content
stringlengths
35
416k
sha1
stringlengths
40
40
id
int64
0
710k
def get_tuple(string, n, as_int = False): """ Splits a string into n tuples, ignoring the rest if there are more, and replicating if there is only one @param string The string @param n The number of elements @param as_int If true, it will cast to int """ t = string.split(",") if len(t) == n: t = tuple(t) elif len(t) > n: t = tuple(t[:n - 1]) elif len(t) == 1: t = tuple(t * n) else: raise IndexError("Invalid number of values") if as_int: return tuple([int(i) for i in t]) else: return t
59b339c561bccc428f4e2882c369a7dcda86aaff
10,948
def ParseDupHit(text):#{{{ """ Parse a duplication hit e.g. 1-575(nTM=2) 2-571(nTM=2) """ li = [] strs = text.split() for ss in strs: strs1 = ss.rstrip(')').split('(nTM=') # ['35-345', '7'] li1 = [int(x) for x in strs1[0].split('-')] li1.append(int(strs1[1])) # li1 is a list of three values (begin, end, numTM) li.append(li1) return li
d488076fcaf581376730bb404090d16c99137baa
10,949
def common_chain_res(model1, model2): """ Given a pair of Bio.PDB.Chain objects, returns the common residues and their respective CA atoms. Returns a tuple with two lists: The first one contains the list of atoms corresponding to the first chain. The second list contains the list of atoms of the second chain, both with the same length. """ res1 = [] res2 = [] chain1_atoms_list = [] chain2_atoms_list = [] for res in model1: res1.append(res) for res in model2: res2.append(res) # Looking for the common atoms common_res1 = [res1 for res1, res2 in zip(res1, res2) if res1.get_resname() == res2.get_resname()] common_res2 = [res2 for res1, res2 in zip(res1, res2) if res1.get_resname() == res2.get_resname()] for res in common_res1: for atom in res: if atom.id == "CA" or atom.id == "C1'": chain1_atoms_list.append(atom) for res in common_res2: for atom in res: if atom.id == "CA" or atom.id == "C1'": chain2_atoms_list.append(atom) common_atoms = (chain1_atoms_list, chain2_atoms_list) # Tuple with same-length lists return common_atoms
8809e23d23237310ef530fb0c4d4509c93553a2a
10,951
def _filter_out(message: str) -> bool: """Return True when message should be ignored. Args: message (str): message to analyze Returns: bool: True when message should be ignored, False otherwise """ for authorized_function in ("input", "print", "pprint"): if f"Found wrong function call: {authorized_function}" in message: return True return False
461c0f36aed22d80384202093bc1cfc40b88242c
10,952
import re def byteform_to_num(byte_format): """Converts a string expressing a size of a file in bytes into the corresponding number of bytes. Accepts commas and decimal points in nums. Allows 'b', 'mb', 'gb', and variants like 'bytes', but not 'tb', 'zb', etc. Note that format_bytes is a lossy function (it doesn't retain all sigfigs by default), so byteform_to_num(format_bytes(x)) does not always equal x. """ x = re.findall("([\d,\.]+)\s*([a-z]*)", byte_format, re.I)[0] num, suf = float(x[0].replace(",", "")), x[1].lower() if suf == "" or suf[0] == "b": return num elif suf[:2] == "kb": return num * 1e3 elif suf[:2] == "mb": return num * 1e6 elif suf[:2] == "gb": return num * 1e9 raise ValueError(f"byteform_to_num couldn't recognize quantifier '{suf}'")
300ede4ef120b9e3a8db85effcb6611dd9299953
10,953
def test_identifier(recipe): """Test recipe identifier for proper construction. Args: recipe: Recipe object. Returns: Tuple of Bool: Failure or success, and a string describing the test and result. """ name = recipe["Input"].get("NAME") if name: # The identifier may not have spaces. name = name.replace(" ", "") description = ("Recipe identifier follows convention. " "('com.github.novaksam.jss.%s')" % name) result = False identifier = recipe.get("Identifier") if identifier and name: if (str(identifier).startswith("com.github.novaksam.jss.") and str(identifier).rsplit(".", 1)[1].startswith(name)): result = True return (result, description)
800b7a9d07ef7094d32a17033da519c9edb5039b
10,955
import six def get_probs_for_labels(labels, prediction_results): """ Given ML Workbench prediction results, get probs of each label for each instance. The prediction results are like: [ {'predicted': 'daisy', 'probability': 0.8, 'predicted_2': 'rose', 'probability_2': 0.1}, {'predicted': 'sunflower', 'probability': 0.9, 'predicted_2': 'daisy', 'probability_2': 0.01}, ... ] Each instance is ordered by prob. But in some cases probs are needed for fixed order of labels. For example, given labels = ['daisy', 'rose', 'sunflower'], the results of above is expected to be: [ [0.8, 0.1, 0.0], [0.01, 0.0, 0.9], ... ] Note that the sum of each instance may not be always 1. If model's top_n is set to none-zero, and is less than number of labels, then prediction results may not contain probs for all labels. Args: labels: a list of labels specifying the order of the labels. prediction_results: a pandas DataFrame containing prediction results, usually returned by get_prediction_results() call. Returns: A list of list of probs for each class. """ probs = [] if 'probability' in prediction_results: # 'probability' exists so top-n is set to none zero, and results are like # "predicted, predicted_2,...,probability,probability_2,... for i, r in prediction_results.iterrows(): probs_one = [0.0] * len(labels) for k, v in six.iteritems(r): if v in labels and k.startswith('predicted'): if k == 'predict': prob_name = 'probability' else: prob_name = 'probability' + k[9:] probs_one[labels.index(v)] = r[prob_name] probs.append(probs_one) return probs else: # 'probability' does not exist, so top-n is set to zero. Results are like # "predicted, class_name1, class_name2,... for i, r in prediction_results.iterrows(): probs_one = [0.0] * len(labels) for k, v in six.iteritems(r): if k in labels: probs_one[labels.index(k)] = v probs.append(probs_one) return probs
f18580a5aba09df56fbb9b45b8ca5753eeba0d62
10,956
import math def convert_local_to_global_vector(v: list, yaw: float): """ Converts the given vector in vehicle coordinate system to the global one under the given vehicle yaw. """ vx = math.cos(math.radians(yaw)) * v[0] - math.sin(math.radians(yaw)) * v[1] vy = math.sin(math.radians(yaw)) * v[0] + math.cos(math.radians(yaw)) * v[1] return [vx, vy]
62f96a22c85f22125165e387bfeea76d78e5c519
10,958
def humanReadable(size_in_bytes): """Returns sizes in human-readable units.""" try: size_in_bytes = int(size_in_bytes) except ValueError: size_in_bytes = 0 units = [(" KB", 10**6), (" MB", 10**9), (" GB", 10**12), (" TB", 10**15)] for suffix, limit in units: if size_in_bytes > limit: continue else: return str(round(size_in_bytes/float(limit/2**10), 1)) + suffix
29dd9e46d535943e83cd65c34f4135af898f0bbc
10,961
import os def get_cwd(): """Allows use to patch the cwd when needed. """ return os.getcwd()
601ca5210e08c28cc307c1c86414b30ce72bbb50
10,965
def _agent_has_email_address(agent_obj): """Check if agent has email. Arguments: agent_obj (list/dict): The specified field from the research dataset. If publisher then dict else list Returns: bool: True if has emails, False if not. """ if agent_obj: if isinstance(agent_obj, list) and len(agent_obj) > 0: return 'email' in agent_obj[0] elif isinstance(agent_obj, dict): return 'email' in agent_obj return False
a662a9a874e607d90db644c93515632606ae83fc
10,966
def list_acquisition_dates(dc, product): """Get a list of acquisition dates for a given product""" dataset = dc.load(product, dask_chunks={}) if not dataset: return [] return dataset.time.values.astype('M8[ms]').tolist()
97012b354d835ad94e7037f9c68fcfa72d143930
10,967
import torch def coord_map(shape,device, start=-1, end=1): """ Gives, a 2d shape tuple, returns two mxn coordinate maps, Ranging min-max in the x and y directions, respectively. """ m, n = shape x_coord_row = torch.linspace(start, end, steps=n).to(device) y_coord_row = torch.linspace(start, end, steps=m).to(device) x_coords = x_coord_row.unsqueeze(0).expand(torch.Size((m, n))).unsqueeze(0) y_coords = y_coord_row.unsqueeze(1).expand(torch.Size((m, n))).unsqueeze(0) return torch.cat([x_coords, y_coords], 0)
056dddd9442cef58dca7cc6cc30fd6b8cca9bc85
10,968
from typing import Tuple from typing import Dict def criar_base_quarentena(dados: dict) -> Tuple[Dict[str, int], Dict[str, int]]: """Criar a estrutura para lidar com função de contenção de adaptações sucessivas no KubeKepam Args: dados (dict): nome do namespace do Kubernetes. Returns: Dicionário com a estrutura da função adaptação sucessivas KubeKepam. Por exemplo: 'AdaptationStatus': {'currencyservice': 0, 'emailservice': 0} 'TimeAdaptation': {'currencyservice': 0, 'emailservice': 0} """ adaptation_status = {} time_after_adaptation = {} for key in dados[list(dados.keys())[0]].keys(): adaptation_status[key] = 0 time_after_adaptation[key] = 0 return adaptation_status, time_after_adaptation
7e4124092760575edb963606f88da7c38dfe0455
10,969
def heart_speed(speed='half'): """Set the low-health warning beep interval. Keyword Arguments: speed {str} -- Chose the speed at which the low health warning beeps. Options are 'off', 'double', 'normal', 'half', and 'quarter'. (default: {'half'}) Returns: list -- a list of dictionaries indicating which ROM address offsets to write and what to write to them """ if speed is None: speed = 'normal' sbyte = { 'off': 0, 'double': 16, 'normal': 32, 'half': 64, 'quarter': 128, } patch = [{ '1572915': [sbyte[speed]] }] return patch
62bab25f6221e1260048fac3126280cd4791a9b3
10,970
def upsample_kernel_size_solver( in_size, out_size, stride=1, padding=0, output_padding=0, dilation=1, ): """ Returns kernel size needed to upsample a tensor of some input size to a desired output size. The implementation solves for kernel size in the equation described the the "Shape" section of the pytorch docs: https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose1d.html """ x = out_size - 1 - output_padding - (in_size - 1) * stride + 2 * padding x = int(x / dilation + 1) return (x, )
58bcf58c3781b195801e1239b9fa688d19c89288
10,971
def get_key_from_dict (dictionary, key, group, required=True): """ Grab a value from dictionary :param dictionary: Dictionary to utilize :param key: Key to fetch :param group: Group this key belongs to, used for error reporting purposes :param required: Boolean indicating whether this key is necessary for a valid manifest :return Value if found """ if key not in dictionary: if required: raise KeyError ("Failed to generate manifest: {0} missing {1}".format (group, key)) else: return None else: return dictionary[key]
81245795296c2fe6d21bb84f0cccfa197a966b24
10,972
import codecs import re def get_bookmarks_tree(bookmarks_filename): """Get bookmarks tree from TEXT-format file Bookmarks tree structure: >>> get_bookmarks_tree('sample_bookmarks.txt') [(u'Foreword', 0, []), (u'Chapter 1: Introduction', 1, [(u'1.1 Python', 1, [(u'1.1.1 Basic syntax', 1, []), (u'1.1.2 Hello world', 2, [])]), (u'1.2 Exercises', 3, [])]), (u'Chapter 2: Conclusion', 4, [])] The above test result may be more readable in the following format: [ (u'Foreword', 0, []), (u'Chapter 1: Introduction', 1, [ (u'1.1 Python', 1, [ (u'1.1.1 Basic syntax', 1, []), (u'1.1.2 Hello world', 2, []) ] ), (u'1.2 Exercises', 3, []) ] ), (u'Chapter 2: Conclusion', 4, []) ] Thanks Stefan, who share us a perfect solution for Python tree. See http://stackoverflow.com/questions/3009935/looking-for-a-good-python-tree-data-structure Since dictionary in Python is unordered, I use list instead now. Also thanks Caicono, who inspiring me that it's not a bad idea to record bookmark titles and page numbers by hand. See here: http://www.caicono.cn/wordpress/2010/01/%E6%80%9D%E8%80%83%E5%85%85%E5%88%86%E5%86%8D%E8%A1%8C%E5%8A%A8-python%E8%AF%95%E6%B0%B4%E8%AE%B0.html And I think it's the only solution for scan version PDFs to be processed automatically. """ # bookmarks tree tree = [] # the latest nodes (the old node will be replaced by a new one if they have the same level) # # each item (key, value) in dictionary represents a node # `key`: the level of the node # `value`: the children list of the node latest_nodes = {0: tree} offset = 0 prev_level = 0 for line in codecs.open(bookmarks_filename, 'r', encoding='utf-8'): line = line.strip() if line.startswith('//'): try: offset = int(line[2:]) except ValueError: pass continue res = re.match(r'(\+*)\s*?"([^"]+)"\s*\|\s*(\d+)', line) if res: pluses, title, page_num = res.groups() cur_level = len(pluses) # plus count stands for level cur_node = (title, int(page_num) - 1 + offset, []) if not (0 < cur_level <= prev_level + 1): raise Exception('plus (+) count is invalid here: %s' % line) else: # append the current node into its parent node (with the level `cur_level` - 1) latest_nodes[cur_level - 1].append(cur_node) latest_nodes[cur_level] = cur_node[2] prev_level = cur_level return tree
a1cd349be3570900ae48ffc5e6ae217c8655cc42
10,974
import jinja2 def render_template(authors, configuration): """ Renders a template in `adoc`, `html`, `md`, `rst`, or `txt` format. Parameters ---------- authors : list The authors to include in the rendered template. configuration : dict Configuration settings relevant to the rendered template (`heading`, `opening`, and `closing`). Returns ------- str The rendered template. """ loader = jinja2.PackageLoader("authors", "templates") environment = jinja2.Environment( loader=loader, lstrip_blocks=True, trim_blocks=True ) source_file = "template.{}".format(configuration["kind"]) template = environment.get_template(source_file) return template.render(authors=authors, **configuration)
879693831529fb1786a04df3df1173601adebd63
10,975
import re def ranks_unclassified(desc): """ Returns number of unclassified ranks in description :param desc: :return: """ regex = re.compile(".+(_[X]+)$") return sum( [1 if x else 0 for x in [regex.match(s) for s in desc.split(";")]])
3a016315019b03e0456e7315afd5b3fa303e265a
10,976
def expand_output(out): """Plotly callback outputs for `update_simulator` function""" return [ *out["alert"], *out["mrsim"], *out["children"], *out["mrsim_config"], *out["processor"], ]
b1d1135c8fb16d2245f882a29c622e1da42f501a
10,977
def drop_table_if_exists(): """ Removes all tables on app start so as to start working with no data """ drop_users = """ DROP TABLE IF EXISTS users """ drop_meetups = """ DROP TABLE IF EXISTS meetups """ drop_questions = """ DROP TABLE IF EXISTS questions """ drop_comments = """ DROP TABLE IF EXISTS comments """ drop_rsvp = """ DROP TABLE IF EXISTS rsvp """ drop_votes = """ DROP TABLE IF EXISTS votes """ return [drop_votes, drop_rsvp, drop_comments, drop_meetups, drop_questions, drop_users]
d3e79992c88becd5f398162938bd22990e238803
10,978
import os def create_tempdir(path): """Create temp folder""" temp_path = str(path + "/temp") if not os.path.exists(temp_path): os.makedirs(temp_path) return temp_path
ad3e8d483d841f73d02885eaea826ea71cf15b8d
10,979
def get_body_part_colour(shot): """ Decide the colour of a plot element based on the shooter's body part. """ body_part = shot['shot']['body_part']['name'] if body_part == 'Right Foot': return 'orange' if body_part == 'Left Foot': return 'red' if body_part == 'Head': return 'magenta' # Else, body part == "Other" return 'cyan'
89a6187840ee2f830f2c07579a555fc1944ea086
10,980
import os import base64 def transfer_file_to_str(file_path): """Transfer image to a string :param file_path: file path :return: msg_dict including file name and file str encoded by base64 package """ file_name = os.path.basename(file_path) with open(file_path, 'rb') as f: img_byte = base64.b64encode(f.read()) # 二进制读取后变base64编码 img_str = img_byte.decode('ascii') msg_dict = { 'file_name': file_name, 'file_str': img_str } return msg_dict
c68021e13b9be162f36a621e92bc6078d2f10de2
10,982
import random def generate_key(num_digit): """Generate key using user email and random str""" min_val = 10 ** (num_digit - 1) max_val = (10 ** num_digit) - 1 otp = random.randint(min_val, max_val) return otp
132716dd643af309a8e7e90a72fbed60e47bd255
10,983
def check_3(sigs): """ Repository managed by both SIG and Private. """ print("Repository managed by both SIG and Private.") supervisors = {} for sig in sigs: for repo in sig["repositories"]: # Gitee requries strict case senstive naming for direct access # repo = repo.lower() supervisor = supervisors.get(repo, set()) supervisor.add(sig["name"]) supervisors[repo] = supervisor print("There're " + str(len(supervisors)) + " repositories in total.") co_managed = 0 private_only = 0 for repo in supervisors: sigs = supervisors[repo] if "Private" in sigs: if len(sigs) != 1: co_managed += 1 else: private_only += 1 print("There're " + str(co_managed) + " repositories co-managed by Private") print("There're " + str(private_only) + " repositories managed by Private only") return supervisors
908737c960ce54bb8c724a792977e23b36775174
10,987
def _HasOption(_, option): """Validate the option exists in the config file. Args: option: string, the config option to check. Returns: bool, True if test is not in the option name. """ return 'test' not in option
5c8304b8e4abe91ec8e3e55f14201a1a3d7f5c57
10,988
def get_parameters_nodes(input_nodes): """Find operations containing the parameters of the model. Args: input_nodes (:obj:`list` of :obj:`Node`): the input operations of the model. Returns: parameters (:obj:`list` of :obj:`Node`): the operations containing the parameters of the model. """ parameters = list() for node in input_nodes: if node.is_trainable: parameters.append(node) return parameters
a4185512a577521f0ed3d7cc9b098800fda58974
10,990
def get_method(interface, method): """ Get a specific method Parameters: ---------- interface : interface of CST Studio method : string Specific method that you want Returns: ---------- instance : function Instance of the method """ return getattr(interface, method)
bd0a8322e2a47f8c0b760894617c9ed2429fcb02
10,992
def read_file_header( filename ): """ A header is: 1. Any number of blank lines before the header 2. Any number of KEY=value pairs (anything else is ignored) 3. One or more blank lines stops the header Returns a tuple (format type, version integer, header dict, hdr lines), where the format type and version integer may be None if the header key "FILE_VERSION" was not found. The header lines is the number of lines of header data in the file. """ fp = open( filename, 'r' ) cnt = 0 hdr = {} line = fp.readline() while line: line = line.strip() if line[:5] == 'TEST:': break elif line: cnt += 1 L = line.split('=',1) if len(L) == 2 and L[0].strip(): if L[1].strip() == 'None': hdr[ L[0].strip() ] = None else: hdr[ L[0].strip() ] = L[1].strip() elif cnt > 0: break line = fp.readline() if type(filename) == type(''): fp.close() vers = hdr.get( 'FILE_VERSION', None ) if vers: i = len(vers) - 1 while i >= 0 and vers[i] in '0123456789': i -= 1 t = vers[:i+1] n = 0 sn = vers[i+1:] if sn: n = int(sn) return t,n,hdr,cnt return None,None,hdr,cnt
54bec5d22db1d04ba081786b287abe678c71e487
10,993
def get_pip_command_packages(command): """Return packages included in a pip command.""" return command.split()[2:]
63757643862b590f27eed927b2037ad45eaf4792
10,994
def gini(k_proportions): """ Gini impurity function. This is used to determine the impurity of a given set of data, given the proportions of the classes in the dataset. This is equivalent to: H = ∑ pk(1-pk) for all k classes. k_proportions, in this case, is an array of pk's :param k_proportions: array containing proportions of different classes. Proportions sum to 1. :return: the impurity of the dataset. """ return (k_proportions*(1-k_proportions)).sum()
db0e74b29166603ed2bda3aa5fa9614ba9206b67
10,996
from pathlib import Path def fixture_project_dir() -> Path: """Return path to the Python project directory. :return: a path """ return Path(__file__).parent.parent
08ef4059aa5fa4b125928e9843b83f2befff8576
10,997
def return_element_from_list(i, l): """ Returns an element from the list @param: i is an integer corresponding to the index of the element in the list @param: l is a list of elements return: element of the list if 0 <= i <= len(l) - 1 None otherwise """ if(i < 0 or i >= len(l)): return None else: return l[i]
7d57263d67fe85c13f34428c23cdaf9ae7671855
10,998
def integer_identical_to_index(nums): """ :param nums: array :return: the number equals its index """ left, right = 0, len(nums) - 1 while left <= right: mid = (left + right) >> 1 if nums[mid] < mid: left = mid + 1 elif nums[mid] > mid: right = mid - 1 else: break else: raise Exception('NO SUCH NUMBER') return mid
8f289bdf268839659d68565a69e61eb36a717b40
10,999
def map_nested(f, itr): """apply a function to every element in a 2D nested array""" return [[f(pt) for pt in lst] for lst in itr]
6546781478ef0f1b53a257c3571a56dd77942014
11,001
def process_template_file(self, request, template_file, variable_encoding = None): """ Processes the given template file, using the given variable encoding. :type request: Request :param request: The request to be used in the template file processing. :type template_file: Template :param template_file: The template file to be processed. :type variable_encoding: String :param variable_encoding: The encoding to be used to encode the variables in the template file processing. :rtype: String :return: The processed template file. """ # sets the template file variable encoding template_file.set_variable_encoding(variable_encoding) # creates the process methods list process_methods_list = [ ("process_stylesheet_link", self.get_process_method(request, "process_stylesheet_link")), ("process_javascript_include", self.get_process_method(request, "process_javascript_include")), ("process_ifacl", self.get_process_method(request, "process_ifacl")), ("process_ifaclp", self.get_process_method(request, "process_ifaclp")), ("process_ifnotacl", self.get_process_method(request, "process_ifnotacl")), ("process_request_time", self.get_process_method(request, "process_request_time")) ] # attaches the process methods to the template file so that # they may be used for "extra" composite operations template_file.attach_process_methods(process_methods_list) # processes the template file, returning the resulting # contents to the caller function, the returning value # should be a string containing the results processed_template_file = template_file.process() return processed_template_file
036f28e44008f97498cbd5dcc756ee795f1c6d30
11,003
import re def is_indvar(expr): """ An individual variable must be a single lowercase character other than 'e', 't', 'n', 's', followed by zero or more digits. @param expr: C{str} @return: C{boolean} True if expr is of the correct form """ assert isinstance(expr, str), "%s is not a string" % expr return re.match(r'^[a-df-mo-ru-z]\d*$', expr)
c00e62199263214596a0b9519868ffdeb86e9580
11,004
import sys def compare( value1, value2, epsilonFactor = 0 ) : """ This function compares two floats (or objects that can be converted to floats) in a fuzzy way where the fuzz factor is epsilonFactor * sys.float_info.epsilon. This function returns 0 if the floats are comparable as given by epsilonFactor (see below), otherwise, it returns 1 (-1) if value1 is greater (less) than value2. Two floats are comparable if the magnitude of the 'relative difference' between them is less than or equal to epsilonFactor * sys.float_info.epsilon. The relative difference is defined as ( value1 - value2 ) / max( abs( value1 ), abs( value2 ) ) Hence, two floats are comparable if ( value1 - value2 ) <= epsilonFactor * sys.float_info.epsilon * max( abs( value1 ), abs( value2 ) ) For the default epsilonFactor = 0, a 0 is return (i.e., the two floats are 'equal') only if they have the same value :param value1: value to compare to value2 :type value1: any object which float() accepts :param value2: value to compare to value1 :type value2: any object which float() accepts :param epsilonFactor: The factor to scale sys.float_info.epsilon to determine the fuzz factor. :type epsilonFactor: any object which float() accepts :returns: 1 if value1 is deemed greater than value2, 0 if equal and -1 otherwise :rtype: `int` """ valueOfSelf, valueOfOther = float( value1 ), float( value2 ) delta = valueOfSelf - valueOfOther if( delta == 0 ) : return( 0 ) _max = max( abs( valueOfSelf ), abs( valueOfOther ) ) if( abs( delta ) <= ( float( epsilonFactor ) * sys.float_info.epsilon * _max ) ) : return( 0 ) if( delta < 0. ) : return( -1 ) return( 1 )
2cb563f4785280c6827d321d98406dbb3c17cc43
11,005
def uniq_count(data): """ Count number of unique elements in the data. Args: data (list): values. Returns the number of unique elements in the data. """ uniq_atom_list = list(set(data)) return len(uniq_atom_list)
d61eff27aed7d788fa6cc80eb25661f0ebae7dfd
11,006
def try_float(x): """ Convert to float :param x: :return: """ if x is None: return None try: return try_float(x) except: pass
905b1cdedc086a2f6f6572bb720b9d04ef1aa2b6
11,007
import pickle def load_dt(filename): """ 加载保存好的决策树 :param filename: 文件名 :return: python dict """ # 'b' 表示二进制模式 fr = open(filename, 'rb') return pickle.load(fr)
c61772d6c8606e45ef323bd8dd30cb0c9e6ebf35
11,008
import argparse def parse_arguments(): """ Parses the command-line arguments passed to the assembler. """ parser = argparse.ArgumentParser( description="File listing and editing utility. See README.md for more " "information, and LICENSE for terms of use." ) parser.add_argument( "host_filename", help="the host file to process (DSK, CAS, VDK, etc)" ) parser.add_argument( "--append", action="store_true", help="append to host file if it already exists" ) parser.add_argument( "--list", action="store_true", help="list all of the files on the specified host file" ) parser.add_argument( "--to_bin", action="store_true", help="extracts all the files from the host file, and saves them as BIN files" ) parser.add_argument( "--to_cas", action="store_true", help="extracts all the files from the host file, and saves them as CAS files" ) parser.add_argument( "--files", nargs="+", type=str, help="list of file names to extract" ) return parser.parse_args()
264a9b2c9a608d3a63704881d449d82f6a556565
11,009
from typing import MutableSequence from typing import Any def swap(seq: MutableSequence[Any], frst_idx: int, snd_idx: int) -> MutableSequence[Any]: """Swaps two elements in the `seq`.""" if seq[frst_idx] == seq[snd_idx]: return seq seq[frst_idx], seq[snd_idx] = seq[snd_idx], seq[frst_idx] return seq
1d4c3260e57f827293d849b490bd35c2ae9f9698
11,012
def parse_problems(lines): """ Given a list of lines, parses them and returns a list of problems. """ problems = [] i = 0 while i < len(lines): h, w = map(int, lines[i].split(" ")) problems.append((w, h, lines[i + 1:i + h + 1])) i += h + 1 return problems
883a6a7cfaa8104c171a6e166fcbb8f4403f4c01
11,013
import argparse import sys def get_args(): """ Get args """ parser = argparse.ArgumentParser(description='Head program', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('-n', '--num', help = 'Num. of lines', metavar='lines', type = int, default=10) parser.add_argument('file', help = 'Input file(s)', nargs='+', #one or more metavar='FILE', type = argparse.FileType('rt'), #need a readable file default=[sys.stdin]) return parser.parse_args()
9b00939d776baa70fbe0f26df698258b1dbca4a1
11,014
def read_input(fpath): """ Read a specified file, and return a list of the file's contents separated by new lines. Args: fpath (str): Path of the file to read. Returns: list """ with open(fpath, 'r') as f: return f.read().splitlines()
ac10f24d7b5769ee85b3f13f3fde278d56ef1741
11,015
def safe_get(dictionary, key, default_value, can_return_none=True): """ Safely perform a dictionary get, returning the default value if the key is not found. :param dict dictionary: the dictionary :param string key: the key :param variant default_value: the default value to be returned :param bool can_return_none: if ``True``, the function can return ``None``; otherwise, return ``default_value`` even if the dictionary lookup succeeded :rtype: variant """ return_value = default_value try: return_value = dictionary[key] if (return_value is None) and (not can_return_none): return_value = default_value except (KeyError, TypeError): # KeyError if key is not present in dictionary # TypeError if dictionary is None pass return return_value
eb53ad7a17db3f2c66c8b16b20ae2aac9b1e34e3
11,016
def parse_grid(grid): """ converts a grid like K F A L G B M H C N I D O J E to ABCDEFGHIJKLMNO """ rows = [row.strip().split(" ") for row in grid] return "".join(rows[row][col] for col in range(2, -1, -1) for row in range(0, 5))
f1cb825e3d20edd2db92fee4104204e9bcb1f54a
11,018
from typing import List from typing import Tuple from typing import Optional import os def _read_existing_krb5_conf_file_lines(locations: List[str]) -> Tuple[Optional[str], List[str]]: """ Read in existing krb5 configuration file lines and return them """ for loc in locations: if os.path.isfile(loc): with open(loc) as fp: krb5_lines = fp.readlines() # be careful of empty files if krb5_lines: return loc, krb5_lines return None, []
3238c0cf35e699e02b4267fd80039ef9d4c26335
11,020
def predicate_contains_hello(x): """Predicate True when 'hello' is in value.""" return 'hello' in x
884ef0a9a925865d5bd9093d52f1c248e498aa80
11,021
def get_tile_url(xtile, ytile, zoom): """ Return a URL for a tile given some OSM tile co-ordinates """ return "http://tile.openstreetmap.org/%d/%d/%d.png" % (zoom, xtile, ytile)
20af9f5b4065d96c285e6c4e5c64123f0343b659
11,022
def split_into_words_by_char_count(s, chunk_size, max_from_end=None): """ Split a string into an array of strings each of length at most chunk_size. Try to split on whitespace if possible (possibly resulting in chunks of size less than chunk_size), except if it would make the last word longer than max_from_end in which case just split it when we exceed the chunk size. :param s: :param chunk_size: :param max_from_end: :return: """ if max_from_end is None: max_from_end = chunk_size / 10 chunk_start = 0 if len(s) == 0: return [""] chunks = [] while chunk_start < len(s): chunk = s[chunk_start:chunk_start+chunk_size] if len(chunk) < chunk_size or \ (chunk[-1].isspace() or s[chunk_start+chunk_size].isspace()): chunks.append(chunk) chunk_start += len(chunk) else: subchunks = chunk.rsplit(None, 1) if len(subchunks) == 1 or len(subchunks[1]) > max_from_end: chunks.append(chunk) chunk_start += len(chunk) else: chunks.append(subchunks[0]) chunk_start += len(subchunks[0]) return chunks
ae3391536bd6e92f0c8ae9ce5cce76865485f689
11,023
def set_arguments(self, _id): """ Set arguments """ args = list() cwl_wf_url = { "name": self.cwl_static_keys[0], "description": self.cwl_static_keys[1], "help": self.cwl_static_keys[1] + " for " + _id, "type": self.cwl_static_keys[2], "value": self.cwl_wf, "required": True } args.append(cwl_wf_url) # add arguments self.arguments = args # save arguments return self.arguments
7965d86438a43a44f40784805a09c4320233b2be
11,024
import json def json_to_dict(json_file_path): """ Convert a .json file to a Python dictionary. Parameters ---------- json_file_path: str Path of the JSON file Returns ------- dictionary: dict The original JSON file as a Python dictionary """ with open(json_file_path, "r") as json_data: dictionary = json.load(json_data, encoding="utf8") return dictionary
d8ef47ab43c3477212795e795690bad4081e0321
11,025
def format_bases(bases): """ Generate HTML that colours the bases in a string. Args: bases: A string containing a genetic sequence. Returns: An HTML string. """ formatted = '' for b in bases: formatted += '<span class="base-{}">{}</span>'.format(b,b) return formatted
a94f34a53178ceb5dd1640eaa8897a128c7c4d67
11,026
def get_services(services): """ Get all services from the response and make the comma-separated string. :param services: List of services. :return: comma-separated list. """ return ', '.join(services)
6c965dff4c85f772b41d10e12170547f156ee86e
11,028
def check_for_default_value_for_missing_params(missing_params, method_params): """ :param missing_params: Params missing from Rule :param method_params: Params defined on method, which could have default value for missing param [{ 'label': 'action_label', 'name': 'action_parameter', 'fieldType': 'numeric', 'defaultValue': 123 }, ... ] :return Params that are missing from rule but have default params: {'action_parameter'} """ missing_params_with_default_value = set() if method_params: for param in method_params: if param['name'] in missing_params and param.get('defaultValue', None) is not None: missing_params_with_default_value.add(param['name']) return missing_params_with_default_value
bad583976d4c88af93540c9d64f7b0711fd24e12
11,029
import random import string def mock_tweet(): """Generate some random tweet text.""" count = random.randint(70, 140) return ''.join([random.choice(string.ascii_letters) for _ in range(count)])
1a8f9937408acaaaf2534be0721a8e3203525eb3
11,030
def date_comparison(input_series, output_series): """ Compare the start and end dates for the input and output series and obtain the dates that completes the output series :param input_series: :param output_series: :return: """ first_input = input_series['data']['first'] last_input = input_series['data']['last'] first_output = output_series['data']['first'] last_output = output_series['data']['last'] # if output series is not left aligned, something happened and the series # must be re insert if first_input != first_output: ans = {'first': first_input, 'last': last_input} else: ans = {'first': last_output, 'last': last_input} return ans
5910c2e3552d84a15e0b03bfb1dd97cf0cec0d66
11,031
def longitud_palabra(palabra, n): """ -Recibe: una palabra y un numero entero positivo(n) -Devuelve: - True, si la palabra tiene longitud n - False, en caso contrario """ return len(palabra) == n
33065b4302cee42d3921d7b75344c12c43d54cd6
11,032
import math def ph(concentration): """Returns the pH from the hydronium ion concentration.""" return -math.log(concentration)
46e59ed147006ac4cc3aaefea5b10c015a9e18b9
11,033
def hash_file(upload_context): """ Function run by HashFileCommand to calculate a file hash. :param upload_context: PathData: contains path to a local file to hash :return HashData: result of hash (alg + value) """ path_data = upload_context.params hash_data = path_data.get_hash() return hash_data
3819e9617e5726cf4178a8382eb22b0ec8bd7da0
11,034
import struct import ctypes def encipher(v, k): """ TEA coder encrypt 64 bits value, by 128 bits key, QQ uses 16 round TEA. http://www.ftp.cl.cam.ac.uk/ftp/papers/djw-rmn/djw-rmn-tea.html . >>> c = encipher('abcdefgh', 'aaaabbbbccccdddd') >>> b2a_hex(c) 'a557272c538d3e96' """ n=16 #qq use 16 delta = 0x9e3779b9 k = struct.unpack('!LLLL', k[0:16]) y, z = map(ctypes.c_uint32, struct.unpack('!LL', v[0:8])) s = ctypes.c_uint32(0) for i in range(n): s.value += delta y.value += (z.value << 4) + k[0] ^ z.value+ s.value ^ (z.value >> 5) + k[1] z.value += (y.value << 4) + k[2] ^ y.value+ s.value ^ (y.value >> 5) + k[3] r = struct.pack('!LL', y.value, z.value) return r
57d01a534f645f2464d16e90201c2ed1d37c77b9
11,035
def get_attr_of_pset(_id, ifc_file): """ Get all attributes of an instance by given Id param _id: id of instance return: dict of dicts of attributes """ dict_psets = {} try: defined_by_type = [x.RelatingType for x in ifc_file[_id].IsDefinedBy if x.is_a("IfcRelDefinesByType")] defined_by_properties = [x.RelatingPropertyDefinition for x in ifc_file[_id].IsDefinedBy if x.is_a("IfcRelDefinesByProperties")] except: dict_psets.update({ifc_file[_id].GlobalId: "No Attributes found"}) else: for x in defined_by_type: if x.HasPropertySets: for y in x.HasPropertySets: for z in y.HasProperties: dict_psets.update({z.Name: z.NominalValue.wrappedValue}) for x in defined_by_properties: if x.is_a("IfcPropertySet"): for y in x.HasProperties: if y.is_a("IfcPropertySingleValue"): dict_psets.update({y.Name: y.NominalValue.wrappedValue}) # this could be usefull for multilayered walls in Allplan if y.is_a("IfcComplexProperty"): for z in y.HasProperties: dict_psets.update({z.Name: z.NominalValue.wrappedValue}) if x.is_a("IfcElementQuantity"): for y in x.Quantities: dict_psets.update({y[0]: y[3]}) finally: dict_psets.update({"IfcGlobalId": ifc_file[_id].GlobalId}) return dict_psets
6de5772ee0b86894c0986a631c20042751e0eb3e
11,036
def rebuild_paral_results(results): """Rebuild the correct way to store the results.""" scores = [results[i][0] for i in range(len(results))] best_pars_info = [results[i][1] for i in range(len(results))] times = [results[i][2] for i in range(len(results))] return scores, best_pars_info, times
ae7a1ab996c49053332702b44482bc1b440aeee1
11,038
def create_turkey_season(source_df, target_df, feature_name): """ Winter: December - February Spring: March - May Summer: June - August Autumn: September - November """ month_to_season_map = { "jan": "winter", "feb": "winter", "mar": "spring", "apr": "spring", "may": "spring", "jun": "summer", "jul": "summer", "aug": "summer", "sep": "autumn", "oct": "autumn", "nov": "autumn", "dec": "winter", } target_df.loc[:, "season"] = source_df.loc[:, feature_name].map(month_to_season_map) return target_df
65f996d80554a35fff6341ca500a0c09c64186bd
11,041
def value_is_float_not_int(value): """Return if value is a float and not an int""" # this is klugy and only needed to display deprecation warnings try: int(value) return False except ValueError: try: float(value) return True except ValueError: return False except TypeError: return False
f08f55dfc5e8b4eefef102f7fe097e4285d9dc7c
11,044
def policy_settings(request): """TLS termination policy settings""" return request.getfixturevalue(request.param)
3a65251ea7866e25c02bf8354cc7cc9bbb5552e8
11,045
def process_lower(cont): """ Make the value in lowercase """ return cont.lower()
f863852b0aff952bce080e20360d6fcc571acc21
11,046
def get_word_counter(word_vocab): """ Convert a list of tuple of words and their frequencies in word vocabulary to dictionary. Key is word and value is its frequency. Args: word_vocab: A list of tuple of words and their frequencies. Returns: A dictionary with word as the key and its frequency in word vocabulary as the value. """ return {word: count for word, count in word_vocab}
8e76652c721d9ca175f79d9bb0acfccfb90da647
11,051
import torch def format_metric(val): """Format a tensor/number as a float with 4 digits""" if isinstance(val, torch.Tensor): val = val.detach().data return str('{:.4f}'.format(val))
337e266bca4ff0433e2c69864b1a493976d12c44
11,052
import pickle def load_ontology(ontology_file): """ loads an ontology pickle file """ ontology = pickle.load(open(ontology_file, 'rb')) return ontology
8e3e9c9017bee76795a98435a68d3f01fa0d40e9
11,053
import argparse def check_arg(): """Make the parsing of CLI call Returns: [tupla] -- [Namespaces of the parameters passed to the cli] """ parse = argparse.ArgumentParser( prog="git-sync", usage="%(prog)s [-h|--help] ", description="keep sync remote git repo with a local repo", epilog="", allow_abbrev=False, ) parse.add_argument( "-r", "--remote", type=str, help="Remote git repo to sync", required=True ) parse.add_argument("-b", "--branch", type=str, help="Branch to sync", required=True) parse.add_argument( "-u", "--username", type=str, help="Username to authenticate with remote git repo", required=True, ) parse.add_argument( "-t", "--token", type=str, help="Token to authenticate with remote git repo", required=True, ) parse.add_argument( "-d", "--dst", type=str, help="Directory where local repo will reside", required=True, ) args = parse.parse_args() return args
5277583ee6c191af6d32b2bc466005ede7b4aea2
11,054
import re def get_csrf_token(res): """Extract the CSRF token from a response.""" for header in res.headers: m = re.search('token=(.+?);', header[1]) if m: return m.group(1) raise RuntimeError('Could not find CSRF token in response headers: ' + str(res.headers))
2c2670a6909ed87d60b44a5cf1cbaeffdc4fc653
11,055
from pathlib import Path import os def path_to_db_path(path: Path): """Converts a pathlib.Path to a DBFS path""" db_path = str(path).replace("\\", "/") db_path = os.path.splitext(db_path)[0] return db_path
023703da2652f64de39491a64252a692d7aef886
11,056
def create_to_idx_dict(source): """ Creates a dictionary of item-specific indices form a tuple of lists. """ idx_dict = dict() for i in source: if i not in idx_dict: idx_dict[i] = len(idx_dict) return idx_dict
0c8de2455b4fa78b4c29b75879c87f1ee2a2de40
11,059
def homepage(): """List all available api routes.""" return ( f"Welcome to Hawaii - Climate Page<br/>" f"<br/>" f"This site has data from 01-01-2010 to 08-23-2017<br/>" f"<br/>" f"Available Pages:<br/>" f"<br/>" f"<br/>" f" Station Information<br/>" f" /api/v1.0/stations<br/>" f"<br/>" f" Percipitation Information<br/>" f" /api/v1.0/percipitation<br/>" f"<br/>" f" Temperature Observations<br/>" f" /api/v1.0/tobs<br/>" f"<br/>" f" Start Date information - complete url is '/api/v1.0//yyyy-mm-dd'<br/>" f" /api/v1.0/start<br/>" f"<br/>" f" Start and End Date information - complete url is '/api/v1.0/yyyy-mm-dd/yyyy-mm-dd'<br/>" f" /api/v1.0/start/end" )
5c781d229d475ab4253b21c8f5002a020928fae9
11,060
def chomp_empty(seq): """Return slice of sequence seq without trailing empty tuples.""" n = len(seq) while (n > 0) and seq[n - 1] == (): n -= 1 return seq[:n]
1c6f5f58bb2e73d44b2638d796b1b0a38bba414c
11,061
import os def builtin_name(path): """Return the builtin function named in the path.""" name = os.path.basename(path).strip() if name.startswith('<') and name.endswith('>'): return name return None
6dc701e193eb721957b538dc5bfae311ab46d4d8
11,062
def _delta(x, y): """Computes |y|/|x|.""" return max(float(len(y))/float(len(x)), 1.0)
22a55950406daeb3e7653d9a0a232d52a7bd76e4
11,064
def get_token_time(token_index, sentence, duration): """ Linearly interpolate to guess the time a token was utterred """ return (token_index + 1) / max(1, len(sentence)) * duration
d227e782083ae6265e1bc4e286269c421e809985
11,065
def forward_method_kwargs(**kwargs) -> dict: """Return all the keyword-arguments of a method, excluding the 'self' argument""" retval = {} for key, value in kwargs.items(): if key == 'self' or key.startswith('_'): continue elif key == 'kwargs': retval.update(value) else: retval[key] = value return retval
571ad0c61f33e608ce253c16f452e488257cbf31
11,067
def _get_keywords_with_score(extracted_lemmas, lemma_to_word): """Get words of `extracted_lemmas` and its scores, words contains in `lemma_to_word`. Parameters ---------- extracted_lemmas : list of (float, str) Given lemmas with scores lemma_to_word : dict Lemmas and corresponding words. Returns ------- dict Keywords as keys and its scores as values. """ keywords = {} for score, lemma in extracted_lemmas: keyword_list = lemma_to_word[lemma] for keyword in keyword_list: keywords[keyword] = score return keywords
385a54878e508a56ab772fec31f4ff9838048492
11,068
import requests def export_highlights_to_readwise(readwise_token, highlight_objects): """ Submits highlights to Readwise via their API and return the API response. The function takes 2 parameters: - readwise_token: the token used for accessing the user's Readwise highlights through the Readwise API. - highlight_objects: a list of json objects containing the highlights details. """ print('Uploading highlights to Readwise...') api_response = requests.post( url='https://readwise.io/api/v2/highlights/', headers={'Authorization': 'Token ' + readwise_token}, json={ 'highlights': highlight_objects } ) if api_response.status_code != 200: print("Error: Upload of highlights to Readwise failed with status code " + str(api_response.status_code) + '. Please check that the provided Readwise token is correct.') return api_response return api_response
c6b2928aa488fb62d40470e441232ed67d61a020
11,070
def h(p1, p2): """Heuristic function""" x1, y1 = p1 x2, y2 = p2 return abs(x1 - x2) + abs(y1 - y2)
0d7522a3f92ae851bfa9b1a316a1fa97baccf98f
11,072
import torch def pdist(X, Y): """ Computes all the pairwise distances Parameters ---------- X : torch.tensor shape [n, d] Y : torch.tensor shape [m, d] Returns ------- torch.tensor shape [n, m] of all pairwise distances """ n, m = X.shape[0], Y.shape[0] X_norm2 = (X ** 2).sum(1) Y_norm2 = (Y ** 2).sum(1) X_dot_Y = X @ Y.T return ( X_norm2.unsqueeze(1) @ torch.ones((1, m), device=X.device) - 2 * X_dot_Y + torch.ones((n, 1), device=Y.device) @ Y_norm2.unsqueeze(0) )
10fce38b390211999344bd1b0daf0a4484aee2a8
11,073
def detab(self, elem="", lab="", v1="", v2="", v3="", v4="", v5="", v6="", **kwargs): """Modifies element table results in the database. APDL Command: DETAB Parameters ---------- elem Element for which results are to be modified. If ALL, modify all selected elements [ESEL] results. If ELEM = P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for ELEM. lab Label identifying results. Valid labels are as defined with the ETABLE command. Issue ETABLE,STAT to display labels and values. v1 Value assigned to this element table result in the database. If zero, a zero value will be assigned. If blank, value remains unchanged. v2, v3, v4, . . . , v6 Additional values (if any) assigned to consecutive element table columns. Notes ----- Modifies element table [ETABLE] results in the database. For example, DETAB,35,ABC,1000,2000,1000 assigns 1000, 2000, and 1000 to the first three table columns starting with label ABC for element 35. Use the PRETAB command to list the current results. After deleting a column of data using ETABLE,Lab,ERASE, the remaining columns of data are not shifted to compress the empty slot. Therefore, the user must allocate null (blank) values for V1, V2...V6 for any ETABLE entries which have been deleted by issuing ETABLE,Lab,ERASE. All data are stored in the solution coordinate system but will be displayed in the results coordinate system [RSYS]. """ command = f"DETAB,{elem},{lab},{v1},{v2},{v3},{v4},{v5},{v6}" return self.run(command, **kwargs)
01f13f7e971c2c24e291712a7e634838e2e2ac5a
11,074
def convert(s): """ Convert a probability string to a float number. :param s: probability string. :return: a float probability. """ try: return float(s) except ValueError: num, denom = s.split('/') return float(num) / float(denom)
84333f21edfdcb2f3c917f23c23b9d399c5f6e56
11,075
def git_log_file(file_name): """要求文件路径是相对于git仓库更目录到文件完整路径""" cmd = "git log -1 %s |grep Date" % file_name return cmd
e7d0481d4ee7e1a68492df07ed9c35e95a87ab5c
11,076
def count_cigar_ops(cigar): """ For curious people: regexes are very slow for parsing CIGAR strings. cigar: Unicode """ b = 0 num_m, num_i, num_d = 0, 0, 0 for i in range(len(cigar)): if cigar[i] <= '9': continue # Check if there are no digits before the op char. assert(b < i) count = int(cigar[b:i]) op = cigar[i] b = i + 1 if op == 'D': num_d += count elif op == 'I': num_i += count elif op in ['M', '=', 'X']: num_m += count else: # pragma: no cover pass # pragma: no cover # Check if there are dangling ops. assert(b == len(cigar)) total_len = num_d + num_i + num_m return num_m, num_i, num_d, total_len
7efacce3a9b13249718ae140e79a5800b8682ff5
11,078
def get_dwtype_floor_area(dwtype_floorarea_by, dwtype_floorarea_ey, sim_param): """Calculates the floor area per dwelling type for every year Parameters ---------- dwtype_distr_by : dict Distribution of dwelling types base year assump_dwtype_distr_ey : dict Distribution of dwelling types end year sim_param : list Simulation parameters Returns ------- dwtype_floor_area : dict Contains the floor area change per dwelling type Note ----- - A linear change over time is assumed Example ------- out = {year: {'dwtype': 0.3}} """ dwtype_floor_area = {} for curr_yr in sim_param['sim_period']: nr_sim_yrs = curr_yr - sim_param['base_yr'] if curr_yr == sim_param['base_yr']: y_distr = dwtype_floorarea_by else: y_distr = {} for dwtype in dwtype_floorarea_by: val_by = dwtype_floorarea_by[dwtype] val_ey = dwtype_floorarea_ey[dwtype] diff_val = val_ey - val_by # Calculate linear difference up to sim_yr diff_y = diff_val / sim_param['sim_period_yrs'] y_distr[dwtype] = val_by + (diff_y * nr_sim_yrs) dwtype_floor_area[curr_yr] = y_distr return dwtype_floor_area
3b87386bbf5bf051aec5d43ebd47f3359885c8b4
11,079
def look_and_say(n): """Returns the nth term of the "look and say" sequence, which is defined as follows: beginning with the term 1, each subsequent term visually describes the digits appearing in the previous term. The first few terms are as follows: 1 11 21 1211 111221 Ex: the fourth term is 1211, since the third term consists of one 2 and one 1. """ assert n, "There is no zeroth term." if n == 1: return 1 else: s = str(look_and_say(n-1)) res = '' i = 0 while i in range(len(s)): count = 1 num = s[i] while i in range(len(s)-1) and s[i] == s[i+1]: count += 1 i += 1 res += str(count) + num i += 1 return int(res)
5cb341d0bce8bc363b2b734e9da66a07b7da2434
11,081
def compound_alternative_forms(forms, sec_pos, forms_ind_or_con, forms_imp): """ compuond all alternative forms into a set :return: """ if not forms: if forms_imp: forms = {sec_pos: forms_ind_or_con, 'imp': forms_imp} else: forms = {sec_pos: forms_ind_or_con} else: for pos in forms: for number in forms[pos]: for person in forms[pos][number]: old = forms[pos][number][person] try: new = forms_ind_or_con[number][person] except KeyError: new = [] new.extend(old) forms[pos][number][person] = new if forms_ind_or_con == 'modal': return forms if forms_imp == 'modal': forms_imp = None for pos in forms: for number in forms[pos]: for person in forms[pos][number]: old = forms[pos][number][person] new = set(old) forms[pos][number][person] = new return forms
9b81aea6ef9edbe71560d2ca1d001a3971928c00
11,082
def get_text_ls(filename): """Returns text of file as a list of strings""" with open(filename, 'r') as f_in: return f_in.readlines()
5b788f38e683c82648224b7cc1b5875a0f602dce
11,083
def get_title(soup): """Given a soup, pick out a title""" if soup.title: return soup.title.string if soup.h1: return soup.h1.string return ''
bcec80e0c6e5163ed90a4975b81a5c5a3d418132
11,086
def add_motif(genome, motif, index): """ Replace from the index to index+len(motif) in the genome with the motif selected """ try: # If this can be done is because index is an integer index = index-len(motif) return genome[:index]+motif+genome[index+len(motif):] except: # If we arrive here is becuse index is a list for i in index: i = i-len(motif) genome=genome[:i]+motif+genome[i+len(motif):] return genome
b4fa3f957fc440a837a0f65fd431f1fc9119f077
11,087
def featurizeDoc(doc): """ get key : value of metadata """ doc_features = [] for key in doc: doc_features.append("{0}: {1}".format(key, doc[key])) return doc_features
7204fe1ded828112e69c120c944a5a16cc00f628
11,089
def f(f_prob): """Deterministic forecast matching observation o.""" return f_prob.isel(member=0, drop=True)
4163e9a40916bd6c1dbf00e6ed635cf2b78bcfc7
11,090