content
stringlengths
35
416k
sha1
stringlengths
40
40
id
int64
0
710k
def replace_negative(l, default_value=0): """ Replaces all negative values with default_value :param l: Original list :param default_value: The value to replace negatives values with. Default is 0. :return: Number of values replaced """ n_replaced = 0 for i in range(len(l)): if l[i] < 0: l[i] = default_value n_replaced += 1 return n_replaced
431781a48a36a00329537b92b589cf223b945ca4
13,536
from typing import Union import pathlib import shutil import subprocess def git_commit(path: Union[str, pathlib.Path], error_message: str = 'parent directory is not a repository') -> str: """ Finds the current commit of a git repository. Parameters ---------- path: str or pathlib The path to the git repository. error_message: str Message returned when the above directory is not a git repository. Returns ------- out: str git commit """ path_to_git = shutil.which('git') if not path_to_git: return 'git no present' path = pathlib.Path(path) try: git_commit = subprocess.check_output([path_to_git, 'rev-parse', 'HEAD'], cwd=path, text=True, stderr=subprocess.STDOUT) except subprocess.CalledProcessError: git_commit = error_message else: git_commit = git_commit.rstrip() return git_commit
94839ba6e4ff6c2a23078468b1a920090470a7e8
13,537
def swap_64b(val): """ Byte swap val (unsigned int64) :param val: 64b value :return: swapped 64b """ tmp = ((val << 8) & 0xFF00FF00FF00FF00) | ((val >> 8) & 0x00FF00FF00FF00FF) tmp = ((tmp << 16) & 0xFFFF0000FFFF0000) | ((tmp >> 16) & 0x0000FFFF0000FFFF) tmp = (tmp << 32) | (tmp >> 32) return tmp & 0xFFFFFFFFFFFFFFFF
5b7fa81d352e94db03f8089f50fedd0ab7a3903e
13,538
def getClassAttendance(moduleCode): """ Will take in the module code and use the code to open the file of the specified module and read it to created the list of names, presents, absents and excuses. To be return for future use :param moduleCode: :return: (list) """ classData = open(f"{moduleCode}.txt", 'r') studentNameList = [] presentList = [] absentList = [] excuseList = [] while True: line = classData.readline().strip() if line == "": break lineData = line.split(',') studentNameList.append(lineData[0]) presentList.append(int(lineData[1])) absentList.append(int(lineData[2])) excuseList.append(int(lineData[3])) classData.close() # print(presentList) # print(absentList) # print(excuseList) return studentNameList, presentList, absentList, excuseList
a618b90bd6be84fbe23c28ab8d71a57c108b76dc
13,540
def layer_function2(x): """ lambda function """ return x[0] + x[1]
62a0ab30432fecad48afa18ecaf7d946ffb0d83b
13,541
import yaml def get_config(config): """Loads a yaml configuration file.""" with open(config, 'r') as stream: return yaml.load(stream, Loader=yaml.FullLoader)
58937acf5984b08193c78877fbb94c07c6d779df
13,542
def is_rgb(image): """ Return True if image is RGB (ie 3 channels) for pixels in WxH grid """ return len(image.shape) == 3 and image.shape[-1] == 3
f0452fc5f9b6eb69917f8b5de76329eb2e4f03b2
13,543
def get_method_args_as_dict(locals, should_remove_none=False): """ Use inside a class method to get all method arguments as a dictionary.\n Must pass locals() in at top of method\n """ locals.pop("self") if should_remove_none: for k, v in locals.items(): if v is None: locals.pop(k) return locals
e9903eb6216b81cb95fbeecaada8f3e34db864ee
13,545
def _attr_list_to_dict(attr_list): """ _attr_list_to_dict -- parse a string like: host:ami, ..., host:ami into a dictionary of the form: { host: ami host: ami } if the string is in the form "ami" then parse to format { default: ami } raises ValueError if list can't be parsed """ attr_dict = {} for host_attr in attr_list.split(","): host_attr = host_attr.split(":") if len(host_attr) == 1: attr_dict["default"] = host_attr[0].strip() elif len(host_attr) == 2: attr_dict[host_attr[0].strip()] = host_attr[1].strip() else: raise ValueError("Can't split '%s' into suitable host" " attribute pair" % host_attr) return attr_dict
378b1a55d908750eea2b457e35abce0a17364a41
13,547
def get_job_locations_from_db(loc_list): """Get the number of jobs by country as a dictionary.""" countries = {} for loc in loc_list: country = loc.split()[-1].lower() if country == 'usa' or country == 'states' or country == 'us': countries.setdefault('usa', 0) countries['usa'] += 1 elif country == 'uk' or country == 'kingdom' or country == 'england': countries.setdefault('uk', 0) countries['uk'] += 1 else: countries.setdefault(country, 0) countries[country] += 1 return countries
dd394bc6889be4e87f55bc523e4a9bc5d4ed617a
13,548
def humansize(nbytes): """ Translates a size in bytes to a human readable size format :param int nbytes: integer of size of torrent file :return: size in bytes in a human readable format :rtype: str """ suffixes = ['B', 'KB', 'MB', 'GB', 'TB', 'PB'] i = 0 while nbytes >= 1024 and i < len(suffixes)-1: nbytes /= 1024. i += 1 f = ('%.2f' % nbytes).rstrip('0').rstrip('.') return '{} {}'.format(f, suffixes[i])
98390c0f5c471b501caf2fa2bba1e593c8a17eb6
13,549
def pad_sents(sents, padding_token_index): """ Pad the sents(in word index form) into same length so they can form a matrix # 15447 >>> sents = [[1,2,3], [1,2], [1,2,3,4,5]] >>> pad_sents(sents, padding_token_index = -1) [[1, 2, 3, -1, -1], [1, 2, -1, -1, -1], [1, 2, 3, 4, 5]] """ max_len_sent = max(sents, key = lambda sent: len(sent)) max_len = len(max_len_sent) get_padding = lambda sent: [padding_token_index] * (max_len - len(sent)) padded_sents = [(sent + get_padding(sent)) for sent in sents] return padded_sents
0063d8716f7081644e4353de662d58f0dc04e8fe
13,550
import os def file_extension_detect(filename): """Determine if file is notebook or RDF, based on the file extension. """ _, extension = os.path.splitext(filename) rdf_exts = ['.ttl', '.nt', '.jsonld', '.json'] nb_exts = ['.ipynb'] if extension in rdf_exts: return 'RDF' elif extension in nb_exts: return 'notebook' else: return None
430cf1b12ae4bde6cc336f58f0a1fdc727369209
13,551
def clamp(minimum, n, maximum): """Return the nearest value to n, that's within minimum to maximum (incl) """ return max(minimum, min(n, maximum))
a3db191a733041196b8a3e0cfc83731e839a14aa
13,552
import sys def move(start, dir): """ """ if dir == "U": mv = (-1, 0) elif dir == "D": mv = (1, 0) elif dir == "L": mv = (0, -1) elif dir == "R": mv = (0, 1) else: print("Direction needs to be U D L or R. Exiting") sys.exit(1) end = (start[0] + mv[0], start[1] + mv[1]) if end[0] < 0 or end[0] > 4: return start elif end[1] < 0 or end[1] > 4: return start else: return end
7e40bc61eb3d765985207ad62d69683b0546321f
13,553
import operator def normalize_data(data): """Normalizes a sequence of input data according to the heuristic laid out in the module documentation. """ data = data or [] if isinstance(data, dict): data = [{"key": key, "value": value} for key, value in data.items()] data.sort(key=operator.itemgetter("key")) elif isinstance(data, str): data = [data] elif not isinstance(data, list): try: data = list(data) except TypeError: data = [data] return data
d1cacf020cd8df2762f747a85a41a758e1e12ba8
13,554
def get_vehicle_mass(vehicle_info): """ Get the mass of a carla vehicle (defaults to 1500kg) :param vehicle_info: the vehicle info :type vehicle_info: carla_ros_bridge.CarlaEgoVehicleInfo :return: mass of a carla vehicle [kg] :rtype: float64 """ mass = 1500.0 if vehicle_info.mass: mass = vehicle_info.mass return mass
216f109e9f963ba6de92cf168055b1a7e516d777
13,555
def add_modules_to_metadata(modules, metadata): """ modules is a list of lists of otus, metadata is a dictionary of dictionaries where outer dict keys are features, inner dict keys are metadata names and values are metadata values """ for module_, otus in enumerate(modules): for otu in otus: try: metadata[str(otu)]['module'] = module_ except KeyError: metadata[str(otu)] = dict() metadata[str(otu)]['module'] = module_ return metadata
b1dcd3e179a01c11d5a847094ceef4240d2b899e
13,556
def longest_word(list_name): """Stores the number of rows. """ long_word = [0] * len(list_name) #Stores number of items in each sublist i = 0 for column in list_name: #counts words in each sublist l_word = 0 for word in column: l_word += 1 long_word[i] = l_word i += 1 return max(long_word)
932f250b50fc3c8161545e7c4741b255483923e5
13,557
def uvm_object_value_str(v): """ Function- uvm_object_value_str Args: v (object): Object to convert to string. Returns: str: Inst ID for `UVMObject`, otherwise uses str() """ if v is None: return "<null>" res = "" if hasattr(v, 'get_inst_id'): res = "{}".format(v.get_inst_id()) res = "@" + res else: res = str(v) return res
e56bd12094923bf052b10dcb47c65a93a03142a2
13,558
import tqdm import json def download_all_dicts_to_file(filename, search, mode='w'): """ Download data from elastic search server :param filename: str, name of file to save data :param search: elasticsearch search object to query :param mode, char, file write mode (w, a) :return filename, str: """ print('Download Data Write to File') print('ElasticSearch Download Scan Query: ', str(search.to_dict())[0:1000], ' ...') generator = search.scan() with open(filename, mode) as f: for obj in tqdm.tqdm(generator): json.dump(obj.to_dict(), f) f.write('\n') print('Updates Downloaded - File {0} written'.format(filename)) return filename
4abea20e5cd58fa05bd498e4f7462530a2b677fe
13,561
import os def runcmd(cmd): """run command""" pipe = os.popen('"' + '" "'.join(cmd) + '"', 'r') std_out = pipe.read() pipe.close() return std_out.rstrip('\n')
45fd11b886bcc37fa927527c67eb4eaaeee5c60d
13,563
def _example_word(lang): """ Returns an example word for a given language :param lang: str Language abbreviation :return: A word. Should be one early in the vocab for that language """ return { "de": "mann", "es": "hombre" }.get(lang)
e9d60f31cb0c5f2b1dd397e19b60a52a43fc41d2
13,564
def get_object_name(object): """ Retrieves the name of object. Parameters: object (obj): Object to get name. Returns: str: Object name. """ if object.name[-5:-3] == '}.': return object.name[:-4] return object.name
fc695c8bf19817c3217bf6000358695c88de07aa
13,565
def create_nine_digit_product(num): """ Create a nine digit string resulting from the concatenation of the product from num and multipliers (1, 2, 3,).... Return 0 if string cannot be length 9. """ result = '' counter = 1 while len(result) < 9: result += str(num * counter) counter += 1 if len(result) > 9: result = 0 return result
9c6765349edfa7e03dc8d2ffe7bf6a45155f3ad0
13,566
def peak_indices_to_times(time, picked_peaks): """ Converts peak indices to times. Parameters ---------- time: ndarray array of time, should match the indices. picked_peaks: dict dictionary containing list of indices of peak start, center, and end. Returns ----------- peak_features: list list of lists containing times of peak start, center, and end. """ peak_features = [] for x in range(0, len(picked_peaks["Peak_indices"])): rt_ind = picked_peaks["Peak_indices"][x] start_ind = picked_peaks["Peak_start_indices"][x] end_ind = picked_peaks["Peak_end_indices"][x] retention_time = time[rt_ind] start = time[start_ind] end = time[end_ind] peak_params = [start, retention_time, end] peak_features.append(peak_params) return peak_features
99aa76fbc399b2b99d4dc9c8d3e4b67e4ee2d3af
13,567
def es_annotation_doc(): """ Minimal JSON document for an annotation as returned from Elasticsearch. This contains only fields which can be assumed to exist on all annotations. """ return { "_id": "annotation_id", "_source": { "authority": "hypothes.is", "target": [{"source": "http://example.com/example.html"}], "group": "__world__", "shared": True, }, }
085f8077d5f5cbf278a3b1be1734de081a55b769
13,568
def incmean(prevmean, n, x): """Calculate incremental mean""" newmean = prevmean + int(round((x - prevmean) / n)) return newmean
4176a07d0ad8eb96d3dd5d8b2cb46b8aecd1da20
13,569
def evenFibSum(limit): """Sum even Fib numbers below 'limit'""" sum = 0 a,b = 1,2 while b < limit: if b % 2 == 0: sum += b a,b = b,a+b return sum
cdf9cdb1cfb419713e794afff4d806945994692e
13,570
def get_n_first(file_names, checksums, N_first): """ Given a list of file_names and a list of checksums, returns the 'N_first' items from both lists as a zip object. :param file_names: list of file names :param checksums: list of sha256 checksums :param N_first: int or None. If None, all items are returned :return: zipped N_first first items of file_names and checksums """ zipped = list(zip(file_names, checksums)) N_first = int(N_first) if N_first is not None else len(file_names) zipped = zipped[:N_first] return zipped
13a8157dcd55fa43b0cd71eb877abddc832ff143
13,571
def get_library(gi, lib_name, lib_desc="", lib_synopsis="", create=True): """ Get the id corresponding to given library, and create it if it doesn't exist yet """ print("Looking for lib '" + lib_name + "'") libs = gi.libraries.get_libraries() found_lib = None for lib in libs: if not found_lib and lib['name'] == lib_name and lib['deleted'] is False: print("Found library '" + lib_name + "'") found_lib = lib['id'] if not found_lib: if create: print("Did not find library '" + lib_name + "', creating it") create = gi.libraries.create_library(lib_name, lib_desc, lib_synopsis) found_lib = create['id'] else: raise Exception("Did not find library '" + lib_name + "'") return found_lib
b8f9c6fff4c0162185fc71c08de9ff7b03272d4b
13,572
def state_to_index(valuation, base): """ Maps states to an decimal integers. """ factor = 1 integer = 0 for i in range(len(valuation)): integer += factor * valuation[i] factor *= base return integer
c05deefd07d0faf2749489fbc6f37576e1433c8d
13,573
def get_lock_path_from_repo(git_repo): """ >>> app_module = {'git_repo': 'git@github.com:claranet/ghost.git'} >>> get_lock_path_from_repo(app_module['git_repo']) '/ghost/.mirrors/.locks/git@github.com:claranet/ghost.git' >>> app_module = {'git_repo': ' git@github.com:claranet/spaces.git '} >>> get_lock_path_from_repo(app_module['git_repo']) '/ghost/.mirrors/.locks/git@github.com:claranet/spaces.git' """ return "/ghost/.mirrors/.locks/{remote}".format(remote=git_repo.strip())
b722e69dcaa5fd6a6299ee42ddaa7f14097a25a4
13,574
def get_unique_tasks(*task_groups): """ Compare input JSON objects containing tasks and return a unique set :param json_objects: lists of task objects :type json_objects: list :rtype: list """ # Combine all sub-json objects into a single group unique_tasks = [] # Get a list of tasks from the list of groups for task_set in task_groups: # Get a single task from the group of tasks we're currently working with for task in task_set: # Append task to output if its not already in there if task not in unique_tasks: unique_tasks.append(task) # If task is already in the set of tasks that is supposed to be unique, its not unique - remove from output else: unique_tasks.remove(task) # Trash potentially giant input object to save memory task_groups = None return unique_tasks
c9eb32ea0a953e797ea28021c3a434941f7b05ff
13,575
def directorio_imagen(instance, filename): """Obtiene el directorio para guardar las imagenes de los platillos""" # Obtenemos la extension del archivo para guardar la imagen solo con el id y nombre del platillo extension = filename.rsplit('.', 1)[1] return f"platillo/imagen/{instance.id}_{instance.nombre}.{extension}"
90db760562327a16858e1bf6419fb1ed6e9eeefa
13,576
def cicle_move(A): """ move first to last and move elements between first and last 1 element back :param A: list to execute cicle move :return: """ tmp = A[0] for i in range(len(A) - 1): A[i] = A[i + 1] A[len(A) - 1] = tmp return A
4948b863829d77a879ad0ec9745bb3a35e580026
13,577
def Words_Before_and_after(words, item, nbr): """ :param words: list of words :param item: word of interest :param nbr: number of words wanted before and after the word of interest :return: list of words before and after the word of interest """ liste = [[words[item], item]] for n in range(nbr): try: liste.append([words[item + n +1], item + n +1]) except: pass try: liste.insert(0, [words[item - (n+1)], item - (n+1)]) except: pass return liste
6dc874565a308cc642bf0510a3be56264c6d89e9
13,578
import yaml def df_to_yaml(df): """ conert DataFrame to yaml string """ d = df.to_dict(orient='records') return yaml.dump(d)
285b4cad92e73fbaec19e631664bb474ecaf309f
13,579
def get_polar(d, Re=6371.): """ Convert to polar coordinates """ th = d.grange / Re r = d.height + Re dop, sth, dth = d.dop, d.sth, d.dth return th, r, dop, sth, dth
1d4710152b5dbbbfd09cdc5cbf934f3adb94deeb
13,580
def _is_new_prototype(caller): """Check if prototype is marked as new or was loaded from a saved one.""" return hasattr(caller.ndb._menutree, "olc_new")
1282db1ce6ae2e5f0bb570b036d7166a53287229
13,581
def grid(gdf): """ sampling the GNSS data by grids Parameters ---------- gdf: geodataframe geodataframe of all gnss data(population) Returns ------- list: list of each grid which contains all related gnss data """ #create new column to determine grid gdf['grid'] = gdf.apply(lambda x:(x['lon_id'],x['lat_id']),axis=1) #sort by longitude number first and then latituide number gdf = gdf.sort_values(by = ['lon_id','lat_id']) #initialze grid list grid = [0]*len(gdf['grid'].unique()) #for loop to add all gnss data included in each grid #as the elements in the list for grids in gdf['grid'].unique(): grid_data = gdf[gdf['grid'].isin([grids])] grid.append(grid_data) #Remove values that do not meet the criteria grid = list(filter(lambda x: not isinstance(x, int), grid)) return grid
f613359a0061fd2975607044ffcaa8b25b53dcfc
13,584
def get_tasks_for_weekly_report(model_obj, company, date_from, date_to): """Отдает отфильтрованный кверисет с уникальными датой и описанием""" return model_obj.objects.select_related( 'tag', 'employees').filter( date__gte=date_from).filter( date__lte=date_to).filter( company=company).order_by('date').values( 'date', 'description').distinct()
3b46205d3c1bb5b5d472b350371561167aa2fb5b
13,585
def detectFallingSeq(points_list): """Find falling temperatures sequences in given list and stores beginnings and ends of them in list. Always with format [seq1 start index, seq1 end index, seq2 start index, seq2 end index, ...] :param points_list: list of pipe temperatures :return: list of indexes """ falling = False index_list = [] for i in range(2, (len(points_list) - 1)): actual = points_list[i]['value'] prev = points_list[i - 1]['value'] prev_prev = points_list[i - 2]['value'] if float(actual) < float(prev) and float(actual) < float(prev_prev) and (not falling): if (float(prev_prev) - float(actual)) >= 0.2: # Calibration to not detect falling air temperature index_list.append(i - 2) falling = True elif float(actual) > float(prev) and float(actual) > float(prev_prev) and falling: index_list.append(i) falling = False return index_list
e940497b72745af1669062373a6aca025ac0626c
13,586
def count_symbols(atoms, exclude=()): """Count symbols in atoms object, excluding a set of indices Parameters: atoms: Atoms object to be grouped exclude: List of indices to be excluded from the counting Returns: Tuple of (symbols, symbolcount) symbols: The unique symbols in the included list symbolscount: Count of symbols in the included list Example: >>> from ase.build import bulk >>> atoms = bulk('NaCl', crystalstructure='rocksalt', a=4.1, cubic=True) >>> count_symbols(atoms) (['Na', 'Cl'], {'Na': 4, 'Cl': 4}) >>> count_symbols(atoms, exclude=(1, 2, 3)) (['Na', 'Cl'], {'Na': 3, 'Cl': 2}) """ symbols = [] symbolcount = {} for m, symbol in enumerate(atoms.symbols): if m in exclude: continue if symbol not in symbols: symbols.append(symbol) symbolcount[symbol] = 1 else: symbolcount[symbol] += 1 return symbols, symbolcount
31f7c116f07788171828f0e116ef28a43eb0e313
13,587
import ntpath def lookup_folder(event, filesystem): """Lookup the parent folder in the filesystem content.""" for dirent in filesystem[event.parent_inode]: if dirent.type == 'd' and dirent.allocated: return ntpath.join(dirent.path, event.name)
e18df4610bba9cf71e85fe0038a5daf798822bd3
13,588
def extract_user(ops, json_data): """ Extract user from JSON data. """ if json_data is None: return None if 'required_posting_auths' not in ops or 'required_auths' not in ops: return None if ops['required_posting_auths'] is None or ops['required_auths'] is None: return None if len(ops['required_posting_auths']) > 0: return ops['required_posting_auths'][0] elif len(ops['required_auths']) > 0: return ops['required_auths'][0] else: print("Cannot parse transaction, as user could not be determined!") return None
0722afa2f174628670658fbbc0f1a0ab80cd36fe
13,591
def ParseDeviceBlocked(blocked, enable_device): """Returns the correct enabled state enum based on args.""" if enable_device is None and blocked is None: return None elif enable_device is None or blocked is None: # In this case there are no default arguments so we should use or. return blocked is True or enable_device is False else: # By default blocked is false, so any blocked=True value should override # the default. return not enable_device or blocked
4554ca5e33194fea77516e910516f3937cd61f3a
13,592
import re def getNormform(synonym): """ """ a = re.sub("[^a-z0-9]", "", synonym[0:255].lower()) return " ".join(a.split())
36d60ad20ff8adee5e4d6f009119026db8a1b874
13,593
def hidden_digits(time_string): """ converts time with unknown digits to max time with respect to hours and minutes given starting digits Args: time_string (str): a string representing an unknown time Returns: max_time_string (str): a string with filled in missing digits for max time """ mapper = {'first': lambda x,y: '2' if x == '?' and y == '?' else '2' if y < '4' and x == '?' else '1' if x == '?' else x, 'second': lambda x,y: '9' if x < '2' and y == '?' else '3' if y == '?' else y, 'third': lambda x: '5' if x == '?' else x, 'fourth': lambda x: '9' if x == '?' else x} first = mapper['first'](time_string[0], time_string[1]) second = mapper['second'](time_string[0], time_string[1]) third = mapper['third'](time_string[3]) fourth = mapper['fourth'](time_string[4]) return ''.join([first, second, ':', third, fourth])
15fdefb340ab5fe66b562f0fa642210db138c590
13,596
def action(method): """ Marks an agent instance method to be registered as an action :param method: :return: """ method._register_action = True return method
15f32f6acd7e31e50ef3b61d0de04e029e65249a
13,597
import re def filter_illegal_chars(dirty, repl=''): """Remove character which allow to inject code which would be run by displaying on the page """ illegal_chars_re = re.compile('[<>="]') return illegal_chars_re.sub(repl, dirty)
d389df644959850ccd4de6dd7ab22f0276b47435
13,598
def exp_np_array_list(lst, power): """ Raise elements of a list (of np.arrays - elementwise) to power @param lst: list of np.arrays @param power: scalar, to which power the elements should be raised @rtype list of np.arrays """ result = [] for nparr in lst: result.append(nparr ** power) return result
8c8b80c217f4a381e8514c7fff06dc98114087d9
13,599
import os import re def get_ch_names(path, dir): """获取文件中文名称,如无则返回文件名""" file_ch_names = [] reg = r"new Env\(\"[\S]+?\"\)" ch_name = False for file in dir: try: if os.path.isdir(f"{path}/{file}"): file_ch_names.append(file) elif file.endswith(".js") \ and file != "jdCookie.js" \ and file != "getJDCookie.js" \ and file != "JD_extra_cookie.js" \ and "ShareCode" not in file: with open(f"{path}/{file}", "r", encoding="utf-8") as f: lines = f.readlines() for line in lines: if "new Env" in line: line = line.replace('"', "'") res = re.findall(reg, line) if len(res) != 0: res = res[0].split("'")[-2] file_ch_names.append(f"{res}--->{file}") ch_name = True break if not ch_name: file_ch_names.append(f"{file}--->{file}") ch_name = False else: continue except: continue return file_ch_names
bae20e2a03b188aeb1f6dae33f6c3a66d26ca48e
13,600
def check_if_significant(data, thresh=1e-5): """ trim data based on threshold. Args: pandas DataFrame: data needs to be trimmed. threshold (float): a constant. Default = 1e-5. Returns: pandas DataFrame: data after trimming. pandas DataFrame: corrsponding index of data. """ data_out = data.drop(data.var()[data.var()<thresh].index.values, axis=1) indices = data.var()[data.var() > thresh].index.values return data_out, indices
62494c97559632f2d8d3e542320cb72f3da90eab
13,601
import datetime import calendar def getWeekday(year, month, day): """ input: integers year, month, day output: name of the weekday on that date as a string """ date = datetime.date(year, month, day) return calendar.day_name[date.weekday()]
ca5164b6d7243033f57c3a803301ff3c3ec13d29
13,603
def rivers_with_station(stations): """Creates a list of rivers with at least 1 station""" rivers = [] for i in stations: if i.name != None: if i.river not in rivers: rivers.append(i.river) return rivers
f935e97dca96a94d7d3e839b9b5178b701799e08
13,605
def config_section_data(): """Produce the default configuration section for app.config, when called by `resilient-circuits config [-c|-u]` """ config_data = u"""[fn_create_webex_meeting] # this may also be the conference id for the developer sandbox webex_email= webex_password= webex_site= webex_site_url= webex_timezone= # use these as an alternative to webex_site (i.e. developer sandbox) #webex_site_id= #webex_partner_id= # Optional proxy parameters #http_proxy= #https_proxy= """ return config_data
5e5a1ca7e3402ab177c5805404beb8baed318aaf
13,607
from typing import List import inspect def get_function_parameters_list(func) -> List[str]: """ Get parameter list of function `func`. Parameters ---------- func : Callable A function to get parameter list. Returns ------- List[str] Parameter list Examples -------- >>> def test_func(a, b) -> int: ... return a+1 >>> get_function_parameters_list(test_func) ['a', 'b'] """ return inspect.getfullargspec(func).args
bff2ec37a5564b87e48abf964d0d42a55f809a16
13,608
def getSectionText(cd, sectionLabel=None ): """ """ markups = cd.getSectionMarkups(sectionLabel, returnSentenceNumbers=False) txt = " ".join([m.getText() for m in markups]) return txt
d4bcaa109f5774bd3f5a9abb5a11829061b0ca8f
13,609
def dp_make_weight(egg_weights, target_weight, memo={}): """ Find number of eggs to bring back, using the smallest number of eggs. Assumes there is an infinite supply of eggs of each weight, and there is always a egg of value 1. Parameters: egg_weights - tuple of integers, available egg weights sorted from smallest to largest value (1 = d1 < d2 < ... < dk) target_weight - int, amount of weight we want to find eggs to fit memo - dictionary, OPTIONAL parameter for memoization (you may not need to use this parameter depending on your implementation) Returns: int, smallest number of eggs needed to make target weight """ # This will be the key used to find answers in the memo subproblem = (egg_weights, target_weight) # If we've already stored this answer in the memo, return it if subproblem in memo: return memo[subproblem] # If no eggs are left or no space is left on ship, there's nothing left to do if egg_weights == () or target_weight == 0: return 0 # If the next heaviest egg is too heavy to fit, consider subset of lighter eggs elif egg_weights[-1] > target_weight: result = dp_make_weight(egg_weights[:-1], target_weight, memo) else: # Find the minimum number of eggs by testing both taking heaviest egg and not # taking heaviest egg. this_egg = egg_weights[-1] num_eggs_with_this_egg = 1 + dp_make_weight( egg_weights, target_weight - this_egg, memo) num_eggs_without_this_egg = dp_make_weight(egg_weights[:-1], target_weight, memo) if num_eggs_without_this_egg != 0: result = min(num_eggs_with_this_egg, num_eggs_without_this_egg) else: result = num_eggs_with_this_egg # Store this answer in the memo for future use. memo[subproblem] = result return result
8546ab2dd0394d2864c23a47ea14614df83ec2f7
13,612
def get_impact_dates(previous_model, updated_model, impact_date=None, start=None, end=None, periods=None): """ Compute start/end periods and an index, often for impacts of data updates Parameters ---------- previous_model : MLEModel Model used to compute default start/end periods if None are given. In the case of computing impacts of data updates, this would be the model estimated with the previous dataset. Otherwise, can be the same as `updated_model`. updated_model : MLEModel Model used to compute the index. In the case of computing impacts of data updates, this would be the model estimated with the updated dataset. Otherwise, can be the same as `previous_model`. impact_date : {int, str, datetime}, optional Specific individual impact date. Cannot be used in combination with `start`, `end`, or `periods`. start : {int, str, datetime}, optional Starting point of the impact dates. If given, one of `end` or `periods` must also be given. If a negative integer, will be computed relative to the dates in the `updated_model` index. Cannot be used in combination with `impact_date`. end : {int, str, datetime}, optional Ending point of the impact dates. If given, one of `start` or `periods` must also be given. If a negative integer, will be computed relative to the dates in the `updated_model` index. Cannot be used in combination with `impact_date`. periods : int, optional Number of impact date periods. If given, one of `start` or `end` must also be given. Cannot be used in combination with `impact_date`. Returns ------- start : int Integer location of the first included impact dates. end : int Integer location of the last included impact dates (i.e. this integer location is included in the returned `index`). index : pd.Index Index associated with `start` and `end`, as computed from the `updated_model`'s index. Notes ----- This function is typically used as a helper for standardizing start and end periods for a date range where the most sensible default values are based on some initial dataset (here contained in the `previous_model`), while index-related operations (especially relative start/end dates given via negative integers) are most sensibly computed from an updated dataset (here contained in the `updated_model`). """ # There doesn't seem to be any universal default that both (a) make # sense for all data update combinations, and (b) work with both # time-invariant and time-varying models. So we require that the user # specify exactly two of start, end, periods. if impact_date is not None: if not (start is None and end is None and periods is None): raise ValueError('Cannot use the `impact_date` argument in' ' combination with `start`, `end`, or' ' `periods`.') start = impact_date periods = 1 if start is None and end is None and periods is None: start = previous_model.nobs - 1 end = previous_model.nobs - 1 if int(start is None) + int(end is None) + int(periods is None) != 1: raise ValueError('Of the three parameters: start, end, and' ' periods, exactly two must be specified') # If we have the `periods` object, we need to convert `start`/`end` to # integers so that we can compute the other one. That's because # _get_prediction_index doesn't support a `periods` argument elif start is not None and periods is not None: start, _, _, _ = updated_model._get_prediction_index(start, start) end = start + (periods - 1) elif end is not None and periods is not None: _, end, _, _ = updated_model._get_prediction_index(end, end) start = end - (periods - 1) elif start is not None and end is not None: pass # Get the integer-based start, end and the prediction index start, end, out_of_sample, prediction_index = ( updated_model._get_prediction_index(start, end)) end = end + out_of_sample return start, end, prediction_index
b2e6966e0fe2213e504e913d8cd64dbe84fa815b
13,613
def unwrap_value(metadata, attr, default=None): """Gets a value like dict.get() with unwrapping it.""" data = metadata.get(attr) if data is None: return default return data[0]
fee5f12f0fba86e221fe722b5829a50706ccd5dc
13,614
import os def parse_row(row, csv_path): """ :param row: :param csv_path: :return: Parse a row of the CSV master file. """ table = row["table"] inputs_dir = os.path.join(csv_path, row["path"]) project_flag = True if int(row["project_input"]) else False project_is_tx = True if int(row["project_is_tx"]) else False cols_to_exclude_str = str(row["cols_to_exclude_str"]) custom_method = str(row["custom_method"]) subscenario_type = row["subscenario_type"] filename = row["filename"] return table, inputs_dir, project_flag, project_is_tx, \ cols_to_exclude_str, custom_method, subscenario_type, filename
afdabc7dd28f15d7a50e4e81af3434dbed588c80
13,615
def getTimestamp(self): """Get timestamp (sec)""" return self.seconds + self.picoseconds*1e-12
0c913fdcd9a3ce07e31a416208a8488bd41cea81
13,616
def point_in_polygon(points, x, y): """ Ray casting algorithm. Determines how many times a horizontal ray starting from the point intersects with the sides of the polygon. If it is an even number of times, the point is outside, if odd, inside. The algorithm does not always report correctly when the point is very close to the boundary. The polygon is passed as a list of (x,y)-tuples. """ odd = False n = len(points) for i in range(n): j = i<n-1 and i+1 or 0 x0, y0 = points[i][0], points[i][1] x1, y1 = points[j][0], points[j][1] if (y0 < y and y1 >= y) or (y1 < y and y0 >= y): if x0 + (y-y0) / (y1-y0) * (x1-x0) < x: odd = not odd return odd
26ab72c6b545f94d41b0d1228dd312d590ad208b
13,619
def task3(ob): """ Function that take an object as input and prints its docs (__doc__) every sentence in one line. Input: name of object (e.g. int) Output: string ready to write. """ return ob.__doc__
859996692629a61664acf39309741020192f3da5
13,620
def get_finger_joint_limit_state(x,m): """Gets the joint limit state of the finger from a hybrid state""" return m[3:6]
90fa8e3dce6c9f9dc08e3e7c2fd9e447690202c1
13,622
def test_id(id): """Convert a test id in JSON into an immutable object that can be used as a dictionary key""" if isinstance(id, list): return tuple(id) else: return id
11e18a57648cb09f680751d1596193020523e5e1
13,623
import re def MakeHeaderToken(filename): """Generates a header guard token. Args: filename: the name of the header file Returns: the generated header guard token. """ return re.sub('[^A-Z0-9_]', '_', filename.upper()) + '__'
d29f756e30c3214aac174302175c52ca28cad6cb
13,624
def check_byte(b): """ Clamp the supplied value to an integer between 0 and 255 inclusive :param b: A number :return: Integer representation of the number, limited to be between 0 and 255 """ i = int(b) if i < 0: i = 0 elif i > 255: i = 255 return i
374e0ffbe1d0baa80c56cafd3650fba8441c5ea0
13,625
import numpy def get_signal_to_fluctuation_noise_ratio(signal_array, tfn_array, roi_size=10): """ The SFNR image is is obtained by dividing, voxel by voxel, the mean fMRI signal image by the temporal fluctuation image. A 21 x 21 voxel ROI, placed in the center of the image, is created. The average SFNR across these voxels is the SFNR summary value. Parameters ---------- signal_array: array [X,Y,Z] the fmri signal. tfn_array: array [X,Y,Z] the temporal fluctuation noise array. roi_size: int (default 10) the size of the central roi used to get the summary indice. Returns ------- sfnr_array: array [X,Y,Z] the signal to fluctuation noise ratio array. sfnr_summary: float the signal to fluctuation noise ratio average on a central roi. """ # Compute the signal to fluctuation noise ratio sfnr_array = signal_array / (tfn_array + numpy.finfo(float).eps) # Create a central roi center = numpy.round(sfnr_array.shape / 2) roi = sfnr_array[center[0] - roi_size: center[0] + roi_size, center[1] - roi_size: center[1] + roi_size, center[2]] # Compute the signal to fluctuation noise ratio summary sfnr_summary = numpy.average(roi) return sfnr_array, sfnr_summary
4240adee5062b7a1302f010c92b91ed272287df7
13,627
def insert(rcd, insert_at_junctions, genotype): """ Given the genotype (ie the junction that was chosen), returns the corresponding insert """ junctions = ["x", "y", "z"] if genotype[1] != "-": j = junctions.index(genotype[1]) return insert_at_junctions[j] else: return "-"
1bf3d7e8bb84659c3992e55fc51490c19701cff0
13,628
def clone_model(model, **kwargs): """Clone an arbitrary sqlalchemy model object without its primary key values.""" table = model.__table__ non_pk_columns = [k for k in table.columns.keys() if k not in table.primary_key] data = {c: getattr(model, c) for c in non_pk_columns} data.update(kwargs) clone = model.__class__(**data) return clone
5aa3efe0d508390a7f4ec6f22c0d4ffbfe3f04b5
13,629
def _convert_labels_for_svm(y): """ Convert labels from {0, 1} to {-1, 1} """ return 2.*y - 1.0
eca685bea6fd991245a299999fcbe31cd3b1a9ad
13,632
import numpy def rgb2hslv(r:numpy.ndarray, g:numpy.ndarray, b:numpy.ndarray): """ Convert RGB to HSLV values Parameters ---------- r, g, b : ndarray Arrays with red, green, blue channel values (any dims, must match!) Returns ------- (h, sl, l, sv, v) : tuple Hue, saturation, lightness, and value arrays """ if isinstance(r, list): r = numpy.asarray(r) if isinstance(g, list): g = numpy.asarray(g) if isinstance(b, list): b = numpy.asarray(b) if r.shape != g.shape or r.shape != b.shape: raise ValueError('Invalid shape/dims.') if r.dtype != g.dtype or r.dtype != b.dtype: raise ValueError('Invalid datatype combination.') rm = numpy.logical_and(r >= g, r >= b) gm = numpy.logical_and(g > r, g >= b) bm = numpy.logical_and(b > r, b > g) if r.dtype != numpy.float32 and r.dtype != numpy.float64: f = (1.0 / 255.0) r = f * r.astype(numpy.float64) g = f * g.astype(numpy.float64) b = f * b.astype(numpy.float64) rr = r[rm] rg = r[gm] rb = r[bm] gr = g[rm] gg = g[gm] gb = g[bm] br = b[rm] bg = b[gm] bb = b[bm] h = numpy.zeros(r.size).reshape(r.shape) mx = h.copy() mn = h.copy() mx[rm] = rr mx[gm] = gg mx[bm] = bb mn[rm] = numpy.minimum(gr, br) mn[gm] = numpy.minimum(rg, bg) mn[bm] = numpy.minimum(rb, gb) mxmn = (mx == mn) h[rm] = numpy.divide(gr - br, numpy.maximum(0.0001, rr - mn[rm])) h[gm] = 2.0 + numpy.divide(bg - rg, numpy.maximum(0.0001, gg - mn[gm])) h[bm] = 4.0 + numpy.divide(rb - gb, numpy.maximum(0.0001, bb - mn[bm])) h[mxmn] = 0.0 h[h<0.0] = h[h<0.0] + 6.0 h /= 6.0 l = 0.5 * (mx + mn) sl = numpy.divide(mx - mn, numpy.maximum(0.0001, 1.0 - numpy.abs(2.0 * l - 1.0))) sl[mx==0] = 0.0 sl[mn==1] = 0.0 sv = numpy.divide(mx - mn, numpy.maximum(0.0001, mx)) sv[mx==0] = 0.0 return (h, sl, l, sv, mx)
f25148f97139315cc7e6d49fa4eacdef286c05b2
13,633
import math def chunks(l, n): """Divide l into n approximately-even chunks.""" chunksize = int(math.ceil(len(l) / n)) return [l[i:i + chunksize] for i in range(0, len(l), chunksize)]
c7b395dec7939b863097b3da9cdd49fbe2a47740
13,634
def calcPptm(freq, T): """ payment time to maturity """ return freq * T
82c9935494ba32e9f990bdcd87ff86dc34ce7232
13,636
import re def isXML(file): """Return true if the file has the .xml extension.""" return re.search("\.xml$", file) != None
7fcfbb105a59f7ed6b14aa8aa183aae3fdbe082d
13,637
def abs(n): """ this is abs function example: >>> abs(1) 1 >>> abs(-1) 1 >>> abs(0) 0 """ return n if n>=0 else (-n)
0e2c42526deca4658e65cbe6c9954e88cb5d9ff6
13,638
def add1(arr1, arr2): """ This version is hard-coded to accept 2 arrays only. """ output = [] for inner_list1, inner_list2 in zip(arr1, arr2): inner_output = [] for num1, num2 in zip(inner_list1, inner_list2): inner_output.append(num1 + num2) output.append(inner_output) return output
7d90bb432f77c34e743282e391c4ffe38623d659
13,639
def aggPosition(x): """Aggregate position data inside a segment Args: x: Position values in a segment Returns: Aggregated position (single value) """ return x.mean()
e9305d26f05710cc467a7fa9fd7b87737b8aa915
13,641
import functools def wraps(wrapped, wrapper): """Contionally copies all the attributes a Wapi function can define""" assigned = ('__module__', '__name__', '__doc__') conditionally_assigned = ('_required_parameters_', '_optional_parameters_', '_read_only_', '_write_only_', '_private_', ) for attr in conditionally_assigned: if hasattr(wrapped, attr): assigned += (attr, ) return functools.wraps(wrapped, assigned=assigned)(wrapper)
0ffeebc62b9c5569ff991fcd09cfbdb425d9f267
13,642
from typing import Tuple def empty_handler() -> Tuple[()]: """ A stub function that represents a handler that does nothing """ return ()
1450ea04fefc4ad432e5d66a765bda0f5239b002
13,643
import torch from typing import Tuple from typing import Union import warnings def data_parallel(raw_model: torch.nn.Module, *args, **kwargs) -> Tuple[Union[torch.nn.Module, torch.nn.parallel.DataParallel], bool]: """ Make a `torch.nn.Module` data parallel - Parameters: - raw_model: A target `torch.nn.Module` - Returns: A `tuple` of either data paralleled `torch.nn.parallel.DataParallel` model if CUDA is available or a raw model if not, and a `bool` flag of if the model data paralleled successfuly. """ if torch.cuda.is_available(): model = torch.nn.parallel.DataParallel(raw_model, *args, **kwargs) return model, True else: warnings.warn(f"[Device Warning]: CUDA is not available, unable to use multi-GPUs.", ResourceWarning) return raw_model, False
5b98f0e7c67ac067aba9a9c5202cceded91827ac
13,644
def collide_circle(left, right): """detect collision between two sprites using circles pygame.sprite.collide_circle(left, right): return bool Tests for collision between two sprites by testing whether two circles centered on the sprites overlap. If the sprites have a "radius" attribute, then that radius is used to create the circle; otherwise, a circle is created that is big enough to completely enclose the sprite's rect as given by the "rect" attribute. This function is intended to be passed as a collided callback function to the *collide functions. Sprites must have a "rect" and an optional "radius" attribute. New in pygame 1.8.0 """ xdistance = left.rect.centerx - right.rect.centerx ydistance = left.rect.centery - right.rect.centery distancesquared = xdistance ** 2 + ydistance ** 2 if hasattr(left, 'radius'): leftradius = left.radius else: leftrect = left.rect # approximating the radius of a square by using half of the diagonal, # might give false positives (especially if its a long small rect) leftradius = 0.5 * ((leftrect.width ** 2 + leftrect.height ** 2) ** 0.5) # store the radius on the sprite for next time setattr(left, 'radius', leftradius) if hasattr(right, 'radius'): rightradius = right.radius else: rightrect = right.rect # approximating the radius of a square by using half of the diagonal # might give false positives (especially if its a long small rect) rightradius = 0.5 * ((rightrect.width ** 2 + rightrect.height ** 2) ** 0.5) # store the radius on the sprite for next time setattr(right, 'radius', rightradius) return distancesquared <= (leftradius + rightradius) ** 2
3e55b7b854bcc3032e93cad79f00b28b3f14715d
13,645
from typing import Optional from typing import Dict import os import sys def _prepare_build_environment(cross_lib: Optional[str]) -> Dict[str, str]: """Prepares environment variables to use when executing cargo build.""" # Make sure that if pythonXX-sys is used, it builds against the current # executing python interpreter. bindir = os.path.dirname(sys.executable) env = os.environ.copy() env.update( { # disables rust's pkg-config seeking for specified packages, # which causes pythonXX-sys to fall back to detecting the # interpreter from the path. "PATH": os.path.join(bindir, os.environ.get("PATH", "")), "PYTHON_SYS_EXECUTABLE": os.environ.get( "PYTHON_SYS_EXECUTABLE", sys.executable ), "PYO3_PYTHON": os.environ.get("PYO3_PYTHON", sys.executable), } ) if cross_lib: env.setdefault("PYO3_CROSS_LIB_DIR", cross_lib) return env
ef861b68dbdbef382afa03358f010ae281746943
13,648
def get_visibilty(item_container): """ """ if item_container.visible_start == item_container.visible_end: return ' <i>[' + u'%s' % item_container.visible_start.strftime('%d.%m.%Y') + ']</i>' else: return ' <i>[' + u'%s-%s' % \ ( item_container.visible_start.strftime('%d.%m.%Y'), item_container.visible_end.strftime('%d.%m.%Y') ) + ']</i>'
ac3b433651acb5743ed6bcef88594575144312da
13,649
def get_cube_time_info(cube): """Return year, month and day from the cube.""" coord_time = cube.coord('time') time = coord_time.cell(0).point time_step = time.strftime("%Y%m%d") return time_step
35ea97aaecd41a4494753c11abd2ba6c9737faad
13,650
def get_elmo(model, words, batch_size=16): """ Get elmo embeddings :param words: list :param model: elmo model :param batch_size: batch size (should be 16) :return: """ vector_list = [] # Create batches batch = [] for i in range(0, len(words)): word = words[i] batch.append([word]) if len(batch) == batch_size or i == len(words) - 1: # Send sentences to elmo and save the embeddings in a list embed = model.sents2elmo(batch) for i in range(0, len(embed)): vector_list += [embed[i][0].tolist()] batch = [] return vector_list
c258bc53b381bee952cbdda883e882f98ce2597b
13,651
def comparador_3numeros(a,b,c): """int,int,int-->int,int,int OBJ:comparar los números introducidos""" if a>b and b>c: sol=str(a > b > c) elif a>b and c>b: sol=str(a > c > b) elif a<b and a>c: sol=str(b > a > c) elif c<b and a<c: sol=str(b > c > a) elif c>a and a>b: sol=str(c > a > b) else: sol=str(c > b > a) return sol
6d0fee4cffb72b41641702821491d98cd69bccb0
13,652
def get_discussions(book_object): """ 获得本书所有的讨论 :param book_object: Book模型实例 :return: 本书所有讨论的列表 """ return book_object.discussions.order_by('-pub_date').all()
842a158a18e1e7a31579f409997d56a452f1cf61
13,655
import os import re import time def get_version(package): """ Return package version as listed in `__version__` in `__init__.py`. """ init_py = open(os.path.join(package, '__init__.py')).read() mth = re.search("__version__\s?=\s?['\"]([^'\"]+)['\"]", init_py) if mth: return mth.group(1) + "." + time.strftime("%Y%m%d.%H%M", time.localtime()) else: raise RuntimeError("Cannot find version!")
776afb3f41e18f2034bbd914b44018795ca13db3
13,656
def _object_format(o): """ Object arrays containing lists should be printed unambiguously """ if type(o) is list: fmt = 'list({!r})' else: fmt = '{!r}' return fmt.format(o)
c71c0713d5b44c4733bc934d6026431e919db252
13,658
import traceback def handle_error(error): """Error handler when a routed function raises unhandled error""" print(traceback.format_exc()) return 'Internal Server Error', 500
d93d3c4bbabb578b28ade961bb46793187a5ee06
13,659
import os def pretty_path(input_path): """ return path string replacing '~' for home directory """ home_path = os.path.expanduser('~') cwd_path = os.getcwd() output_path = input_path.replace(home_path, '~').replace(cwd_path, './') return output_path
b10bc85e4fba7ac7c73b53bc2bf5c8a61573e39f
13,660
import colorsys def scale_lightness(rgb, scale_l): """ Scales the lightness of a color. Takes in a color defined in RGB, converts to HLS, lightens by a factor, and then converts back to RGB. """ # converts rgb to hls h, l, s = colorsys.rgb_to_hls(*rgb) # manipulates h, l, s values and returns as rgb return colorsys.hls_to_rgb(h, min(1, l * scale_l), s = s)
2fee635f26419cfe8abc21edb0092a8c916df6ef
13,661
import torch def dummy_compute() -> torch.Tensor: """ returns a predefined size random Tensor """ return torch.rand(100, 100)
9b1c05359c9b57573bd2771124e878ccee7eae87
13,662
def raster2array(rasters,band_no=1): """ Arguments: rast A gdal Raster object band_no band numerical order Example : raster = gdal.Open(rasterfn) raster2array(raster,1) """ bands = rasters.RasterCount if band_no>0 and band_no <=bands: band = rasters.GetRasterBand(band_no) array = band.ReadAsArray() else: array = rasters.ReadAsArray() return array
76bdcffbf22a0936fe24c29eba975f21edd7cd41
13,663
def early_stopping(cost, opt_cost, threshold, patience, count): """ Determines if you should stop gradient descent. Early stopping should occur when the validation cost of the network has not decreased relative to the optimal validation cost by more than the threshold over a specific patience count cost is the current validation cost of the neural network opt_cost is the lowest recorded validation cost of the neural network threshold is the threshold used for early stopping patience is the patience count used for early stopping count is the count of how long the threshold has not been met Returns: a boolean of whether the network should be stopped early, followed by the updated count """ if opt_cost - cost > threshold: count = 0 else: count += 1 if count == patience: return True, count else: return False, count
5baea9f867e8ca8326270f250327494a5c47af46
13,664
def is_if_then(tokens): """:note: we assume single-line if have been transformed in preprocessing step.""" return tokens[0:1+1] == ["if","("]
aa1a946ed94299e689534ca98dcf1d0fa9bdca32
13,667