content
stringlengths
35
416k
sha1
stringlengths
40
40
id
int64
0
710k
import json def get_top_python_packages(top_n=100): """ Generate list of most downloaded python packages Args: top_n: the number of most downloaded packages to return Returns: (list) Names of most downloaded packages """ # JSON file containing top 4000 packages # found here: https://hugovk.github.io/top-pypi-packages/ top_python_pkgs = "top_python_pkg_downloads.json" with open(top_python_pkgs, "r") as j: contents = json.loads(j.read()) # store names of top packges top_pkgs = [] cnt = 0 for pkg in contents["rows"]: # only append TOP_N number of packages if cnt == top_n: break top_pkgs.append(pkg["project"]) cnt += 1 return top_pkgs
d19136a5ee21fe65c33ef4a5336f46863bf2c6b0
28,459
import argparse def parse_args(): """Parses arguments.""" parser = argparse.ArgumentParser(description='Conduct Sefa.') parser.add_argument('--config', type=str, help='Path to the Sefa configuration.') return parser.parse_args()
886a328c511dfeeecbee2e461742f6991e7ff63e
28,460
def get_arrhythmia_type(fields): """Returns type of arrhythmia based on fields of the sample Arguments --------- fields: fields of sample read from wfdb.rdsamp Returns ------- Type of arrhythmia 'a': asystole 'b': bradycardia 't': tachycardia 'f': ventricular fibrillation 'v': ventricular tachycardia """ arrhythmias = { 'Asystole': 'a', 'Bradycardia': 'b', 'Tachycardia': 't', 'Ventricular_Tachycardia': 'v', 'Ventricular_Flutter_Fib': 'f' } arrhythmia_type = fields['comments'][0] return arrhythmias[arrhythmia_type]
4772acc3612492a4f41acac0619435774f11cdff
28,463
def chain_3(d3f_dg3, dg_dx, d2f_dg2, d2g_dx2, df_dg, d3g_dx3): """ Generic chaining function for third derivative .. math:: \\frac{d^{3}(f . g)}{dx^{3}} = \\frac{d^{3}f}{dg^{3}}(\\frac{dg}{dx})^{3} + 3\\frac{d^{2}f}{dg^{2}}\\frac{dg}{dx}\\frac{d^{2}g}{dx^{2}} + \\frac{df}{dg}\\frac{d^{3}g}{dx^{3}} """ return d3f_dg3*(dg_dx**3) + 3*d2f_dg2*dg_dx*d2g_dx2 + df_dg*d3g_dx3
90c7563821a30fe0ff0b7e2431122d4754d52210
28,464
def calc_qty_from_value(row): """ Estimates product quantity based on product value and food group Args: row (): see extrapolate_qty_from_productvalue() function Returns: qty (float): Product quantity estimation (g) """ value = abs(row.CP_MontantTotal) food_group = row.P_food_group Q_unit = row.CP_QuantiteUnite Q_val = abs(row.CP_QuantiteTotale) #print(Q_unit) # Check if CP has already a weight. If so, use it. if Q_unit in ['Kg','kg','Kilo','Litre','Litres']: row.Qty_val = Q_val * 1000 row.Qty_unit = 'g' row.Qty_approx = bool(False) row.Qty_method = 3.0 row.Qty_std = bool(True) #print(row[['P_Id','Qty_val','Qty_unit','Qty_std','Qty_approx','Qty_method']]) return row[['P_Id','Qty_val','Qty_unit','Qty_std','Qty_approx','Qty_method']] # Calculate weight from food group and product value if float(value)==0: #print(row[['P_Id','Qty_val','Qty_unit','Qty_std','Qty_approx','Qty_method']]) return row[['P_Id','Qty_val','Qty_unit','Qty_std','Qty_approx','Qty_method']] dict_euro_kilo = { None:3, 'nan':3, 'Produits gras sucrés salés':3, 'Produits laitiers (hors fromage)':3, 'Féculents raffinés':2, 'Fruits':1.5, 'Exclus':3, 'Plats préparés':3, 'Légumes':1.5, 'Viande, oeufs':3, 'Fromage':3, 'Matières grasses ajoutées':3, 'Féculents non raffinés':1.5, 'Poisson':3} if food_group in (dict_euro_kilo.keys()): row.Qty_val = dict_euro_kilo[food_group] / float(value) * 1000 row.Qty_unit = 'g' row.Qty_approx = bool(False) row.Qty_method = 3.0 row.Qty_std = bool(True) else: row.Qty_val = 3 / float(value) * 1000 row.Qty_unit = 'g' row.Qty_approx = bool(False) row.Qty_method = 3.0 row.Qty_std = bool(True) #print(row[['P_Id','Qty_val','Qty_unit','Qty_std','Qty_approx','Qty_method']]) return row[['P_Id','Qty_val','Qty_unit','Qty_std','Qty_approx','Qty_method']]
4eb70438e6e794ce3e44f15fa28a5f399782ccea
28,467
def nextIteration(pagerankvector: list, outlinkvector: list, adjMatrix: list, dampingfactor: float) -> list: """Takes the page rank vector and adjacency matrix of network of pages and returns the page rank performing one iteration of the page rank algorithm.""" nodeCount = len(adjMatrix) newpageRankVector = [1 - dampingfactor] * nodeCount for col in range(nodeCount): # adjMatrix[row][col] is 1 if there is a link from node row to node col. for row in range(nodeCount): if adjMatrix[row][col] > 0: newpageRankVector[col] += adjMatrix[row][col]*dampingfactor * (pagerankvector[row] / outlinkvector[row]) return newpageRankVector
acaa445bf120d71dbd9261a93667d76147f94803
28,468
import warnings def ditto(request): """ Deprecated. """ warnings.warn("The ditto context_processor is no longer used.", DeprecationWarning) return {}
7250488bf5d94aa14dec7ba64974642542149e59
28,469
import subprocess def getsnapshots(): """Reads all current local snapshots returns: List of snapshots """ cmd = subprocess.Popen(['tmutil', 'listlocalsnapshotdates'], stdout=subprocess.PIPE, stderr=subprocess.STDOUT) snapshots, _ = cmd.communicate() snapshots = snapshots.splitlines() return snapshots[1:]
94ccc0af80c47528ba1ccf919038a804df464d91
28,470
def createProperMovieDictionary(raw_dict): """ Takes the dictionary provided by the request (full of strings) and formats it where some variables need to have other types (e.g int, float) also escapes all the single quotes characters in strings :param raw_dict: the raw dictionary with the movie information provided by the api :return proper_dict: a dictionary with the proper types to input in the database containing id, title, year, length, rating and the cast (a dictionary of actors in movies) """ try: year = int(raw_dict['year']) except ValueError: year = 0 try: rating = float(raw_dict['rating']) except ValueError: rating = 0.0 proper_dict = { 'id': raw_dict['id'], 'title': raw_dict['title'].replace(u'\xa0', u'').replace("'", "''"), 'year': year, 'length': raw_dict['length'], 'rating': rating, 'cast': raw_dict['cast'] } for actor in proper_dict['cast']: actor['actor'] = actor['actor'].replace("'", "''") actor['character'] = actor['character'].replace("'", "''") return proper_dict
ac30cbff86bfd9659c9363d31acacbd3c76b6f0f
28,472
import argparse def _parse_arguments(): """Parse commandline arguments. :returns: argparse.Namespace with arguments. """ parser = argparse.ArgumentParser(description="Generate allure report.") parser.add_argument( "--data-location", dest="data_location", default="data", help="Location of the allure data", ) parser.add_argument( "--report-location", dest="report_location", default="report", help="Location where report should be stored", ) parser.add_argument( "--allure-location", dest="allure_location", help=" ".join(( "Location where allure commandline can be found.", "Zip archive of the latest release will be used if empty string is specified", )), ) return parser.parse_args()
1b8d5d85efd869be7537f8e493dece524577ff04
28,473
def get_phred_query(sample_id, gt_ll, genotype, prefix=" and ", invert=False): """Default is to test < where a low value phred-scale is high confidence for that genotype >>> get_phred_query(2, 22, "het") ' and gt_phred_ll_het[1] < 22' >>> get_phred_query(2, 22, "het", prefix="") 'gt_phred_ll_het[1] < 22' >>> get_phred_query(2, 22, "het", prefix="", invert=True) 'gt_phred_ll_het[1] > 22' """ assert genotype in ("het", "homref", "homalt") if not gt_ll: return "" # they passed in the subject: if hasattr(sample_id, "sample_id"): sample_id = sample_id.sample_id sign = ["<", ">"][int(invert)] s = "gt_phred_ll_{genotype}[{sample_id}] {sign} {gt_ll}"\ .format(sample_id=sample_id-1, genotype=genotype, gt_ll=gt_ll, sign=sign) return prefix + s
3b913725bafec554c105173fb4ff720324aa8ae7
28,475
def yfun(p,B,pv0,f): """ Steady state solution for y without CRISPR """ return (B*p-p/pv0-f*(B*p-p/pv0+1))/(p*(B*p-p/pv0+1))
191835f60bb755f173dd21c4f116efcc1c2c86bf
28,476
def _command_to_string(cmd): """Convert a list with command raw bytes to string.""" return ' '.join(cmd)
e8c39aa287f64099358e420b63b507f6f3f68c7a
28,477
def get_racecar_camera_topics(racecar_name): """ The camera topics where the racecar publishes the frames Arguments: racecar_name (str): The name of the racecar """ return [ "/{}/main_camera/zed/rgb/image_rect_color".format(racecar_name), "/sub_camera/zed/rgb/image_rect_color" ]
7d535d2e6f9e9d056dec8604dc856901b30b2c20
28,478
def string_preset(preset): """ Print preset """ string = '{\n' for attr in list(preset.keys()): string = "{0} {1}: {2},\n".format(string, attr, preset[attr]) string += '}\n' return string
2a654d92e96c02c9ccd4ae81fda1e553b0555f2a
28,481
import numpy def _parse_UB_matrix(header_line): """Parse G3 header line and return UB matrix :param str header_line: G3 header line :return: UB matrix """ return numpy.array(list(map(float, header_line.split()))).reshape((1, 3, 3))
94528ae811790d6f64e2d8458eff8a7dd117d391
28,484
def links_as_text(code): """ ersetzt alle Vorkommen von '<a href="xxxxxxxx" ... >yyyy</a>' durch '(xxxxxxxx : yyyy)' """ def link_as_text(code): ret = code i = code.rfind('<a href="') if i>-1: j = code.find('"', i+9) k = code.find('>', j) l = code.find('<', k) ret = code[:i] + '(' + code[i+9:j] + ' : ' + code[k+1:l] + ')' + code[l+4:] return i, ret i=1 ret = code while i>-1: i, ret = link_as_text(ret) return ret
30cb5f132dd15283889107728a582a88c832e60b
28,486
def test_class_objects(): """类对象。 类对象支持两种操作: - 属性引用 - 实例化 """ # 属性引用使用Python中用于所有属性引用的标准语法: obj.name. # 有效的属性名是创建类对象时类的命名空间中的所有名称。 # 对于MyCounter类,以下引用是有效的属性引用: class ComplexNumber: """复数类的例子""" real = 0 imaginary = 0 def get_real(self): """返回复数的实部。""" return self.real def get_imaginary(self): """返回复数的虚部。""" return self.imaginary assert ComplexNumber.real == 0 # __doc__ 也是一个有效的属性,返回属于类的文档字符串 assert ComplexNumber.__doc__ == '复数类的例子' # 类属性也可以被赋值,因此可以更改 ComplexNumber 的值。计数器的任务。 ComplexNumber.real = 10 assert ComplexNumber.real == 10 # 类实例化使用函数表示法。只需假设类对象是一个返回类的新实例的无参数函数。例如(假设上面的类): complex_number = ComplexNumber() assert complex_number.real == 10 assert complex_number.get_real() == 10 # 让我们把计数器的默认值改回来。 ComplexNumber.real = 10 assert ComplexNumber.real == 10 # 实例化操作(“调用”类对象)创建一个空对象。许多类喜欢创建具有自定义到特定初始状态的实例的对象。 # 因此,类可以定义一个名为__init__()的特殊方法,像这样: class ComplexNumberWithConstructor: """带有构造函数的类示例""" def __init__(self, real_part, imaginary_part): self.real = real_part self.imaginary = imaginary_part def get_real(self): """返回复数的实部。""" return self.real def get_imaginary(self): """返回复数的虚部。""" return self.imaginary complex_number = ComplexNumberWithConstructor(3.0, -4.5) assert complex_number.real, complex_number.imaginary == (3.0, -4.5)
f0acaf49376b43cc76524a4b07dc643025d97b98
28,487
from pathlib import Path def find_modules(x): """Get all python files given a path Args: x (string): file path Returns: (list): recursive list of python files including sub-directories """ return Path(x).rglob('*.py')
1b8b84087c3de476c8e2b96b8f09001755ebabac
28,488
def medium_file(file_path): """Open a medium file (headerless tsv, 2 columns (str, float)) Return a generator of (str, float) tuples This function is used by argparse for type validation.""" def row_generator(file_path): with open(file_path, "r") as fh: for line in fh: reaction_id, lower_bound, upper_bound = line.rstrip().split("\t") yield (reaction_id, float(lower_bound), float(upper_bound)) return row_generator(file_path)
eba4c372a1c07feab28634d65dcbd148f9dfa995
28,489
import subprocess def run_command (cmd): """ Run command from command line """ #p = subprocess.call(cmd, shell=True) p = subprocess.Popen(cmd, shell=True).communicate() return p
4fe6233ba2a5c3e8a6e6f7f170b14f89bcbd6c39
28,490
def score(board): """ This function takes a nested list of numbers representing a Reversi board and returns the score of player 1 and 2 out of that board. :param board: nested list of integers that represent a Reversi board :returns: a tuple (s1, s2) representing the points of player 1 and 2 :pre-condition: board must be a nested list of numbers (should be 8 * 8) :raises: TypeError, if pre-condition is not true """ s1, s2 = 0, 0 for row in board: s1 += row.count(1) s2 += row.count(2) return s1, s2
e8545cd43924849aae39c355eecf23607311593d
28,491
from typing import Any import hashlib def hashname_from_data(data: Any) -> str: """ Donne le haché des données en string python. Mauvais pour une utilisation classique du haché, mais utile pour des noms de fichier. Args: data: Données à hacher Returns: Une chaine de caractères. """ return str(hashlib.md5(str(data).encode("UTF8")).hexdigest())
51db5ec9e7a3b42873a766dc5be834f37bcc9a63
28,492
def rules_cidrs_and_security_groups(rules): """ Return a dict with keys "cidrs" and "sgids" from a list of security group rules. :param rules: list of security group rules :type rules: list :return: Dict with keys "cidrs" and "sgids" :rtype: dict """ cidrs = set( ip_range["CidrIp"] for rule in rules for ip_range in rule["IpRanges"] ) sgids = set( group_pair["GroupId"] for rule in rules for group_pair in rule["UserIdGroupPairs"] ) return {"cidrs": cidrs, "sgids": sgids}
7da621f59543ae929856c78c69d101b234c4540c
28,493
def get_WFC_G800L_WCS(): """ Defines parameters for the ACS/WFC/G800L slitless mode @return: slitless mode parameters @rtype: dictionary """ wcs_keys = {} #grism image "j8qq12kgq": #/ World Coordinate System and Related Parameters wcs_keys['grism'] = [ ['WCSAXES ',2,'number of World Coordinate System axes'], ['CRPIX1',2.048000000000E+03 ,'x-coordinate of reference pixel'], ['CRPIX2 ',1.024000000000E+03 ,'y-coordinate of reference pixel'], ['CRVAL1',5.317727241178E+01 ,'first axis value at reference pixel'], ['CRVAL2',-2.779882660148E+01 ,'second axis value at reference pixel'], ['CTYPE1','RA---TAN','the coordinate type for the first axis'], ['CTYPE2','DEC--TAN','the coordinate type for the second axis'], ['CD1_1',-8.4686E-06 ,'partial of first axis coordinate w.r.t. x'], ['CD1_2',-1.16183E-05 ,'partial of first axis coordinate w.r.t. y'], ['CD2_1',-1.09568E-05 ,'partial of second axis coordinate w.r.t. x'], ['CD2_2',7.76629E-06 ,'partial of second axis coordinate w.r.t. y'], ['LTV1',0.0000000E+00 ,'offset in X to subsection start'], ['LTV2',0.0000000E+00 ,'offset in Y to subsection start'], ['LTM1_1',1.0 ,'reciprocal of sampling rate in X'], ['LTM2_2',1.0 ,'reciprocal of sampling rate in Y'], ['ORIENTAT',-56.2392 ,'position angle of image y axis (deg. e of n)'], ['RA_APER',5.316373797542E+01 ,'RA of aperture reference position'], ['DEC_APER',-2.779155504028E+01 ,'Declination of aperture reference position'], ['PA_APER',-56.4791 ,'Position Angle of reference aperture center (de'], ['VAFACTOR',1.000027253644E+00 ,'velocity aberration plate scale factor'], ['EXPNAME','j8qq12kgq' ,'exposure identifier'], ] wcs_keys['drizzle'] = [ ['DRZCNUM',15,'Number of coefficients per coordinate'], ['DRZSCALE',0.05,'Scale for drizzling'], ['DRZ2X01', 29.20952271 ,'Drizzle coefficient 01 in X'], ['DRZ2X02', 0.98463856,'Drizzle coefficient 02 in X'], ['DRZ2X03', 0.047121902,'Drizzle coefficient 03 in X'], ['DRZ2X04', 8.2405479e-06,'Drizzle coefficient 04 in X'], ['DRZ2X05', -7.1109122e-06,'Drizzle coefficient 05 in X'], ['DRZ2X06', 1.7714826e-06,'Drizzle coefficient 06 in X'], ['DRZ2X07', -4.6293307e-10,'Drizzle coefficient 07 in X'], ['DRZ2X08', -1.243901e-10,'Drizzle coefficient 08 in X'], ['DRZ2X09', -5.3285875e-10,'Drizzle coefficient 09 in X'], ['DRZ2X10', 5.1490811e-11,'Drizzle coefficient 10 in X'], ['DRZ2X11', 1.6734254e-14,'Drizzle coefficient 11 in X'], ['DRZ2X12', 3.425828e-14,'Drizzle coefficient 12 in X'], ['DRZ2X13', 9.5688062e-14 ,'Drizzle coefficient 13 in X'], ['DRZ2X14', -1.6229259e-14,'Drizzle coefficient 14 in X'], ['DRZ2X15', 1.2711148e-13,'Drizzle coefficient 15 in X'], ['DRZ2Y01', 1047.90670925,'Drizzle coefficient 01 in Y'], ['DRZ2Y02', 0.040785422,'Drizzle coefficient 02 in Y'], ['DRZ2Y03', 0.97161774,'Drizzle coefficient 03 in Y'], ['DRZ2Y04', -2.5332551e-06,'Drizzle coefficient 04 in Y'], ['DRZ2Y05', 5.9183197e-06,'Drizzle coefficient 05 in Y'], ['DRZ2Y06', -9.4306843e-06,'Drizzle coefficient 06 in Y'], ['DRZ2Y07', 7.3674246e-11,'Drizzle coefficient 07 in Y'], ['DRZ2Y08', -4.3916951e-10,'Drizzle coefficient 08 in Y'], ['DRZ2Y09', -5.371583e-11,'Drizzle coefficient 09 in Y'], ['DRZ2Y10', -3.8747876e-10,'Drizzle coefficient 10 in Y'], ['DRZ2Y11', -1.4892746e-14,'Drizzle coefficient 11 in Y'], ['DRZ2Y12', -3.1028203e-14,'Drizzle coefficient 12 in Y'], ['DRZ2Y13', -1.024679e-13,'Drizzle coefficient 13 in Y'], ['DRZ2Y14', 2.9690206e-14,'Drizzle coefficient 14 in Y'], ['DRZ2Y15', -1.4559746e-13,'Drizzle coefficient 15 in Y'], ] wcs_keys['direct'] = None wcs_keys['dimension'] = [4096, 2048] return wcs_keys
3413c0318eaf7379eb681173fe2a3b2a7003112e
28,494
def dimer_true(dataframe, col_num, dimer_list): """ Boolean masks to let us know which primers from original df form dimers. If so they are dropped. Args: dataframe (pd.DataFrame): the primer dataframe col_num (int): the column number to check for primer match dimer_list (list): the list containing primer dimer info Returns: out_series (pd.Series): boolean masked series, True if primer is dimer, else False """ out_series = dataframe.iloc[:, col_num].isin([seq[1] or seq[2] for seq in dimer_list]) return out_series
138bcbaf01ed93bfb195e89900b37ab682bd6dea
28,496
def child_dir_name(parent, child): """return the child directory name truncated under the parent""" if parent == '' or child == '': return child plen = len(parent) clen = len(child) if child[0:plen] != parent: return child # not a proper child # return everything after separator if clen < plen + 2: return '.' # trivial as child else: return child[plen+1:] # remove parent portion
85b003ee346580dda2647a64b31a93f7ada25d25
28,497
def seq_from_truth_table(table, order): """ Computes the binary sequence string from a given truth table. Currently, this function assumes that the truth table describes a de Bruijn sequence. Parameters ---------- table : dict A mapping from binary strings of length `n` to 0 or 1. order : integer The order of the boolean function. Returns ------- seq : string The binary sequence represented by the truth table. """ seq = '0' * order while len(seq) < 2**order: seq += str(table[seq[-(order-1):]] ^ int(seq[-order])) return seq
aa56551194637827a7dfb5a50e073e71d3589846
28,498
from typing import Dict from typing import Any from typing import Union def get_cluster_mode( cycle_config: Dict[str, Any], ) -> Union[None, str]: """ Decode the cluster mode from the cycle configuration. Currently only a `slurm`, `local`, or None mode are available. Parameters ---------- cycle_config : Dict[str, Any] The cluster mode is searched within this cycle configuration. Returns ------- mode : str or None The specified cluster mode. If the mode is None, then no mode was found. """ try: if cycle_config['CLUSTER']['slurm']: mode = 'slurm' else: mode = 'local' except KeyError: mode = None return mode
6ac157e812dfbe3627d1f3bf363b774f083801f8
28,499
def nmove(m: int, n: int) -> float: """minimum number of moves :param m: number of disks :param n: number of rods :return: minimum number of moves """ n = min(m + 1, n) if n == 2: return 1 if m == 1 else float("inf") elif n == 3: return 2 ** m - 1 elif n == m + 1: return 2 * m - 1 return min(nmove(i, n) * 2 + nmove(m - i, n - 1) for i in range(1, m))
7a3206eeba5c4036a8636b2344a9a1b904d7a6aa
28,500
def _select_last_iteration_only(jobs): """ Looks through a list of jobs and removes duplicates (only keeps last iteration of a particular job) """ jobs_by_name = {} for job in jobs: if job.name in jobs_by_name: jobs_by_name[job.name].append(job) else: jobs_by_name[job.name] = [job] selected_jobs = [] for name, named_jobs in jobs_by_name.items(): named_jobs = sorted(named_jobs, key=lambda j: j.id, reverse=True) selected_jobs.append(named_jobs[0]) return selected_jobs
cd00f51ec3be8349538daf7470552b735eda2902
28,501
def get_the_attr_from_objList(obj_list, attr_by, attr_by_value, target_attr, attr_exclude=None, attr_exclude_value=None): """ 从对象列表中根据对象中某属性匹配指定对象,返回该对象中目标属性, 指定排除属性和值 :param obj_list:对象列表,数据结构如[{}, {}, {}] :param attr_by:用于匹配对象的属性名 :param attr_by_value:用于匹配对象属性名的值 :param target_attr:目标属性名 :param attr_exclude:用于排除对象的属性名 :param attr_exclude_value:用例排除对象属性名的值, 多个值则使用英文逗号分割 :return: """ for obj in obj_list: # 排除属性和值均非空,且匹配。则跳过当前对象 if attr_exclude and attr_exclude_value and obj[attr_exclude] in [x.strip() for x in attr_exclude_value.split(',')]: continue # 匹配属性命中,返回对象的目标属性 if obj[attr_by]==attr_by_value: try: return obj[target_attr] except KeyError: return 'no match target_attr' return 'no match data'
b9890a0dccd9ea192074fc005d1f192fd8631700
28,502
def extract_hashtags(hashtags_string): """ Split the string of hashtags into a list of hashtags :param hashtags_string: hashtags as a single string :return: list of hashtags """ hashtags = hashtags_string.split() return hashtags
9ead711230f55b8a2ba3ab29a3c3c09ffb86184c
28,507
def sampleFunction2(x2: int, y2: float) -> float: """ Multiply int and float sample. :param x2: x value :type x2: int :param y2: y value :type y2: float :return: result :return type: float """ return x2 * y2
554707befa81313f7ca084afbb39b5a75f44040e
28,509
def midi2freq(midi_number): """ Given a MIDI pitch number, returns its frequency in Hz. Source from lazy_midi. """ midi_a4 = 69 # MIDI Pitch number freq_a4 = 440. # Hz return freq_a4 * 2 ** ((midi_number - midi_a4) * (1. / 12.))
995453032f5280e5b8a28a2265ef2c4de8f83b8e
28,510
def data(package): """ Return the PackageData for the given package.""" return package.__rdata__
20000314ab22a603aad619f139fcda65f5f5a15f
28,511
import json def format_str(str_value, is_json): """ Returns a formatted string with break lines; if is_json True, pretty format the output :param str_value: plain text or json value :param is_json: Boolean :return: str """ str_value = json.dumps(str_value, indent=4, sort_keys=True) if is_json else str_value return '\n {} \n'.format(str_value)
3840a355b44404a0c0022f0297453023a2eb698a
28,513
def conv_unit(x, unit1, unit2): """Utility function for pressure unit conversion""" units = {"atm": 1, "kPa": 101.3, "in Hg": 29.92, "mm Hg": 760, "torr": 760, "psi": 14.69, "Pa": 1.013e5 } if unit1 not in units: raise ValueError("'{}' not defined in unit conversion dictionary. Available units are: {}".format(unit1, ("".join([i+", " for i, j in units.items()])[:-2]))) elif unit2 not in units: raise ValueError("'{}' not defined in unit conversion dictionary. Available units are: {}".format(unit2, ("".join([i+", " for i, j in units.items()])[:-2]))) else: return x / units[unit1] * units[unit2]
ac7c8230336a44736b1a1a0a45125f59de58bf69
28,514
def default_empty(default): """Check an input against its falsy value or return a default.""" def get_value(test_value): if test_value: return test_value else: return default return get_value
b3ff34d8fb5d46a62ad11a439dad7d03fb4425f2
28,515
def _find_error_code(e): """Gets the approriate error code for an exception e, see http://tldp.org/LDP/abs/html/exitcodes.html for exit codes. """ if isinstance(e, PermissionError): code = 126 elif isinstance(e, FileNotFoundError): code = 127 else: code = 1 return code
a9e14ec1cf01f0eba65b231aa7a40afaf4712535
28,516
def take_guess(force_upper: bool = True) -> str: """Take input from user and handle mistakes.""" guess = input() # Check for incorrect length while len(guess) != 5: print("Your guess is the incorrect length. It must be 5 characters. " "Try again:") guess = input() # Keep input at uppercase if force_upper: return guess.upper() else: return guess
76139aa17c1cbba0b2ad83add7040721156fab45
28,519
def hgcSiSensorCCE(sensor,version): """ this method returns different parameterizations of the charge collection efficiency (CCE) for different sensor types (sensor) and measurement versions (version) sensor = 120,200,300 version = TDR_{600V,800V} - TDR based measurements at different voltages TTU_{600V,800V} - Texas Tech based measurements at different voltages CERN21_{600V,800V}_{annealing} - CERN2021 based measurements at different voltages and annealing times if the pair (sensor,version) is unknown a ValueError exception is raised """ if version=='TDR_600V': if sensor==120 : return [3.5e+15,10.31,-0.2635] elif sensor==200: return [9e+14,8.99,-0.241] elif sensor==300: return [3e+14,10.16,-0.2823] elif version=='TDR_800V': if sensor==120 : return [3.5e+15,10.39,-0.2638] elif sensor==200: return [1.5e+15,10.41,-0.2779] elif sensor==300: return [5e+14,12.59,-0.3501] elif version=='CERN21_600V_10m': if sensor==120 : return [1.35e+15,9.591,-0.2452] elif sensor==200: return [9e+14,11.95,-0.3186] elif sensor==300: return [5.85e+14,9.701,-0.2668] elif version=='CERN21_600V_30m': if sensor==120 : return [1.35e+15,8.362,-0.2105] elif sensor==200: return [9e+14,15.48,-0.4191 ] elif sensor==300: return [5.85e+14,9.89,-0.2699] elif version=='CERN21_600V_90m': if sensor==120 : return [1.35e+15,7.769,-0.1954] elif sensor==200: return [9e+14,8.983,-0.2354] elif sensor==300: return [5.85e+14,8.79,-0.2377] elif version=='CERN21_600V_120m': if sensor==120 : return [1.35e+15,7.119,-0.1775] elif sensor==200: return [9e+14,8.647,-0.2257 ] elif sensor==300: return [5.85e+14,9.369,-0.2544] elif version=='CERN21_800V_10m': if sensor==120 : return [1.35e+15,8.148,-0.2031] elif sensor==200: return [9e+14,7.32,-0.1833] elif sensor==300: return [5.85e+14,11.45,-0.3131] elif version=='CERN21_800V_30m': if sensor==120 : return [1.35e+15,7.097,-0.1731] elif sensor==200: return [9e+14,13.68,-0.3653] elif sensor==300: return [5.85e+14, 10,-0.269] elif version=='CERN21_800V_90m': if sensor==120 : return [1.35e+15,6.387,-0.155] elif sensor==200: return [9e+14,7.739,-0.198] elif sensor==300: return [5.85e+14,7.701,-0.2023] elif version=='CERN21_800V_120m': if sensor==120 : return [1.35e+15,5.997,-0.1443] elif sensor==200: return [9e+14,7.172,-0.1821] elif sensor==300: return [5.85e+14,7.855,-0.2068] raise ValueError('sensor={} version={} is unknown to retrieve CCE parameterization for HGC Si sensors'.format(sensor,version))
16b1d8c80bee9e12f28de801ebc7f7a38b4166b4
28,520
def make_behaving(ary, dtype=None): """ Make sure that `ary` is a "behaving" bohrium array of type `dtype`. Requirements for a behaving array: * Is a bohrium array * Points to the first element in the underlying base array (no offset) * Has the same total length as its base Parameters ---------- ary : BhArray The array to make behaving dtype : boolean, optional The return array is converted to `dtype` if not None Returns ------- A behaving BhArray that might be a copy of `ary` Note ---- Use this function to make sure that operands given to `execute()` is "behaving" that is the kernel can access the arrays without worrying about offset and stride. """ if ary.isbehaving(): ret = ary else: ret = ary.flatten(always_copy=True) if dtype is not None: ret = ret.astype(dtype) return ret
e74c3c276ef2f5eb0ddb3d9b7870af0035cdaab4
28,521
from pathlib import Path def file_exists(filename): """ Returns true if file exists :param filename: The file name to check :type filename: str :returns: True if file exists :rtype: bool """ file_handle = Path(filename) if file_handle.is_file(): return True else: return False
5800f9b15aa869993e8bc0decea0ea1bf4a449e6
28,523
import os import errno def is_running_posix(pid): """Return True if process of pid is running. Args: pid(int): pid of process which this function checks whether it is running or not. Returns: bool: True if process of pid is running. Raises: OSError if something happens in os.kill(pid, 0) """ try: os.kill(pid, 0) except OSError as e: if e.errno == errno.ESRCH or e.errno == errno.EPERM: return False raise e return True
14952ab7ffafcac9a187a498eddb6b8317cb87aa
28,525
def trim_streams(streams, start = None, end = None): """ Trims streams to the same overall time span. :return: list of trimmed streams """ max_start_time = start min_end_time = end for stream in streams: current_start = min([x.stats.starttime for x in stream]) current_end = max([x.stats.endtime for x in stream]) if not max_start_time: max_start_time = current_start if not min_end_time: min_end_time = current_end if current_start > max_start_time: max_start_time = current_start if current_end < min_end_time: min_end_time = current_end cut_streams = [] for st in streams: cut_streams.append(st.slice(max_start_time, min_end_time)) return cut_streams
8d0090319b969b96a30656bf54530bef6ab54dcb
28,526
def center_y(display_height: int) -> int: """ Find the vertical center position of given screen/space/display Parameters: display_width (int) : The character height of the screen/space/display Returns: (int): Vertical character number """ return display_height // 2
b59a325ef4fb84d306f22c7c5717b1d9a155ed45
28,527
def parse_syntax(line): """ >>> parse_syntax('syntax: glob') 'glob' >>> parse_syntax('syntax: regexp') 'regexp' >>> parse_syntax('syntax: none') Traceback (most recent call last): ... Exception: Unknown syntax "none" """ line = line.replace(':', ' ') _, syntax = line.split() if syntax in ['glob', 'regexp']: return syntax else: raise Exception('Unknown syntax "%s"' % syntax)
8f619b216ede8cc9bdd8198f6433add997c87768
28,528
def get_hosts_content(): """ gets content of hosts file """ with open ("/etc/hosts","r") as myfile: hosts_text = myfile.readlines() return hosts_text
9807f5b4cbf23c83c8a3d82768d0086617b8c510
28,530
def boundCreator(mus, sigmas, c=3): """ Creates interval around the mean Parameters ---------- mus : array of shape [Num flights, time-steps, num of features] the mean temporal values to be used. sigmas : array of shape [Num flights, time-steps, num of features] the temporal standard deviation values to be used. c : TYPE, optional DESCRIPTION. The default is 3. Returns ------- upper : array upper bound. lower : array lower bound. """ upper = mus + c*sigmas lower = mus - c*sigmas return upper,lower
5ec6af891a0c39fd6f51e961de13a0db946a20cc
28,531
def coerce_to_bool(x: str) -> bool: """Convert string to bool value.""" if x.lower() in ('true', 'yes', 'on', '1', 'false', 'no', 'off', '0'): return x.lower() in ('true', 'yes', 'on', '1') raise ValueError()
d8da41c00ad94e75fd20f3c4a4aaaf8fb04cbb08
28,532
from typing import Any from typing import Optional from typing import List import os def _add_config_from_env(app: Any, config_key: str, env_variable: str, missing_list: Optional[List[str]] = None, default_value: Any = None)-> bool: """ Function for adding configuration variables to a Flask app from environment variables. :param app: Flask app object :param config_key: the name of the config key in the app: app.config[config_key] :param env_variable: the name of the environment variable in which the value is stored :param missing_list: a list of strings to which missing environment variables are added. Can be omitted. :param default_value: if value is missing, set config value to this. :return: True if successful, False if environment variable was undefined """ val = os.environ.get(env_variable, None) if val is not None: app.config[config_key] = val return True elif default_value: app.config[config_key] = default_value return True if missing_list is not None: missing_list.append(env_variable) return False
e2e41ab4890f7a9fc5d9ed6ba0d15dc448d18196
28,533
def mock_health_response(status) -> dict: """ Mocks the cluster health response :return: """ response = { "cluster_name": "elasticsearch", "status": status, "timed_out": False, "number_of_nodes": 1, "number_of_data_nodes": 1, "active_primary_shards": 9, "active_shards": 9, "relocating_shards": 0, "initializing_shards": 0, "unassigned_shards": 5, "delayed_unassigned_shards": 0, "number_of_pending_tasks": 0, "number_of_in_flight_fetch": 0, "task_max_waiting_in_queue_millis": 0, "active_shards_percent_as_number": 64.2857142857 } return response
fbe90ac9b3eedb724ee3136a390a542d98e1f228
28,534
import sys import subprocess def subprocess_check_output(cmd, *args, **kwargs): """ Wrapper around subprocess.check_output which is not available under Python 2.6. """ if sys.version_info < (2, 7, 0): output = subprocess.Popen( cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, *args, **kwargs ).communicate()[0] else: output = subprocess.check_output(cmd, *args, **kwargs) return output
dab7cad1439d7c6ff157d023acde1b982259ff57
28,535
import numpy def get_negatives_positives(score_lines): """Take the output of load_score and return negatives and positives. This function aims to replace split_four_column and split_five_column but takes a different input. It's up to you to use which one. """ pos_mask = score_lines["claimed_id"] == score_lines["real_id"] positives = score_lines["score"][pos_mask] negatives = score_lines["score"][numpy.logical_not(pos_mask)] return (negatives, positives)
85b042099214a89db58d8dc4ffcd0b05846153fe
28,536
def get_ua_platform(user_agent): """Get platform (mobile, tablet, pc).""" if user_agent.is_mobile: return "mobile" elif user_agent.is_tablet: return "tablet" elif user_agent.is_pc: return "pc" else: return "unknown"
be735fa118fd09a25f3120dda8bdb1c45943b859
28,538
import numpy def psfSharpness(psf): """ Calculates how 'sharp' the PSF is as defined here by how large the mean frequency component is. The idea is that a better average PSF will be less blurred out, so it will have more power in the larger frequencies. """ psd = numpy.abs(numpy.fft.fftn(psf))**2 k1 = numpy.abs(numpy.fft.fftfreq(psf.shape[0])) k2 = numpy.abs(numpy.fft.fftfreq(psf.shape[1])) k3 = numpy.abs(numpy.fft.fftfreq(psf.shape[2])) # Ignore the highest frequencies as these are mostly pixel noise. k1[(k1 > 0.4)] = 0 k2[(k2 > 0.4)] = 0 k2[(k3 > 0.4)] = 0 [m_k1, m_k2, m_k3] = numpy.meshgrid(k1, k2, k3, indexing = 'ij') return numpy.mean(psd * m_k1 * m_k2 * m_k3)
8b195719b7f28395a107f59ae2cbdfc70a3443b2
28,540
def average(a, b): """ Decorator ensures that this function can be used in a Tangled graph """ return (a + b) / 2
08dc564389af2a9eb18c37c2cfd5ca09f43ab130
28,541
import socket def dns_exchange(dnsIp, dnsQuery, dnsAnswer): """ Exchange DNS query and wait answer """ result = None sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) try: sock.settimeout(1) query = dnsQuery.serialize() sock.sendto(query, (dnsIp, 53)) answer = sock.recv(1024) try: dnsAnswer.unserialize(answer) if dnsQuery.header.ident == dnsAnswer.query.header.ident: result = dnsAnswer.name except: pass finally: sock.close() return result
532b3c1dbc5fe0f2f75ce53ccc5b123fb22d4fdf
28,542
def format_field(val: int, show: bool) -> str: """ Format a field """ return f'{val:>8}' if show else ""
b4a0af9eecf1d48c09dacafa9e239e0b6a7f3370
28,543
def create_deterministic_delayer(delay): """ Create a deterministic delayer that always returns the same delay value Args: delay (float): Delay value to return Returns: function: delayer """ assert delay >= 0, "Inputted delay must be non-negative!" return lambda: delay
8d25603dc273b631eef2e270753dbb6ae4c7d959
28,545
def num_of_words_in_string(strng): """ :param strng: The string of which the words should be counted. :returns: The number of words in the string. :type strng: str :rtype: int """ return len(strng.split(' '))
a35335fbf456887ff88ff1ee229eeaf1b9f9f14d
28,546
def check_bounds(position, size): """ Checks whether a coordinate is within the indices of a grid. Parameters ---------- position: list the coordinate to check for within the grid size: int the size of the grid to compare the coordinate values to Return ---------- boolean: True if the coordinate is within the grid, false if otherwise """ for elem in position: if elem < 0 or elem >= size: return False return True
f93721e2b852df8e2e52d0e8fb7157f60bda7536
28,548
def field_validator(value, validators: set) -> bool: """ Execute a set of validator functions (the _is_x) against a value. Return True if any of the validators are True. """ return any([True for validator in validators if validator(value)])
d8331dac68e85b1725280af9df6b71f8f0c46465
28,549
import re def get_sort_version(config, version): """ Returns a form of the version obtained from the execution of get_migration_filename_info() call that can be properly sorted. """ noAlpha = re.compile('[^0-9.]+') return tuple(int(x) for x in noAlpha.sub('', version).split('.'))
19aa947f2389403792838c2586f72692cddca952
28,551
from typing import Union import sys from pathlib import Path import yaml def parse_and_validate_conda(conda: Union[str, dict]) -> Union[str, dict]: """Parses and validates a user-provided 'conda' option. Conda can be one of three cases: 1) A dictionary describing the env. This is passed through directly. 2) A string referring to the name of a preinstalled conda env. 3) A string pointing to a local conda YAML file. This is detected by looking for a '.yaml' or '.yml' suffix. In this case, the file will be read as YAML and passed through as a dictionary. """ assert conda is not None if sys.platform == "win32": logger.warning( "runtime environment support is experimental on Windows. " "If you run into issues please file a report at " "https://github.com/ray-project/ray/issues." ) result = None if isinstance(conda, str): yaml_file = Path(conda) if yaml_file.suffix in (".yaml", ".yml"): if not yaml_file.is_file(): raise ValueError(f"Can't find conda YAML file {yaml_file}.") try: result = yaml.safe_load(yaml_file.read_text()) except Exception as e: raise ValueError(f"Failed to read conda file {yaml_file}: {e}.") else: # Assume it's a pre-existing conda environment name. result = conda elif isinstance(conda, dict): result = conda else: raise TypeError( "runtime_env['conda'] must be of type str or " f"dict, got {type(conda)}." ) return result
5c3377bbc704c829ed6a3da9c5ffe145dc03ac31
28,552
def get_fieldnames(content): """ Return the longest Dict Item for csv header writing """ item_length = 0 csv_header = [] for item in content: if len(item) >= item_length: longest_item = item item_length = len(item) for key in longest_item.keys(): if key not in csv_header: csv_header.append(key) return csv_header
64ece1c8c9fded8fc1d79b98b403ccb5c4caec30
28,553
def line_filter(regexp, lines): """ Filter each line of input by a regular expression. If the regular expression is not matched, then the line is not output. """ output = [] for line in lines: match = regexp.match(line) if match: output.append(line) return output
8b3ed6abde04a0278fa98d618117bb5ee686baf8
28,556
def to_native(s): """转成 str :type s: Union[str, bytes] :rtype str """ if isinstance(s, bytes): return s.decode('utf-8') return s
0db82b972ea7260198e5edd4e147cb2206ec8705
28,557
def get_nonblocking(queue): """ Get without blocking from multiprocessing queue""" try: resp = queue.get(block=False) except Exception as e: resp = None return resp
8cb190f8652a8ea54b6f469cac4204b1706b4d6e
28,558
def move(password, position_x, position_y): """Move letter from position_x to position_y. Letter should be removed from password and inserted at position_y. """ to_move = password.pop(position_x) password.insert(position_y, to_move) return password
a63124adeb25aeec1e31469d808725f5654b3928
28,561
def splinter_driver_kwargs(): """Webdriver kwargs.""" return {}
a4844c63a2723b7b2985723a03a4f1ecab572b1e
28,562
def predict_raw(model, periods): """Returns the raw output of a Prophet model. Paramaters ---------- model : dict A trained Prophet model created with init_fit. periods : int The number of periods to forecast. cap : float An upper limit for the case of logistic growth. Returns ------- prophet_output : DataFrame The output of m.predict() method of the Prophet class. """ future = model['m'].make_future_dataframe(periods=periods) future['cap'] = model['cap'] prophet_output = model['m'].predict(future) return prophet_output
709fbf4757b968d7b6cc882ccea1c6be222d418c
28,564
def compss_wait_on(obj): """ Dummy compss_wait_on :param obj: The object to wait on. :return: The same object defined as parameter """ return obj
cb433878c460a507d98c1c3a8880626f804b201f
28,565
from typing import List def count_trees(tree_map: List[str], dx: int, dy: int) -> int: """Count trees (`#`) in the tree map. Args: tree_map (List[str]): a list of `.` and `#` (trees) Returns: int: number of trees """ count = 0 for i, row in enumerate(tree_map[::dy]): if i == 0: continue index = (i * dx) % len(row) if row[index] == '#': count += 1 return count
d6a642761f9ee5043fd771a91d9eb916b752ac55
28,566
def get_dict_dot(d: dict, key: str, default=None): """ Gets an entry from a dictionary using dot notation key, eg: this.that.something """ try: if isinstance(d, dict) and key: split = key.split(".") value = d.get(split[0], None) if value is not None: if len(split) == 1: return value return get_dict_dot(value, key[len(split[0]) + 1 :], default) except KeyError: pass return default
2e179f81ee7d05554150fad2fd8363d44c4b3a88
28,568
import pandas def signals_to_positions(signals, init_pos=0, mask=('Buy', 'Sell', 'Short', 'Cover')): """ Translate signal dataframe into positions series (trade prices aren't specified. WARNING: In production, override default zero value in init_pos with extreme caution. """ long_en, long_ex, short_en, short_ex = mask pos = init_pos ps = pandas.Series(0., index=signals.index) for t, sig in signals.iterrows(): # check exit signals if pos != 0: # if in position if pos > 0 and sig[long_ex]: # if exit long signal pos -= sig[long_ex] elif pos < 0 and sig[short_ex]: # if exit short signal pos += sig[short_ex] # check entry (possibly right after exit) if pos == 0: if sig[long_en]: pos += sig[long_en] elif sig[short_en]: pos -= sig[short_en] ps[t] = pos return ps[ps != ps.shift()]
a6fa124b31f15b88ce8f0a77aa419654df54ba45
28,573
def get_list_components(namefile): """ Get list of components in medoc list : COMPO.txt""" list_comp =[] with open(namefile, 'r') as f: for line in f: new_line = line.replace('\n', '') new_line = new_line.split(' ') compo = new_line[2] if not compo in list_comp: list_comp.append(list_comp) return len(list_comp)
7a6b8f8f09c040be80ae5f8696484ab5095af046
28,574
def edge_list_get_tail_index(edge_list, tail_index): """ Takes a list of edges and returns an edge if the tail_index matches the given index, or None otherwise. """ for edge in edge_list : if edge.tail_index == tail_index : return edge return None
1d7f55afec3fb9da269d1c45dd111ce05cb10bd5
28,575
import math def _fraction2str(num, decimals=2): """ Helper method to pretty print percentages. Args: num: A number in the range [0,1]. """ if isinstance(num, str): return num mult = math.pow(10, decimals) if num < 0.5/mult: return "0" ret = str(int(num*mult+.5)/float(mult)) if len(ret) < decimals+2: ret += "0" if ret[0] == "0": return ret[1:] return ret
5b2483fb5c2fe3ec4c543c4d6e1186491bb348dc
28,576
def all_lines_at_idx(mm, idx_list): """ return a list of lines given a list of memory locations follow up on all_lines_with_tag e.g. all_lines_at_idx(mm, all_lines_with_tag(mm, 'Atom') ) reads ''' Atom 0 0 0 0 Atom 1 1 1 1 Atom 2 2 2 2 ''' Args: mm (mmap.mmap): memory map to file idx_list (list): a list of memory locations (int) Return: list: a list of strings, each being the line at idx """ lines = [] for idx in idx_list: mm.seek(idx) # row back to beginning of line ibegin = mm.rfind('\n') if ibegin == -1: ibegin = 0 mm.seek(ibegin) mm.readline() # read desired line line = mm.readline() lines.append(line) return lines
2ca06a01773bdf1ab0f94cf5a60405c5f85ca772
28,577
def get_github_stars(github_page_data): """Retrieve number of github stars from github data""" num_stars = "No github found" if github_page_data["github_page"]: # If data on github comes form github API, parse json if github_page_data["github_data_source"] == "API": num_stars = github_page_data["github_data"]["stargazers_count"] # If data on github comes from web scraping, parse beautiful soup object elif github_page_data["github_data_source"] == "webscrape": try: num_stars_element = github_page_data["github_data"].find( "a", {"class": "social-count js-social-count"} ) num_stars = num_stars_element.contents[0].strip() except AttributeError: num_stars = "Error" return num_stars
d6e2109003cac72a1d8953febd4b28409ac2e5b9
28,578
def _get_attrs_items(obj): """Returns a list of (name, value) pairs from an attrs instance. The list will be sorted by name. Args: obj: an object. Returns: A list of (attr_name, attr_value) pairs. """ return [(attr.name, getattr(obj, attr.name)) for attr in obj.__class__.__attrs_attrs__]
6e1ac65ea2b9a136581dfdddf8e789fc8fa9da90
28,580
def analyze(data_frame, col): """ 按照指定列分组统计 :param data_frame: DataFrame :param col: 列名 :return: DataFrame """ df = data_frame.groupby([col])[col].count() \ .reset_index(name='num').sort_values(by='num', ascending=False) total = df['num'].sum() df['percent'] = round(df['num'] / total, 2) return df
75db70376bb8deb563b7d2520fe864f0b798fe09
28,581
def addElementInTuple(arr, elt): """ :param list arr: The list to manipulate arr format -> [(x,x,{}), (x,x,{}), (x,x,{})] :param dict elt: The element to insert """ arrs = [] for tpl in arr: tpl[2].update(elt) arrs.append(tpl) return arrs
6b9f27dac4f7c4ca46b666315ccacf2341106b2f
28,583
def safe_col_name(args_pair): """Ensure that the column name is safe for SQL (unique value, no spaces, no trailing punctuation). Typically called with `df.columns = [*map(safe_col_name, enumerate(df.columns.to_list()))]` Args: args_pair: tuple of arguments from map function in `(idx, col)` Returns: string: safely formatted string for SQLite """ idx, col = args_pair col = col.strip().replace(' ', '_').replace('.', '_').replace(',', '_') return str(idx) if col == '' else col
51256b15ee2fcc55cbc77dbdc2aa03408a6f1e26
28,585
def get_input_method(): """Collects the input method the user desires. This function prompts the user as to whether they want to use a GUI or the CLI. The function will loop until valid input is achieved. It uses the 'loop and a half' method to allow users to correct invalid input. """ types = ['CLI', 'GUI'] while True: selection = input('Would you prefer a CLI or GUI?\n>> ').upper() if selection in types: print('{0} selected.\n'.format(selection)) return selection print('You didn\'t correctly select :( Please type either CLI or GUI ' 'when prompted.\n')
a93989d6141b76e174ecb0231b4eac9297077637
28,586
import json import hashlib def hash(block) -> str: """ Hashes a block :param block: <dict> block (see example-block.py) :return: <bytes> hash of block - Returns block hash as bytes """ block_encoded = bytes(json.dumps(block, sort_keys=True).encode()) # Sorted to ensure consistent hashes return hashlib.sha256(block_encoded).hexdigest()
c580e23d816ac8769b586e40188c5e394b7cd50c
28,587
def get_datas_from_line(line): """Doc to do.""" line = line.split(',') values = [float(v)*100 for v in line[1:]] # values = ["%.2f" % round(v, 2) for v in values] return values
7e0d7cac3bae1f63ce412aeb5b6a60975457af1c
28,590
def format_sec_fixed(sec): """Format seconds in a fixed format.""" return '%d:%02d:%02d' % (int(sec / 3600), int(sec % 3600 / 60), int(round(sec % 60)))
d6fb346e3a83b451e65277a6301f49b0f91e5efb
28,591
def temp_column_name(*dataframes): """Gets a temp column name that isn't included in columns of any dataframes Parameters ---------- dataframes : list of Pandas.DataFrame The DataFrames to create a temporary column name for Returns ------- str String column name that looks like '_temp_x' for some integer x """ i = 0 while True: temp_column = "_temp_{}".format(i) unique = True for dataframe in dataframes: if temp_column in dataframe.columns: i += 1 unique = False if unique: return temp_column
307d6d1778ac550c1a0ba468e2fd81206d9c0cb9
28,597
def get_func_and_script_url_from_initiator(initiator): """Remove line number and column number from the initiator.""" if initiator: return initiator.rsplit(":", 2)[0].split(" line")[0] else: return ""
9029050bdc567e02dceca9a3967f289fc21324ab
28,600
def format_array(arr, precision=4): """ Create a string representation of a numpy array with less precision than the default. Parameters ---------- arr : array Array to be converted to a string precision : int Number of significant digit to display each value. Returns ------- str Nice string representation of the array. """ if arr is None: return "" formatting_str = "{0:." + str(precision) + "g}" str_values = [formatting_str.format(float(val)) for val in arr] content = ", ".join(str_values) return "[" + content + "]"
fb97da91c88a769aa95454666f734a6bc68ef4f5
28,601
def get_default_args(): """return a dictionary with key as argument name and value as additional arguments""" return { # GPT_ARGS "--num-layers": "2", "--hidden-size": "128", "--num-attention-heads": "4", "--seq-length": "256", "--max-position-embeddings": "256", "--micro-batch-size": "4", "--global-batch-size": "8", "--lr-decay-iters": "320000", "--lr-decay-style": "cosine", "--lr": "0.00015", "--min-lr": "1.0e-5", "--train-iters": "5000", "--tokenizer-type": "PretrainedFromHF", "--tokenizer-name-or-path": "gpt2", "--data-impl": "mmap", "--split": "949,50,1", "--distributed-backend": "nccl", "--weight-decay": "1e-2", "--clip-grad": "1.0", "--lr-warmup-fraction": ".01", "--fp16": "", "--attention-dropout": "0", "--hidden-dropout": "0", # OUTPUT_ARGS "--log-interval": "10", "--save-interval": "500", "--eval-interval": "100", "--eval-iters": "10", "--checkpoint-activations": "", # DATA_ARGS }
1a78905824acfbe3ff9c815d752d850dcaf0edb4
28,603
def add_args(parser): """ parser : argparse.ArgumentParser return a parser added with args required by fit """ parser.add_argument('--dataset', type=str, default='lending_club_loan', metavar='N', help='dataset used for training') parser.add_argument('--client_number', type=int, default=2, metavar='NN', help='number of workers in a distributed cluster') parser.add_argument('--comm_round', type=int, default=100, help='how many round of communications we shoud use') parser.add_argument('--batch_size', type=int, default=256, metavar='N', help='input batch size for training (default: 64)') parser.add_argument('--lr', type=float, default=0.01, metavar='LR', help='learning rate (default: 0.001)') parser.add_argument('--frequency_of_the_test', type=int, default=30, help='the frequency of the algorithms') args = parser.parse_args() return args
80dc659f99f652afc92eed5816ae5ec263f330f2
28,605
def _create_merged_rule(rule_1, rule_2): """ Finds a rule which is the least general rule that is more general than both argument rules. """ neurons = set((l, n) for (l, n, t, b) in rule_1).intersection((l, n) for (l, n, t, b) in rule_1) new_rule = [] for (l_i, n_i) in neurons: bigger_t_1 = [t for (l, n, t, b) in rule_1 if (l, n) == (l_i, n_i) and b] smaller_t_1 = [t for (l, n, t, b) in rule_1 if (l, n) == (l_i, n_i) and not b] bigger_t_2 = [t for (l, n, t, b) in rule_2 if (l, n) == (l_i, n_i) and b] smaller_t_2 = [t for (l, n, t, b) in rule_2 if (l, n) == (l_i, n_i) and not b] if bigger_t_1 and bigger_t_2: min_t = min(bigger_t_1 + bigger_t_2) new_rule.append((l_i, n_i, min_t, True)) if smaller_t_1 and smaller_t_2: max_t = max(smaller_t_1 + smaller_t_2) new_rule.append((l_i, n_i, max_t, False)) return new_rule
d9eac0f9c208a68e6b9c4d888a5fdc51d707d54a
28,606
def in1d_sorted(ar1, ar2): """ Does the same than np.in1d but uses the fact that ar1 and ar2 are sorted. Is therefore much faster. """ if ar1.shape[0] == 0 or ar2.shape[0] == 0: # check for empty arrays to avoid crash return [] inds = ar2.searchsorted(ar1) inds[inds == len(ar2)] = 0 return ar2[inds] == ar1
768bba5ae0050049bd150ce826ec8d149416607d
28,607
def black_percentage(rgb): """ rgb: rgb tuple of a pixel returns: pixel percentage of black """ if isinstance(rgb, int): return 100 - rgb return 100 - (int((((rgb[0] + rgb[1] + rgb[2])/3)*100)/255))
916f2c61e0af68509ba6fa45fe187c5144ba5337
28,608
def _align(value, alignment): """Find the smallest multiple of `alignment` that is at least as large as `value`.""" return ((value - 1) // alignment + 1) * alignment
9bbe11caf6221b73778caf9f2583ed3829d22942
28,609
import csv def csv_sniff(data, enc): """Given a list, sniff the dialect of the data and return it. Args: data - list like ["col1,col2,col3"] enc - python encoding value ('utf_8','latin-1','cp870', etc) Returns: csv.dialect.delimiter """ data = data.decode(enc) dialect = csv.Sniffer().sniff(data) return dialect.delimiter
93765d83b490f3bc2fb3730c7b7651d602646912
28,610