content
stringlengths
22
815k
id
int64
0
4.91M
def test_gcsfetchstrategy_without_url(_fetch_method): """Ensure constructor with no URL fails.""" with spack.config.override('config:url_fetch_method', _fetch_method): with pytest.raises(ValueError): spack.fetch_strategy.GCSFetchStrategy(None)
12,300
def combine_dataframes(dfs: [pd.DataFrame]) -> pd.DataFrame: """ Receives a list of DataFrames and concatenates them. They must all have the same header. :param dfs: List of DataFrames :return: Single concatenated DataFrame """ df = pd.concat(dfs, sort=False) return df
12,301
def reduce_company_info_file( ticker_symbols_file, company_info_input_file, company_info_output_file): """Reduce the company info file.""" if not ticker_symbols_file: raise click.BadParameter( '--ticker-symbols-file option is required') if not company_info_input_file: raise click.BadParameter( '--company-info-input-file option is required') if not company_info_output_file: raise click.BadParameter( '--company-info-output-file option is required') ticker_symbols_raw = ticker_symbols_file.readlines() ticker_symbols = {l.replace('\n', '') for l in ticker_symbols_raw} click.echo('{0} ticker symbols to process'.format(len(ticker_symbols))) ind_sectors_by_title = {} company_info_input_csv = csv.DictReader( company_info_input_file, encoding='utf-8-sig') company_info_output_file.write( 'ticker_symbol,title,sector\n') for line in company_info_input_csv: ticker_symbol = line['ticker_symbol'].strip() company_title = line['title'].strip() ind_sector_title = line['sector'].strip() if ticker_symbol in ticker_symbols: company_info_output_file.write('{0},{1},{2}\n'.format( ticker_symbol, company_title, ind_sector_title)) click.echo('Done!')
12,302
def df_to_hdf5(df, key, dir_path): """ Save the DataFrame object as an HDF5 file. The file is stored in the directory specified and uses the key for the filename and 'h5' as the extension. :param df: DataFrame to save as a file :param key: ID for storage and retrieval :param dir_path: Directory to store the HDF5 data file """ file_path = os.path.join(dir_path, key + '.h5') df.to_hdf(file_path, key, complevel=9, complib='zlib') return file_path
12,303
def _switch_default_role(db, obj, admin): """Switch between default user/service and admin roles for users/services""" user_role = orm.Role.find(db, 'user') admin_role = orm.Role.find(db, 'admin') def add_and_remove(db, obj, current_role, new_role): if current_role in obj.roles: strip_role(db, entity=obj, rolename=current_role.name) # only add new default role if the user has no other roles if len(obj.roles) < 1: grant_role(db, entity=obj, rolename=new_role.name) if admin: add_and_remove(db, obj, user_role, admin_role) else: add_and_remove(db, obj, admin_role, user_role)
12,304
def _bound_accumulated_rotations(robot_name, command_dicts): """ Checks axes whose rotations have been accumulated to ensure they've not exceeded the stated limits. If they have, this function attempts to slide the commands by +/- 360 degrees. If the limits are still exceeded, this function returns the commands that exceed the limits by the least amount :param robot_name: :param animation_settings: :param command_dicts: :return: """ # TODO: Do this check using userOptions instead... # Get axes, if they exist command_axes = [] for command_dict in command_dicts: axes = command_dict[postproc.AXES] if postproc.AXES in command_dict else None command_axes.append(list(axes)) reconcile_axes = mimic_utils.get_reconcile_axes(robot_name) rotation_limits = mimic_utils.get_all_limits(robot_name)['Position'] # Make sure the user has selected use of axes if not all(x is None for x in command_axes): for i, reconcile_axis in enumerate(reconcile_axes): if reconcile_axis: valid_solutions = [] axis_number = i + 1 # Axis numbers are 1-indexed axis_name = 'Axis {}'.format(axis_number) # Get the axis limits limit_min = rotation_limits[axis_name]['Min Limit'] limit_max = rotation_limits[axis_name]['Max Limit'] # Create a list of commands for the axis to be checked axis_vals_init = [axis[i] for axis in command_axes] axis_min = min(axis_vals_init) axis_max = max(axis_vals_init) ''' print "#######################################################" print "Initial Axis {} vals: ".format(i+1), axis_vals_init print "Axis Min Limit: ", limit_min print "Axis Max Limit: ", limit_max print "Axis Min: ", axis_min print "Axis Max: ", axis_max ''' # If both the max and min axis values exceed their respective # limits, then there's nothing we can do about it, so we don't # modify the commands if axis_min < limit_min and axis_max > limit_max: # print '## Both limits exceeded, but no shift' continue # If no limits are violated, add the axes to the list of valid solutions if axis_min >= limit_min and axis_max <= limit_max: valid_solutions.append(axis_vals_init) # Get the shifted axes and append them to the valid_solutions if they're valide (i.e. not 'None') axis_vals_shift = _shift_accumulated_axes(axis_vals_init, limit_max, limit_min) if axis_vals_shift: valid_solutions.append(axis_vals_shift) # If we have no valid solitions, continue with the initial solition if len(valid_solutions) == 0: # print 'No valid solutions, returning initial solutions' sol = axis_vals_init # If we only have one valid solution, we can return that solution elif len(valid_solutions) == 1: # print 'Only one valid solution' sol = valid_solutions[0] # If we have two valid solutions, prompt the user to pick which one they want # if they have the option checked on the program UI, otherwise, return the # first solution else: # print 'Two valid solutions -> user choice' prompt_opt = pm.checkBox('cb_promptOnRedundantSolutions', value=True, query=True) # If the user option for this feature is selected, prompt the user if prompt_opt: user_selection = _get_bounded_solution_user_input(valid_solutions, axis_number) sol = valid_solutions[user_selection] # Otherwise, continue with the initial solution else: sol = axis_vals_init # Drop the final solution back into the command_dict for command_index in range(len(command_dicts)): command_axes[command_index][i] = sol[command_index] reconciled_axes = postproc.Axes(*command_axes[command_index]) command_dicts[command_index][postproc.AXES] = reconciled_axes return command_dicts
12,305
def train_genomes(genomes, dataset): """Train each network. Args: networks (list): Current population of networks dataset (str): Dataset to use for training/evaluating """ pbar = tqdm(total=len(genomes)) for genome in genomes: genome.train(dataset) genome.print_genome() pbar.update(1) pbar.close() # Sort our final population. genomes = sorted(genomes, key=lambda x: x.accuracy, reverse=True) # Print out the top 5 networks. print_genomes(genomes[:5])
12,306
def get_email_manager(config: CFG, session: Session): """ :return: EmailManager instance """ #  TODO: Find a way to import properly without cyclic import smtp_config = SmtpConfiguration( config.EMAIL__NOTIFICATION__SMTP__SERVER, config.EMAIL__NOTIFICATION__SMTP__PORT, config.EMAIL__NOTIFICATION__SMTP__USER, config.EMAIL__NOTIFICATION__SMTP__PASSWORD, ) return EmailManager(config=config, smtp_config=smtp_config, session=session)
12,307
def test_list_g_month_enumeration_3_nistxml_sv_iv_list_g_month_enumeration_4_3(mode, save_output, output_format): """ Type list/gMonth is restricted by facet enumeration. """ assert_bindings( schema="nistData/list/gMonth/Schema+Instance/NISTSchema-SV-IV-list-gMonth-enumeration-4.xsd", instance="nistData/list/gMonth/Schema+Instance/NISTXML-SV-IV-list-gMonth-enumeration-4-3.xml", class_name="NistschemaSvIvListGMonthEnumeration4", version="1.1", mode=mode, save_output=save_output, output_format=output_format, structure_style="filenames", )
12,308
def _approx_sp(salt,pres): """Approximate TDl at SP. Approximate the temperature and liquid water density of sea-ice with the given salinity and pressure. :arg float salt: Salinity in kg/kg. :arg float pres: Pressure in Pa. :returns: Temperature and liquid water density (both in SI units). """ CDIF = _CLIQ-_CICE R0 = _LILTP/_TTP / CDIF r1 = (pres-_PTPE) * (_VITP-_VLTP)/_TTP / CDIF r2 = _RSAL*salt / CDIF w = -(1 - R0 + r1) * numpy.exp(-(1 - R0 - r2)) negz = 1 - (1 + _E*w)**_C_SP temp = (1 - R0 + r1)*_TTP/negz dliq = _dliq_default(temp,pres) return temp, dliq
12,309
def test_close_with_heartbeatTimer(caplog): """Test close() with heartbeatTimer""" iface = MeshInterface(noProto=True) anode = Node('foo', 'bar') radioConfig = RadioConfig() radioConfig.preferences.phone_timeout_secs = 10 anode.radioConfig = radioConfig iface.localNode = anode assert iface.heartbeatTimer is None with caplog.at_level(logging.DEBUG): iface._startHeartbeat() assert iface.heartbeatTimer is not None iface.close()
12,310
def recharge_polybar(): """Command to restart polybar""" os.system("polybar-msg hook pomobar 1 &> /dev/null")
12,311
def test_get_4x4_determinant_method(): """tests get 4x4 determinant method""" matrix = Matrix([ [4, 5, 2, -1], [5, 8, 7, 6], [3, 7, -4, -2], [-1, 6, -2, 5] ]) det = matrix.get_determinant() assert det == 378
12,312
def test_can_parse_alias_file(): """ Make sure aliases.json file can be parsed. This is to make sure an edit doesn't accidentally corrupt it. """ # We'll have to hardcode this. alias_file_path = os.path.join( config.DEFAULT_EXAMPLES_DIR, util.ALIAS_FILE_NAME ) alias_file_contents = util._get_contents_of_file(alias_file_path) alias_dict = json.loads(alias_file_contents) # We'll check that link goes to ln, as we know that one will be present. assert_equal(alias_dict['link'], 'ln')
12,313
def test(): """A little test suite.""" import io testtext = 'Netstrings rule' inf = io.StringIO() outf = io.StringIO() print("Writing a Netstring ... ", end=' ') f = NetStringIO(outf) f.write(testtext) print(outf.getvalue(), end=' ') inf = io.StringIO(outf.getvalue()) f.close() print("Reading this Netstring ... ", end=' ') fz = NetStringIO(inf) ret = fz.read() assert ret == testtext, "String is different after reading" print(ret) fz.close()
12,314
def init_config_dirs(): """Creates .tiflash base folder as well as any configuration subfolders inside of it. Note: Typically only used by setup.py when pip installing package """ base = get_base_dir() custom = get_custom_dir() if not os.path.exists(base): os.mkdir(base) if not os.path.exists(custom): os.mkdir(custom)
12,315
def createToolBar(): """Creates the toolbar containing the action to open the Settings Dialog """ Data.toolbar = sbsui.add_toolbar("Megscan Link", "megascanlink") qicon = QtGui.QIcon() qicon.addPixmap(icon.getIconAsQPixmap("megascan_logo_idle.png")) qicon.addPixmap(icon.getIconAsQPixmap("megascan_logo.png"), QtGui.QIcon.Active) action = Data.toolbar.addAction(qicon, None) action.triggered.connect(openSettingsDialog)
12,316
def _get_connection_params(resource): """Extract connection and params from `resource`.""" args = resource.split(";") if len(args) > 1: return args[0], args[1:] else: return args[0], []
12,317
def download_archive(url, out_path): """Downloads a file from the specified URL to the specified path on disk.""" return subprocess.call(['curl', url, '-o', out_path])
12,318
def listdata( resp: Union[requests.Response, List[Dict[str, Any]]], *keys: Union[str, Callable[[], bool]], sort: Union[bool, str] = True, full: bool = False, # returns dicts instead of tuples ) -> List[tuple]: """Return data from a given requests.Response object. Only non reserved fields are returned. By default data are converted to List[Tuple[Any]], but if `full` is True, then List[Dict[str, Any] is returned. Usage: >>> data = [ ... {'_id': 1, 'odd': 1, 'even': 2}, ... {'_id': 2, 'odd': 3, 'even': 4}, ... {'_id': 3, 'odd': 5, 'even': 6}, ... } >>> listdata(data) [ (1, 2), (3, 4), (5, 6), ] >>> listdata(data, 'even') [2, 4, 6] >>> listdata(data, 'odd', 'even') [ (1, 2), (3, 4), (5, 6), ] >>> listdata(data, full=True) data = [ {'odd': 1, 'even': 2}, {'odd': 3, 'even': 4}, {'odd': 5, 'even': 6}, } """ # Prepare data if isinstance(resp, list): data = resp elif resp.headers['content-type'].startswith('text/html'): data = resp.context assert resp.status_code == 200, pformat(data) assert 'data' in data, pformat(data) assert 'header' in data, pformat(data) header = data['header'] keys = keys or [k for k in header if not k.startswith('_')] data = [ {k: v.value for k, v in zip(header, row)} for row in cast(List[List[Cell]], data['data']) ] else: data = resp.json() assert resp.status_code == 200, pformat(data) assert '_data' in data, pformat(data) data = data['_data'] keys = keys or sorted({ k for d in flatten(data) for k in d if not k.startswith('_') }) # Clean data if full: data = [take(keys, row) for row in data] elif len(keys) == 1: k = keys[0] data = [take(k, row) for row in data] else: data = [tuple(take(k, row) for k in keys) for row in data] # Sort if sort is True: data = sorted(data, key=str) elif sort: if full: sort_key = operator.itemgetter(sort) else: sort_key = operator.itemgetter(keys.index(sort)) data = sorted(data, key=sort_key) return data
12,319
def create_chart_data(start_path, excluded_dashboards=excluded_dashboards): """Read chart names and SQL code from the repository. Args: start_path (str): "./dashboards" excluded_dashboards (list): list of dashboards to exclude from testing (e.g. WIP, Untitled, etc) Returns: chart_results (array of dict): contains name, dashboard owner and SQL code for each chart """ chart_results = [] print("Processing the charts data...\n") for path, _, files in os.walk(start_path): for filename in files: if ('sql' in filename) and ('text' not in filename) and all(dashboard not in path for dashboard in excluded_dashboards): chart_dict = {} path_sql = os.path.join(path, filename) dashboard_with_id = path_sql.split('/')[2] chart_with_id = path_sql.split('/')[3] chart_dict["NAME"] = 'chart_' + dashboard_with_id.split('.')[0] + '_' + chart_with_id.replace(".", "_") try: with open(path_sql) as f: chart_dict['SQL_CODE'] = f.read() except Exception as e: print(e) path_chart_yaml = os.path.join(path, filename.replace(".sql", ".yaml")) try: with open(path_chart_yaml) as f: parsed_yaml_file = yaml.load(f, Loader=yaml.FullLoader) chart_name = parsed_yaml_file['display_name'] except Exception as e: print(e) path_dashboard_yaml = os.path.join(start_path, dashboard_with_id, dashboard_with_id.split('.')[0] + '.yaml') try: with open(path_dashboard_yaml) as f: parsed_yaml_file = yaml.load(f, Loader=yaml.FullLoader) dashboard_name = parsed_yaml_file['display_name'] chart_dict["OWNER"] = parsed_yaml_file['dashboard_preferences']['settings']['owner'] or "No Owner" chart_dict["BI_NAME"] = (dashboard_name + ": " + chart_name) or "No Name" except Exception as e: chart_dict["OWNER"] = "No Owner" chart_dict["BI_NAME"] = "No Name" print(e) chart_results.append(chart_dict) return chart_results
12,320
def get_current_pkg(): """ Returns: パッケージ名 (str): 常に大文字表記で返ってくる """ return eval_foreign_vm_copy("(send *package* :name)")
12,321
def _normalise_trigger(value: float) -> float: """ Helper function used to normalise the controller trigger values into a common range. :param value: Value to be normalised :raises: ValueError :return: Normalised value """ return _normalise(value, _HARDWARE_TRIGGER_MIN, _HARDWARE_TRIGGER_MAX, _INTENDED_TRIGGER_MIN, _INTENDED_TRIGGER_MAX)
12,322
def full_process(s): """Process string by -- removing all but letters and numbers -- trim whitespace -- force to lower case""" if s is None: return "" #Here we weill force a return of "" if it is of None, empty, or not valid #Merged from validate_string try: s = unicode(s) len(s) > 0 except TypeError: return "" # Keep only Letters and Numbers (see Unicode docs). string_out = StringProcessor.replace_with_whitespace(s) # Force into lowercase. string_out = StringProcessor.to_lower_case(string_out) # Remove leading and trailing whitespaces. string_out = StringProcessor.strip(string_out) return string_out
12,323
def ldexp(space, x, i): """ldexp(x, i) -> x * (2**i) """ return math2(space, math.ldexp, x, i)
12,324
def menu(): """ Print a menu with all the functionalities. Returns: The choice of the user. """ print "=" * 33 + "\nMENU\n" + "=" * 33 descriptions = ["Load host from external file", "Add a new host", "Print selected hosts", "Check active hosts", "Select only active hosts", "Select bots", "Execute command locally", "Execute command on bots", "Run external script", "Open shell in a host", "Exit"] for num, func in enumerate(descriptions): print "[" + str(num) + "] " + func choice = raw_input(">>> ") return choice
12,325
async def objects_get(bucket: Optional[str] = None, index: Index = Depends(Provide[Container.index]), buckets: Buckets = Depends(Provide[Container.buckets])) -> List[Object]: """ searches for objects """ if not bucket: return index.get_all() buckets.validate_bucket(bucket) return index.get_all(bucket)
12,326
def test_node_can_be_loaded_simple(): # type: () -> None """Test loading a single node with "simple" representation. The "simple" representation should return the same structure that would be created if the '!gryaml.node' tag were absent or the implicit type. """ gryaml.register_simple() sample_yaml = """ !gryaml.node - properties: name: Babs_Jensen - labels: - person """ node_loaded = yaml.safe_load(sample_yaml) node_data = yaml.load(sample_yaml.replace('!gryaml.node', '')) assert node_data == node_loaded node_data = yaml.load(sample_yaml.replace('!gryaml.node', '!!seq')) assert node_data == node_loaded
12,327
def thumbnail_create(request, repo_id): """create thumbnail from repo file list return thumbnail src """ content_type = 'application/json; charset=utf-8' result = {} repo = get_repo(repo_id) if not repo: err_msg = _(u"Library does not exist.") return HttpResponse(json.dumps({"error": err_msg}), status=400, content_type=content_type) path = request.GET.get('path', None) if not path: err_msg = _(u"Invalid arguments.") return HttpResponse(json.dumps({"error": err_msg}), status=400, content_type=content_type) if repo.encrypted or not ENABLE_THUMBNAIL or \ check_folder_permission(request, repo_id, path) is None: err_msg = _(u"Permission denied.") return HttpResponse(json.dumps({"error": err_msg}), status=403, content_type=content_type) size = request.GET.get('size', THUMBNAIL_DEFAULT_SIZE) success, status_code = generate_thumbnail(request, repo_id, size, path) if success: src = get_thumbnail_src(repo_id, size, path) result['encoded_thumbnail_src'] = urlquote(src) return HttpResponse(json.dumps(result), content_type=content_type) else: err_msg = _('Failed to create thumbnail.') return HttpResponse(json.dumps({'err_msg': err_msg}), status=status_code, content_type=content_type)
12,328
def initialize_event_loop(): """Attempt to use uvloop.""" try: import uvloop asyncio.set_event_loop_policy(uvloop.EventLoopPolicy()) except ImportError: pass return asyncio.get_event_loop()
12,329
def _setup_pgops(multi_actions=False, normalise_entropy=False, sequence_length=4, batch_size=2, num_mvn_actions=3, num_discrete_actions=5): """Setup polices, actions, policy_vars and (optionally) entropy_scale_op.""" t = sequence_length b = batch_size a = num_mvn_actions c = num_discrete_actions # MVN actions mu = tf.placeholder(tf.float32, shape=(t, b, a)) sigma = tf.placeholder(tf.float32, shape=(t, b, a)) mvn_policies = tfp.distributions.MultivariateNormalDiag( loc=mu, scale_diag=sigma) mvn_actions = tf.placeholder(tf.float32, shape=(t, b, a)) mvn_params = [mu, sigma] if multi_actions: # Create a list of n_cat Categorical distributions n_cat = 2 cat_logits = [tf.placeholder(tf.float32, shape=(t, b, c)) for _ in xrange(n_cat)] cat_policies = [tfp.distributions.Categorical(logits=logits) for logits in cat_logits] cat_actions = [tf.placeholder(tf.int32, shape=(t, b)) for _ in xrange(n_cat)] cat_params = [[logits] for logits in cat_logits] # Create an exponential distribution exp_rate = tf.placeholder(tf.float32, shape=(t, b)) exp_policies = tfp.distributions.Exponential(rate=exp_rate) exp_actions = tf.placeholder(tf.float32, shape=(t, b)) exp_params = [exp_rate] # Nest all policies and nest corresponding actions and parameters policies = [mvn_policies, cat_policies, exp_policies] actions = [mvn_actions, cat_actions, exp_actions] policy_vars = [mvn_params, cat_params, exp_params] else: # No nested policy structure policies = mvn_policies actions = mvn_actions policy_vars = mvn_params entropy_scale_op = None if normalise_entropy: # Scale op that divides by total action dims def scale_op(policies): policies = nest.flatten(policies) num_dims = [tf.to_float(tf.reduce_prod(policy.event_shape_tensor())) for policy in policies] return 1. / tf.reduce_sum(tf.stack(num_dims)) entropy_scale_op = scale_op return policies, actions, policy_vars, entropy_scale_op
12,330
async def definition_delete(hub, ctx, name, **kwargs): """ .. versionadded:: 1.0.0 Delete a policy definition. :param name: The name of the policy definition to delete. CLI Example: .. code-block:: bash azurerm.resource.policy.definition_delete testpolicy """ result = False polconn = await hub.exec.azurerm.utils.get_client(ctx, "policy", **kwargs) try: # pylint: disable=unused-variable policy = polconn.policy_definitions.delete(policy_definition_name=name) result = True except (CloudError, ErrorResponseException) as exc: await hub.exec.azurerm.utils.log_cloud_error("resource", str(exc), **kwargs) return result
12,331
def run(setup: Callable[[BaseScene], None] = None, *, log_level=logging.WARNING, starting_scene=BaseScene, title="PursuedPyBear", **engine_opts): """ Run a small game. The resolution will 800 pixels wide by 600 pixels tall. setup is a callable that accepts a scene and returns None. log_level let's you set the expected log level. Consider logging.DEBUG if something is behaving oddly. starting_scene let's you change the scene used by the engine. """ logging.basicConfig(level=log_level) with make_engine(setup, starting_scene=starting_scene, title=title, **engine_opts) as eng: eng.run()
12,332
def agent_environment(test_config, agent_env_settings_fields): """ Set essential environment variables for test function and unset the after. """ agent_settings = test_config.get("agent_settings", dict()) for name in agent_env_settings_fields: value = compat.os_environ_unicode.get(name, agent_settings.get(name)) if not value: raise NameError( "'{0}' environment variable must be specified.".format(name) ) os.environ[name] = value yield # NOTE: We don't need environment variables at the end since setup runs before # each test which means environment would only be correctly set up for a single test # In our case each tox invocation results in multiple tests since we use # pytest_generate_tests functionality.
12,333
def test_bootstrap_random_seed(): """Test that we can get reproducible resamples by seeding the RNG.""" data = rs.randn(50) seed = 42 boots1 = algo.bootstrap(data, random_seed=seed) boots2 = algo.bootstrap(data, random_seed=seed) assert_array_equal(boots1, boots2)
12,334
def test_simplex_project(): """Test simplex project""" res = utils.simplex_project(np.array([0, 0, 0])) assert np.allclose(res, [1 / 3] * 3), \ "projecting [0, 0, 0] didn't result in uniform" res = utils.simplex_project(np.array([1.2, 1.4])) assert np.allclose(res, [.4, .6]), \ "simplex project didn't return correct result" res = utils.simplex_project(np.array([-0.1, 0.8])) assert np.allclose(res, [0.05, 0.95]), \ "simplex project didn't return correct result"
12,335
def demo(numsamples=6, numoutcomes=500): """ A demonstration of frequency distributions and probability distributions. This demonstration creates three frequency distributions with, and uses them to sample a random process with ``numsamples`` samples. Each frequency distribution is sampled ``numoutcomes`` times. These three frequency distributions are then used to build six probability distributions. Finally, the probability estimates of these distributions are compared to the actual probability of each sample. :type numsamples: int :param numsamples: The number of samples to use in each demo frequency distributions. :type numoutcomes: int :param numoutcomes: The total number of outcomes for each demo frequency distribution. These outcomes are divided into ``numsamples`` bins. :rtype: None """ # Randomly sample a stochastic process three times. fdist1 = _create_rand_fdist(numsamples, numoutcomes) fdist2 = _create_rand_fdist(numsamples, numoutcomes) fdist3 = _create_rand_fdist(numsamples, numoutcomes) # Use our samples to create probability distributions. pdists = [ MLEProbDist(fdist1), LidstoneProbDist(fdist1, 0.5, numsamples), HeldoutProbDist(fdist1, fdist2, numsamples), HeldoutProbDist(fdist2, fdist1, numsamples), CrossValidationProbDist([fdist1, fdist2, fdist3], numsamples), SimpleGoodTuringProbDist(fdist1), SimpleGoodTuringProbDist(fdist1, 7), _create_sum_pdist(numsamples), ] # Find the probability of each sample. vals = [] for n in range(1,numsamples+1): vals.append(tuple([n, fdist1.freq(n)] + [pdist.prob(n) for pdist in pdists])) # Print the results in a formatted table. print(('%d samples (1-%d); %d outcomes were sampled for each FreqDist' % (numsamples, numsamples, numoutcomes))) print('='*9*(len(pdists)+2)) FORMATSTR = ' FreqDist '+ '%8s '*(len(pdists)-1) + '| Actual' print(FORMATSTR % tuple(repr(pdist)[1:9] for pdist in pdists[:-1])) print('-'*9*(len(pdists)+2)) FORMATSTR = '%3d %8.6f ' + '%8.6f '*(len(pdists)-1) + '| %8.6f' for val in vals: print(FORMATSTR % val) # Print the totals for each column (should all be 1.0) zvals = list(zip(*vals)) sums = [sum(val) for val in zvals[1:]] print('-'*9*(len(pdists)+2)) FORMATSTR = 'Total ' + '%8.6f '*(len(pdists)) + '| %8.6f' print(FORMATSTR % tuple(sums)) print('='*9*(len(pdists)+2)) # Display the distributions themselves, if they're short enough. if len("%s" % fdist1) < 70: print(' fdist1: %s' % fdist1) print(' fdist2: %s' % fdist2) print(' fdist3: %s' % fdist3) print() print('Generating:') for pdist in pdists: fdist = FreqDist(pdist.generate() for i in range(5000)) print('%20s %s' % (pdist.__class__.__name__[:20], ("%s" % fdist)[:55])) print()
12,336
def parse_options(argv): """Parses and checks the command-line options. Returns: A tuple containing the options structure and a list of categories to be traced. """ usage = 'Usage: %prog [options] [category1 [category2 ...]]' desc = 'Example: %prog -b 32768 -t 15 gfx input view sched freq' parser = optparse.OptionParser(usage=usage, description=desc) parser.add_option('-o', dest='output_file', help='write trace output to FILE', default=None, metavar='FILE') parser.add_option('-t', '--time', dest='trace_time', type='int', help='trace for N seconds', metavar='N') parser.add_option('-l', '--list-categories', dest='list_categories', default=False, action='store_true', help='list the available categories and exit') parser.add_option('-j', '--json', dest='write_json', default=False, action='store_true', help='write a JSON file') parser.add_option('--link-assets', dest='link_assets', default=False, action='store_true', help='(deprecated)') parser.add_option('--from-file', dest='from_file', action='store', help='read the trace from a file (compressed) rather than' 'running a live trace') parser.add_option('--asset-dir', dest='asset_dir', default='trace-viewer', type='string', help='(deprecated)') parser.add_option('-e', '--serial', dest='device_serial_number', default=_get_default_serial(), type='string', help='adb device serial number') parser.add_option('--target', dest='target', default='android', type='string', help='chose tracing target (android or linux)') parser.add_option('--timeout', dest='timeout', type='int', help='timeout for start and stop tracing (seconds)') parser.add_option('--collection-timeout', dest='collection_timeout', type='int', help='timeout for data collection (seconds)') atrace_ftrace_options = optparse.OptionGroup(parser, 'Atrace and Ftrace options') atrace_ftrace_options.add_option('-b', '--buf-size', dest='trace_buf_size', type='int', help='use a trace buffer size ' ' of N KB', metavar='N') atrace_ftrace_options.add_option('--no-fix-threads', dest='fix_threads', default=True, action='store_false', help='don\'t fix missing or truncated ' 'thread names') atrace_ftrace_options.add_option('--no-fix-tgids', dest='fix_tgids', default=True, action='store_false', help='Do not run extra commands to restore' ' missing thread to thread group id ' 'mappings.') atrace_ftrace_options.add_option('--no-fix-circular', dest='fix_circular', default=True, action='store_false', help='don\'t fix truncated circular traces') parser.add_option_group(atrace_ftrace_options) # Add the other agent parsing options to the parser. For Systrace on the # command line, all agents are added. For Android, only the compatible agents # will be added. for module in ALL_MODULES: option_group = module.add_options(parser) if option_group: parser.add_option_group(option_group) options, categories = parser.parse_args(argv[1:]) if options.output_file is None: options.output_file = 'trace.json' if options.write_json else 'trace.html' if options.link_assets or options.asset_dir != 'trace-viewer': parser.error('--link-assets and --asset-dir are deprecated.') if options.trace_time and options.trace_time < 0: parser.error('the trace time must be a non-negative number') if (options.trace_buf_size is not None) and (options.trace_buf_size <= 0): parser.error('the trace buffer size must be a positive number') return (options, categories)
12,337
def open_excel(path): """context generator to open and close excel sheets""" spreadsheet = Spreadsheet(path) yield spreadsheet spreadsheet.close()
12,338
def test_fix_nothing(): """Ensures that fix works for Nothing container.""" assert Nothing.fix(lambda _: None) == Nothing assert Nothing.fix(lambda _: 1) == Some(1)
12,339
def get_data_for_file(folder, ports): """Parses the pcap files in the specified folder, and outputs data for the specified ports """ # Load private keys and port->provider mappings keys, providers, nodes = read_keys(os.path.join(folder, 'keys')) print 'Loading packets' # Load packets with open(os.path.join(folder, 'network.pcap'), 'rb') as f: cap = dpkt.pcap.Reader(f) packets = [] for ts, buf in cap: eth = dpkt.sll.SLL(buf) if eth.type != 3: # tcpdump captures both type 3 and 4 packets, resulting in duplicates continue eth.time = ts try: eth.data.src = socket.inet_ntoa(eth.data.src) eth.data.dst = socket.inet_ntoa(eth.data.dst) except: pass packets.append(eth) # Load config config = json.load(open(os.path.join(folder, 'config.json'))) # Invert exponential parameters to get rate loops, drop, payload = 1/config['EXP_PARAMS_LOOPS'], 1 / \ config['EXP_PARAMS_DROP'], 1/config['EXP_PARAMS_PAYLOAD'] lambda_total = loops + drop + payload print "λ_loop = %f, λ_drop = %f, λ_payload = %f, λ = %f" % ( loops, drop, payload, lambda_total) data = [] for port in ports: print "Parsing port %d from %s" % (port, folder) # Filter packets by source port filtered = [x for x in packets if x.data.data.sport == port] print "Analysing all packets" all_mean = analyse_packets(filtered, packets[0].time, packets[-1].time) print "-----------------" decrypted_filtered = [(x, decrypt_packet( x, keys[nodes[get_addr(x.data.dst, x.data.data.dport)]], keys)) for x in filtered] real_filtered = [ x for x, decrypt in decrypted_filtered if decrypt[0] == 'REAL'] if len(real_filtered) == 0: print "Warning, 0 real packets" real_mean = None else: print "Analysing real packets" real_mean = analyse_packets( real_filtered, packets[0].time, packets[-1].time) print "\n-----------------\n" data.append((port, loops, drop, payload, lambda_total, all_mean, real_mean)) return data
12,340
async def create_channel_in_db( context: 'Context', game_config: 'GameConfig', channel_id: str, finished: bool = False ) -> Channel: """Utility function to create a channel in the database :param context: The Discord Context. :param game_config: The GameConfig to use for extra info. :param finished: Whether or not the channel is finished. :return: The Channel that was created""" owner = (await sync_to_async(User.objects.get_or_create)(id=context.author.id))[0] return await sync_to_async(Channel.objects.create)( id=channel_id, owner=owner, guild_id=context.guild.id, game=game_config.game, finished=finished )
12,341
def error(msg): """ Print message to stderr, can't use print because of Python 2/3 incompatibility """ sys.stderr.write(u'error: {}\n'.format(msg))
12,342
def retry(times, func, *args, **kwargs): """Try to execute multiple times function mitigating exceptions. :param times: Amount of attempts to execute function :param func: Function that should be executed :param args: *args that are passed to func :param kwargs: **kwargs that are passed to func :raises Exception: Raise any exception that can raise func :returns: Result of func(*args, **kwargs) """ for i in range(times): try: return func(*args, **kwargs) except Exception: if i == times - 1: raise
12,343
def _apply_prediction(G, func, ebunch=None): """Applies the given function to each edge in the specified iterable of edges. `G` is an instance of :class:`networkx.Graph`. `ebunch` is an iterable of pairs of nodes. If not specified, all non-edges in the graph `G` will be used. """ if ebunch is None: ebunch = nx.non_edges(G) return sorted([(u, v, func(G, u, v)) for u, v in ebunch], key = lambda t:t[2], reverse = True)
12,344
def import_class(class_object): """ Import a class given a string with its name in the format module.module.classname """ d = class_object.rfind(".") class_name = class_object[d + 1:len(class_object)] m = __import__(class_object[0:d], globals(), locals(), [class_name]) return getattr(m, class_name)
12,345
def anonymous_fun_0_(empty_closure_0_): """ empty_closure_0_: () """ def anonymous_fun_1_(par_map_input_1_): """ par_map_input_1_: Double """ def anonymous_fun_2_(par_map_input_0_): """ par_map_input_0_: Double """ def anonymous_fun_3_(fused_input_0_): """ fused_input_0_: (Double,Double) """ def anonymous_fun_4_(maybeRow_1_): """ maybeRow_1_: Maybe Double """ if maybeRow_1_ is not None: cond_result_0_ = maybeRow_1_ else: cond_result_0_ = 0.0 return cond_result_0_ def anonymous_fun_5_(row_1_): """ row_1_: Double """ if row_1_ < 5.0: cond_result_1_ = row_1_ else: cond_result_1_ = None return cond_result_1_ def anonymous_fun_6_(maybeRow_0_): """ maybeRow_0_: Maybe Double """ if maybeRow_0_ is not None: cond_result_2_ = maybeRow_0_ else: cond_result_2_ = 0.0 return cond_result_2_ def anonymous_fun_7_(row_0_): """ row_0_: Double """ if row_0_ > 10.0: cond_result_3_ = row_0_ else: cond_result_3_ = None return cond_result_3_ return ((fun_comp(anonymous_fun_4_,anonymous_fun_5_))(fused_input_0_[0]),(fun_comp(anonymous_fun_6_,anonymous_fun_7_))(fused_input_0_[1])) def anonymous_fun_8_(dbrow_0_): """ dbrow_0_: Double """ return (dbrow_0_,dbrow_0_) def anonymous_fun_9_(fused_input_1_): """ fused_input_1_: (Double,Double) """ def anonymous_fun_10_(maybeRow_1_): """ maybeRow_1_: Maybe Double """ if maybeRow_1_ is not None: cond_result_4_ = maybeRow_1_ else: cond_result_4_ = 0.0 return cond_result_4_ def anonymous_fun_11_(row_1_): """ row_1_: Double """ if row_1_ < 5.0: cond_result_5_ = row_1_ else: cond_result_5_ = None return cond_result_5_ def anonymous_fun_12_(maybeRow_0_): """ maybeRow_0_: Maybe Double """ if maybeRow_0_ is not None: cond_result_6_ = maybeRow_0_ else: cond_result_6_ = 0.0 return cond_result_6_ def anonymous_fun_13_(row_0_): """ row_0_: Double """ if row_0_ > 10.0: cond_result_7_ = row_0_ else: cond_result_7_ = None return cond_result_7_ return ((fun_comp(anonymous_fun_10_,anonymous_fun_11_))(fused_input_1_[0]),(fun_comp(anonymous_fun_12_,anonymous_fun_13_))(fused_input_1_[1])) def anonymous_fun_14_(dbrow_1_): """ dbrow_1_: Double """ return (dbrow_1_,dbrow_1_) return ((fun_comp(anonymous_fun_3_,anonymous_fun_8_))(par_map_input_0_),(fun_comp(anonymous_fun_9_,anonymous_fun_14_))(par_map_input_0_)) def anonymous_fun_15_(fused_input_2_): """ fused_input_2_: (Double,Double) """ def anonymous_fun_16_(maybeRow_1_): """ maybeRow_1_: Maybe Double """ if maybeRow_1_ is not None: cond_result_8_ = maybeRow_1_ else: cond_result_8_ = 0.0 return cond_result_8_ def anonymous_fun_17_(row_1_): """ row_1_: Double """ if row_1_ < 5.0: cond_result_9_ = row_1_ else: cond_result_9_ = None return cond_result_9_ def anonymous_fun_18_(maybeRow_0_): """ maybeRow_0_: Maybe Double """ if maybeRow_0_ is not None: cond_result_10_ = maybeRow_0_ else: cond_result_10_ = 0.0 return cond_result_10_ def anonymous_fun_19_(row_0_): """ row_0_: Double """ if row_0_ > 10.0: cond_result_11_ = row_0_ else: cond_result_11_ = None return cond_result_11_ return ((fun_comp(anonymous_fun_16_,anonymous_fun_17_))(fused_input_2_[0]),(fun_comp(anonymous_fun_18_,anonymous_fun_19_))(fused_input_2_[1])) def anonymous_fun_20_(dbrow_2_): """ dbrow_2_: Double """ return (dbrow_2_,dbrow_2_) return (anonymous_fun_2_(par_map_input_1_),(fun_comp(anonymous_fun_15_,anonymous_fun_20_))(par_map_input_1_)) return anonymous_fun_1_
12,346
def test_version(): """Test there is a version string""" assert {{ cookiecutter.project_slug }}.__version__ == '{{ cookiecutter.version }}'
12,347
def fromrecords(recList: List[List[int]], names: List[Literal["c", "b", "a"]]): """ usage.matplotlib: 1 """ ...
12,348
def get_examples(mode='train'): """ dataset[0][0] examples """ examples = { 'train': ({'id': '0a25cb4bc1ab6f474c699884e04601e4', 'title': '', 'context': '第35集雪见缓缓张开眼睛,景天又惊又喜之际,长卿和紫萱的仙船驶至,见众人无恙,' '也十分高兴。众人登船,用尽合力把自身的真气和水分输给她。雪见终于醒过来了,但却一脸木然,全无反应。众人向常胤求助,却发现人世界竟没有雪见的身世纪录。长卿询问清微的身世,' '清微语带双关说一切上了天界便有答案。长卿驾驶仙船,众人决定立马动身,往天界而去。众人来到一荒山,长卿指出,魔界和天界相连。由魔界进入通过神魔之井,便可登天。众人至魔界入口,' '仿若一黑色的蝙蝠洞,但始终无法进入。后来花楹发现只要有翅膀便能飞入。于是景天等人打下许多乌鸦,模仿重楼的翅膀,制作数对翅膀状巨物。刚佩戴在身,便被吸入洞口。众人摔落在地,' '抬头发现魔界守卫。景天和众魔套交情,自称和魔尊重楼相熟,众魔不理,打了起来。', 'question': '仙剑奇侠传3第几集上天界', 'answers': ['第35集'], 'answer_starts': [0]}), } return examples[mode]
12,349
def finished(ignored): """ Callback invoked when both logins and method calls have finished to shut down the reactor so the example exits. """ reactor.stop()
12,350
def launch_external_program(path): """Launches an application with a predefined CSV to open. Args: path (str): Returns: None. """ OS = sys.platform log.info('Identified OS : '+OS) if OS == 'linux': os.system('libreoffice ' + path) elif OS == 'win32': os.system('Start excel.exe ' + path.replace('/', '\\')) elif OS == 'darwin': os.system('Numbers ' + path) input('Press ENTER to continue...')
12,351
def display_tables(tables, max_rows=10, datetime_fmt='%Y-%m-%d %H:%M:%S', row=True): """Display mutiple tables side by side on a Jupyter Notebook. Args: tables (dict[str, DataFrame]): ``dict`` containing table names and pandas DataFrames. max_rows (int): Max rows to show per table. Defaults to 10. datetime_fmt (str): Format with which to display datetime columns. """ # Import here to avoid making IPython a hard dependency from IPython.core.display import HTML names = [] data = [] for name, table in tables.items(): table = table.copy() for column in table.columns: column_data = table[column] if column_data.dtype.kind == 'M': table[column] = column_data.dt.strftime(datetime_fmt) names.append('<td style="text-align:left"><b>{}</b></td>'.format(name)) data.append('<td>{}</td>'.format(table.head(max_rows).to_html(index=False))) if row: html = '<table><tr>{}</tr><tr>{}</tr></table>'.format( ''.join(names), ''.join(data), ) else: rows = [ '<tr>{}</tr><tr>{}</tr>'.format(name, table) for name, table in zip(names, data) ] html = '<table>{}</table>'.format(''.join(rows)) return HTML(html)
12,352
def get_visible_enemy_units(observation, as_list=False, as_dict=True): """ This function takes an observation and returns a list of the enemy units that are on screen and are visible. A unit is considered visible if is either visible (in the protos sense) or if it is snapshotted and finished. The definition of display_type can be found here: https://github.com/Blizzard/s2client-proto/blob/master/s2clientprotocol/raw.proto#L55 """ if as_list == as_dict: raise ValueError("One and only one of as_list and as_dict should be True") if as_list == True: visible_enemy_units = [] for unit in observation.raw_data.units: if unit.alliance == 4 and unit.is_on_screen: if unit.display_type == 1 or ( unit.display_type == 2 and unit.build_progress == 1 ): visible_enemy_units.append(get_unit_doc(unit)) if as_dict == True: # TO-DO: fix this one, this is the root of all bugs. visible_enemy_units = {} for unit in observation.raw_data.units: if unit.alliance == 4 and unit.is_on_screen: if unit.display_type == 1 or ( unit.display_type == 2 and unit.build_progress == 1 ): if str(unit.unit_type) not in visible_enemy_units: visible_enemy_units[str(unit.unit_type)] = [get_unit_doc(unit)] else: visible_enemy_units[str(unit.unit_type)].append( get_unit_doc(unit) ) return visible_enemy_units
12,353
def prepare_default_result_dict(key, done, nodes): """Prepares the default result `dict` using common values returned by any operation on the DHT. Returns: dict: with keys `(k, d, n)` for the key, done and nodes; `n` is a list of `dict` with keys `(i, a, x)` for id, address, and expiration. """ d = { "k": key, "d": done, } nb = [] for n in nodes: _node = n.getNode() nb.append({ "i": n.getId().toString(), "a": _node.getAddr(), "x": _node.isExpired() }) d["n"] = nb return d
12,354
def MatchScorer(match, mismatch): """Factory function that returns a score function set to match and mismatch. match and mismatch should both be numbers. Typically, match should be positive and mismatch should be negative. Resulting function has signature f(x,y) -> number. """ def scorer(x, y): if x == y: return match else: return mismatch return scorer
12,355
def random_choice(context: RuntimeContext, *choices): """Template helper for random choices. Supports structures like this: random_choice: - a - b - <<c>> Or like this: random_choice: - choice: pick: A probability: 50% - choice: pick: A probability: 50% Probabilities are really just weights and don't need to add up to 100. Pick-items can have arbitrary internal complexity. Pick-items are lazily evaluated. """ if not choices: raise ValueError("No choices supplied!") if getattr(choices[0], "function_name", None) == "choice": choices = [choice.render(context) for choice in choices] rc = weighted_choice(choices) else: rc = random.choice(choices) if hasattr(rc, "render"): rc = rc.render(context) return rc
12,356
def _compute_paddings(height_pad_amt, width_pad_amt, patch_axes): """Convert the total pad amounts to the format needed by tf.pad().""" top_pad = height_pad_amt // 2 bottom_pad = height_pad_amt - top_pad left_pad = width_pad_amt // 2 right_pad = width_pad_amt - left_pad paddings = [[0, 0] for _ in range(4)] paddings[patch_axes[0]] = [top_pad, bottom_pad] paddings[patch_axes[1]] = [left_pad, right_pad] return paddings
12,357
def tab_size(computer, name, value): """Compute the ``tab-size`` property.""" if isinstance(value, int): return value else: return length(computer, name, value)
12,358
def match_complete(user_id=""): """Switch 'complete' to true in matches table for user, return tallies.""" print("match_complete", user_id) user = sm.get_user(user_id) # Note: 0/1 used for 'complete' b/c Booleans not allowed in SimpleObjects this_match, i = current_match_i(user) temp = this_match['complete'] temp[i] = 1 this_match['complete'] = temp return _get_tallies(user)
12,359
def compute_range_map(flow, downsampling_factor=1, reduce_downsampling_bias=True, resize_output=True): """Count how often each coordinate is sampled. Counts are assigned to the integer coordinates around the sampled coordinates using weights from bilinear interpolation. Args: flow: A float tensor of shape (batch size x height x width x 2) that represents a dense flow field. downsampling_factor: An integer, by which factor to downsample the output resolution relative to the input resolution. Downsampling increases the bin size but decreases the resolution of the output. The output is normalized such that zero flow input will produce a constant ones output. reduce_downsampling_bias: A boolean, whether to reduce the downsampling bias near the image boundaries by padding the flow field. resize_output: A boolean, whether to resize the output at the input resolution. Returns: A float tensor of shape [batch_size, height, width, 1] that denotes how often each pixel is sampled. """ # Get input shape. input_shape = flow.shape.as_list() if len(input_shape) != 4: raise NotImplementedError() batch_size, input_height, input_width, _ = input_shape flow_height = input_height flow_width = input_width # Apply downsampling (and move the coordinate frame appropriately). output_height = input_height // downsampling_factor output_width = input_width // downsampling_factor if downsampling_factor > 1: # Reduce the bias that comes from downsampling, where pixels at the edge # will get lower counts that pixels in the middle of the image, by padding # the flow field. if reduce_downsampling_bias: p = downsampling_factor // 2 flow_height += 2 * p flow_width += 2 * p # Apply padding in multiple steps to padd with the values on the edge. for _ in range(p): flow = tf.pad( tensor=flow, paddings=[[0, 0], [1, 1], [1, 1], [0, 0]], mode='SYMMETRIC') coords = flow_to_warp(flow) - p # Update the coordinate frame to the downsampled one. coords = (coords + (1 - downsampling_factor) * 0.5) / downsampling_factor elif downsampling_factor == 1: coords = flow_to_warp(flow)#after warpping image else: raise ValueError('downsampling_factor must be an integer >= 1.') # Split coordinates into an integer part and a float offset for interpolation. coords_floor = tf.floor(coords)#返回一个具有相同类型的张量,不大于的最大整数 coords_offset = coords - coords_floor coords_floor = tf.cast(coords_floor, 'int32') # Define a batch offset for flattened indexes into all pixels. batch_range = tf.reshape(tf.range(batch_size), [batch_size, 1, 1]) idx_batch_offset = tf.tile( batch_range, [1, flow_height, flow_width]) * output_height * output_width # Flatten everything. coords_floor_flattened = tf.reshape(coords_floor, [-1, 2])#zhengshu coords_offset_flattened = tf.reshape(coords_offset, [-1, 2])#xiaoshu idx_batch_offset_flattened = tf.reshape(idx_batch_offset, [-1])#suoyin # Initialize results. idxs_list = [] weights_list = [] # Loop over differences di and dj to the four neighboring pixels. for di in range(2): for dj in range(2): # Compute the neighboring pixel coordinates. idxs_i = coords_floor_flattened[:, 0] + di idxs_j = coords_floor_flattened[:, 1] + dj # Compute the flat index into all pixels. idxs = idx_batch_offset_flattened + idxs_i * output_width + idxs_j # Only count valid pixels. mask = tf.reshape( tf.compat.v1.where( tf.logical_and( tf.logical_and(idxs_i >= 0, idxs_i < output_height), tf.logical_and(idxs_j >= 0, idxs_j < output_width))), [-1]) valid_idxs = tf.gather(idxs, mask) valid_offsets = tf.gather(coords_offset_flattened, mask) # Compute weights according to bilinear interpolation. weights_i = (1. - di) - (-1)**di * valid_offsets[:, 0] weights_j = (1. - dj) - (-1)**dj * valid_offsets[:, 1] weights = weights_i * weights_j # Append indices and weights to the corresponding list. idxs_list.append(valid_idxs) weights_list.append(weights) # Concatenate everything. idxs = tf.concat(idxs_list, axis=0) weights = tf.concat(weights_list, axis=0) # Sum up weights for each pixel and reshape the result. counts = tf.math.unsorted_segment_sum( weights, idxs, batch_size * output_height * output_width) count_image = tf.reshape(counts, [batch_size, output_height, output_width, 1]) if downsampling_factor > 1: # Normalize the count image so that downsampling does not affect the counts. count_image /= downsampling_factor**2 if resize_output: count_image = resize( count_image, input_height, input_width, is_flow=False) return count_image
12,360
def get_wer(refs: List[str], hyps: List[str]): """ args: refs (list of str): reference texts hyps (list of str): hypothesis/prediction texts """ n_words, n_errors = 0, 0 for ref, hyp in zip(refs, hyps): ref, hyp = ref.split(), hyp.split() n_words += len(ref) n_errors += editdistance.eval(ref, hyp) return safe_divide(n_errors, n_words)
12,361
def quad_sim(x_c, y_c, z_c): """ Calculates the necessary thrust and torques for the quadrotor to follow the trajectory described by the sets of coefficients x_c, y_c, and z_c. """ x_pos = -5 y_pos = -5 z_pos = 5 x_vel = 0 y_vel = 0 z_vel = 0 x_acc = 0 y_acc = 0 z_acc = 0 roll = 0 pitch = 0 yaw = 0 roll_vel = 0 pitch_vel = 0 yaw_vel = 0 des_yaw = 0 dt = 0.1 t = 0 q = Quadrotor(x=x_pos, y=y_pos, z=z_pos, roll=roll, pitch=pitch, yaw=yaw, size=1, show_animation=show_animation) i = 0 n_run = 8 irun = 0 while True: while t <= T: # des_x_pos = calculate_position(x_c[i], t) # des_y_pos = calculate_position(y_c[i], t) des_z_pos = calculate_position(z_c[i], t) # des_x_vel = calculate_velocity(x_c[i], t) # des_y_vel = calculate_velocity(y_c[i], t) des_z_vel = calculate_velocity(z_c[i], t) des_x_acc = calculate_acceleration(x_c[i], t) des_y_acc = calculate_acceleration(y_c[i], t) des_z_acc = calculate_acceleration(z_c[i], t) thrust = m * (g + des_z_acc + Kp_z * (des_z_pos - z_pos) + Kd_z * (des_z_vel - z_vel)) roll_torque = Kp_roll * \ (((des_x_acc * sin(des_yaw) - des_y_acc * cos(des_yaw)) / g) - roll) pitch_torque = Kp_pitch * \ (((des_x_acc * cos(des_yaw) - des_y_acc * sin(des_yaw)) / g) - pitch) yaw_torque = Kp_yaw * (des_yaw - yaw) roll_vel += roll_torque * dt / Ixx pitch_vel += pitch_torque * dt / Iyy yaw_vel += yaw_torque * dt / Izz roll += roll_vel * dt pitch += pitch_vel * dt yaw += yaw_vel * dt R = rotation_matrix(roll, pitch, yaw) acc = (np.matmul(R, np.array( [0, 0, thrust.item()]).T) - np.array([0, 0, m * g]).T) / m x_acc = acc[0] y_acc = acc[1] z_acc = acc[2] x_vel += x_acc * dt y_vel += y_acc * dt z_vel += z_acc * dt x_pos += x_vel * dt y_pos += y_vel * dt z_pos += z_vel * dt q.update_pose(x_pos, y_pos, z_pos, roll, pitch, yaw) t += dt t = 0 i = (i + 1) % 4 irun += 1 if irun >= n_run: break print("Done")
12,362
def get_first(somelist, function): """ Returns the first item of somelist for which function(item) is True """ for item in somelist: if function(item): return item return None
12,363
def np_cross(a, b): """ Simple numba compatible cross product of vectors """ return np.array([ a[1] * b[2] - a[2] * b[1], a[2] * b[0] - a[0] * b[2], a[0] * b[1] - a[1] * b[0], ])
12,364
def get_process_output(process, encoding=None): """Get the output from the process.""" output = process.communicate() returncode = process.returncode if not encoding: try: encoding = sys.stdout.encoding except Exception: encoding = locale.getpreferredencoding() if returncode != 0: raise RuntimeError("Runtime Error: %s" % (output[0].rstrip().decode(encoding, errors='replace'))) return output[0].decode(encoding, errors='replace')
12,365
def augment_model_with_bundled_inputs( model: torch.jit.ScriptModule, inputs: Optional[Sequence[Tuple[Any, ...]]] = None, _receive_inflate_expr: Optional[List[str]] = None, # For debugging. info: Optional[List[str]] = None, # Optional argument to provide info about forward or its inputs ) -> None: """ Add bundled sample inputs to a model for the forward function. Models with bundled inputs can be invoked in a uniform manner by benchmarking and code coverage tools. Augmented models will support the following methods: `get_all_bundled_inputs() -> List[Tuple[Any, ...]]` Returns a list of tuples suitable for passing to the model like `for inp in model.get_all_bundled_inputs(): model(*inp)` `get_num_bundled_inputs() -> int` Equivalent to `len(model.get_all_bundled_inputs())`, but slightly easier to call from C++. `get_bundled_inputs_functions_and_info() -> Dict[str, Dict[str: List[str]]]` Returns a dictionary mapping function names to a metadata dictionary. This nested dictionary maps preset strings like: 'get_inputs_function_name' -> the name of a function attribute in this model that can be run to get back a list of inputs corresponding to that function. 'info' -> the user provided extra information about the bundled inputs Inputs can be specified in one of two ways: - The model can define `_generate_bundled_inputs_for_forward`. If the user chooses this method inputs should be None - `inputs` is a list of inputs of form List[Tuple[Any, ...]]. A list of tuples where the elements of each tuple are the args that make up one input. """ if not isinstance(model, torch.jit.ScriptModule): raise Exception("Only ScriptModule is supported.") forward: Callable = model.forward # Sometimes forward won't have a name attached so just in case if not hasattr(forward, "__name__"): forward.__name__ = 'forward' augment_many_model_functions_with_bundled_inputs( model, inputs={forward : inputs}, _receive_inflate_expr=_receive_inflate_expr, info={forward : info} if info else None, )
12,366
def check(ctx): """Check the consistency of documentation, coding style and a few other things.""" with chdir(BASE_FOLDER): log.write("Pep517 check") ctx.run("python -m pep517.check .") log.write("Running all pre-commit hooks on whole repository.") ctx.run("pre-commit run --all-files")
12,367
def test_one_hot_encoder_not_sparse(): """ Tests whether the monkey patching of ('sklearn.preprocessing._encoders', 'OneHotEncoder') with dense output """ test_code = cleandoc(""" import pandas as pd from sklearn.preprocessing import label_binarize, OneHotEncoder import numpy as np df = pd.DataFrame({'A': ['cat_a', 'cat_b', 'cat_a', 'cat_c']}) one_hot_encoder = OneHotEncoder(sparse=False) encoded_data = one_hot_encoder.fit_transform(df) expected = np.array([[1., 0., 0.], [0., 1., 0.], [1., 0., 0.], [0., 0., 1.]]) print(encoded_data) assert np.allclose(encoded_data, expected) test_df = pd.DataFrame({'A': ['cat_a', 'cat_b', 'cat_a', 'cat_c']}) encoded_data = one_hot_encoder.transform(test_df) """) inspector_result = _pipeline_executor.singleton.run(python_code=test_code, track_code_references=True, inspections=[RowLineage(3)]) expected_dag = networkx.DiGraph() expected_data_source = DagNode(0, BasicCodeLocation("<string-source>", 5), OperatorContext(OperatorType.DATA_SOURCE, FunctionInfo('pandas.core.frame', 'DataFrame')), DagNodeDetails(None, ['A']), OptionalCodeInfo(CodeReference(5, 5, 5, 62), "pd.DataFrame({'A': ['cat_a', 'cat_b', 'cat_a', 'cat_c']})")) expected_transformer = DagNode(1, BasicCodeLocation("<string-source>", 6), OperatorContext(OperatorType.TRANSFORMER, FunctionInfo('sklearn.preprocessing._encoders', 'OneHotEncoder')), DagNodeDetails('One-Hot Encoder: fit_transform', ['array']), OptionalCodeInfo(CodeReference(6, 18, 6, 45), 'OneHotEncoder(sparse=False)')) expected_dag.add_edge(expected_data_source, expected_transformer) expected_data_source_two = DagNode(2, BasicCodeLocation("<string-source>", 11), OperatorContext(OperatorType.DATA_SOURCE, FunctionInfo('pandas.core.frame', 'DataFrame')), DagNodeDetails(None, ['A']), OptionalCodeInfo(CodeReference(11, 10, 11, 67), "pd.DataFrame({'A': ['cat_a', 'cat_b', 'cat_a', 'cat_c']})")) expected_transformer_two = DagNode(3, BasicCodeLocation("<string-source>", 6), OperatorContext(OperatorType.TRANSFORMER, FunctionInfo('sklearn.preprocessing._encoders', 'OneHotEncoder')), DagNodeDetails('One-Hot Encoder: transform', ['array']), OptionalCodeInfo(CodeReference(6, 18, 6, 45), 'OneHotEncoder(sparse=False)')) expected_dag.add_edge(expected_data_source_two, expected_transformer_two) compare(networkx.to_dict_of_dicts(inspector_result.dag), networkx.to_dict_of_dicts(expected_dag)) inspection_results_data_source = inspector_result.dag_node_to_inspection_results[expected_transformer] lineage_output = inspection_results_data_source[RowLineage(3)] expected_lineage_df = DataFrame([[numpy.array([1.0, 0.0, 0.0]), {LineageId(0, 0)}], [numpy.array([0.0, 1.0, 0.0]), {LineageId(0, 1)}], [numpy.array([1.0, 0.0, 0.0]), {LineageId(0, 2)}]], columns=['array', 'mlinspect_lineage']) pandas.testing.assert_frame_equal(lineage_output.reset_index(drop=True), expected_lineage_df.reset_index(drop=True)) inspection_results_data_source = inspector_result.dag_node_to_inspection_results[expected_transformer_two] lineage_output = inspection_results_data_source[RowLineage(3)] expected_lineage_df = DataFrame([[numpy.array([1.0, 0.0, 0.0]), {LineageId(2, 0)}], [numpy.array([0.0, 1.0, 0.0]), {LineageId(2, 1)}], [numpy.array([1.0, 0.0, 0.0]), {LineageId(2, 2)}]], columns=['array', 'mlinspect_lineage']) pandas.testing.assert_frame_equal(lineage_output.reset_index(drop=True), expected_lineage_df.reset_index(drop=True))
12,368
def dct_2d(pixel_blocks: np.ndarray, verbose: int = 0) -> np.ndarray: """ Does 8x8 2D DCT on an image represented by pixel blocks. :param pixel_blocks: A np.ndarray of shape AxBx8x8x3, where A = H/8, B = W/8. :param verbose: An int; if greater than 0 will print out a tqdm progress bar. :return: A np.ndarray of shape AxBx8x8x3, where A = H/8, B = W/8. """ to_return = list() if verbose > 0: pbar = tqdm(total=pixel_blocks.shape[0] * pixel_blocks.shape[1], file=stdout) for row in pixel_blocks: current_row = list() for pixel_block in row: current_row.append(dct_2d_on_8x8_block(pixel_block)) if verbose > 0: pbar.update() to_return.append(current_row) if verbose > 0: pbar.close() return np.array(to_return)
12,369
def set_task_status( bucket: Bucket, job_id: str, task_id: str, state: TaskState, worker: Optional[str] = _LOCAL_FQDN, ): """Set the status of a task. Uploads the JSON serialization of a TaskStatus into a bucket, recording its present state. Parameters ---------- bucket : Bucket The Google Cloud Storage bucket that hosts the given job and task. job_id : str The ID of the job. task_id : str The ID of the task. state : TaskState The state of the task. worker : Optional[str] An identifier for the worker reporting the state of the task (or None if no worker is handling the task). """ if state == TaskState.REQUESTED: worker = None status = TaskStatus(state, worker) blob_path = _task_status_path(job_id, task_id) bucket.blob(blob_path).upload_from_string(status.to_bytes())
12,370
def remove_duplicates(llist): """ Removes any and all duplicate entries in the specified list. This function is intended to be used during dataset merging and therefore must be able to handle list-of-lists. :param llist: The list to prune. :return: A list of unique elements only. """ if not llist: return [] llist.sort() return [x for x, _ in itertools.groupby(llist)]
12,371
def images_in_bbox(bbox: dict, **filters) -> str: """ Gets a complete list of images with custom filter within a BBox :param bbox: Bounding box coordinates Format:: >>> { ... 'west': 'BOUNDARY_FROM_WEST', ... 'south': 'BOUNDARY_FROM_SOUTH', ... 'east': 'BOUNDARY_FROM_EAST', ... 'north': 'BOUNDARY_FROM_NORTH' ... } :type bbox: dict :param filters: Different filters that may be applied to the output Example filters:: - max_captured_at - min_captured_at - image_type: pano, flat, or all - compass_angle - sequence_id - organization_id :type filters: dict :return: Output is a GeoJSON string that represents all the within a bbox after passing given filters :rtype: str Usage:: >>> import mapillary as mly >>> mly.interface.set_access_token('MLY|XXX') >>> mly.interface.images_in_bbox( ... bbox={ ... 'west': 'BOUNDARY_FROM_WEST', ... 'south': 'BOUNDARY_FROM_SOUTH', ... 'east': 'BOUNDARY_FROM_EAST', ... 'north': 'BOUNDARY_FROM_NORTH' ... }, ... max_captured_at='YYYY-MM-DD HH:MM:SS', ... min_captured_at='YYYY-MM-DD HH:MM:SS', ... image_type='pano', ... compass_angle=(0, 360), ... sequence_id='SEQUENCE_ID', ... organization_id='ORG_ID' ... ) """ return image.get_images_in_bbox_controller( bounding_box=bbox, layer="image", zoom=14, filters=filters )
12,372
def find_start_time_from_afl(project_base_dir): """ Finds the start time of a project from afl directories. This time is taken from the fuzzer_stats entry of the first config iteration's fuzzer. """ try: first_main_dir = main_dirs_for_proj(project_base_dir)[0] except: #if fuzzware-project dir exists but contains no mainXXX dirs return 0 first_fuzzer_dir = fuzzer_dirs_for_main_dir(first_main_dir)[0] fuzzer_stats_path = first_fuzzer_dir.joinpath("fuzzer_stats") with open(fuzzer_stats_path, "r") as f: start_time = int(f.readline().split(": ")[1]) return start_time
12,373
def set_password(user, passwd): """ set the users password """ # execute all commands from config file for rcmd in conf("commands.setPassword"): cmdlog = rcmd.replace("$1", user).replace("$2", "*****") cmd = rcmd.replace("$1", user).replace("$2", passwd) run(cmd, cmdlog)
12,374
def filter_none_values(d, recursive=True): """ Returns a filtered copy of a dict, with all keys associated with 'None' values removed. adapted from: http://stackoverflow.com/q/20558699 adapted from: http://stackoverflow.com/a/20558778 :param d: a dict-like object. :param recursive: If True, performs the operation recursively on inner elements of the object. :return: a new dict (of the same type as the original) containing the original dict's values, except as modified per this function's documented effects. >>> filter_none_values(None) is None True >>> filter_none_values(1) Traceback (most recent call last): TypeError: d is not a dict-like object. >>> filter_none_values({}) {} >>> filter_none_values({'a': 1, 'b': None, 'c': '3'}) {'a': 1, 'c': '3'} >>> filter_none_values({'a': 1, 'b': [1, None, 3], 'c': '3'}) {'a': 1, 'c': '3', 'b': [1, 3]} >>> filter_none_values({'a': 1, 'b': [1, {'ba': 1, 'bb': None, 'bc': '3'}, 3], 'c': '3'}) {'a': 1, 'c': '3', 'b': [1, {'ba': 1, 'bc': '3'}, 3]} >>> from collections import OrderedDict as od; filter_none_values(od((('a', 1), ('b', None), ('c', '3')))) OrderedDict([('a', 1), ('c', '3')]) >>> from collections import OrderedDict as od; filter_none_values({'r': od((('a', 1), ('b', None), ('c', '3')))}) {'r': OrderedDict([('a', 1), ('c', '3')])} >>> from json import loads; repr(filter_none_values(loads('{"a": 1, "b": null, "c": 3}'))) "{u'a': 1, u'c': 3}" >>> from json import loads; repr(filter_none_values(loads('{"a": 1, "b": [], "c": 3}'))) "{u'a': 1, u'c': 3, u'b': []}" >>> from json import loads; repr(filter_none_values(loads('{"a": 1, "b": {"ba": null}, "c": 3}'))) "{u'a': 1, u'c': 3, u'b': {}}" >>> from json import loads; repr(filter_none_values(loads('{"a": 1, "b": {"ba": []}, "c": 3}'))) "{u'a': 1, u'c': 3, u'b': {u'ba': []}}" >>> from json import loads; repr(filter_none_values(loads('{"a": 1, "b": {"ba": {"baa": null}}, "c": 3}'))) "{u'a': 1, u'c': 3, u'b': {u'ba': {}}}" """ # def my_remove_none(obj): # """Note: adapted from remove_none.""" # if isinstance(obj, (collections.Sequence, list, tuple, set)): # return type(obj)(remove_none(x) for x in obj if x is not None) # elif isinstance(obj, (collections.Mapping, dict)): # return type(obj)((remove_none(k), remove_none(v)) # for k, v in obj.items() if k is not None and v is not None) # else: # return obj def remove_none(obj): """Note: This one seems to be functionally equivalent to purify (at least for the cases I tested).""" if isinstance(obj, (list, tuple, set)): return type(obj)(remove_none(x) for x in obj if x is not None) elif isinstance(obj, dict): return type(obj)((remove_none(k), remove_none(v)) for k, v in obj.items() if k is not None and v is not None) else: return obj def purify(o): """Note: This one seems to be functionally equivalent to remove_none (at least for the cases I tested).""" if hasattr(o, 'items'): oo = type(o)() for k in o: if k is not None and o[k] is not None: oo[k] = purify(o[k]) elif hasattr(o, '__iter__'): oo = [] for it in o: if it is not None: oo.append(purify(it)) else: return o return type(o)(oo) def strip_none(data): """Note: This one doesn't support OrderedDict, etc.""" if isinstance(data, dict): return {k: strip_none(v) for k, v in data.items() if k is not None and v is not None} elif isinstance(data, list): return [strip_none(item) for item in data if item is not None] elif isinstance(data, tuple): return tuple(strip_none(item) for item in data if item is not None) elif isinstance(data, set): return {strip_none(item) for item in data if item is not None} else: return data if d is None: return None elif not hasattr(d, 'items'): raise TypeError('d is not a dict-like object.') if recursive: # return my_remove_none(d) # return remove_none(d) return purify(d) # return strip_none(d) else: d = d.copy() # remove all bad keys bad_keys = [k for k, v in d.items() if v is None] for k in bad_keys: d.pop(k) return d
12,375
def nonseq(): """ Return non sequence """ return 1
12,376
def handler(settings, orch, output, signum=None, frame=None): """Signal handler This function is called when the simulator receive SIGTERM, SIGHUP, SIGKILL or SIGQUIT from the OS. Its function is simply to write on a file the partial results. Parameters ---------- settings : Settings The simulator settings orch : Orchestrator The instance of the orchestrator output : str The output file """ logger.error('Received signal %d. Terminating' % signum) RESULTS_WRITER[settings.RESULTS_FORMAT](orch.results, output) logger.info('Saved intermediate results to file %s' % os.path.abspath(output)) orch.stop() sys.exit(-signum)
12,377
def load_image(path, color_space = None, target_size = None): """Loads an image as an numpy array Arguments: path: Path to image file target_size: Either, None (default to original size) or tuple of ints '(image height, image width)' """ img = io.imread(path) if target_size: img = cv2.resize(img, target_size, interpolation = cv2.INTER_CUBIC) return img
12,378
def kubernetes_node_label_to_dict(node_label): """Load Kubernetes node label to Python dict.""" if node_label: label_name, value = node_label.split("=") return {label_name: value} return {}
12,379
def get_category_user_problem(cat_name, username): """ 获取直接在指定目录下的用户AC的题目、尚未AC的题目和尚未做过的题目的情况 :param cat_name: :param username: :return: """ cat = __Category.objects.filter(name=cat_name).first() user = __User.objects.filter(username=username).first() if user is None or cat is None: return {'solved': [], 'not_solved': [], 'not_tried': []} query_dict = {} relation = __ProblemUserRelation.objects.filter(user=user).values('problem_id', 'solved').distinct() for i in relation: query_dict[i['problem_id']] = i['solved'] problems = cat.problem.filter(category_relation__direct=True).values('id', 'title') solved = [] not_solved = [] not_tried = [] for i in problems: if i['id'] in query_dict: if query_dict[i['id']] is True: solved.append(i) else: not_solved.append(i) else: not_tried.append(i) return {'solved': solved, 'not_solved': not_solved, 'not_tried': not_tried}
12,380
def write_list_content(log_writer, key, list_value, level, **kwargs): """ Writes list content to HTML. For example, the fields content of an event. The html_wrapper decorator puts a start and end tag (possibly specified in kwargs) around the content written by this function. - log_writer: The co-routine that writes the test log. - key: An event key, such as 'attr' or 'value'. - list_value: A list, the value that corresponds to 'key'. - level: The level of the div children used in calculating the right margin. """ # Write key inside the div as it is and insert a collapsible button. log_writer.send(key + COLLAPSE_BUTTON) level += 1 # Calculate the margin for the list elements. start_div = get_margin('div', level) # Call recursive function on each list element. for item in list_value: write_html(log_writer, item, event_no=kwargs.get('event_no', None), start_tag=start_div, level=level)
12,381
def floatToJson(x): """Custom rule for converting non-finite numbers to JSON as quoted strings: ``"inf"``, ``"-inf"``, and ``"nan"``. This avoids Python's bad habit of putting literal ``Infinity``, ``-Infinity``, and ``NaN`` in the JSON (without quotes).""" if x in ("nan", "inf", "-inf"): return x elif math.isnan(x): return "nan" elif math.isinf(x) and x > 0.0: return "inf" elif math.isinf(x): return "-inf" else: return x
12,382
def get_datafiles(datadir, prefix = ""): """ Scan directory for all csv files prefix: used in recursive call """ datafiles = [] for fname in os.listdir(datadir): fpath = os.path.join(datadir, fname) datafile = os.path.join(prefix, fname) if os.path.isdir(fpath): datafiles += get_datafiles(fpath, datafile) elif fname.endswith(".csv"): datafiles.append(datafile) return datafiles
12,383
def auto_delete_file_on_change(sender, instance, **kwargs): """ Deletes old file from filesystem when corresponding `MediaFile` object is updated with new file. """ if not instance.pk: return False try: old_file = sender.objects.get(pk=instance.pk).url_banner except sender.DoesNotExist: return False new_file = instance.url_banner if not old_file == new_file: if os.path.isfile(old_file.path): os.remove(old_file.path)
12,384
def systematic_uncertainties(): """tabulates sources of uncertainty and sums them in quadrature""" result_m = [ 0.066, # [0.07-0.12] 0.066 ± 0.019 0.019, # [0.12-0.20] 0.019 ± 0.009 0.002, # [0.20-0.30] 0.002 ± 0.009 -0.006, # [0.30-0.45] -0.006 ± 0.014 0.007, # [0.45-0.65] 0.007 ± 0.023 0.012 # [0.65-1.00] 0.012 ± 0.040 ] result_p = [ 0.026, # [0.07-0.12] 0.026 ± 0.019 0.021, # [0.12-0.20] 0.021 ± 0.008 0.002, # [0.20-0.30] 0.002 ± 0.009 -0.014, # [0.30-0.45] -0.014 ± 0.013 0.024, # [0.45-0.65] 0.024 ± 0.022 0.046 # [0.65-1.00] 0.046 ± 0.037 ] pid_contamination = 0.10 pid_asym_m = [ ( 0.051 , 0.038), # [0.07-0.12] 0.051 ± 0.038 (-0.017 , 0.016), # [0.12-0.20] -0.017 ± 0.016 (-0.032 , 0.016), # [0.20-0.30] -0.032 ± 0.016 (-0.006 , 0.023), # [0.30-0.45] -0.006 ± 0.023 (-0.031 , 0.042), # [0.45-0.65] -0.031 ± 0.042 ( 0.089 , 0.085) # [0.65-1.00] 0.089 ± 0.085 ] pid_asym_p = [ ( 0.005 , 0.036), # [0.07-0.12] 0.005 ± 0.036 ( 0.006 , 0.015), # [0.12-0.20] 0.006 ± 0.015 (-0.006 , 0.015), # [0.20-0.30] -0.006 ± 0.015 ( 0.018 , 0.020), # [0.30-0.45] 0.018 ± 0.020 (-0.038 , 0.032), # [0.45-0.65] -0.038 ± 0.032 ( 0.142 , 0.059) # [0.65-1.00] 0.142 ± 0.059 ] for i in range(len(pid_asym_m)): val, err = pid_asym_m[i] pid_asym_m[i] = max( val-result_m[i], err) for i in range(len(pid_asym_p)): val, err = pid_asym_p[i] pid_asym_p[i] = max( val-result_p[i], err) beam_vector = 0.0102 asigma_m = [ 0.035, # [0.07-0.12] 0.005 ± 0.035 0.015, # [0.12-0.20] -0.012 ± 0.015 0.016, # [0.20-0.30] -0.014 ± 0.016 0.027, # [0.30-0.45] -0.027 ± 0.023 0.066, # [0.45-0.65] -0.066 ± 0.040 0.073 # [0.65-1.00] -0.072 ± 0.073 ] asigma_p = [ 0.034, # [0.07-0.12] -0.001 ± 0.034 0.014, # [0.12-0.20] -0.007 ± 0.014 0.015, # [0.20-0.30] 0.007 ± 0.015 0.025, # [0.30-0.45] -0.025 ± 0.022 0.039, # [0.45-0.65] -0.039 ± 0.037 0.061 # [0.65-1.00] 0.033 ± 0.061 ] mcasym_m = [ 0.0066, # [0.07-0.12] 0.0012 ± 0.0066 0.0057, # [0.12-0.20] 0.0057 ± 0.0025 0.0089, # [0.20-0.30] 0.0089 ± 0.0020 0.0077, # [0.30-0.45] 0.0077 ± 0.0026 0.0042, # [0.45-0.65] 0.0038 ± 0.0042 0.0070 # [0.65-1.00] 0.0053 ± 0.0070 ] mcasym_p = [ 0.0047, # [0.07-0.12] -0.0014 ± 0.0047 0.0077, # [0.12-0.20] 0.0077 ± 0.0024 0.0147, # [0.20-0.30] 0.0147 ± 0.0023 0.0105, # [0.30-0.45] 0.0105 ± 0.0024 0.0057, # [0.45-0.65] 0.0057 ± 0.0044 0.0112 # [0.65-1.00] 0.0112 ± 0.0081 ] pt_shift_m = [ 0, 0, 0.003, # [0.20-0.30] 0.006 low, 0.001 high, 0.003 avg 0.005, # [0.30-0.45] 0.007 low, 0.003 high, 0.005 avg 0.016, # [0.45-0.65] 0.020 low, 0.012 high, 0.016 avg 0.010 # [0.65-1.00] 0.011 low, 0.008 high, 0.010 avg ] pt_shift_p = [ 0, 0, 0.004, # [0.20-0.30] 0.005 low, 0.003 high, 0.004 avg 0.007, # [0.30-0.45] 0.008 low, 0.006 high, 0.007 avg 0.016, # [0.45-0.65] 0.023 low, 0.008 high, 0.016 avg 0.016 # [0.65-1.00] 0.012 low, 0.020 high, 0.016 avg ] relative_luminosity = 9.4e-4 minus = [0.0 for bin in zbins[:-1]] plus = [0.0 for bin in zbins[:-1]] start = len(zbins) == 5 and 2 or 0 for i in range(start, start+len(zbins)-1): minus[i-start] = math.sqrt( pow(relative_luminosity, 2) + pow(pid_contamination*pid_asym_m[i], 2) + pow(beam_vector*asigma_m[i], 2) + pow(mcasym_m[i], 2) + pow(pt_shift_m[i], 2) ) plus[i-start] = math.sqrt( pow(relative_luminosity, 2) + pow(pid_contamination*pid_asym_p[i], 2) + pow(beam_vector*asigma_p[i], 2) + pow(mcasym_p[i], 2) + pow(pt_shift_p[i], 2) ) return {'minus':minus, 'plus':plus}
12,385
def extract_metamap(json_, key): """ Task function to parse and extract concepts from json_ style dic, using the MetaMap binary. Input: - json_ : dic, json-style dictionary generated from the Parse object related to the specific type of input - key : str, string denoting the type of medical text to read from. Used to find the correct paragraph in the settings.yaml file. Output: - json_ : dic, the previous json-style dictionary enriched with medical concepts """ # outerfield for the documents in json docfield = settings['out']['json']['itemfield'] # textfield to read text from textfield = settings['out']['json']['json_text_field'] N = len(json_[docfield]) for i, doc in enumerate(json_[docfield]): text = clean_text(doc[textfield]) if len(text) > 5000: chunks = create_text_batches(text) results = {'text': text, 'sents': []} sent_id = 0 for chunk in chunks: tmp = metamap_wrapper(chunk) for sent in tmp['sents']: sent['sent_id'] = sent_id sent_id += 1 results['sents'].append(sent) else: results = metamap_wrapper(text) json_[docfield][i].update(results) proc = int(i/float(N)*100) if proc % 10 == 0 and proc > 0: time_log('We are at %d/%d documents -- %0.2f %%' % (i, N, proc)) return json_
12,386
def get_testinfo_by_reference(ref_name, ref_type): """ get test content by reference name @params: ref_name: reference name, e.g. api_v1_Account_Login_POST($UserName, $Password) ref_type: "api" or "suite" """ function_meta = parse_function(ref_name) func_name = function_meta["func_name"] call_args = function_meta["args"] test_info = get_test_definition(func_name, ref_type) def_args = test_info.get("function_meta").get("args", []) if len(call_args) != len(def_args): raise exception.ParamsError("call args mismatch defined args!") args_mapping = {} for index, item in enumerate(def_args): if call_args[index] == item: continue args_mapping[item] = call_args[index] if args_mapping: test_info = substitute_variables_with_mapping(test_info, args_mapping) return test_info
12,387
def game_info(uuid: str) -> dict: """ return info about game by uuid :param uuid: :return: message """ logging.info(uuid) logging.info(games.keys()) if UUID(uuid) in games.keys(): select_game: Game = games.get(UUID(uuid)) return { "uuid": uuid, "start_time": select_game.start_time, "field": select_game.field, } else: return {"Error": f"{uuid} game not found!"}
12,388
def main(genome_accession_file, project_dir, lsf=True): """ Parses a file of genome accessions and downloads genomes from ENA. Genomes are downloaded in fasta format. It is a requirement that genome_accession file containes a GCA or WGS accession per genome genome_accession_file: A file with a list of upid\tGCA\tdomain or upid\tWGS\tdomain pairs project_dir: The path to the directory where all genomes will be downloaded It will be created if it does not exist return: void """ # generating project_directory if not os.path.exists(project_dir): os.mkdir(project_dir) # create a file handle and read genome id pairs input_fp = open(genome_accession_file, 'r') for genome in input_fp: genome_data = genome.strip().split('\t') upid = genome_data[0] domain = genome_data[2] gen_acc = genome_data[1] # create domain directory domain_dir = os.path.join(project_dir, domain) if not os.path.exists(domain_dir): os.mkdir(domain_dir) # create genome directory e.g. project_dir/domain/updir updir = os.path.join(project_dir, os.path.join(domain_dir, upid)) if not os.path.exists(updir): os.mkdir(updir) if lsf is not True: fetch_genome_from_ENA(gen_acc, updir) # submit a job else: err_file = os.path.join(updir, upid+'.err') out_file = os.path.join(updir, upid+'.err') bsub_cmd = "bsub -o %s -e %s -g %s %s -f fasta -m -d %s %s" % (out_file, err_file, LSF_GROUP % domain, os.path.join(ENA_TOOL, 'enaDataGet'), updir, gen_acc) subprocess.call(bsub_cmd, shell=True)
12,389
def miller_rabin(n, a): """ Miller-Rabin Primality Test Returns true if n is a (probable) prime Returns false if n is a composite number """ s = 0 d = n - 1 while d % 2 == 0: s = s + 1 d = d >> 1 x = square_and_multiply(a, d, n) if x != 1 and x + 1 != n: for r in range(1, s): x = square_and_multiply(x, 2, n) if x == 1: return False elif x == n - 1: a = 0 break if a: return False return True
12,390
def luhn_sum_v1(num): """ First version of luhn_sum; uses a list which it modifies in-place. """ nums = [int(i) for i in reversed(str(num))] for i in xrange(1, len(nums), 2): nums[i] *= 2 return sum(sum(divmod(i, 10)) for i in nums)
12,391
def build(c): """Build""" c.run(f"{sys.executable} setup.py sdist bdist_wheel")
12,392
def get_rate_discounted_rate(item_code, customer, company, so_number = None): """ This function is use to get discounted rate and rate """ item_group = frappe.get_value("Item", item_code, 'item_group') # parent_item_group = frappe.get_value("Item Group", item_group, 'parent_item_group') count = frappe.db.sql(f""" SELECT COUNT(*) FROM `tabDelivery Note Item` as soi JOIN `tabDelivery Note` as so ON so.`name` = soi.`parent` WHERE soi.`item_group` = '{item_group}' AND soi.`docstatus` = 1 AND so.customer = '{customer}' AND so.`company` = '{company}' LIMIT 1 """) where_clause = '' if count[0][0]: where_clause = f"soi.item_group = '{item_group}' AND" data = None if so_number: data = frappe.db.sql(f""" SELECT soi.`rate` as `rate` FROM `tabDelivery Note Item` as soi JOIN `tabDelivery Note` as so ON soi.parent = so.name WHERE {where_clause} so.`customer` = '{customer}' AND so.`company` = '{company}' AND so.`docstatus` != 2 AND so.`name` = '{so_number}' ORDER BY soi.`creation` DESC LIMIT 1 """, as_dict = True) if not data: data = frappe.db.sql(f""" SELECT soi.`rate` as `rate` FROM `tabDelivery Note Item` as soi JOIN `tabDelivery Note` as so ON soi.parent = so.name WHERE {where_clause} so.`customer` = '{customer}' AND so.`company` = '{company}' AND so.`docstatus` != 2 ORDER BY soi.`creation` DESC LIMIT 1 """, as_dict = True) return data[0] if data else {'rate': 0}
12,393
def lambda_handler(event: Dict[str, Any], context: Dict[str, Any]) -> str: """ Lambda function to parse notification events and forward to Slack :param event: lambda expected event object :param context: lambda expected context object :returns: none """ if os.environ.get("LOG_EVENTS", "False") == "True": logging.info(f"Event logging enabled: `{json.dumps(event)}`") for record in event["Records"]: sns = record["Sns"] subject = sns["Subject"] message = sns["Message"] region = sns["TopicArn"].split(":")[3] payload = get_slack_message_payload( message=message, region=region, subject=subject ) response = send_slack_notification(payload=payload) if json.loads(response)["code"] != 200: response_info = json.loads(response)["info"] logging.error( f"Error: received status `{response_info}` using event `{event}` and context `{context}`" ) return response
12,394
def sum_obs_np(A): """summation over axis 0 (obs) equivalent to np.sum(A, 0)""" return np.einsum("ij -> j", A) if A.ndim > 1 else np.sum(A)
12,395
def _macos_command_line_infoplist_impl(ctx): """Implementation of the internal `macos_command_line_infoplist` rule. This rule is an internal implementation detail of `macos_command_line_application` and should not be used directly by clients. It merges Info.plists as would occur for a bundle but then propagates an `objc` provider with the necessary linkopts to embed the plist in a binary. Args: ctx: The rule context. Returns: A `struct` containing the `objc` provider that should be propagated to a binary that should have this plist embedded. """ bundle_id = ctx.attr.bundle_id infoplists = ctx.files.infoplists if ctx.attr.version and AppleBundleVersionInfo in ctx.attr.version: version = ctx.attr.version[AppleBundleVersionInfo] else: version = None if not bundle_id and not infoplists and not version: fail("Internal error: at least one of bundle_id, infoplists, or version " + "should have been provided") plist_results = plist_actions.merge_infoplists( ctx, None, infoplists, bundle_id = bundle_id, exclude_executable_name = True, extract_from_ctxt = True, include_xcode_env = True, ) merged_infoplist = plist_results.output_plist return [ linker_support.sectcreate_objc_provider( "__TEXT", "__info_plist", merged_infoplist, ), ]
12,396
def get_custom_data_format(*args): """ get_custom_data_format(dfid) -> data_format_t Get definition of a registered custom data format. @param dfid: data format id (C++: int) @return: data format definition or NULL """ return _ida_bytes.get_custom_data_format(*args)
12,397
def memory(info, func, expr): """ checks if the function has been called with the same argument previously and if so, returns the same results instead of running the function again args: - """ rows=None if info: if func in info.evaluated: if expr in info.evaluated[func]: rows = info.evaluated[func][expr] else: info.evaluated[func] = {} else: info = Info() info.evaluated[func] = {} return info, rows
12,398
def install_common_tool(): """ Install many of the tool that I use for my day to day work. Other might want to modify this function. """ config_bashrc() install_apt_pkg() install_nvtop() install_pip_dependencies() install_gdrive_rclone() install_iterm_shell_integration() install_vim_tmux()
12,399