_client.post(
"/cache.files_upload", data=dict(file=(io.BytesIO(b"this is a test"), filename)), headers=headers_user1
)
assert {"result"} == set(response.json.keys())
file_id = response.json["result"]["files"][0]["file_id"]
assert file_id
assert 200 == response.status_code
response = svc_client.post(
"/cache.files_upload", data=dict(file=(io.BytesIO(b"this is a test"), filename)), headers=headers_user2
)
assert response
assert {"result"} == set(response.json.keys())
response = svc_client.get("/cache.files_list", headers=headers_user1)
assert response
assert {"result"} == set(response.json.keys())
assert 0 < len(response.json["result"]["files"])
assert file_id in [file["file_id"] for file in response.json["result"]["files"]]
| 13,887
|
def _gen_span_id() -> str:
"""Return 16 random hexadecimal digits.
The id is used for distributed tracing.
"""
return os.urandom(8).hex()
| 13,888
|
def store_tabular_data(filepath: Path, use_stem: bool = True) -> None:
"""Reads the tabular data from filepath and stores it in-memory to be plotted asychronously.
Args:
filepath (Path): The tabular data file to be read and stored.
use_stem (bool, optional): Only store the filename (without extension). Defaults to True.
"""
# Declare global variables locally
global data_glob
global data_glob_changed
floats = read_tabular_data(filepath)
if floats == []:
print('Skipping empty file', filepath)
return None
# Check that the array is not ragged; each line must be the same length!
# I'm not exactly sure why this happens, but it seems like maybe the file
# contents are not being flushed to disk before getting read back in again.
# When I manually check the files afterwards, the data is all present.
lengths = [len(x) for x in floats]
if not all([length == lengths[0] for length in lengths]):
print('Warning! Skipping ragged data in', filepath)
return None
data = np.array(floats)
if use_stem:
filepath = Path(filepath.stem)
for i in range(len(data_glob)):
(p, data_old_) = data_glob[i]
if filepath == p:
data_glob[i] = (filepath, data)
data_glob_changed = True
return None
data_glob.append((filepath, data))
data_glob_changed = True
return None
| 13,889
|
def load_uci_credit_card(return_X_y=False, as_frame=False):
"""Loads the UCI Credit Card Dataset.
This dataset contains a sample of [Default of Credit Card Clients Dataset](https://www.kaggle.com/uciml/default-of-credit-card-clients-dataset).
Example:
```python
from skorecard import datasets
df = datasets.load_uci_credit_card(as_frame=True)
```
Args:
return_X_y (bool): If True, returns `(data, target)` instead of a dict object.
as_frame (bool): give the pandas dataframe instead of X, y matrices (default=False).
Returns: (pd.DataFrame, dict or tuple) features and target, with as follows:
- if as_frame is True: returns pd.DataFrame with y as a target
- return_X_y is True: returns a tuple: (X,y)
- is both are false (default setting): returns a dictionary where the key `data` contains the features,
and the key `target` is the target
""" # noqa
file = pkgutil.get_data("skorecard", "data/UCI_Credit_Card.zip")
df = pd.read_csv(io.BytesIO(file), compression="zip")
df = df.rename(columns={"default.payment.next.month": "default"})
if as_frame:
return df[["EDUCATION", "MARRIAGE", "LIMIT_BAL", "BILL_AMT1", "default"]]
X, y = (
df[["EDUCATION", "MARRIAGE", "LIMIT_BAL", "BILL_AMT1"]],
df["default"].values,
)
if return_X_y:
return X, y
return {"data": X, "target": y}
| 13,890
|
def sanitize_yaml_and_save_datasource(
context: DataContext, datasource_yaml: str, overwrite_existing: bool = False
) -> None:
"""A convenience function used in notebooks to help users save secrets."""
if not datasource_yaml:
raise ValueError("Please verify the yaml and try again.")
if not isinstance(datasource_yaml, str):
raise TypeError("Please pass in a valid yaml string.")
config = yaml.load(datasource_yaml)
try:
datasource_name = config.pop("name")
except KeyError:
raise ValueError("The datasource yaml is missing a `name` attribute.")
if not overwrite_existing and check_if_datasource_name_exists(
context=context, datasource_name=datasource_name
):
print(
f'**WARNING** A Datasource named "{datasource_name}" already exists in this Data Context. The Datasource has *not* been saved. Please use a different name or set overwrite_existing=True if you want to overwrite!'
)
return
if "credentials" in config.keys():
credentials = config["credentials"]
config["credentials"] = "${" + datasource_name + "}"
context.save_config_variable(datasource_name, credentials)
context.add_datasource(name=datasource_name, **config)
| 13,891
|
def quad_lsq(x, y, verbose=False, itmax=200, iparams=[]):
"""
Fits a parabola to the data, more handy as it fits for
parabola parameters in the form y = B_0 * (x - B_1)**2 + B_2.
This is computationally slower than poly_lsq, so beware of its usage
for time consuming operations. Uses scipy odrpack, but for least squares.
Parameters
----------
x, y : 1-D arrays
Data to fit.
verbose : bool or int, optional
Can be 0,1,2 for different levels of output (False or True
are the same as 0 or 1)
itmax : int, optional
Maximum number of iterations.
iparams : 1D array, optional
Initial parameters B_0, B_1, B_2.
Returns
-------
coeff : 1-D array
Parabola coefficients
err : 1-D array
Standard error (1-sigma) on the coefficients.
"""
# Internal definition of quadratic
def _quadratic(B, x):
return B[0] * (x - B[1]) * (x - B[1]) + B[2]
def _quad_fjd(B, x):
return 2 * B[0] * (x - B[1])
def _quad_fjb(B, x):
_ret = np.concatenate((np.ones(x.shape, float),
2 * B[0] * (B[1] - x),
x * x - 2 * B[1] * x + B[1] * B[1],))
_ret.shape = (3,) + x.shape
return _ret
if any(iparams):
def _quad_est(data):
return tuple(iparams)
else:
def _quad_est(data):
return (1., 1., 1.)
quadratic = odr.Model(_quadratic, fjacd=_quad_fjd, fjacb=_quad_fjb,
estimate=_quad_est)
mydata = odr.Data(x, y)
myodr = odr.ODR(mydata, quadratic, maxit=itmax)
# Set type of fit to least-squares:
myodr.set_job(fit_type=2)
if verbose == 2:
myodr.set_iprint(final=2)
fit = myodr.run()
# Display results:
if verbose:
fit.pprint()
if fit.stopreason[0] == 'Iteration limit reached':
print('(WWW) quad_lsq: iteration limit reached, result not reliable!')
# Results and errors
coeff = fit.beta
err = fit.sd_beta
return coeff, err
| 13,892
|
def find_file(directory_name, cyclone_id_string, prefer_zipped=True,
allow_other_format=True, raise_error_if_missing=True):
"""Finds NetCDF file with SHIPS data.
:param directory_name: Name of directory with SHIPS data.
:param cyclone_id_string: Cyclone ID (must be accepted by
`satellite_utils.parse_cyclone_id`).
:param prefer_zipped: Boolean flag. If True, will look for zipped file
first. If False, will look for unzipped file first.
:param allow_other_format: Boolean flag. If True, will allow opposite of
preferred file format (zipped or unzipped).
:param raise_error_if_missing: Boolean flag. If file is missing and
`raise_error_if_missing == True`, will throw error. If file is missing
and `raise_error_if_missing == False`, will return *expected* file path.
:return: ships_file_name: File path.
:raises: ValueError: if file is missing
and `raise_error_if_missing == True`.
"""
error_checking.assert_is_string(directory_name)
satellite_utils.parse_cyclone_id(cyclone_id_string)
error_checking.assert_is_boolean(prefer_zipped)
error_checking.assert_is_boolean(allow_other_format)
error_checking.assert_is_boolean(raise_error_if_missing)
ships_file_name = '{0:s}/ships_{1:s}.nc{2:s}'.format(
directory_name, cyclone_id_string,
GZIP_FILE_EXTENSION if prefer_zipped else ''
)
if os.path.isfile(ships_file_name):
return ships_file_name
if allow_other_format:
if prefer_zipped:
ships_file_name = ships_file_name[:-len(GZIP_FILE_EXTENSION)]
else:
ships_file_name += GZIP_FILE_EXTENSION
if os.path.isfile(ships_file_name) or not raise_error_if_missing:
return ships_file_name
error_string = 'Cannot find file. Expected at: "{0:s}"'.format(
ships_file_name
)
raise ValueError(error_string)
| 13,893
|
def check_sentence_ending(sentence):
"""Check the ending of the sentence to verify that a period is present.
:param sentence: str - a sentence to check.
:return: bool - return True if punctuated correctly with period, False otherwise.
"""
pass
| 13,894
|
def _parse_cli_variable(mapping_str: str) -> Tuple[str, str]:
"""Checks that the input is of shape `name:value` and then splits it into a tuple"""
match = re.match(r"(?P<name>.+?):(?P<value>.+)", mapping_str)
if match is None:
raise ValueError(f'CLI variable input {mapping_str} is not of form `"name:value"`')
parsed = match.groupdict()
return parsed["name"], parsed["value"]
| 13,895
|
def list_privileges_by_role(request, role):
"""
List sentry privilegs by role
:param request:
:param role: role name
:return: A Json array of SentryPrivileges: [p1, p2, p3...]
"""
sentry_privileges = _get_sentry_api(request.user).list_sentry_privileges_by_role("cdap", role)
sentry_privileges = [{"actions": p["action"], "authorizables": _sentry_authorizables_to_path(p["authorizables"])}
for p in sentry_privileges]
return HttpResponse(json.dumps(sentry_privileges), content_type="application/json")
| 13,896
|
def to_torch_as(x: Any, y: torch.Tensor) -> Union[Batch, torch.Tensor]:
"""Return an object without np.ndarray.
Same as ``to_torch(x, dtype=y.dtype, device=y.device)``.
"""
assert isinstance(y, torch.Tensor)
return to_torch(x, dtype=y.dtype, device=y.device)
| 13,897
|
async def test_closest_function_home_vs_group_state(hass):
"""Test closest function home vs group state."""
hass.states.async_set(
"test_domain.object",
"happy",
{
"latitude": hass.config.latitude + 0.1,
"longitude": hass.config.longitude + 0.1,
},
)
hass.states.async_set(
"not_in_group.but_closer",
"happy",
{"latitude": hass.config.latitude, "longitude": hass.config.longitude},
)
assert await async_setup_component(hass, "group", {})
await hass.async_block_till_done()
await group.Group.async_create_group(hass, "location group", ["test_domain.object"])
info = render_to_info(hass, '{{ closest("group.location_group").entity_id }}')
assert_result_info(
info, "test_domain.object", {"group.location_group", "test_domain.object"}
)
assert info.rate_limit is None
info = render_to_info(hass, "{{ closest(states.group.location_group).entity_id }}")
assert_result_info(
info, "test_domain.object", {"test_domain.object", "group.location_group"}
)
assert info.rate_limit is None
| 13,898
|
def cleanup_exports():
"""
Cleanup export directories
"""
require('map', provided_by=[map])
local('rm -rf %(map)s/tiles/*' % env)
local('rm -rf %(map)s/exports/*' % env)
| 13,899
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.