content
stringlengths 35
416k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
|---|---|---|
from typing import Dict
from datetime import datetime
def inject_now() -> Dict:
"""Inject current datetime into request context."""
return dict(request_datetime=datetime.now())
|
e186d4b478a5da5bcdf83e2e34cd381de8d039be
| 697,860
|
def _make_eof_producer(producer):
"""
Send a special EOF byte sequence to terminate the request.
Args:
producer (Callable[[str, socket.socket], None]):
Request producer.
Returns:
Callable[[str, socket.socket], None]:
Request producer that sends 'END-OF-FILE' at end of request.
"""
def new_producer(audio_input, sock):
producer(audio_input, sock)
sock.sendall(b'END-OF-FILE')
return new_producer
|
9c035b1f790cab96c9cffc91e6dcf8a13017a4cc
| 697,861
|
def in_key_rd_dicts( key_rd_dict, key_rd_dicts ):
"""Return True if key_rd_dict is contained in the list of key_rd_dicts."""
k = key_rd_dict.keys()[ 0 ]
v = key_rd_dict[ k ]
for key_rd_dict in key_rd_dicts:
for key, val in key_rd_dict.items():
if key == k and val == v:
return True
return False
|
04c691a1a78834c7d660ae3036e97ea0e78393de
| 697,862
|
def medical_covered_by_1(responses, derived):
""" Return whether the children are covered under Claimant 1's plan """
if responses.get('medical_coverage_available', 'NO') == 'YES':
return 'My plan' in responses.get('whose_plan_is_coverage_under', '')
return False
|
a5116dbe07fa97e95a349acfe926b228a6829488
| 697,863
|
import re
def split_text(text, pattern=r";|。|;|,|,"):
"""split text by pattern
Args:
text (str): text
pattern (regexp, optional): expression. Defaults to r";|。|;|,|,".
Returns:
str: text split by pattern
Examples:
>>> s = String()
>>> text = "收快递的时候最怕收不到货,所以购物的时候一定要把地址写清楚,这样才会精准的送到你手里,我告诉大家以后怎么写:“本宇宙-拉尼凯亚超星系团-室女座星系团-本星系群-银河系-猎户臂-太阳系-第三行星-地球-亚洲板块-中国-xxx-xxx-xxx”这样可以保证不会送到其他宇宙去"
>>> s.split_text(text=text)
['收快递的时候最怕收不到货', '所以购物的时候一定要把地址写清楚', '这样才会精准的送到你手里', '我告诉大家以后怎么写:“本宇宙-拉尼凯亚超星系团-室女座星系团-本星系群-银河系-猎户臂-太阳系-第三行星-地球-亚洲板块-中国-xxx-xxx-xxx”这样可以保证不会送到其他宇宙去']
"""
txts = re.split(pattern, text)
return txts
|
080b63c947f5b9aca749e2ec4981f64c09e2ad43
| 697,864
|
def mixedomatic(cls):
""" Mixed-in class decorator. """
classinit = cls.__dict__.get('__init__') # Possibly None.
# Define an __init__ function for the class.
def __init__(self, *args, **kwargs):
# Call the __init__ functions of all the bases.
for base in cls.__bases__:
base.__init__(self, *args, **kwargs)
# Also call any __init__ function that was in the class.
if classinit:
classinit(self, *args, **kwargs)
# Make the local function the class's __init__.
setattr(cls, '__init__', __init__)
return cls
|
3891a748a5cd6ee5e31c1441a7645343c0862135
| 697,865
|
def sphere_sre(solution):
"""
Variant of the sphere function. Dimensions except the first 10 ones have limited impact on the function value.
"""
a = 0
bias = 0.2
x = solution.get_x()
x1 = x[:10]
x2 = x[10:]
value1 = sum([(i-bias)*(i-bias) for i in x1])
value2 = 1/len(x) * sum([(i-bias)*(i-bias) for i in x2])
return value1 + value2
|
38987c77a6586a0bfab1d94cc4a1511e9418349f
| 697,867
|
from typing import Union
import pytz
from datetime import datetime
def localnow(tz: Union[pytz.BaseTzInfo, str] = "US/Central") -> datetime:
""" Get the current datetime as a localized datetime object with timezone information
Keyword Arguments:
tz {Union[pytz.timezone, str]} -- localize datetime to this timezone (default: "US/Central")
Returns:
datetime -- localized datetime with tzinfo
"""
if isinstance(tz, str):
tz = pytz.timezone(tz)
return datetime.now().astimezone(tz)
|
3dd9132c4adebacf5d348ec34523584642f7140b
| 697,868
|
def get_increment(msg_list):
"""
:param msg_list: list of on/off midi signals
:return: minimum time of all signals
"""
result = float('inf')
for msg in msg_list:
if msg.time != 0.0 and msg.time < result:
result = msg.time
return result
|
5b41d4a26b91c6c98d191867f0a968b1a389ba2b
| 697,869
|
import timeit
def tic():
""" Default timer
Example: t = tic()
... code
elapsed = toc(t)
print( '{0}: {1:.4f}ms'.format(message, elapsed) )
"""
global lastticstamp
t = timeit.default_timer()
lastticstamp = t
return t
|
7b68cde350e931d9e8f479151ed3c142298a6366
| 697,870
|
from typing import List
import torch
from typing import Tuple
def collate_fn(batch: List[torch.Tensor]) -> Tuple[Tuple[torch.Tensor]]:
"""[summary]
Args:
batch (List[torch.Tensor]): [description]
Returns:
Tuple[Tuple[torch.Tensor]]: [description]
"""
return tuple(zip(*batch))
|
798d12485f5e1b258b2bd3fe7137bfe1fe352a1b
| 697,871
|
import torch
def threshold_mask(weights, threshold):
"""Create a threshold mask for the provided parameter tensor using
magnitude thresholding.
Arguments:
weights: a parameter tensor which should be pruned.
threshold: the pruning threshold.
Returns:
prune_mask: The pruning mask.
"""
return torch.gt(torch.abs(weights), threshold).type(weights.type())
|
43ca3f018f047e2ac46a83c36c368798b69e104a
| 697,874
|
def sigmoid(attrs, in_xlayers):
""" Return sigmoid registration information (shape) """
assert len(in_xlayers) == 1
shape = in_xlayers[0].shapes[:]
return {'shape': shape}
|
5637c532ed9eda6ec14abac0cf5e360a47c7333b
| 697,875
|
def get_answer(file_answer):
"""
"""
with open(file_answer, 'r') as f:
return [x.split(';')[0].rstrip() for x in f.readlines()]
|
0acfa654a328a5d4ac3a7c5cd291577be52b707b
| 697,876
|
def string_is_yes(string, default=None):
"""
Mapping of a given string to a boolean.
If it is empty or None (evaluates to False), and `default` is set, `default` is returned.
If the lowercase of the string is any of ['y', '1', 'yes', 'true', 'ja'], it will return `True`.
Else it will return `False`
:param string: The input
:type string: str
:param default: default result for empty input
:type default: None | bool
:return: result (True/False/default)
:rtype: bool
"""
if not string and default is not None:
return default
# end if
return string.lower() in ['y', '1', 'yes', 'true', 'ja']
|
68482f78f8d4464891f14c19953e1a4785fe0811
| 697,877
|
import argparse
def default_tool_argparser(description, example_parameters):
"""Create default parser for single tools.
"""
epilog = '\n'
for k, v in sorted(example_parameters.items()):
epilog += ' ' + k + '\n'
p = argparse.ArgumentParser(
description=description,
add_help=False,
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog=('available values for examples (exkey):'+epilog))
return p
|
8a90854d432f134047d402ac9639790ac0c8a15e
| 697,878
|
import os
def get_files_by_ext(dirname, *exts):
"""Returns list of paths to files with extensions in *exts.
- dirname - path to directory
- *exts - file extensions to filter on
"""
fnames = [f for f in os.listdir(dirname) if os.path.splitext(f)[-1] in exts]
return [os.path.join(dirname, f) for f in fnames]
|
7b6179a448517bc8558bf9f87b128c3a79f37f48
| 697,879
|
def look_and_say(string):
"""
Expand a string of digits according to look-and-say process in the problem.
Keyword arguments:
string --- a string to be processed
"""
result = ""
last = ""
count = 0
for digit in string:
if digit != last:
if(count):
result += str(count) + last
last = digit
count = 1
else:
count += 1
if(count):
result += str(count) + last
return result
|
cd8fcce76302cdb1c9af10d9481559c1eb098e43
| 697,880
|
import torch
def rel_to_rect(bb, sz_norm=None):
"""Inverts the effect of rect_to_rel. See above."""
sz = torch.exp(bb[...,2:])
if sz_norm is None:
c = bb[...,:2] * sz
else:
c = bb[...,:2] * sz_norm
tl = c - 0.5 * sz
return torch.cat((tl, sz), dim=-1)
|
ed2c31d1add58b1d5af843159eab4fa20471f76d
| 697,881
|
def arrays_avg(values_array, weights_array=None):
"""
Computes the mean of the elements of the array.
Parameters
----------
values_array : array.
The numbers used to calculate the mean.
weights_array : array, optional, default None.
Used to calculate the weighted average, indicates the weight of each element in the array (values_array).
Returns
-------
result : float.
The mean of the array elements.
"""
n = len(values_array)
if weights_array is None:
weights_array = [1] * n
elif len(weights_array) != n:
raise ValueError(
"values_array and qt_array must have the same number of rows"
)
result = 0
for i, j in zip(values_array, weights_array):
result += i * j
return result / n
|
2f24da412c548c1da53338f2f66d57d18473f798
| 697,882
|
import argparse
def check_rate(arg):
"""confirm rate is in [0.25, 4.0] interval"""
rate = float(arg)
if not 0.25 <= rate <= 4.0:
msg = (
"TTS rate only supported for floats in the range 0.25 (slow) to "
"4.0 (fast). Default is 1.0."
)
raise argparse.ArgumentTypeError(msg)
return rate
|
90919858dfd40319e60436b229652cef14a7b1ba
| 697,883
|
import re
def identify_all_potential_shifts(mut_desc, chain_sequence,allowed_shifts):
"""
identify all potential shifts
"""
md_re=r'(?P<wt>[A-Z])(?P<pos>[0-9]+)(?P<mut>[A-Z\(\)]+)$'
saved_shifts=[]
for shift in allowed_shifts:
proposed_shift=shift
for mut_desc_single in mut_desc.split('+'):
search = re.search(md_re, mut_desc_single)
if search is None:
return None
WT=search.group('wt')
num=int(search.group('pos'))-1 # 0 index
mut=search.group('mut')
if (num+proposed_shift >= len(chain_sequence) or num+proposed_shift < 0 or chain_sequence[num+proposed_shift] != WT):
proposed_shift =0
break
if proposed_shift !=0: # found a shift that works
saved_shifts.append(proposed_shift)
return saved_shifts
|
4938a498ed696e590892f701a393d74e5d1786b9
| 697,884
|
def issue_dictionary_from(column, issue) -> dict:
"""Map issue to dictionary with field names."""
return {
"project column": column.name,
"issue title": issue.title,
"issue description": f"{issue.body}\n\n---\n\n{issue.html_url}",
"labels": ";".join(
f"'{label.name}'" for label in issue.original_labels
),
}
|
eae9e6cdf7ea3d715ad2e1dc8c31672c8c53762e
| 697,885
|
def age_bin(age, labels, bins):
""" Return a label for a given age and bin.
Argument notes:
age -- int
labels -- list of strings
bins -- list of tuples, with the first tuple value being
the inclusive lower limit, and the higher tuple
value being the exclusive upper limit
"""
for x in range(len(bins)):
if age < bins[x][1] and age >= bins[x][0]:
return labels[x]
|
9caccc667b55f66824bcf8802161384590cc2a08
| 697,886
|
import argparse
def parse_arguments():
"""
Parses the command line arguments and returns the namespace with those
arguments.
:type return: Namespace object
:param return: The Namespace object containing the values of all supported
command-line arguments.
"""
arg_parse = argparse.ArgumentParser()
arg_parse.add_argument("-d", "--dir", default="./grurnn",
help="Directory for storing logs.")
arg_parse.add_argument("-f", "--filename", default="grurnn.log",
help="Name of the log file to use.")
arg_parse.add_argument("-e", "--epochs", default=10, type=int,
help="Number of epochs for which to train the RNN.")
arg_parse.add_argument("-m", "--max", default=None, type=int,
help="The maximum number of examples to train on.")
arg_parse.add_argument("-p", "--patience", default=100000, type=int,
help="Number of examples to train before evaluating"
+ " loss.")
arg_parse.add_argument("-t", "--test", action="store_true",
help="Treat run as test, do not save models")
arg_parse.add_argument("-l", "--learn_rate", default=0.005, type=float,
help="The learning rate to be used in training.")
arg_parse.add_argument("-o", "--model", default=None,
help="Previously trained model to load on init.")
arg_parse.add_argument("-a", "--anneal", type=float, default=0.00001,
help="Sets the minimum possible learning rate.")
arg_parse.add_argument("-s", "--dataset", default="./datasets/stories.pkl",
help="The path to the dataset to be used in "
" training.")
arg_parse.add_argument("-r", "--truncate", type=int, default=100,
help="The backpropagate truncate value.")
arg_parse.add_argument("-i", "--hidden_size", type=int, default=100,
help="The size of the hidden layers in the RNN.")
arg_parse.add_argument("-b", "--embed_size", type=int, default=100,
help="The size of the embedding layer in the RNN.")
return arg_parse.parse_args()
|
2b3a8b32d430417c18845e89ec096a8c0ac6365e
| 697,887
|
def list_intersect(first, second):
"""
Returns elements found in first that are in second
:param first:
:param second:
:return:
"""
second = set(second)
return [item for item in first if item in second]
|
74cf1fc791a57c299f7fcf2369c105d68bda772e
| 697,888
|
def process_covid_csv_data(covid_csv_data: list) -> tuple:
"""Function takes a list of data from an argument called covid csv data,
and returns three variables; the number of cases in the last 7 days,
the current number of hospital cases and the cumulative number of deaths,
as contained in the given csv file."""
last_7_days_cases = 0 # initiate variables
total_hospitalised = 0
total_deaths = 0
deaths_updated = False # flags to find the newest data
current_hospitalised_updated = False
for i in range(1, len(covid_csv_data)): # skip names of columns
day = covid_csv_data[i]
day = day.split(",")
if 2 < i < 10: # ignore first and second day that are incomplete
day_cases = int(day[-1])
last_7_days_cases += day_cases
try:
day_hospitalised = int(day[5])
except ValueError: # No data for this day
day_hospitalised = False
if day_hospitalised and (not current_hospitalised_updated):
current_hospitalised_updated = True # unflag flag
total_hospitalised = day_hospitalised
try:
cum_death = int(day[4])
except ValueError: # Date has not yet been updated
cum_death = False
if cum_death and (not deaths_updated):
deaths_updated = True # unflag flag
total_deaths = cum_death
if i >= 10 and deaths_updated and current_hospitalised_updated:
# check whether all information has been found
break
return last_7_days_cases, total_hospitalised, total_deaths
|
1fd7937656d25072aaba9a0cbf0ab16919f91b38
| 697,889
|
import io
import base64
def image_file_to_b64(image_file: io.BytesIO) -> bytes:
"""
Encodes an image file as Base64.
To obtain the stringified Base64 version of the image,
you can convert the output like so:
````python
image_file_to_b64(my_image_file).decode()
````
Arguments:
image_file: The BytesIO file object to be converted.
Returns:
Bytes representation of the Base64 encoded image.
"""
return base64.b64encode(image_file.getvalue())
|
2606f21fca825ea22c06f6372576110c64dc511c
| 697,890
|
def search_theme(plot):
"""
>>> search_theme(['get up', 'discussion'])
['loss', 'loss']
"""
plot = ['loss', 'loss']
return plot
|
9eb2104ba2f31a0386eccb13a3b1ad15a74f7fe6
| 697,891
|
import json
def get_pretty_print(json_object):
""" print json """
return json.dumps(json_object, sort_keys=True, indent=4, separators=(',', ': '))
|
2539d3572c260e4b4fe2061d4e3f6112d7ee8dd5
| 697,892
|
def base41_encode(input):
"""Encode an array of bytes to a Base41 string.
input is the array of bytes to encode.
The encoded string is returned.
If input has an odd number of bytes, a TypeError is raised.
"""
rslt = ""
i = 0
while i + 1 < len(input):
x = input[i] + 256 * input[i+1]
rslt += chr((x % 41) + 41)
x //= 41
rslt += chr((x % 41) + 41) + chr((x // 41) + 41)
i += 2
if i != len(input):
raise TypeError("Invalid input length for Base41 encoding")
return rslt
|
46ef331084a9932d8bd7ccf574dd9f5afa9face2
| 697,893
|
from typing import Dict
from typing import Tuple
def read_multiscale_params(cfg: Dict[str, dict]) -> Tuple[int, int]:
"""
Returns the multiscale parameters
:param cfg: configuration
:type cfg: dict
:return:
- num_scales: number of scales
- scale_factor: factor by which each coarser layer is downsampled
:rtype: tuple(int, int )
"""
if "multiscale" in cfg:
# Multiscale processing in conf
multiscale_ = multiscale.AbstractMultiscale(**cfg["multiscale"]) # type: ignore
num_scales = multiscale_.cfg["num_scales"]
scale_factor = multiscale_.cfg["scale_factor"]
else:
# No multiscale selected
num_scales = 1
scale_factor = 1
return num_scales, scale_factor
|
8021cc90c4a4740854a92a7d56524d7037e01988
| 697,894
|
import time
def timeMS():
"""Gives a count of miliseconds from 1.1.1970.
Returns:
int: Miliseconds form 1.1.1970
"""
return round(time.time() * 1000)
|
c42a220499c528ecde869e2c74dc383a84c71ea4
| 697,897
|
from typing import Any
from typing import Dict
import os
def file_parser(file_path: str, key_col: int, key_type: Any, val_col: int, val_type: Any,
delimiter: str=',', rows_to_skip: int=0) -> Dict[Any, Any]:
"""Parses a text file and returns a data dictionary of the form d[key] = val
Args:
file_path: str path to file
key_col: index of column containing keys
key_type: all keys will be casted to this type
val_col: index of column containing values
val_type: all values will be casted to this type
delimiter: separater between columns (defaults to comma)
rows_to_skip: skip this number of rows at the beginning (defaults to 0)
Returns:
Dict[key_type, val_type]: dictionary of parsed data
"""
assert os.path.isfile(file_path), '{} not found'.format(file_path)
data = dict()
with open(file_path) as f:
i = 0
for line in f:
if i < rows_to_skip:
i += 1
continue
split_line = line.rstrip().split(sep=delimiter)
data[key_type(split_line[key_col])] = val_type(split_line[val_col])
return data
|
a37eb14d427fa51e386397aa183228946b2f3bd6
| 697,898
|
import torch
def predict(data_loader, encoder, dfc, device='cpu', encoder_type = 'vae'):
"""
Args:
data_loader:
encoder:
dfc:
device:
encoder_type:
Returns:
feature, label
"""
features = []
labels = []
encoder.eval()
dfc.eval()
with torch.no_grad():
for loader in data_loader:
for idx, (img, label) in enumerate(loader):
img = img.to(device)
feat = dfc(encoder(img)[0]) if encoder_type =='vae' else dfc(encoder(img))
features.append(feat.detach())
labels.append(label)
return torch.cat(features).max(1)[1], torch.cat(labels).long()
|
1369ebb5d24a14371da6af5765b741cff2d42d35
| 697,899
|
def get_image_type(data):
"""Return a tuple of (content type, extension) for the image data."""
if data[:2] == "\xff\xd8":
return ("image/jpeg", ".jpg")
return ("image/unknown", ".bin")
|
1677cb375a7b405b8a229f1246bdb27ed36dc654
| 697,900
|
def parse_conjugations(group):
"""
Parse conjugations in a word group.
:param group: string of a word group
:return: list of parsed conjugations
"""
return list(
map(
lambda x: x.split('/')[0].strip(),
group.split(' – ')
)
)
|
0a1eca118a1f194a51a889a0fe30fe72488d6ada
| 697,901
|
import tempfile
import os
import subprocess
def make_csr_from_key(private_key):
"""Create a certificate signing request (CSR) from the given private
key.
"""
(csr_fd, csr_file) = tempfile.mkstemp()
os.close(csr_fd)
# Write private key to temporary file
(key_fd, key_file) = tempfile.mkstemp()
os.write(key_fd, private_key)
os.close(key_fd)
csr_request_args = ['/usr/bin/openssl', 'req', '-new',
'-key', key_file,
'-out', csr_file, '-batch']
subprocess.call(csr_request_args)
os.unlink(key_file)
return private_key, csr_file
|
645b89f18d920481926d1988c75f9f9660905342
| 697,902
|
def read_thresholds(path):
"""
Read the p-value thresholds for each tumour type
"""
thresholds = {}
with open(path) as f:
for line in f:
line = line.strip()
line = line.split('\t')
tumour = line[0]
threshold = float(line[1])
thresholds[tumour] = threshold
return thresholds
|
2615cd3b38e4ce1d80baacd06cf955895f0984ee
| 697,904
|
def _one_contains_other(s1, s2):
"""
Whether one set contains the other
"""
return min(len(s1), len(s2)) == len(s1 & s2)
|
f7313cc0cbee823e39c30da22455e228162555be
| 697,905
|
import os
def write_mets(http_response, package_uuid, subdir):
"""Given a http response containing our METS data, create the path
we want to store our METS at, and then stream the response into a
file.
"""
mets_file = "METS.{}.xml".format(package_uuid)
download_file = os.path.join(subdir, mets_file)
with open(download_file, "wb") as file:
file.write(http_response.content)
return download_file
|
f13236f7524486c7ad3be5fbcd07daedf4bf5bd4
| 697,906
|
def linear_regression_line(mb):
"""
Given the output of ``linear_regression()`` function, or provided with
a tuple of ``(m, b)``, where ``m`` is the slope and ``b`` is the intercept,
``inear_regression_line()`` returns a function that calculates y values
based on given x values.
Args:
mb: A list or tuple of [m, b] or (m, b) where m is the slope and b is the y intercept.
Returns:
A function that accepts ints, floats, lists, or tuples of x values
and returns y values.
Examples:
>>> linear_regression_line(linear_regression([0, 1], [0, 1]))(1)
1.0
>>> linear_regression_line(linear_regression([1,3,5,7,9], [10,11,12,13,14]))([1, 2, 3])
[10.0, 10.5, 11.0]
>>> linear_regression_line([.5, 9.5])([1, 2, 3])
[10.0, 10.5, 11.0]
>>> linear_regression_line(9.5) # doctest: +ELLIPSIS
Traceback (most recent call last):
...
TypeError: linear_regression_line() expects a list or tuple of (slope, intercept)...
>>> linear_regression_line([2, 3, 4])
Traceback (most recent call last):
...
ValueError: The list or tuple containing the slope and intercept needs to be of length = 2.
"""
if type(mb) not in [list, tuple]:
raise TypeError('linear_regression_line() expects a list or tuple of '
'(slope, intercept) or [slope, intercept] form.')
if len(mb) != 2:
raise ValueError('The list or tuple containing the slope and intercept '
'needs to be of length = 2.')
m = mb[0]
b = mb[1]
def line_function(x):
"""
Function created and returned by linear_regression_line().
"""
# if int or float, return one value
if type(x) in [int, float]:
return((x * m) + b)
# otherwise
elif type(x) in [list, tuple]:
y_values = []
for ii in x:
y_values.append(((ii * m) + b))
return(y_values)
return(line_function)
|
dbc61ffafe603e8e6ec21f87debc170e3b6eb289
| 697,907
|
def values(df, field, **kwargs):
"""
Return values from a specific field of the data frame within a given time extent
Args:
df (pd.DataFrame): The exported TAP tool data
field (str): The field representing the column name
Returns:
np.ndarray: An array of the time-specified values
"""
return df[field].values
|
6416c18ba3891a133c9ed0d487ca4b82d7a5291d
| 697,908
|
import os
def get_parent_dir(current_file):
"""Get the parth path"""
current_dir = os.path.dirname(current_file)
parent_dir = os.path.dirname(current_dir)
return parent_dir
|
f1fc33dc0fbd6b358b672d695cd0ad89f9bb9b3e
| 697,909
|
import copy
def return_prim_graph (dag, innodes, outnodes):
""" remove input and output nodes from a graph """
G_primitive = copy.deepcopy(dag)
nonprims = innodes+outnodes
for node in nonprims:
if node in dag.nodes():
G_primitive.remove_node(node)
return G_primitive
|
e59fcfcb5796739cc940f6052e56aa5a4837fd47
| 697,910
|
import re
def convert_doctoc(html):
"""
Convert doctoc to confluence macro
:param html: html string
:return: modified html string
"""
toc_tag = '''<p>
<ac:structured-macro ac:name="toc">
<ac:parameter ac:name="printable">true</ac:parameter>
<ac:parameter ac:name="style">disc</ac:parameter>
<ac:parameter ac:name="maxLevel">7</ac:parameter>
<ac:parameter ac:name="minLevel">1</ac:parameter>
<ac:parameter ac:name="type">list</ac:parameter>
<ac:parameter ac:name="outline">clear</ac:parameter>
<ac:parameter ac:name="include">.*</ac:parameter>
</ac:structured-macro>
</p>'''
html = re.sub('\<\!\-\- START doctoc.*END doctoc \-\-\>', toc_tag, html, flags=re.DOTALL)
return html
|
b2a52126d6a234894dcf6f98f0d399c309587a7e
| 697,911
|
def flip_case(phrase, to_swap):
"""Flip [to_swap] case each time it appears in phrase.
>>> flip_case('Aaaahhh', 'a')
'aAAAhhh'
>>> flip_case('Aaaahhh', 'A')
'aAAAhhh'
>>> flip_case('Aaaahhh', 'h')
'AaaaHHH'
"""
return ''.join(letter.lower() if letter.lower() == to_swap.lower() and letter.isupper() else (letter.upper() if letter.lower() == to_swap.lower() else letter) for letter in phrase)
|
ab3a18249e882bb0e8fda35a903048a20bd667e6
| 697,912
|
def apply_class_label_replacement(X, Y, replacement_method):
"""
Replace class labels using the replacement method
:param X: data features
:type X: numpy.Array()
:param Y: data labels
:type Y: numpy.Array()
:param replacement_method: Method to update targets
:type replacement_method: method
"""
return (X, replacement_method(Y, set(Y)))
|
eac01d31ff63e39d8c203803ae14c08365ec20a5
| 697,913
|
import torch
def nt_xent_loss(out_1, out_2, temperature):
"""
Loss used in SimCLR
"""
out = torch.cat([out_1, out_2], dim=0)
n_samples = len(out)
# Full similarity matrix
cov = torch.mm(out, out.t().contiguous())
sim = torch.exp(cov / temperature)
# Negative similarity
mask = ~torch.eye(n_samples, device=sim.device).bool()
neg = sim.masked_select(mask).view(n_samples, -1).sum(dim=-1)
# Positive similarity :
pos = torch.exp(torch.sum(out_1 * out_2, dim=-1) / temperature)
pos = torch.cat([pos, pos], dim=0)
loss = -torch.log(pos / neg).mean()
return loss
|
6634e42f540835f5a45c4812e54455d0328b6ec2
| 697,914
|
def fromScopus(scopus_author):
"""Fetch all publications associated with Scopus author
Parameters
----------
scopus_author : AuthorRetrieval
Scopus author retrieval object (scopus.author_retrieval.AuthorRetrieval)
Returns
-------
bibs : list
List of Scopus search publications (scopus.scopus_search.Document)
"""
bibs = scopus_author.get_documents()
return bibs
|
88aeca0f28af9ca3256e77f6e77207ffb51cefa0
| 697,915
|
def W(H) -> int:
""" Default image width (equal to height) """
return H
|
4b3fdaaba9f5100096ca1ebbc22442de21b34ad5
| 697,917
|
def org_commits_by_day(df_raw):
"""Returns all commits with a count and a date index by day"""
odf_day = df_raw.resample('D').sum()
return odf_day
|
bb003b8ce1a0a28e632cfc78ffa3483359259e49
| 697,918
|
def make_queue_name(mt_namespace, handler_name):
"""
Method for declare new queue name in channel. Depends on queue "type",
is it receive event or command.
:param mt_namespace: string with Mass Transit namespace
:param handler_name: string with queue time. MUST be 'command' or 'event'
:return: new unique queue name for channel
"""
return '{}.{}'.format(mt_namespace, handler_name)
|
f74a7be8bf46a56f760b087fe47c9eda58d9f51e
| 697,919
|
import ipaddress
import sys
def calculate_ip_addressing(input_net, man_address, man_next_hop):
""" Calculate IP addressing (address, neighbor, default route) on the specified interface
This function is AFI agnostic, just feed it ipaddress objects.
:param input_net: the IPv4/IPv6 network to use
:param man_address: optional override for the host address
:param man_next_hop: optional override for default route
:return: tuple of (local_address, neighbor, next_hop, prefixlen)
"""
net = ipaddress.ip_network(input_net)
if net.prefixlen == (net.max_prefixlen-1):
address = net[0]
neighbor = net[1]
next_hop = net[1]
else:
address = net[1]
neighbor = net[2]
next_hop = net[2]
# override default options
if man_address:
if ipaddress.ip_address(man_address) not in net:
print("local address {} not in network {}".format(man_address, net), file=sys.stderr)
sys.exit(1)
address = ipaddress.ip_address(man_address)
if man_next_hop:
if ipaddress.ip_address(man_next_hop) not in net:
print("next-hop address {} not in network {}".format(man_next_hop, net), file=sys.stderr)
sys.exit(1)
next_hop = ipaddress.ip_address(man_next_hop)
# sanity checks
if next_hop == address:
print("default route next-hop address ({}) can not be the same as the local address ({})".format(next_hop, address), file=sys.stderr)
sys.exit(1)
print("network: {} using address: {}".format(net, address))
return str(address), str(neighbor), str(next_hop), net.prefixlen
|
dec5d929049f34fe8135bff51f562615e9465838
| 697,920
|
def _fix_cookiecutter_jinja_var(value, replace='cookiecutter.'):
"""Remove 'cookiecutter.' string from 'cookiecutter.varname' jinja strings
Can be used to remove different substrings as well by passing a string
to the optional ``replace`` parameter.
:param value: The string value within which to replace text
:type value: str
:param replace: The string to be removed from the ``value`` input,
defaults to 'cookiecutter.'
:type replace: str
:return: Returns the input value with the ``replace`` string removed
if ``value`` is of type str, otherwise it just returns the
``value`` input
"""
if type(value) is str:
return value.replace(replace, "")
else:
return value
|
fc04d36a368fe7dd8c21a8dd3abe46f60d4d3d5e
| 697,921
|
import subprocess
def sync_call(*args, cwd, **kwargs):
"""Helper function which enforces cwd argument"""
return subprocess.call(*args, cwd=cwd, **kwargs)
|
9e3670413d9a6c763a234f7d6e4bea36bfc439cb
| 697,922
|
def flatten_dict(row, keys=[('title',),
('street', 'city', 'postalCode')]):
"""Flatten a dict by concatenating string values
of matching keys.
Args:
row (dict): Data to be flattened
Returns:
flat (str): Concatenated data.
"""
flat = '' # The output data
for ks in keys:
# If any keys are present, join the values
if not any(k in row for k in ks):
continue
flat = '\n'.join(row[k] for k in ks
if k in row)
break
assert len(flat) > 0 # Ensures that a key has been found,
# otherwise you'll need to provide more keys
return flat
|
b4bafb0ec19a19d4223d7e9a94e3b8630cad1066
| 697,923
|
import os
def program_installed(app):
"""
Check if the given app is installed in the users PATH
"""
path = os.environ['PATH']
paths = path.split(os.pathsep)
for dir in paths:
if os.path.isdir(dir):
if os.path.isfile(os.path.join(dir,app)):
return True
return False
|
9783927deb266407e89c0e446759d049824f7897
| 697,924
|
def sam_flag_check(query, subject):
"""
Check two numbers, query (for filtering) in subject or not
convert to binary mode
q: 0000010 (2)
s: 1011011 (91)
q in s
range: 0 - 2048 (SAM flag)
"""
def to_bin(n):
return '{0:012b}'.format(n)
# convert to binary mode
q = to_bin(eval(query))
s = to_bin(eval(subject))
# check q, s
flag = True
for j, k in zip(q[::-1], s[::-1]):
if not j == '1':
continue
if eval(j) - eval(k) > 0:
flag = False
break
return flag
|
939109ad1c1668327cb4af4fcada818cea4653f4
| 697,925
|
import string
def get_range_to_here_hashes(repo, start):
"""Return a list of strings corresponding to commits from 'start' to here.
The list begins with the revision closest to but not including 'start'.
Raise a ValueError if any of the returned values are not valid hexadecimal.
:repo: a callable supporting git commands, e.g. repo("status")
:start: a reference that log will understand
:returns: a list of strings corresponding to commits from 'start' to here.
"""
hashes = repo("log", start + "..", "--format=%H").split()
if not all(c in string.hexdigits for s in hashes for c in s):
raise ValueError(
"phlgit_log__getRangeToHereHashes() invalid hashes\n" +
str(hashes))
hashes.reverse()
return hashes
|
41a8795f489d1646ba48366c791308a6d1435b3e
| 697,926
|
import os
def get_all_lobster_files(directory, file_type='COOPCAR.lobster'):
""" Get all DOSCAR and CONTCAR file paths
Parameters
----------
directory : str
root directory to look for DOSCAR files
file_type : string
file type for which to search and return file path
Returns
-------
lobster_files : list[str]
list of paths to lobster files of type file_type
"""
lobster_directories = [os.path.join(r,subdirectory) for r,d,f in os.walk(directory)
for subdirectory in d
if file_type in os.listdir(os.path.join(r,subdirectory))]
lobster_files = [os.path.join(d,file_type) for d in lobster_directories]
return lobster_files
|
a5be225108408b4812f42bf89df8d84f46334ce8
| 697,927
|
import re
def check_token(token):
""" Checks if the given token is a valid UUID."""
valid = re.compile(r"^[0-9a-fA-F]{8}-[0-9a-fA-F]{4}-"
r"[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{12}$")
return valid.match(token)
|
be675b2fa04aac96b006ab94d8c0f65d8c02132f
| 697,929
|
from typing import List
def lshift(array: List) -> List:
"""
Example
-------
>>> lshift([0, 1, 2, 3, 4])
[1, 2, 3, 4, 0]
>>> lshift([0])
[0]
>>> lshift([])
[]
"""
return (array[1:] + [array[0]]) if len(array) > 1 else array
|
dbd9e23120eb136fb9beb02fda027174e75905da
| 697,930
|
import requests
from bs4 import BeautifulSoup
def url_to_soup(url):
"""url -> soup"""
html = requests.get(url)
return BeautifulSoup(html.text, 'html.parser')
|
8b3e6a67c2123ca134d581631321cb8a8daf132a
| 697,931
|
def is_vowel(char):
"""Check if it is vowel."""
return char in ['a', 'e', 'i', 'o', 'u', 'A', 'E', 'I', 'O', 'U']
|
97f747d96e08cd15fe7a1b742b36f5ff6cc2f3fc
| 697,932
|
def gs_block(men, women, pref, blocked):
"""
Gale-shapley algorithm, modified to exclude unacceptable matches
Inputs: men (list of men's names)
women (list of women's names)
pref (dictionary of preferences mapping names to list of preferred names in sorted order)
blocked (list of (man,woman) tuples that are unacceptable matches)
Output: dictionary of stable matches
"""
rank = {}
for w in women:
rank[w] = {}
i = 1
for m in pref[w]:
rank[w][m] = i
i += 1
#print(rank)
prefpointer = {}
for m in men:
prefpointer[m] = 0
freemen = set(men)
numPartners = len(men)
Start = {}
Finished = {}
listBlocked = list(blocked)
#print(listBlocked)
while(freemen):
m = freemen.pop()
w = pref[m][prefpointer[m]]
#print(m + ' ' + w)
prefpointer[m] += 1
if (m,w) not in listBlocked and w not in Start:
Start[w] = m
elif (m,w) not in listBlocked and not Finished:
mprime = Start[w]
if rank[w][m] < rank[w][mprime]:
Start[w] = m
freemen.add(mprime)
else:
freemen.add(m)
else: #blocked couple
freemen.add(m)
if prefpointer[m] == numPartners and w not in Start:
prefpointer[m] = 0
while prefpointer[m] < numPartners:
w = pref[m][prefpointer[m]]
if (m,w) not in listBlocked:
mprime = Start[w]
Start[w] = m
Finished[w] = m
freemen.pop()
freemen.add(mprime)
prefpointer[m] += 1
return Start
|
ea69e56604cac25d8f5c9d957157dbd2d9ad1b27
| 697,933
|
from typing import Iterable
from typing import List
def filter_wikipathways_files(file_names: Iterable[str]) -> List[str]:
"""Filter files that have not 'ttl' extension or not start with 'WP'."""
return [
file_name
for file_name in file_names
if file_name.startswith('WP') and file_name.endswith('.ttl')
]
|
abac5be763309986b951d574a72c0f2652b2a981
| 697,934
|
def attr_dict(cls: type, data: dict):
"""
Removes keys from the passed dict ``data`` which don't exist on ``cls`` (thus would get rejected as kwargs),
then create and return an instance of ``cls``, passing the filtered data as keyword args.
Ensures that any keys in your dictionary which don't exist on ``cls`` are automatically filtered out, instead
of causing an error due to unexpected keyword arguments.
Example::
>>> data = dict(timestamp="2019-01-01Z00:00", producer='eosio', block_num=1234, example='hello')
>>> my_block = attr_dict(EOSBlock, data)
:param cls:
:param data:
:return:
"""
if hasattr(cls, '__attrs_attrs__'):
cls_keys = [atr.name for atr in cls.__attrs_attrs__]
else:
cls_keys = [k for k in cls.__dict__.keys() if k[0] != '_']
clean_data = {x: y for x, y in data.items() if x in cls_keys}
return cls(**clean_data)
|
c764cda2ad772de8b239fe34d39ef3ac92e658e5
| 697,935
|
import glob
def _find_my_yamls(myc_folder, specific_files=None):
"""Load all .yaml files in a folder or a specific list of yaml files."""
selected_files = []
if specific_files:
yaml_list = specific_files.replace(" ", "").split(",")
all_files = [myc_folder + yaml for yaml in yaml_list]
else:
all_files = glob.glob(myc_folder + "/*.yaml")
return all_files
|
badb9f2165470516c7dd9c5ba2a7e7c1c76d7913
| 697,936
|
from typing import List
def sbd_3_bitwise(ids: List):
"""
Solution: Use bitwise XOR on a single variable for each element.
Complexity:
Time: O(n)
Space: O(1)
"""
unique_id = 0
for item in ids:
unique_id ^= item
return unique_id
|
d964fe78b2d1cf8de9e4d1cc165ea03a38eb6387
| 697,937
|
def process_spatial(geo):
"""Process time range so it can be added to the dates metadata
Parameters
----------
geo : list
[minLon, maxLon, minLat, maxLat]
Returns
-------
polygon : dict(list(list))
Dictionary following GeoJSON polygon format
"""
polygon = { "type": "Polygon",
"coordinates": [
[ [geo[0], geo[2]], [geo[0], geo[3]], [geo[1], geo[3]], [geo[1], geo[2]] ]
]}
return polygon
|
4ff7dea7d7dcefd5b6bfb1605dd50345fc379527
| 697,938
|
def normalized (string) :
"""Normalize a base32 encoded string."""
return string.upper ().replace ("-", "")
|
1998b41d9a27c78b5519983a880a1aa573a6e4ea
| 697,939
|
def list_bank_cards(account_id): # noqa: E501
"""Return all bank cards for an account
Return all cards for the specified account # noqa: E501
:param account_id: Id of account
:type account_id: str
:rtype: List[BankCard]
"""
return 'do some magic!'
|
6268d6a3584fa38cda3ae2294daaebb736f695d0
| 697,940
|
def int32(x):
"""Force conversion of x to 32-bit signed integer"""
x = int(x)
maxint = int(2**31-1)
minint = int(-2**31)
if x > maxint: x = maxint
if x < minint: x = minint
return x
|
854338b7fd748ba5ddbbbd8c697288c6331995c4
| 697,941
|
def video_no_found(error):
"""no such video exists"""
return {'message': 'video does not exist'}, 404
|
ec4b3149e1c8f8c7d02e0ae7926cc41cc7e6ad29
| 697,942
|
def get_type(transaction):
"""
:return: the type of the transaction
"""
return transaction['type']
|
4f66830f7c1e3bdc5d6b2c4ccc5db493014b9e5f
| 697,943
|
def find_max_str(smiles: str) -> str:
"""
General functionality to choose a multi-smiles string, containing the
longest string
"""
smiles = max(smiles.split("."), key=len)
return smiles
|
8b3f495492e471c7aee5fa856745179ecb1e8f8f
| 697,944
|
from typing import List
from typing import Any
from typing import Optional
import random
def _subsample_array(
arr: List[Any],
max_values: int,
can_modify_incoming_array: bool = True,
rand: Optional[random.Random] = None,
) -> List[Any]:
"""Shuffles the array and returns `max_values` number of elements."""
if not can_modify_incoming_array:
arr = arr[:]
if rand is not None:
rand.shuffle(arr)
else:
random.shuffle(arr)
return arr[:max_values]
|
379d056fefbc7b4a828a56dd9999545683a46a30
| 697,945
|
def format_bytes(n):
"""Format bytes as text
Copied from dask to avoid dependency.
"""
if n > 1e15:
return "%0.2f PB" % (n / 1e15)
if n > 1e12:
return "%0.2f TB" % (n / 1e12)
if n > 1e9:
return "%0.2f GB" % (n / 1e9)
if n > 1e6:
return "%0.2f MB" % (n / 1e6)
if n > 1e3:
return "%0.2f kB" % (n / 1000)
return "%d B" % n
|
f82a135f7f5308a04bf53bd3b8d1a05ef5d96de0
| 697,946
|
import os
def pipe(cmd):
"""Runs a command in a subprocess.
cmd: string Unix command
Returns (res, stat), the output of the subprocess and the exit status.
"""
# Note: os.popen is deprecated
# now, which means we are supposed to stop using it and start using
# the subprocess module. But for simple cases, I find
# subprocess more complicated than necessary. So I am going
# to keep using os.popen until they take it away.
fp = os.popen(cmd)
res = fp.read()
stat = fp.close()
assert stat is None
return res, stat
|
4c31602dbe882422f2e9b107c379c1edf5096489
| 697,947
|
def semideviation(r):
"""
Returns the semi-deviation (Negative Deviation) of r ,
r must be a Series or DataFrame
"""
is_negative = r <0
return r [is_negative].std(ddof=0)
|
78eb4092f2c7ed5439ef4ee44b5ddef898bd53fa
| 697,948
|
def compute_several_statistics(X, Args):
""" A function to compute and stack the results of several statistics on data X.
Inputs:
* X = the data
* Args = list constitued of statistics_list and statistics_args
Outputs:
* a list correspond to the value of each statistic on the data X. """
statistics_list, statistics_args = Args
λ = []
for i_statistic, statistic in enumerate(statistics_list):
λ.append(statistic(X, statistics_args[i_statistic]))
return λ
|
7cefa8a25ef22e85271a56339cfb43b796c74933
| 697,949
|
import os
def replace_file_name(filename: str, replace_with: str) -> str:
"""
Replace file name with a fixed string, preserving its extension.
Result would look like `<replace_with>.<extension>`
:param filename: str
:param replace_with: str
:return: str
"""
_, file_extension = os.path.splitext(filename)
return f"{replace_with}.{file_extension[1:]}"
|
68caaf94ab921a862ba3b3f50735e5c96101aec8
| 697,950
|
def get_p_val(rank_table):
"""
Input:
"""
r = 1-rank_table["rank"]*1./(rank_table["out_of"]+1)
r.sort()
r.name = "p_value"
return r
|
387b819f1a028e42bedd301e2324c0b25c159ca8
| 697,952
|
def _change_galician_cc_token_before_subtree(sentence, token):
"""Determine the token directly preceding a subtree in a sentence.
Args:
sentence (`Sentence`): The sentence.
token (`Token`): The root token of the subtree.
Returns:
str: The ID of the token directly preceding the root token and all of its dependents.
"""
tokens = [token.id]
a = True
while a:
a = False
for t in sentence:
if t.head in tokens and t.id not in tokens:
tokens.append(t.id)
a = True
tokens = sorted(tokens)
return str(int(tokens[0])-1)
|
21eebf0ba9ec02af4a7c65e8631a95e83b68372e
| 697,954
|
import torch
def get_jacobian(inputs, func, **kwargs):
"""
Return Jacobian matrix of size m x n
of a function f: R^n -> R^m
"""
size = inputs.size()
n = size[0]
# Input dim
if (len(size)) > 1:
dim_input = size[1]
else:
dim_input = 1
test = func(inputs, **kwargs)
# Output dim
if len(test.size()) > 1:
dim_output = test.size()[1]
else:
dim_output = 1
J = torch.zeros((n, dim_output, dim_input))
# Loop over all batch samples
for i in range(n):
x = inputs[i,...].squeeze()
x = x.repeat(dim_output, 1)
x.requires_grad_(True)
z = func(x, **kwargs)
if dim_output == 1:
z.backward([torch.ones_like(z)])
else:
z.backward(torch.eye(dim_output))
J[i,:,:] = x.grad.data
return J
|
5ff764a11512ed3813956c7549562761b430092f
| 697,955
|
def turn(p1, p2, p3):
"""
0 if the points are colinear
1 if the points define a left-turn
-1 if the points define a right-turn
"""
# Compute the z-coordinate of the vectorial product p1p2 x p2p3
z = (p2[0] - p1[0]) * (p3[1] - p1[1]) - (p2[1] - p1[1]) * (p3[0]- p1[0])
return 0 if z == 0 else int(z / abs(z))
|
2b8dccbe0111d9cd655f4a6a8bc2131b73f3a3ee
| 697,956
|
def find(node):
"""Find current canonical representative equivalent to node.
Adjust the parent pointer of each node along the way to the root
to point directly at the root for inverse-Ackerman-fast access.
"""
if node.parent is None:
return node
root = node
while root.parent is not None:
root = root.parent
parent = node
while parent.parent is not root:
grandparent = parent.parent
parent.parent = root
parent = grandparent
return root
|
c9827af585c2bcd284640213bb92ae951659abf8
| 697,957
|
from typing import Optional
from pathlib import Path
from typing import Union
import logging
import os
def init_worker_env(
gobbli_dir: Optional[Path] = None, log_level: Union[int, str] = logging.WARNING
) -> logging.Logger:
"""
Initialize environment on a ray worker.
Args:
gobbli_dir: Used as the value of the GOBBLI_DIR environment variable;
determines where gobbli data is stored on the worker's filesystem.
log_level: Level for logging coming from the worker.
"""
if gobbli_dir is not None:
os.environ["GOBBLI_DIR"] = str(gobbli_dir)
logging.basicConfig(level=log_level)
# Provide a logger for our workers
# Workers should only log using loggers they've created to avoid
# logger pickling, which generally doesn't work
# https://stackoverflow.com/questions/55272066/how-can-i-use-the-python-logging-in-ray
return logging.getLogger(__name__)
|
62309256e5430759ea70c2bfb649cecc58369b95
| 697,958
|
from os.path import join
def get_h5_file_name(cfg):
"""Return the HDF5 file name based on the configuration file"""
return join(cfg['output']['filepath'], f"{cfg['output']['fileprefix']}.{cfg['output']['type']}")
|
70a6fef2198e3a5c70e4a176c1078c105dd38d04
| 697,959
|
def worker_number(worker_id):
"""Get the current worker number."""
id_as_str = "".join(ch for ch in worker_id if ch.isdigit())
if len(id_as_str) == 0:
return 0
return int(id_as_str)
|
3cd6ca7e665fefda9427476e39de5ea23f843f72
| 697,960
|
import string
import re
def rm_non_textual_punct(dfcol):
""" Aggressively remove almost all punctuation (except .,?:;- ) """
text_punct = '.,?:;-' #this also removes + <> $ %
nontext_punct = [char for char in string.punctuation if char not in text_punct]
nontext_punct = re.escape(''.join(nontext_punct))
return dfcol.str.replace(f'[{nontext_punct}]', '', regex=True)
|
ff9dfc87ec0015b4a0d0ca5d83db3b116e476470
| 697,963
|
def get_reference_value_from_spec(openapi_spec: dict, reference_path: str) -> dict:
"""Follows the reference path passed in and returns the object at the end of the path
Args:
openapi_spec (dict): The openapi.json specification object
reference_path (str): a path formatted as "#/foo/bar/baz"
Returns:
dict: The object if you follow the path
"""
path_elements = reference_path.split("/")
reference_val = openapi_spec
for elem in path_elements:
if elem == "#":
continue
else:
reference_val = reference_val.get(elem, {})
return reference_val
|
c32962a3b008825de4c5108d8d1a3ad5db179b17
| 697,964
|
def hide_keys(dictionary, keys_to_hide, new_value="xxx"):
"""
Return a copy of the given dictionary on which specified keys will be replaced by the new_value word (or 'xxx').
:param dictionary: a dictionary
:param keys_to_hide: keys to hide in the output dictionary
:param new_value: replacement string for keys to hide
:return: the new dictionary with hidden items
"""
_new_dict = {}
for key, value in dictionary.items():
_new_dict[key] = new_value if key in keys_to_hide else value
return _new_dict
|
d6b8bc7958c637212899c048a9958ac3d2755894
| 697,965
|
def get_seq(_seq, _start, _end):
"""
:param _seq:
:param _start: !!! should be SSR start position on genome (begin from 1, not 0)
:param _end: !!! should be SSR end position on genome (begin from 1, not 0)
:return:
"""
if _start <= 200:
return _seq.seq[0: _end+200]
elif _end >= len(_seq.seq)-200:
return _seq.seq[_start-201:]
else:
return _seq.seq[_start-201: _end+200]
|
c42db6e6a50fa46c30e948ac6f007d5c92e07708
| 697,967
|
import random
def active_sample(network, size, evaluate):
"""
Sample from affected genes as null model.
"""
sample = random.sample(network.nodes(), size)
subnet = network.subgraph(sample)
result = evaluate(subnet)
return result
|
d5f7ecf87e6b72b5930fe066e13fd593626fd352
| 697,968
|
def get_other_dims(da, dims_exclude):
"""
Returns all dimensions in provided dataset excluding dim_exclude
| Author: Dougie Squire
| Date: 22/04/2018
Parameters
----------
da : xarray DataArray
Array to retreive dimensions from
dims_exclude : str or sequence of str
Dimensions to exclude
Returns
-------
dims : str or sequence of str
Dimensions of input array, excluding dims_exclude
Examples
--------
>>> A = xr.DataArray(np.random.normal(size=(3,2)), coords=[('x', np.arange(3)),
... ('y', np.arange(2))])
>>> doppyo.utils.get_other_dims(A, 'y')
'x'
"""
dims = da.dims
if dims_exclude == None:
other_dims = dims
else:
if isinstance(dims, str):
dims = [dims]
if isinstance(dims_exclude, str):
dims_exclude = [dims_exclude]
other_dims = set(dims) - set(dims_exclude)
return tuple([o for o in dims if o in other_dims])
|
506a8b7193ea95480c83e3d69a31774f77d4fbcc
| 697,969
|
def standard_split(text, row_length):
"""text = abcdefghijklmnopqrstuvwxyz and row_length = 5
abcde
fghij
klmno
pqrst
uvwxy
z returns ['afkpuz', 'bglqv', 'chmrw', 'dinsx', 'ejoty']
"""
output = []
text_length = len(text)
# Takes output column by index in turn, taking e.g. the 0th, 5th, 10th ... char
# for the 0th column, then the 1st, 6th, 11th ... char for the 1st column etc.
for num in range(row_length):
count = num
output.append([])
while count < text_length:
output[-1].append(text[count])
count += row_length
return(output)
|
3a4732433b58777dcf08529b98b90f890e680a29
| 697,970
|
def median(x):
"""Return the median of a list of values."""
m, r = divmod(len(x), 2)
if r:
return sorted(x)[m]
return sum(sorted(x)[m - 1:m + 1]) / 2
|
337584e40c61bd198496355e38f4a8d4da9310fa
| 697,971
|
def _get_args(tp):
"""Backport of typing.get_args for Python 3.6"""
return getattr(tp, "__args__", ())
|
f265cb6d8d85601d9ee6f20be8f78c8d9819c920
| 697,972
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.