content
stringlengths 35
416k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
|---|---|---|
def example_data():
"""Example data."""
return {
'id': 'eng',
'title': {'en': 'English', 'da': 'Engelsk'},
'description': {'en': 'Text', 'da': 'Tekst'},
'icon': 'file-o',
'props': {
'datacite_type': 'Text',
},
}
|
de5ec1bb45080b5d24e9c8e123cc25b5cacc95ac
| 700,956
|
def traverse_tree(t, parent_name=""):
""" Returns the list of all names in tree. """
if parent_name:
full_node_name = parent_name + "/" + t.name
else:
full_node_name = t.name
if (t.children is None):
result = [full_node_name]
else:
result = [full_node_name + "/"]
for i in t.children:
result.extend(traverse_tree(i, full_node_name))
return result
|
16b1773895569c108fde5f9a1a43a12a24314dcc
| 700,957
|
def create_conversion_dict():
"""
-> parse the variable_description.xml file and
return a dictionnary for the discretization procedure:
variable_name : Possible_Values : Binary_Values
-> use for convert posible values of a variable into binary values
-> return a dictionnary
"""
description_file_name = "PARAMETERS/variable_description.xml"
variableToPossibleValueToBinaryValue = {}
possible_values_array = []
binary_values_array = []
PossibleValueToBinaryValue = {}
variable_name = ""
record = 0
cmpt = 0
description = open(description_file_name, "r")
for description_line in description:
description_line_tronk = description_line.split("\n")
description_line_tronk = description_line_tronk[0]
if("\t" not in description_line_tronk and cmpt > 0 and "</" not in description_line_tronk ):
variable_name = description_line_tronk.split("<")
variable_name = variable_name[1].split(">")
variable_name = variable_name[0]
record = 1
possible_values_array = []
binary_values_array = []
variableToPossibleValueToBinaryValue[variable_name] = {}
PossibleValueToBinaryValue = {}
elif(record == 1 and "<Possible_Values>" in description_line_tronk):
description_line_array = description_line_tronk.split("<Possible_Values>")
description_line_array = description_line_array[1].split("</Possible_Values>")
description_line_array = description_line_array[0]
possible_values_array = description_line_array.split(";")
elif(record == 1 and "<Binary_Values>" in description_line_tronk):
description_line_array = description_line_tronk.split("<Binary_Values>")
description_line_array = description_line_array[1].split("</Binary_Values>")
description_line_array = description_line_array[0]
binary_values_array = description_line_array.split(";")
record = 0
if(len(possible_values_array) == len(binary_values_array)):
possible_value_index = 0
for possible_value in possible_values_array:
binary_value = binary_values_array[possible_value_index]
possible_value_index += 1
PossibleValueToBinaryValue[possible_value] = binary_value
variableToPossibleValueToBinaryValue[variable_name] = PossibleValueToBinaryValue
cmpt += 1
description.close()
return variableToPossibleValueToBinaryValue
|
12ba0ae810a551e44ba0022032008a76164b5942
| 700,958
|
def sigmoid_derivative(x):
"""
Actual derivative: S'(x) = S(x)(1-S(x)) but the inputs have already gone
through the sigmoid function.
"""
return x * (1 - x)
|
8ae624b16e324a8f68a7369c3798256e1296aa61
| 700,959
|
def merge_again(other, script):
"""
Merge the two DataFrames for other and script together again,
but keeping distinct rows for the cumulated levenshtein distances
for each category (other and script).
Returns DataFrame.
"""
data = other.merge(script, how="left", on="line")
data.rename(columns={"lev-dist_x": "other", "lev-dist_y": "script"},
inplace=True)
# print(data.head())
return data
|
204e716fce02765e2ba601f5d5a7f91efa792838
| 700,960
|
import numpy as np
def iso(fabric_width, fabric_height):
"""
Calculate robot iso speed
:param fabric_width: float fabric width
:param fabric_height: float fabric height
:return: float quasi state robot speed, float transient state robot speed, float relevant speed
"""
# Import here for optimization
# Every value in S.I.
k = 75000 # (N/m) Effective spring constant for hand from ISO/TS 15066
E = 0.49 # (Joule) for hand from ISO/TS 15066 ( E = (force**2) / (2 * k) = ( (Area**2)*(pressure**2) ) / (2*k) )
mh = 0.6 # (kg) effective mass of hand as specified by ISO/TS 15066
robot_payload = 7.0 # (kg) as specified by the manufacturer
tool_payload = 1.441 # (kg) ( tool is defined above ) as weighted ( approximation )
# Lightweight clothes have 30-150 gr per squared meter (median = 90 gr per m2), so we need the area of the cloth
# https://blog.fabricuk.com/understanding-fabric-weight/
# https://www.onlineclothingstudy.com/2018/09/what-is-gsm-in-fabric.html
# https://slideplayer.com/slide/4134611/
piece_payload = 0.5 * 0.15 * fabric_width * fabric_height # (kg) of theoretical piece of cloth
ml = tool_payload + piece_payload # (kg) the effective payload of the robot system, including tooling and workpiece
robot_mass = 16 # (kg) robot mass as given by the manufacturer
M = robot_mass * 0.9 # (kg) total mass of the moving parts of the robot (assuming that only the 90% of the robot is moving)
mr = (M/2) + ml # (kg) effective mass of robot as a function of robot posture and motion
m = ((1/mh) + (1/mr))**(-1) # (kg) reduced mass of the two-body system
# Quasi-static contact ( When the robot crushes the hand against a fixed object )
q_max_force = 140 # (Newton)
q_max_press = 2000000 # (N/m2) assuming dominant hand ( non dominant = 1.9 * 10^6 N/m2)
q_relev_max_speed = q_max_force / np.sqrt(m*k) # (m/sec) relevant max speed limit for robots in quasi-static contact
# Transient contact ( When the robot comes in contact with the hand but the hand can move freely )
t_max_force = 2 * q_max_force # (Newton)
t_max_press = 2 * q_max_press # (N/m2) assuming dominant hand
t_relev_max_speed = t_max_force / np.sqrt(m*k) # (m/sec) relevant max speed limit for robots in transient contact
# normal robot speed
relev_speed = np.sqrt((2*E)/m) # (m/sec) relevant speed speed between the robot and the human body region
# we will assume that the relev_speed is the acceptable speed, since is given by the maximum acceptable energy
# transferred by the robot to the operator's hand
# 1 m/sec = 1000 mm/sec
return q_relev_max_speed, t_relev_max_speed, relev_speed
|
634cf9f0dee798bee365fd03588ec0a50517323f
| 700,961
|
def subset_dict(d, selected_keys):
"""Given a dict {key: int} and a list of keys, return subset dict {key: int} for only key in keys.
If a selected key is not in d, set its value to 0"""
return {key: (0 if key not in d else d[key]) for key in selected_keys}
|
e16e5ce7a9baa0fa9dbf8bb65eadd9101e188092
| 700,962
|
from typing import Callable
from typing import Any
from typing import Optional
import logging
import traceback
def exception_handler(function: Callable) -> Callable:
"""
Wrapping function in try-except expression
Args:
function (Callable): Function, you want to wrap
Returns:
Callable: Function wrapper
"""
def try_except_wrapper(*args: Any, **kwargs: Any) -> Optional[Any]:
"""
Running wrapped function with specified arguments
Args:
*args (Any): 'function' *args
**kwargs (Any): 'function' **kwargs
Returns:
Optional[Any]: 'function' result
"""
try:
# Try executing function
result: Any = function(*args, **kwargs)
except BaseException:
# Some exception raised
logging.exception(traceback.format_exc())
return None
else:
# No exceptions
return result
return try_except_wrapper
|
9d72c37d21b1e28d75f4812f8148d24a2c07353e
| 700,963
|
def Floyd(graph, s, e):
"""弗洛伊德算法"""
end = len(graph[0])
for k in range(end):
for i in range(end):
for j in range(end):
# 更新经过i点的最短路径
if graph[i][j] > graph[i][k]+graph[k][j]:
graph[i][j] = graph[i][k]+graph[k][j]
# 查看最短路劲
print(graph[s-1][e-1])
return graph
|
23040a06b1849459b6b8807e96f47a06293537ab
| 700,964
|
def ctoa(character: str) -> int:
"""Find the ASCII value of character.
Uses the ord builtin function.
"""
code = ord(character)
return code
|
dbf3b01f331a976632ae2559e08488a3f6a7f15d
| 700,966
|
def resolve_translation(instance, _info, language_code):
"""Get translation object from instance based on language code."""
return instance.translations.filter(language_code=language_code).first()
|
aedd46bec3dc0d3a567718abf1fd69b460e69ba1
| 700,967
|
import dill
def load_estimators():
"""
Reads the ML fractional cover estimators
"""
with open('svmPipelines', 'rb') as input:
return dill.load(input)
|
aa1500185336a6624061da883838ac25187aae22
| 700,968
|
def _shared_ptr(name, nbytes):
""" Generate a shared pointer. """
return [
("std::shared_ptr<unsigned char> {name}("
"new unsigned char[{nbytes}], "
"[](unsigned char *d) {{ delete[] d; }});"
.format(name=name, nbytes=nbytes))
]
|
1ab0779f2932c9225a1f579c958cfb290f935cfc
| 700,969
|
def _IsZonalGroup(ref):
"""Checks if reference to instance group is zonal."""
return ref.Collection() == 'compute.instanceGroupManagers'
|
bf48f2c277fb03db2f0cc3ea42234781df9a2500
| 700,971
|
def lex_ident(node_syn, pred_syn, gold_syn):
"""
1. check if the predicted synset's lexname equals to the gold synset's name
2. check if the predicted synset's lexname is in the set of its wordnet hypernyms' lexnames (including hypernyms/instance_hypernyms)
"""
pred_lex = pred_syn.lexname()
gold_lex = gold_syn.lexname()
lex_ident_dev = pred_lex == gold_lex
lex_ident_wn = pred_lex in [x.lexname() for x in node_syn.instance_hypernyms()] \
or pred_lex in [x.lexname() for x in node_syn.hypernyms()]
return lex_ident_dev, lex_ident_wn, pred_lex, gold_lex
|
487fe7c0772d9ecaf84a6f8fe349b0ec20fd3646
| 700,972
|
import os
def path_to_settings(ini_file):
"""
Find directory of ini-file relative to this directory (currently two directories up).
:param ini_file: name of ini-file, e.g. development.ini
:type: str
:return: path to directory containing ini-file
:rtype: str
"""
dir_name = os.path.abspath(os.path.join(os.path.dirname(__file__), '..', '..'))
return os.path.join(dir_name, ini_file)
|
16cb765034c11fbbf038b474d04d571f59f4389b
| 700,973
|
def perm_get_ssh_challenge_token(issuer, kwargs):
"""
Checks if an account can request a challenge token.
:param issuer: Account identifier which issues the command.
:returns: True if account is allowed to call the API call, otherwise False
"""
return True
|
5002d9bb2b7d8aed44122926153396acc9fcfe18
| 700,974
|
def sumy_clean_lines(lines):
"""
Compared to regular clean lines, this one preserves heading and paragraph information.
"""
new_lines = []
for line in lines:
if line.startswith("="):
new_lines.append(line.strip("=").upper())
else:
new_lines.append(line)
return "".join(new_lines)
|
1e16514b71c3e11dd6c3b701a6a8dbab7d796b41
| 700,975
|
def count_set_bits(number):
""" Returns the number of set bits in number """
count = 0
while number:
count += number & 1
number >>= 1
return count
|
b6326b77d6fb14ff31712571837396fcf2e2b0c0
| 700,976
|
def hazard_ratio(y_true, x, model_coefs, threshold):
"""Hazard ratio can be interpreted as the chance of an event occurring
in the group A divided by the chance of the event occurring in the group B
Parameters
----------
y_true : pandas.DataFrame
DataFrame with annotation of samples. Two columns are mandatory:
Event (binary labels), Time to event (float time to event).
x : pandas.DataFrame
A pandas DataFrame whose rows represent samples
and columns represent features.
model_coefs: array-like
Cox model parameters after fitting
Returns
-------
float
hazard_ratio
"""
risk_scores = x.to_numpy().dot(model_coefs.to_numpy())
group_indicators = risk_scores >= threshold
grouped_y = y_true.copy()
grouped_y['group'] = group_indicators
i_a = [len(group_indicators[group_indicators == True])]
i_b = [len(group_indicators) - i_a[0]]
o_a = []
o_b = []
e_a = []
e_b = []
sorted_times = sorted(y_true['Time to event'][y_true['Event'] == 1].unique())
for event_time in sorted_times:
groups = group_indicators[y_true['Time to event'] == event_time]
o_a.append(len(groups[groups == True]))
o_b.append(len(groups) - o_a[-1])
total_dead = (o_a[-1] + o_b[-1])
total_alive = (i_a[-1] + i_b[-1])
e_a.append(i_a[-1] * total_dead / total_alive)
e_b.append(i_b[-1] * total_dead / total_alive)
i_a.append(i_a[-1] - o_a[-1])
i_b.append(i_b[-1] - o_b[-1])
return (sum(o_a) / sum(e_a)) / (sum(o_b) / sum(e_b))
|
57a67249d33474ec5bf84007c707122da07558c7
| 700,977
|
def pjax(template_names, request, default="pjax_base.html"):
"""
Returns template name for request.
:param request: Django request or boolean value
:param template_names: Base theme name or comma-separated names of base and
pjax templates.
Examples::
{% extends "base.html"|pjax:request %}
{% extends "base.html,pjax_base.html"|pjax:request %}
context = {"is_pjax": True}
{% extends "base.html"|pjax:is_pjax %}
"""
if isinstance(request, (bool, int)):
is_pjax = request
else:
is_pjax = request.META.get("HTTP_X_PJAX", False)
if "," in template_names:
template_name, pjax_template_name = template_names.split(",", 1)
else:
template_name, pjax_template_name = template_names, default
if is_pjax:
return pjax_template_name.strip() or default
return template_name.strip()
|
e74b1c76abfc68999c316021e6b70f6210125a2a
| 700,978
|
import re
def normalize_buffer(input_buffer):
"""Clear color from input_buffer and special characters.
:param str input_buffer: input buffer string from device
:return: str
"""
# \033[1;32;40m
# \033[ - Escape code
# 1 - style
# 32 - text color
# 40 - Background colour
color_pattern = re.compile(
r"\[(\d+;){0,2}?\d+m|\b|" + chr(27)
) # 27 - ESC character
result_buffer = ""
if not isinstance(input_buffer, str):
input_buffer = str(input_buffer)
match_iter = color_pattern.finditer(input_buffer)
current_index = 0
for match_color in match_iter:
match_range = match_color.span()
result_buffer += input_buffer[current_index : match_range[0]]
current_index = match_range[1]
result_buffer += input_buffer[current_index:]
result_buffer = result_buffer.replace("\r\n", "\n")
return re.sub(r"[\x00-\x08\x0b\x0c\x0e-\x1f\x7f-\xff]", "", result_buffer)
|
a5922a2df22c58f7f6c4c4bf3ade7bf47a22eb7d
| 700,979
|
def make_header(ob_size):
"""Make the log header.
This needs to be done dynamically because the observations used as input
to the NN may differ.
"""
entries = []
entries.append("t")
for i in range(ob_size):
entries.append("ob{}".format(i))
for i in range(4):
entries.append("ac{}".format(i))
entries.append("p") # roll rate
entries.append("q") # pitch rate
entries.append("r") # yaw rate
entries.append("p-sp") # roll rate setpoint
entries.append("q-sp") # pitch rate setpoint
entries.append("r-sp") # yaw rate setpoint
for i in range(4):
entries.append("y{}".format(i))
for i in range(4):
entries.append("w{}".format(i)) # ESC rpms
entries.append("reward")
return ",".join(entries)
|
82aa8359dad2e78f8d161a1811a7d71b2e496b49
| 700,980
|
def evaluate_g8( mu, kappa, nu, sigma, s8 ):
"""
Evaluate the eighth constraint equation and also return the jacobian
:param float mu: The value of the modulus mu
:param float kappa: The value of the modulus kappa
:param float nu: The value of the modulus nu
:param float sigma: The value of the modulus sigma
:param float s8: The value of the constraint
"""
return 4 * mu * ( kappa + nu - 2 * sigma ) - 2 * sigma - s8**2,\
{ 'mu':4 * ( kappa + nu - 2 * sigma ), 'kappa': 4 * mu, 'nu': 4 * mu, 'sigma':-8 * mu - 2, 's8':-2 * s8 }
|
d1be8deb9f38dae55082a341e2501044d7b2aef7
| 700,981
|
import os
def listroot():
"""Return list of filenames contained in root directory."""
return os.listdir('/')
|
eb189ce50e834b2359ba207a2ef7606a93002109
| 700,982
|
import numpy
def hi_lo(data_series, current_max, current_min):
"""Determine the new highest and lowest value."""
try:
highest = numpy.max(data_series)
except:
highest = max(data_series)
if highest > current_max:
new_max = highest
else:
new_max = current_max
try:
lowest = numpy.min(data_series)
except:
lowest = min(data_series)
if lowest < current_min:
new_min = lowest
else:
new_min = current_min
return new_max, new_min
|
63bca68d4af2e50b1c27b5095261c575b35c75d8
| 700,984
|
def ChangeBackslashToSlashInPatch(diff_text):
"""Formats file paths in the given patch text to Unix-style paths."""
if not diff_text:
return None
diff_lines = diff_text.split('\n')
for i in range(len(diff_lines)):
line = diff_lines[i]
if line.startswith('--- ') or line.startswith('+++ '):
diff_lines[i] = line.replace('\\', '/')
return '\n'.join(diff_lines)
|
88dce5e16fb400ef2aa1c16950e45491baa5c961
| 700,985
|
def parse_line(text: str) -> str:
"""Parses one line into a word."""
text = text.rstrip()
if text[0] == "+":
return text[1:]
if text[0] == "@" or text[0] == "!" or text[0] == "$":
w = text.split("\t")[1]
if "#" in w:
return w.split("#")[0].rstrip()
else:
return w
raise ValueError("Invalid input: "+text)
|
44e8bd0defc071438aea15002d3e3c6838e61bfb
| 700,986
|
def dict_to_cidr(obj):
"""
Take an dict of a Network object and return a cidr-formatted string.
:param obj:
Dict of an Network object
"""
return '%s/%s' % (obj['network_address'], obj['prefix_length'])
|
c915c16f28b42322c2f63743cdc43a58b964ba27
| 700,987
|
def replace_tuple(tuple_obj, replace_obj, replace_index):
"""Create a new tuple with a new object at index"""
if len(tuple_obj) - 1 <= replace_index:
return tuple_obj[:replace_index] + (replace_obj,)
else:
return tuple_obj[:replace_index] + (replace_obj,) + tuple_obj[replace_index+1:]
|
28c32ab516eddd7feb90e6b62221f56e8106a2f5
| 700,988
|
def center_crop_images(images, crop_resolution: int):
"""
Crops the center of the images
Args:
images: shape: (B, H, W, 3), H should be equal to W
crop_resolution: target resolution for the crop
Returns:
cropped images which has the shape: (B, crop_resolution, crop_resolution, 3)
"""
# crop_resolution = tf.cast(crop_resolution, tf.float32)
half_of_crop_resolution = crop_resolution / 2
image_height = images.shape[1]
image_center = image_height / 2
from_ = int(image_center - half_of_crop_resolution)
to_ = int(image_center + half_of_crop_resolution)
return images[:, from_:to_, from_:to_, :]
|
3831dde49fba737f24706c5c19c380bf7d9f9222
| 700,989
|
from typing import List
from re import VERBOSE
import subprocess
def run_shell_command(arguments: List[str]) -> str:
"""Executes a shell command."""
if VERBOSE:
print(" ".join(arguments))
try:
output = subprocess.check_output(arguments).decode().strip()
except subprocess.CalledProcessError as error:
error_output = error.output.decode().strip()
raise RuntimeError(f"Error executing {' '.join(arguments)}: {error_output}")
return output
|
c0059f2b3223fde82a29ea135e82140ffe49d6df
| 700,990
|
def default_exception_serializer(exception):
"""
The default exception serializer for user exceptions in eval.
"""
return '%s: %s' % (type(exception).__name__, str(exception))
|
c630ddb9ec6ffc5381c11c4b06c277e4e55910de
| 700,991
|
import copy
def remove_candidates(orders, candidates_to_remove):
"""
Remove a set of candidates from a list representing a preference order.
"""
projection = []
for c_vote in orders:
temp_vote = copy.copy(c_vote)
for c_remove in candidates_to_remove:
temp_vote.remove(c_remove)
projection.append(temp_vote)
return projection
|
bd0b98acefacaf9891b4ab7109d01d187f1de85a
| 700,992
|
def dissociate(op, args):
""" Given an associative operator, return a flattened list result """
result = []
def collect(subargs):
for arg in subargs:
if arg.func == op:
collect(arg.args)
else:
result.append(arg)
collect(args)
return result
|
1b517738d5c27cd27f308483673e3f5c5fb40bbc
| 700,993
|
import torch
def latent_kl(prior_mean, posterior_mean):
"""
:param prior_mean:
:param posterior_mean:
:return:
"""
kl = 0.5 * torch.pow(prior_mean - posterior_mean, 2)
kl = torch.sum(kl, dim=[1, 2, 3])
kl = torch.mean(kl)
return kl
|
2785902d758c45a4ad8be4f38b88e8cfb5bbc6ce
| 700,994
|
def factorial(n):
"""
Calculate n!
Args:
n(int): factorial to be computed
Returns:
n!
"""
if n == 0:
return 1 # by definition of 0!
return n * factorial(n-1)
|
a0e8e6edbf03bb1fb1e6a11d7ace41e37992b54f
| 700,995
|
import numpy
def compareMentorsAndTeams(mentor_sch, team_sch):
"""
Teams can only meet with the mentors when the mentors are available, so
for each mentor multiply the 0..1 mentor value against the team team
availability count to use the mentor schedule as a mask over the team
schedule.
We could rewrite the constraint solver model to do this processing step,
but we might as well save the time and do it as part of the pre-processing.
"""
team_max = numpy.amax(team_sch.sum(axis=0))
team_availability_score = 100 * (team_sch.sum(axis=0) / team_max)
compare_sch = numpy.zeros(mentor_sch.shape, dtype=numpy.int16)
for m in range(compare_sch.shape[0]):
compare_sch[m] = team_availability_score * mentor_sch[m]
return compare_sch
|
cd500c6354af616523e5842770e256be9638e19e
| 700,997
|
def get_word_count(text, keywords):
"""
Args:
text (str):
keywords (list):
Returns:
"""
count_dict = {}
for keyword in keywords:
count_dict[keyword] = text.count(keyword)
return count_dict
|
eaf5258b07cb861c2cce8c55ede2342aaf141f8d
| 700,998
|
import re
def handle_special_operator(formula, operator):
"""
如果有 "*-", "-*", "/-", "-/" 这些运算符,
提取负号,去掉重复的运算符
:param formula:
:param operator:
:return:
"""
temp = ""
regex = "\d*[.]?\d+"
opera = operator.replace("*", "[*]")
ret = re.compile(opera.join([regex, regex]))
while ret.search(formula):
search_res = ret.search(formula).group()
if operator.find("*") != -1:
temp = search_res.replace(operator, "*")
elif operator.find("/") != -1:
temp = search_res.replace(operator, "/")
temp = "-".join(["", temp])
formula = formula.replace(search_res, temp, 1)
return formula
|
c9e4795d4ccb07549d12e13d2f7050036f018e45
| 700,999
|
import subprocess
def ditto(src, dest, norsrc=False):
""" Copies a file or directory tree from src path to dest path
src: source path as string
dest: destination path as string
norsrc: (bool) if True, uses --norsrc flag with ditto so it will not copy
resource fork or extended attributes. May be useful on volumes that
don't work with extended attributes (likely only certain SMB mounts)
default is False
Uses ditto to perform copy; will silently overwrite dest if it exists
Raises exception if copy fails or either path is None """
if src is None or dest is None:
raise ValueError("src and dest must not be None", src, dest)
if norsrc:
command = ["/usr/bin/ditto", "--norsrc", src, dest]
else:
command = ["/usr/bin/ditto", src, dest]
# if error on copy, subprocess will raise CalledProcessError
result = subprocess.run(command, check=True, stderr=subprocess.PIPE)
return result.returncode
|
7a1fa06c87b3a1692cacd1d2a274bbaa83331e17
| 701,000
|
from typing import Any
def schema(
var_name: str,
data_type: Any,
) -> str:
"""Returns a YAML-like string for our data type; these are used for
pretty-printing and comparison between the OpenAPI type
definitions and these Python data types, as part of
schema is a glorified repr of a data type, but it also includes a
var_name you pass in, plus we dumb things down a bit to match our
current OpenAPI spec.
"""
if hasattr(data_type, "schema"):
return data_type.schema(var_name)
if data_type in [bool, dict, int, float, list, str]:
return f"{var_name}: {data_type.__name__}"
raise AssertionError(f"unknown type {data_type}")
|
20fc1a642c4543e9b520aa08d0312deca5349377
| 701,001
|
import torch
def aggregate_mean(h):
"""mean aggregation"""
return torch.mean(h, dim=1)
|
c897e4c36f2ba6fc9719cc8d7437086970886085
| 701,002
|
def scaling_factor(context, ruler, rulerWidth):
"""
:type context: HackedContext
"""
rulerElement = context.driver.simple_find(ruler)
rulerPixels = rulerElement.size['width']
scaleFactor = float(rulerPixels) / float(rulerWidth)
return scaleFactor
|
5af9410879566b36a7a4d734c633d62cdcbddb7e
| 701,003
|
def unique_filename(filename, upload_id):
"""Replace filename with upload_id, preserving file extension if any.
Args:
filename (str): Original filename
upload_id (str): Unique upload ID
Returns:
str: An upload_id based filename
"""
if "." in filename:
return ".".join([upload_id, filename.rsplit(".", 1)[1]])
else:
return upload_id
|
04602532627d8557436c27f2e7d8165f638ed155
| 701,004
|
def ror (endv, iv):
""" This capital budgeting function computes the rate of
return on an investment for one period only.
iv = initial investment value
endv = total value at the end of the period
Example: ror(100000, 129,500)
"""
return (endv - iv)/iv
|
43a1339d45725a5e04fd809a6cfb708b6b49b829
| 701,006
|
import torch
def cov(x):
"""
https://en.wikipedia.org/wiki/Covariance_matrix
"""
E_x = x.mean(dim=1)
x = x - E_x[:, None]
return torch.mm(x, x.T) / (x.size(1) - 1)
|
ff4c5d3f90569f8c1a2d9a1ea9679079fb72b681
| 701,007
|
import time
def slow_subtractor(a, b):
"""Return a minus b."""
time.sleep(5)
return a - b
|
6420ad990ef3d7ebbe6f43832ae306a49a65f971
| 701,008
|
import torch
def concatenate_list_of_dict(list_of_dict) -> dict:
"""
Concatenate dictionary with the same set of keys
Args:
list_of_dict: list of dictionary to concatenate
Returns:
output_dict: the concatenated dictionary
"""
# check that all dictionaries have the same set of keys
for i in range(len(list_of_dict)-1):
keys1 = set(list_of_dict[i].keys())
keys2 = set(list_of_dict[i+1].keys())
assert keys1 == keys2, "ERROR, Some dictionary contains different keys: {0} vs {1}".format(keys1, keys2)
total_dict = {}
for mydict in list_of_dict:
for k, v in mydict.items():
if isinstance(v, list):
if k in total_dict.keys():
total_dict[k] = total_dict[k] + v
else:
total_dict[k] = v
elif isinstance(v, torch.Tensor):
if k in total_dict.keys():
total_dict[k] = torch.cat((total_dict[k], v), dim=0)
else:
total_dict[k] = v
elif isinstance(v, int) or isinstance(v, float):
if k in total_dict.keys():
total_dict[k] = total_dict[k] + [v]
else:
total_dict[k] = [v]
else:
raise Exception("ERROR: Unexpected in concatenate_list_of_dict. \
Received {0}, {1}".format(type(v), v))
return total_dict
|
e38837d9e55cc17715bf988b585c3f4f371f7398
| 701,009
|
from typing import List
import glob
def get_manifest_list(manifests_dir: str) -> List[str]:
"""Get a list of manifest files from the manifest directory."""
yml_endings = ["yml", "yaml"]
manifest_list = []
for yml_ending in yml_endings:
manifest_list += glob.glob(f"{manifests_dir}/**/*.{yml_ending}", recursive=True)
return manifest_list
|
0dc951cf08870c639735e24b048a41fb7ab6ea52
| 701,011
|
def prioritize_file_types(k):
""" Give a proper priority to certain file types when sorting """
# BN databases should always go first
if k.endswith('.bndb'):
return 0
# Definition files matter more than raw files
if any(k.endswith(e) for e in ('.def', '.idt')):
return 5
return 10
|
97bb9f0257c81d0640c45961c8fd68fe2e1eaee2
| 701,012
|
def checksum(s, m):
"""Create a checksum for a string of characters, modulo m"""
# note, I *think* it's possible to have unicode chars in
# a twitter handle. That makes it a bit interesting.
# We don't handle unicode yet, just ASCII
total = 0
for ch in s:
# no non-printable ASCII chars, including space
# but we want "!" to represent an increment of 1, hence 32 below
total = (total + ord(ch)-32) % m
return total
|
836e0f36ed3d87db8d3f2420230eb4f3f5d4d94c
| 701,013
|
import os
def validate_path_file(path_file) -> bool:
"""Validate th path of a file."""
if os.path.exists(path_file) and os.path.isfile(path_file):
if os.access(path_file, os.R_OK):
return True
return False
|
be43216006f21abac9dfeffc840a33160ffba95e
| 701,014
|
import os
def osPrefix():
"""Returns system prefix
Args:
No args
Returns:
linux/windows
Raises:
Nothing
"""
name = os.name
if name == "posix": return "linux"
return "windows"
|
1acf588dc766e470c4bab90ea9c621a30c6695f0
| 701,015
|
def _stdin_ready_other():
"""Return True, assuming there's something to read on stdin."""
return True
|
934e97ba18f9f60ad8e2d77f227dd98b70891b56
| 701,016
|
def text_objects(text, font, color):
"""
Function for creating text and it's surrounding rectangle.
Args:
text (str): Text to be rendered.
font (Font): Type of font to be used.
color ((int, int, int)): Color to be used. Values should be in range 0-255.
Returns:
Text surface and it's surrounding rectangle.
"""
text_surface = font.render(text, True, color)
return text_surface, text_surface.get_rect()
|
a9ed3d8a68c80930e2594b4dbef06e828de10513
| 701,017
|
from typing import List
def split_list(a: List, chunk_size: int):
"""
split a large list to small chunk with the specified size
:param a:
:param chunk_size:
:return:
"""
chunks = []
list_length = len(a)
start_pos = 0
end_pos = start_pos + chunk_size
while end_pos <= list_length:
chunks.append(a[start_pos:end_pos])
start_pos, end_pos = end_pos, end_pos + chunk_size
if start_pos < list_length:
chunks.append(a[start_pos:])
return chunks
|
24ec6e5c2a86deabb4abb9fd1c8e6a0f86cfb7ed
| 701,018
|
import re
def _parse_compile_log(log):
"""parses the pdflatex compile log"""
if log is None:
return {}
IMAGES = {}
i = 0
image_found = False
for line in log.split('\n'):
if not image_found:
m = re.match("^File: (.*) Graphic file", line)
if m:
IMAGES[i] = [m.group(1)]
image_found = True
else:
ret = re.search("Requested size: (.*)\.", line)
if ret is not None:
IMAGES[i].append(ret.group(1).split(' x '))
i += 1
image_found = False
return IMAGES
|
a3888ed3d2664866d47265f2c06720a8a3e757df
| 701,020
|
def contains(value, lst):
""" (object, list of list of object) -> bool
Return whether value is an element of one of the nested lists in lst.
>>> contains('moogah', [[70, 'blue'], [1.24, 90, 'moogah'], [80, 100]])
True
"""
found = False # We have not yet found value in the list.
for i in range(len(lst)):
for j in range(len(lst[i])):
if lst[i][j] == value:
found = True
#for sublist in lst:
# if value in sublist:
# found = True
return found
|
9d3690943c05b4220afabfa65402b7f12c1cb279
| 701,021
|
import random
def construct_sent(word, table):
"""Prints a random sentence starting with word, sampling from
table.
>>> table = {'Wow': ['!'], 'Sentences': ['are'], 'are': ['cool'], 'cool': ['.']}
>>> construct_sent('Wow', table)
'Wow!'
>>> construct_sent('Sentences', table)
'Sentences are cool.'
"""
result = ''
while word not in ['.', '!', '?']:
result += word + ' '
word = random.choice(table[word])
return result.strip() + word
|
238a0391b104d15db50d33904308c827851ffb62
| 701,022
|
def UnbiasPmf(pmf, label=''):
"""Returns the Pmf with oversampling proportional to 1/value.
Args:
pmf: Pmf object.
label: string label for the new Pmf.
Returns:
Pmf object
"""
new_pmf = pmf.Copy(label=label)
for x, p in pmf.Items():
new_pmf.Mult(x, 1.0/x)
new_pmf.Normalize()
return new_pmf
|
1146d952bbac0ef3031e3259d98e0f343103598e
| 701,023
|
def drop_na_1d(df, axis=0, how='all'):
"""
:param df:
:param axis: int;
:param how:
:return:
"""
if axis == 0:
axis_name = 'column'
else:
axis_name = 'row'
if how == 'any':
nas = df.isnull().any(axis=axis)
elif how == 'all':
nas = df.isnull().all(axis=axis)
else:
raise ValueError(
'Unknown \'how\' \'{}\'; pick from (\'any\', \'all\').'.format(
how))
if nas.any():
if axis == 0:
df = df.ix[:, ~nas]
else:
df = df.ix[~nas, :]
print('Dropped {} {}(s) with {} NaN: {}.'.format(
nas.sum(), axis_name, how, nas.index[nas].tolist()))
return df
|
c321191150208cddc49a150aa08f5f1e452f74dd
| 701,024
|
def selvita_sukupuoli(hetu):
"""Selvittää järjestynumeron perusteella sukupuolen: parillinen -> nainen, pariton -> mies
Args:
hetu (string): Henkilötunnus
Returns:
string: Nainen tai mies
"""
# Otetaan hetusta järjestysnumero-osa
jarjestysnumero_str = hetu[7:10]
# Muutetaan se luvuksi
jarjestysnumero = int(jarjestysnumero_str)
# Lasketaan jakojäännös modulo 2
jakojaannos = jarjestysnumero % 2
# Jos jakojäännös on 0 -> nainen, muutoin mies
if jakojaannos == 0:
sukupuoli = 'Nainen'
else:
sukupuoli = 'Mies'
return sukupuoli
|
243982f89e2e9edf4aa62972275a87e571327550
| 701,025
|
import re
def search_unknown(filename, dictionary):
""" Searches the words that are misspelled/not in the dictionary"""
numbers = re.findall('[\d]+', filename)
words = filename.lower().replace('?', ' ').replace('!',' ').replace('.',' ').replace('-',' ').replace(':',' ').replace(';',' ').replace(',',' ').replace('(',' ').replace(')',' ').replace('[',' ').replace(']',' ').replace('"',' ').replace("'",' ').split(' ')
unknowns = list(words)
rex= ['teeth','geese','men','feet','children', 'i','its', 'are','oxen','mice','men','women','sheep', 'me', 'mine', 'his', 'hers', 'there', 'theirs', 'yours', 'her','him', 'their', 'your', 'them', 'my', 'our', 'ours', 'them','people', 'am','these', 'those','could','might','would','should', 'rose','woke','bore','beat', 'been','became','began','bent','bound','bid','bound','bet','bit','bled','blew','broke','bred','brought','built','burned','bought','cast','caught','chose','clung','clothed','came','cost','crept','cut','dealt','dug','proved','dove','drew','dreamt','drank','drove','dwelt','ate','fell','fed','felt','fought','found','fitted','fled','flung','flew','forbade','forgot','forgave','forsook','froze','got','gave','went','ground','grew','hung','had','heard','hewed','hid','hit','held','hurt','inputted','kept','knelt','knit','knew','laid','led','leant','leapt','learnt','does','doing' ,'goes', 'left','lent','let','lay','lied','lit','lost','made','meant','met','mistook','misunderstood','mowed','paid','pled','prepaid','proofread','put','quitted','read','relayed','rid','rode','rang','rose','ran','sawed','said','saw','sought','sold','send','set','sewed','shook','shaved','sheared','shed','shone','shat','shot','showed','shrank','shut','sang','sank','sat','slew','slept','slid','slung','slunk','slit','smelt','snuck','sowed','spoke','sped','spelt','spent','spilt','spun','spit','spilt','spoilt','spread','sprang','stood','stole','stuck','stung','stank','strewed','strode','struck','strung','strove','swore','sweat','swept','swelled','swam','swung','took','taught','tore','told','thought','threw','thrust','trod','woke','wore','wove','wed','wept','wet','whetted','won','wound','withdrew','withheld','withstood','wrung','wrote', 'risen','woken','born','beaten','become','begun','bent','bound','bitten','bound','bet','bitten','bled','blown','broken','bred','brought','built','burnt','bought','cast','caught','chosen','clung','clad','come','cost','crept','cut','dealt','dug','proven','dived','drawn','dreamed','drunk','driven','dwelled','eaten','fallen','fed','felt','fought','found','fit','fled','flung','flown','forbidden','forgotten','forgiven','forsaken','frozen','gotten','given','gone','ground','grown','hung','had', 'has','heard','hewn','hidden','hit','held','hurt','inputted','kept','kneeled','knitted','known','laid','led', 'leaned','leaped','learned','left','lent','let','lain','lied','lighted','lost','made','meant','met','mistaken','misunderstood','mown','paid','pleaded','prepaid','proofread','put','quitted','read','relayed','rid','ridden','rung','risen','run','sawn','said','seen','sought','sold','sent','set','sewn','shaken','shaven','shorn','shed','shined','shitted','shot','shown','shrunk','shut','sung','sunk','sat','slayed','slept','slid','slung','slinked','slit','smelled','sneaked','sowed', 'spoken','speeded','spelled','spent','spilled','spun','spat','split','spoiled','spread','sprung','stood','stolen','stuck','stung','stunk','strewed','stridden','stricken','strung','strived','sworn','sweated','swept','swollen','swum','swung','taken','taught','torn','told','thought','thrown','thrust','trodden','woken','worn','weaved','wedded','wept','wetted','whetted','won','wound','withdrawn','withheld','withstood','wrung','written','were', 'was', "didn't", "wasn't", "couldn't", "wouldn't", "shouldn't", "i'm", "he's", "she's", "you're", "we're", "doesn't", "aren't", "they're", "i'll", "he'll", "we'll", "you'll", "she'll", "it'll", "they'll", "it's", "i'd", "you'd", "he'd", "she'd", "we'd", "they'd"]
for word in words:
if word == '':
unknowns.remove(word)
for word in words:
if word in dictionary:
unknowns.remove(word)
elif word in rex:
unknowns.remove(word)
if word in numbers:
unknowns.remove(word)
for word in words:
if word[-5:] == 'tting' or word[-5:] =='nning' or word[-5:] == 'pping' or word[-5:] == 'mming' or word[-5:] == 'rring' or word[-5:] == 'lling' or word[-5:] == 'bbing' or word[-5:] == 'gging' or word[-5:] == 'ation':
if word[:-4] in dictionary and word in unknowns:
unknowns.remove(word)
if word[:-4]+'e' in dictionary and word in unknowns:
unknowns.remove(word)
if word[:-5] in dictionary and word in unknowns:
unknowns.remove(word)
if word[-4:] == 'tted' or word[-4:] == 'rred' or word[-4:] == 'lled' or word[-4:] == 'bbed' or word[-4:] == 'gged' or word[-4:] == 'pped':
if word[:-3] in dictionary and word in unknowns:
unknowns.remove(word)
if word[:-3] +'e' in dictionary and word in unknowns:
unknowns.remove(word)
if word[-4:] == 'ment' or word[-4:] == 'ness' or word[-4:] == 'ship' or word[-4:] == 'less' or word[-4:] == 'able' or word[-4:] == 'ance' or word[-4:] == 'tion' or word[-4:] == 'sion' or word[-4:]=='ling' or word[-4:] == 'hood' or word[-4:] == 'ical' or word[-4:]=='some':
if word[:-4] in dictionary and word in unknowns:
unknowns.remove(word)
if word [:-4]+'e' in dictionary and word in unknowns:
unknowns.remove(word)
if word [:-3]+'e' in dictionary and word in unknowns:
unknowns.remove(word)
if word[-3:] == 'ing' or word[-3:] == 'dom' or word[-3:] == 'ize' or word[-3:] == 'ise' or word[-3:] == 'ism'or word[-3:] == 'ful' or word[-3:] == 'ish'or word[-3:] == 'ary'or word[-3:] == 'ate'or word[-3:] == 'ade' or word[-3:] == 'ity' or word[-3:] =='ies' or word[-3:]=='ves'or word[-3:] == 'ive' or word[-3:] == 'age' :
if word[:-3]+'e' in dictionary and word in unknowns:
unknowns.remove(word)
if word[:-3] in dictionary and word in unknowns:
unknowns.remove(word)
if word[:-3]+'y' in dictionary and word in unknowns:
unknowns.remove(word)
if word[:-3]+'f' in dictionary and word in unknowns:
unknowns.remove(word)
if word[:-4]+'ze' in dictionary and word in unknowns:
unknowns.remove(word)
if word[-2:] == 'es' or word[-2:] == 'ly' or word[-2:] == 'en' or word[:2] =='ic' or word[-2:] == 'or' or word[-2:] == 'al' or word[-2:] == 'ed' or word[-2:] == 'er' or word[-2:] == 'ty' or word[-2:]=='ac':
if word[:-2] in dictionary and word in unknowns:
unknowns.remove(word)
if word[:-2]+'e' in dictionary and word in unknowns:
unknowns.remove(word)
if word[:-2]+'a' in dictionary and word in unknowns:
unknowns.remove(word)
if word [-1:] == 's' or word[-1:] == 'y' or word[-1:] == 'd' or word[-1:] == 'r':
if word[:-1] in dictionary and word in unknowns:
unknowns.remove(word)
if word [:7] == 'counter':
if word[7:] in dictionary and word in unknowns:
unknowns.remove(word)
if word [:6] == 'contra':
if word[6:] in dictionary and word in unknowns:
unknowns.remove(word)
if word[:5] == 'extra' or word[:5] == 'hyper' or word[:5] == 'intra' or word[:5] == 'trans' or word[:5] == 'ultra' or word[:5] == 'onder' or word[:5] == 'super' :
if word[5:] in dictionary and word in unknowns:
unknowns.remove(word)
if word[:4] == 'ante' or word[:4] == 'anti' or word[:4] == 'hemi' or word[:4] == 'hypo' or word[:4] == 'peri' or word[:4] == 'semi' or word[:4] == 'over' or word[:4] == 'post' or word[:4] == 'auto' or word[:4] == 'mega':
if word[4:] in dictionary and word in unknowns:
unknowns.remove(word)
if word[:3] == 'dis' or word[:3] == 'non' or word[:3] == 'pre' or word[:3] == 'pro' or word[:3] == 'sub' or word[:3] == 'sup' or word[:3] == 'mis':
if word[3:] in dictionary and word in unknowns:
unknowns.remove(word)
if word[:2] == 'un' or word[:2] == 'in' or word[:2] == 'im' or word[:2] == 're' or word[:2] == 'an' or word[:2] == 'af' or word[:2] == 'al' or word[:2] == 'be' or word[:2] == 'co' or word[:2] == 'ex' or word[:2] == 'en' or word[:2] == 'up':
if word[2:] in dictionary and word in unknowns:
unknowns.remove(word)
if word[:1] == 'a' or word[:1] == 'e':
if word[1:] in dictionary and word in unknowns:
unknowns.remove(word)
if word[-1:] == 'a':
if word[:-1]+'um' in dictionary and word in unknowns:
unknowns.remove(word)
for word in unknowns:
if word == '':
unknowns.remove(word)
return unknowns
|
8e91ea65f7a1f04074e68d061677cfa365c762c2
| 701,026
|
def changeContagion(G, A, i):
"""
change statistic for Contagion (partner attribute)
*--*
"""
delta = 0
for u in G.neighbourIterator(i):
if A[u] == 1:
delta += 1
return delta
|
e6acd316f9fe618f7ca592c5aeae7b902fb774a4
| 701,027
|
def cycle_check(classes):
"""
Checks for cycle in clazzes, which is a list of (class, superclass)
Based on union find algorithm
"""
sc = {}
for clazz, superclass in classes:
class_set = sc.get(clazz, clazz)
superclass_set = sc.get(superclass, superclass)
if class_set != superclass_set:
# They belong to different sets. Merge disjoint set
for c in sc:
if sc[c] == class_set:
sc[c] = superclass_set
sc[superclass] = superclass_set
sc[clazz] = superclass_set
else:
# Part of same set. Cycle found!
return True
return False
|
8079f5e7044318570424a309b6cd16ce78b6e343
| 701,028
|
def _num_requests_needed(num_repos, factor=2, wiggle_room=100):
"""
Helper function to estimate the minimum number of API requests needed
"""
return num_repos * factor + wiggle_room
|
525af1e3aa5e1c0b35195fcd8e64cd32101bb6f2
| 701,029
|
def same_padding_for_kernel(shape, corr, strides_up=None):
"""Determine correct amount of padding for `same` convolution.
To implement `'same'` convolutions, we first pad the image, and then perform a
`'valid'` convolution or correlation. Given the kernel shape, this function
determines the correct amount of padding so that the output of the convolution
or correlation is the same size as the pre-padded input.
Args:
shape: Shape of the convolution kernel (without the channel dimensions).
corr: Boolean. If `True`, assume cross correlation, if `False`, convolution.
strides_up: If this is used for an upsampled convolution, specify the
strides here. (For downsampled convolutions, specify `(1, 1)`: in that
case, the strides don't matter.)
Returns:
The amount of padding at the beginning and end for each dimension.
"""
rank = len(shape)
if strides_up is None:
strides_up = rank * (1,)
if corr:
padding = [(s // 2, (s - 1) // 2) for s in shape]
else:
padding = [((s - 1) // 2, s // 2) for s in shape]
padding = [((padding[i][0] - 1) // strides_up[i] + 1,
(padding[i][1] - 1) // strides_up[i] + 1) for i in range(rank)]
return padding
|
8d956c75a2e0609a04ec56374a4cb9b3b367b90a
| 701,031
|
def _extract_license_outliers(license_service_output):
"""Extract license outliers.
This helper function extracts license outliers from the given output of
license analysis REST service.
:param license_service_output: output of license analysis REST service
:return: list of license outlier packages
"""
outliers = []
if not license_service_output:
return outliers
outlier_packages = license_service_output.get('outlier_packages', {})
for pkg in outlier_packages.keys():
outliers.append({
'package': pkg,
'license': outlier_packages.get(pkg, 'Unknown')
})
return outliers
|
101a916fec08a3a5db1a09a2817e82314ca19f6b
| 701,032
|
import sys
def get_os():
"""
Determines the type of operating system being used. Needed for when we are
loading & saving local files later
Parameters
------------
none
Returns
------------
os_type : str
Type of OS the script is running on
Ex: 'linux' is the script is running on a Linux OS, such as Ubuntu
"""
os_type = sys.platform
return os_type
|
6f7d133f8987e9314017a382affda3892ccd36c6
| 701,033
|
def center(map, object):
"""
Center an ee.Image or ee.Feature on the map.
Args:
map: The map to center the object on.
object: The ee.Image or ee.Feature to center.
Returns:
The provided map.
"""
coordinates = object.geometry().bounds().coordinates().getInfo()[0]
bounds = [[point[1], point[0]] for point in coordinates]
map.fit_bounds(bounds)
return map
|
60a2baa1c4f83b0e9b1221bcc474f109c35cbd7a
| 701,034
|
def evaluations_to_columns(evaluation):
"""Convert the results of :meth:`metrics.ScoringMixIn.evaluate` to a pandas DataFrame-ready format
Parameters
----------
evaluation: dict of OrderedDicts
The result of consecutive calls to :meth:`metrics.ScoringMixIn.evaluate` for all given dataset types
Returns
-------
column_metrics: list of pairs
A pair for each data_type-metric combination, where the first item is the key, and the second is the metric value
Examples
--------
>>> evaluations_to_columns({
... 'in_fold': None,
... 'holdout': OrderedDict([('roc_auc_score', 0.9856), ('f1_score', 0.9768)]),
... 'oof': OrderedDict([('roc_auc_score', 0.9634)])
... })
[['oof_roc_auc_score', 0.9634], ['holdout_roc_auc_score', 0.9856], ['holdout_f1_score', 0.9768]]
"""
data_types = ['oof', 'holdout', 'in_fold']
column_metrics = []
for data_type in data_types:
if evaluation[data_type] is not None:
for metric_key, metric_value in evaluation[data_type].items():
column_metrics.append([
F'{data_type}_{metric_key}', metric_value
])
return column_metrics
|
26c5f4b2a9830f7547f6b59d9653fea25345b43d
| 701,036
|
def merge(left: list, right: list) -> list:
"""Merges 2 sorted lists (left and right) in 1 single list, which is
returned at the end.
Time complexity: O(m), where m = len(left) + len(right)."""
mid = []
i = 0 # Used to index the left list.
j = 0 # Used to index the right list.
while i < len(left) and j < len(right):
if left[i] < right[j]:
mid.append(left[i])
i += 1
else:
mid.append(right[j])
j += 1
while i < len(left):
mid.append(left[i])
i += 1
while j < len(right):
mid.append(right[j])
j += 1
return mid
|
9f6c501469e79a9f5ecfd8e23ee3384fc56c5a48
| 701,037
|
def replace(i_list: list, target: int,new_value: int)-> list:
"""
Replace all the target value with a new value
:param i_list: the list to be analyzed
:param value: the value to replace
:param target: the value to be replaced
:return: the new list
"""
return list(map(lambda value: new_value if value == target else value, i_list))
|
d0d2bc928c915d3456a25cc4ff341b23a66c4098
| 701,038
|
def words_cmp(a, b):
"""
word比较器
:param a: (word, 词频)
:param b: (word, 词频)
:return: [-1|0|1]
"""
a_word, a_freq = a
b_word, b_freq = b
if a_freq != b_freq:
return b_freq - a_freq
elif a_word != b_word:
return -1 if a_word < b_word else 1
else:
return 0
|
b758a5a685b81f5fbca5840529272727e5fcf5d7
| 701,039
|
import torch
def get_landmark_model(output_size) -> torch.nn.Module:
"""Build the convolutional network model with Keras Functional API.
Args:
output_size: the number of output node, usually equals to the number of marks times 2 (in 2d space).
Returns:
a model
"""
model = torch.nn.Sequential(
# |== Layer 1 ==|
torch.nn.Conv2d(
in_channels=3,
out_channels=32,
kernel_size=(3, 3),
),
torch.nn.ReLU(),
torch.nn.LazyBatchNorm2d(),
torch.nn.MaxPool2d(
kernel_size=(2, 2),
stride=(2, 2),
padding=(0, 0)
),
# |== Layer 2 ==|
torch.nn.Conv2d(
in_channels=32,
out_channels=64,
stride=(1, 1),
padding=(0, 0),
kernel_size=(3, 3),
),
torch.nn.ReLU(),
torch.nn.LazyBatchNorm2d(),
torch.nn.Conv2d(
in_channels=64,
out_channels=64,
stride=(1, 1),
padding=(0, 0),
kernel_size=(3, 3),
),
torch.nn.ReLU(),
torch.nn.LazyBatchNorm2d(),
torch.nn.MaxPool2d(
kernel_size=(2, 2),
stride=(2, 2),
padding=(0, 0)
),
# |== Layer 3 ==|
torch.nn.Conv2d(
in_channels=64,
out_channels=64,
stride=(1, 1),
padding=(0, 0),
kernel_size=(3, 3),
),
torch.nn.ReLU(),
torch.nn.LazyBatchNorm2d(),
torch.nn.Conv2d(
in_channels=64,
out_channels=64,
stride=(1, 1),
padding=(0, 0),
kernel_size=(3, 3),
),
torch.nn.ReLU(),
torch.nn.LazyBatchNorm2d(),
torch.nn.MaxPool2d(
kernel_size=(2, 2),
stride=(2, 2),
padding=(0, 0)
),
# |== Layer 4 ==|
torch.nn.Conv2d(
in_channels=64,
out_channels=128,
stride=(1, 1),
padding=(0, 0),
kernel_size=(3, 3),
),
torch.nn.ReLU(),
torch.nn.LazyBatchNorm2d(),
torch.nn.Conv2d(
in_channels=128,
out_channels=128,
stride=(1, 1),
padding=(0, 0),
kernel_size=(3, 3),
),
torch.nn.ReLU(),
torch.nn.LazyBatchNorm2d(),
torch.nn.MaxPool2d(
kernel_size=(2, 2),
stride=(1, 1),
padding=(0, 0)
),
# |== Layer 5 ==|
torch.nn.Conv2d(
in_channels=128,
out_channels=256,
stride=(1, 1),
padding=(0, 0),
kernel_size=(3, 3),
),
torch.nn.ReLU(),
torch.nn.LazyBatchNorm2d(),
# |== Layer 6 ==|
torch.nn.Flatten(),
torch.nn.LazyLinear(out_features=1024),
torch.nn.ReLU(),
torch.nn.LazyBatchNorm1d(),
torch.nn.LazyLinear(out_features=output_size)
)
model.to(torch.device('cuda'))
return model
|
20e6796e1a035aa94076de2979bddc449d6ecb37
| 701,042
|
def isPerfectSquare(p: int) -> bool:
"""Checks if given number is a perfect square.
A perfect square is an integer that is a square of another integer.
Parameters:
p: int
number to check
Returns:
result: bool
True if number is a perfect square
False if number is not a perfect square
"""
if p <= 1: return False
x = p // 2
seen = set([x])
while x * x != p:
x = (x + (p // x)) // 2
if x in seen: return False
seen.add(x)
return True
|
d9c725193a5100e06825944239fe3442bed17b92
| 701,043
|
def frequencies_for_cutoffs(col, cutoffs):
""" Sets cutoffs for the frequencies """
# Sets each frequency to 0 by default
freqs = [0] * len(cutoffs)
for el in col:
for i in range(len(cutoffs)):
if el <= cutoffs[i]:
freqs[i] += 1
break
return freqs
|
9784a7a68450d90de79de71804eb08bc796506eb
| 701,044
|
def cell(n):
"""Format a cell"""
return '{:3} {:5}'.format(
n, 'SPACE'
if n == 32 else 'DEL' if n == 127 else chr(n) if n >= 33 else 'NA')
|
a7696335b1962ab9b6fc661c3884f278e8cc38c9
| 701,045
|
def mean_expression(df, annotation, stage_regex=r".*", normal=False):
"""Return the mean expression values of the subset of samples.
Parameters
----------
df: pandas.DataFrame
Each row is a gene and each column is a sample.
annotation: pandas.DataFrame
A data frame with matching uuids and tumor stages.
stage_regex: raw str, optional
The regex used for filtering the "tumor_stage" column. Choose all by default.
normal: bool, optional
Return normal samples. Default is false.
Returns
-------
a pandas.Series with names as Ensembl IDs and values as TPMs, and
a list of sample names.
"""
normalUUID = annotation[annotation["sample_type"].str.lower().str.contains("normal")]["uuid"].tolist()
if normal:
return df[normalUUID].mean(1)
ids = annotation[
(~annotation["uuid"].isin(normalUUID)) &
(annotation["tumor_stage"].str.contains(stage_regex, regex=True))]["uuid"].tolist()
return (df[ids].mean(1), ids)
|
7e404aa4a69b7b967d830463d21d611e0cd47b36
| 701,046
|
import time
def slow_function():
"""
模拟思考过程
:return: 结果
"""
time.sleep(3)
return 43
|
ca6b8333f39f497a441ff335670d51a1ca37450f
| 701,047
|
import random
def full_jitter(value):
"""Jitter the value across the full range (0 to value).
This corresponds to the "Full Jitter" algorithm specified in the
AWS blog's post on the performance of various jitter algorithms.
(http://www.awsarchitectureblog.com/2015/03/backoff.html)
Args:
value: The unadulterated backoff value.
"""
return random.uniform(0, value)
|
0a5c233d3e0e58873d29de7e3d878fbcf3d0c47a
| 701,048
|
def _pathcontains_filter(files, pathcontains):
"""Filtre par chemin"""
filtered_files = []
for file in files:
if pathcontains in file:
filtered_files.append(file)
return filtered_files
|
9a37b1e361cc37e8a046b297115a6374c78abd2f
| 701,049
|
def function_to_be_decorated():
"""This is documentation for function_to_be_decorated."""
return True
|
ebb9602ba27e98750300e27dedfc9dd2c94f896d
| 701,050
|
import os
import tempfile
import shutil
def zip_py(module_dir='fncore'):
"""Zips python module for submission to Spark"""
root_dir = os.path.abspath(os.path.join(module_dir, os.pardir))
base_dir = os.path.relpath(module_dir, root_dir)
temp_dir = tempfile.gettempdir()
zippath = os.path.join(temp_dir, 'fn_pyspark_module_' + base_dir)
zipped_file = shutil.make_archive(zippath, 'zip', root_dir, base_dir)
return zipped_file
|
f53160af7fcb5d62ddd8ce6b431b65e6c0948ab8
| 701,052
|
def eq(a, b, n):
"""Euler's quadratic formula"""
## : coefficient: a, b int
## : n int | n >= 0
rst = n**2 + a*n + b
return rst
|
c5f9619e22d3131b905eba6bfe509020d1f7c917
| 701,054
|
def is_unqdn(cfg, name):
"""
Returns True if name has enough elements to
be a unqdn (hostname.realm.site_id)
False otherwise
"""
parts = name.split(".")
if len(parts) >= 3:
return True
else:
return False
|
28e530816ea418473858d2cb59e572d25a9f2d81
| 701,055
|
def check_ip(ip):
"""Checks whether given IP address is valid or not.
Implements only basic checking."""
if ip is not None:
iplst = ip.split('.')
if len(iplst) != 4:
return False
for num in iplst:
if int(num) > 255 or int(num) < 0:
return False
return True
|
a0342cfb91c1b8759dc22b5ece90f6bf6203f951
| 701,056
|
def is_valid_medialive_channel_arn(mlive_channel_arn):
"""Determine if the ARN provided is a valid / complete MediaLive Channel ARN"""
if mlive_channel_arn.startswith("arn:aws:medialive:") and "channel" in mlive_channel_arn:
return True
else:
return False
|
c2ddbdef180eabbc4f22399dd895b99555bb05d6
| 701,057
|
def convert_tf_to_crowdsourcing_format(images, detections):
"""
Args:
images: dictionary {image_id : image info} (images from Steve's code)
detections: detection output from multibox
Returns:
dict : a dictionary mapping image_ids to bounding box annotations
"""
image_annotations = {}
for detection in detections:
image_id = str(detection['image_id'])
score = detection['score']
x1, y1, x2, y2 = detection['bbox']
# GVH: Do we want to check for reversal or area issues?
image_width = images[image_id]['width']
image_height = images[image_id]['height']
if image_id not in image_annotations:
image_annotations[image_id] = {
"anno" : {
"bboxes" : []
},
"image_id": image_id,
"image_width": image_width,
"image_height": image_height
}
bboxes = image_annotations[image_id]["anno"]["bboxes"]
bboxes.append({
"x": x1 * image_width,
"y": y1 * image_height,
"x2": x2 * image_width,
"y2": y2 * image_height,
"image_height": image_height,
"image_width": image_width,
"score" : score
})
return image_annotations
|
ba25ee0cb2eb570f745326dfe85c2bda972a3659
| 701,058
|
import os
def prefix_path(path,src_list):
"""
prefix the path to every file in the src_list
"""
return [os.path.join(path,e) for e in src_list]
|
379c3fbb6648978e9b58e015740587ec5473037d
| 701,059
|
import sys
def _get_zipname(platform):
"""Determine zipfile name for platform.
Parameters
----------
platform : str
Platform that will run the executables. Valid values include mac,
linux, win32 and win64. If platform is None, then routine will
download the latest asset from the github repository.
Returns
-------
zipfile : str
Name of zipfile for platform
"""
if platform is None:
if sys.platform.lower() == "darwin":
platform = "mac"
elif sys.platform.lower().startswith("linux"):
platform = "linux"
elif "win" in sys.platform.lower():
is_64bits = sys.maxsize > 2 ** 32
if is_64bits:
platform = "win64"
else:
platform = "win32"
else:
errmsg = (
"Could not determine platform"
". sys.platform is {}".format(sys.platform)
)
raise Exception(errmsg)
else:
msg = "unknown platform detected ({})".format(platform)
success = platform in ["mac", "linux", "win32", "win64"]
if not success:
raise ValueError(msg)
return "{}.zip".format(platform)
|
f0a5729f93a9b5da6a1eb6bde75baad6fc0a7f08
| 701,060
|
from typing import OrderedDict
def get_chattering_species(atom_followed="C"):
"""
return chattering species
the chatteing reaction infomation is just for reference, will not use it
as long as the paired chattering species is provided, should be fine
better make them in the same order
"""
fast_transitions = [{}]
trapped_species_list = []
for _, r_s in enumerate(fast_transitions):
print(r_s)
if 'spe' not in r_s:
continue
if atom_followed not in r_s['spe']:
continue
if len(r_s['spe'][atom_followed]) != 2:
continue
trapped_species_list.append(
[int(r_s['spe'][atom_followed][0]), int(r_s['spe'][atom_followed][1])])
print(trapped_species_list)
chattering_species = {}
for idx, val in enumerate(trapped_species_list):
print(idx, val)
chattering_species.update({str(idx + 1): val})
chattering_species = OrderedDict(chattering_species)
print(chattering_species)
return chattering_species
|
264702e1b1ca474c6cfe45035d9d5aad2e653d07
| 701,061
|
def patched_novoed_api(mocker):
"""Patches NovoEd API functionality"""
return mocker.patch("novoed.tasks.api")
|
9bd7b15a6b34c9c659755fb36e422698a82be063
| 701,063
|
import os
def is_binary_file(path):
"""
:type path: str
:rtype: bool
"""
assume_text = set([
'.cfg',
'.conf',
'.crt',
'.css',
'.html',
'.ini',
'.j2',
'.js',
'.json',
'.md',
'.pem',
'.ps1',
'.psm1',
'.py',
'.rst',
'.sh',
'.txt',
'.xml',
'.yaml',
'.yml',
])
assume_binary = set([
'.bin',
'.eot',
'.gz',
'.ico',
'.iso',
'.jpg',
'.otf',
'.p12',
'.png',
'.pyc',
'.rpm',
'.ttf',
'.woff',
'.woff2',
'.zip',
])
ext = os.path.splitext(path)[1]
if ext in assume_text:
return False
if ext in assume_binary:
return True
with open(path, 'rb') as path_fd:
return b'\0' in path_fd.read(1024)
|
e1cc55a8be412d6424f0dab346f57c625636e64a
| 701,064
|
def asNormalizedJSON(value):
"""Answer the value as normalized object, where all values are converted into
base objects, dict, list and string.
>>> src = dict(aa='bb', cc=[1,2,3,4], dd=dict(ee=123, ff='ABC'), gg={3,4,5,5,6,6,7,7})
>>> result = asNormalizedJSON(src)
>>> sorted(result.keys())
['aa', 'cc', 'dd', 'gg']
>>> sorted(result['gg'])
[3, 4, 5, 6, 7]
"""
if value is None:
result = 'None'
elif isinstance(value, (set, list, tuple)):
result = []
for v in value:
result.append(asNormalizedJSON(v))
elif isinstance(value, (float, int, str)):
result = value
elif isinstance(value, dict):
result = {}
for name, v in value.items():
result[name] = asNormalizedJSON(v)
else:
result = value.asNormalizedJSON()
return result
|
6e4e6c11b459a50e4a3ca731b76d2742d7b3b5a7
| 701,065
|
def tf(seconds):
"""
Formats time in seconds to days, hours, minutes, and seconds.
Parameters
----------
seconds : float
The time in seconds.
Returns
-------
str
The formatted time.
"""
days = seconds // (60*60*24)
seconds -= days * 60*60*24
hours = seconds // (60*60)
seconds -= hours * 60*60
minutes = seconds // 60
seconds -= minutes * 60
tf = []
if days > 0:
tf.append("%s days" % int(days))
if hours > 0:
tf.append("%s hours" % int(hours))
if minutes > 0:
tf.append("%s minutes" % int(minutes))
tf.append("%s seconds" % round(seconds, 2))
return ", ".join(tf)
|
22649dd1bd74cc08d73c5cd43b1b96658a3bcb3a
| 701,067
|
import pkg_resources
import os
import sys
def is_distribution_editable(name):
"""Is distribution an editable install?"""
distribution = pkg_resources.get_distribution(name)
return any(
os.path.isfile(
os.path.join(location, distribution.project_name + '.egg-link'),
)
for location in sys.path
)
|
130e2902de9c4b24ef3345215392ccf84c87c11b
| 701,068
|
import json
import click
def process_keyfile(ctx, param, value):
"""Read keyfile and load JSON."""
if value is not None:
try:
auth_info = json.load(value)['twitter']
except:
click.echo('A valid JSON keyfile is required!')
raise
return auth_info
else:
return value
|
18909434dfc636cd26ddfeba93970465a82d3e7c
| 701,069
|
def get_pager(config, logger):
"""Get the pager"""
pager = config.get_config('pager')
if not pager:
logger.log('No pager configured!')
return None
return pager
|
fa7bb606ae6d63dba1f65f398ddc748cd8551a39
| 701,071
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.