content
stringlengths 35
416k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
|---|---|---|
def median(values):
"""Return median value for the list of values.
@param values: list of values for processing.
@return: median value.
"""
values.sort()
n = int(len(values) / 2)
return values[n]
|
c40b9e0b2cdd2b00ae6692aed2cfe9787bc8f9df
| 701,294
|
import torch
def collate_fn(batch, transforms):
"""Collate function to be passed to the PyTorch dataloader.
Parameters
----------
batch : list
Uncollated batch of size `batch_size`.
device : str or torch.device
Current working device.
transforms : callable
Transformations to be applied on input PIL images.
"""
images, bboxess, labelss, img_widths, img_heights = zip(*batch)
# Turn image widths and heights into pseudo bounding boxes to retrieve back
# later
img_widths = torch.tensor(img_widths, dtype=torch.float32)
img_heights = torch.tensor(img_heights, dtype=torch.float32)
x1_or_y1 = torch.zeros_like(img_widths, dtype=torch.float32)
pseudo_img_sizes = torch.stack(
[x1_or_y1, x1_or_y1, img_widths, img_heights], dim=-1)
# Bounding boxes
bboxess_ = []
for bboxes, pseudo_img_size in zip(bboxess, pseudo_img_sizes):
assert len(bboxes) % 4 == 0
bboxes = torch.tensor(bboxes, dtype=torch.float32)
bboxes = bboxes.view(-1, 4)
# Concat with (pseudo) image size
bboxes = torch.cat((bboxes, pseudo_img_size[None, :]), dim=0)
bboxess_.append(bboxes)
bboxess = bboxess_
# Labels
labelss_ = []
for labels, bboxes in zip(labelss, bboxess):
assert len(labels) == len(bboxes) - 1 # accounts for pseudo image size
labels = torch.tensor(labels, dtype=torch.float32)
labelss_.append(labels)
labelss = labelss_
# Transformations
images_trans, bboxess_trans, labelss_trans = [], [], []
image_boundaries = []
for image, bboxes, labels in zip(images, bboxess, labelss):
outp = transforms(image=image, bboxes=bboxes, class_labels=labels)
images_trans.append(outp["image"])
labelss_trans.append(outp["class_labels"])
bboxes_trans = outp["bboxes"]
bboxess_trans.append(bboxes_trans[:-1, :])
image_boundaries.append(bboxes_trans[-1, :])
images_trans = torch.stack(images_trans, dim=0)
image_boundaries = torch.stack(image_boundaries, dim=0)
return images_trans, bboxess_trans, labelss_trans, image_boundaries
|
89daebd2f58d9a7b83c7bd7c14cdde2ed16d8b3d
| 701,295
|
def sanitizer(name):
"""
Sanitizes a string supposed to be an entity name. That is,
invalid characters like slashes are substituted with underscores.
:param name: A string representing the name.
:returns: The sanitized name.
:rtype: str
"""
return name.replace("/", "_")
|
f59aa75a40067068c711a4ca01b643c69d43cd0c
| 701,296
|
import subprocess
def git_uncommited_changes():
"""
Returns True if the current git branch has uncommitted changes.
"""
p = subprocess.Popen(
['git', 'status'],
)
returncode = p.wait()
return (returncode is not 0)
|
0e72aa04afabc0dd8a014dbfb30a08cdf22eed01
| 701,297
|
import re
def password_string(value):
"""密码输入类型"""
if len(value) < 8 or len(value) > 20 or re.match(r'^(?![0-9]+$)(?![a-zA-Z]+$)[0-9A-Za-z]{6,20}$', value) is None:
raise ValueError('密码至少包含 数字和英文,长度6-20,不能出现非法字符')
return value
|
e6bfcc473c164cd06e3acd65165f6fb9dcd251cf
| 701,298
|
def build_bankruptcy_definition(years):
"""Build a bankruptcy definition
Notes:
This function is set according to a line of best fit from Year 0 at -10% ROI to 10% ROI by Year 7.
Args:
years (int): No. of years for analysis
Returns:
Bankruptcy definition (list): A timeseries of the bankruptcy threshold graph
TO DO:
Allow flexibility of bankruptcy definition by allowing input of two data points rather than assuming (-10%, 0) and (10%, 7)
"""
bankruptcy_definition =[]
for y in range(years+1):
# Threshold for bankruptcy
if y <= 7:
bankruptcy_definition.append(y*2.8571 - 10) # Year 0 - below 10% ROI, Year 7 - 10% ROI
elif y > 7:
bankruptcy_definition.append(10)
return bankruptcy_definition
return bankruptcy_definition
|
c2364bd97eec587e57bc0d701d83b304631a8bd2
| 701,299
|
def bad_unpacking():
""" one return isn't unpackable """
if True:
return None
return [1, 2]
|
dd241b5aa49b58300fd883d61b5eb41b1eb92aa1
| 701,300
|
def build_slices_from_list_of_arrays(list_of_arrays, n_his, n_feat, verbose=0):
"""
This function creates a list of slices of shape (n_his + 1, n_feat)
"""
assert list_of_arrays[0].shape[1] == n_feat, "list_of_arrays[0].shape[1]={} but n_feat={}".format( list_of_arrays[0].shape[1], n_feat)
X_slices = []
for m, arr in enumerate(list_of_arrays):
if arr.shape[0] < n_his + 1:
if verbose>0:
print("Sequence {} has length {}".format(m, arr.shape[0]))
else:
for k in range(n_his+1, arr.shape[0] + 1):
X_slice = arr[(k-n_his-1):k, :]
if X_slice.shape[0] != n_his+1:
if verbose>0:
print("error!")
X_slices.append(X_slice)
return X_slices
|
bfec73928e84a07eab9fc00f2cf9c8b1d5ca31cb
| 701,301
|
def luhn_checksum(check_number):
"""http://en.wikipedia.org/wiki/Luhn_algorithm ."""
def digits_of(n):
return [int(d) for d in str(n)]
digits = digits_of(check_number)
odd_digits = digits[-1::-2]
even_digits = digits[-2::-2]
checksum = 0
checksum += sum(odd_digits)
for d in even_digits:
checksum += sum(digits_of(d * 2))
return checksum % 10
|
4209fd2f77acb240e7e2adfca63d638bb6f79187
| 701,302
|
def blockchain_timeframe_summary(final_df, config) -> dict:
"""
Get summary statistics
:param final_df: The full dataframe of address information from the blockchain
:param config: configuration file for including start/end times in output dataframe
"""
print("Getting summary counts of analysis")
summary = {'total_transactions': len(final_df),
'from_time': config['START_TIME'],
'to_time': config['END_TIME'],
'count_unique_assets': final_df['asset-id-asset-transfer-tx'].nunique(),
'count_unique_applications': final_df['application-id-application-tx'].nunique()}
tx_type_summary = final_df['tx-type'].value_counts().to_dict()
summary.update(tx_type_summary)
return summary
|
eedbb4e33bfdb937426ace26eba10427694356ec
| 701,303
|
import ctypes
def make_array_ctype(ndim):
"""Create a ctypes representation of an array_type.
Parameters
-----------
ndim: int
number of dimensions of array
Returns
-----------
a ctypes array structure for an array with the given number of
dimensions
"""
c_intp = ctypes.c_ssize_t
class c_array(ctypes.Structure):
_fields_ = [('parent', ctypes.c_void_p),
('nitems', c_intp),
('itemsize', c_intp),
('data', ctypes.c_void_p),
('shape', c_intp * ndim),
('strides', c_intp * ndim)]
return c_array
|
c83ab386d40043d49d1b86c21c2789c461999fc5
| 701,305
|
def get_json_request_header():
"""
Return the header for JSON request
:return:
"""
return {'Accept': 'application/json', 'Authorization': 'Token sessionTokenHere==', 'Accept-Language': 'en'}
|
9767910ae8e4c1fe8993ab45fa2331e9ea6efad1
| 701,306
|
import platform
def get_uname():
"""Get uname."""
# Preferable to running a system command
uname = " ".join(platform.uname())
return uname
|
18b7fc9ae6c51c0c5087ed67586a7fc358697405
| 701,307
|
def reindent(str, spaces=''):
"""
Removes any leading empty columns of spaces
"""
lines = str.splitlines()
lspace = [len(l) - len(l.lstrip()) for l in lines if l.lstrip()]
margin = len(lspace) and min(lspace)
return '\n'.join((spaces + l[margin:]) for l in lines)
|
af46a4440839fb38850d973df0d62abe02213755
| 701,308
|
def income_percentiles(row, percentiles, prefix="total"):
"""
Estimate income percentiles from counts in the census income ranges.
Parameters
==========
row: pandas.Series
A series that contains binned incomes in the ranges given by
CENSUS_INCOME_RANGES.
percentiles: List[float]
A list of percentiles (from zero to 100) for which to estimate values.
prefix: str
A prefix for the income range columns (e.g., census-indicated race).
Defaults to "total"
Returns
=======
A list of estimated income percentiles of the same length as percentiles,
in thousands of dollars.
"""
# Edges of the reported income bins, in thousands of dollars
bins = [0, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 75, 100, 125, 150, 200]
# Iterator over percentiles
p_it = iter(percentiles)
# Final values for percentiles
values = []
# Initialize current percentile and an accumulator variable
curr = next(p_it)
acc = 0
# The total count for the tract
total = row[f"{prefix}_total"]
if total <= 0:
return values
for i, b in enumerate(bins):
# Compute the label of the current bin
if i == 0:
label = f"{prefix}_lt{bins[i+1]}"
elif i == len(bins) - 1:
label = f"{prefix}_gt{b}"
else:
label = f"{prefix}_r{b}to{bins[i+1]-1}"
# Estimate the value for the current percentile
# if it falls within this bin
while (acc + row[label]) / total > curr / 100.0:
frac = (total * curr / 100.0 - acc) / row[label]
lower = b
upper = bins[i + 1] if i < (len(bins) - 1) else 300.0
interp = (1.0 - frac) * lower + frac * upper
values.append(interp)
try:
curr = next(p_it)
except StopIteration:
return values
# Increment the accumulator
acc = acc + row[label]
return values
|
ca44ef180f13c730a2eea10c4c4b576e8d54819e
| 701,309
|
def eq_xtl(
Cl, D, F,
):
"""
eq_xtl calculates the composition of a trace element in the remaining liquid after a certain amount of
crystallization has occured from a source melt when the crystal remeains in equilibrium with the melt
as described by White (2013) Chapter 7 eq. 7.81. It then calculates the concentration of that trace element
in a specific solid phase based on partition coefficient input.
Inputs:
Cl = concentration of trace element in original liquid
D = bulk distribution coefficient for trace element of crystallizing assemblage
F = fraction of melt remaining
Returns:
Cl_new = concentration of trace element in the remaining liquid
"""
Cl_new = Cl / (D + F * (1 - D))
return Cl_new
|
298a5557775a953a645aade70f41818e42e761ac
| 701,310
|
def quantity_label(quantity):
"""Returns formatted string of parameter label
"""
labels = {
'accrate': r'$\dot{m}$',
'alpha': r'$\alpha$',
'd_b': r'$d \sqrt{\xi_\mathrm{b}}$',
'dt': r'$\Delta t$',
'fluence': r'$E_\mathrm{b}$',
'length': 'Burst length',
'lum': r'$\mathit{L}$',
'm_gr': '$M$',
'm_nw': r'$M_\mathrm{NW}$',
'mdot': r'$\dot{m}$',
'peak': r'$L_\mathrm{peak}$',
'qb': r'$Q_\mathrm{b}$',
'rate': r'Burst rate',
'redshift': '$z$',
'x': r'$X_0$',
'xedd': r'$X_\mathrm{Edd}$',
'xedd_ratio': r'$X_\mathrm{Edd} / X_0$',
'xi_ratio': r'$\xi_\mathrm{p} / \xi_\mathrm{b}$',
'xi_b': r'$\xi_\mathrm{b}$',
'xi_p': r'$\xi_\mathrm{p}$',
'z': r'$Z_\mathrm{CNO}$',
}
return labels.get(quantity, f'${quantity}$')
|
467baf8f3d2ae72474e6f65e6990779e7cb10034
| 701,311
|
def get_response(request):
"""
Fake view-like callback to use in middleware tests.
"""
return None
|
711106895c1aa21847152763bdd05a1f9a367ed6
| 701,313
|
def set_proper_dtypes(df):
"""
forgot to save integers as integers. Only the distances feature columns have true floats.
"""
potential_integer_cols = df.columns.difference(list(df.filter(regex='distances.*', axis=1)))
for col in potential_integer_cols:
if str(df[col].dtype) != 'object':
df[col] = df[col].astype(int)
return df
|
2a7d5f615c666d9a1778dfda1ba427c87541e34b
| 701,314
|
import gevent # type: ignore
from gevent.monkey import is_object_patched # type: ignore
from eventlet.patcher import is_monkey_patched # type: ignore
import re
import sys
def _is_contextvars_broken():
# type: () -> bool
"""
Returns whether gevent/eventlet have patched the stdlib in a way where thread locals are now more "correct" than contextvars.
"""
try:
# Get the MAJOR and MINOR version numbers of Gevent
version_tuple = tuple(
[int(part) for part in re.split(r"a|b|rc|\.", gevent.__version__)[:2]]
)
if is_object_patched("threading", "local"):
# Gevent 20.9.0 depends on Greenlet 0.4.17 which natively handles switching
# context vars when greenlets are switched, so, Gevent 20.9.0+ is all fine.
# Ref: https://github.com/gevent/gevent/blob/83c9e2ae5b0834b8f84233760aabe82c3ba065b4/src/gevent/monkey.py#L604-L609
# Gevent 20.5, that doesn't depend on Greenlet 0.4.17 with native support
# for contextvars, is able to patch both thread locals and contextvars, in
# that case, check if contextvars are effectively patched.
if (
# Gevent 20.9.0+
(sys.version_info >= (3, 7) and version_tuple >= (20, 9))
# Gevent 20.5.0+ or Python < 3.7
or (is_object_patched("contextvars", "ContextVar"))
):
return False
return True
except ImportError:
pass
try:
if is_monkey_patched("thread"):
return True
except ImportError:
pass
return False
|
39c298d0fc1cedf7770215b5fe802bdc0dfe4644
| 701,315
|
def natSettings(ctx, mach, nicnum, nat, args):
"""This command shows/alters NAT settings.
usage: nat <vm> <nicnum> settings [<mtu> [[<socsndbuf> <sockrcvbuf> [<tcpsndwnd> <tcprcvwnd>]]]]
mtu - set mtu <= 16000
socksndbuf/sockrcvbuf - sets amount of kb for socket sending/receiving buffer
tcpsndwnd/tcprcvwnd - sets size of initial tcp sending/receiving window
"""
if len(args) == 1:
(mtu, socksndbuf, sockrcvbuf, tcpsndwnd, tcprcvwnd) = nat.getNetworkSettings()
if mtu == 0: mtu = 1500
if socksndbuf == 0: socksndbuf = 64
if sockrcvbuf == 0: sockrcvbuf = 64
if tcpsndwnd == 0: tcpsndwnd = 64
if tcprcvwnd == 0: tcprcvwnd = 64
msg = 'mtu:%s socket(snd:%s, rcv:%s) tcpwnd(snd:%s, rcv:%s)' % (mtu, socksndbuf, sockrcvbuf, tcpsndwnd, tcprcvwnd)
return (0, [msg])
else:
if args[1] < 16000:
print('invalid mtu value (%s not in range [65 - 16000])' % (args[1]))
return (1, None)
for i in range(2, len(args)):
if not args[i].isdigit() or int(args[i]) < 8 or int(args[i]) > 1024:
print('invalid %s parameter (%i not in range [8-1024])' % (i, args[i]))
return (1, None)
a = [args[1]]
if len(args) < 6:
for i in range(2, len(args)): a.append(args[i])
for i in range(len(args), 6): a.append(0)
else:
for i in range(2, len(args)): a.append(args[i])
#print(a)
nat.setNetworkSettings(int(a[0]), int(a[1]), int(a[2]), int(a[3]), int(a[4]))
return (0, None)
|
2b3e60e68f7c04e8f46b63acf3713297d781d852
| 701,317
|
def compare_cards(card1, card2):
""" Compare the two given cards and return success if successful """
success = False
if card1.symbol == card2.symbol:
success = True # Success
return success
|
27ee184305bd725af2dd1a4a3ef90ef72c815fbf
| 701,319
|
def local_overrides_git(install_req, existing_req):
"""Check whether we have a local directory and a Git URL
:param install_req: The requirement to install
:type install_req: pip.req.req_install.InstallRequirement
:param existing_req: An existing requirement or constraint
:type existing_req: pip.req.req_install.InstallRequirement
:return: True if the requirement to install is a local directory and the
existing requirement is a Git URL
:rtype: bool
"""
return (install_req.link and
existing_req.link and
install_req.link.url.startswith('file:///') and
existing_req.link.url.startswith('git+'))
|
5c031506ddee4d05332421f8470026fbceb0978d
| 701,320
|
def initializeANEOS(in_filename = "std::string",
out_filename = "std::string",
izetl = "std::vector<int>"):
"""Initialize ANEOS with some rather arcane input.
in_filename : The name of the ANEOS input file, initializes the Fortran ANEOS library
out_filename : An optional file to write any output from the ANEOS intialization call
izetl : An array of the material numbers ("EOS#" in the ANEOS input file)
Note, these numbers must be the negative of the "EOS#" in the input
"""
return "void"
|
eedb4227c13e78a52916f64f7589b9a694f3b28f
| 701,321
|
from typing import Any
import torch
def infer_device(x: Any):
"""Infer the device of any object (CPU for any non-torch object)"""
if isinstance(x, torch.Tensor):
return x.device
return torch.device("cpu")
|
a566c267897ca602e13710a30d928fdc49f856a5
| 701,322
|
def turns_remaining(turns):
"""returns the number of turns remaining"""
if turns == 0:
return "You ran out of turns."
else:
return "You have {} turns remaining.".format(turns)
|
7315f5522c0da660ba37526005c53ba9986d8aa8
| 701,323
|
def cross_ratio(A, B, C, D):
"""The cross ration of four _colinear_ points is invariant under projective
transformation. That means that, for any homography H,
cross_ratio(A, B, C, D) == cross_ratio(HA, HB, HC, HD)
which can be useful."""
# (u, v, w) is the line orthogonal to (A-D), that contains A
u = A[0] - D[0]
v = A[1] - D[1]
w = -(u*A[0] + v*A[1])
# Find the point-line distances
a = u*A[0] + v*A[1] + w # i.e., 0
b = u*B[0] + v*B[1] + w
c = u*C[0] + v*C[1] + w
d = u*D[0] + v*D[1] + w
return ((a - c)*(b - d)) / ((b - c) * (a - d))
|
4095d6c448f0d43824ab5b6a05b1921de98388f1
| 701,324
|
import random
def find_optimal_route(start_time,
expected_time,
favorite_route='SBS1K',
favorite_option='bus'):
""" Find optimal route for me to go from home to office.
First two inputs should be datetime instances.
"""
# Convert to minutes
tdiff = (expected_time - start_time).total_seconds()/60.0
options = {range(0, 30): 'car',
range(30, 45): ('car', 'metro'),
range(45, 60): ('bus:335E', 'bus:connector')}
if tdiff < 80:
# Pick the range it falls into
for drange in options:
if tdiff in drange:
return drange[tdiff]
# Might as well go by normal bus
return random.choice(('bus:330', 'bus:331',':'.join((favorite_option,
favorite_route))))
|
beb64a91e1b5eae4059048c6bf916b8b15dd0be5
| 701,325
|
import json
import os
def save_environments(workspace, project, env_data):
"""save environments.json file contents.
env_data must be a valid json string.
Returns a string with the error or empty string otherwise"""
error = ''
if len(env_data):
try:
json.loads(env_data)
except:
error = 'must be valid JSON'
if not error:
environments_path = os.path.join(workspace, 'projects', project, 'environments.json')
with open(environments_path, 'w') as env_file:
env_file.write(env_data)
return error
|
ceff756c8f7ed402c866ead68d66d406f08eb621
| 701,326
|
def G1DListMergeEdges(eda, edb):
""" Get the merge between the two individual edges
:param eda: the edges of the first G1DList genome
:param edb: the edges of the second G1DList genome
:rtype: the merged dictionary
"""
edges = {}
for value, near in eda.items():
for adj in near:
if (value in edb) and (adj in edb[value]):
edges.setdefault(value, []).append(adj)
return edges
|
4393e1d9260a02b20d49afe53e86393f16a4d879
| 701,327
|
def make_rpc_batch_request_entry(rpc_name, params):
"""
Construct an entry for the list of commands that will be passed as a batch
(for `_batch`).
"""
return {
"id": "50",
"version": "1.1",
"method": rpc_name,
"params": params,
}
|
603bc7d063f638849a94820af591331f3993c496
| 701,328
|
def __increaseCombinationCounter(root):
""" increase the combination-counter,
which is located in the provided root-node """
if root['type']=='graphroot':
root['combination'] += 1
return root
|
c2f7c88ef2eca4f8c4bf6532cc76ed5a1833dfe6
| 701,329
|
import time
def get_time_human_readable():
"""
returns well formated time string.
for example: Donnerstag, 21:00
"""
return time.strftime("%A, %H:%M")
|
2dfc67ba6eec8b830a9bacb5f4d9c6baaab17943
| 701,330
|
import numpy
def gaussian_kernel(x1, x2, sigma):
"""
Computes the radial basis function
Returns a radial basis function kernel between x1 and x2.
Parameters
----------
x1 : numpy ndarray
A vector of size (n, ), representing the first datapoint.
x2 : numpy ndarray
A vector of size (n, ), representing the second datapoint.
sigma : float
The standard deviation (bandwidth) parameter for the Gaussian kernel.
Returns
-------
rbf : float
The computed RBF between the two provided data points.
Instructions
------------
Fill in this function to return the similarity between `x1` and `x2`
computed using a Gaussian kernel with bandwidth `sigma`.
"""
rbf = 0
numr = -numpy.sum((x1 - x2)**2)
denr = 2*(sigma**2)
rbf = numpy.exp(numr/denr)
return rbf
|
09305fe216a1994e597b9c44c83e7f0fc5283575
| 701,331
|
import os
def ensure_symlink (src, dst):
"""Ensure the existence of a symbolic link pointing to src named dst. Returns
a boolean indicating whether the symlink already existed.
"""
try:
os.symlink (src, dst)
except OSError as e:
if e.errno == 17: # EEXIST
return True
raise
return False
|
0ff95fc22f59f9436e8bf1ab6fe8732c46f953cb
| 701,333
|
import re
def remove_numbers(s):
"""Removes numbers, including times."""
return re.sub('\d+(:\d*)*(\.\d*)?', ' ', s)
|
b234b914cc84b04cd183ba086674df0775f3b098
| 701,335
|
def _escapeWildCard(klassContent):
"""
>>> _escapeWildCard('')
''
>>> _escapeWildCard(':*')
''
>>> _escapeWildCard(':Object')
':Object'
"""
return klassContent.replace(':*', '')
|
537b3969dabb46c3a093dacc3ba49a58833f8c18
| 701,336
|
def check_fields(default_dict, new_dict):
"""
Return the dictionary with default keys and values updated by using the information of ``new_dict``
:param dict default_dict:
Dictionary with default values.
:param dict new_dict:
Dictionary with new values.
:return: dict.
"""
# Check if the entered variable has different values
for key in list(set(default_dict.keys()) & set(new_dict.keys())):
default_dict[key] = new_dict[key]
return default_dict
|
c31508cc7ac3e4a717285c2fd082fc6bd7c2eb32
| 701,337
|
from typing import Any
def tsv_escape(x: Any) -> str:
"""
Escape data for tab-separated value (TSV) format.
"""
if x is None:
return ""
x = str(x)
return x.replace("\t", "\\t").replace("\n", "\\n")
|
febefd579773aa4deea90e589114d39c5b8a4784
| 701,338
|
import functools
def is_to(func):
"""Decorator that ensures caller is owner, TO, or admin."""
@functools.wraps(func)
async def wrapper(self, *args, **kwargs):
ctx = args[0]
user = ctx.author
tourney = kwargs['tourney']
if not (user == tourney.owner or
tourney.channel.permissions_for(user).administrator or
any(role.name == 'TO' for role in user.roles)):
await ctx.send('Only a TO can run this command.')
return
return await func(self, *args, **kwargs)
return wrapper
|
427306bd299fb84aaf1d271d09ad3ecedf07a66f
| 701,339
|
def cardinal(converted_data, path):
"""
Translates first move on path to cardinal direction.
Args:
converted_data (dict): python readable json
path (list): path from a*
Return:
direction (str): cardinal direction as string
"""
# if x values are same check y values for direction
if converted_data["you"]["body"][0]['x'] == path[1][0]:
if (converted_data["you"]["body"][0]['y']) < (path[1][1]):
direction = 'down'
else:
direction = 'up'
# x values are different check them for direction
else:
if (converted_data["you"]["body"][0]['x']) < (path[1][0]):
direction = 'right'
else:
direction = 'left'
return direction
|
6802276a8e06a127383cfbe0dcbe511bd0ef2260
| 701,340
|
def sum_to_n(n: int) -> int:
"""
>>> sum_to_n(100)
5050
>>> sum_to_n(10)
55
"""
return sum(i for i in range(1, n + 1))
|
867fc0c6b44b153db8215390fbb34fc47bac0c3e
| 701,341
|
def set_remove():
"""
>>> sorted(set_remove())
[1, 2]
"""
s = set([1,2,3])
s.remove(3)
return s
|
4a8c7971944729fb6c0226a7fbf824d744936f4b
| 701,342
|
import types
import importlib.machinery
def load_user_defined_function(function_name: str, module_file: str):
"""Function to load arbitrary functions
Args:
function_name (str): name of function to load from function_file
module_file (str): file module where function is defined
Returns:
function loaded from file
"""
loader = importlib.machinery.SourceFileLoader('user_defined_module', module_file)
module = types.ModuleType(loader.name)
loader.exec_module(module)
return getattr(module, function_name)
|
350eda67efb6d346b8833385a21959dd7bf93f47
| 701,343
|
def insert_edge_list():
"""Solution to exercise R-14.8.
Repeat Exercise R-14.7 for the adjacency list representation, as described
in the chapter.
---------------------------------------------------------------------------
Solution:
---------------------------------------------------------------------------
An adjacency list uses a primary list structure V to store the vertices of
graph G. V is implemented as a positional list, where each vertex v
contains a reference to a secondary list I(v) which contains all of v's
incident edges. A directed list will have a I_incoming and I_outgoing to
distinguish between incoming and outgoing edges. An undirected list will
simply have I_incoming point to I_outgoing and thus use one list to keep
track of edges.
If I assume that I_incoming and I_outgoing are implemented as positional
lists as well, then a new edge can be added to these lists in O(1) time.
Even if they are implemented as Python lists the append operation is O(1)
amortized.
I do not implement error checking in the pseudocode below, because the
get_edge(u, v) method requires O(min(deg(u), deg(v))) time to iterate
through the secondary lists and would prevent the insert_edge() method from
being O(1) time.
def insert_edge(u, v, x):
e = Edge(u, v, x) # Create edge instance
u.I_outgoing.add_last(e) # Add edge to outgoing list of u
v.I_incoming.add_last(e) # Add edge to incoming list of v
The above pseudocode should run in O(1) time.
"""
return True
|
8feca54965fbd5f88d2cc2ed638514e77a0b6ec9
| 701,344
|
def heuristic_iteration(gloss_tokens, trans_tokens, aln, comparison_function, multiple_matches = True, iteration=1, report=False):
"""
:param gloss_tokens:
:type gloss_tokens: list[str]
:param trans_tokens:
:type trans_tokens: list[str]
:param aln:
:type aln: Alignment
:param comparison_function:
:param iteration:
"""
gloss_indices = range(0, len(gloss_tokens))
trans_indices = range(0, len(trans_tokens))
# On the second pass, let's move from the right
# backward
if iteration > 1:
gloss_indices = gloss_indices[::-1]
trans_indices = trans_indices[::-1]
aligned_gloss_w = set(aln.all_src())
aligned_trans_w = set(aln.all_tgt())
for gloss_i in gloss_indices:
# Only allow one alignment from gloss to trans.
if gloss_i+1 in aligned_gloss_w:
continue
gloss_w = gloss_tokens[gloss_i]
for trans_i in trans_indices:
trans_w = trans_tokens[trans_i]
# Skip any attempt to align already aligned words on the first pass.
if iteration == 1 and trans_i+1 in aligned_trans_w:
continue
if comparison_function(gloss_w, trans_w):
if report:
print('ADDING "{}"--"{}"'.format(gloss_w, trans_w))
aln.add((gloss_i+1, trans_i+1))
aligned_gloss_w.add(gloss_i+1)
aligned_trans_w.add(trans_i+1)
if iteration == 1: break # On the first iteration, let's move to another
if iteration == 2 or not multiple_matches:
return aln
else:
return heuristic_iteration(gloss_tokens, trans_tokens, aln, comparison_function, multiple_matches, iteration+1)
|
dffec1a56b687012cce6153e1b89f25da7b830ca
| 701,345
|
def decrypt(sk, c):
"""Decrypt a cyphertext based on the provided key."""
return (c % sk) % 2
|
d3a96f66e1b449ffbd5b6ca1ba0827455b83f9e2
| 701,346
|
from typing import Any
import inspect
def is_valid_broker(obj: Any) -> bool:
"""
Helper utils to check if an object can
be used as a broker in `WebSocketManager`.
Exposed to developers who need to implement a
custom broker.
"""
return (
(hasattr(obj, 'subscribe') and inspect.iscoroutinefunction(obj.subscribe))
and (
hasattr(obj, 'unsubscribe') and inspect.iscoroutinefunction(obj.unsubscribe)
)
and (hasattr(obj, 'publish') and inspect.iscoroutinefunction(obj.publish))
and (
hasattr(obj, 'get_message') and inspect.iscoroutinefunction(obj.get_message)
)
)
|
9452c2f8698264e28b72c5b597ff4c9804ea419e
| 701,347
|
from typing import get_origin
def get_base_generic_type(object_type):
"""
Utility method to return the equivalent non-customized type for a Generic type, including user-defined ones.
for example calling it on typing.List<~T>[int] will return typing.List<~T>.
If the type is not parametrized it is returned as is
:param object_type:
:return:
"""
return get_origin(object_type) or object_type
#
#
# # Solution referenced by https://github.com/python/typing/issues/423
# # note: is_generic_type excludes special typing constructs such as Union, Tuple, Callable, ClassVar
# if is_generic_type(object_type) or is_tuple_type(object_type):
# # inferred_base_type = locate(object_type.__module__ + '.' + object_type.__name__)
# # return object_type.__origin__
# return get_origin(object_type)
# # if inferred_base_type is not None:
# # return inferred_base_type
# # else:
# # # that may happen if your generic class has been defined inside a local class
# # # For these classes, we cant' get the base (expressed with 'T') class, strangely enough
# # warn('Unable to find the base generic class for ' + str(object_type) + ' although it seems to extend '
# # 'typing.Generic. Using the class directly')
# # return object_type
# else:
# return object_type
|
03be217c9894d4523a0ab4030957d46f9b75fa88
| 701,348
|
import math
def centre_dot(dot_ls):
"""计算多个经纬度坐标的中心点"""
lng = 0
lat = 0
count = len(dot_ls)
for dot in dot_ls:
lng += float(dot[0]) * math.pi / 180
lat += float(dot[1]) * math.pi / 180
lng /= count
lat /= count
center_dot = (lng * 180 / math.pi, lat * 180 / math.pi)
return center_dot
|
bf7012b5c622e05734e394c912b7f000a3119fca
| 701,349
|
def __find_yzwing_candidates(sboard, current_cell_name, num_values, num_intersection_values):
"""
A support method to find candidate cells to be ywing or xyzwing pincers.
"""
candidates = []
current_cell = sboard.getCell(current_cell_name)
current_value_set = current_cell.getValueSet()
associated_cells = sboard.getAssociatedCellIds(current_cell_name)
for associated_cell_name in associated_cells:
associated_cell = sboard.getCell(associated_cell_name)
associated_cell_value_set = associated_cell.getValueSet()
intersection_value_set = current_value_set & associated_cell_value_set
if (len(associated_cell_value_set) == num_values and
len(intersection_value_set) > num_intersection_values):
candidates.append(associated_cell)
return candidates
|
34e45339eeee158827e8633cdab33ae80e08b3d0
| 701,350
|
def index():
"""Video streaming home page."""
return "Select a spell to cast."
|
af7ade462eed869fa4d75722bc46e5beb199bf09
| 701,351
|
def generateEmailFlags(emailFlagTuples):
"""
Takes emailFlagTuples and generates the part of the
script case statement which accepts email flags.
"""
emailFlagString = ""
for emailFlagTuple in emailFlagTuples:
#add a new line and indent
emailFlagString += "\n "
#add flag character
emailFlagString += emailFlagTuple[1]
#close case condition and setup email variable
emailFlagString += r''') email="\"'''
#input email address
emailFlagString += emailFlagTuple[0]
#end case statement
emailFlagString += r'''\"" ;;'''
return emailFlagString
|
d83ae2f8a135218351fb20af378fe3bf702a2344
| 701,353
|
import requests
import logging
def export_jira_data(jira_base_url, jira_credentials_file, jira_filter, xml_filename):
"""Export XML assessment data from Jira to a file.
Parameters
----------
jira_base_url: str
The base URL of the Jira server that houses the assessment data.
jira_credentials_file : str
The text file containing the username and password for the Jira
account with access to the specified Jira FILTER.
File format:
username
password
jira_filter : str
The ID of the Jira filter that produces the desired XML assessment
data output.
xml_filename : str
The name of the file to store the XML assessment data in.
Returns
-------
bool : Returns a boolean indicating if the assessment data export was
successful.
"""
# Grab Jira credentials from jira_credentials_file
f = open(jira_credentials_file, "r")
lines = f.readlines()
jira_username = lines[0].rstrip()
jira_password = lines[1].rstrip()
f.close()
jira_url = (
f"{jira_base_url}/sr/jira.issueviews:searchrequest-xml/"
f"{jira_filter}/SearchRequest-{jira_filter}.xml"
)
# Export XML data from Jira
try:
response = requests.get(
jira_url,
auth=(jira_username, jira_password),
# We need to add a nosec tag here because we are manually disabling
# certificate verification. We have to do this because the requests
# package is unable to verify the certificate used by the Jira
# server.
verify=False, # nosec
)
with open(xml_filename, "w") as xml_output:
xml_output.write(response.text)
logging.info(
f"Successfully downloaded assessment XML data from {jira_base_url}"
)
return True
except (requests.exceptions.RequestException, Exception) as err:
logging.critical(
f"Error downloading assessment XML data from {jira_base_url}\n\n{err}\n"
)
return False
|
277bea9aa0f959a78f249b1382822fd768a0272f
| 701,354
|
def apply_operations(context_arrays, operations):
"""
:param context_arrays: numpy arrays to be transformed into a format such that can be fed into a TensorFlow op graph
:return: tensor-ready arrays
"""
preprocessed_context_arrays = []
for context_array in context_arrays:
preprocessed_features = {}
for key, features_array in context_array.items():
if key in set(operations.keys()):
if operations[key] is not None:
preprocessed_features[key] = operations[key](features_array)
else:
preprocessed_features[key] = features_array
preprocessed_context_arrays.append(preprocessed_features)
return preprocessed_context_arrays
|
027402a2721481e42cef7588603fe2df2e5f22cb
| 701,355
|
def _table_xml(x, y, w, h, bClosed=True, sXmlCells=None):
"""
XML Table element as a string
"""
if bClosed:
# close the list of coordinates
sPoints = "%d,%d %d,%d %d,%d %d,%d %d,%d" % (x, y, x + w, y, x + w, y + h, x, y + h, x, y)
else:
sPoints = "%d,%d %d,%d %d,%d %d,%d" % (x, y, x + w, y, x + w, y + h, x, y + h)
if sXmlCells is None:
sXmlCells = """<cell start-row='0' start-col='0' end-row='1' end-col='2'>
<Coords points="180,160 177,456 614,456 615,163"/>
</cell>"""
sXml = """
<table>
<Coords points="%s"/>
%s
</table>
""" % (sPoints, sXmlCells)
return sXml
|
51e25bda4b20019ee7cfa593324b019d7e2c0f9e
| 701,356
|
def _fix_filename(filename):
"""Return a filename which we can use to identify the file.
The file paths printed by llvm-cov take the form:
/path/to/repo/out/dir/../../src/filename.cpp
And then they're truncated to 22 characters with leading ellipses:
...../../src/filename.cpp
This makes it really tough to determine whether the file actually belongs in
the Skia repo. This function strips out the leading junk so that, if the file
exists in the repo, the returned string matches the end of some relative path
in the repo. This doesn't guarantee correctness, but it's about as close as
we can get.
"""
return filename.split('..')[-1].lstrip('./')
|
d4b005f591879aab44275d100e725f61b5d6a764
| 701,357
|
def testFloat(val):
"""
Test value for float.
Used to detect use of variables, strings and none types, which cannot be checked.
"""
try:
return type(float(val)) == float
except Exception:
return False
|
19f3eac980b4489b7d14b1f994002a887f063ac7
| 701,358
|
import subprocess
import errno
import re
def disassemble_shcbin(binfile, objdumpcmd):
"""Extract a disassembly dump of a compiled shellcode binary file
Return a list of (bytes, instruction) tuples
"""
# Disassemble the .shcode code section
cmd = [objdumpcmd, '-d', '-j', '.shcode', binfile]
try:
output = subprocess.check_output(cmd)
except subprocess.CalledProcessError:
print("Unable to disassemble {}, ignoring.".format(binfile))
return None
except OSError as exc:
if exc.errno == errno.ENOENT:
print("Unable to find {} command.".format(objdumpcmd))
return None
raise
instructions = []
for line in output.decode('ascii', 'ignore').splitlines():
matches = re.match(r'\s*[0-9a-f]+:\s*([0-9a-f ]+)(\t.+)?$', line)
if matches is not None:
hexby, asm = matches.groups()
hexby = hexby.strip()
if asm is not None:
# Remove auto-generated comment
asm = asm.split(';')[0].strip()
asm = asm.split('// #')[0].strip()
instructions.append((hexby, asm))
elif instructions:
# Continued instruction
lastinstr = instructions[-1]
instructions[-1] = (lastinstr[0] + ' ' + hexby, lastinstr[1])
return instructions
|
3411340910324e7cbeedba6f68c7024bc462f4f6
| 701,359
|
import os
import json
def load_genre(metadata_path):
"""Load beatport_key genre data from a file
Args:
metadata_path (str): path to metadata annotation file
Returns:
(dict): with the list of strings with genres ['genres'] and list of strings with sub-genres ['sub_genres']
"""
if metadata_path is None:
return None
if not os.path.exists(metadata_path):
raise IOError("metadata_path {} does not exist".format(metadata_path))
with open(metadata_path) as json_file:
meta = json.load(json_file)
return {
"genres": [genre["name"] for genre in meta["genres"]],
"sub_genres": [genre["name"] for genre in meta["sub_genres"]],
}
|
a0c80a37360ddaa0390ad496cc2408e71df59df1
| 701,361
|
def get_reverse(sequence):
"""Reverse orientation of `sequence`.
Returns a string with `sequence` in the reverse order.
If `sequence` is empty, an empty string is returned.
"""
#Convert all rna_sequence to upper case:
sequence=sequence.upper()
#reverse rna sequence:
rna_rev_list=sequence[::-1]
return rna_rev_list
|
a3816b66ad6e6f8a1bb963bc13bf4c656b3d9c79
| 701,362
|
import os
def is_gnome():
"""
Check if current DE is GNOME or not.
On Ubuntu 20.04, $XDG_CURRENT_DESKTOP = ubuntu:GNOME
On Fedora 34, $XDG_CURRENT_DESKTOP = GNOME
Hence we do the detection by looking for the word "gnome"
"""
return "gnome" in os.environ["XDG_CURRENT_DESKTOP"].lower()
|
730e1b4468194cd15a716eed0aad4e72812cfb70
| 701,363
|
import torch
def nll_catogrical(preds, target, add_const=False):
"""compute the loglikelihood of discrete variables"""
total_loss = 0
for node_size in range(preds.size(1)):
total_loss += -(
torch.log(preds[:, node_size, target[:, node_size].long()])
* target[:, node_size]
).mean()
return total_loss
|
2343e2adff44c89e73c35cacdcc55180b8029611
| 701,364
|
def to_xhr_response(request, non_xhr_result, form):
"""
Return an XHR response for the given ``form``, or ``non_xhr_result``.
If the given ``request`` is an XMLHttpRequest then return an XHR form
submission response for the given form (contains only the ``<form>``
element as an HTML snippet, not the entire HTML page).
If ``request`` is not an XHR request then return ``non_xhr_result``, which
should be the result that the view callable would normally return if this
were not an XHR request.
:param request: the Pyramid request
:param non_xhr_result: the view callable result that should be returned if
``request`` is *not* an XHR request
:param form: the form that was submitted
:type form: deform.form.Form
"""
if not request.is_xhr:
return non_xhr_result
request.override_renderer = 'string'
return form.render()
|
e32c94ecb3a5ce12c81ea312647b8bf527007bfc
| 701,365
|
def optional(converter):
"""
A converter that allows an attribute to be optional. An optional attribute
is one which can be set to ``None``.
:param callable converter: the converter that is used for non-``None``
values.
.. versionadded:: 17.1.0
"""
def optional_converter(val):
if val is None:
return None
return converter(val)
return optional_converter
|
128042c7a95bb91c665ab6ac0f6771e4a72632ed
| 701,366
|
import pickle
def get_challenge_by_channel_id(database, challenge_channel_id):
"""
Fetch a Challenge object in the database with a given channel ID
Return the matching Challenge object if found, or None otherwise.
"""
ctfs = pickle.load(open(database, "rb"))
for ctf in ctfs:
for challenge in ctf.challenges:
if challenge.channel_id == challenge_channel_id:
return challenge
return None
|
9ae3fc3519b61c6e9a1abceb20b8882e2e29ca48
| 701,367
|
def combine_orderings(ordering_1, ordering_2):
"""
Function to combine two orderings.
Example 1:
ordering_1 = ((7,2), 'X')
ordering_2 = ((6,5),)
combined_ordering = ((7,2),(6,5))
Example 2:
ordering_1 = ((7,2), 'X', 'X')
ordering_2 = ((6,5), 'X')
combined_ordering = ((7,2),(6,5), 'X')
Example 3:
ordering_1 = ('X', (7,2), 'X')
ordering_2 = ((6,5), 'X')
combined_ordering = ((6,5),(7,2), 'X')
"""
if ordering_1 == None:
return ordering_2
if ordering_2 == None:
return ordering_1
idx_2 = 0
combined_ordering = []
for idx_1, elem in enumerate(ordering_1):
if elem == 'X':
combined_ordering.append(ordering_2[idx_2])
idx_2 += 1
else:
combined_ordering.append(ordering_1[idx_1])
return combined_ordering
|
c5faed01c387a6c958dfed324da5bfa1bb2b06bd
| 701,368
|
def whoami_fn(request):
"""
Test-route to validate token and nickname from headers.
:return: welcome-dict
"""
nickname = request.validated["user"].nickname
return {
"status": "ok",
"nickname": nickname,
"message": "Hello " + nickname + ", nice to meet you."
}
|
c8d23a20a6d4f56832e45739ffb81d3aca398bed
| 701,369
|
import json
def save_tracks(input_tracks, out_filename):
"""Saves smoothed tracks to the specified file.
:param input_tracks: List of input tracks
:param out_filename: File to save tracks
"""
def _convert_track(input_track):
"""Converts event from internal representation to dict format
:param input_track: List of events
:return: Event as dict
"""
return [event._asdict() for event in input_track]
out_tracks = {}
for track_id in input_tracks:
gt_events, pred_events = input_tracks[track_id]
converted_gt_events = _convert_track(gt_events)
converted_pred_events = _convert_track(pred_events)
out_tracks[track_id] = {'gt': converted_gt_events,
'pred': converted_pred_events}
with open(out_filename, 'w') as outfile:
json.dump(out_tracks, outfile)
|
884d2e1906f53c4dc66f21536d7e666920016ccf
| 701,370
|
def verificar(palavra, entrada):
"""
Confere se as tentativas do usuário estão corretas conforme a palavra sorteada.
Se não estiver, retorna à função principal e continua a iteração.
Entrada: palavra, entrada (string, input/string).
Saída: bool.
"""
return palavra == entrada
|
b1de59f316d3ba63c73979f2e5cc9584a20e291f
| 701,371
|
def qstr(s, validate=True):
"""Return a quoted string after escaping '\' and '"' characters.
When validate is set to True (default), the string must consist only of
7-bit ASCII characters excluding NULL, CR, and LF.
"""
if validate:
s.encode('ascii')
if '\0' in s or '\r' in s or '\n' in s:
raise ValueError('string contains NULL, CR, or LF characters')
return '"' + s.replace('\\', '\\\\').replace('"', '\\"') + '"'
|
2805c2aff61294cafe6719e9a8bd93082d9603df
| 701,372
|
import random
def random_permutation(iterable, r = None):
"""random_product(iterable, r = None) -> tuple
Arguments:
iterable: An iterable.
r(int): Size of the permutation. If :const:`None` select all elements in
`iterable`.
Returns:
A random element from ``itertools.permutations(iterable, r = r)``.
Examples:
>>> random_permutation(range(2)) in {(0, 1), (1, 0)}
True
>>> random_permutation(range(10), r = 2) in permutations(range(10), r = 2)
True
"""
pool = tuple(iterable)
r = len(pool) if r is None else r
return tuple(random.sample(pool, r))
|
7e84d33b62786d08443dc5ea2c66ff65ced3070c
| 701,373
|
def stringToAscii(sequence):
"""sequence is a sequence of characters.
Return the string with the hex representation for each character"""
return "".join("%02x" % ord(c) for c in sequence).upper()
|
19f0c5a057c6176cee7e0f6e7ac5e8834ea0d650
| 701,374
|
def language_to_flag(code):
"""Generates css flag class for the language code"""
if code.lower() == 'en':
return 'flag-icon flag-icon-us'
return 'flag-icon flag-icon-' + code.lower()
|
8d81d1e1cdac675a6bdf94bb22ac6f45993338db
| 701,375
|
from typing import List
def add_percentage_value(l:int, to:List[list]) -> List[list]:
"""
counter.most_commonしたtaxonomyリストに割合を追加する
:param sids:
:param sto:
:return:
"""
for d in to:
d.append(d[2]/l)
return to
|
0744c47d0d616e3a4fef85bc341ae0ed98bb0695
| 701,376
|
import collections
import re
def parse_cmu(cmufh):
"""Parses an incoming file handle as a CMU pronouncing dictionary file.
(Most end-users of this module won't need to call this function explicitly,
as it's called internally by the :func:`init_cmu` function.)
:param cmufh: a filehandle with CMUdict-formatted data
:returns: a list of 2-tuples pairing a word with its phones (as a string)
"""
pronunciations = collections.defaultdict(list)
regexp = re.compile(r'\(\d\)$')
for line in cmufh:
line = line.strip().decode('latin1')
if line.startswith(';'):
continue
word, phones = line.split(" ")
word = regexp.sub('', word.lower())
pronunciations[word.lower()].append(phones)
return pronunciations
|
6229bf41bb3a11ffaf1f5f45dfd55d6e051b0e45
| 701,377
|
def truncate_patch_version(version):
"""Return just the major and minor versions from `version`."""
split_version = version.split(".")
return "{}.{}".format(split_version[0], split_version[1])
|
d4eb7f23aeab17f862b13109315a417039eb6897
| 701,378
|
def CGz(Omega, k, l, m, f, N2, w=0):
"""
Vertical Group Speed (includes vertical flow but is 0 by default)
"""
K2 = k**2 + l**2 + m**2
return (-1*(k**2 + l**2) * m * (N2 - f**2)) / (K2**2 * Omega)
|
f20f80dcfca91048f1c47d0ca1270b81ae56819f
| 701,379
|
def get_key_value_list(lines):
"""
Split lines at the first space.
:param lines: lines from trackhub file
:return: [(name, value)] where name is before first space and value is after first space
"""
result = []
for line in lines:
line = line.strip()
if line:
parts = line.split(" ", 1)
name = parts[0]
value = parts[1]
result.append((name, value))
return result
|
aa2d1c3b100c963a50c05cfaf684df5bbed612bd
| 701,380
|
def summarize_results(result,task):
"""
creates a summary of the result as dict
"""
summary={
#'Csc':data['pairwise_contact_matrix'],
#'Cpop':data['population_contact_matrix'],
#'Xmean':data['prior_shape_model'],
'n':result.n,
'd':result.d,
'a':result.a,
'b':result.b,
'E_evol':result.e,
'X_evol':result.XK,
'computation_time':result.computation_time,
'method':result.method,
'initialized_curve':result.initialized_curve,
}
if task['store_task']:
summary['json_task']=task
if 'nonspecified_zeros_as_missing' in task:
summary['nonspecified_zeros_as_missing']=task['nonspecified_zeros_as_missing']
if 'uuid'in task:
summary['uuid']=task['uuid']
for term in result.term_weights.keys():
summary['parameters_term_weights_'+term.replace(' ','_')]= result.term_weights[term]
print(term+' = '+str(summary['parameters_term_weights_'+term.replace(' ','_')]))
return summary
|
dca60dcbef0bb747d288f60bcbef6b6531c2094e
| 701,381
|
def get_data_field(thing_description, data_field_list):
"""Get the field specified by 'data_field_list' from each thing description
Args:
data_field_list(list): list of str that specified the hierarchical field names
For example, if the parameter value is ['foo', 'bar', 'foobar'], then this
function will try to get thing_description['foo']['bar']['foobar'] and return the value
If any of the field does not exist, an error will occur
Returns:
object: the content specified by the data field
"""
for data_field in data_field_list:
thing_description = thing_description[data_field]
return thing_description
|
f0ef0a46fbcafa993e01f59349c1283b51bbd393
| 701,382
|
import numpy as np
def get_anchor_labels(anchors, coords, config):
"""
Generates the anchor labels for tranining the PPN.
Returns y_conf, y_reg.
anchors
The list of anchor coordinates generated from get_anchors().
coords
The list of ground truth point coordinates.
config
The configuration dictionary. See ppn.config.ppn_config.
"""
r_near = config['r_near']
r_far = config['r_far']
img_size = config['image_size']
feature_size = config['feature_size']
step = img_size / feature_size
halfstep = step * 0.5
y_conf = np.full(anchors.shape[0], -1, dtype=np.int8)
y_reg = np.zeros(anchors.shape)
# For each point, find the nearest anchor and calculate the distance.
# This ensures that most points have an associated anchor.
for (x, y) in coords:
x_norm = (x - halfstep) / step
y_norm = (y - halfstep) / step
r = int(np.round(y_norm))
c = int(np.round(x_norm))
anchor_index = r * feature_size + c
y_conf[anchor_index] = 1
y_reg[anchor_index][0] = (x - anchors[anchor_index][0]) / step
y_reg[anchor_index][1] = (y - anchors[anchor_index][1]) / step
# for each anchor, calculate the distances to each point
count = 0
for i in range(0, len(anchors)):
x, y = anchors[i]
x /= step
y /= step
distances = []
for (px, py) in coords:
px /= step
py /= step
distances.append(np.sqrt((x-px)**2 + (y-py)**2))
if len(distances) > 0:
near = np.argmin(distances)
dist = distances[near]
if dist <= r_near:
y_conf[i] = 1
px, py = coords[near]
px /= step
py /= step
y_reg[i][0] = (px - x)
y_reg[i][1] = (py - y)
elif dist > r_far:
y_conf[i] = 0
# reshape for use in PPN training
y_conf = np.reshape(y_conf, (feature_size, feature_size))
y_reg = np.reshape(y_reg, (feature_size, feature_size) + (2,))
return y_conf, y_reg
|
c12e25dc672f48d7bd98255dd8a84c2ec4310a1d
| 701,383
|
def get_speed_formatted_str(speed):
""" Returns the speed with always two whole numbers and two decimal value.
Example: 03.45
Args:
speed (float): The actual speed of the car
Returns:
str: The text format of the speed
"""
speed_str = "{:0.2f}".format(round(speed, 2))
return speed_str.zfill(5)
|
c05d20f568950f8236f9e46e90387e3a71090589
| 701,384
|
def ccw(A, B, C):
"""
Check if a point C is counter-clockwise to AB.
"""
return (C[1] - A[1])*(B[0]-A[0]) > (B[1]-A[1])*(C[0]-A[0])
|
c1afb4e510be6a85ad7de1aa924917e37b227dbe
| 701,385
|
from unittest.mock import call
import logging
def stack_remove(name: str):
"""Removes a stack. Due to limitations of the Docker SDK this calls the actual Docker CLI."""
proc = call(["docker", "stack", "rm", name])
if proc.returncode is not 0:
logging.error("`docker stack remove` exited with non-zero exit code.")
return False
return True
|
9ad76d789b9d749119826688902acb08752eeabc
| 701,386
|
def AsQuotedString(input_string):
"""Convert |input_string| into a quoted string."""
subs = [
('\n', '\\n'),
('\t', '\\t'),
("'", "\\'")
]
# Go through each substitution and replace any occurrences.
output_string = input_string
for before, after in subs:
output_string = output_string.replace(before, after)
# Lastly wrap the string in quotes.
return "'%s'" % output_string
|
edf344cae423e13a6cfc04e960674c954b5eb7ee
| 701,387
|
from typing import Counter
def check_cardinality(df, cat_cols, threshold=8):
"""
Check categorical cardinality
Checks the cardinality of categorical features of a given dataset. Returns
two dictionaries, one for features with low cardinality and another for
features with high cardinality. The low/high cardinality criteria can be
tunned with the `threshold` parameter.
Parameters
----------
df : pandas.DataFrame
Dataset whose categorical features will be analyzed.
cat_cols : list of str
List of column names. The columns must be all categorical.
threshold : int, optional
Numeric criteria to separate low cardinality features from high
cardinality ones. Default value is 8.
Returns
-------
low_card : dict
Dictionary containing the name of the low cardinality features as keys
and their cardinality as values.
high_card : dict
Dictionary containing the name of the high cardinality features as keys
and their cardinality as values.
"""
high_card = {}
low_card = {}
for col in cat_cols:
rank = len(Counter(df[col]))
if rank <= threshold:
low_card[col] = rank
else:
high_card[col] = rank
return low_card, high_card
|
5b33a39c1da007de46ca409c8fb531b3b3600a7b
| 701,388
|
def create_occurrence(create_reservation):
"""Return a callable which lets you create reservation occurrences."""
def _create_occurrence(start_dt=None, end_dt=None, room=None):
params = {}
if start_dt is not None:
params['start_dt'] = start_dt
if end_dt is not None:
params['end_dt'] = end_dt
if room is not None:
params['room'] = room
reservation = create_reservation(**params)
return reservation.occurrences[0]
return _create_occurrence
|
1b11afb19e8e1b266532dd9198c2d93010351f97
| 701,389
|
def parse_veh_comp(xmldoc):
"""parses the vehicle composition from the VISSIM data
:param xmldoc: input VISSIM xml
:type xmldoc: xml.dom.minidom.Document
:return: relevant VISSIM vehicleComposition data
:rtype: dict of list of dict
"""
veh_cmp_d = dict() # local vehicle compositions' dict
for vehicle_comp in xmldoc.getElementsByTagName('vehicleComposition'):
rel_flows = vehicle_comp.getElementsByTagName(
'vehicleCompositionRelativeFlow')
flow_l = []
for flow in rel_flows:
flw_d = {
'desSpeedDistr': flow.getAttribute('desSpeedDistr'),
'rel_flow': flow.getAttribute('relFlow'),
'vehType': flow.getAttribute('vehType'),
}
flow_l.append(flw_d)
# list of dictionaries
veh_cmp_d[vehicle_comp.getAttribute('no')] = flow_l
return veh_cmp_d
|
195b2c8dcbd055d5c8e8fdb4f6b68f360c60c961
| 701,390
|
import time
def uniq_table_id():
"""Return a unique table ID based on the current time in ms.
Returns:
str: in format `U<timestamp_ns>`
"""
return f'U{time.time_ns()}'
|
cffe47d5e8dfff192e2a754347534e02d4ba6a68
| 701,391
|
import inspect
def _get_real_env_hack_hack_hack():
"""
Get the real, currently-being-configured libtbx.env environment.
This is not libtbx.env, because although libtbx.env_config.environment.cold_start
does:
self.pickle()
libtbx.env = self
the first time there is an "import libtbx.load_env" this environment
gets replaced by unpickling the freshly-written libtbx_env file onto
libtbx.env, thereby making the environment accessed via libtbx.env
*not* the actual one that is currently being constructed.
So, the only way to get this environment being configured in order
to - like - configure it, is to walk the stack trace and extract the
self object from environment.refresh directly.
"""
for frame in inspect.stack():
if (
frame.filename.endswith("env_config.py")
and frame.function == "refresh"
and "self" in frame.frame.f_locals
):
return frame.frame.f_locals["self"]
raise RuntimeError("Could not determine real libtbx.env_config.environment object")
|
f0fe71b5c0a3922300f9d6d81aeb6057e39dd4c3
| 701,392
|
def split_dataframe_by_position(df, splits):
"""
Takes a dataframe and an integer of the number of splits to create.
Returns a list of dataframes.
"""
dataframes = []
index_to_split = len(df) // splits
#print(index_to_split)
start = 0
end = index_to_split
for split in range(splits):
temporary_df = df.iloc[start:end, :]
dataframes.append(temporary_df)
start += index_to_split
print(start)
end += index_to_split
print(end)
print()
return dataframes
|
7536920125fa33fafd420c4fe7ef24aff2fa6ff3
| 701,393
|
import torch
def index_relation_types(dataset):
"""Classify relations into 1-N, M-1, 1-1, M-N.
According to Bordes et al. "Translating embeddings for modeling multi-relational
data.", NIPS13.
Adds index `relation_types` with list that maps relation index to ("1-N", "M-1",
"1-1", "M-N").
"""
if "relation_types" not in dataset._indexes:
# 2nd dim: num_s, num_distinct_po, num_o, num_distinct_so, is_M, is_N
relation_stats = torch.zeros((dataset.num_relations(), 6))
for index, p in [
(dataset.index("train_sp_to_o"), 1),
(dataset.index("train_po_to_s"), 0),
]:
for prefix, labels in index.items():
relation_stats[prefix[p], 0 + p * 2] = relation_stats[
prefix[p], 0 + p * 2
] + len(labels)
relation_stats[prefix[p], 1 + p * 2] = (
relation_stats[prefix[p], 1 + p * 2] + 1.0
)
relation_stats[:, 4] = (relation_stats[:, 0] / relation_stats[:, 1]) > 1.5
relation_stats[:, 5] = (relation_stats[:, 2] / relation_stats[:, 3]) > 1.5
relation_types = []
for i in range(dataset.num_relations()):
relation_types.append(
"{}-{}".format(
"1" if relation_stats[i, 4].item() == 0 else "M",
"1" if relation_stats[i, 5].item() == 0 else "N",
)
)
dataset._indexes["relation_types"] = relation_types
return dataset._indexes["relation_types"]
|
639059ecf319ce367a62db64edc1efebc8ef5050
| 701,394
|
import os
def patch_load_cfg(monkeypatch):
"""
A fixture that returns a function which will patch 'utils.load_cfg_file' when called in a test
The caller can specify the dict that should be returned when 'load_cfg_file' is called
against these two paths:
* "templatesTEST/_cfg.yml"
* "templatesTEST/service/_cfg.yml"
"""
def _func(base_cfg_data, service_cfg_data):
def _patched_load_cfg_file(path):
if path.endswith(os.path.join("templatesTEST", "service", "_cfg.yml")):
return service_cfg_data
if path.endswith(os.path.join("templatesTEST", "_cfg.yml")):
return base_cfg_data
else:
raise Exception("Unknown path passed to load_cfg_file")
monkeypatch.setattr("ocdeployer.deploy.load_cfg_file", _patched_load_cfg_file)
yield _func
|
0fb6436a7bc57e547542c92f8c51b62be7bb286e
| 701,395
|
def validate_enum(datum, schema, **kwargs):
"""
Check that the data value matches one of the enum symbols.
i.e "blue" in ["red", green", "blue"]
Parameters
----------
datum: Any
Data being validated
schema: dict
Schema
kwargs: Any
Unused kwargs
"""
return datum in schema["symbols"]
|
689fef653b757435d45e76afbf16245d0d53839f
| 701,396
|
import re
def get_valid_filename(s):
"""Sanitize string to make it reasonable to use as a filename.
From https://github.com/django/django/blob/master/django/utils/text.py
Parameters
----------
s : string
Examples
--------
>>> print get_valid_filename(r'A,bCd $%#^#*!()"\' .ext ')
'a_bcd__.ext'
"""
s = re.sub(r'[ ,;\t]', '_', s.strip().lower())
return re.sub(r'(?u)[^-\w.]', '', s)
|
a8161a16d0bd8ad0c5d9ff20c56b52fbdba2d859
| 701,397
|
import numpy
def utils_fft(series):
"""
Computes the inverse fast foyer transform.
Parameters
Input
series : array_like
Output
The transformed array.
"""
return numpy.fft.fft(series)
|
a9c9dd3b405b7ef185125576386ac9fc008ea76f
| 701,399
|
from typing import Literal
from typing import List
def get_foot_marker(foot: Literal["left", "right"]) -> List[str]:
"""Get the names of all markers that are attached ot a foot (left or right)"""
sensors = ["{}_fcc", "{}_toe", "{}_fm5", "{}_fm1"]
return [s.format(foot[0]) for s in sensors]
|
518fbb3f68cbf8622b2bf1fa85f9ecae8008c456
| 701,401
|
def get_price_history(data, date, beta_window, sid, benchmark):
"""
Create a DataFrame containing the data for the necessary sids within that time frame
"""
if not beta_window:
history_index = data.index.searchsorted(date)
history_index_start = data.index.searchsorted(data[data[sid] != 0].index[0])
histotical_prices = data.iloc[history_index_start:history_index][[sid, benchmark]]
else:
history_index = data.index.searchsorted(date)
history_index_start = max([history_index - beta_window, 0])
histotical_prices = data.iloc[history_index_start:history_index][[sid, benchmark]]
histotical_prices = histotical_prices[histotical_prices[sid] != 0]
return histotical_prices[histotical_prices != 0].dropna()
|
cddb1e59dbc783e4b36c0246e1d90e78169c6445
| 701,402
|
import six
def _validate_string(s, accept_none = False):
"""
A validation method to convert input s to string or raise error if it is not convertable
"""
if s is None and accept_none :
return None
try:
if isinstance(s,list):
return [six.text_type(item) for item in s]
elif isinstance(s,dict):
return dict((six.text_type(key), six.text_type(value)) for key, value in s.items())
else:
return six.text_type(s)
except ValueError:
raise ValueError('Could not convert "%s" to string' % s)
|
0c7b20884a27714acb0c16bddcbc113bd3a8c60e
| 701,403
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.