content
stringlengths
22
815k
id
int64
0
4.91M
def process_addr(): """Process the bridge IP address/hostname.""" server_addr = request.form.get('server_addr') session['server_addr'] = server_addr try: leap_response = get_ca_cert(server_addr) session['leap_version'] = leap_response['Body'] \ ['PingResponse']['LEAPVersion'] except ConnectionRefusedError: flash("A connection to %s could not be established. Please check " "the IP address and try again." % server_addr, 'danger') return redirect(url_for('wizard'))
10,900
def get_bkk_list(request): """板块课(通识选修课)""" myconfig = Config.objects.all().first() year = (myconfig.nChoose)[0:4] term = (myconfig.nChoose)[4:] if term == "1": term = "3" elif term == "2": term = "12" if myconfig.apichange: data = { 'xh':request.POST.get("xh"), 'pswd':request.POST.get("pswd"), 'bkk':request.POST.get("bkk") } res = requests.post(url=myconfig.otherapi+"/choose/bkk",data=data) return HttpResponse(json.dumps(json.loads(res.text), ensure_ascii=False), content_type="application/json,charset=utf-8") if myconfig.maintenance: return HttpResponse(json.dumps({'err':'教务系统出错维护中,请静待教务系统恢复正常!'}, ensure_ascii=False), content_type="application/json,charset=utf-8") if request.method == 'POST': if request.POST: xh = request.POST.get("xh") pswd = request.POST.get("pswd") bkk = request.POST.get("bkk") else: return HttpResponse(json.dumps({'err':'请提交正确的post数据'}, ensure_ascii=False), content_type="application/json,charset=utf-8") if not Students.objects.filter(studentId=int(xh)): content = ('【%s】[%s]未登录访问板块课' % (datetime.datetime.now().strftime('%H:%M:%S'), xh)) writeLog(content) return HttpResponse(json.dumps({'err':'还未登录,请重新登录!'}, ensure_ascii=False), content_type="application/json,charset=utf-8") else: stu = Students.objects.get(studentId=int(xh)) try: bkk = "1" if bkk=="2" else "2" startTime = time.time() print('【%s】查看了板块课' % stu.name) JSESSIONID = str(stu.JSESSIONID) route = str(stu.route) cookies_dict = { 'JSESSIONID': JSESSIONID, 'route': route } cookies = requests.utils.cookiejar_from_dict(cookies_dict) person = Xuanke(base_url=base_url, cookies=cookies, year=year, term=term) bkk_list = person.get_bkk_list(bkk) endTime = time.time() spendTime = endTime - startTime if spendTime > 30: ServerChan = config["ServerChan"] text = "板块课超时" if ServerChan == "none": return HttpResponse(json.dumps({'err':'板块课超时'}, ensure_ascii=False), content_type="application/json,charset=utf-8") else: requests.get(ServerChan + 'text=' + text) return HttpResponse(json.dumps({'err':'板块课超时'}, ensure_ascii=False), content_type="application/json,charset=utf-8") content = ('【%s】[%s]访问了板块课,耗时%.2fs' % (datetime.datetime.now().strftime('%H:%M:%S'), stu.name, spendTime)) writeLog(content) return HttpResponse(json.dumps(bkk_list, ensure_ascii=False), content_type="application/json,charset=utf-8") except Exception as e: print(e) content = ('【%s】[%s]访问板块课出错' % (datetime.datetime.now().strftime('%H:%M:%S'), stu.name)) writeLog(content) if myconfig.isKaptcha: return get_kaptcha(xh) else: sta = update_cookies(request) person = Xuanke(base_url=base_url, cookies=sta, year=year, term=term) bkk_list = person.get_bkk_list(bkk) return HttpResponse(json.dumps(bkk_list, ensure_ascii=False), content_type="application/json,charset=utf-8") else: return HttpResponse(json.dumps({'err':'请使用post并提交正确数据'}, ensure_ascii=False), content_type="application/json,charset=utf-8")
10,901
def mkmonth(year, month, dates, groups): """Make an array of data for the year and month given. """ cal = calendar.monthcalendar(int(year), month) for row in cal: for index in range(len(row)): day = row[index] if day == 0: row[index] = None else: date = '%04.d-%02.d-%02.d' % (year, month, day) items = dates.get(date, ()) grp = 0 len_items = len(items) if len_items > 0: while grp < len(groups): grp += 1 if len_items <= groups[grp - 1]: break row[index] = [day, grp, items, date] while len(cal) < 6: cal.append([None] * 7) return dict(name=calendar.month_name[month], weeks=cal, startdate='%04.d-%02.d' % (year, month))
10,902
def test_scoring_card(): """## Scoring card Each scoring card will have a victory point, and resources required. You will need to provide enough resources in order to obtain the scoring card. """ r = ScoringCard("YYYBBB (3)") assert r.victory_point == 3 assert r.target == Resource("BBBYYY") assert r.check_enough(Resource("YYBB")) is False assert r.check_enough(Resource("YYYYBBBBG")) is True
10,903
def test_is_interface_physical(): # pylint: disable=C0121 """ Test is_interface_physical """ assert is_interface_physical("GigabitEthernet0/0/2") is True assert is_interface_physical("GigabitEthernet0/0/2.890") is False assert is_interface_physical("GigabitEthernet0/0/2.1") is False assert is_interface_physical("Ethernet0.1") is False assert is_interface_physical("Ethernet1") is True assert is_interface_physical("Serial0/1/0:15") is True assert is_interface_physical("Service-Engine0/1/0") is True assert is_interface_physical("Service-Engine0/1/0.152") is False assert is_interface_physical("GigabitEthernet0") is True assert is_interface_physical("ge-0/0/0") is True assert is_interface_physical("ge-0/0/0.10") is False assert is_interface_physical("lo0.0") is False assert is_interface_physical("Loopback1") is False assert is_interface_physical("Vlan108") is False assert is_interface_physical("ae0.100") is False assert is_interface_physical("Management0/0") is True
10,904
def is_extension(step_str): """Return true if step_str is an extension or Any. Args: step_str: the string to evaluate Returns: True if step_str is an extension Raises: ValueError: if step_str is not a valid step. """ if not is_valid_step(step_str): raise ValueError('Not a valid step in a path: "' + step_str + '"') return step_str[0] == "("
10,905
def create_file(path: Union[str, Path]) -> None: """ Creates an empty file at the given location. Args: path (Union[str, Path]): Path where the file should be created. """ _path = _get_path(path) _path.touch()
10,906
def diff_list(first, second): """ Get difference of lists. """ second = set(second) return [item for item in first if item not in second]
10,907
def run(arguments=None): """This function is the main entrypoint for ale. It takes an optional argument which if passed makes the parser read those arguments instead of argv from the command line. This function parses the contents of the given config file and passes these options to the functions which actually do calculations or visualizations. The argument parser takes a flag which enables or disables the use of asap on the current run with the flags '--asap' for enabling it and '--no-asap' to disable it. Passing this flag is to avoid getting the error 'illegal instruction (core dumped)' in the terminal since some machines cannot run the current version of ASAP which is used in this project. """ # Create command line parser with callbacks for the respective subcommands parser = CreateParser( default=default, multi=multi, simulate=simulate, analyze=analyze, visualize=visualize, ) if arguments: # parse arguments from the arguments parameter args = parser.parse_args(arguments.split(" ")) else: # parse arguments from argv from command line args = parser.parse_args() parsed_config_file = parse_config(args.config_file) options = parsed_config_file options['use_asap'] = args.use_asap # Set traj_file_name to that given in command line, or config, or default if args.traj_file_name: options['traj_file_name'] = args.traj_file_name else: # default to <symbol>.traj default_traj_file_name = f"{options['symbol']}.traj" options['traj_file_name'] = default_traj_file_name print("Given configuration:") pp.pprint(options) print() # Sets the file name of the output file. if args.out_file_name: options['out_file_name'] = args.out_file_name else: # Defaults to <symbol>.json if not provided in the command line. default_out_file_name = f"{options['symbol']}_out.json" options['out_file_name'] = options.get("out_file_name", default_out_file_name) # Sets the output directory of the output file. if args.out_dir: output_dir = args.out_dir options['out_dir'] = output_dir else: # Defaults to current working directory if not present in options options['out_dir'] = options.get('out_dir', os.getcwd()) # Executes the given subcommand, defaults to calling default args.sub_command(options, args)
10,908
def validate_dissolution_statement_type(filing_json, legal_type) -> Optional[list]: """Validate dissolution statement type of the filing.""" msg = [] dissolution_stmt_type_path = '/filing/dissolution/dissolutionStatementType' dissolution_stmt_type = get_str(filing_json, dissolution_stmt_type_path) if legal_type == Business.LegalTypes.COOP.value: if not dissolution_stmt_type: msg.append({'error': _('Dissolution statement type must be provided.'), 'path': dissolution_stmt_type_path}) return msg if not DissolutionStatementTypes.has_value(dissolution_stmt_type): msg.append({'error': _('Invalid Dissolution statement type.'), 'path': dissolution_stmt_type_path}) return msg return None
10,909
def parse_args(): """Parse command-line arguments.""" parser = argparse.ArgumentParser( usage='%(prog)s [options] <target path> <image> [image] ...') parser.add_argument( '-c', '--captions', dest='captions', action='store_true', default=False, help='read image captions from text files ("<IMAGE_NAME>.txt")') parser.add_argument( '--no-resize', dest='no_resize', action='store_true', default=False, help='do not resize images, just copy them') parser.add_argument( '-s', '--size', dest='max_image_size', type=parse_dimension_arg, default=ARGS_DEFAULT_MAX_IMAGE_SIZE, help='set maximum image size [default: {}]' .format(ARGS_DEFAULT_MAX_IMAGE_SIZE)) parser.add_argument( '-t', '--thumbnail-size', dest='max_thumbnail_size', type=parse_dimension_arg, default=ARGS_DEFAULT_MAX_THUMBNAIL_SIZE, help='set maximum thumbnail size [default: {}]' .format(ARGS_DEFAULT_MAX_THUMBNAIL_SIZE)) parser.add_argument( '--title', dest='title', help='set gallery title on the website') parser.add_argument( '--lightbox', dest='lightbox', action='store_true', default=False, help='Enable lightbox effect on the website. This disables sub-page creation per picture.') parser.add_argument( '--html-only', dest='html_only', action='store_true', default=False, help='Only generate HTML. Do not process images. This is useful if already processed once but need to re-create html pages.') parser.add_argument( '--no-optimize-image', dest='no_optimize_image', action='store_true', default=False, help='Optimize images to reduce size and remove meta data.') # First positional argument. parser.add_argument('destination_path') # Remaining positional arguments (at least one), as a list. parser.add_argument('full_image_filenames', nargs='+') return parser.parse_args()
10,910
def weave(left: List[int], right: List[int]) -> List[List[int]]: """ Gives all possible combinations of left and right keeping the original order on left and right """ if not left or not right: return [left] if left else [right] left_result: List[List[int]] = weave_helper(left, right) right_result: List[List[int]] = weave_helper(right, left) return left_result + right_result
10,911
def test_rgb_to_hsl_part_18(): """Test rgb to hsl color function""" # assert rgb_to_hsl(0, 0, 0) == (300, 100, 0) assert rgb_to_hsl(51, 0, 51) == (300, 100, 10) assert rgb_to_hsl(102, 0, 102) == (300, 100, 20) assert rgb_to_hsl(153, 0, 153) == (300, 100, 30) assert rgb_to_hsl(204, 0, 204) == (300, 100, 40) assert rgb_to_hsl(255, 0, 255) == (300, 100, 50) assert rgb_to_hsl(255, 51, 255) == (300, 100, 60) assert rgb_to_hsl(255, 102, 255) == (300, 100, 70) assert rgb_to_hsl(255, 153, 255) == (300, 100, 80) assert rgb_to_hsl(255, 204, 255) == (300, 100, 90) # assert rgb_to_hsl(255, 255, 255) == (300, 100, 100)
10,912
def compute_rel_attn_value(p_attn, rel_mat, emb, ignore_zero=True): """ Compute a part of *attention weight application* and *query-value product* in generalized RPE. (See eq. (10) - (11) in the MuseBERT paper.) Specifically, - We use distributive law on eq. (11). The function computes the second term: $ sum_j (alpha_{ij} * sum_a Emb_a^K(r_{ij}^a)) $ Here, - b for batch size, h for n_head, vs for vocabulary size. - dtype is torch.float unless specified. :param p_attn: (b, d, L_q, L_k) :param rel_mat: (b, Lq, Lk) :param emb: (h, vs, d) :param ignore_zero: bool. Whether to exclude the first vocab. :return: (b, h, Lq, d) """ vs = emb.size(-2) # bool_relmat: (b, Lq, vs - 1, Lk), dtype: torch.float bool_relmat = compute_bool_rel_mat(rel_mat, vs, ignore_zero=ignore_zero) # p_attn: -> (b, d, Lq, 1, 1, Lk) # bool_relmat: -> (b, 1, L_q, vs - 1, L_k, 1) # acmlt_p_attn: (b, d, Lq, vs - 1, 1, 1) -> (b, d, Lq, vs - 1) acmlt_p_attn = \ torch.matmul(p_attn.unsqueeze(-2).unsqueeze(-2), bool_relmat.unsqueeze(1).unsqueeze(-1) ).squeeze(-1).squeeze(-1) # acc_p_attn: -> (b, h, Lq, 1, vs - 1) # emb: -> (1, h, 1, vs, d) # rel_scores: (b, h, Lq, 1, d) -> (b, h, Lq, d) start_ind = 1 if ignore_zero else 0 rel_values = \ torch.matmul(acmlt_p_attn.unsqueeze(-2), emb[:, start_ind:].unsqueeze(0).unsqueeze(-3) ).squeeze(-2) return rel_values
10,913
def check_input(args): """Checks whether to read from stdin/file and validates user input/options. """ # Defaults option = None fh = sys.stdin # file handle if not len(args): # Reading from pipe with default option if sys.stdin.isatty(): sys.stderr.write(__doc__) sys.exit(1) elif len(args) == 1: # One of two options: option & Pipe OR file & default option if args[0].startswith('-'): option = args[0][1:] if sys.stdin.isatty(): # ensure the PDB data is streamed in emsg = 'ERROR!! No data to process!\n' sys.stderr.write(emsg) sys.stderr.write(__doc__) sys.exit(1) else: if not os.path.isfile(args[0]): emsg = 'ERROR!! File not found or not readable: \'{}\'\n' sys.stderr.write(emsg.format(args[0])) sys.stderr.write(__doc__) sys.exit(1) fh = open(args[0], 'r') elif len(args) == 2: # Two options: option & File if not args[0].startswith('-'): emsg = 'ERROR! First argument is not an option: \'{}\'\n' sys.stderr.write(emsg.format(args[0])) sys.stderr.write(__doc__) sys.exit(1) if not os.path.isfile(args[1]): emsg = 'ERROR!! File not found or not readable: \'{}\'\n' sys.stderr.write(emsg.format(args[1])) sys.stderr.write(__doc__) sys.exit(1) option = args[0][1:] fh = open(args[1], 'r') else: # Whatever ... sys.stderr.write(__doc__) sys.exit(1) # Validate option if option is not None and option != 'multi': emsg = 'ERROR!! You provided an invalid option: \'{}\'\n' sys.stderr.write(emsg.format(option)) sys.stderr.write(__doc__) sys.exit(1) return (option, fh)
10,914
def mock_real_galaxy(): """Mock real galaxy.""" dm = np.loadtxt(TEST_DATA_REAL_PATH / "dark.dat") s = np.loadtxt(TEST_DATA_REAL_PATH / "star.dat") g = np.loadtxt(TEST_DATA_REAL_PATH / "gas_.dat") gal = core.Galaxy( m_s=s[:, 0] * 1e10 * u.M_sun, x_s=s[:, 1] * u.kpc, y_s=s[:, 2] * u.kpc, z_s=s[:, 3] * u.kpc, vx_s=s[:, 4] * (u.km / u.s), vy_s=s[:, 5] * (u.km / u.s), vz_s=s[:, 6] * (u.km / u.s), m_dm=dm[:, 0] * 1e10 * u.M_sun, x_dm=dm[:, 1] * u.kpc, y_dm=dm[:, 2] * u.kpc, z_dm=dm[:, 3] * u.kpc, vx_dm=dm[:, 4] * (u.km / u.s), vy_dm=dm[:, 5] * (u.km / u.s), vz_dm=dm[:, 6] * (u.km / u.s), m_g=g[:, 0] * 1e10 * u.M_sun, x_g=g[:, 1] * u.kpc, y_g=g[:, 2] * u.kpc, z_g=g[:, 3] * u.kpc, vx_g=g[:, 4] * (u.km / u.s), vy_g=g[:, 5] * (u.km / u.s), vz_g=g[:, 6] * (u.km / u.s), ) return gal
10,915
def lend(request): """ Lend view. It receives the data from the lend form, process and validates it, and reloads the page if everything is OK Args: - request (HttpRequest): the request Returns: """ logged_user = get_logged_user(request) if logged_user is not None and logged_user.user_role == UserRole.LENDER: d = dict(request.POST) d['lender_input'] = logged_user.id errors = Loan.objects.basic_validator(d) if len(errors) > 0: for key, value in errors.items(): messages.error(request, value) else: borrower = request.POST.get('borrower_input', 0) amount = request.POST.get('amount_input', 0) new_loan = Loan.objects.create( borrower=User.objects.get(id=borrower), lender=logged_user, amount=int(amount) ) messages.info(request, 'Loan executed successfully') return redirect('lender', id=logged_user.id) else: request.session.clear() return redirect('/')
10,916
def test_all_current_members(): """all_current_members works as expected """ r = niaopendata.all_current_members() _check_valid_list_response(r)
10,917
def main(): """ Spit out a string regardless of input """ args = getArguments().parse_args() if len(sys.argv) == 2: stronk.generate_random_keys( args.keyAmount, args.keyLength) elif len(sys.argv) >= 3: stronk.generate_random_keys( args.keyAmount, args.keyLength, args.identify) else: stronk.generate_random_keys()
10,918
def deprecated() -> None: """Run the command and print a deprecated notice.""" LOG.warning("c2cwsgiutils_coverage_report.py is deprecated; use c2cwsgiutils-coverage-report instead") return main()
10,919
def build_syscall_Linux(syscall, arg_list, arch_bits, constraint=None, assertion = None, clmax=SYSCALL_LMAX, optimizeLen=False): """ arch_bits = 32 or 64 :) """ # Check args if( syscall.nb_args() != len(arg_list)): error("Error. Expected {} arguments, got {}".format(len(syscall.arg_types), len(arg_list))) return None # Check args length for i in range(0,len(arg_list)): if( not verifyArgType(arg_list[i], syscall.arg_types[i])): error("Argument error for '{}': expected '{}', got '{}'".format(arg_list[i], syscall.arg_types[i], type(arg_list[i]))) return None # Check constraint and assertion if( constraint is None ): constraint = Constraint() if( assertion is None ): assertion = getBaseAssertion() # Check if we have the function ! verbose("Trying to call {}() function directly".format(syscall.def_name)) func_call = build_call(syscall.function(), arg_list, constraint, assertion, clmax=clmax, optimizeLen=optimizeLen) if( not isinstance(func_call, str) ): verbose("Success") return func_call else: if( not constraint.chainable.ret ): verbose("Coudn't call {}(), try direct syscall".format(syscall.def_name)) else: verbose("Couldn't call {}() and return to ROPChain".format(syscall.def_name)) return None # Otherwise do syscall directly # Set the registers args = [(Arch.n2r(x[0]), x[1]) for x in zip(syscall.arg_regs, arg_list) + syscall.syscall_arg_regs] chain = popMultiple(args, constraint, assertion, clmax-1, optimizeLen=optimizeLen) if( not chain ): verbose("Failed to set registers for the mprotect syscall") return None # Int 0x80 if( arch_bits == 32 ): syscall_gadgets = search(QueryType.INT80, None, None, constraint, assertion) # syscall elif( arch_bits == 64): syscall_gadgets = search(QueryType.SYSCALL, None, None, constraint, assertion) if( not syscall_gadgets ): verbose("Failed to find an 'int 0x80' OR 'syscall' gadget") return None else: chain.addChain(syscall_gadgets[0]) verbose("Success") return chain
10,920
def gamma(x): """Diffusion error (normalized)""" CFL = x[0] kh = x[1] return ( 1. / (-2) * ( 4. * CFL ** 2 / 3 - 7. * CFL / 3 + (-23. * CFL ** 2 / 12 + 35 * CFL / 12) * np.cos(kh) + (2. * CFL ** 2 / 3 - 2 * CFL / 3) * np.cos(2 * kh) + (-CFL ** 2 / 12 + CFL / 12) * np.cos(3 * kh) ) )
10,921
def copylabel(original_name): """create names/labels with the sequence (Copy), (Copy 2), (Copy 3), etc.""" copylabel = pgettext_lazy("this is a copy", "Copy") copy_re = f"\\({copylabel}( [0-9]*)?\\)" match = re.search(copy_re, original_name) if match is None: label = f"{original_name} ({copylabel})" elif match.groups()[0] is None: label = re.sub(copy_re, f"({copylabel} 2)", original_name) else: n = int(match.groups()[0].strip()) + 1 label = re.sub(copy_re, f"({copylabel} {n})", original_name) return label
10,922
def load_opts_from_mrjob_confs(runner_alias, conf_paths=None): """Load a list of dictionaries representing the options in a given list of mrjob config files for a specific runner. Returns ``[(path, values), ...]``. If a path is not found, use ``(None, {})`` as its value. If *conf_paths* is ``None``, look for a config file in the default locations (see :py:func:`find_mrjob_conf`). :type runner_alias: str :param runner_alias: String identifier of the runner type, e.g. ``emr``, ``local``, etc. :type conf_paths: list or ``None`` :param conf_path: locations of the files to load This will only load each config file once, even if it's referenced from multiple paths due to symlinks. """ if conf_paths is None: results = load_opts_from_mrjob_conf(runner_alias) else: # don't include conf files that were loaded earlier in conf_paths already_loaded = [] # load configs in reversed order so that order of conf paths takes # precedence over inheritance results = [] for path in reversed(conf_paths): results = load_opts_from_mrjob_conf( runner_alias, path, already_loaded=already_loaded) + results if runner_alias and not any(conf for path, conf in results): log.warning('No configs specified for %s runner' % runner_alias) return results
10,923
def clut8_rgb888(i): """Reference CLUT for wasp-os. Technically speaking this is not a CLUT because the we lookup the colours algorithmically to avoid the cost of a genuine CLUT. The palette is designed to be fairly easy to generate algorithmically. The palette includes all 216 web-safe colours together 4 grays and 36 additional colours that target "gaps" at the brighter end of the web safe set. There are 11 greys (plus black and white) although two are fairly close together. :param int i: Index (from 0..255 inclusive) into the CLUT :return: 24-bit colour in RGB888 format """ if i < 216: rgb888 = ( i % 6) * 0x33 rg = i // 6 rgb888 += (rg % 6) * 0x3300 rgb888 += (rg // 6) * 0x330000 elif i < 252: i -= 216 rgb888 = 0x7f + (( i % 3) * 0x33) rg = i // 3 rgb888 += 0x4c00 + ((rg % 4) * 0x3300) rgb888 += 0x7f0000 + ((rg // 4) * 0x330000) else: i -= 252 rgb888 = 0x2c2c2c + (0x101010 * i) return rgb888
10,924
def test_retry_change(settings): """ Attempts to change retry property """ with pytest.raises(DeadlinksSettingsChange): settings.retry = 8 with pytest.raises(AttributeError): del settings.retry
10,925
def test_wf_st_6(plugin): """ workflow with two tasks, outer splitter and combiner for the workflow""" wf = Workflow(name="wf_st_6", input_spec=["x", "y"]) wf.add(multiply(name="mult", x=wf.lzin.x, y=wf.lzin.y)) wf.add(add2(name="add2", x=wf.mult.lzout.out)) wf.split(["x", "y"], x=[1, 2, 3], y=[11, 12]) wf.combine("x") wf.set_output([("out", wf.add2.lzout.out)]) wf.plugin = plugin with Submitter(plugin=plugin) as sub: sub(wf) results = wf.result() assert results[0][0].output.out == 13 assert results[0][1].output.out == 24 assert results[0][2].output.out == 35 assert results[1][0].output.out == 14 assert results[1][1].output.out == 26 assert results[1][2].output.out == 38 # checking all directories assert wf.output_dir for odir in wf.output_dir: assert odir.exists()
10,926
def assert_table_headers(id_or_elem, headers): """Assert the headers of a table. The headers are the `<th>` tags. :argument id_or_elem: The identifier of the element, or its element object. :argument headers: A sequence of the expected headers. :raise: AssertionError if the element doesn't exist, or if its headers are not the expected. """ logger.debug('Checking headers for %r' % (id_or_elem,)) elem = _get_elem(id_or_elem) if not elem.tag_name == 'table': _raise('Element %r is not a table.' % (id_or_elem,)) header_elems = elem.find_elements_by_tag_name('th') header_text = [get_text(e) for e in header_elems] if not header_text == headers: msg = ('Expected headers:%r. Actual headers%r\n' % (headers, header_text)) _raise(msg)
10,927
def get_file_from_rcsb(pdb_id,data_type='pdb'): """ (file_name) -> file_path fetch pdb or structure factor file for pdb_id from the RCSB website Args: file_name: a pdb file name data_type (str): 'pdb' -> pdb 'xray' -> structure factor Returns: a file path for the pdb file_name """ try: file_name = fetch.get_pdb(pdb_id,data_type,mirror='rcsb',log=null_out()) except Sorry: file_name = '' return file_name
10,928
def write_conll_prediction_file( out_file: str, examples: List[Example], y_preds: List[TAG_SEQUENCE]) -> None: """Writes a text output with predictions for a collection of Examples in CoNLL evaluation format, one token per line: TOKEN GOLD-TAG PRED-TAG Distinct example outputs are separated by a blank line. Args: out_file: the path of the output CoNLL prediction file. examples: list of Example instances with associated tokens and gold tag labels. y_preds: list of predicted tag sequences for each example. Raises: AssertionError: if (a) the lengths of y_preds and examples are not equal, or (b) there is a mismatch in length of tokens, labels or predicted tags for any example. """ assert len(y_preds) == len(examples) with smart_open(out_file) as fd: for example, pred_tag in zip(examples, y_preds): tokens = example.doc_tokens labels = example.labels assert len(tokens) == len(labels) assert len(labels) == len(pred_tag) for token, label, pred in zip(tokens, labels, pred_tag): fd.write('{} {} {}\n'.format(str(token.text), label, pred)) # Separate examples by line break fd.write('\n')
10,929
def parse_events(fobj): """Parse a trace-events file into {event_num: (name, arg1, ...)}.""" def get_argnames(args): """Extract argument names from a parameter list.""" return tuple(arg.split()[-1].lstrip('*') for arg in args.split(',')) events = {dropped_event_id: ('dropped', 'count')} event_num = 0 for line in fobj: m = event_re.match(line.strip()) if m is None: continue disable, name, args = m.groups() events[event_num] = (name,) + get_argnames(args) event_num += 1 return events
10,930
def enu2ECEF(phi, lam, x, y, z, t=0.0): """ Convert ENU local coordinates (East, North, Up) to Earth centered - Earth fixed (ECEF) Cartesian, correcting for Earth rotation if needed. ENU coordinates can be transformed to ECEF by two rotations: 1. A clockwise rotation over east-axis by an angle (90 - phi) to align the up-axis with the z-axis. 2. A clockwise rotation over the z-axis by and angle (90 + lam) to align the east-axis with the x-axis. Source: http://www.navipedia.net/index.php/Transformations_between_ECEF_and_ENU_coordinates Arguments: phi: [float] east-axis rotation angle lam: [float] z-axis rotation angle x: [float] ENU x coordinate y: [float] ENU y coordinate z: [float] ENU z coordinate Keyword arguments: t: [float] time in seconds, 0 by default Return: (x_ecef, y_ecef, z_ecef): [tuple of floats] ECEF coordinates """ # Calculate ECEF coordinate from given local coordinates x_ecef = -np.sin(lam)*x - np.sin(phi)*np.cos(lam)*y + np.cos(phi)*np.cos(lam)*z y_ecef = np.cos(lam)*x - np.sin(phi)*np.sin(lam)*y + np.cos(phi)*np.sin(lam)*z z_ecef = np.cos(phi) *y + np.sin(phi) *z # Calculate time correction (in radians) tau = 2*np.pi/(23.0*3600.0 + 56.0*60.0 + 4.09054) # Earth rotation in rad/s yaw = -tau*t x_temp = x_ecef y_temp = y_ecef # Apply time correction x_ecef = np.cos(yaw)*x_temp + np.sin(yaw)*y_temp y_ecef = -np.sin(yaw)*x_temp + np.cos(yaw)*y_temp return x_ecef, y_ecef, z_ecef
10,931
def _load_container_by_name(container_name, version=None): """ Try and find a container in a variety of methods. Returns the container or raises a KeyError if it could not be found """ for meth in (database.load_container, # From the labware database _load_weird_container): # honestly don't know log.debug( f"Trying to load container {container_name} via {meth.__name__}") try: container = meth(container_name) if meth == _load_weird_container: container.properties['type'] = container_name log.info(f"Loaded {container_name} from {meth.__name__}") break except (ValueError, KeyError) as e: log.debug(f"{container_name} not in {meth.__name__} ({repr(e)})") else: log.debug( f"Trying to load container {container_name} version {version}" f"from v2 labware store") container = load_new_labware(container_name, version=version) return container
10,932
def get_login(discord_id): """Get login info for a specific user.""" discord_id_str = str(discord_id) logins = get_all_logins() if discord_id_str in logins: return logins[discord_id_str] return None
10,933
def labels(repo): """Setup the RadiaSoft labels for ``repo``. Will add "radiasoft/" to the name if it is missing. Args: repo (str): will add https://github.com/radiasoft if missing """ r = _repo_arg(repo) for x in ('inprogress', 'c5def5'), ('1', 'b60205'), ('2', 'fbca04'): try: r.create_label(*x) except github3.exceptions.UnprocessableEntity: # 422 Validation Failed: happens because already exists pass
10,934
def to_json_dict(json_data): """Given a dictionary or JSON string; return a dictionary. :param json_data: json_data(dict, str): Input JSON object. :return: A Python dictionary/OrderedDict with the contents of the JSON object. :raises TypeError: If the input object is not a dictionary or string. """ if isinstance(json_data, dict): return json_data elif isinstance(json_data, str): return json.loads(json_data, object_hook=OrderedDict) else: raise TypeError(f"'json_data' must be a dict or valid JSON string; received: {json_data!r}")
10,935
def get_keypoints(): """Get the COCO keypoints and their left/right flip coorespondence map.""" # Keypoints are not available in the COCO json for the test split, so we # provide them here. keypoints = [ 'nose', 'neck', 'right_shoulder', 'right_elbow', 'right_wrist', 'left_shoulder', 'left_elbow', 'left_wrist', 'right_hip', 'right_knee', 'right_ankle', 'left_hip', 'left_knee', 'left_ankle', 'right_eye', 'left_eye', 'right_ear', 'left_ear'] return keypoints
10,936
def has_mtu_mismatch(iface: CoreInterface) -> bool: """ Helper to detect MTU mismatch and add the appropriate OSPF mtu-ignore command. This is needed when e.g. a node is linked via a GreTap device. """ if iface.mtu != DEFAULT_MTU: return True if not iface.net: return False for iface in iface.net.get_ifaces(): if iface.mtu != iface.mtu: return True return False
10,937
def phrase_boxes_alignment(flatten_boxes, ori_phrases_boxes): """ align the bounding boxes with corresponding phrases. """ phrases_boxes = list() ori_pb_boxes_count = list() for ph_boxes in ori_phrases_boxes: ori_pb_boxes_count.append(len(ph_boxes)) strat_point = 0 for pb_boxes_num in ori_pb_boxes_count: sub_boxes = list() for i in range(strat_point, strat_point + pb_boxes_num): sub_boxes.append(flatten_boxes[i]) strat_point += pb_boxes_num phrases_boxes.append(sub_boxes) pb_boxes_count = list() for ph_boxes in phrases_boxes: pb_boxes_count.append(len(ph_boxes)) assert pb_boxes_count == ori_pb_boxes_count return phrases_boxes
10,938
def editor(initial_contents=None, filename=None, editor=None): """ Open a text editor, user edits, return results ARGUMENTS initial_contents If not None, this string is written to the file before the editor is opened. filename If not None, the name of the file to edit. If None, a temporary file is used. editor The path to an editor to call. If None, use editor.default_editor() """ editor = editor or default_editor() if not filename: with tempfile.NamedTemporaryFile(mode='r+', suffix='.txt') as fp: if initial_contents is not None: fp.write(initial_contents) fp.flush() subprocess.call([editor, fp.name]) fp.seek(0) return fp.read() path = Path(filename) if initial_contents is not None: path.write_text(initial_contents) subprocess.call([editor, filename]) return path.read_text()
10,939
def dismiss_notification(request): """ Dismisses a notification ### Response * Status code 200 (When the notification is successsfully dismissed) { "success": <boolean: true> } * `success` - Whether the dismissal request succeeded or not * Status code 400 (When the notification ID cannot be found) { "success": <boolean: false>, "message": <string: "notification_not_found"> } * `message` - Error message, when success is false """ response = {'success': False} data = request.data try: notif = Notification.objects.get(id=data['notificationId']) notif.dismissed_by.add(request.user) response['success'] = True resp_status = status.HTTP_200_OK except Notification.DoesNotExist: resp_status = status.HTTP_400_BAD_REQUEST response['message'] = 'notification_not_found' return Response(response, status=resp_status)
10,940
def remove_objects(*, objects: tuple = ()) -> None: """ Removes files or folders. >>> from snakypy.helpers.os import remove_objects >>> remove_objects(objects=("/tmp/folder", "/tmp/file.txt")) Args: objects (tuple): It must receive the path of the object, folders or files. Returns: None """ with suppress(FileNotFoundError): for item in objects: rmtree(item, ignore_errors=True) if isdir(item) else remove(item)
10,941
def writeTreeStructure(skillList, path: str, **args) -> None: """Output a file with a tree structure definition.""" data = [{ 'define': 'tree', 'tree': skillList.buildTree() }] dumpJsonFile(data, path, **args)
10,942
def switchToCameraCenter(cameraName, editor): """ Additional wrapper layer around switchToCamera. This function switches to the current camera and also toggles the view mode to be 'center' """ pass
10,943
def log_at_level(logger, message_level, verbose_level, msg): """ writes to log if message_level > verbose level Returns anything written in case we might want to drop down and output at a lower log level """ if message_level <= verbose_level: logger.info(msg) return True return False
10,944
def datafile(tmp_path_factory): """Make a temp HDF5 Ocat details file within 60 arcmin of 3c273 for obsids before 2021-Nov that persists for the testing session.""" datafile = str(tmp_path_factory.mktemp('ocat') / 'target_table.h5') update_ocat_local(datafile, target_name='3c273', resolve_name=True, radius=60, startDate=DATE_RANGE) return datafile
10,945
def _collect_scalars(values): """Given a list containing scalars (float or int) collect scalars into a single prefactor. Input list is modified.""" prefactor = 1.0 for i in range(len(values)-1, -1, -1): if isinstance(values[i], (int, float)): prefactor *= values.pop(i) return prefactor
10,946
def register_handler(pid): """ Registers the given Elixir process as the handler for this library. This function must be called first - and the client module must define a function with the same prototype which simply calls this function. """ global _msg_handling_pid _msg_handling_pid = pid
10,947
def reduce(p): """ This recipe does a quick reduction of GMOS nod and shuffle data. The data is left in its 2D form, and only a sky correction is done. The seeing from the spectra cross-section is measured when possible. Parameters ---------- p : PrimitivesBASE object A primitive set matching the recipe_tags. """ p.prepare() p.addDQ(static_bpm=None) p.addVAR(read_noise=True) p.overscanCorrect() p.biasCorrect() p.ADUToElectrons() p.addVAR(poisson_noise=True) p.findAcquisitionSlits() p.skyCorrectNodAndShuffle() p.measureIQ(display=True) p.writeOutputs() return
10,948
def create_output_directory(validated_cfg: ValidatedConfig) -> Path: """ Creates a top level download directory if it does not already exist, and returns the Path to the download directory. """ download_path = validated_cfg.output_directory / f"{validated_cfg.version}" download_path.mkdir(parents=True, exist_ok=True) return download_path
10,949
def presentation_logistique(regression,sig=False): """ Mise en forme des résultats de régression logistique Paramètres ---------- regression: modèle de régression de statsmodel sig: optionnel, booléen Retours ------- DataFrame : tableau de la régression logistique """ # Passage des coefficients aux Odds Ratio df = np.exp(regression.conf_int()) df['odd ratio'] = round(np.exp(regression.params), 2) df["p-value"] = round(regression.pvalues, 3) df["IC"] = df.apply(lambda x : "%.2f [%.2f-%.2f]" \ % (x["odd ratio"],x[0],x[1]),axis=1) # Ajout de la significativité if sig: df["p-value"] = df["p-value"].apply(significativite) df = df.drop([0,1], axis=1) return df
10,950
def __check_count_freq(count_freq, flink_window_type): """ 校验窗口配置项:统计频率 :param count_freq: 统计频率 :param flink_window_type: 窗口类型 """ # 校验统计频率(单位:s) if flink_window_type in [TUMBLING, SLIDING, ACCUMULATE] and count_freq not in [ 30, 60, 180, 300, 600, ]: raise StreamWindowConfigCheckError( _("窗口类型[%s] 属性[%s] 目前只支持 %s") % ("scroll、slide、accumulate", "count_freq", "[30, 60, 180, 300, 600]") )
10,951
def test_L1DecayRegularizer(): """ test L1DecayRegularizer :return: """ main_program = fluid.Program() startup_program = fluid.Program() with fluid.unique_name.guard(): with fluid.program_guard( main_program=main_program, startup_program=startup_program): data = fluid.layers.data(name='X', shape=[1], dtype='float32') label = fluid.layers.data(name='label', shape=[1], dtype='int64') initializer = fluid.initializer.Constant(value=0.5) param_attrs = fluid.ParamAttr(initializer=initializer) y_predict = fluid.layers.fc(name="fc", input=data, size=10, param_attr=param_attrs) loss = fluid.layers.cross_entropy(input=y_predict, label=label) avg_loss = fluid.layers.mean(loss) optimizer = fluid.optimizer.Adagrad( learning_rate=0.1, regularization=fluid.regularizer.L1DecayRegularizer( regularization_coeff=0.1)) optimizer.minimize(avg_loss) place = fluid.CPUPlace() exe = fluid.Executor(place) exe.run(startup_program) compiled_prog = fluid.compiler.CompiledProgram(main_program) x = np.ones(shape=(10, 1)).astype('float32') y = np.zeros(shape=(10, 1)).astype('int64') for i in range(10): res = exe.run(compiled_prog, feed={"X": x, "label": y}, fetch_list=[avg_loss])[0][0] res1 = res main_program = fluid.Program() startup_program = fluid.Program() with fluid.unique_name.guard(): with fluid.program_guard( main_program=main_program, startup_program=startup_program): data = fluid.layers.data(name='X', shape=[1], dtype='float32') label = fluid.layers.data(name='label', shape=[1], dtype='int64') initializer = fluid.initializer.Constant(value=0.5) param_attrs = fluid.ParamAttr(initializer=initializer) y_predict = fluid.layers.fc(name="fc", input=data, size=10, param_attr=param_attrs) loss = fluid.layers.cross_entropy(input=y_predict, label=label) avg_loss = fluid.layers.mean(loss) optimizer = fluid.optimizer.Adagrad(learning_rate=0.1, ) optimizer.minimize(avg_loss) place = fluid.CPUPlace() exe = fluid.Executor(place) exe.run(startup_program) compiled_prog = fluid.compiler.CompiledProgram(main_program) x = np.ones(shape=(10, 1)).astype('float32') y = np.zeros(shape=(10, 1)).astype('int64') for i in range(10): res = exe.run(compiled_prog, feed={"X": x, "label": y}, fetch_list=[avg_loss])[0][0] res2 = res print(res1) print(res2) tools.compare(res1, -0.20955022, delta=1e-3) tools.compare(res2, -0.2250646, delta=1e-3)
10,952
def handle_colname_collisions(df: pd.DataFrame, mapper: dict, protected_cols: list) -> (pd.DataFrame, dict, dict): """ Description ----------- Identify mapper columns that match protected column names. When found, update the mapper and dataframe, and keep a dict of these changes to return to the caller e.g. SpaceTag. Parameters ---------- df: pd.DataFrame submitted data mapper: dict a dictionary for the schema mapping (JSON) for the dataframe. protected_cols: list protected column names i.e. timestamp, country, admin1, feature, etc. Output ------ pd.DataFame: The modified dataframe. dict: The modified mapper. dict: key: new column name e.g. "day1month1year1" or "country_non_primary" value: list of old column names e.g. ['day1','month1','year1'] or ['country'] """ # Get names of geo fields that collide and are not primary_geo = True non_primary_geo_cols = [d["name"] for d in mapper["geo"] if d["name"] in protected_cols and ("primary_geo" not in d or d["primary_geo"] == False)] # Get names of date fields that collide and are not primary_date = True non_primary_time_cols = [d['name'] for d in mapper['date'] if d["name"] in protected_cols and ('primary_date' not in d or d['primary_date'] == False)] # Only need to change a feature column name if it qualifies another field, # and therefore will be appended as a column to the output. feature_cols = [d["name"] for d in mapper['feature'] if d["name"] in protected_cols and "qualifies" in d and d["qualifies"]] # Verbose build of the collision_list, could have combined above. collision_list = non_primary_geo_cols + non_primary_time_cols + feature_cols # Bail if no column name collisions. if not collision_list: return df, mapper, {} # Append any collision columns with the following suffix. suffix = "_non_primary" # Build output dictionary and update df. renamed_col_dict = {} for col in collision_list: df.rename(columns={col: col + suffix}, inplace=True) renamed_col_dict[col + suffix] = [col] # Update mapper for k, vlist in mapper.items(): for dct in vlist: if dct["name"] in collision_list: dct["name"] = dct["name"] + suffix elif "qualifies" in dct and dct["qualifies"]: # change any instances of this column name qualified by another field dct["qualifies"] = [w.replace(w, w + suffix) if w in collision_list else w for w in dct["qualifies"] ] elif "associated_columns" in dct and dct["associated_columns"]: # change any instances of this column name in an associated_columns dict dct["associated_columns"] = {k: v.replace(v, v + suffix) if v in collision_list else v for k, v in dct["associated_columns"].items() } return df, mapper, renamed_col_dict
10,953
def process_file(filename): """Read a file from disk and parse it into a structured dict.""" try: with codecs.open(filename, encoding='utf-8', mode='r') as f: file_contents = f.read() except IOError as e: log.info('Unable to index file: %s, error :%s', filename, e) return data = json.loads(file_contents) sections = [] title = '' body_content = '' if 'current_page_name' in data: path = data['current_page_name'] else: log.info('Unable to index file due to no name %s', filename) return None if 'body' in data and data['body']: body = PyQuery(data['body']) body_content = body.text().replace(u'¶', '') sections.extend(generate_sections_from_pyquery(body)) else: log.info('Unable to index content for: %s', filename) if 'title' in data: title = data['title'] if title.startswith('<'): title = PyQuery(data['title']).text() else: log.info('Unable to index title for: %s', filename) return {'headers': process_headers(data, filename), 'content': body_content, 'path': path, 'title': title, 'sections': sections}
10,954
def revive(grid: Grid, coord: Point) -> Grid: """Generates a set of all cells which can be revived near coord""" revives = set() for offset in NEIGHBOR_OFFSETS: possible_revive = addpos(coord, offset) if possible_revive in grid: continue active_count = live_around(grid, possible_revive) if active_count == 3: revives.add(possible_revive) return revives
10,955
def test_icons() -> None: """Test `icons` command.""" run( COMMAND_LINES["icons"], b"INFO Icons are written to out/icons_by_name and out/icons_by_id.\n" b"INFO Icon grid is written to out/icon_grid.svg.\n" b"INFO Icon grid is written to doc/grid.svg.\n", ) assert (Path("out") / "icon_grid.svg").is_file() assert (Path("out") / "icons_by_name").is_dir() assert (Path("out") / "icons_by_id").is_dir() assert (Path("out") / "icons_by_name" / "Röntgen apple.svg").is_file() assert (Path("out") / "icons_by_id" / "apple.svg").is_file()
10,956
def test_verify_returns_permissions_on_active_collections_only(token, testapp): """Get user details and token expiry.""" inactive_collection = CollectionFactory(is_active=False) permission1 = PermissionFactory(user=token.user, collection=inactive_collection, registrant=True, cataloger=False) permission1.save() active_collection = CollectionFactory(is_active=True) permission2 = PermissionFactory(user=token.user, collection=active_collection, registrant=False, cataloger=True) permission2.save() res = testapp.get(url_for('oauth.verify'), headers={'Authorization': str('Bearer ' + token.access_token)}) assert len(res.json_body['user']['permissions']) == 1 returned_permission = res.json_body['user']['permissions'][0] assert returned_permission['code'] == active_collection.code assert returned_permission['registrant'] == permission2.registrant assert returned_permission['cataloger'] == permission2.cataloger assert returned_permission['friendly_name'] == active_collection.friendly_name
10,957
def extract_dated_images(filename, output, start_time=None, end_time=None, interval=None, ocr=False): """ Read a video, check metadata to understand real time and then extract images into dated files """ if start_time: vi = ManualTimes(filename, real_start_time=start_time, real_interval=interval, real_end_time=end_time) else: vi = VideoInfo(filename) the_call = ["ffmpeg", "-hide_banner", "-loglevel", "verbose", "-y"] # -y : overwrite the_call.extend(["-i", filename]) # frame_pts is new and unavailable - use real_timestamps instead of: # the_call.extend(['-frame_pts', 'true']) the_call.extend(['-qscale:v', '2']) # jpeg quality: 2-5 is good : https://stackoverflow.com/questions/10225403/how-can-i-extract-a-good-quality-jpeg-image-from-an-h264-video-file-with-ffmpeg the_call.extend(['%06d.jpg']) run_and_capture(the_call) # throw on fail rx = re.compile(r'\d\d\d\d\d\d\.jpg') # glob can't match this properly image_filenames = [f for f in Path(".").glob("*.jpg") if rx.match(str(f)) is not None] last_ts = vi.real_start try: for f in sorted(image_filenames): if ocr: im = Image.open(f) im_iv = ImageOps.grayscale(im) im_iv = ImageOps.invert(im_iv) im_iv = im_iv.crop((50, im.height - 100, 300, im.height)) im_iv.save("invert.jpg") text = image_to_string(im_iv, config="digits") text = image_to_string(im_iv, lang='eng', config="-c tessedit_char_whitelist=0123456789 -oem 0") ts = str2dt(text, throw=False) or (last_ts + interval) LOGGER.debug(f"file: {f} text:{text} ts:{ts}") raise NotImplementedError("tesseract cannot see digits") else: ts = vi.real_timestamps[int(f.stem) - 1] day_dir = Path(output) / Path(dt2str(ts.date())) day_dir.mkdir(exist_ok=True) new_filename = dt2str(ts) + f.suffix new_path = day_dir / new_filename LOGGER.debug(f"file: {f} ts:{ts} new:{new_path}") shutil.move(str(f), str(new_path)) last_ts = ts except KeyError as exc: KeyError(f"{exc}: cannot find metadata in {filename}?")
10,958
def process_table_creation_surplus(region, exchanges_list): """Add docstring.""" ar = dict() ar["@type"] = "Process" ar["allocationFactors"] = "" ar["defaultAllocationMethod"] = "" ar["exchanges"] = exchanges_list ar["location"] = location(region) ar["parameters"] = "" ar["processDocumentation"] = process_doc_creation() ar["processType"] = "UNIT_PROCESS" ar["name"] = surplus_pool_name + " - " + region ar[ "category" ] = "22: Utilities/2211: Electric Power Generation, Transmission and Distribution" ar["description"] = "Electricity surplus in the " + str(region) + " region." ar["description"]=(ar["description"] + " This process was created with ElectricityLCI " + "(https://github.com/USEPA/ElectricityLCI) version " + elci_version + " using the " + model_specs.model_name + " configuration." ) ar["version"] = make_valid_version_num(elci_version) return ar
10,959
def upload_event(): """ Expect a well formatted event data packet (list of events) Verify the access token in the request Verify the packet if verified then send to event hub else return a failure message """ # authenticate the access token with okta api call # get user id from okta and make sure the ids match auth_token = request.headers['Authorization'] auth_headers = {"Authorization": "{}".format(auth_token)} print(auth_headers) print("sending request to: {}".format(IDENTITY_SERVER_SETTINGS['PERSONICLE_AUTH_API_ENDPOINT'])) auth_response = requests.get(IDENTITY_SERVER_SETTINGS['PERSONICLE_AUTH_API_ENDPOINT'], headers=auth_headers) print(auth_response.text, auth_response.status_code) if auth_response.status_code != requests.codes.ok or json.loads(auth_response.text).get("message", False)== False: return Response("Unauthorised access token", 401) try: user_id = json.loads(auth_response.text)['user_id'] except KeyError as e: return Response("Incorrect response from auth server", 401) content_type = request.headers.get('Content-Type') if (content_type == 'application/json'): event_data_packet = request.json else: return Response('Content-Type not supported!', 415) if type(event_data_packet) != type([]): return Response("Array of events expected", 422) # verify the event packet by making the data dictionary api call send_records = [] send_summary = {} for event in event_data_packet: data_dict_params = {"data_type": "event"} data_dict_response = requests.post(DATA_DICTIONARY_SERVER_SETTINGS['HOST_URL']+"/validate-data-packet", json=event, params=data_dict_params) print(data_dict_response.text) if data_dict_response.status_code == requests.codes.ok and json.loads(data_dict_response.text).get("schema_check", False): if user_id == event.get("individual_id", ""): send_summary[event['event_name']] = send_summary.get(event['event_name'], 0) + 1 send_records.append(event) else: send_summary['incorrect_user_id'] = send_summary.get('incorrect_user_id', 0) + 1 else: send_summary['incorrectly_formatted_events'] = send_summary.get('incorrectly_formatted_events', 0) + 1 # send the data to azure event hub schema_file = os.path.join(AVRO_SCHEMA_LOC, "event_schema.avsc") if len(send_records)> 0: send_records_azure.send_records_to_eventhub(schema_file, send_records, EVENTHUB_CONFIG['EVENTHUB_NAME']) return jsonify({"message": "Sent {} records to database".format(len(send_records)), "summary": send_summary })
10,960
def makepath_coupled(model_hybrid,T,h,ode_method,sample_rate): """ Compute paths of coupled exact-hybrid model using CHV ode_method. """ voxel = 0 # make copy of model with exact dynamics model_exact = copy.deepcopy(model_hybrid) for e in model_exact.events: e.hybridType = SLOW # setup integrator path = np.zeros((Nt,2*model_hybrid.dimension)) path[0][0:model_hybrid.dimension] = model_hybrid.getstate(0) path[0][model_hybrid.dimension:2*model_hybrid.dimension] = model_exact.getstate(0) clock = np.zeros(Nt) k = 0 tj = ode(chvrhs_coupled).set_integrator(ode_method,atol = h,rtol = h) tj.set_f_params(model_hybrid,model_exact,sample_rate) y0 = np.zeros(2*model_hybrid.dimension+1) while (k+1<Nt) and (clock[k]<T): k = k+1 s1 = tryexponential(1) # solve y0[0:model_hybrid.dimension] = model_hybrid.getstate(0) y0[model_hybrid.dimension:2*model_hybrid.dimension] = model_exact.getstate(0) y0[2*model_hybrid.dimension] = 0. tj.set_initial_value(y0,0) tj.integrate(s1) ys1 = tj.y for i in range(model_hybrid.dimension): model_hybrid.systemState[i].value[0] = ys1[i] for i in range(model_hybrid.dimension): model_exact.systemState[i].value[0] = ys1[i+model_hybrid.dimension] t_next = tj.y[2*model_hybrid.dimension] for e in model_hybrid.events: e.updaterate() for e in model_exact.events: e.updaterate() # update slow species r = np.random.rand() agg_rate = 0. for i in range(len(model_hybrid.events)): if model_hybrid.events[i].hybridType == SLOW: hybrid_rate = model_hybrid.events[i].rate exact_rate = model_exact.events[i].rate agg_rate = agg_rate + res(hybrid_rate,exact_rate ) agg_rate = agg_rate + res(exact_rate,hybrid_rate ) agg_rate = agg_rate + min(hybrid_rate,exact_rate ) else: agg_rate = agg_rate + model_exact.events[i].rate #agg_rate = agg_rate + model_hybrid.events[i].rate #else: # print("PROBLEM") # find reaction if r>sample_rate/(agg_rate+sample_rate): firing_event_hybrid,firing_event_exact = findreaction_coupled(model_hybrid.events,model_exact.events,agg_rate,r) if isinstance(firing_event_hybrid,Reaction): firing_event_hybrid.react() if isinstance(firing_event_exact,Reaction): firing_event_exact.react() clock[k] = clock[k-1] + t_next path[k][0:model_hybrid.dimension] = model_hybrid.getstate(0) path[k][model_hybrid.dimension:2*model_hybrid.dimension] = model_exact.getstate(0) return path[0:k+1],clock[0:k+1]
10,961
def _django_setup_unittest(request, _django_cursor_wrapper): """Setup a django unittest, internal to pytest-django.""" if django_settings_is_configured() and is_django_unittest(request): request.getfuncargvalue('_django_test_environment') request.getfuncargvalue('_django_db_setup') _django_cursor_wrapper.enable() cls = request.node.cls _restore_class_methods(cls) cls.setUpClass() _disable_class_methods(cls) def teardown(): _restore_class_methods(cls) cls.tearDownClass() _django_cursor_wrapper.restore() request.addfinalizer(teardown)
10,962
def commands(): """Manage your blobs.""" pass
10,963
def process_image_keypoints(img, keypoints, input_res=224): """Read image, do preprocessing and possibly crop it according to the bounding box. If there are bounding box annotations, use them to crop the image. If no bounding box is specified but openpose detections are available, use them to get the bounding box. """ normalize_img = Normalize(mean=constants.IMG_NORM_MEAN, std=constants.IMG_NORM_STD) img = img[:,:,::-1].copy() # PyTorch does not support negative stride at the moment center, scale, bbox = bbox_from_keypoints(keypoints, imageHeight = img.shape[0]) if center is None: return None, None, None, None, None img, boxScale_o2n, bboxTopLeft = crop_bboxInfo(img, center, scale, (input_res, input_res)) # viewer2D.ImShow(img, name='cropped', waitTime=1) #224,224,3 if img is None: return None, None, None, None, None # unCropped = uncrop(img, center, scale, (input_res, input_res)) # if True: # viewer2D.ImShow(img) img = img.astype(np.float32) / 255. img = torch.from_numpy(img).permute(2,0,1) norm_img = normalize_img(img.clone())[None] # return img, norm_img, img_original, boxScale_o2n, bboxTopLeft, bbox bboxInfo ={"center": center, "scale": scale, "bboxXYWH":bbox} return img, norm_img, boxScale_o2n, bboxTopLeft, bboxInfo
10,964
def update_output( list_of_contents, list_of_names, list_of_dates, initiate_pipeline_n_clicks, clear_pipeline_n_clicks, append_uploads_n_clicks, refresh_uploads_n_clicks, clear_uploads_n_clicks, memory, user_login_n_clicks, session_data, workflow, initiate_pipeline_timestamp, clear_pipeline_timestamp, user_login_timestamp, refresh_uploads_timestamp, clear_uploads_timestamp, ): """Primary APP Pipeline function, as triggered by 'Initiate [APP] Pipeline' UI button (located in the "Step 2 (2/2)" section). Parameters ---------- list_of_contents <list of str> Array containing user-uploaded ABI raw contents as binary strings (thus requiring decoding) list_of_names <list of str> Array containing user-uploaded ABI filenames (does not include the full path for security reasons) list_of_dates <list of int> Array containing user-uploaded ABI last modified timestamps (integers as seconds since 1970) initiate_pipeline_n_clicks <int> Total count of UI button clicks clear_pipeline_n_clicks <int> Total count of UI button clicks append_uploads_n_clicks <int> Total count of UI button clicks refresh_uploads_n_clicks <int> Total count of UI button clicks clear_uploads_n_clicks <int> Total count of UI button clicks memory Dash.dcc.Store(type='session') user_login_n_clicks <int> Total count of UI button clicks session_data Dash.dcc.Store(type='session') workflow <type> initiate_pipeline_timestamp <type> clear_pipeline_timestamp <type> user_login_timestamp <type> refresh_uploads_timestamp <type> clear_uploads_timestamp <type> """ def show_list_of_names(USER, list_of_names): """Display the filenames for all successfully received USER-uploaded ABI files. Args: USER: <str> Active user list_of_names: <list> List of user-uploaded ABI filenames Returns: <html.Div([...])> Reactive response to display after processing upload """ if not all([fn.endswith(tuple([".csv",".xlsx"])) for fn in list_of_names]): return html.Div( [ html.Br(), html.Code( f"⚠ UPLOAD ERROR: Not all of the {len(list_of_names)} files are CSV or Excel files !", style={"color": "red"}, ), html.Br(), html.Code( f"⛔ | Please reset this upload & then perform a fresh upload of either .csv or .xlsx files." ), ] ) return html.Div( [ html.Br(), html.Code( f"✔ UPLOAD SUCCESSFUL (N={len(list_of_names)})", style={"color": "green"} ), html.Br(), html.Br(), html.Details( [ html.Summary( html.H3( f"File(s) received (click to expand)", style={"textAlign": "left", "fontSize": "120%"}, ) ), html.Div( [ html.Li(f"{'{:02d}'.format(i+1)})\t{abi}") for (i, abi) in enumerate(sorted(list_of_names)) ], id="files-received", style={ "textAlign": "left", "fontSize": "60%", "columnCount": "3", "paddingBottom": "2%", "fontFamily": "'Roboto Mono', monospace", }, ), html.Hr( style={ "borderTop": "1px solid", "animation": "pact-gradient-text-flow 3s infinite linear", "borderRadius": "5px", "opacity": "0.67", "width": "50%", "marginLeft": "25%", } ), ] ), html.Br(), html.Span(className="fader-line-short", style={"marginBottom": "20px"}), ], style={"width": "80%", "marginLeft": "10%"}, ) not_signed_in_msg = html.Div( [html.H6("Please log in to release the pipeline as ready for activation.")] ) try: if session_data: # ["user_logged_in"] == "True": RUN_ID = session_data["RUN_ID"] SESSION_OUTPUT_DIR = session_data["PATH_TO_SESSION_OUTPUT"] LOG_FILE = session_data["session_log_file"] USER = session_data["user_proper"] UUID = session_data["UUID"] if len(app.logger.handlers) < 1: app.logger.info( f"Number logger handlers = {len(app.logger.handlers)}->{logger.handlers}" ) app.logger.info("Adding log FileHandler...") fh = logging.FileHandler(LOG_FILE) fh.setLevel(logging.INFO) app.logger.addHandler(fh) app.logger.info( f"Number logger handlers = {len(app.logger.handlers)}->{logger.handlers}" ) else: return not_signed_in_msg except KeyError as e: app.logger.error(f"No user appears to be logged in (KeyError: {e})") return not_signed_in_msg ### UPON USER FILE UPLOAD(S): if list_of_contents is not None: if initiate_pipeline_n_clicks >= 1: init_t_elapse = tns() / 1e9 - initiate_pipeline_timestamp / 1e3 app.logger.info(f"init_t_elapse = {init_t_elapse}; ") if init_t_elapse < 30: if ( clear_pipeline_n_clicks > 0 and refresh_uploads_n_clicks <= clear_pipeline_n_clicks ): if all( clear_pipeline_timestamp > ts for ts in [initiate_pipeline_timestamp, user_login_timestamp] ): return [ html.H3( f"Thanks, {USER}; the previous pipeline results have been cleared." ), html.H4(f"Current analysis output folder: {RUN_ID}"), html.H5( html.Div( [ html.Span(f"Launch a new analysis."), html.Br(), ] ) ), ] elif clear_pipeline_n_clicks > 0: if clear_pipeline_timestamp > initiate_pipeline_timestamp: if refresh_uploads_n_clicks > 0: if refresh_uploads_timestamp > clear_pipeline_timestamp: return show_list_of_names(USER, list_of_names) return html.Div( html.H5( f"(Pipeline results [{RUN_ID}] CLEARED)", style={"color": "red"} ) ) app.logger.info( f"📟📶⌁⌁⌁📠Using the following as pipeline data input. \n{len(list_of_names)} USER UPLOADED FILE(S) : \n" + "\n 📊⇢🧬 ".join( [ "{:>03d})\t{:>50s}".format(i + 1, abi) for i, abi in enumerate(sorted(list_of_names)) ] ) ) app.logger.info( f"INITIALIZING NEW PIPELINE LAUNCH:\n\n\t\t{SESSION_OUTPUT_DIR}" ) start_time = tns() children = [] parsed_upload_children = [ html.Details( [ parse_contents(c, n, d, SESSION_OUTPUT_DIR, session_log_file=LOG_FILE) for c, n, d in zip(list_of_contents, list_of_names, list_of_dates) ] ) ] # Generate (single!) TCR alpha/beta chain pair combinations # base pipeline reference files (e.g., agg'd fq, designated master # reference 'genome', DataFrames, log, etc.) try: pipeline_output = ljoin( [ r for r in pipeline.run_pipeline( RUN_ID, SESSION_OUTPUT_DIR, workflow=workflow, session_log_file=LOG_FILE, ) ] ) args = [(*(x), i + 1) for i, x in enumerate(pipeline_output)] except Exception as e: logs = [] report = None with open(LOG_FILE, "r+") as log_file: for line in log_file.readlines(): logs.append(line) stderr = [ dcc.Textarea( placeholder="(Main Sequence -- logger placeholder)", value="\n".join(logs), style={ "height": "400px", "width": "50%", "fontSize": "0.7rem", "lineHeight": "0.9rem", "fontFamily": "'Roboto Mono', monospace", }, className="logger-text", name="organization", readOnly=True, ) ] fatal_crash = "⚠ ALERT: ERROR IN MAIN PIPELINE SEQUENCE" app.logger.error(f"{fatal_crash}: \n\n{e}") log_exc(app.logger) return html.Div( [ html.H2(fatal_crash, style={"color": "red"}), html.P(f"App runtime was: {gtt(start_time)}"), html.Code(f"Primary error message for crash:\n{e}"), html.H4("See [end of] AUDIT LOG (below) for failure reason."), html.H5(f"WEB SERVER SYSTEM LOG:", style={"color": "red"}), html.Div(stderr), ] ) ### # # # # # # # # # #### # # # # # # # # # ### children.append( html.Div( [ html.Hr(), html.Br(), html.H4("All files analyzed in most recent upload:"), ] ) ) """ ~ ◮ ~ S U M M A R Y a n a l y s i s ~ ~ ~ ~ ◮ ~ """ if report: summary_report = [ html.Div( [ html.Br(), html.H2( "Pipeline Output Summary", style={ "fontSize": "80%", "letterSpacing": "1.33rem", "fontFamily": "Cinzel", "animation": "anim-text-flow-keys 120s infinite linear", }, ), html.Hr(), ], style={"width": "90%", "marginLeft": "5%"}, ) ] else: summary_report = [html.Div([html.H4(f"No final output found.")])] html_out = f"{SESSION_OUTPUT_DIR}{RUN_ID}_HTMLprops.tsv" pd.DataFrame( [str(c.to_plotly_json()) for c in children], columns=["DashHTMLDivComponents"] ).to_csv(html_out, encoding="utf-8", sep="\t") app.logger.info("Processed & analzyed input files were:") app.logger.debug(parsed_upload_children) app.logger.info(",".join([str(type(x)) for x in parsed_upload_children])) total_exec_time = gtt(start_time) app.logger.info( f"———COMPLETE——-\n\n \t ☆☆☆ Total EXECUTION TIME Required ☆☆☆\n\n \t\t = {total_exec_time} s \n\n" ) show_exec_time = [ html.Div( [ html.Hr(), html.H3( f"* ゚(>͂ ͡͡︒ ͜ ʖ ͡︒)>-。゚☆* :・゚.☆ * ・ " ), html.H4(f"Total Execution Time Required = {total_exec_time} s"), html.Hr(), html.Br(), ] ) ] if len(children) > 50: full_report = [ html.Div( [ html.H2( f"NOTICE: Due to an unusually large number of results in this analysis (N={len(children)}), full report display has been automatically disabled." ) ] ) ] else: full_report = children children = ( show_exec_time + TOC + summary_report + full_report + parsed_upload_children + [html.Div(html.Hr())] ) app.logger.debug(",".join([str(type(x)) for x in children])) app.logger.debug(f"Number of html.Div elements in final layout: {len(children)}") return children elif initiate_pipeline_n_clicks > 15: return html.Div( [ html.H4( "⚠ | ALERT ! : Un𝒇ortunately, you have over-activated the pipeline submissions check system. Please re𝒇resh the page, re-log in, and re-upload the set o𝒇 ABI 𝒇iles you would like analyzed. 🛠⎆ " ), html.H6("↺ Please Re𝒇resh the page. ↺"), ] ) if clear_uploads_n_clicks > 0: t_elapsed = tns() / 1e9 - clear_uploads_timestamp / 1e3 if t_elapsed < 2: for tcr_dir in os.listdir(SESSION_OUTPUT_DIR): grouped_clone_fqs = f"{SESSION_OUTPUT_DIR}{tcr_dir}" if os.path.isdir(grouped_clone_fqs): shutil.rmtree(grouped_clone_fqs) return html.Div( [ html.Code(f"UPLOADS CLEARED", style={"color": "red"}), html.H5( f'To continue, submit at least one new upload & click "✥ Append".' ), ] ) if append_uploads_n_clicks > 0 or clear_uploads_n_clicks > 0: if len(list_of_names) > 0 and len(memory.items()) > 0: all_uploads = ( memory[f"{RUN_ID}-list_of_names"] if len(memory[f"{RUN_ID}-list_of_names"]) > 0 else list_of_names ) return show_list_of_names(USER, all_uploads) elif len(memory.items()) == 0: return html.Div(html.Code("NONE")) else: app.logger.info( f"{USER} uploaded the following {len(list_of_names)} file(s):" + "\n\t ◇ 📄 " + "\n\t ◇ 📄 ".join(sorted(list_of_names)) + ".\n" ) return show_list_of_names(USER, list_of_names) else: return html.Div( [html.Br(), html.H5(f"Logged in as: {USER}", style={"color": "rgb(32,92,188)"})] )
10,965
def _load_outputs(dict_: Dict) -> Iterable[Union[HtmlOutput, EbookConvertOutput]]: """Translates a dictionary into a list of output objects. The dictionary is assumed to have the following structure:: { 'outputs': [{ 'path': 'some', 'new': 'text' }, { 'path: '...', 'replace_with': '...' }] } If the key 'outputs' is not present in the dictionary or if there are no output sub-dictionaries, an empty list is returned instead. The type of the output is inferred from the file name provided as a value of the 'path' key of the output sub-dictionary. A file name ending in the file type '.html' will produce an HtmlOutput. '.epub', '.mobi' or any other file type excluding '.html' will produce an EbookConvertOutput. Note that a local stylesheet *replaces* the global stylesheet, but local ebookconvert_params are *added* to the global ebookconvert_params if present. Args: dict_: The dictionary. Returns: The list of output objects or an empty list either if not output sub-dictionaries are present in the encapsulating dictionary or if the 'outputs' key itself is missing. """ outputs = [] global_stylesheet = None global_ec_params = [] if 'stylesheet' in dict_: global_stylesheet = dict_['stylesheet'] if 'ebookconvert_params' in dict_: global_ec_params = _load_ebookconvert_params(dict_) for output in dict_['outputs']: path = output['path'] file_type = path.split('.')[-1] if 'stylesheet' not in output and global_stylesheet: output['stylesheet'] = global_stylesheet if file_type == 'html': outputs.append(HtmlOutput(**output)) else: if 'ebookconvert_params' in output: local_ec_params = _load_ebookconvert_params(output) output['ebookconvert_params'] = global_ec_params + local_ec_params else: output['ebookconvert_params'] = global_ec_params outputs.append(EbookConvertOutput(**output)) return outputs
10,966
def _async_friendly_contextmanager(func): """ Equivalent to @contextmanager, except the resulting (non-async) context manager works correctly as a decorator on async functions. """ @wraps(func) def helper(*args, **kwargs): return _AsyncFriendlyGeneratorContextManager(func, args, kwargs) return helper
10,967
def all_inputs(n): """ returns an iterator for all {-1,1}-vectors of length `n`. """ return itertools.product((-1, +1), repeat=n)
10,968
def brightness(df: pd.DataFrame, gain: float = 1.5) -> pd.DataFrame: """ Enhance image brightness. Parameters ---------- df The dataset as a dataframe. Returns ------- df A new dataframe with follwing changes: * 'filename', overwrited with new brightened image filenames. """ logging.info('Brightening images ...') df_out = df.copy() new_filename_list = [] for index, row in df.iterrows(): filename = row['filename'] logging.debug(f'Brightening image {filename}') img = Image.open(filename) img = ImageEnhance.Brightness(img) img = img.enhance(gain) new_filename = make_filename(row, step='brightness') new_filename_list.append(new_filename) save_image(new_filename, img, dpi=(300, 300), engine='pil') df_out['filename'] = new_filename_list return df_out
10,969
def generate_winner_list(winners): """ Takes a list of winners, and combines them into a string. """ return ", ".join(winner.name for winner in winners)
10,970
def test_get_alias_name_2(): """Test alias from empty meta extraction""" meta = { } assert get_alias_names(meta) is None
10,971
def infer_chords_for_sequence(quantized_sequence, chords_per_bar=None, key_change_prob=0.001, chord_change_prob=0.5, chord_pitch_out_of_key_prob=0.01, chord_note_concentration=100.0): """Infer chords for a quantized NoteSequence using the Viterbi algorithm. This uses some heuristics to infer chords for a quantized NoteSequence. At each chord position a key and chord will be inferred, and the chords will be added (as text annotations) to the sequence. Args: quantized_sequence: The quantized NoteSequence for which to infer chords. This NoteSequence will be modified in place. chords_per_bar: The number of chords per bar to infer. If None, use a default number of chords based on the time signature of `quantized_sequence`. key_change_prob: Probability of a key change between two adjacent frames. chord_change_prob: Probability of a chord change between two adjacent frames. chord_pitch_out_of_key_prob: Probability of a pitch in a chord not belonging to the current key. chord_note_concentration: Concentration parameter for the distribution of observed pitches played over a chord. At zero, all pitches are equally likely. As concentration increases, observed pitches must match the chord pitches more closely. Raises: SequenceAlreadyHasChordsException: If `quantized_sequence` already has chords. UncommonTimeSignatureException: If `chords_per_bar` is not specified and `quantized_sequence` has an uncommon time signature. NonIntegerStepsPerChordException: If the number of quantized steps per chord is not an integer. EmptySequenceException: If `quantized_sequence` is empty. SequenceTooLongException: If the number of chords to be inferred is too large. """ sequences_lib.assert_is_relative_quantized_sequence(quantized_sequence) for ta in quantized_sequence.text_annotations: if ta.annotation_type == music_pb2.NoteSequence.TextAnnotation.CHORD_SYMBOL: raise SequenceAlreadyHasChordsException( 'NoteSequence already has chord(s): %s' % ta.text) if chords_per_bar is None: time_signature = (quantized_sequence.time_signatures[0].numerator, quantized_sequence.time_signatures[0].denominator) if time_signature not in _DEFAULT_TIME_SIGNATURE_CHORDS_PER_BAR: raise UncommonTimeSignatureException( 'No default chords per bar for time signature: (%d, %d)' % time_signature) chords_per_bar = _DEFAULT_TIME_SIGNATURE_CHORDS_PER_BAR[time_signature] # Determine the number of seconds (and steps) each chord is held. steps_per_bar_float = sequences_lib.steps_per_bar_in_quantized_sequence( quantized_sequence) steps_per_chord_float = steps_per_bar_float / chords_per_bar if steps_per_chord_float != round(steps_per_chord_float): raise NonIntegerStepsPerChordException( 'Non-integer number of steps per chord: %f' % steps_per_chord_float) steps_per_chord = int(steps_per_chord_float) steps_per_second = sequences_lib.steps_per_quarter_to_steps_per_second( quantized_sequence.quantization_info.steps_per_quarter, quantized_sequence.tempos[0].qpm) seconds_per_chord = steps_per_chord / steps_per_second num_chords = int(math.ceil(quantized_sequence.total_time / seconds_per_chord)) if num_chords == 0: raise EmptySequenceException('NoteSequence is empty.') if num_chords > _MAX_NUM_CHORDS: raise SequenceTooLongException( 'NoteSequence too long for chord inference: %d frames' % num_chords) # Compute pitch vectors for each chord frame, then compute log-likelihood of # observing those pitch vectors under each possible chord. note_pitch_vectors = sequence_note_pitch_vectors( quantized_sequence, seconds_per_frame=seconds_per_chord) chord_frame_loglik = _chord_frame_log_likelihood( note_pitch_vectors, chord_note_concentration) # Compute distribution over chords for each key, and transition distribution # between key-chord pairs. key_chord_distribution = _key_chord_distribution( chord_pitch_out_of_key_prob=chord_pitch_out_of_key_prob) key_chord_transition_distribution = _key_chord_transition_distribution( key_chord_distribution, key_change_prob=key_change_prob, chord_change_prob=chord_change_prob) key_chord_loglik = np.log(key_chord_distribution) key_chord_transition_loglik = np.log(key_chord_transition_distribution) key_chords = _key_chord_viterbi( chord_frame_loglik, key_chord_loglik, key_chord_transition_loglik) # Add the inferred chord changes to the sequence, logging any key changes. current_key_name = None current_chord_name = None for frame, (key, chord) in enumerate(key_chords): if _PITCH_CLASS_NAMES[key] != current_key_name: if current_key_name is not None: tf.logging.info('Sequence has key change from %s to %s at %f seconds.', current_key_name, _PITCH_CLASS_NAMES[key], frame * seconds_per_chord) current_key_name = _PITCH_CLASS_NAMES[key] if chord == constants.NO_CHORD: figure = constants.NO_CHORD else: root, kind = chord figure = '%s%s' % (_PITCH_CLASS_NAMES[root], kind) if figure != current_chord_name: ta = quantized_sequence.text_annotations.add() ta.time = frame * seconds_per_chord ta.quantized_step = frame * steps_per_chord ta.text = figure ta.annotation_type = music_pb2.NoteSequence.TextAnnotation.CHORD_SYMBOL current_chord_name = figure
10,972
def stampify_url(): """The stampified version of the URL passed in args.""" url = request.args.get('url') max_pages = request.args.get('max_pages') enable_animations = bool(request.args.get('animations') == 'on') if not max_pages: max_pages = DEFAULT_MAX_PAGES _stampifier = Stampifier(url, int(max_pages), enable_animations) try: return _stampifier.stampify().stamp_html except StampifierError as err: return render_template('error_screen.html', message=err.message)
10,973
def pleasant_lgr_stand_alone_parent(pleasant_lgr_test_cfg_path, tmpdir): """Stand-alone version of lgr parent model for comparing with LGR results. """ # Edit the configuration file before the file paths within it are converted to absolute # (model.load_cfg converts the file paths) cfg = load(pleasant_lgr_test_cfg_path) del cfg['setup_grid']['lgr'] cfg['simulation']['sim_ws'] = os.path.join(tmpdir, 'pleasant_lgr_just_parent') # save out the edited configuration file path, fname = os.path.split(pleasant_lgr_test_cfg_path) new_file = os.path.join(path, 'pleasant_lgr_just_parent.yml') dump(new_file, cfg) # load in the edited configuration file, converting the paths to absolute cfg = MF6model.load_cfg(new_file) # add some stuff just for the tests cfg['gisdir'] = os.path.join(cfg['simulation']['sim_ws'], 'gis') m = MF6model.setup_from_cfg(cfg) m.write_input() return m
10,974
def twitter_channel(): """ RESTful CRUD controller for Twitter channels - appears in the administration menu Only 1 of these normally in existence @ToDo: Don't enforce """ #try: # import tweepy #except: # session.error = T("tweepy module not available within the running Python - this needs installing for non-Tropo Twitter support!") # redirect(URL(c="admin", f="index")) tablename = "%s_%s" % (c, f) table = s3db[tablename] # CRUD Strings s3.crud_strings[tablename] = Storage( title_display = T("Twitter account Details"), title_list = T("Twitter accounts"), label_create = T("Add Twitter account"), title_update = T("Edit Twitter account"), label_list_button = T("View Twitter accounts"), msg_record_created = T("Twitter account added"), msg_record_deleted = T("Twitter account deleted"), msg_record_modified = T("Twitter account updated"), msg_list_empty = T("No Twitter accounts currently defined"), ) def prep(r): oauth_consumer_key = settings.msg.twitter_oauth_consumer_key oauth_consumer_secret = settings.msg.twitter_oauth_consumer_secret if not (oauth_consumer_key and oauth_consumer_secret): session.error = T("You should edit Twitter settings in models/000_config.py") return True oauth = tweepy.OAuthHandler(oauth_consumer_key, oauth_consumer_secret) if r.http == "GET" and r.method in ("create", "update"): # We're showing the form _s3 = session.s3 try: _s3.twitter_oauth_url = oauth.get_authorization_url() _s3.twitter_request_key = oauth.request_token.key _s3.twitter_request_secret = oauth.request_token.secret except tweepy.TweepError: session.error = T("Problem connecting to twitter.com - please refresh") return True #table.pin.readable = True #table.pin.label = T("PIN number from Twitter (leave empty to detach account)") #table.pin.value = "" table.twitter_account.label = T("Current Twitter account") return True else: # Not showing form, no need for pin #table.pin.readable = False #table.pin.label = T("PIN") # won't be seen #table.pin.value = "" # but let's be on the safe side pass return True #s3.prep = prep # Post-process def postp(r, output): if r.interactive: # Normal Action Buttons s3_action_buttons(r) # Custom Action Buttons for Enable/Disable table = r.table query = (table.deleted == False) rows = db(query).select(table.id, table.enabled, ) restrict_e = [str(row.id) for row in rows if not row.enabled] restrict_d = [str(row.id) for row in rows if row.enabled] s3.actions += [{"label": s3_str(T("Enable")), "restrict": restrict_e, "url": URL(args=["[id]", "enable"]), "_class": "action-btn", }, {"label": s3_str(T("Disable")), "restrict": restrict_d, "url": URL(args = ["[id]", "disable"]), "_class": "action-btn", }, ] if not s3task._is_alive(): # No Scheduler Running s3.actions += [{"label": s3_str(T("Poll")), "restrict": restrict_d, "url": URL(args = ["[id]", "poll"]), "_class": "action-btn", }, ] #if isinstance(output, dict): # if r.http == "GET" and r.method in ("create", "update"): # rheader = A(T("Collect PIN from Twitter"), # _href = session.s3.twitter_oauth_url, # _target = "_blank") # output["rheader"] = rheader return output s3.postp = postp return s3_rest_controller()
10,975
def init_time(p, **kwargs): """Initialize time data.""" time_data = { 'times': [p['parse']], 'slots': p['slots'], } time_data.update(**kwargs) return time_data
10,976
def welcome(): """ The code that executes at launch. It guides the user through menus and starts other functions from the other folders based on the users choices. """ clear() print(msg) print(Style.RESET_ALL) print("\n") print("Welcome!") input("Press ENTER key to begin!") clear() print(feesNotice) input() clear() # Checks to see if the account information was stored on the local machine previously if not os.path.isfile(os.path.join(CURRENT_DIR, "sav", "credentials.pickle")): # If the user hasn't successfullly logged in before, it takes them to a menu sequence to log in, and saves the info locally # for the next time the script is run. login.login_interface() user = login.Credentials() print(f"You are logged in as: {user.username}") instructions = """ Instructions: This program takes in a csv file full of docket numbers and will automatically populate 2 folders with the raw JSON data and all of the PDF documents associated with that docket. You will now select the path where your input csv is located. Press ENTER to open the file browser. """ print(instructions) input() clear() # Opens a graphical file browser and returns the path to the csv file that the user selected. csvChoice = file_browser.browseCSVFiles() # Assigns the choice to a global variable, so other modules can find the path that the user specified. global_variables.CSV_INPUT_PATH = csvChoice options = """ Type in one of the following numbers and press ENTER to specify your choice: [1] Get all JSON files and PDF files. [2] Get JSON files only. [3] Get PDF files only. ( Only select 3 if you already have a directory full of JSON files. ) ( The JSON files are needed to extract the download links from. ) [4] More options. Enter your response below.[1/2/3/4] """ print(options) def handle_input(): """ Prompts the user for a choice and calls the function from the 'modules' folder that corresponds with that choice. """ userChoice = input() # Choice 1 is downloading all json and pdf files. if userChoice == "1": clear() menus.select_paths_menu() clear() menus.specify_client_matter_menu() print(msg) get_json_and_pdfs() # Choice 2 is donwloading only JSON files. elif userChoice == "2": clear() menus.select_paths_menu(pdfOption=False) menus.specify_client_matter_menu() print(msg) get_json.thread_download_json() # Choice 3 is downloading only PDF files. elif userChoice == "3": clear() menus.select_paths_menu() menus.specify_client_matter_menu() print(msg) link_list = get_pdfs.get_urls("json-output") # get_pdfs.multiprocess_download_pdfs(link_list) get_pdfs.thread_download_pdfs(link_list) elif userChoice == "4": clear() menus.other_options_menu() # If the user enters anything other than a valid choice, then it tells them their choice is invalid and # restarts this function, prompting them to make a choice again. else: print("Please Enter Valid input (1, 2 or 3)") return handle_input() handle_input() try: os.startfile(os.path.join(CURRENT_DIR, "log")) except: pass print("\nDone.") input()
10,977
def bsplslib_D0(*args): """ :param U: :type U: float :param V: :type V: float :param UIndex: :type UIndex: int :param VIndex: :type VIndex: int :param Poles: :type Poles: TColgp_Array2OfPnt :param Weights: :type Weights: TColStd_Array2OfReal & :param UKnots: :type UKnots: TColStd_Array1OfReal & :param VKnots: :type VKnots: TColStd_Array1OfReal & :param UMults: :type UMults: TColStd_Array1OfInteger & :param VMults: :type VMults: TColStd_Array1OfInteger & :param UDegree: :type UDegree: int :param VDegree: :type VDegree: int :param URat: :type URat: bool :param VRat: :type VRat: bool :param UPer: :type UPer: bool :param VPer: :type VPer: bool :param P: :type P: gp_Pnt :rtype: void """ return _BSplSLib.bsplslib_D0(*args)
10,978
def b_cross(self) -> tuple: """ Solve cross one piece at a time. Returns ------- tuple of (list of str, dict of {'CROSS': int}) Moves to solve cross, statistics (move count in ETM). Notes ----- The cube is rotated so that the white centre is facing down. The four white cross pieces are moved to the yellow side (on top), starting with the edge which is the fewest moves away from solved. The edges are then moved down to the white centre in the fewest number of moves. """ cube = self.cube solve = [] edges = (1,0), (-1,1), (1,-1), (0,1) cross = { 'L': (4,1,-1), "L'": (2,1,0), 'F': (1,1,-1), "F'": (3,1,0), 'R': (2,1,-1), "R'": (4,1,0), 'B': (3,1,-1), "B'": (1,1,0), 'L2': (5,1,0), 'F2': (5,0,1), 'R2': (5,1,-1), 'B2': (5,-1,1), "L U' F": (1,0,1), "L' U' F": (1,-1,1), "F U' R": (2,0,1), "F' U' R": (2,-1,1), "R' U F'": (3,0,1), "R U F'": (3,-1,1), "B' U R'": (4,0,1), "B U R'": (4,-1,1) } for s, side in enumerate(cube): if side[1][1] == 'U': break if s != 5: move = ('z2', "z'", "x'", 'z', 'x')[s] self.move(move) solve.append(move) while not(all(cube[0][y][x] == 'U' for y, x in edges) or all(cube[5][y][x] == 'U' for y, x in edges) and all(side[-1][1] == side[1][1] for side in cube[1:5])): for edge in cross: if cube[cross[edge][0]][cross[edge][1]][cross[edge][-1]] == 'U': break slot = 'LFRB'.index(edge[0]) if cube[0][edges[slot][0]][edges[slot][1]] != 'U': moves = edge.split() elif cube[0][edges[slot-3][0]][edges[slot-3][1]] != 'U': moves = ['U'] + edge.split() elif cube[0][edges[slot-1][0]][edges[slot-1][1]] != 'U': moves = ["U'"] + edge.split() else: moves = ['U2'] + edge.split() self.move(moves) solve.extend(moves) while any(cube[5][y][x] != 'U' for y, x in edges): if cube[1][0][1] == cube[1][1][1] and cube[0][1][0] == 'U': self.move('L2') solve.append('L2') if cube[2][0][1] == cube[2][1][1] and cube[0][-1][1] == 'U': self.move('F2') solve.append('F2') if cube[3][0][1] == cube[3][1][1] and cube[0][1][-1] == 'U': self.move('R2') solve.append('R2') if cube[4][0][1] == cube[4][1][1] and cube[0][0][1] == 'U': self.move('B2') solve.append('B2') if any(cube[s][0][1] == cube[(s + 2) % 4 + 1][1][1] and cube[0][edges[s-1][0]][edges[s-1][1]] == 'U' for s in range(1, 5)): self.move('U') solve.append('U') elif any(cube[s][0][1] == cube[s % 4 + 1][1][1] and cube[0][edges[s-1][0]][edges[s-1][1]] == 'U' for s in range(1, 5)): self.move("U'") solve.append("U'") elif any(cube[s][0][1] == cube[(s + 1) % 4 + 1][1][1] and cube[0][edges[s-1][0]][edges[s-1][1]] == 'U' for s in range(1, 5)): self.move('U2') solve.append('U2') return solve, {'CROSS': len(solve)}
10,979
def get_db(): """Creates a 'SQLAlchemy' instance. Creates a 'SQLAlchemy' instance and store it to 'flask.g.db'. Before this function is called, Flask's application context must be exist. Returns: a 'SQLAlchemy' instance. """ if 'db' not in g: current_app.logger.debug('construct SQLAlchemy instance.') db = SQLAlchemy(current_app) g.db = db return g.db
10,980
def dsm_nifti(image, spatial_radius=0.01, dist_metric='correlation', dist_params=dict(), y=None, n_folds=1, roi_mask=None, brain_mask=None, n_jobs=1, verbose=False): """Generate DSMs in a searchlight pattern on Nibabel Nifty-like images. DSMs are computed using a patch surrounding each voxel. .. versionadded:: 0.4 Parameters ---------- image : 4D Nifti-like image The Nitfi image data. The 4th dimension must contain the images for each item. spatial_radius : float The spatial radius of the searchlight patch in meters. All source points within this radius will belong to the searchlight patch. Defaults to 0.01. dist_metric : str The metric to use to compute the DSM for the data. This can be any metric supported by the scipy.distance.pdist function. See also the ``dist_params`` parameter to specify and additional parameter for the distance function. Defaults to 'correlation'. dist_params : dict Extra arguments for the distance metric used to compute the DSMs. Refer to :mod:`scipy.spatial.distance` for a list of all other metrics and their arguments. Defaults to an empty dictionary. y : ndarray of int, shape (n_items,) | None For each source estimate, a number indicating the item to which it belongs. When ``None``, each source estimate is assumed to belong to a different item. Defaults to ``None``. n_folds : int | None Number of folds to use when using cross-validation to compute the evoked DSM metric. Specify ``None``, to use the maximum number of folds possible, given the data. Defaults to 1 (no cross-validation). roi_mask : 3D Nifti-like image | None When set, searchlight patches will only be generated for the subset of voxels with non-zero values in the given mask. This is useful for restricting the analysis to a region of interest (ROI). Note that while the center of the patches are all within the ROI, the patch itself may extend beyond the ROI boundaries. Defaults to ``None``, in which case patches for all voxels are generated. brain_mask : 3D Nifti-like image | None When set, searchlight patches are restricted to only contain voxels with non-zero values in the given mask. This is useful for make sure only information from inside the brain is used. In contrast to the `roi_mask`, searchlight patches will not use data outside of this mask. Defaults to ``None``, in which case all voxels are included in the analysis. n_jobs : int The number of processes (=number of CPU cores) to use. Specify -1 to use all available cores. Defaults to 1. verbose : bool Whether to display a progress bar. In order for this to work, you need the tqdm python module installed. Defaults to False. Yields ------ dsm : ndarray, shape (n_items, n_items) A DSM for each searchlight patch. """ if (not isinstance(image, tuple(nib.imageclasses.all_image_classes)) or image.ndim != 4): raise ValueError('The image data must be 4-dimensional Nifti-like ' 'images') # Get data as (n_items x n_voxels) X = image.get_fdata().reshape(-1, image.shape[3]).T # Find voxel positions voxels = np.array(list(np.ndindex(image.shape[:-1]))) voxel_loc = voxels @ image.affine[:3, :3] voxel_loc /= 1000 # convert position from mm to meters # Apply masks result_mask = np.ones(image.shape[:3], dtype=bool) if brain_mask is not None: if brain_mask.ndim != 3 or brain_mask.shape != image.shape[:3]: raise ValueError('Brain mask must be a 3-dimensional Nifi-like ' 'image with the same dimensions as the data ' 'image') brain_mask = brain_mask.get_fdata() != 0 result_mask &= brain_mask brain_mask = brain_mask.ravel() X = X[:, brain_mask] voxel_loc = voxel_loc[brain_mask] if roi_mask is not None: if roi_mask.ndim != 3 or roi_mask.shape != image.shape[:3]: raise ValueError('ROI mask must be a 3-dimensional Nifi-like ' 'image with the same dimensions as the data ' 'image') roi_mask = roi_mask.get_fdata() != 0 result_mask &= roi_mask roi_mask = roi_mask.ravel() if brain_mask is not None: roi_mask = roi_mask[brain_mask] roi_mask = np.flatnonzero(roi_mask) # Compute distances between voxels logger.info('Computing distances...') from sklearn.neighbors import NearestNeighbors nn = NearestNeighbors(radius=spatial_radius, n_jobs=n_jobs).fit(voxel_loc) dist = nn.radius_neighbors_graph(mode='distance') # Compute DSMs patches = searchlight(X.shape, dist=dist, spatial_radius=spatial_radius, temporal_radius=None, sel_series=roi_mask) yield from dsm_array(X, patches, dist_metric=dist_metric, dist_params=dist_params, y=y, n_folds=n_folds, n_jobs=n_jobs, verbose=verbose)
10,981
def generate_probes(filename_input, filename_results, options, conf=None, problem=None, probes=None, labels=None, probe_hooks=None): """ Generate probe figures and data files. """ if conf is None: required, other = get_standard_keywords() conf = ProblemConf.from_file(filename_input, required, other) opts = conf.options if options.auto_dir: output_dir = opts.get_('output_dir', '.') filename_results = os.path.join(output_dir, filename_results) output('results in: %s' % filename_results) io = MeshIO.any_from_filename(filename_results) step = options.step if options.step >= 0 else io.read_last_step() all_data = io.read_data(step) output('loaded:', all_data.keys()) output('from step:', step) if options.only_names is None: data = all_data else: data = {} for key, val in all_data.iteritems(): if key in options.only_names: data[key] = val if problem is None: problem = Problem.from_conf(conf, init_equations=False, init_solvers=False) if probes is None: gen_probes = conf.get_function(conf.options.gen_probes) probes, labels = gen_probes(problem) if probe_hooks is None: probe_hooks = {None : conf.get_function(conf.options.probe_hook)} if options.output_filename_trunk is None: options.output_filename_trunk = problem.ofn_trunk filename_template = options.output_filename_trunk \ + ('_%%d.%s' % options.output_format) if options.same_dir: filename_template = os.path.join(os.path.dirname(filename_results), filename_template) output_dir = os.path.dirname(filename_results) for ip, probe in enumerate(probes): output(ip, probe.name) probe.set_options(close_limit=options.close_limit) for key, probe_hook in probe_hooks.iteritems(): out = probe_hook(data, probe, labels[ip], problem) if out is None: continue if isinstance(out, tuple): fig, results = out else: fig = out if key is not None: filename = filename_template % (key, ip) else: filename = filename_template % ip if fig is not None: if isinstance(fig, dict): for fig_name, fig_fig in fig.iteritems(): fig_filename = edit_filename(filename, suffix='_' + fig_name) fig_fig.savefig(fig_filename) output('figure ->', os.path.normpath(fig_filename)) else: fig.savefig(filename) output('figure ->', os.path.normpath(filename)) if results is not None: txt_filename = edit_filename(filename, new_ext='.txt') write_results(txt_filename, probe, results) output('data ->', os.path.normpath(txt_filename))
10,982
def retain_groundtruth(tensor_dict, valid_indices): """Retains groundtruth by valid indices. Args: tensor_dict: a dictionary of following groundtruth tensors - fields.InputDataFields.groundtruth_boxes fields.InputDataFields.groundtruth_classes fields.InputDataFields.groundtruth_confidences fields.InputDataFields.groundtruth_keypoints fields.InputDataFields.groundtruth_instance_masks fields.InputDataFields.groundtruth_is_crowd fields.InputDataFields.groundtruth_area fields.InputDataFields.groundtruth_label_types fields.InputDataFields.groundtruth_difficult valid_indices: a tensor with valid indices for the box-level groundtruth. Returns: a dictionary of tensors containing only the groundtruth for valid_indices. Raises: ValueError: If the shape of valid_indices is invalid. ValueError: field fields.InputDataFields.groundtruth_boxes is not present in tensor_dict. """ input_shape = valid_indices.get_shape().as_list() if not (len(input_shape) == 1 or (len(input_shape) == 2 and input_shape[1] == 1)): raise ValueError('The shape of valid_indices is invalid.') valid_indices = tf.reshape(valid_indices, [-1]) valid_dict = {} if fields.InputDataFields.groundtruth_boxes in tensor_dict: # Prevents reshape failure when num_boxes is 0. num_boxes = tf.maximum(tf.shape( tensor_dict[fields.InputDataFields.groundtruth_boxes])[0], 1) for key in tensor_dict: if key in [fields.InputDataFields.groundtruth_boxes, fields.InputDataFields.groundtruth_classes, fields.InputDataFields.groundtruth_confidences, fields.InputDataFields.groundtruth_keypoints, fields.InputDataFields.groundtruth_keypoint_visibilities, fields.InputDataFields.groundtruth_instance_masks]: valid_dict[key] = tf.gather(tensor_dict[key], valid_indices) # Input decoder returns empty tensor when these fields are not provided. # Needs to reshape into [num_boxes, -1] for tf.gather() to work. elif key in [fields.InputDataFields.groundtruth_is_crowd, fields.InputDataFields.groundtruth_area, fields.InputDataFields.groundtruth_difficult, fields.InputDataFields.groundtruth_label_types]: valid_dict[key] = tf.reshape( tf.gather(tf.reshape(tensor_dict[key], [num_boxes, -1]), valid_indices), [-1]) # Fields that are not associated with boxes. else: valid_dict[key] = tensor_dict[key] else: raise ValueError('%s not present in input tensor dict.' % ( fields.InputDataFields.groundtruth_boxes)) return valid_dict
10,983
def next_higher_number(some_integer_input): """ Given an integer, this function returns the next higher number which has the exact same set of digits. If no higher number exists, return the the integer provided as input. For instance: >>> next_higher_number(123) 132 >>> next_higher_number(1232) 1322 >>> next_higher_number(70) 70 """ pass
10,984
def test_url_call_succeeds_with_200(monkeypatch): """ Test the function will return once the HTTP Response is 200 OK. """ # Setup the mocks. response = MagicMock(spec=urllib.request.addinfourl) response.getcode.return_value = 200 mock_urlopen = MagicMock(return_value=response) # Path urlopen so that we do not make an http request. monkeypatch.setattr('urllib.request.urlopen', mock_urlopen) waitForURL('http://exmple.com/foo/bar') assert mock_urlopen.call_count == 1 assert response.getcode.called
10,985
def cluster_list_node(realm, id): """ this function add a cluster node """ cluster = Cluster(ES) account = Account(ES) account_email = json.loads(request.cookies.get('account'))["email"] if account.is_active_realm_member(account_email, realm): return Response(json.dumps(cluster.list_nodes(realm, id))) else: return Response({"failure": "account identifier and realm is not an active match"})
10,986
def validate_code(code): """ Ensure that the code provided follows python_variable_naming_syntax. """ regex = "^[a-z_][a-z0-9_]+$" if not re.search(regex, code): raise ValidationError("code must be in 'python_variable_naming_syntax'")
10,987
def compute_features_for_audio_file(audio_file): """ Parameters ---------- audio_file: str Path to the audio file. Returns ------- features: dict Dictionary of audio features. """ # Load Audio logging.info("Loading audio file %s" % os.path.basename(audio_file)) audio, sr = librosa.load(audio_file, sr=msaf.Anal.sample_rate) # Compute harmonic-percussive source separation logging.info("Computing Harmonic Percussive source separation...") y_harmonic, y_percussive = librosa.effects.hpss(audio) # Output features dict features = {} # Compute framesync features features["mfcc"], features["hpcp"], features["tonnetz"], \ features["cqt"], features["gmt"] = compute_features(audio, y_harmonic) # Estimate Beats features["beats_idx"], features["beats"] = compute_beats( y_percussive, sr=msaf.Anal.sample_rate) # Compute Beat-sync features features["bs_mfcc"], features["bs_hpcp"], features["bs_tonnetz"], \ features["bs_cqt"], features["bs_gmt"] = compute_beat_sync_features(features, features["beats_idx"]) # Analysis parameters features["anal"] = {} features["anal"]["frame_rate"] = msaf.Anal.frame_size features["anal"]["hop_size"] = msaf.Anal.hop_size features["anal"]["mfcc_coeff"] = msaf.Anal.mfcc_coeff features["anal"]["sample_rate"] = msaf.Anal.sample_rate features["anal"]["window_type"] = msaf.Anal.window_type features["anal"]["n_mels"] = msaf.Anal.n_mels features["anal"]["dur"] = audio.shape[0] / float(msaf.Anal.sample_rate) return features
10,988
def complete_json(input_data, ref_keys='minimal', input_root=None, output_fname=None, output_root=None): """ Parameters ---------- input_data : str or os.PathLike or list-of-dict Filepath to JSON with data or list of dictionaries with information about annotations ref_keys : {'minimal', 'info'}, optional Which reference keys to check in `input_data`. Default: 'minimal' input_root : str, optional If `input_data` is a filename the key in the file containing data about annotations. If not specified will be based on provided `ref_keys`. Default: None output_fname : str or os.PathLike, optional Filepath where complete JSON should be saved. If not specified the data are not saved to disk. Default: None output_root : str, optional If `output_fname` is not None, the key in the saved JSON where completed information should be stored. If not specified will be based on `input_root`. Default: None Returns ------- output : list-of-dict Information about annotations from `input_data` """ valid_keys = ['minimal', 'info'] if ref_keys not in valid_keys: raise ValueError(f'Invalid ref_keys: {ref_keys}. Must be one of ' f'{valid_keys}') # this is to add missing fields to existing data # could accept data dict list or filename as input # set minimal vs info if ref_keys == 'minimal': ref_keys = MINIMAL_KEYS if input_root is None: input_root = 'annotations' elif ref_keys == 'info': ref_keys = INFO_KEYS if input_root is None: input_root = 'info' # check input if not isinstance(input_data, list): input_data = parse_json(input_data, root=input_root) # make output output = [] for item in input_data: output.append({ key: (item[key] if key in item else None) for key in ref_keys }) # write output if output_fname is not None: if output_root is None: output_root = input_root write_json(output, output_fname, root=output_root) return output
10,989
def BuildSystem(input_dir, info_dict, block_list=None): """Build the (sparse) system image and return the name of a temp file containing it.""" return CreateImage(input_dir, info_dict, "system", block_list=block_list)
10,990
def add_upgrades(ws, cols, lnth): """ """ for col in cols: cell = "{}1".format(col) ws[cell] = "='New_4G_Sites'!{}".format(cell) for col in cols[:2]: for i in range(2, lnth): cell = "{}{}".format(col, i) ws[cell] = "='New_4G_Sites'!{}".format(cell) for col in cols[2:]: for i in range(2, lnth): cell = "{}{}".format(col, i) part1 = "=IFERROR(IF(Towers_non_4G_MNO!{}>0,IF(Towers_non_4G_MNO!{}>".format(cell,cell) part2 = "New_4G_Sites!{},New_4G_Sites!{},New_4G_Sites!{}-Towers_non_4G_MNO!{}),0),0)".format(cell,cell,cell,cell) ws[cell] = part1 + part2 #+ part3 + part4 columns = ['C','D','E','F','G','H','I','J','K','L'] ws = format_numbers(ws, columns, (1, 200), 'Comma [0]', 0) set_border(ws, 'A1:L{}'.format(lnth-1), "thin", "000000") return ws
10,991
def vae_loss(recon_x, x, mu, logvar, reduction="mean"): """ Effects ------- Reconstruction + KL divergence losses summed over all elements and batch See Appendix B from VAE paper: Kingma and Welling. Auto-Encoding Variational Bayes. ICLR, 2014 https://arxiv.org/abs/1312.6114 """ BCE = F.binary_cross_entropy(recon_x, x, reduction=reduction) # 0.5 * mean(1 + log(sigma^2) - mu^2 - sigma^2) KLD = -0.5 * torch.mean(1 + logvar - mu.pow(2) - logvar.exp()) return BCE, KLD
10,992
def assert_balance(from_channel, balance, locked): """ Assert the from_channel overall token values. """ assert balance >= 0 assert locked >= 0 distributable = balance - locked channel_distributable = channel.get_distributable( from_channel.our_state, from_channel.partner_state, ) assert channel.get_balance(from_channel.our_state, from_channel.partner_state) == balance assert channel_distributable == distributable assert channel.get_amount_locked(from_channel.our_state) == locked amount_locked = channel.get_amount_locked(from_channel.our_state) assert balance == amount_locked + distributable
10,993
def test_driver_update_fails_with_invalid_id(): """ Tests updating a record fails if the record id is not found. """ with sqlite3.connect("index.sq3") as conn: driver = SQLAlchemyIndexDriver("sqlite:///index.sq3") did = str(uuid.uuid4()) baseid = str(uuid.uuid4()) rev = str(uuid.uuid4())[:8] form = "object" conn.execute( """ INSERT INTO index_record(did, baseid, rev, form, size) VALUES (?,?,?,?,?) """, (did, baseid, rev, form, None), ) conn.commit() with pytest.raises(NoRecordFound): driver.update("some_record_that_does_not_exist", "some_record_version", rev)
10,994
def Or(*args): """Defines the three valued ``Or`` behaviour for a 2-tuple of three valued logic values""" def reduce_or(cmp_intervala, cmp_intervalb): if cmp_intervala[0] is True or cmp_intervalb[0] is True: first = True elif cmp_intervala[0] is None or cmp_intervalb[0] is None: first = None else: first = False if cmp_intervala[1] is True or cmp_intervalb[1] is True: second = True elif cmp_intervala[1] is None or cmp_intervalb[1] is None: second = None else: second = False return (first, second) return reduce(reduce_or, args)
10,995
def create_task(): """Create a new task""" data = request.get_json() # In advanced solution, a generic validation should be done if (TaskValidator._validate_title(data)): TaskPersistence.create(title=data['title']) return {'success': True, 'message': 'Task has been saved'} # Simple error response return {'error': 'bad request', 'message': 'not valid data', 'status': 400}
10,996
def test_is_python_version_newer_than_3_6(): """Test to check python version is 3.7 or later""" assert util.is_python_version_newer_than_3_6() is not None
10,997
def move(timeout=10): """Send mouse X & Y reported data from the Pinnacle touch controller until there's no input for a period of ``timeout`` seconds.""" if mouse is None: raise OSError("mouse HID device not available.") start = time.monotonic() while time.monotonic() - start < timeout: data = tpad.report() # only returns fresh data (if any) if data: # is there fresh data? mouse.send_report(data) # no scrolling or backward/forward start = time.monotonic() mouse.send_report(b'\x00' * 4)
10,998
def get_socket_with_reuseaddr() -> socket.socket: """Returns a new socket with `SO_REUSEADDR` option on, so an address can be reused immediately, without waiting for TIME_WAIT socket state to finish. On Windows, `SO_EXCLUSIVEADDRUSE` is used instead. This is because `SO_REUSEADDR` on this platform allows the socket to be bound to an address that is already bound by another socket, without requiring the other socket to have this option on as well. """ sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) if 'SO_EXCLUSIVEADDRUSE' in dir(socket): sock.setsockopt(socket.SOL_SOCKET, getattr(socket, 'SO_EXCLUSIVEADDRUSE'), 1) else: sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) return sock
10,999