content
stringlengths 22
815k
| id
int64 0
4.91M
|
|---|---|
def Str(*args):
"""(s1, s2, ...) -> match s1 or s2 or ..."""
if len(args) == 1:
return Str1(args[0])
return Expression.Alt(tuple(map(Str, args)))
| 10,400
|
def image_noise_gaussian(image):
"""
Adds Gaussian noise to the provided image
"""
float_img = image.astype(np.float)
gauss = np.random.normal(0.0, 4.0, (IMG_SIZE, IMG_SIZE, IMG_CHANNELS))
gauss = gauss.reshape(IMG_SIZE, IMG_SIZE, IMG_CHANNELS).astype(np.float)
result = float_img + gauss
result = np.clip(result, 0, 255)
result = result.astype(np.uint8)
return result
| 10,401
|
def argsort(x: T.FloatTensor, axis: int = None) -> T.LongTensor:
"""
Get the indices of a sorted tensor.
If axis=None this flattens x.
Args:
x: A tensor:
axis: The axis of interest.
Returns:
tensor (of ints): indices of sorted tensor
"""
if axis is None:
return flatten(x).sort()[1]
else:
return x.sort(dim=axis)[1]
| 10,402
|
def dirPickledSize(obj,exclude=[]):
"""For each attribute of obj (excluding those specified and those that start with '__'),
compute the size using getPickledSize(obj) and return as a pandas Series of KBs"""
return pd.Series({o:getPickledSize(getattr(obj, o))/1024. for o in dir(obj) if not np.any([o[:2]=='__', o in exclude, getattr(obj, o) is None])})
| 10,403
|
def audit_log() -> Any:
"""
List all events related to the connected member.
"""
if "member_id" not in session:
abort(404)
return render_template(
"audit_log.html",
full_audit_log=fetch_audit_log(session["member_id"]),
)
| 10,404
|
def load_comparisonXL(method, evaluate="train", dropna=True):
"""Load comparison table."""
if evaluate == "test":
e = "['Test']"
elif evaluate == "in bag":
e = "['In Bag']"
elif evaluate == "out of bag":
e = "['Out of Bag']"
else:
e = "['Train']"
# Import methods
table = []
for i in method:
table.append(pd.read_excel(i + ".xlsx"))
# Concatenate table
df = pd.DataFrame()
for i in range(len(table)):
df = pd.concat([df, table[i].loc[table[i]['evaluate'] == e].T.squeeze()], axis=1, sort=False)
df = df.T.drop(columns="evaluate")
# Remove [ ] from string
for i in range(len(df)):
for j in range(len(df.T)):
if type(df.iloc[i, j]) is str:
df.iloc[i, j] = df.iloc[i, j][2: -2]
# Reset index and add methods column
method_name = []
for i in range(len(method)):
name_i = method[i].rsplit('/', 1)[1]
method_name.append(name_i)
df = df.reset_index()
df = pd.concat([pd.Series(method_name, name="method"), df], axis=1, sort=False)
df = df.drop("index", 1)
#df = df.set_index("method")
# drop columns with just nans
if dropna is True:
df = df.dropna(axis=1, how='all')
return df
| 10,405
|
def display_countries():
"""
Display all countries in Yahoo Finance data. [Source: Finance Database]
"""
for country in financedatabase_model.get_countries():
print(country)
| 10,406
|
def verify_user_password(user: User, password: str) -> bool:
"""Verify User's password with the one that was given on login page."""
return pwd_context.verify(password, user.password)
| 10,407
|
def __valid_ddb_response_q(response):
"""private function to validate a given DynamoDB query response."""
if 'ResponseMetadata' in response:
if 'HTTPStatusCode' in response['ResponseMetadata']:
if response['ResponseMetadata']['HTTPStatusCode'] == 200:
return True
return False
| 10,408
|
def GetPipelineResultsPathInGCS(artifacts_path):
"""Gets a full Cloud Storage path to a pipeline results YAML file.
Args:
artifacts_path: string, the full Cloud Storage path to the folder containing
pipeline artifacts, e.g. 'gs://my-bucket/artifacts'.
Returns:
A string representing the full Cloud Storage path to the pipeline results
YAML file.
"""
return '{0}/results/results.yaml'.format(artifacts_path)
| 10,409
|
def Pnm_p(n, m, x):
"""Eq:II.77 """
return lpmn(m, n, x)[1][-1, -1]
| 10,410
|
def _remove_empty_subspace(subspaces, n_clusters, m, P, centers, labels, scatter_matrices):
"""
Check if after rotation and rearranging the dimensionalities a empty subspaces occurs. Empty subspaces will be
removed for the next iteration. Therefore all necessary lists will be updated.
:param subspaces: number of subspaces
:param n_clusters:
:param m: list containing number of dimensionalities for each subspace
:param P: list containing projections for each subspace
:param centers: list containing the cluster centers for each subspace
:param labels: list containing cluster assignments for each subspace
:param scatter_matrices: list containing scatter matrices for each subspace
:return: subspaces, n_clusters, m, P, centers, labels, scatter_matrices
"""
if 0 in m:
np_m = np.array(m)
empty_spaces = np.where(np_m == 0)[0]
print(
"[NrKmeans] ATTENTION:\nSubspaces were lost! Number of lost subspaces:\n" + str(
len(empty_spaces)) + " out of " + str(
len(m)))
subspaces -= len(empty_spaces)
n_clusters = [x for i, x in enumerate(
n_clusters) if i not in empty_spaces]
m = [x for i, x in enumerate(m) if i not in empty_spaces]
P = [x for i, x in enumerate(P) if i not in empty_spaces]
centers = [x for i, x in enumerate(centers) if i not in empty_spaces]
labels = [x for i, x in enumerate(labels) if i not in empty_spaces]
scatter_matrices = [x for i, x in enumerate(
scatter_matrices) if i not in empty_spaces]
return subspaces, n_clusters, m, P, centers, labels, scatter_matrices
| 10,411
|
def _VerifyExtensionHandle(message, extension_handle):
"""Verify that the given extension handle is valid."""
if not isinstance(extension_handle, FieldDescriptor):
raise KeyError('HasExtension() expects an extension handle, got: %s' %
extension_handle)
if not extension_handle.is_extension:
raise KeyError('"%s" is not an extension.' % extension_handle.full_name)
if not extension_handle.containing_type:
raise KeyError('"%s" is missing a containing_type.'
% extension_handle.full_name)
if extension_handle.containing_type is not message.DESCRIPTOR:
raise KeyError('Extension "%s" extends message type "%s", but this '
'message is of type "%s".' %
(extension_handle.full_name,
extension_handle.containing_type.full_name,
message.DESCRIPTOR.full_name))
| 10,412
|
def main():
"""Evaluate model performance
"""
# construct the argument parse and parse the arguments
args = argparse.ArgumentParser()
args.add_argument("-i", "--input", required=True, help="path to input directory of images")
args.add_argument("-m", "--model", required=True, help="path to input model")
args = vars(args.parse_args())
# load the pre-trained network
print("[INFO] loading pre-trained network...")
model = load_model(args["model"])
# randomy sample a few of the input images
image_paths = list(paths.list_images(args["input"]))
image_paths = np.random.choice(image_paths, size=(10,), replace=False)
# loop over the image paths
for image_path in image_paths:
# load the image and convert it to grayscale, then pad the image to ensure digits
# caught only the border of the image are retained
image = cv2.imread(image_path)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
gray = cv2.copyMakeBorder(gray, 20, 20, 20, 20, cv2.BORDER_REPLICATE)
# threshold the image to reveal the digits
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
# find contours in the image, keeping only the four largest ones,
# then sort them from left-to-right
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
cnts = sorted(cnts, key=cv2.contourArea, reverse=True)[:4]
cnts = contours.sort_contours(cnts)[0]
# initialize the output image as a "grayscale" image with 3
# channels along with the output predictions
output = cv2.merge([gray] * 3)
predictions = []
# loop over the contours
for contour in cnts:
# compute the bounding box for the contour then extract the digit
(x, y, w, h) = cv2.boundingRect(contour)
roi = gray[y - 5 : y + h + 5, x - 5 : x + w + 5]
# pre-process the ROI and classify it then classify it
roi = preprocess(roi, 28, 28)
roi = np.expand_dims(img_to_array(roi), axis=0) / 255.0
pred = model.predict(roi).argmax(axis=1)[0] + 1
predictions.append(str(pred))
# draw the prediction on the output image
cv2.rectangle(output, (x - 2, y - 2), (x + w + 4, y + h + 4), (0, 255, 0), 1)
cv2.putText(output, str(pred), (x - 5, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.55, (0, 255, 0), 2)
# show the output image
print("[INFO] captcha: {}".format("".join(predictions)))
cv2.imshow("Output", output)
cv2.waitKey()
| 10,413
|
def main():
"""
Main function
"""
concrete_utim = None
cm1 = None
session_key = None
logging.info("INIT rxQ")
rx_queue = queue.Queue()
logging.info("INIT txQ")
tx_queue = queue.Queue()
try:
cm1 = ConnectivityManager()
cm1.connect(dl_type=DataLinkManager.TYPE_QUEUE, rx=tx_queue, tx=rx_queue)
concrete_utim = Utim()
concrete_utim.connect(dl_type=DataLinkManager.TYPE_QUEUE, rx=rx_queue, tx=tx_queue)
concrete_utim.run()
data1 = [TopDataType.DEVICE, Tag.INBOUND.NETWORK_READY]
print("cm1 - send {0}".format(data1))
cm1.send(data1)
while True:
data = cm1.receive()
if data:
print("RECEIVED DATA: {0}".format(data))
session_key = data[1]
concrete_utim.stop()
break
print("RECEIVED SESSION KEY: {key}".format(key=session_key))
except ConnectivityConnectError:
logging.error("Connectivity error")
print("Connectivity error")
except UtimConnectionException as er:
logging.error(er)
except UtimInitializationError as er:
logging.error(er)
print('Invalid UTIM_MASTER_KEY')
except (KeyboardInterrupt, EOFError):
logging.info('Program interrupted')
print('Program interrupted')
finally:
if concrete_utim:
concrete_utim.stop()
if cm1:
cm1.stop()
| 10,414
|
def _get_citekeys_action(elem, doc):
"""
Panflute action to extract citationId from all Citations in the AST.
"""
if not isinstance(elem, pf.Citation):
return None
manuscript_citekeys = global_variables["manuscript_citekeys"]
manuscript_citekeys.append(elem.id)
return None
| 10,415
|
def average_gradients(tower_grads):
"""Calculate the average gradient for each shared variable across all towers.
Note that this function provides a synchronization point across all towers.
Args:
tower_grads: List of lists of (gradient, variable) tuples. The outer list
is over individual gradients. The inner list is over the gradient
calculation for each tower.
Returns:
List of pairs of (gradient, variable) where the
gradient has been averaged across all towers.
"""
average_grads = []
for grad_and_vars in zip(*tower_grads):
# Note that each grad_and_vars looks like the following:
# ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN))
grads = []
for each_grad, _ in grad_and_vars:
# Add 0 dimension to the gradients to represent the tower.
expanded_g = tf.expand_dims(each_grad, 0)
# Append on a 'tower' dimension which we will average over below.
grads.append(expanded_g)
# Average over the 'tower' dimension.
grad = tf.concat(axis=0,values=grads)
grad = tf.reduce_mean(grad, 0)
# The variables are redundant because they are shared
# across towers. So we will just return the first tower's pointer to
# the Variable.
weights = grad_and_vars[0][1]
grad_and_var = (grad, weights)
average_grads.append(grad_and_var)
return average_grads
| 10,416
|
def compute_neighbours_probability_matrix(n_matrix, src, d_matrix, sigma_neigh):
"""Compute neighbours' probability matrix.
Parameters
-----------
n_matrix : :py:class:`~numpy.ndarray` of :py:class:`~int`, shape (n_verts, n_neigh_max)
The sets of neighbours.
src : :py:class:`~numpy.ndarray` of :py:class:`~float`, shape (n_verts, 3)
The coordinates of the points in the brain discretization.
d_matrix : :py:class:`~numpy.ndarray` of :py:class:`~float`, shape (n_verts x n_verts)
The Euclidean distance between the points in the
brain discretization.
sigma_neigh : :py:class:`~float`
The standard deviation of the Gaussian distribution that defines
the neighbours' probability.
Returns
--------
np_matrix : :py:class:`~numpy.ndarray` of :py:class:`~float`, shape (n_verts, n_neigh_max)
The neighbours' probability.
"""
np_matrix = np.zeros(n_matrix.shape, dtype=float)
for i in range(src.shape[0]):
n_neig = len(np.where(n_matrix[i] > -1)[0])
np_matrix[i, 0:n_neig] = \
np.exp(-d_matrix[i, n_matrix[i, 0:n_neig]] ** 2
/ (2 * sigma_neigh ** 2))
np_matrix[i] = np_matrix[i] / np.sum(np_matrix[i])
return np_matrix
| 10,417
|
def ar_cosmap(inmap):
"""
Get the cosine map and off-limb pixel map using WCS.
Generate a map of the solar disk that is 1 at disk center and goes radially outward as the cos(angle to LOS), which
is = 2 at 60 degrees from LOS.
Other outputs:
- rrdeg: gives degrees from disk center
- offlimb: map of 1=on-disk and 0=off-disk
"""
## Take off an extra half percent from the disk to get rid of limb effects
fudge=0.999
#
## Get helioprojective_coordinates
# Below is deprecated so commented out and updated
# xx, yy = wcs.convert_pixel_to_data(inmap.data.shape,
# [inmap.meta["CDELT1"], inmap.meta["CDELT2"]],
# [inmap.meta["CRPIX1"], inmap.meta["CRPIX2"]],
# [inmap.meta["CRVAL1"], inmap.meta["CRVAL2"]])
x, y = (np.meshgrid(*[np.arange(v.value) for v in inmap.dimensions]) * u.pixel)
hpc = inmap.pixel_to_world(x, y)#NEED TO CHECK RE WHAT ORIGIN TO USE, origin=1)
xx = hpc.Tx.value
yy = hpc.Ty.value
rr = ((xx**2.) + (yy**2.))**(0.5)
#
coscor = np.copy(rr)
rrdeg = np.arcsin(coscor / inmap.meta["RSUN_OBS"])
coscor = 1. / np.cos(rrdeg)
wgt = np.where(rr > (inmap.meta["RSUN_OBS"]*fudge))
coscor[wgt] = 1.
#
offlimb = np.copy(rr)
wgtrr = np.where(rr >= (inmap.meta["RSUN_OBS"]*fudge))
offlimb[wgtrr] = 0.
wltrr = np.where(rr < (inmap.meta["RSUN_OBS"]*fudge))
offlimb[wltrr] = 1.
#
return coscor, rrdeg, offlimb
| 10,418
|
def as_array(request: SubRequest) -> bool:
"""
Boolean fixture to support ExtensionDtype _from_sequence method testing.
"""
b = request.param
assert isinstance(b, bool)
return b
| 10,419
|
def test_day_generation_empty():
"""Test that empty day generation is as expected"""
cal = models.Calendar()
cal.title = "Test"
cal.start_date = date(2021, 1, 4)
cal.end_date = date(2021, 1, 15)
cal.monday = True
cal.tuesday = True
cal.wednesday = True
cal.thursday = True
cal.friday = True
cal.saturday = False
cal.sunday = False
cal.save()
expected = {
date(2021, 1, 4): None,
date(2021, 1, 5): None,
date(2021, 1, 6): None,
date(2021, 1, 7): None,
date(2021, 1, 8): None,
date(2021, 1, 11): None,
date(2021, 1, 12): None,
date(2021, 1, 13): None,
date(2021, 1, 14): None,
date(2021, 1, 15): None,
}
actual = cal.get_date_letter_map()
assert actual == expected
| 10,420
|
def gram_matrix(x):
"""Create the gram matrix of x."""
b, c, h, w = x.shape
phi = x.view(b, c, h * w)
return phi.bmm(phi.transpose(1, 2)) / (c * h * w)
| 10,421
|
def create_presentation(path):
"""Creates ppt report from files in the specified folder. """
import os
import pandas as pd
from datetime import date
from pptx import Presentation
from pptx.util import Inches, Pt
report = Presentation()
#report = Presentation('test_data//templates//ppt_template.pptx')
#pic = slide.shapes.add_picture('hts_data//templates//company_logo.png', left = Inches(3), top = Inches(0.2))
slide = report.slides.add_slide(report.slide_layouts[6])
subtitle = slide.shapes.add_textbox(left = Inches(5.), top = Inches(3.5), width = Inches(3), height = Inches(0.5),).text_frame
p = subtitle.paragraphs[0]
run = p.add_run()
run.text = 'Technical Report\nGenerated on {:%m-%d-%Y}'.format(date.today())
font = run.font
font.size = Pt(18)
files_list = os.listdir(path)
for myfile in files_list:
if 'heatmap.png' in myfile:
slide = report.slides.add_slide(report.slide_layouts[6])
left = top = Inches(0.7)
height = Inches(6)
pic = slide.shapes.add_picture(path + '//' + myfile, left, top, width = Inches(5.8), height= Inches(4))
elif '.png' in myfile and 'heatmap.png' not in myfile:
slide = report.slides.add_slide(report.slide_layouts[6])
subtitle = slide.shapes.add_textbox(left = Inches(0.5), top = Inches(0.3), width = Inches(2), height = Inches(0.5)).text_frame
subtitle.text = myfile
left = top = Inches(0.7)
pic = slide.shapes.add_picture(path +'//' + myfile, left, top = Inches(0.8), height= Inches(6))
left = Inches(0.7)
elif 'csv' in myfile:
try:
table = pd.read_csv(path +'//' + myfile)
if table.shape[0]<30:
slide = report.slides.add_slide(report.slide_layouts[6])
subtitle = slide.shapes.add_textbox(left = Inches(0.5), top = Inches(0.3), width = Inches(2), height = Inches(0.5)).text_frame
subtitle.text = myfile
slide_table = df_to_table(table, slide, left = Inches(0.3), top = Inches(1), width = Inches(12.5), height = Inches(0.3))
left = Inches(0.7)
except Exception as e:
print(e)
return report
| 10,422
|
def flake8_package():
"""Style only checks files that have been modified. This fixture makes a small
change to the ``flake8`` mock package, yields the filename, then undoes the
change on cleanup.
"""
repo = spack.repo.Repo(spack.paths.mock_packages_path)
filename = repo.filename_for_package_name("flake8")
tmp = filename + ".tmp"
try:
shutil.copy(filename, tmp)
package = FileFilter(filename)
package.filter("state = 'unmodified'", "state = 'modified'", string=True)
yield filename
finally:
shutil.move(tmp, filename)
| 10,423
|
async def overview(ctx):
"""Describe the rules of the dungeon"""
rules = """
I am Alaveus. For the meager price of 10 chalupas,
I can transport you deep into the heart of a mythic dungeon
where treasure and glory await those who dare enter!
"""
await ctx.send(rules)
| 10,424
|
def targz_pack(tgz_name: Path, source_path: Path):
"""
Create a new .tar.gz from the specified folder
Examples:
history/current -> history/current.tar.gz
history/generated/current -> history/generated/current.tar.gz
"""
with tarfile.open(tgz_name, "w:gz") as tar:
tar.add(source_path, arcname=source_path.name)
| 10,425
|
def publish_engine_py(dirs):
""" Publish the Python RESTler engine as .py files.
Will also do a quick compilation of the files to verify that no exception occurs
"""
# Copy files to a build directory to test for basic compilation failure
print("Testing compilation of Python files...")
try:
copy_python_files(dirs.repository_root_dir, dirs.engine_build_dir)
output = subprocess.run(f'{dirs.python_path} -m compileall {dirs.engine_build_dir}', shell=True, capture_output=True)
if output.stderr:
print("Build failed!")
print(output.stderr)
sys.exit(-1)
stdout = str(output.stdout)
errors = get_compilation_errors(stdout)
if errors:
for err in errors:
print("\nError found!\n")
print(err.replace('\\r\\n', '\r\n'))
print("Build failed!")
sys.exit(-1)
finally:
print("Removing compilation build directory...")
shutil.rmtree(dirs.engine_build_dir)
# Copy files to drop
copy_python_files(dirs.repository_root_dir, dirs.engine_dest_dir)
| 10,426
|
async def async_setup_sdm_entry(
hass: HomeAssistant, entry: ConfigEntry, async_add_entities: AddEntitiesCallback
) -> None:
"""Set up the client entities."""
device_manager: DeviceManager = hass.data[DOMAIN][DATA_DEVICE_MANAGER]
entities = []
for device in device_manager.devices.values():
if ThermostatHvacTrait.NAME in device.traits:
entities.append(ThermostatEntity(device))
async_add_entities(entities)
| 10,427
|
def wall_clock_time_fedavg_vs_fedfs() -> None:
"""Comparision of FedAvg vs FedFS."""
bar_chart(
y_values=[
np.array(
[
RESULTS_WALL_CLOCK_TIME["fedavg-14"],
RESULTS_WALL_CLOCK_TIME["fedavg-16"],
]
),
np.array(
[
RESULTS_WALL_CLOCK_TIME["fedfs-t14"],
RESULTS_WALL_CLOCK_TIME["fedfs-16"],
]
),
],
bar_labels=["FedAvg", "FedFS"],
x_label="Timeout",
x_tick_labels=["T=14", "T=16"],
y_label="Completion time",
filename="fmnist-time_fedavg_vs_fedfs",
)
| 10,428
|
def assign(ctx):
"""Assign spatial objects to brain regions"""
pass
| 10,429
|
def connect_db(app):
"""Connect to our database"""
db.app = app
db.init_app(app)
| 10,430
|
def open_file(path, mode):
"""
Attempts to open file at path.
Tried up to max_attempts times because of intermittent permission errors on Windows
"""
max_attempts = 100
f = None
for _ in range(max_attempts):
try:
f = open(path, mode)
except PermissionError:
continue
break
return f
| 10,431
|
def get_sts_token(current_refresh_token):
"""
Retrieves an authentication token.
:param current_refresh_token: Refresh token retrieved from a previous authentication, used to retrieve a
subsequent access token. If not provided (i.e. on the initial authentication), the password is used.
"""
url = 'https://{}:{}/{}'.format(opts.authHostname, opts.authPort, auth_path)
if not current_refresh_token: # First time through, send password
data = {'username': opts.user, 'password': opts.password, 'grant_type': 'password', 'takeExclusiveSignOnControl': True,
'scope': scope}
print("Sending authentication request with password to ", url, "...")
else: # Use the given refresh token
data = {'username': opts.user, 'refresh_token': current_refresh_token, 'grant_type': 'refresh_token',
'takeExclusiveSignOnControl': True}
print("Sending authentication request with refresh token to ", url, "...")
try:
r = requests.post(url,
headers={'Accept': 'application/json'},
data=data,
auth=(opts.clientid, client_secret),
verify=True)
except requests.exceptions.RequestException as e:
print('RDP-GW authentication exception failure:', e)
return None, None, None
if r.status_code != 200:
print('RDP-GW authentication result failure:', r.status_code, r.reason)
print('Text:', r.text)
if r.status_code in [401,400] and current_refresh_token:
# Refresh token may have expired. Try again using machinedID + password.
return get_sts_token(None)
return None, None, None
auth_json = r.json()
print("RDP-GW Authentication succeeded. RECEIVED:")
print(json.dumps(auth_json, sort_keys=True, indent=2, separators=(',', ':')))
return auth_json['access_token'], auth_json['refresh_token'], auth_json['expires_in']
| 10,432
|
async def device_climate_fan(device_climate_mock):
"""Test thermostat with fan device."""
return await device_climate_mock(CLIMATE_FAN)
| 10,433
|
def make_training_config(args):
""" Create training config by parsing args from command line and YAML config file, filling the rest with default values.
Args
args : Arguments parsed from command line.
Returns
config : Dictionary containing training configuration.
"""
# Parse the configuration file.
config = {}
if args.config:
config = parse_yaml(args.config)
config = set_defaults(config, default_training_config)
# Additional config; start from this so it can be overwritten by the other command line options.
if args.o:
config = parse_additional_options(config, args.o)
if args.backbone:
config['backbone']['name'] = args.backbone
if args.generator:
config['generator']['name'] = args.generator
# Backbone config.
if args.freeze_backbone:
config['backbone']['details']['freeze'] = args.freeze_backbone
if args.backbone_weights:
config['backbone']['details']['weights'] = args.backbone_weights
# Generator config.
if args.random_transform:
config['generator']['details']['transform_generator'] = 'random'
if args.random_visual_effect:
config['generator']['details']['visual_effect_generator'] = 'random'
if args.batch_size:
config['generator']['details']['batch_size'] = args.batch_size
if args.group_method:
config['generator']['details']['group_method'] = args.group_method
if args.shuffle_groups:
config['generator']['details']['shuffle_groups'] = args.shuffle_groups
if args.image_min_side:
config['generator']['details']['image_min_side'] = args.image_min_side
if args.image_max_side:
config['generator']['details']['image_max_side'] = args.image_max_side
# Train config.
if args.gpu:
config['train']['gpu'] = args.gpu
if args.epochs:
config['train']['epochs'] = args.epochs
if args.steps:
config['train']['steps_per_epoch'] = args.steps
if args.lr:
config['train']['lr'] = args.lr
if args.multiprocessing:
config['train']['use_multiprocessing'] = args.multiprocessing
if args.workers:
config['train']['workers'] = args.workers
if args.max_queue_size:
config['train']['max_queue_size'] = args.max_queue_size
if args.weights:
config['train']['weights'] = args.weights
return config
| 10,434
|
def main():
"""Main"""
# Create cache dir if it does not exist
cachedir = '%s/cache' % os.path.dirname(os.path.realpath(__file__))
if not os.path.exists(cachedir):
os.makedirs(cachedir)
# Check if MANAGED_INSTALL_REPORT exists
if not os.path.exists(MANAGED_INSTALL_REPORT):
print '%s is missing.' % MANAGED_INSTALL_REPORT
install_report = {}
else:
install_report = dict_from_plist(MANAGED_INSTALL_REPORT)
# Collect Errors, Warnings (as JSON?)
# EndTime, StartTime, ManifestName, (Conditions->catalogs?)
# ManagedInstallVersion
# Some statistics
# pylint: disable=E1103
report_list = {}
items = ['EndTime', 'StartTime', 'ManifestName', 'ManagedInstallVersion',
'Errors', 'Warnings', 'RunType']
for item in items:
if install_report.get(item):
report_list[item] = install_report[item]
# pylint: enable=E1103
if DEBUG:
PP.pprint(report_list)
# Write report to cache
plistlib.writePlist(report_list, "%s/munkireport.plist" % cachedir)
| 10,435
|
def main():
"""Generates a results file with the entities names
"""
#process_results_individual('corpora/go_phenotype_xml_100/', 'results/model_ontologies_go_phenotype_results_100.txt',
# 'results/go_phenotype_100_relations_names.tsv', 'results/go_phenotype_100_relations_identifiers.tsv')
#process_results_individual('corpora/drug_disease_xml_100/', 'results/model_ontologies_drug_disease_results_100.txt',
# 'results/drug_disease_100_relations_names.tsv',
# 'results/drug_disease_100_relations_identifiers.tsv')
process_results_individual('corpora/drug_disease_xml/', 'results/model_ontologies_drug_disease_results.txt',
'results/drug_disease_relations_names.tsv',
'results/drug_disease_relations_identifiers.tsv')
process_results_individual('corpora/go_phenotype_xml/', 'results/model_ontologies_go_phenotype_results.txt',
'results/go_phenotype_relations_names.tsv',
'results/go_phenotype_relations_identifiers.tsv')
join_results('results', 'joint_results')
return
| 10,436
|
def _crown_relu_relaxer(inp: Bound) -> Tuple[LinFun, LinFun]:
"""Obtain the parameters of a linear ReLU relaxation as in CROWN.
This relaxes the ReLU with the adaptive choice of lower bounds as described
for CROWN-ada in https://arxiv.org/abs/1811.00866.
Args:
inp: Input to the ReLU.
Returns:
lb_linfun, ub_linfun: Linear functions bounding the ReLU
"""
inp_lower, inp_upper = inp.lower, inp.upper
relu_on = (inp_lower >= 0.)
relu_amb = jnp.logical_and(inp_lower < 0., inp_upper >= 0.)
ub_slope = relu_on.astype(jnp.float32)
ub_slope += jnp.where(relu_amb,
inp_upper / jnp.maximum(inp_upper - inp_lower, 1e-12),
jnp.zeros_like(inp_lower))
ub_offset = jnp.where(relu_amb, - ub_slope * inp_lower,
jnp.zeros_like(inp_lower))
lb_slope = (ub_slope >= 0.5).astype(jnp.float32)
lb_offset = jnp.zeros_like(inp_lower)
return (eltwise_linfun_from_coeff(lb_slope, lb_offset),
eltwise_linfun_from_coeff(ub_slope, ub_offset))
| 10,437
|
def run_single_measurement(model_name, produce_model, run_model, teardown, inp, criterion, extra_params, use_dtr, use_profiling):
"""
This function initializes a model and performs
a single measurement of the model on the given input.
While it might seem most reasonable to initialize
the model outside of the loop, DTR's logs have shown
that certain constants in the model persist between loop iterations;
performing these actions in a separate *function scope* turned out to be the only
way to prevent having those constants hang around.
Returns a dict of measurements
"""
torch.cuda.reset_max_memory_allocated()
# resetting means the count should be reset to
# only what's in scope, meaning only the input
input_mem = torch.cuda.max_memory_allocated()
model = produce_model(extra_params=extra_params)
params = []
for m in model:
if hasattr(m, 'parameters'):
params.extend(m.parameters())
model_mem = torch.cuda.max_memory_allocated()
optimizer = torch.optim.SGD(model[0].parameters(), 1e-3, momentum=0.9, weight_decay=1e-4)
start = torch.cuda.Event(enable_timing=True)
end = torch.cuda.Event(enable_timing=True)
# start timing
torch.cuda.synchronize()
start_time = time.time()
if use_dtr:
torch.reset_profile()
start.record()
# with torch.autograd.profiler.profile(use_cuda=True) as prof:
run_model(criterion, *model, *inp, optimizer=optimizer)
end.record()
start_sync = time.time()
torch.cuda.synchronize()
end_sync = time.time()
end_time = time.time()
# end timing
if use_dtr:
# operators-only time, tracked by DTR
cuda_time = torch.compute_time()
base_compute_time = -1
remat_compute_time = -1
search_time = -1
cost_time = -1
if use_profiling:
base_compute_time = torch.base_compute_time()
remat_compute_time = torch.remat_compute_time()
search_time = torch.search_time()
cost_time = torch.cost_time()
torch.reset_profile()
total_mem = torch.cuda.max_memory_allocated()
teardown(*model)
torch.cuda.reset_max_memory_allocated()
del model
if use_dtr:
torch.toggle_log(False)
del params
batch_size = len(inp[0])
ips = batch_size / (end_time - start_time)
result = {
'time': end_time - start_time,
'sync_time': end_sync - start_sync,
'gpu_time': start.elapsed_time(end),
'input_mem': input_mem,
'model_mem': model_mem,
'total_mem': total_mem,
'base_compute_time': base_compute_time,
'remat_compute_time': remat_compute_time,
'search_time': search_time,
'cost_time': cost_time,
'batch_size': batch_size,
'ips': ips
}
if use_dtr:
result['cuda_time'] = cuda_time
else:
result['cuda_time'] = -1.0
return result
| 10,438
|
def make_noise(fid, snr, decibels=True):
"""Given a synthetic FID, generate an array of normally distributed
complex noise with zero mean and a variance that abides by the desired
SNR.
Parameters
----------
fid : numpy.ndarray
Noiseless FID.
snr : float
The signal-to-noise ratio.
decibels : bool, default: True
If `True`, the snr is taken to be in units of decibels. If `False`,
it is taken to be simply the ratio of the singal power and noise
power.
Returns
_______
noise : numpy.ndarray
"""
components = [
(fid, 'fid', 'ndarray'),
(snr, 'snr', 'float'),
(decibels, 'decibels', 'bool'),
]
ArgumentChecker(components)
size = fid.size
shape = fid.shape
# Compute the variance of the noise
if decibels:
var = np.real((np.sum(np.abs(fid) ** 2)) / (size * (20 ** (snr / 10))))
else:
var = np.real((np.sum(np.abs(fid) ** 2)) / (2 * size * snr))
# Make a number of noise instances and check which two are closest
# to the desired variance.
# These two are then taken as the real and imaginary noise components
instances = []
var_discrepancies = []
for _ in range(100):
instance = nrandom.normal(loc=0, scale=np.sqrt(var), size=shape)
instances.append(instance)
var_discrepancies.append(np.abs(np.var(instances) - var))
# Determine which instance's variance is the closest to the desired
# variance
first, second, *_ = np.argpartition(var_discrepancies, 1)
# The noise is constructed from the two closest arrays in a variance-sense
# to the desired SNR
return instances[first] + 1j * instances[second]
| 10,439
|
def viterbi(prob_matrix):
""" find the most likely sequence of labels using the viterbi algorithm on prob_matrix """
TINY = 1e-6 # to avoid NaNs in logs
# if prob_matrix is 1D, make it 2D
if len(np.shape(prob_matrix)) == 1:
prob_matrix = [prob_matrix]
length = len(prob_matrix)
probs = np.zeros_like(prob_matrix)
backpt = np.ones_like(prob_matrix, dtype=np.int32) * -1
for i in [0,1,2,3,4]:
probs[0][i] = np.log(prob_matrix[0][i]+TINY)
# {B, M, E, S} <=== 0:begin, 1:middle, 2:end, 3:single
for t in range(1, length):
# E, S -> B | B, M -> M | B, M -> E | E, S -> S
previous_of = [[0,0], [3,4], [1,2], [1,2], [3,4]]
for i in range(5):
prevs = previous_of[i]
max_id = prevs[np.argmax([probs[t-1][prevs[0]], probs[t-1][prevs[1]]])]
backpt[t][i] = max_id
probs[t][i] = np.log(prob_matrix[t][i]+TINY) + probs[t-1][max_id]
seq = np.ones(length, 'int32') * -1
#print(probs[length-1])
seq[length-1] = np.argmax(probs[length-1])
#print(seq[length-1])
max_prob = probs[length-1][seq[length-1]]
for t in range(1, length):
seq[length-1-t] = backpt[length-t][seq[length-t]]
return seq
| 10,440
|
def disp_test_res(result_list, base_list, full=True, paired_test=True):
"""
Read in a result list and trace out the disp_curve_list
for different methods
"""
# initialize
constraint = "DP"
err_bar = False
# First calcuate the baseline loss vector
base_res = base_list[0]
dataset = base_res['dataset']
if dataset == 'law_school':
x, a, y = parser.clean_lawschool_full()
elif dataset == 'communities':
x, a, y = parser.clean_communities_full()
elif dataset == 'adult':
x, a, y = parser.clean_adult_full()
if not full:
x, a, y = run_exp.subsample(x, a, y, 2000)
_, _, _, x_test, a_test, y_test = run_exp.train_test_split_groups(x, a, y, random_seed=DATA_SPLIT_SEED)
n = len(y_test)
loss = base_res['loss']
if paired_test:
base_pred = base_res['base_test_eval']['pred']
base_loss_vec = evaluate.loss_vec2(base_pred, y_test, loss)
base_mean_loss = np.mean(base_loss_vec)
print(base_mean_loss)
for result in result_list:
train_eval = result['train_eval']
test_eval = result['test_eval']
constraint = result['constraint']
learner = result['learner']
dataset = result['dataset']
eps_vals = train_eval.keys()
train_disp_dic = {}
test_disp_dic = {}
train_err_dic = {}
test_err_dic = {}
test_loss_std_dic = {}
test_disp_dev_dic = {}
linestyle = '-'
if learner == 'SVM_LP':
color = 'orange'
err_bar = True
elif learner == 'OLS':
color = 'red'
err_bar = True
elif learner[:2] == "RF":
color = 'brown'
err_bar = True
elif learner == "XGB Classifier":
color = 'blue'
err_bar = True
linestyle = '--'
elif learner == "XGB Regression":
color = 'red'
err_bar = True
linestyle = '--'
elif learner == "LR":
color = "blue"
err_bar = True
else:
color = 'tan'
err_bar = True
for eps in eps_vals:
if constraint == "DP":
train_disp = train_eval[eps]["DP_disp"]
test_disp = test_eval[eps]["DP_disp"]
elif constraint == "QEO":
train_disp = train_eval[eps]["QEO_disp"]
test_disp = test_eval[eps]["QEO_disp"]
else:
raise Exception('Constraint not supported: ', str(constraint))
train_disp_dic[eps] = train_disp
test_disp_dic[eps] = test_disp
if paired_test:
test_total_pred = test_eval[eps]['pred']
test_res_weights = test_eval[eps]['classifier_weights']
weighted_loss_vec = evaluate.loss_vec(test_total_pred, y_test,
test_res_weights, loss)
diff_vec = weighted_loss_vec - base_loss_vec
loss_mean, loss_std = norm.fit(diff_vec)
test_loss_std_dic[eps] = loss_std / np.sqrt(n)
else:
test_loss_std_dic[eps] = test_eval[eps]['loss_std']
test_disp_dev_dic[eps] = test_eval[eps]['disp_std']
if loss == "square":
# taking the RMSE
train_err_dic[eps] = np.sqrt(train_eval[eps]['weighted_loss'])
test_err_dic[eps] = np.sqrt(test_eval[eps]['weighted_loss']) - np.sqrt(base_mean_loss)
else:
train_err_dic[eps] = (train_eval[eps]['weighted_loss'])
test_err_dic[eps] = (test_eval[eps]['weighted_loss'] - base_mean_loss)
if _PARETO:
pareto_epsilons_train = convex_env_train(train_disp_dic,
train_err_dic)
pareto_epsilons_test = convex_env_test(pareto_epsilons_train,
test_disp_dic,
test_err_dic)
else:
pareto_epsilons_train = eps_vals
pareto_epsilons_test = eps_vals
# taking the pareto frontier
train_disp_list = [train_disp_dic[k] for k in pareto_epsilons_train]
test_disp_list = [test_disp_dic[k] for k in pareto_epsilons_test]
train_err_list = [train_err_dic[k] for k in pareto_epsilons_train]
test_err_list = [test_err_dic[k] for k in pareto_epsilons_test]
# Getting error bars
if loss == "square":
err_upperconf = [np.sqrt(test_eval[k]['weighted_loss'] + 2
* test_loss_std_dic[k]) - np.sqrt(test_eval[k]['weighted_loss']) for k in
pareto_epsilons_test]
err_lowerconf = [np.sqrt(test_eval[k]['weighted_loss']) - np.sqrt(test_eval[k]['weighted_loss'] - 2 * test_loss_std_dic[k]) for k in
pareto_epsilons_test]
else:
err_upperconf = [2 * test_loss_std_dic[k] for k in
pareto_epsilons_test]
err_lowerconf = [2 * test_loss_std_dic[k] for k in
pareto_epsilons_test]
disp_conf = [test_disp_dev_dic[k] for k in
pareto_epsilons_test]
plt.fill_between(np.array(test_disp_list),
np.array(test_err_list) -
np.array(err_lowerconf),
np.array(test_err_list) +
np.array(err_upperconf), alpha=0.2,
facecolor=color, antialiased=True)
plt.errorbar(test_disp_list, test_err_list, color=color,
capthick=1, markersize=5, capsize=2,
linewidth=2, linestyle=linestyle)
# Plotting benchmark
for base_res in base_list:
base_train_eval = base_res['base_train_eval']
base_test_eval = base_res['base_test_eval']
loss = base_res['loss']
learner = base_res['learner']
base_test_disp_conf = base_test_eval['disp_std']
base_test_loss_std = base_test_eval['loss_std']
dataset = base_res['dataset']
marker = '^'
label = 'unconstrained'
if learner == 'OLS':
# color = 'red'
color = 'darksalmon'
err_bar = True
elif learner == "SEO":
marker = 'v'
color = 'deepskyblue'
err_bar = True
label='SEO'
elif learner[:2] == "RF":
color = 'brown'
err_bar = True
elif learner[:3] == "XGB":
color = "green"
err_bar = True
elif learner == "LR":
color = "darksalmon"
err_bar = True
else:
color = 'tan'
err_bar = False
# Getting error bars
if loss == "square":
err_upperconf = np.sqrt(base_test_eval['average_loss'] + 2 *
base_test_loss_std) - np.sqrt(base_test_eval['average_loss'])
err_lowerconf = np.sqrt(base_test_eval['average_loss']) - np.sqrt(base_test_eval['average_loss'] - 2 * base_test_loss_std)
else:
err_upperconf = 2 * base_test_loss_std
err_lowerconf = 2 * base_test_loss_std
if loss == "square":
if err_bar:
plt.errorbar([base_test_eval[constraint+'_disp']],
[np.sqrt(base_test_eval['average_loss']) - np.sqrt(base_mean_loss)],
xerr=base_test_disp_conf,
marker=marker, markeredgecolor = 'black',
color='black', markerfacecolor=color, ecolor='black', capthick=1, markersize=11, capsize=2)
else:
plt.scatter([base_test_eval[constraint+'_disp']],
[np.sqrt(base_test_eval['average_loss']) - np.sqrt(base_mean_loss)],
marker=marker, edgecolors = 'black', s=95,
label= label)
else:
if err_bar:
plt.errorbar([base_test_eval[constraint+'_disp']],
[base_test_eval['average_loss']] - base_mean_loss,
xerr=base_test_disp_conf,
marker=marker, markeredgecolor = 'black', markerfacecolor=color,
color='black', ecolor='black', capthick=1, markersize=11, capsize=2)
else:
plt.scatter([base_test_eval[constraint+'_disp']],
[(base_test_eval['average_loss'])] - base_mean_loss,
marker=marker, label=label)
| 10,441
|
def slsn_constraint(parameters):
"""
Place constraints on the magnetar rotational energy being larger than the total output energy,
and the that nebula phase does not begin till at least a 100 days.
:param parameters: dictionary of parameters
:return: converted_parameters dictionary where the violated samples are thrown out
"""
converted_parameters = parameters.copy()
mej = parameters['mej'] * solar_mass
vej = parameters['vej'] * km_cgs
kappa = parameters['kappa']
mass_ns = parameters['mass_ns']
p0 = parameters['p0']
kinetic_energy = 0.5 * mej * vej**2
rotational_energy = 2.6e52 * (mass_ns/1.4)**(3./2.) * p0**(-2)
tnebula = np.sqrt(3 * kappa * mej / (4 * np.pi * vej ** 2)) / 86400
neutrino_energy = 1e51
total_energy = kinetic_energy + neutrino_energy
# ensure rotational energy is greater than total output energy
converted_parameters['erot_constraint'] = rotational_energy - total_energy
# ensure t_nebula is greater than 100 days
converted_parameters['t_nebula_min'] = tnebula - 100
return converted_parameters
| 10,442
|
def grover_circuit(n,o,iter):
"""Grover Search Algorithm
:param n: Number of qubits (not including ancilla)
:param o: Oracle int to find
:return qc: Qiskit circuit
"""
def apply_hadamard(qc, qubits,a=None) -> None:
"""Apply a H-gate to 'qubits' in qc"""
for q in qubits:
qc.h(q)
if a is not None:
qc.h(a)
def initialize_bits(qc,qubits,a) -> None:
"Start qubits at 0 and ancilla bit at 1"
for q in qubits:
qc.reset(q)
qc.reset(a[0])
qc.x(a[0])
def apply_mean_circuit(qc, qubits) -> None:
"""Apply a H-gate to 'qubits' in qc"""
control_qubits = []
for q in qubits:
qc.h(q)
qc.x(q)
control_qubits.append(q)
cZ = control_qubits[-1]
control_qubits.pop()
qc.h(cZ)
qc.mcx(control_qubits,cZ)
qc.h(cZ)
for q in qubits:
qc.x(q)
qc.h(q)
def create_oracle(qc,qubit,ancilla,oracle,n) -> None:
"""Creates a quantum oracle."""
test_list = []
for q in qubit:
test_list.append(q)
_oracle_logic(qc, qubit, oracle,n)
qc.mcx(test_list,ancilla[0])
_oracle_logic(qc, qubit, oracle,n)
def _oracle_logic(qc, qubit, oracle,n) -> None:
if 0 <= oracle <= 2**len(qubit)-1:
bin_list = [int(i) for i in list('{0:0b}'.format(oracle))]
if len(bin_list) < n:
for _ in range(0,n-len(bin_list)):
bin_list.insert(0,0)
for i in range(0,len(bin_list)):
if bin_list[i] == 0:
qc.x(q[i])
else:
raise ValueError('Oracle must be between 0 and 2^n-1')
# print(f"Creating circuit with {n} qubits")
q = QuantumRegister(n, 'q')
a = QuantumRegister(1, 'a')
c = ClassicalRegister(n, 'c')
qc = QuantumCircuit(q,a,c)
i2b = "{0:b}".format(o)
# print(f"Oracle set to: {o} ({i2b})")
# print(" ")
initialize_bits(qc,q,a)
qc.barrier(q,a)
apply_hadamard(qc,q,a)
# print(f"Generating {iter} Grover module(s)")
# print("=====================================")
for _ in range(1,iter+1):
qc.barrier(q,a)
create_oracle(qc,q,a,o,n)
qc.barrier(q,a)
apply_mean_circuit(qc, q)
qc.barrier(q,a)
for i in range(0,len(q)):
qc.measure(q[i],c[len(q)-1-i])
return qc
| 10,443
|
def reference_cluster(envs, in_path):
"""
Return set of all env in_paths referencing or
referenced by given in_path.
>>> cluster = sorted(reference_cluster([
... {'in_path': 'base', 'refs': []},
... {'in_path': 'test', 'refs': ['base']},
... {'in_path': 'local', 'refs': ['test']},
... ], 'test'))
>>> cluster == ['base', 'local', 'test']
True
"""
edges = [
set([env['in_path'], fix_reference_path(env['in_path'], ref)])
for env in envs
for ref in env['refs']
]
prev, cluster = set(), set([in_path])
while prev != cluster:
# While cluster grows
prev = set(cluster)
to_visit = []
for edge in edges:
if cluster & edge:
# Add adjacent nodes:
cluster |= edge
else:
# Leave only edges that are out
# of cluster for the next round:
to_visit.append(edge)
edges = to_visit
return cluster
| 10,444
|
def scheme_apply(procedure, args, env):
"""Apply Scheme PROCEDURE to argument values ARGS in environment ENV."""
if isinstance(procedure, PrimitiveProcedure):
return apply_primitive(procedure, args, env)
elif isinstance(procedure, UserDefinedProcedure):
new_env = make_call_frame(procedure, args, env)
return eval_all(procedure.body, new_env)
else:
raise SchemeError("cannot call: {0}".format(str(procedure)))
| 10,445
|
def _validate_num_clusters(num_clusters, initial_centers, num_rows):
"""
Validate the combination of the `num_clusters` and `initial_centers`
parameters in the Kmeans model create function. If the combination is
valid, determine and return the correct number of clusters.
Parameters
----------
num_clusters : int
Specified number of clusters.
initial_centers : SFrame
Specified initial cluster center locations, in SFrame form. If the
number of rows in this SFrame does not match `num_clusters`, there is a
problem.
num_rows : int
Number of rows in the input dataset.
Returns
-------
_num_clusters : int
The correct number of clusters to use going forward
"""
## Basic validation
if num_clusters is not None and not isinstance(num_clusters, int):
raise _ToolkitError("Parameter 'num_clusters' must be an integer.")
## Determine the correct number of clusters.
if initial_centers is None:
if num_clusters is None:
raise ValueError("Number of clusters cannot be determined from " +
"'num_clusters' or 'initial_centers'. You must " +
"specify one of these arguments.")
else:
_num_clusters = num_clusters
else:
num_centers = initial_centers.num_rows()
if num_clusters is None:
_num_clusters = num_centers
else:
if num_clusters != num_centers:
raise ValueError("The value of 'num_clusters' does not match " +
"the number of provided initial centers. " +
"Please provide only one of these arguments " +
"or ensure the values match.")
else:
_num_clusters = num_clusters
if _num_clusters > num_rows:
raise ValueError("The desired number of clusters exceeds the number " +
"of data points. Please set 'num_clusters' to be " +
"smaller than the number of data points.")
return _num_clusters
| 10,446
|
def urlinline(filename, mime=None):
"""
Load the file at "filename" and convert it into a data URI with the
given MIME type, or a guessed MIME type if no type is provided.
Base-64 encodes the data.
"""
infile = open(filename, 'rb')
text = infile.read()
infile.close()
enc = b64.standard_b64encode(text)
if mime is None:
mime, _ = mimetypes.guess_type(filename)
mime = mime or DEFAULT_MIME_TYPE
ret = "data:%s;base64,%s" % (mime, enc)
return ret
| 10,447
|
def parse_matching_criteria(filters, filter_operator):
"""
build the filter criteria, if present
:param filters:field opr value[;]...
:param filter_operator: any|all
:return dictionary of parsed filter settings, True/False for "all"/"any" setting
"""
LOG.debug("%s %s", filters, filter_operator)
if filter_operator and filter_operator.strip().lower() not in ('all', 'any'):
raise ValueError("operator must be 'all' or 'any': {}".format(filter_operator))
match_operator_and = (filter_operator.strip().lower() == 'all') if filter_operator else True
# parse the filters and produce a tuple of (field, operator, value)
match_list = {}
if filters:
for filter_str in filters.split(';'):
m = REGEX_OPERATORS.match(filter_str.strip())
if not m or len(m.groups()) != 3:
raise ValueError("Unable to parse filter '{}'".format(filter_str))
match_field = m.group(1)
match_opr = m.group(2)
# correct mistyped comparison
if match_opr.strip() == '=':
match_opr = '=='
match_value = m.group(3)
# restore lists to actual lists
if match_value.startswith("["):
try:
match_value = json.loads(match_value.replace("'", '"')) # make sure correct json format
except Exception as err:
LOG.error(str(err))
pass
# determine if working with a string, boolean, or int
elif match_value in ["true", "True", "false", "False"]:
match_value = str_to_bool(match_value)
elif match_value == 'None':
match_value = None
else:
try:
match_value = int(match_value) # this will fail for numbers, which will be trapped
except:
pass
compare_tuple = (match_field, match_opr, match_value)
LOG.debug(compare_tuple)
match_list[match_field] = compare_tuple
return match_list, match_operator_and
| 10,448
|
def star_rating(new_rating=None, prev_rating=None):
"""
Generates the query to update the product's star ratings. Inc method is
from https://docs.mongodb.com/manual/reference/operator/update/inc/
"""
add_file = {
1: {"one_star": 1},
2: {"two_stars": 1},
3: {"three_stars": 1},
4: {"four_stars": 1},
5: {"five_stars": 1}
}
delete_file = {
1: {"one_star": -1},
2: {"two_stars": -1},
3: {"three_stars": -1},
4: {"four_stars": -1},
5: {"five_stars": -1}
}
if new_rating and prev_rating:
return {"$inc": {add_file[new_rating], delete_file[prev_rating]}}
elif new_rating:
return {"$inc": add_file[new_rating]}
else:
return {"$inc": delete_file[prev_rating]}
| 10,449
|
def import_references(directory="./", disable_progress_bar=False):
"""
Import references file.
Args:
directory (str): Directory where the file is located.
scopus_file (str): Name of the file.
Returns:
None
"""
documents = read_all_records(directory)
#
references = read_raw_csv_files(join(directory, "raw", "references"))
references = _delete_and_rename_columns(references)
references = _process__authors_id__column(references)
references = _process__raw_authors_names__column(references)
references = _disambiguate_authors(references)
references = _process__doi__column(references)
references = _process__source_name__column(references)
references = _process__iso_source_name__column(references)
references = _search_for_new_iso_source_name(references)
references = _complete__iso_source_name__colum(references)
references = _repair__iso_source_name__column(references)
references = _create__record_no__column(references)
references = _create__document_id__column(references)
#
cited_references_table = _create_references_file(
documents=documents,
references=references,
directory=directory,
disable_progress_bar=disable_progress_bar,
)
#
cited_references_frequency = cited_references_table.groupby(
"cited_id", as_index=True
).count()
references = references.assign(local_citations=0)
references.index = references.record_no
references.loc[
cited_references_frequency.index, "local_citations"
] = cited_references_frequency.citing_id
references = references.reset_index(drop=True)
references["local_citations"].fillna(1, inplace=True)
references["local_citations"] = references["local_citations"].astype(int)
file_name = join(directory, "processed", "references.csv")
references.to_csv(file_name, index=False)
logging.info(f"References table saved to {file_name}")
| 10,450
|
def bsp_split_recursive(
node: tcod.bsp.BSP,
randomizer: Optional[tcod.random.Random],
nb: int,
minHSize: int,
minVSize: int,
maxHRatio: int,
maxVRatio: int,
) -> None:
"""
.. deprecated:: 2.0
Use :any:`BSP.split_recursive` instead.
"""
node.split_recursive(
nb, minHSize, minVSize, maxHRatio, maxVRatio, randomizer
)
| 10,451
|
def add_rpaths(env, install_off, set_cgo_ld, is_bin):
"""Add relative rpath entries"""
if GetOption('no_rpath'):
if set_cgo_ld:
env.AppendENVPath("CGO_LDFLAGS", env.subst("$_LIBDIRFLAGS "),
sep=" ")
return
env.AppendUnique(RPATH_FULL=['$PREFIX/lib64'])
rpaths = env.subst("$RPATH_FULL").split()
prefix = env.get("PREFIX")
if not is_bin:
path = r'\$$ORIGIN'
env.AppendUnique(RPATH=[DaosLiteral(path)])
for rpath in rpaths:
if rpath.startswith('/usr'):
env.AppendUnique(RPATH=[rpath])
continue
if install_off is None:
env.AppendUnique(RPATH=[os.path.join(prefix, rpath)])
continue
relpath = os.path.relpath(rpath, prefix)
if relpath != rpath:
joined = os.path.normpath(os.path.join(install_off, relpath))
path = r'\$$ORIGIN/%s' % (joined)
if set_cgo_ld:
env.AppendENVPath("CGO_LDFLAGS", "-Wl,-rpath=$ORIGIN/%s/%s" %
(install_off, relpath), sep=" ")
else:
env.AppendUnique(RPATH=[DaosLiteral(path)])
for rpath in rpaths:
path = os.path.join(prefix, rpath)
if is_bin:
# NB: Also use full path so intermediate linking works
env.AppendUnique(LINKFLAGS=["-Wl,-rpath-link=%s" % path])
else:
# NB: Also use full path so intermediate linking works
env.AppendUnique(RPATH=[path])
if set_cgo_ld:
env.AppendENVPath("CGO_LDFLAGS", env.subst("$_LIBDIRFLAGS $_RPATH"), sep=" ")
| 10,452
|
def check_encoder(value: EncoderArg) -> EncoderFactory:
"""Checks value and returns EncoderFactory object.
Returns:
d3rlpy.encoders.EncoderFactory: encoder factory object.
"""
if isinstance(value, EncoderFactory):
return value
if isinstance(value, str):
return create_encoder_factory(value)
raise ValueError("This argument must be str or EncoderFactory object.")
| 10,453
|
def mypy(ctx):
"""Runs mypy against the codebase"""
ctx.run("mypy --config mypy.ini")
| 10,454
|
def apply_dep_update(recipe_dir, dep_comparison):
"""Upodate a recipe given a dependency comparison.
Parameters
----------
recipe_dir : str
The path to the recipe dir.
dep_comparison : dict
The dependency comparison.
Returns
-------
update_deps : bool
True if deps were updated, False otherwise.
"""
recipe_pth = os.path.join(recipe_dir, "meta.yaml")
with open(recipe_pth) as fp:
lines = fp.readlines()
sections_to_update = ["host", "run"]
if _ok_for_dep_updates(lines) and any(
len(dep_comparison.get(s, {}).get("df_minus_cf", set())) > 0
for s in sections_to_update
):
recipe = CondaMetaYAML("".join(lines))
updated_deps = _update_sec_deps(
recipe,
dep_comparison,
sections_to_update,
)
if updated_deps:
with open(recipe_pth, "w") as fp:
recipe.dump(fp)
| 10,455
|
def allowed_task_name(name: str) -> bool:
"""Determine whether a task, which is a 'non-core-OSCAL activity/directory is allowed.
args:
name: the task name which is assumed may take the form of a relative path for task/subtasks.
Returns:
Whether the task name is allowed or not allowed (interferes with assumed project directories such as catalogs).
"""
# Task must not use an OSCAL directory
# Task must not self-interfere with a project
pathed_name = pathlib.Path(name)
root_path = pathed_name.parts[0]
if root_path in const.MODEL_TYPE_TO_MODEL_DIR.values():
logger.error('Task name is the same as an OSCAL schema name.')
return False
elif root_path[0] == '.':
logger.error('Task name must not start with "."')
return False
elif pathed_name.suffix != '':
# Does it look like a file
logger.error('tasks name must not look like a file path (e.g. contain a suffix')
return False
return True
| 10,456
|
def get_ignored_classes(uppercase, lowercase, digit):
"""
get tuple of ignored classes based on selected classes
:param
uppercase: whether to keep uppercase classes
:param
lowercase: whether to keep lowercase classes
:param
digit: whether to keep digit classes
:return:
tuple of ignored classes
"""
# result placeholder
ignored = []
# add digit classes to the ignore list
if not digit:
ignored.append(dataset.get_classes('digit'))
# add uppercase classes to the ignore list
if not uppercase:
ignored.append(dataset.get_classes('uppercase'))
# add lowercase classes to the ignore list
if not lowercase:
ignored.append(dataset.get_classes('lowercase'))
# return tuple
return tuple(ignored)
| 10,457
|
def unscaled_prediction_rmse(model, input_tensor, label_tensor, scalar, loading_length=0, return_loading_error=False,
device=None):
"""
Prediction RMSE.
:param model: model
:param input_tensor: input tensor
:param label_tensor: label tensor
:param scalar: scalar for transforming output data
:param loading_length: time length used for loading the NARX
:param return_loading_error: return the loading RMSE with the multi-step ahead RMSE
:param device: specified device to use (Default: None - select what is available)
:return: prediction rmse
"""
# Create Network on GPU/CPU
if device is None:
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)
# Training Data on GPU/CPU
input_tensor, label_tensor = input_tensor.to(device), label_tensor.to(device)
# Sort data for loading and k-step ahead predictions.
inputs, labels, itdl, otdl = init_tdl(model, input_tensor, label_tensor, device)
loading_labels, k_step_labels = labels[:, :loading_length, :], labels[:, loading_length:, :]
# Perform a k-step ahead prediction
k_step_outputs, loading_outputs = __multi_step_ahead_prediction(model, input_tensor, label_tensor,
loading_length, device)
if return_loading_error:
# Combine loading and multi-step predictions/labels
outputs = torch.cat([loading_outputs, k_step_outputs], dim=1)
labels = torch.cat([loading_labels, k_step_labels], dim=1)
else:
# Use the multi-step predictions/labels
outputs = k_step_outputs
labels = k_step_labels
labels = labels.cpu().data.numpy()
labels = labels.reshape((labels.shape[0], labels.shape[1]))
labels = (labels - scalar.min_[1]) / scalar.scale_[1]
outputs = outputs.cpu().data.numpy()
outputs = outputs.reshape((outputs.shape[0], outputs.shape[1]))
outputs = (outputs - scalar.min_[1]) / scalar.scale_[1]
error = labels - outputs
error = np.sqrt((np.power(error, 2)).mean(axis=0))
return error
| 10,458
|
def __copyList__(fromList, initialValues = None):
"""
Returns a copy of the provided list. Initial values must either be a single value, or
a list of exactly the same size as the provided list.
"""
if __isListType__(fromList) is False:
raise ValueError('The provided value to copy was not a list!')
fromList = copy.deepcopy(fromList)
if initialValues is not None:
initialValues = copy.deepcopy(initialValues)
if initialValues is None or __isNonStringIterableType__(initialValues) is False:
copySingleValue = True
elif __isNonStringIterableType__(initialValues) and len(initialValues) == 1 or __isListType__(initialValues) is False:
# Treat an initialValue object with 1 element the same as a non-iterable, so we could set every value to a list, or to a non-list value
copySingleValue = True
else:
if len(initialValues) != len(fromList):
raise ValueError('The initial values list must be the same size as the list to copy!')
else:
copySingleValue = False
returnList = fromList[:]
for itemIndex in range(len(returnList)):
if copySingleValue is True:
returnList[itemIndex] = initialValues
else:
returnList[itemIndex] = initialValues[itemIndex]
return returnList
| 10,459
|
def build_or_pattern(patterns, escape=False):
"""Build a or pattern string from a list of possible patterns
"""
or_pattern = []
for pattern in patterns:
if not or_pattern:
or_pattern.append('(?:')
else:
or_pattern.append('|')
or_pattern.append('(?:%s)' % re.escape(pattern) if escape else pattern)
or_pattern.append(')')
return ''.join(or_pattern)
| 10,460
|
def concatenate_and_process_data(
data_consent: pd.DataFrame,
data_noconsent: pd.DataFrame,
conversion_column: str = CONVERSION_COLUMN,
drop_columns: Tuple[Any, ...] = DROP_COLUMNS,
non_dummy_columns: Tuple[Any, ...] = NON_DUMMY_COLUMNS
) -> Tuple[pd.DataFrame, pd.DataFrame]:
"""Concatenates consent and no-consent data and preprocesses them.
Args:
data_consent: Dataframe of consent customers.
data_noconsent: Dataframe of no-consent customers.
conversion_column: Name of the conversion column in the data.
drop_columns: Names of columns that should be dropped from the data.
non_dummy_columns: Names of (categorical) columns that should be kept, but
not dummy-coded.
Raises:
ValueError: if concatenating consent and no-consent data doesn't
match the expected length.
Returns:
Processed dataframes for consent and no-consent customers.
"""
data_noconsent["consent"] = 0
data_consent["consent"] = 1
data_concat = pd.concat([data_noconsent, data_consent])
data_concat.reset_index(inplace=True, drop=True)
if len(data_concat) != (len(data_noconsent) + len(data_consent)):
raise ValueError(
"Length of concatenated data does not match sum of individual dataframes."
)
data_preprocessed = preprocess_data(
data=data_concat,
drop_columns=list(drop_columns),
non_dummy_columns=list(non_dummy_columns),
conversion_column=conversion_column)
data_noconsent_processed = data_preprocessed[data_preprocessed["consent"] ==
0]
data_consent_processed = data_preprocessed[data_preprocessed["consent"] == 1]
return data_consent_processed, data_noconsent_processed
| 10,461
|
def plot(nRows=1, nCols=1, figSize=5):
"""
Generate a matplotlib plot and axis handle
Parameters
-----------------
nRows : An int, number of rows for subplotting
nCols : An int, number of columns for subplotting
figSize : Numeric or array (xFigSize, yFigSize). The size of each axis.
"""
if isinstance(figSize, (list, tuple)):
xFigSize, yFigSize = figSize
elif isinstance(figSize, (int, float)):
xFigSize = yFigSize = figSize
else:
raise Exception('figSize type {} not recognised'.format(type(figSize)))
fig, axs = plt.subplots(nRows, nCols, figsize=(nCols * xFigSize, nRows * yFigSize))
if nRows * nCols > 1:
axs = axs.ravel()
return fig, axs
| 10,462
|
def make_rate_data(grp, valuevars, query="none == 'All'", data=ob):
"""Filters, Groups, and Calculates Rates
Params:
grp [list]: A list detailing the names of the variables to group by.
valuevars [list]: A list detailing the names of the quantitative
variable summarise and calculate a rate for (as a function of
population).
query [string]: A query string used to subset the data prior to
aggregation.
data [pd.DataFrame]: The obesity dataset.
Returns:
[pd.DataFrame]: A pandas data frame containing the grouping variables
and rates for the value variables (carrying the same column name).
Cells where a rate could not be calculated due to missing information
are return as np.NaN.
"""
grp_plus = grp + ["none"]
ratedata = (
data.query(query)
.loc[:, grp + ["pop"] + valuevars]
.melt(id_vars=grp + ["pop"], var_name="variable", value_name="value")
.dropna()
.groupby(grp + ["variable"])[["pop", "value"]]
.sum()
.reset_index()
.assign(rate=lambda x: x["value"] / x["pop"])
.drop(columns=["value", "pop"])
.pivot(index=grp, columns="variable", values="rate")
.reset_index()
)
return ratedata
| 10,463
|
def test_compare_sir_vs_seir(sir_data_wo_policy, seir_data, monkeypatch):
"""Checks if SEIR and SIR return same results if the code enforces
* alpha = gamma
* E = 0
* dI = dE
"""
x_sir, pars_sir = sir_data_wo_policy
x_seir, pars_seir = seir_data
pars_seir["alpha"] = pars_sir["gamma"] # will be done by hand
def mocked_seir_step(data, **pars):
data["exposed"] = 0
new_data = SEIRModel.simulation_step(data, **pars)
new_data["infected"] += new_data["exposed_new"]
return new_data
seir_model = SEIRModel()
monkeypatch.setattr(seir_model, "simulation_step", mocked_seir_step)
sir_model = SIRModel()
predictions_sir = sir_model.propagate_uncertainties(x_sir, pars_sir)
predictions_seir = seir_model.propagate_uncertainties(x_seir, pars_seir)
assert_frame_equal(
predictions_sir[COLS_TO_COMPARE], predictions_seir[COLS_TO_COMPARE],
)
| 10,464
|
def login(client, username='', password=''):
"""
Log a specific user in.
:param client: Flask client
:param username: The username
:type username: str
:param password: The password
:type password: str
:return: Flask response
"""
user = dict(login=username, password=password)
response = client.post(url_for('blog.login'), data=user,
follow_redirects=True)
return response
| 10,465
|
def test_liststatements():
"""Turn list of dictionaries into list of Statement objects."""
csvrows_list = [
{"shape_id": "@a", "prop_id": "dct:creator", "value_type": "URI"},
{"shape_id": "@a", "prop_id": "dct:subject", "value_type": "URI"},
{"shape_id": "@a", "prop_id": "dct:date", "value_type": "String"},
{"shape_id": "@b", "prop_id": "foaf:name", "value_type": "String"},
]
assert list_statements(csvrows_list) == [
Statement(start=True, shape_id="@a", prop_id="dct:creator", value_type="URI"),
Statement(start=True, shape_id="@a", prop_id="dct:subject", value_type="URI"),
Statement(start=True, shape_id="@a", prop_id="dct:date", value_type="String"),
Statement(start=False, shape_id="@b", prop_id="foaf:name", value_type="String"),
]
| 10,466
|
def func(x, params):
"""The GNFW radial profile.
Args:
x (:obj:`np.ndarray`): Radial coordinate.
params (:obj:`dict`): Dictionary with keys `alpha`, `beta`, `gamma`, `c500`, and `P0` that defines
the GNFW profile shape.
Returns:
Profile (1d :obj:`np.ndarray`).
"""
G, A, B, c500, P0 = params['gamma'], params['alpha'], params['beta'], params['c500'], params['P0']
prof=np.zeros(x.shape)
mask=np.greater(x, 0)
prof[mask]=P0*((x[mask]*c500)**-G * (1+(x[mask]*c500)**A)**((G-B)/A))
#prof[x == 0]=np.inf
return prof
| 10,467
|
def get_double_image_blob(roidb):
"""Builds an input blob from the images in the roidb at the specified
scales.
"""
num_images = len(roidb)
# Sample random scales to use for each image in this batch
scale_inds = np.random.randint(
0, high=len(cfg.TRAIN.SCALES), size=num_images)
processed_ims = []
im_scales = []
pad = cfg.TRAIN.PADDING
for i in range(num_images):
# Process A image
im = get_a_img(roidb[i])
other_im = cv2.imread(roidb[i]['b_image'])
# Process B image
h, w, _ = im.shape
b_y1, b_x1, b_y2, b_x2 = roidb[i]['b_bbox']
if cfg.TRAIN.AUG_LRV_BBOX:
b_x1, b_y1, b_x2, b_y2 = boxes_utils.aug_align_box((b_x1,b_y1,b_x2,b_y2), (other_im.shape[1], other_im.shape[0]), pad=0)
tmp = other_im[b_y1:b_y2, b_x1:b_x2, 0]
other_im = cv2.resize(other_im[b_y1:b_y2, b_x1:b_x2, 0], dsize=(w-2*pad, h-2*pad), interpolation=cv2.INTER_CUBIC)
if cfg.HIST_EQ:
if cfg.A_HIST_EQ:
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
other_im = clahe.apply(other_im)
else:
other_im = cv2.equalizeHist(other_im)
other_im = pad_image(other_im, pad=pad)[:, ::-1]
other_im = np.tile(other_im, (3, 1, 1))
other_im = np.transpose(other_im, (1, 2, 0)).astype(np.uint8)
assert im is not None, \
'Failed to read image \'{}\''.format(roidb[i]['image'])
# If NOT using opencv to read in images, uncomment following lines
# if len(im.shape) == 2:
# im = im[:, :, np.newaxis]
# im = np.concatenate((im, im, im), axis=2)
# # flip the channel, since the original one using cv2
# # rgb -> bgr
# im = im[:, :, ::-1]
if roidb[i]['flipped']:
im = im[:, ::-1, :]
other_im = other_im[:, ::-1, :]
# generate the cropped image
if cfg.TRAIN.ONLINE_RANDOM_CROPPING:
x1, y1, x2, y2 = roidb[i]['cropped_bbox']
im = im[y1:y2+1, x1:x2+1, :]
other_im = other_im[y1:y2+1, x1:x2+1, :]
target_size = cfg.TRAIN.SCALES[scale_inds[i]]
if cfg.TRAIN.AUGMENTATION:
transform_cv = cv_transforms.Compose([
cv_transforms.ColorJitter(brightness=0.5,
contrast=0.25, gamma=0.5)])
else:
transform_cv = None
# TODO: add augmentation
im, im_scale = blob_utils.prep_im_for_blob(
im, cfg.PIXEL_MEANS, [target_size], cfg.TRAIN.MAX_SIZE, transform_cv)
other_im, other_im_scale = blob_utils.prep_im_for_blob(
other_im, cfg.PIXEL_MEANS, [target_size], cfg.TRAIN.MAX_SIZE, transform_cv)
im_scales.append(im_scale[0])
processed_ims.append(im[0])
processed_ims.append(other_im[0])
# Create a blob to hold the input images [n, c, h, w]
blob = blob_utils.im_list_to_blob(processed_ims)
return blob, im_scales
| 10,468
|
def test_successful_delete_sbi():
"""Test deleting an SBI successfully"""
| 10,469
|
def _readFromSettings(self, key):
"""Loads the settings object associated with the program and
returns the value at the key."""
COMPANY, APPNAME, _ = SELMAGUISettings.getInfo()
COMPANY = COMPANY.split()[0]
APPNAME = APPNAME.split()[0]
settings = QtCore.QSettings(COMPANY, APPNAME)
val = None
try:
val = settings.value(key)
except:
self._signalObject.errorMessageSignal.emit(
"Wrong setting accessed.")
return val
#Return the right type
if val == "true":
return True
if val == "false":
return False
return float(val)
| 10,470
|
def run_overlay_resources_score_motifs(normal_expression_per_tissue_origin_per_TF,
matching_cell_name_representative_dict, motifTFName_TFNames_matches_dict,
cells_assays_dict, cell_tfs, tf_cells, assay_cells_datatypes, header):
"""pairs matching chromosomes in motif_sites_input_dir and all_chromatin_makrs_all_cells_input_dir and calls overlay_resources_score_motifs
Input: moitf instances input dir (one file per chr)
chromatin data collection dir (one file per chr, bed4 format; track pos, track cell#assaytype#value or cell#TFname in case of chip-seq)
Return: a list of motif_overlapping_track files
Precondition: files in motif_sites_input_dir and chromatin_tracks_input_dir should have the same names
Recommended: name files in both dirs as chrNumber, chrX or chrY (where number is between 1-22)
"""
motif_files = []
if not os.path.isdir(params['motif_sites_dir']) and os.path.isfile(params['motif_sites_dir']):
motif_files = [params['motif_sites_dir']]
params['motif_sites_dir'] = "."
else:
motif_files = os.listdir(params['motif_sites_dir'])
chromatin_tracks_files = os.listdir(params['all_chromatin_makrs_all_cells_combined_dir_path'])
if not os.path.exists(params['motifs_overlapping_tracks_output_dir']):
os.mkdir(params['motifs_overlapping_tracks_output_dir'])
motifs_overlapping_tracks_files = []
scored_motifs_overlapping_tracks_files = []
if get_value(params['run_in_parallel_param']) and len(motif_files)>1:
p = Pool(int(params['number_processes_to_run_in_parallel']))
for motif_file in motif_files:
if motif_file.split('/')[-1] in chromatin_tracks_files:#it is assumed for every motif file name there exists a matching file name in the chromatin_tracks_input_dir
motifs_overlapping_tracks_file = params['motifs_overlapping_tracks_output_dir']+'/' + '.'.join(motif_file.split('/')[-1].split('.')[0:-1])+'_overlapping_tracks' + '.bed7'
scored_motifs_chromatin_tracks_output_file = '.'.join(motifs_overlapping_tracks_file.split('.')[0:-1]) + '_scored.bed10'
if not (os.path.exists(motifs_overlapping_tracks_file) and os.path.exists(scored_motifs_chromatin_tracks_output_file)):
if get_value(params['run_in_parallel_param']) and len(motif_files)>1:
p.apply_async(overlay_resources_score_motifs, args=(params['motif_sites_dir']+'/'+motif_file,
params['all_chromatin_makrs_all_cells_combined_dir_path']+'/'+motif_file.split('/')[-1],
scored_motifs_chromatin_tracks_output_file,
motifs_overlapping_tracks_file,
normal_expression_per_tissue_origin_per_TF,
matching_cell_name_representative_dict, motifTFName_TFNames_matches_dict,
cells_assays_dict, cell_tfs, tf_cells, assay_cells_datatypes, header))
else:
overlay_resources_score_motifs(params['motif_sites_dir']+'/'+motif_file,
params['all_chromatin_makrs_all_cells_combined_dir_path']+'/'+motif_file.split('/')[-1],
scored_motifs_chromatin_tracks_output_file,
motifs_overlapping_tracks_file,
normal_expression_per_tissue_origin_per_TF,
matching_cell_name_representative_dict, motifTFName_TFNames_matches_dict,
cells_assays_dict, cell_tfs, tf_cells, assay_cells_datatypes, header)
motifs_overlapping_tracks_files.append(motifs_overlapping_tracks_file)
scored_motifs_overlapping_tracks_files.append(scored_motifs_chromatin_tracks_output_file)
if get_value(params['run_in_parallel_param']) and len(motif_files)>1:
p.close()
p.join()
return motifs_overlapping_tracks_files, scored_motifs_overlapping_tracks_files
| 10,471
|
def compare(file1, file2):
"""子主函数"""
try:
f1 = 'C:\\Users\\seamus\\Downloads\\configure_data\\' + file1
f2 = 'C:\\Users\\seamus\\Downloads\\configure_data\\' + file2
except Exception as e:
print("Error: " + str(e))
print("Usage : python compareFile.py filename1 filename2")
sys.exit()
if f1 == "" or f2 == "": # 参数不够
print("Usage : python compareFile.py filename1 filename2")
sys.exit()
tf1 = readFile(f1)
tf2 = readFile(f2)
d = difflib.HtmlDiff() # 创建一个实例difflib.HtmlDiff
writeFile(d.make_file(tf1, tf2))
| 10,472
|
def history_directory(repo_loc: str) -> str:
"""Retrieve the directory containing job logs for the specified repository
Parameters
----------
repo_loc : str
FAIR-CLI repository path
Returns
-------
str
location of the job logs directory
"""
return os.path.join(
fdp_com.find_fair_root(repo_loc), fdp_com.FAIR_FOLDER, "logs"
)
| 10,473
|
def test_calc_node_coords_1():
"""
Attempt to run on edges which are out of order.
This should raise an exception.
"""
test_input_tp_as_text = test_1_lines['000000F'] + """\n000000F 000062240:B 000083779:B 000083779 862 0 30696 99.79"""
all_sl = [line.strip().split() for line in test_input_tp_as_text.splitlines()]
edges = [mod.TilingPathEdge(sl) for sl in all_sl]
with pytest.raises(Exception):
coord_map, contig_len = mod.calc_node_coords(edges, first_node_offset=0)
| 10,474
|
def validate_input_path(path: str) -> None:
"""
Validate input file/directory path argument, raises a ValueError if the path
is not valid .sql file or directory.
:param path: input path argument specified by the user
"""
if not os.path.isdir(path) and not (os.path.isfile(path)
and is_pathname_valid(path)
and path.endswith('.sql')):
raise ValueError(f'{path} is not a valid directory or .sql file path')
| 10,475
|
def _h5_overwrite_array_slice(model, h5_key_pair, slice_tuple, array_slice):
"""Overwrites (updates) a slice of an hdf5 array."""
h5_root = _h5_access(model, h5_key_pair[0], mode = 'a')
dset = h5_root[h5_key_pair[1]]
dset[slice_tuple] = array_slice
| 10,476
|
def is_statu(search_data):
"""
判断是否有参数,且为正常还是停用
:param search_data:
:return:
"""
logging.info('is_statu')
if search_data:
if search_data == '正常':
return '1'
elif search_data == '停用':
return '0'
else:
return search_data
else:
return ''
| 10,477
|
def get_mysql_exception(errno, msg, sqlstate=None):
"""Get the exception matching the MySQL error
This function will return an exception based on the SQLState. The given
message will be passed on in the returned exception.
The exception returned can be customized using the
mysql.connector.custom_error_exception() function.
Returns an Exception
"""
try:
return _CUSTOM_ERROR_EXCEPTIONS[errno](
msg=msg, errno=errno, sqlstate=sqlstate)
except KeyError:
# Error was not mapped to particular exception
pass
try:
return _ERROR_EXCEPTIONS[errno](
msg=msg, errno=errno, sqlstate=sqlstate)
except KeyError:
# Error was not mapped to particular exception
pass
if not sqlstate:
return DatabaseError(msg=msg, errno=errno)
try:
return _SQLSTATE_CLASS_EXCEPTION[sqlstate[0:2]](
msg=msg, errno=errno, sqlstate=sqlstate)
except KeyError:
# Return default InterfaceError
return DatabaseError(msg=msg, errno=errno, sqlstate=sqlstate)
| 10,478
|
def teardown_module(module):
""" teardown any state that was previously setup with a setup_module
method.
"""
import time
# temp file will be removed soon
time.sleep(1.0)
for p in ["1.zip", "2.zip", "3.zip"]:
try:
os.remove(p)
except:
pass
| 10,479
|
def clear_pkt_loss():
"""
:return:
"""
pkt_loss_file_path = os.path.join(os.getcwd(), 'pkt_loss.yaml')
if os.path.isfile(pkt_loss_file_path):
os.remove(pkt_loss_file_path)
return pkt_loss_file_path
| 10,480
|
def get_image_resize_transform_steps(config, dataset) -> List:
"""
Resizes the image to a slightly larger square.
"""
assert dataset.original_resolution is not None
assert config.resize_scale is not None
scaled_resolution = tuple(
int(res * config.resize_scale) for res in dataset.original_resolution
)
return [
transforms.Resize(scaled_resolution)
]
| 10,481
|
def get_page_title(page_src, meta_data):
"""Returns the title of the page. The title in the meta data section
will take precedence over the H1 markdown title if both are provided."""
return (
meta_data['title']
if 'title' in meta_data and isinstance(meta_data['title'], str)
else get_markdown_title(page_src)
)
| 10,482
|
def get_args():
"""引数解析
Returns:
argparse.Namespace: 引数情報
"""
parser = argparse.ArgumentParser(
prog="app.py",
usage="realtime or audio file",
description="detect music change point.",
add_help=True
)
parser.add_argument(
"--cfg", type=str,
default="./settings.yaml",
help="setting file path"
)
parser.add_argument(
"--file", type=str,
default=None,
help="audio file path"
)
return parser.parse_args()
| 10,483
|
def make_3dplot(fname_inp, fname_fig, clim=[None,None], vnames=[], data_processor=None, verbose='debug', **kws):
"""
make 3D plot with a radial and longitudinal cuts
"""
logger.setLevel(getattr(logging, verbose.upper()))
assert len(vnames)>0, ' [-] We need names in vnames!\n'
# we'll obtain:
# - same data but in structured way; friendly for plot_surface().
# - fill 'vdict'' with original ASCII data
d = get_array_vars(fname_inp, checks=False, complete_domain_walk=True, vnames=vnames, data_processor=data_processor)
# NOTE: d['data'] is processed sutff built from the original (from
# the ASCII file) simulation data. Such processing was made
# by 'data_processor()'.
# NOTE: a this point, 'vdict' has the original data from the ASCII file.
r, ph, th = d['coords']
Bmod = d['data'];
print ' [+] global extremes:', np.nanmin(Bmod), np.nanmax(Bmod)
cbmin, cbmax = clim if clim is not [None,None] else (np.nanmin(Bmod),np.nanmax(Bmod))
figsize = kws.get('figsize', None) # [inches] 2-tuple
if figsize is None:
# Deduce the 'figsize' as a function of:
# * the dpi of the monitor
# * the desired size in pixels of the figure
# Grab the dpi value of this monitor. Source:
# * https://stackoverflow.com/questions/13714454/specifying-and-saving-a-figure-with-exact-size-in-pixels#13714720
# * https://stackoverflow.com/questions/3129322/how-do-i-get-monitor-resolution-in-python/45467999#45467999
tk = Tkinter.Tk()
dpi_w = tk.winfo_screenwidth()/(tk.winfo_screenmmwidth()/25.4)
dpi_h = tk.winfo_screenheight()/(tk.winfo_screenmmheight()/25.4)
# size in pixels
pixels = kws.get('pixels', [128.,100.])
figsize = (pixels[0]/dpi_w, pixels[1]/dpi_h) # [inches]
#--- figure
fig_stuff = {
'fig' : figure(1, figsize=figsize),
}
fig_stuff.update({
'ax' : fig_stuff['fig'].add_subplot(111, projection='3d'),
'norm' : LogNorm(cbmin,cbmax) if kws.get('cscale','log')=='log' else Normalize(cbmin,cbmax),
})
fig = fig_stuff['fig']
ax = fig_stuff['ax']
norm = fig_stuff['norm']
#--- plot for fixed "r"
o__fixed_r = PlotCut_fixed_r(fig_stuff, d,
ro = kws.get('ro', 5.0),
pazim = kws.get('pazim',-60.),
verbose = verbose,
)
fig, ax = o__fixed_r['FigAx']
r_plot = o__fixed_r['r_plot']
surf_r = o__fixed_r['surf']
#--- plot for fixed "ph"
r_range = kws.get('r_range', [1.0,7.0])
pho = kws.get('pho', 10.0)
o__fixed_r = PlotCut_fixed_ph(fig_stuff, d,
pho = pho,
r_range=r_range,
pazim = kws.get('pazim',-60.),
verbose = verbose,
)
fig, ax = o__fixed_r['FigAx']
ph_plot = o__fixed_r['ph_plot']
surf_ph = o__fixed_r['surf']
# uniform axis limits
axmin = np.min([getattr(ax,'get_%slim'%dim)() for dim in ('x','y','z')])
axmax = np.max([getattr(ax,'get_%slim'%dim)() for dim in ('x','y','z')])
ax.set_xlim(axmin,axmax)
ax.set_ylim(axmin,axmax)
ax.set_zlim(axmin,axmax)
# perspective azimuth
ax.azim = kws.get('pazim', -60.)
sm = cm.ScalarMappable(cmap=surf_r.cmap, norm=fig_stuff['norm'])
sm.set_array(d['data']); #surf.set_array(var)
# labels && title
ax.set_xlabel('X [Ro]')
ax.set_ylabel('Y [Ro]')
ax.set_zlabel('Z [Ro]')
TITLE = '$r_o$ = %.2g $R_o$' % r_plot +\
'\n($\phi_o$,r1,r2) : ($%g^o,%g\,Ro,%g\,Ro$)' % (pho,r_range[0],r_range[1])
# extract the step number from the input filename
if kws.get('wtimelabel',False):
tlabel = fname_inp.split('/')[-1].split('.h5')[0].split('_')[-1].replace('n','')
TITLE += '\n step: '+tlabel
ax.set_title(TITLE)
#--- colorbar
cb_label = '|B| [G]'
cb_fontsize = 13
axcb = fig.colorbar(sm, ax=ax)
axcb.set_label(cb_label, fontsize=cb_fontsize)
sm.set_clim(vmin=cbmin, vmax=cbmax)
# save figure
#show()
fig.savefig(fname_fig, dpi=kws.get('dpi',100), bbox_inches='tight')
close(fig)
del fig
return None
| 10,484
|
def saveReplayBuffer():
"""
Flush and save the contents of the Replay Buffer to disk. This is
basically the same as triggering the "Save Replay Buffer" hotkey.
Will return an `error` if the Replay Buffer is not active.
"""
return __createJSON("SaveReplayBuffer", {})
| 10,485
|
def view_or_basicauth(view, request, test_func, realm = "", *args, **kwargs):
"""
This is a helper function used by both 'logged_in_or_basicauth' and
'has_perm_or_basicauth' that does the nitty of determining if they
are already logged in or if they have provided proper http-authorization
and returning the view if all goes well, otherwise responding with a 401.
"""
if request.user is None or not request.user.is_authenticated() or not user_has_student(request.user) or ALWAYS_LOGIN:
key = 'HTTP_AUTHORIZATION'
if key not in request.META:
key = 'REDIRECT_HTTP_AUTHORIZATION'
if key not in request.META:
key = 'HTTP_X_AUTHORIZATION'
if key in request.META:
auth = request.META[key].split()
if len(auth) == 2:
if auth[0].lower() == "basic":
# Basic authentication - this is not an API client
uname, passwd = base64.b64decode(auth[1]).split(':')
user = authenticate(username=uname, password=passwd)
permissions = APIClient.universal_permission_flag()
elif auth[0].lower() == "bearer":
# The client bears a FireRoad-issued token
user, permissions, error = extract_token_info(request, auth[1])
if error is not None:
return HttpResponse(json.dumps(error), status=401, content_type="application/json")
user.backend = 'django.contrib.auth.backends.ModelBackend'
else:
raise PermissionDenied
request.session['permissions'] = permissions
if user is not None:
if user.is_active:
login(request, user)
request.user = user
return view(request, *args, **kwargs)
raise PermissionDenied
#return redirect('login')
else:
if 'permissions' not in request.session:
print("Setting universal permission flag - this should only occur in dev or from FireRoad-internal login.")
request.session['permissions'] = APIClient.universal_permission_flag()
return view(request, *args, **kwargs)
| 10,486
|
def evaluate_srl_1step(find_preds_automatically=False, gold_file=None):
"""
Evaluates the network on the SRL task performed with one step for
id + class.
"""
md = Metadata.load_from_file('srl')
nn = taggers.load_network(md)
r = taggers.create_reader(md, gold_file=gold_file)
itd = r.get_inverse_tag_dictionary()
if find_preds_automatically:
tagger = taggers.SRLTagger()
else:
iter_predicates = iter(r.predicates)
for sent in iter(r.sentences):
# the other elements in the list are the tags for each proposition
actual_sent = sent[0]
if find_preds_automatically:
pred_positions = tagger.find_predicates(sent)
else:
pred_positions = iter_predicates.next()
verbs = [(position, actual_sent[position].word)
for position in pred_positions]
sent_codified = np.array([r.converter.convert(token)
for token in actual_sent])
answers = nn.tag_sentence(sent_codified, pred_positions)
tags = [convert_iob_to_iobes([itd[x] for x in pred_answer])
for pred_answer in answers]
print(prop_conll(verbs, tags, len(actual_sent)))
| 10,487
|
def ring_bells():
"""Rings the school bells in a pattern for the given schedule/time."""
# Need to get the pattern for this time slot and apply it.
curTime = time.strftime("%H:%M")
if curTime not in jsonConfig["schedules"][curSchedule]:
logging.error("Couldn't find time record for time " + curTime + " in schedule " + curSchedule)
return
# Obtain the pattern to use.
pattern = jsonConfig["schedules"][curSchedule][curTime]
if pattern not in jsonConfig["patterns"]:
logging.error("Could not find pattern '" + pattern + "'.")
return
# Play the pattern.
logging.debug("Playing bell: " + pattern)
bellRings = jsonConfig["patterns"][pattern]["rings"]
bellDuration = jsonConfig["patterns"][pattern]["duration"]
bellSpacing = jsonConfig["patterns"][pattern]["spacing"]
for _ in range(bellRings):
power_bells(True)
time.sleep(bellDuration)
power_bells(False)
time.sleep(bellSpacing)
| 10,488
|
def _subtract_background_one_line(data_line, e_off, e_lin, e_quad, width):
"""
Subtract background from spectra in a single line of the image
Parameters
----------
data_line : ndarray
spectra for one line of an image, size NxM, N-the number of
pixels in the line, M - the number of points in one spectrum (typically 4096)
e_off : float
offset - coefficient for polynomial approximation of energy axis
e_lin : float
linear coefficient of polynomial approximation of energy axis
e_quad : float
quadratic coefficient of polynomial approximation of energy axis
background_width : float
parameter of snip algorithm for background estimation
Returns
-------
ndarray of the same shape as data_line. Contains spectra with subtracted background.
"""
data_line = np.copy(data_line)
xx, _ = data_line.shape
for n in range(xx):
bg = snip_method(data_line[n, :],
e_off=e_off,
e_lin=e_lin,
e_quad=e_quad,
width=width)
data_line[n, :] -= bg
return data_line
| 10,489
|
def extract_module(fo, modname):
"""Extract a single modules test plan documents."""
mod = __import__(modname)
mod_doc(fo, mod)
| 10,490
|
def clean_principals_output(sql_result, username, shell=False):
"""
Transform sql principals into readable one
"""
if not sql_result:
if shell:
return username
return [username]
if shell:
return sql_result
return sql_result.split(',')
| 10,491
|
def update_globals(column_dict: Dict[str, Tuple[Hashable, Hashable]]) -> None:
"""Update the column names stored in the global variable ``_GLOBVAR``.
Parameters
----------
column_dict: :class:`dict` [:class:`str`, :class:`tuple` [:class:`Hashable`, :class:`Hashable`]]
A dictionary which maps column names, present in ``_GLOBVAR``, to new values.
Tuples, consisting of two hashables,
are expected as values (*e.g.* ``("info", "new_name")``).
The following keys (and default values) are available in ``_GLOBVAR``:
===================== ==============================
Key Value
===================== ==============================
``"ACTIVE"`` ``("info", "active")``
``"NAME"`` ``("info", "name")``
``"PI"`` ``("info", "PI")``
``"PROJECT"`` ``("info", "project")``
``"SBU_REQUESTED"`` ``("info", "SBU requested")``
``"TMP"`` ``("info", "tmp")``
===================== ==============================
Raises
------
TypeError
Raised if a value in **column_dict** does not consist of a tuple of hashables.
ValueError
Raised if the length of a value in **column_dict** is not equal to ``2``.
"""
for k, v in column_dict.items():
name = v.__class__.__name__
if not isinstance(v, tuple):
raise TypeError(f"Invalid type: '{name}'. "
"A 'tuple' consisting of two hashables was expected.")
elif len(v) != 2:
raise ValueError(f"Invalid tuple length: '{len(v):d}'. '2' hashables were expected.")
elif not isinstance(v[0], Hashable) or not isinstance(v[1], Hashable):
raise TypeError(f"Invalid type: '{name}'. A hashable was expected.")
for k, v in column_dict.items():
_GLOBVAR[k] = v
_populate_globals()
| 10,492
|
def table(ctx):
"""CRM configuration for ACL table resource"""
ctx.obj["crm"].res_type = 'acl_table'
| 10,493
|
def test_versions(gen3_index):
"""
Test creation of a record and a new version of it
index.py functions tested:
create_record
create_new_version
get_versions
get_latest_version
"""
# put a new record in the index
newrec = gen3_index.create_record(
acl=["prog1", "proj1"],
hashes={"md5": "437283456782738abcfe387492837483"},
size=0,
version="1",
)
# update the record
newversion = gen3_index.create_new_version(
newrec["did"],
acl=["prog1", "proj1"],
hashes={"md5": "437283456782738abcfe387492837483"},
size=1,
version="2",
)
newrec = get_rec(gen3_index, newrec["did"])
newversion = get_rec(gen3_index, newversion["did"])
assert newrec["did"] != newversion["did"]
assert newrec["baseid"] == newversion["baseid"]
# These functions do not recognize the records for some reason!
versions = gen3_index.get_versions(newversion["did"])
latest_version = gen3_index.get_latest_version(newrec["did"], "false")
assert versions[0]["did"] == newrec["did"]
assert versions[1]["did"] == newversion["did"]
assert latest_version["did"] == newversion["did"]
assert latest_version["version"] == "2"
drec = gen3_index.delete_record(newrec["did"])
assert drec._deleted
drec = gen3_index.delete_record(newversion["did"])
assert drec._deleted
| 10,494
|
def matchesType(value, expected):
"""
Returns boolean for whether the given value matches the given type.
Supports all basic JSON supported value types:
primitive, integer/int, float, number/num, string/str, boolean/bool, dict/map, array/list, ...
"""
result = type(value)
expected = expected.lower()
if result is int:
return expected in ("integer", "number", "int", "num", "primitive")
elif result is float:
return expected in ("float", "number", "num", "primitive")
elif result is str:
return expected in ("string", "str", "primitive")
elif result is bool:
return expected in ("boolean", "bool", "primitive")
elif result is dict:
return expected in ("dict", "map")
elif result is list:
return expected in ("array", "list")
return False
| 10,495
|
def __find_surplus_locks_and_remove_them(datasetfiles, locks, replicas, source_replicas, rseselector, rule, source_rses, session=None, logger=logging.log):
"""
Find surplocks locks for a rule and delete them.
:param datasetfiles: Dict holding all datasets and files.
:param locks: Dict holding locks.
:param replicas: Dict holding replicas.
:param source_replicas: Dict holding all source replicas.
:param rseselector: The RSESelector to be used.
:param rule: The rule.
:param source_rses: RSE ids for eglible source RSEs.
:param session: Session of the db.
:param logger: Optional decorated logger that can be passed from the calling daemons or servers.
:raises: InsufficientAccountLimit, IntegrityError, InsufficientTargetRSEs
:attention: This method modifies the contents of the locks and replicas input parameters.
"""
logger(logging.DEBUG, "Finding surplus locks for rule %s [%d/%d/%d]", str(rule.id), rule.locks_ok_cnt, rule.locks_replicating_cnt, rule.locks_stuck_cnt)
account_counter_decreases = {} # {'rse_id': [file_size, file_size, file_size]}
# Put all the files in one dictionary
files = {}
for ds in datasetfiles:
for file in ds['files']:
files[(file['scope'], file['name'])] = True
for key in locks:
if key not in files:
# The lock needs to be removed
for lock in deepcopy(locks[key]):
if lock.rule_id == rule.id:
__delete_lock_and_update_replica(lock=lock, purge_replicas=rule.purge_replicas, nowait=True, session=session)
if lock.rse_id not in account_counter_decreases:
account_counter_decreases[lock.rse_id] = []
account_counter_decreases[lock.rse_id].append(lock.bytes)
if lock.state == LockState.OK:
rule.locks_ok_cnt -= 1
elif lock.state == LockState.REPLICATING:
rule.locks_replicating_cnt -= 1
elif lock.state == LockState.STUCK:
rule.locks_stuck_cnt -= 1
locks[key].remove(lock)
logger(logging.DEBUG, "Finished finding surplus locks for rule %s [%d/%d/%d]", str(rule.id), rule.locks_ok_cnt, rule.locks_replicating_cnt, rule.locks_stuck_cnt)
| 10,496
|
def csv_logging(record):
"""generate output in csv format"""
csv_record = ('{ts},{si},{di},{sp},{dp},{t},"{p}",{h},{v},"{ha}",'
'"{k}","{e}","{m}","{c}"')
if 'hassh' in record:
hasshType = 'client'
kexAlgs = record['ckex']
encAlgs = record['ceacts']
macAlgs = record['cmacts']
cmpAlgs = record['ccacts']
hassh = record['hassh']
hasshAlgorithms = record['hasshAlgorithms']
identificationString = record['client']
elif 'hasshServer' in record:
hasshType = 'server'
kexAlgs = record['skex']
encAlgs = record['seastc']
macAlgs = record['smastc']
cmpAlgs = record['scastc']
hassh = record['hasshServer']
hasshAlgorithms = record['hasshServerAlgorithms']
identificationString = record['server']
csv_record = csv_record.format(
ts=record['timestamp'], si=record['sourceIp'],
di=record['destinationIp'], sp=record['sourcePort'],
dp=record['destinationPort'], t=hasshType, p=identificationString,
h=hassh, v=HASSH_VERSION, ha=hasshAlgorithms, k=kexAlgs, e=encAlgs,
m=macAlgs, c=cmpAlgs)
return csv_record
| 10,497
|
def harvest_outfile_pass(outtext):
"""Function to read NWChem output file *outtext* and parse important
quantum chemical information from it in
"""
psivar = PreservingDict()
psivar_coord = None
psivar_grad = None
version = ""
module = None
error = "" # TODO (wardlt): The error string is never used.
NUMBER = r"(?x:" + regex.NUMBER + ")"
# Process version
mobj = re.search(
r"^\s+" + r"Northwest Computational Chemistry Package (NWChem)" + r"\s+" + r"(?:<version>\d+.\d+)" + r"\s*$",
outtext,
re.MULTILINE,
)
if mobj:
logger.debug("matched version")
version = mobj.group("version")
# Process SCF
# 1)Fail to converge
mobj = re.search(r"^\s+" + r"(?:Calculation failed to converge)" + r"\s*$", outtext, re.MULTILINE)
if mobj:
logger.debug("failed to converge")
# 2)Calculation converged
else:
mobj = re.search(r"^\s+" + r"(?:Total SCF energy)" + r"\s+=\s*" + NUMBER + r"s*$", outtext, re.MULTILINE)
if mobj:
logger.debug("matched HF")
psivar["HF TOTAL ENERGY"] = mobj.group(1)
# Process Effective nuclear repulsion energy (a.u.)
mobj = re.search(
r"^\s+" + r"Effective nuclear repulsion energy \(a\.u\.\)" + r"\s+" + NUMBER + r"\s*$",
outtext,
re.MULTILINE,
)
if mobj:
logger.debug("matched NRE")
# logger.debug (mobj.group(1))
psivar["NUCLEAR REPULSION ENERGY"] = mobj.group(1)
# Process DFT dispersion energy (a.u.)
mobj = re.search(r"^\s+" + r"(?:Dispersion correction)" + r"\s+=\s*" + NUMBER + r"\s*$", outtext, re.MULTILINE)
if mobj:
logger.debug("matched Dispersion")
logger.debug(mobj.group(1))
psivar["DISPERSION CORRECTION ENERGY"] = mobj.group(1)
# Process DFT (RDFT, RODFT,UDFT, SODFT [SODFT for nwchem versions before nwchem 6.8])
mobj = re.search(r"^\s+" + r"(?:Total DFT energy)" + r"\s+=\s*" + NUMBER + r"\s*$", outtext, re.MULTILINE)
if mobj:
logger.debug("matched DFT")
logger.debug(mobj.group(1))
psivar["DFT TOTAL ENERGY"] = mobj.group(1)
# SODFT [for nwchem 6.8+]
mobj = re.search(
# fmt: off
r'^\s+' + r'Total SO-DFT energy' + r'\s+' + NUMBER + r'\s*' +
r'^\s+' + r'Nuclear repulsion energy' + r'\s+' + NUMBER + r'\s*$',
# fmt: on
outtext,
re.MULTILINE,
)
if mobj:
logger.debug("matched DFT")
# print (mobj.group(1))
psivar["DFT TOTAL ENERGY"] = mobj.group(1)
psivar["NUCLEAR REPULSION ENERGY"] = mobj.group(2)
# MCSCF
mobj = re.search(
# fmt: off
r'^\s+' + r'Total MCSCF energy' + r'\s+=\s+' + NUMBER + r'\s*$',
# fmt: off
outtext,
re.MULTILINE | re.DOTALL,
)
if mobj:
logger.debug("matched mcscf 2") # MCSCF energy calculation
psivar["MCSCF TOTAL ENERGY"] = mobj.group(1)
mobj = re.findall(
# fmt: off
r'^\s+' + r'Total SCF energy' + r'\s+' + NUMBER + r'\s*' +
r'^\s+' + r'One-electron energy' + r'\s+' + NUMBER + r'\s*' +
r'^\s+' + r'Two-electron energy' + r'\s+' + NUMBER + r'\s*' +
r'^\s+' + r'Total MCSCF energy' + r'\s+' + NUMBER + r'\s*$',
# fmt: on
outtext,
re.MULTILINE | re.DOTALL,
)
# for mobj_list in mobj:
if mobj: # Need to change to accommodate find all instances
logger.debug("matched mcscf") # MCSCF energy calculation
psivar["HF TOTAL ENERGY"] = mobj.group(1)
psivar["ONE-ELECTRON ENERGY"] = mobj.group(2)
psivar["TWO-ELECTRON ENERGY"] = mobj.group(3)
psivar["MCSCF TOTAL ENERGY"] = mobj.group(4)
# for mobj_list in mobj:
# for i in mobj_list:
# count += 0
# logger.debug('matched mcscf iteration %i', count)
# psivar['HF TOTAL ENERGY'] = mobj.group(1)
# psivar['ONE-ELECTRON ENERGY'] = mobj.group(2)
# psivar['TWO-ELECTRON ENERGY'] = mobj.group(3)
# psivar['MCSCF TOTAL ENERGY'] = mobj.group(4)
# Process MP2 (Restricted, Unrestricted(RO n/a))
# 1)SCF-MP2
mobj = re.search(
# fmt: off
r'^\s+' + r'SCF energy' + r'\s+' + NUMBER + r'\s*' +
r'^\s+' + r'Correlation energy' + r'\s+' + NUMBER + r'\s*' +
r'^\s+' + r'Singlet pairs' + r'\s+' + NUMBER + r'\s*' +
r'^\s+' + r'Triplet pairs' + r'\s+' + NUMBER + r'\s*' +
r'^\s+' + r'Total MP2 energy' + r'\s+' + NUMBER + r'\s*$',
# fmt: on
outtext,
re.MULTILINE,
) # MP2
if mobj:
logger.debug("matched scf-mp2")
module = "mp2grad"
psivar["HF TOTAL ENERGY"] = mobj.group(1)
psivar["MP2 CORRELATION ENERGY"] = mobj.group(2)
psivar["MP2 TOTAL ENERGY"] = mobj.group(5)
# SCS-MP2
mobj = re.search(
# fmt: off
r'^\s+' + r'Same spin pairs' + r'\s+' + NUMBER + r'\s*' +
r'^\s+' + r'Same spin scaling factor' + r'\s+' + NUMBER + r'\s*' +
r'^\s+' + r'Opposite spin pairs' + r'\s+' + NUMBER + r'\s*' +
r'^\s+' + r'Opposite spin scaling fact.' + r'\s+' + NUMBER + r'\s*' +
r'^\s+' + r'SCS-MP2 correlation energy' + r'\s+' + NUMBER + r'\s*' +
r'^\s+' + r'Total SCS-MP2 energy' + r'\s+' + NUMBER + r'\s*$',
# fmt: on
outtext,
re.MULTILINE,
)
if mobj:
logger.debug("matched scs-mp2", mobj.groups())
psivar["MP2 SAME-SPIN CORRELATION ENERGY"] = mobj.group(1)
psivar["MP2 OPPOSITE-SPIN CORRELATION ENERGY"] = mobj.group(3)
logger.debug(mobj.group(1)) # ess
logger.debug(mobj.group(2)) # fss
logger.debug(mobj.group(3)) # eos
logger.debug(mobj.group(4)) # fos
logger.debug(mobj.group(5)) # scs corl
logger.debug(mobj.group(6)) # scs-mp2
# 2) DFT-MP2
mobj = re.search(
# fmt: off
r'^\s+' + r'DFT energy' + r'\s+' + NUMBER + r'\s*' +
r'^\s+' + r'Unscaled MP2 energy' + r'\s+' + NUMBER + r'\s*' +
r'^\s+' + r'Total DFT+MP2 energy' + r'\s+' + NUMBER + r'\s*$',
# fmt: on
outtext,
re.MULTILINE,
)
if mobj:
logger.debug("matched dft-mp2")
psivar["DFT TOTAL ENERGY"] = mobj.group(1)
psivar["MP2 CORRELATION ENERGY"] = mobj.group(2)
psivar["MP2 TOTAL ENERGY"] = mobj.group(3)
# 3) MP2 with CCSD or CCSD(T) calculation (through CCSD(T) directive)
mobj = re.search(
# fmt: off
r'^\s+' + r'MP2 Energy \(coupled cluster initial guess\)' + r'\s*' +
r'^\s+' + r'------------------------------------------' + r'\s*' +
r'^\s+' + r'Reference energy:' + r'\s+' + NUMBER + r'\s*' +
r'^\s+' + r'MP2 Corr\. energy:' + r'\s+' + NUMBER + r'\s*' +
r'^\s+' + r'Total MP2 energy:' + r'\s+' + NUMBER + r'\s*$',
# fmt: on
outtext,
re.MULTILINE,
)
if mobj:
logger.debug("matched coupled cluster-mp2")
psivar["MP2 CORRELATION ENERGY"] = mobj.group(2)
psivar["MP2 TOTAL ENERGY"] = mobj.group(3)
mobj3 = re.search(r"Final RHF results", outtext)
if mobj3:
psivar["MP2 DOUBLES ENERGY"] = mobj.group(2)
# 4) Direct MP2
mobj = re.search(
# fmt: off
r'^\s+' + r'SCF energy' + r'\s+' + r"(?P<hf>" + NUMBER + r")" + r'\s*' +
r'^\s+' + r'Correlation energy' + r'\s+' + r"(?P<mp2corl>" + NUMBER + r")" + r'\s*' +
r'^\s+' + r'Total MP2 energy' + r'\s+' + r"(?P<mp2>" + NUMBER + r")" + r'\s*$',
# fmt: on
outtext,
re.MULTILINE,
)
mobj2 = re.search(r"Direct MP2", outtext)
if mobj and mobj2:
logger.debug("matched direct-mp2")
module = "directmp2"
psivar["HF TOTAL ENERGY"] = mobj.group("hf")
psivar["MP2 CORRELATION ENERGY"] = mobj.group("mp2corl")
psivar["MP2 TOTAL ENERGY"] = mobj.group("mp2")
# direct-mp2 is RHF only
psivar["MP2 DOUBLES ENERGY"] = mobj.group("mp2corl")
# 5) RI-MP2
# Process calculation through tce [dertype] command
tce_cumm_corl = 0.0
for cc_name in [r"MBPT\(2\)", r"MBPT\(3\)", r"MBPT\(4\)"]:
mobj = re.search(
# fmt: off
r'^\s+' + cc_name + r'\s+' + r'correlation energy / hartree' + r'\s+=\s*' + NUMBER + r'\s*' +
r'^\s+' + cc_name + r'\s+' + r'total energy / hartree' + r'\s+=\s*' + NUMBER + r'\s*$',
# fmt: on
outtext,
re.MULTILINE,
)
mobj3 = re.search(r"Wavefunction type : Restricted open-shell Hartree-Fock", outtext, re.MULTILINE)
if mobj:
mbpt_plain = cc_name.replace("\\", "").replace("MBPT", "MP").replace("(", "").replace(")", "")
logger.debug(f"matched tce mbpt {mbpt_plain}", mobj.groups())
tce_cumm_corl += float(mobj.group(1))
if mbpt_plain == "MP2":
mobj3 = re.search(r"Wavefunction type : Restricted open-shell Hartree-Fock", outtext, re.MULTILINE)
if mobj3:
psivar[f"{mbpt_plain} DOUBLES ENERGY"] = mobj.group(1)
psivar[f"CURRENT CORRELATION ENERGY"] = mobj.group(1)
psivar[f"CURRENT ENERGY"] = Decimal(mobj.group(1)) + psivar[f"HF TOTAL ENERGY"]
else:
psivar[f"{mbpt_plain} DOUBLES ENERGY"] = mobj.group(1)
psivar[f"{mbpt_plain} CORRELATION ENERGY"] = mobj.group(1)
else:
psivar[f"{mbpt_plain} CORRECTION ENERGY"] = mobj.group(1)
if not mobj3 and mbpt_plain not in ["MP4"]:
psivar[f"{mbpt_plain} DOUBLES ENERGY"] = tce_cumm_corl
psivar[f"{mbpt_plain} TOTAL ENERGY"] = mobj.group(2)
module = "tce"
# TCE dipole- MBPT(n)
mobj2 = re.search(
# fmt: off
r'^\s+' + r'dipole moments / hartree & Debye' + r'\s*' +
r'^\s+' + r'X' + r'\s+' + NUMBER + r'\s+' + NUMBER + r'\s*' +
r'^\s+' + r'Y' + r'\s+' + NUMBER + r'\s+' + NUMBER + r'\s*' +
r'^\s+' + r'Z' + r'\s+' + NUMBER + r'\s+' + NUMBER + r'\s*' +
r'^\s+' + r'Total' + r'\s+' + NUMBER + r'\s+' + NUMBER + r'\s*$',
# fmt: on
outtext,
re.MULTILINE,
)
if mobj2:
mbpt_plain = cc_name.replace("\\", "").replace("MBPT", "MP").replace("(", "").replace(")", "")
logger.debug(f"matched tce {mbpt_plain} dipole moment")
# only pulling Debye
psivar[f"{mbpt_plain} DIPOLE"] = np.array([mobj2.group(1), mobj2.group(3), mobj2.group(5)])
# TCE with () or []
for cc_name in [
r"CCSD\(T\)",
r"CCSD\[T\]",
r"CCSD\(2\)_T",
r"CCSD\(2\)",
r"CCSDT\(2\)_Q",
r"CR-CCSD\[T\]",
r"CR-CCSD\(T\)",
r"LR-CCSD\(T\)",
r"LR-CCSD\(TQ\)-1",
r"CREOMSD\(T\)",
]:
mobj = re.search(
# fmt: off
r'^\s+' + cc_name + r'\s+' + r'correction energy / hartree' + r'\s+=\s*' + NUMBER + r'\s*' +
r'^\s+' + cc_name + r'\s+' + r'correlation energy / hartree' + r'\s+=\s*' + NUMBER + r'\s*' +
r'^\s+' + cc_name + r'\s+' + r'total energy / hartree' + r'\s+=\s*' + NUMBER + r'\s*$',
# fmt: on
outtext,
re.MULTILINE,
)
if mobj:
cc_plain = cc_name.replace("\\", "")
cc_corr = cc_plain.replace("CCSD", "")
logger.debug(f"matched tce cc {cc_plain}")
if cc_plain == "CCSD[T]":
psivar[f"CCSD+T(CCSD) CORRELATION ENERGY"] = mobj.group(2)
psivar[f"CCSD+T(CCSD) TOTAL ENERGY"] = mobj.group(3)
else:
# psivar[f"{cc_corr} CORRECTION ENERGY"] = mobj.group(1)
psivar[f"{cc_plain} CORRELATION ENERGY"] = mobj.group(2)
psivar[f"{cc_plain} TOTAL ENERGY"] = mobj.group(3)
module = "tce"
# TCE dipole with () or []
mobj2 = re.search(
# fmt: off
r'^\s+' + cc_name + r'dipole moments / hartree & Debye' + r'\s*' +
r'^\s+' + r'X' + r'\s+' + NUMBER + r'\s+' + NUMBER + r'\s*' +
r'^\s+' + r'Y' + r'\s+' + NUMBER + r'\s+' + NUMBER + r'\s*' +
r'^\s+' + r'Z' + r'\s+' + NUMBER + r'\s+' + NUMBER + r'\s*' +
r'^\s+' + r'Total' + r'\s+' + NUMBER + r'\s+' + NUMBER + r'\s*$',
# fmt: on
outtext,
re.MULTILINE,
)
if mobj2:
cc_plain = cc_name.replace("\\", "")
cc_corr = cc_plain.replace("CCSD", "")
logger.debug(f"matched tce {cc_plain} dipole moment")
# only pulling Debye
psivar[f"{cc_plain} DIPOLE"] = np.array([mobj2.group(1), mobj2.group(3), mobj2.group(5)])
# Process other TCE cases
for cc_name in [
r"CISD",
r"QCISD",
r"CISDT",
r"CISDTQ",
r"CCD",
r"CC2",
r"CCSD",
r"CCSDT",
r"CCSDTQ",
r"LCCSD",
r"LCCD",
r"CCSDTA",
]:
mobj = re.search(
# fmt: off
r'^\s+' + r'Iterations converged' + r'\s*' +
r'^\s+' + cc_name + r'\s+' + r'correlation energy / hartree' + r'\s+=\s*' + NUMBER + r'\s*' +
r'^\s+' + cc_name + r'\s+' + r'total energy / hartree' + r'\s+=\s*' + NUMBER + r'\s*$',
# fmt: on
outtext,
re.MULTILINE,
)
if mobj:
mobj3 = re.search(r"Wavefunction type : Restricted open-shell Hartree-Fock", outtext, re.MULTILINE)
logger.debug(f"matched {cc_name}", mobj.groups())
if mobj3:
pass
else:
psivar[f"{cc_name} DOUBLES ENERGY"] = mobj.group(1)
psivar[f"{cc_name} CORRELATION ENERGY"] = mobj.group(1)
psivar[f"{cc_name} TOTAL ENERGY"] = mobj.group(2)
module = "tce"
# TCE dipole
mobj2 = re.search(
# fmt: off
r'^\s+' + r'dipole moments / hartree & Debye' + r'\s*' +
r'^\s+' + r'X' + r'\s+' + NUMBER + r'\s+' + NUMBER + r'\s*' +
r'^\s+' + r'Y' + r'\s+' + NUMBER + r'\s+' + NUMBER + r'\s*' +
r'^\s+' + r'Z' + r'\s+' + NUMBER + r'\s+' + NUMBER + r'\s*' +
r'^\s+' + r'Total' + r'\s+' + NUMBER + r'\s+' + NUMBER + r'\s*$',
# fmt: on
outtext,
re.MULTILINE,
)
if mobj2:
logger.debug(f"matched tce dipole moment")
# only pulling Debye
psivar[f"CURRENT DIPOLE"] = np.array([mobj2.group(1), mobj2.group(3), mobj2.group(5)])
# Process CCSD/CCSD(T) using nwchem CCSD/CCSD(T) [dertype] command
mobj = re.search(
# fmt: off
r'^\s+' + r'-----------' + r'\s*' +
r'^\s+' + r'CCSD Energy' + r'\s*' +
r'^\s+' + r'-----------' + r'\s*' +
r'^\s+' + r'Reference energy:' + r'\s+' + NUMBER + r'\s*' +
r'^\s+' + r'CCSD corr\. energy:' + r'\s+' + NUMBER + r'\s*' +
r'^\s+' + r'Total CCSD energy:' + r'\s+' + NUMBER + r'\s*$',
# fmt: on
outtext,
re.MULTILINE | re.DOTALL,
)
if mobj:
logger.debug("matched ccsd")
psivar["CCSD CORRELATION ENERGY"] = mobj.group(2)
psivar["CCSD TOTAL ENERGY"] = mobj.group(3)
module = "cc"
mobj = re.search(
# fmt: off
r'^\s+' + r'T\(CCSD\) corr\. energy:' + r'\s+' + r"(?P<tccsdcorr>" + NUMBER + r")" + r'\s*' +
r'^\s+' + r'Total CCSD\+T\(CCSD\) energy:' + r'\s+' + r"(?P<tccsdtot>" + NUMBER + r")" + r'\s*$',
# fmt: on
outtext,
re.MULTILINE | re.DOTALL,
)
if mobj:
logger.debug("matched ccsd+t(ccsd)")
psivar["T(CCSD) CORRECTION ENERGY"] = mobj.group("tccsdcorr")
psivar["CCSD+T(CCSD) CORRELATION ENERGY"] = Decimal(mobj.group("tccsdtot")) - psivar["HF TOTAL ENERGY"]
psivar["CCSD+T(CCSD) TOTAL ENERGY"] = mobj.group("tccsdtot")
module = "cc"
mobj = re.search(
# fmt: off
r'^\s+' + r'--------------' + r'\s*' +
r'^\s+' + r'CCSD\(T\) Energy' + r'\s*' +
r'^\s+' + r'--------------' + r'\s*' + r'(?:.*?)' +
r'^\s+' + r'\(T\) corr\. energy:' + r'\s+' + NUMBER + r'\s*' +
r'^\s+' + r'Total CCSD\(T\) energy:' + r'\s+' + NUMBER + r'\s*$',
# fmt: on
outtext,
re.MULTILINE | re.DOTALL,
)
if mobj:
logger.debug("matched ccsd(t)")
psivar["(T) CORRECTION ENERGY"] = mobj.group(1)
psivar["CCSD(T) CORRELATION ENERGY"] = Decimal(mobj.group(2)) - psivar["HF TOTAL ENERGY"]
psivar["CCSD(T) TOTAL ENERGY"] = mobj.group(2)
module = "cc"
mobj = re.search(
# fmt: off
r'^\s+' + r'Spin Component Scaled \(SCS\) CCSD' + r'\s*' +
r'^\s+' + r'-*' + r'\s*' +
r'^\s+' + r'Same spin contribution:' + r'\s+' + NUMBER + r'\s*' +
r'^\s+' + r'Same spin scaling factor:' + r'\s+' + NUMBER + r'\s*'
r'^\s+' + r'Opposite spin contribution:' + r'\s+' + NUMBER + r'\s*' +
#r'^\s+' + r'Opposite spin scaling factor' + r'\s+' + NUMBER + r'\s*'
r'^\s+' + r'Opposite spin scaling fact.:' + r'\s+' + NUMBER + r'\s*' +
r'^\s+' + r'SCS-CCSD correlation energy:' + r'\s+' + NUMBER + r'\s*' +
r'^\s+' + r'Total SCS-CCSD energy:' + r'\s+' + NUMBER + r'\s*$',
# fmt: on
outtext,
re.MULTILINE | re.DOTALL,
)
# SCS-CCSD included
if mobj:
logger.debug("matched scs-ccsd", mobj.groups())
psivar["CCSD SAME-SPIN CORRELATION ENERGY"] = mobj.group(1)
psivar["CCSD OPPOSITE-SPIN CORRELATION ENERGY"] = mobj.group(3)
# psivar['CCSD SAME-SPIN CORRELATION ENERGY'] = psivar['SCS-CCSD SAME-SPIN CORRELATION ENERGY'] = (
# Decimal(mobj.group(1)) * Decimal(mobj.group(2)))
# psivar['CCSD OPPOSITE-SPIN CORRELATION ENERGY'] = psivar['SCS-CCSD OPPOSITE-SPIN CORRELATION ENERGY'] = (
# Decimal(mobj.group(4)) * Decimal(mobj.group(3)))
# psivar['SCS-CCSD CORRELATION ENERGY'] = mobj.group(5)
# psivar['SCS-CCSD TOTAL ENERGY'] = mobj.group(6)
# psivar['CUSTOM SCS-CCSD CORRELATION ENERGY'] = 0.5 * (float(
# psivar['CCSD SAME-SPIN CORRELATION ENERGY']) + float(psivar['CCSD OPPOSITE-SPIN CORRELATION ENERGY']))
# psivar['CUSTOM SCS-CCSD TOTAL ENERGY'] = float(mobj.group(6)) + float(
# psivar['CUSTOM SCS-CCSD CORRERLATION ENERGY'])
# Process EOM-[cc_name] #nwchem_tce_dipole = false
# Parsed information: each symmetry, root excitation energy in eV and total energy in hartree
# psivar name might need to be fixed
# each root excitation energy is extracted from the last iteration of right hand side
mobj = re.findall(
# fmt: off
r'^\s+(?:Excited-state calculation \( )(.*)\s+(?:symmetry\))\s+(?:.*\n)*^\s+EOM-' + cc_name +
# (..) captures symmetry
r'right-hand side iterations\s+(?:.*\n)*(?:Excited state root)\s+' + NUMBER + #root
r'\s*(?:Excitation energy / hartree)\s+.\s+' + NUMBER + #excitation energy hartree
r'\s*(?:/ eV)\s+.\s+' + NUMBER + r'\s*$',
# excitation energy eV
# fmt: on
outtext,
re.MULTILINE | re.DOTALL,
)
# regex should be more dynamic in finding values, need to revisit
# mobj.group(0) = symmetry value
# mobj.group(1) = cc_name
# mobj.group(2) = root number
# mobj.group(3) = excitation energy (hartree)
# mobj.group(4) = excitation energy (eV)
if mobj:
logger.debug(mobj)
ext_energy = {} # dic
ext_energy_list = []
logger.debug(f"matched eom-{cc_name}")
for mobj_list in mobj:
logger.debug("matched EOM-%s - %s symmetry" % (cc_name, mobj_list[0])) # cc_name, symmetry
logger.debug(mobj_list)
count = 0
for line in mobj_list[1].splitlines():
lline = line.split()
logger.debug(lline[1]) # in hartree
logger.debug(lline[2]) # in eV
count += 1
logger.debug("matched excitation energy #%d - %s symmetry" % (count, mobj_list[0]))
ext_energy_list.append(lline[1]) # Collect all excitation energies
sym = str(mobj_list[0])
ext_energy.setdefault(sym, [])
ext_energy[sym].append(lline[1]) # Dictionary: symmetries(key), energies(value)
ext_energy_list.sort(key=float)
for nroot in range(len(ext_energy_list)):
for k, e_val in ext_energy.items():
if ext_energy_list[nroot] in e_val:
symm = k
# in hartree
psivar[
f"EOM-{cc_name} ROOT 0 -> ROOT {nroot + 1} EXCITATION ENERGY - {symm} SYMMETRY"
] = ext_energy_list[nroot]
psivar[f"EOM-{cc_name} ROOT 0 -> ROOT {nroot + 1} TOTAL ENERGY - {symm} SYMMETRY"] = psivar[
f"{cc_name} TOTAL ENERGY"
] + Decimal(ext_energy_list[nroot])
gssym = ""
gs = re.search(r"^\s+" + r"Ground-state symmetry is" + gssym + r"\s*$", outtext, re.MULTILINE)
if gs:
logger.debug("matched ground-state symmetry")
psivar["GROUND-STATE SYMMETRY"] = gssym.group(1)
# Process TDDFT
# 1) Spin allowed
mobj = re.findall(
# fmt: off
r'^\s+(?:Root)\s+(\d+)\s+(.*?)\s+' + NUMBER + r'\s+(?:a\.u\.)\s+' + NUMBER + r"\s+eV\s*" +
r"^\s+" + r"<S2>\s+=\s+" + NUMBER + r"\s*"
#Root | symmetry | a.u. | eV
# unkn units for dip/quad
+ r'\s+(?:.*\n)\s+Transition Moments\s+X\s+'+ NUMBER + r'\s+Y\s+'+ NUMBER+ r'\s+Z\s+'+ NUMBER #dipole
+ r'\s+Transition Moments\s+XX\s+'+ NUMBER + r'\s+XY\s+'+ NUMBER+ r'\s+XZ\s+'+ NUMBER #quadrople
+ r'\s+Transition Moments\s+YY\s+'+ NUMBER + r'\s+YZ\s+'+ NUMBER+ r'\s+ZZ\s+'+ NUMBER #quadrople
+ r"\s+" + r"Dipole Oscillator Strength" + r"\s+" + NUMBER + r"\s*$",
# fmt: on
outtext,
re.MULTILINE,
)
if mobj:
logger.debug("matched TDDFT with transition moments")
for mobj_list in mobj:
logger.debug(mobj_list)
iroot = mobj_list[0]
sym = mobj_list[1]
# in eV
psivar[f"TDDFT ROOT {iroot} EXCITATION ENERGY - {sym} SYMMETRY"] = mobj_list[2]
psivar[f"TDDFT ROOT {iroot} EXCITED STATE ENERGY - {sym} SYMMETRY"] = psivar[
"DFT TOTAL ENERGY"
] + Decimal(mobj_list[2])
psivar[f"TDDFT ROOT 0 -> ROOT {iroot} DIPOLE"] = [
float(mobj_list[5]),
float(mobj_list[6]),
float(mobj_list[7]),
]
psivar[f"TDDFT ROOT 0 -> ROOT {iroot} QUADRUPOLE"] = [
float(mobj_list[8]),
float(mobj_list[9]),
float(mobj_list[10]),
float(mobj_list[9]),
float(mobj_list[11]),
float(mobj_list[12]),
float(mobj_list[10]),
float(mobj_list[12]),
float(mobj_list[13]),
]
psivar[f"TDDFT ROOT 0 -> ROOT {iroot} OSCILLATOR STRENGTH (LEN)"] = mobj_list[14]
# 2) Spin forbidden
mobj = re.findall(
# fmt: off
r'^\s+(?:Root)\s+(\d+)\s+(.*?)\s+' + NUMBER + r'\s(?:a\.u\.)\s+' + NUMBER + r'\s+(?:\w+)' # Root | symmetry | a.u. | eV
+ r'\s+(?:.\w+.\s+.\s+\d+.\d+)' # s2 value
+ r'\s+Transition Moments\s+(?:Spin forbidden)' + r'\s*$',
# fmt: on
outtext,
re.MULTILINE,
)
# mobj.group(0) = Root
# mobj.group(1) = symmetry
# mobj.group(2) a.u.
# mobj.group(3) e.V
# mobj.group(4) Excitation energy
# mobj.group(5) Excited state energy
if mobj:
logger.debug("matched TDDFT - spin forbidden")
for mobj_list in mobj:
#### temporary psivars ####
# in eV
psivar[f"TDDFT ROOT {mobj_list[0]} EXCITATION ENERGY - {mobj_list[2]} SYMMETRY"] = mobj_list[4]
psivar[f"TDDFT ROOT {mobj_list[0]} EXCITED STATE ENERGY - {mobj_list[2]} SYMMETRY"] = psivar[
"DFT TOTAL ENERGY"
] + qcel.constants.converstion_factor("eV", "hartree") * Decimal(mobj_list[4])
# psivar['TDDFT ROOT %s %s %s EXCITATION ENERGY' %
# (mobj_list[0], mobj_list[1], mobj_list[2])] = mobj_list[3] # in a.u.
# psivar['TDDFT ROOT %s %s %s EXCITED STATE ENERGY' %(mobj_list[0], mobj_list[1], mobj_list[2])] = \
# psivar['DFT TOTAL ENERGY'] + Decimal(mobj_list[3])
if mobj:
logger.debug("Non-variation initial energy") # prints out energy, 5 counts
# Process geometry
# 1) CHARGE
# Read charge from SCF module
mobj = re.search(
r"^\s+" + r"charge =" + r"\s+" + NUMBER + r"\s*$", outtext, re.MULTILINE | re.IGNORECASE
)
if mobj:
logger.debug("matched charge")
out_charge = int(float(mobj.group(1)))
# Read charge from General information (not scf module)
mobj = re.search(
r"^\s+" + r"Charge :" + r"\s+" + r"(-?\d+)" + r"\s*$", outtext, re.MULTILINE | re.IGNORECASE
)
if mobj:
logger.debug("matched charge")
out_charge = int(float(mobj.group(1)))
# 2) MULTIPLICITY
# Read multiplicity from SCF module
mobj = re.search(
r"^\s+" + r"open shells =" + r"\s+" + r"(\d+)" + r"\s*$", outtext, re.MULTILINE | re.IGNORECASE
)
calcinfo = False
if mobj:
logger.debug("matched multiplicity")
out_mult = int(mobj.group(1)) + 1
# Read multiplicity from SCF module through alpha, beta electrons
mobj = re.search(
# fmt: off
r'^\s+' + r'alpha electrons =' + r'\s+' + r'(\d+)' + r'\s*' +
r'^\s+' + r'beta electrons =' + r'\s+' + r'(\d+)' + r'\s*$',
# fmt: on
outtext,
re.MULTILINE | re.IGNORECASE,
)
if mobj:
logger.debug("matched multiplicity via alpha and beta electrons 0")
out_mult = int(mobj.group(1)) - int(mobj.group(2)) + 1 # nopen + 1
psivar["N ALPHA ELECTRONS"] = mobj.group(1)
psivar["N BETA ELECTRONS"] = mobj.group(2)
mobj = re.search(
# fmt: off
r"^\s+" + r"Basis functions" + r"\s+=\s+" + r"(?P<nbf>\d+)" + r"\s*" +
r"^\s+" + r"Molecular orbitals" + r"\s+=\s+" + r"(?P<nmo>\d+)" + r"\s*" +
r"^\s+" + r"Frozen core" + r"\s+=\s+" + r"(?P<nfc>\d+)" + r"\s*" +
r"^\s+" + r"Frozen virtuals" + r"\s+=\s+" + r"(?P<nfv>\d+)" + r"\s*" +
r"^\s+" + r"Active alpha occupied" + r"\s+=\s+" + r"(?P<nao>\d+)" + r"\s*" +
r"^\s+" + r"Active beta occupied" + r"\s+=\s+" + r"(?P<nbo>\d+)" + r"\s*" +
r"^\s+" + r"Active alpha virtual" + r"\s+=\s+" + r"(?P<nav>\d+)" + r"\s*" +
r"^\s+" + r"Active beta virtual" + r"\s+=\s+" + r"(?P<nbv>\d+)" + r"\s*",
# fmt: on
outtext,
re.MULTILINE | re.IGNORECASE,
)
if mobj:
logger.debug("matched alpha and beta electrons 1", mobj.groups())
calcinfo = True
psivar["N BASIS FUNCTIONS"] = mobj.group("nbf")
psivar["N MOLECULAR ORBITALS"] = mobj.group("nmo")
psivar["N ALPHA ELECTRONS"] = int(mobj.group("nao")) + int(mobj.group("nfc"))
psivar["N BETA ELECTRONS"] = int(mobj.group("nbo")) + int(mobj.group("nfc"))
mobj = re.search(
# fmt: off
r"^\s+" + "No. of electrons" + r"\s+:\s+" + r"(?P<ne>\d+)" + r"\s*" +
r"^\s+" + "Alpha electrons" + r"\s+:\s+" + r"(?P<nae>\d+)" + r"\s*" +
r"^\s+" + "Beta electrons" + r"\s+:\s+" + r"(?P<nbe>\d+)" + r"\s*" +
r"^\s+" + "No. of orbitals" + r"\s+:\s+" + r"(?P<no>\d+)" + r"\s*" +
r"^\s+" + "Alpha orbitals" + r"\s+:\s+" + r"(?P<namo>\d+)" + r"\s*" +
r"^\s+" + "Beta orbitals" + r"\s+:\s+" + r"(?P<nbmo>\d+)" + r"\s*" +
r"^\s+" + "Alpha frozen cores" + r"\s+:\s+" + r"(?P<nafc>\d+)" + r"\s*" +
r"^\s+" + "Beta frozen cores" + r"\s+:\s+" + r"(?P<nbfc>\d+)" + r"\s*" +
r"^\s+" + "Alpha frozen virtuals" + r"\s+:\s+" + r"(?P<nafv>\d+)" + r"\s*" +
r"^\s+" + "Beta frozen virtuals" + r"\s+:\s+" + r"(?P<nbfv>\d+)" + r"\s*" +
r"^\s+" + "Spin multiplicity" + r"\s+:\s+\w+" + r"\s*" +
r"^\s+" + "Number of AO functions" + r"\s+:\s+" + r"(?P<nbf>\d+)" + r"\s*",
# fmt: on
outtext,
re.MULTILINE | re.IGNORECASE,
)
if mobj and not calcinfo:
logger.debug("matched alpha and beta electrons 2", mobj.groups())
calcinfo = True
psivar["N BASIS FUNCTIONS"] = mobj.group("nbf")
psivar["N MOLECULAR ORBITALS"] = (int(mobj.group("namo")) + int(mobj.group("nbmo"))) / 2
psivar["N ALPHA ELECTRONS"] = mobj.group("nae")
psivar["N BETA ELECTRONS"] = mobj.group("nbe")
mobj = re.search(
# fmt: off
r"^\s+" + "functions" + r"\s+=\s+" + r"(?P<nbf>\d+)" + r"\s*" +
r"^\s+" + "atoms" + r"\s+=\s+" + r"(?P<nat>\d+)" + r"\s*" +
r"^\s+" + "alpha electrons" + r"\s+=\s+" + r"(?P<nae>\d+)" + r"\s*" +
r"^\s+" + "beta electrons" + r"\s+=\s+" + r"(?P<nbe>\d+)" + r"\s*",
# fmt: on
outtext,
re.MULTILINE | re.IGNORECASE,
)
if mobj and not calcinfo:
logger.debug("matched alpha and beta electrons 3", mobj.groups())
calcinfo = True
psivar["N BASIS FUNCTIONS"] = mobj.group("nbf")
psivar["N MOLECULAR ORBITALS"] = mobj.group("nbf")
psivar["N ALPHA ELECTRONS"] = mobj.group("nae")
psivar["N BETA ELECTRONS"] = mobj.group("nbe")
mobj = re.search(
# fmt: off
r"^\s+" + "functions" + r"\s+=\s+" + r"(?P<nbf>\d+)" + r"\s*" +
r"^\s+" + "atoms" + r"\s+=\s+" + r"(?P<nat>\d+)" + r"\s*" +
r"^\s+" + "closed shells" + r"\s+=\s+" + r"(?P<ncl>\d+)" + r"\s*" +
r"^\s+" + "open shells" + r"\s+=\s+" + r"(?P<nop>\d+)" + r"\s*",
# fmt: on
outtext,
re.MULTILINE | re.IGNORECASE,
)
if mobj and not calcinfo:
logger.debug("matched alpha and beta electrons 4", mobj.groups())
calcinfo = True
psivar["N BASIS FUNCTIONS"] = mobj.group("nbf")
psivar["N MOLECULAR ORBITALS"] = mobj.group("nbf") # BAD! TODO
psivar["N ALPHA ELECTRONS"] = int(mobj.group("ncl")) + int(mobj.group("nop"))
psivar["N BETA ELECTRONS"] = mobj.group("ncl")
# Read multiplicity from General information (not scf module)
mobj = re.search(
r"^\s+" + r"Spin multiplicity:" + r"\s+" + r"(\d+)" + r"\s*$", outtext, re.MULTILINE | re.IGNORECASE
)
if mobj:
logger.debug("matched multiplicity")
out_mult = int(mobj.group(1))
# 3) Initial geometry
mobj = re.search(
# fmt: off
r'^\s+' + r'Geometry' + r'.*' + r'\s*' +
r'^\s+' + r'(?:-+)\s*' + r'\s+' + r'\n' +
r'^\s' + r'Output coordinates in ' + r'(.*?)' + r'\s' + r'\(scale by' + r'.*' + r'\s' + r'to convert to a\.u\.\)' + r'\s+' + r'\n' +
r'^\s+' + r'No\.\ Tag Charge X Y Z' + r'\s*' +
r'^\s+' + r'---- ---------------- ---------- -------------- -------------- --------------' + r'\s*' +
r'((?:\s+([1-9][0-9]*)+\s+([A-Z][a-z]*)+\s+\d+\.\d+\s+[-+]?\d+\.\d+\s+[-+]?\d+\.\d+\s+[-+]?\d+\.\d+\s*\n)+)' + r'\s*$',
# fmt: on
outtext,
re.MULTILINE | re.IGNORECASE,
)
if mobj:
logger.debug("matched geom")
# dinky molecule w/ charge and multiplicity
if mobj.group(1) == "angstroms":
molxyz = "%d \n%d %d tag\n" % (len(mobj.group(2).splitlines()), out_charge, out_mult) # unit = angstrom
for line in mobj.group(2).splitlines():
lline = line.split()
molxyz += "%s %16s %16s %16s\n" % (lline[-5], lline[-3], lline[-2], lline[-1])
# Jiyoung was collecting charge (-4)? see if this is ok for ghosts
# Tag , X, Y, Z
psivar_coord = Molecule(
validate=False,
**qcel.molparse.to_schema(
qcel.molparse.from_string(molxyz, dtype="xyz+", fix_com=True, fix_orientation=True)["qm"],
dtype=2,
),
)
else: # unit = a.u.
molxyz = "%d au\n%d %d tag\n" % (len(mobj.group(2).splitlines()), out_charge, out_mult)
for line in mobj.group(2).splitlines():
lline = line.split()
molxyz += "%s %16s %16s %16s\n" % (int(float(lline[-4])), lline[-3], lline[-2], lline[-1])
# Tag , X, Y, Z
psivar_coord = Molecule(
validate=False,
**qcel.molparse.to_schema(
qcel.molparse.from_string(molxyz, dtype="xyz+", fix_com=True, fix_orientation=True)["qm"],
dtype=2,
),
)
# Process gradient
mobj = re.search(
# fmt: off
r'^\s+' + r'.*' + r'ENERGY GRADIENTS' + r'\s*' + r'\s+' + r'\n' +
r'^\s+' + r'atom coordinates gradient' + r'\s*' +
r'^\s+' + r'x y z x y z' + r'\s*' +
r'((?:\s+([1-9][0-9]*)+\s+([A-Z][a-x]*)+\s+[-+]?\d+\.\d+\s+[-+]?\d+\.\d+\s+[-+]?\d+\.\d+\s+[-+]?\d+\.\d+\s+[-+]?\d+\.\d+\s+[-+]?\d+\.\d+\s*\n)+)' + r'\s*$',
# fmt: on
outtext,
re.MULTILINE,
)
if mobj:
logger.debug("matched molgrad")
atoms = []
psivar_grad = []
for line in mobj.group(1).splitlines():
lline = line.split() # Num, Tag, coord x, coord y, coord z, grad x, grad y, grad z
# print (lline)
if lline == []:
pass
else:
atoms.append(lline[1]) # Tag
psivar_grad.append([float(lline[-3]), float(lline[-2]), float(lline[-1])])
psivar_grad = np.array(psivar_grad).reshape((-1, 3))
# Process dipole (Properties)
mobj = re.search(
# fmt: off
r'^\s+' + r'Dipole moment' + r'\s+' + NUMBER + r'\s+' + r'A\.U\.' + r'\s*' +
r'^\s+' + r'DMX' + r'\s+' + NUMBER + r'.*' +
r'^\s+' + r'DMY' + r'\s+' + NUMBER + r'.*' +
r'^\s+' + r'DMZ' + r'\s+' + NUMBER + r'.*' +
r'^\s+' + r'.*' +
r'^\s+' + r'Total dipole' + r'\s+' + NUMBER + r'\s+' + r'A\.U\.' + r'\s*' +
r'^\s+' + r'Dipole moment' + r'\s+' + NUMBER + r'\s' + r'Debye\(s\)' + r'\s*' +
r'^\s+' + r'DMX' + r'\s+' + NUMBER + r'.*' +
r'^\s+' + r'DMY' + r'\s+' + NUMBER + r'.*' +
r'^\s+' + r'DMZ' + r'\s+' + NUMBER + r'.*' +
r'^\s+' + r'.*' +
r'^\s+' + r'Total dipole' + r'\s+' + NUMBER + r'\s' + r'DEBYE\(S\)' + r'\s*$',
# fmt: on
outtext,
re.MULTILINE,
)
if mobj:
logger.debug("matched total dipole")
# UNIT = DEBYE(S)
psivar[f"CURRENT DIPOLE"] = d2au * np.array([mobj.group(7), mobj.group(8), mobj.group(9)])
# total?
# Process error code
mobj = re.search(
# fmt: off
r'^\s+' + r'current input line \:' + r'\s*' +
r'^\s+' + r'([1-9][0-9]*)' + r'\:' + r'\s+' + r'(.*)' + r'\s*' +
r'^\s+' r'------------------------------------------------------------------------' + r'\s*' +
r'^\s+' r'------------------------------------------------------------------------' + r'\s*' +
r'^\s+' + r'There is an error in the input file' + r'\s*$',
# fmt: on
outtext,
re.MULTILINE,
)
if mobj:
logger.debug("matched error")
# print (mobj.group(1)) #error line number
# print (mobj.group(2)) #error reason
psivar["NWCHEM ERROR CODE"] = mobj.group(1)
# TODO process errors into error var
# Get the size of the basis sets, etc
mobj = re.search(r"No. of atoms\s+:\s+(\d+)", outtext, re.MULTILINE)
if mobj:
psivar["N ATOMS"] = mobj.group(1)
mobj = re.search(
r"No. of electrons\s+:\s+(\d+)\s+Alpha electrons\s+:\s+(\d+)\s+Beta electrons\s+:\s+(\d+)",
outtext,
re.MULTILINE,
)
if mobj:
psivar["N ALPHA ELECTRONS"] = mobj.group(2)
psivar["N BETA ELECTRONS"] = mobj.group(3)
if psivar["N ALPHA ELECTRONS"] == psivar["N BETA ELECTRONS"]:
# get HOMO and LUMO energy
mobj = re.search(
r"Vector"
+ r"\s+"
+ r"%d" % (psivar["N ALPHA ELECTRONS"])
+ r"\s+"
+ r"Occ="
+ r".*"
+ r"\s+"
+ r"E="
+ r"([+-]?\s?\d+[.]\d+)"
+ r"[D]"
+ r"([+-]0\d)",
outtext,
re.MULTILINE,
)
if mobj:
homo = float(mobj.group(1)) * (10 ** (int(mobj.group(2))))
psivar["HOMO"] = np.array([round(homo, 10)])
mobj = re.search(
r"Vector"
+ r"\s+"
+ r"%d" % (psivar["N ALPHA ELECTRONS"] + 1)
+ r"\s+"
+ r"Occ="
+ r".*"
+ r"\s+"
+ r"E="
+ r"([+-]?\s?\d+[.]\d+)"
+ r"[D]"
+ r"([+-]0\d)",
outtext,
re.MULTILINE,
)
if mobj:
lumo = float(mobj.group(1)) * (10 ** (int(mobj.group(2))))
psivar["LUMO"] = np.array([round(lumo, 10)])
mobj = re.search(r"AO basis - number of functions:\s+(\d+)\s+number of shells:\s+(\d+)", outtext, re.MULTILINE)
if mobj:
psivar["N MOLECULAR ORBITALS"] = mobj.group(1)
psivar["N BASIS FUNCTIONS"] = mobj.group(1)
# Search for Center of charge
mobj = re.search(
r"Center of charge \(in au\) is the expansion point"
+ r"\n"
+ r"\s+"
+ r"X\s+=\s+([+-]?\d+[.]\d+)"
+ r"\s+"
+ r"Y\s+=\s+([+-]?\d+[.]\d+)"
+ r"\s+"
+ r"Z\s+=\s+([+-]?\d+[.]\d+)",
outtext,
re.MULTILINE,
)
if mobj:
psivar["CENTER OF CHARGE"] = np.array([mobj.group(1), mobj.group(2), mobj.group(3)])
mobj = re.search(
r"Dipole moment"
+ r".*?"
+ r"A\.U\."
+ r"\s+"
+ r"DMX\s+([+-]?\d+[.]\d+)\s+"
+ r"DMXEFC\s+[+-]?\d+[.]\d+\s+"
+ r"DMY\s+([+-]?\d+[.]\d+)\s+"
+ r"DMYEFC\s+[+-]?\d+[.]\d+\s+"
+ r"DMZ\s+([+-]?\d+[.]\d+)\s+"
+ r"DMZEFC\s+[+-]?\d+[.]\d+\s+"
+ r"\-EFC\-"
+ r".*?"
+ r"A\.U\.\s+"
+ r"Total dipole\s+([+-]?\d+[.]\d+\s+)",
outtext,
re.MULTILINE,
)
# + r"DMY\s+" + r"([+-]?\d+[.]\d+)", outtext, re.MULTILINE)
if mobj:
psivar["DIPOLE MOMENT"] = np.array([mobj.group(1), mobj.group(2), mobj.group(3)])
psivar["TOTAL DIPOLE MOMENT"] = mobj.group(4)
# Process CURRENT energies (TODO: needs better way)
if "HF TOTAL ENERGY" in psivar:
psivar["SCF TOTAL ENERGY"] = psivar["HF TOTAL ENERGY"]
psivar["CURRENT REFERENCE ENERGY"] = psivar["HF TOTAL ENERGY"]
psivar["CURRENT ENERGY"] = psivar["HF TOTAL ENERGY"]
if "MCSCF TOTAL ENERGY" in psivar:
psivar["CURRENT REFERENCE ENERGY"] = psivar["MCSCF TOTAL ENERGY"]
psivar["CURRENT CORRELATION ENERGY"] = 0.0
psivar["CURRENT ENERGY"] = psivar["MCSCF TOTAL ENERGY"]
if "MP2 TOTAL ENERGY" in psivar and "MP2 CORRELATION ENERGY" in psivar:
psivar["CURRENT CORRELATION ENERGY"] = psivar["MP2 CORRELATION ENERGY"]
psivar["CURRENT ENERGY"] = psivar["MP2 TOTAL ENERGY"]
if "MP3 TOTAL ENERGY" in psivar and "MP3 CORRECTION ENERGY" in psivar:
psivar["CURRENT CORRELATION ENERGY"] = psivar["MP3 TOTAL ENERGY"] - psivar["HF TOTAL ENERGY"]
psivar["CURRENT ENERGY"] = psivar["MP3 TOTAL ENERGY"]
if "MP4 TOTAL ENERGY" in psivar and "MP4 CORRECTION ENERGY" in psivar:
psivar["CURRENT CORRELATION ENERGY"] = psivar["MP4 TOTAL ENERGY"] - psivar["HF TOTAL ENERGY"]
psivar["CURRENT ENERGY"] = psivar["MP4 TOTAL ENERGY"]
if "CISD TOTAL ENERGY" in psivar and "CISD CORRELATION ENERGY" in psivar:
psivar["CURRENT CORRELATION ENERGY"] = psivar["CISD CORRELATION ENERGY"]
psivar["CURRENT ENERGY"] = psivar["CISD TOTAL ENERGY"]
if "QCISD TOTAL ENERGY" in psivar and "QCISD CORRELATION ENERGY" in psivar:
psivar["CURRENT CORRELATION ENERGY"] = psivar["QCISD CORRELATION ENERGY"]
psivar["CURRENT ENERGY"] = psivar["QCISD TOTAL ENERGY"]
if "LCCD TOTAL ENERGY" in psivar and "LCCD CORRELATION ENERGY" in psivar:
psivar["CURRENT CORRELATION ENERGY"] = psivar["LCCD CORRELATION ENERGY"]
psivar["CURRENT ENERGY"] = psivar["LCCD TOTAL ENERGY"]
if "LCCSD TOTAL ENERGY" in psivar and "LCCSD CORRELATION ENERGY" in psivar:
psivar["CURRENT CORRELATION ENERGY"] = psivar["LCCSD CORRELATION ENERGY"]
psivar["CURRENT ENERGY"] = psivar["LCCSD TOTAL ENERGY"]
if "DFT TOTAL ENERGY" in psivar:
psivar["CURRENT REFERENCE ENERGY"] = psivar["DFT TOTAL ENERGY"]
psivar["CURRENT ENERGY"] = psivar["DFT TOTAL ENERGY"]
# Process TCE CURRENT energies
# Need to be fixed
# HOW TO KNOW options['NWCHEM']['NWCHEM_TCE']['value']?
# TODO: CURRENT ENERGY = TCE ENERGY
if "%s TOTAL ENERGY" % (cc_name) in psivar and ("%s CORRELATION ENERGY" % (cc_name) in psivar):
psivar["CURRENT CORRELATION ENERGY"] = psivar["%s CORRELATION ENERGY" % (cc_name)]
psivar["CURRENT ENERGY"] = psivar["%s TOTAL ENERGY" % (cc_name)]
if "CCD TOTAL ENERGY" in psivar and "CCD CORRELATION ENERGY" in psivar:
psivar["CURRENT CORRELATION ENERGY"] = psivar["CCD CORRELATION ENERGY"]
psivar["CURRENT ENERGY"] = psivar["CCD TOTAL ENERGY"]
if "CCSD TOTAL ENERGY" in psivar and "CCSD CORRELATION ENERGY" in psivar:
psivar["CURRENT CORRELATION ENERGY"] = psivar["CCSD CORRELATION ENERGY"]
psivar["CURRENT ENERGY"] = psivar["CCSD TOTAL ENERGY"]
if "CCSD+T(CCSD) TOTAL ENERGY" in psivar and "CCSD+T(CCSD) CORRELATION ENERGY" in psivar:
psivar["CURRENT CORRELATION ENERGY"] = psivar["CCSD+T(CCSD) CORRELATION ENERGY"]
psivar["CURRENT ENERGY"] = psivar["CCSD+T(CCSD) TOTAL ENERGY"]
if "CCSD(T) TOTAL ENERGY" in psivar and "CCSD(T) CORRELATION ENERGY" in psivar:
psivar["CURRENT CORRELATION ENERGY"] = psivar["CCSD(T) CORRELATION ENERGY"]
psivar["CURRENT ENERGY"] = psivar["CCSD(T) TOTAL ENERGY"]
if "CCSDT TOTAL ENERGY" in psivar and "CCSDT CORRELATION ENERGY" in psivar:
psivar["CURRENT CORRELATION ENERGY"] = psivar["CCSDT CORRELATION ENERGY"]
psivar["CURRENT ENERGY"] = psivar["CCSDT TOTAL ENERGY"]
if ("EOM-%s TOTAL ENERGY" % (cc_name) in psivar) and ("%s EXCITATION ENERGY" % (cc_name) in psivar):
psivar["CURRENT ENERGY"] = psivar["EOM-%s TOTAL ENERGY" % (cc_name)]
psivar["CURRENT EXCITATION ENERGY"] = psivar["%s EXCITATION ENERGY" % (cc_name)]
psivar[f"N ATOMS"] = len(psivar_coord.symbols)
return psivar, psivar_coord, psivar_grad, version, module, error
| 10,498
|
def create_denoising_dataset(epi_path,log_path,acqtimes_path,rot_dir=-1, interactive=True, img_dir=None, slice_indices=None, inner_mask_level=.004):
"""Generates masks and timeseries for analysis.
Parameters
----------
epi_path : str
Path to the phantom data.
log_path : str
Path to the BrainDancer movement log file.
acqtimes_path : str
Path to the slice timing file.
interactive : bool, optional
If True (default), prompt user for decision inputs
img_dir : str, optional
If specified, displays will be saved to file. Otherwise, display onscreen.
slice_indices : tuple, optional
start and end indices of slices to include for processing.
inner_mask_level : float
Threshold for segmenting the phantom.
"""
data_read = nib.load(epi_path)
if interactive:
display_all_slices(data_read,0)
start = int(input('Enter the first good slice: '))
end = int(input('Enter the last good slice: '))
# non-interactive. select specified slices
elif slice_indices is not None:
start = slice_indices[0]
end = slice_indices[1]
slice_img_path = os.path.join(img_dir, 'slices.png')
display_all_slices(data_read,0, file=slice_img_path, subset=np.arange(start, end+1))
# non-interactive, but empty slice list
else:
raise TypeError('slice_indices cannot be None in non-interactive mode')
with open(log_path, 'r') as fp:
line = fp.readline()
if line.startswith('Sequence'):
# skip lines
log = pd.read_csv(log_path, header=2)
else:
log = pd.read_csv(log_path)
motion_time = np.max(log['Tmot'].values)
acq_times = pd.read_csv(acqtimes_path)
motionfree = acq_times[acq_times['Time']>motion_time]['Slice'].values
total_slices = []
for i in list(motionfree):
if start<= i <= end:
total_slices.append(i)
print('Selected Slices for Analysis are: ', total_slices)
imask = []
cen = []
imask_metrics = []
center_rotation_all = []
omask = []
detect_remove = []
updated_total_slices = []
good_slices = []
for i in range(len(total_slices)):
if interactive:
level_img_path = None
center_img_path = None
else:
level_img_path = os.path.join(img_dir, f'contours_{i:03d}.png')
center_img_path = os.path.join(img_dir, f'centers_{i:03d}.png')
img_complete,cy_complete,cx_complete, radii_complete = inner_mask(epi_path,total_slices[i],volume_num=0,lvl=inner_mask_level,rad1=7,rad2=50,step=1, img_path=level_img_path)
center_rotation = cen_rotation(epi_path,total_slices[i],img_complete,cy_complete,cx_complete,radii_complete, canny_sgm=1, img_path=center_img_path)
if interactive:
detect = int(input('Enter 1 if this slice is good'))
good_slices.append(detect)
center_rotation_all.append(center_rotation)
imask.append(img_complete)
updated_total_slices.append(total_slices[i])
# TO DO - Include the option to generate outer mask and corresponding time_series, with something like below:
#out_mask = outer_mask(data_read,findcartridge(data_read,total_slices[i],0),total_slices[i],0)
#omask.append(out_mask)
# update good slices
if not interactive:
row_med = np.median([x[0] for x in center_rotation_all])
col_med = np.median([x[1] for x in center_rotation_all])
for row_cor,col_cor in center_rotation_all:
if np.all([row_cor <= row_med+1, row_cor >= row_med-1, col_cor <= col_med+1, col_cor >= col_med-1]):
good_slices.append(1)
else:
good_slices.append(0)
print(good_slices)
print(center_rotation_all)
center_rotation_all = [x for good,x in zip(good_slices, center_rotation_all) if good==1 ]
imask = [x for good,x in zip(good_slices, imask) if good==1 ]
updated_total_slices = [x for good,x in zip(good_slices, updated_total_slices) if good==1 ]
print(good_slices)
print(center_rotation_all)
if img_dir is not None:
motion_img = os.path.join(img_dir, 'motion.png')
else:
motion_img = None
positions = phantom_motion(log_path, img_path=motion_img)
synth = create_mean_slices(data_read,updated_total_slices,imask,200)
simulated_data = simulate_inner(synth,positions,updated_total_slices,imask,center_rotation_all,rot_dir)
scanner_inner = scanner_output(data_read,positions,updated_total_slices,imask,200) # add omask in future for outer cylinder
return simulated_data, scanner_inner, imask, center_rotation_all, updated_total_slices
| 10,499
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.