content
stringlengths 35
416k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
|---|---|---|
def confidence(output):
"""Compute a confidence score for NN output"""
dim = output.shape[1]
if dim != 2:
raise NotImplementedError()
return [abs(x[1] - 0.5) + abs(x[0] - 0.5) for x in output]
|
69879afa1c519c5ebc653640fdcdc4d9a1a9fa46
| 28,047
|
def cpu_roll_one():
"""Reset round score to zero."""
print("Computer rolled a 1")
print("round total set to 0. Other players turn!")
return 0
|
30ffdc0ac93ae104e87856ad5a6f0fda76cf51a3
| 28,048
|
import time
def calculate_time(func):
"""计算运行时间的装饰器"""
def decorator():
start_time = time.time() # 开始计时
func()
end_time = time.time() # 计时结束
print("Total Spend time:", str((end_time - start_time) / 60)[0:6] + "分钟")
return decorator()
|
17d3adfd8c54dbe50232bb2568558e8a5648f23e
| 28,050
|
def get_V_fan_d_t(t_fan_d_t, V_fan_P0):
"""1時間当たりの空気搬送ファンの風量 (m3/h) (13)
Args:
t_fan_d_t(ndarray): 1時間当たりの空気搬送ファンの稼働時間 (h/h)
V_fan_P0(float): 空気搬送ファンの送風機特性曲線において機外静圧をゼロとした時の空気搬送ファンの風量 (m3/h)
Returns:
ndarray: 1時間当たりの空気搬送ファンの風量 (m3/h)
"""
V_fan_d_t = V_fan_P0 * t_fan_d_t
return V_fan_d_t
|
01d62dcdf4ca04ecd2fa6b70e3a3b7c9aec624dc
| 28,051
|
def sqrt(pop):
"""
Returns square root of length of list
:param pop: List
:return: Square root of size of list
"""
return len(pop) ** 0.5
|
877ae17cbe2cdd3a5f5b2cb03fc8d0b7af48c916
| 28,052
|
def complete(ans):
"""
:param ans: string
:return: boolean
"""
for i in ans:
if i == '-':
return False
return True
|
1cc423d2e532b25987f44c2dcd164192d548df07
| 28,053
|
def dict_subtract(d1, d2):
"""Subtract dictionary d1 from dictionary d2, to yield a new dictionary d."""
d = {}
for key, val in d1.iteritems():
if key not in d2:
d[key] = val
return d
|
baf8db2b5c0ff4be7d61effad388f6d9e8edd5c3
| 28,054
|
import requests
def __get_embedded_openload_url(url):
"""
url example:
https://openloads.co/c2/m2ZUtv0ylvY/filename.mp4
"""
url = url.replace(' ', '')
embed_url = "https://openload.co/embed/{0}"
try:
media_id = url.split('/')[4]
r = requests.get(embed_url.format(media_id))
if (r.status_code == 200):
return embed_url.format(media_id)
except:
return False
|
2baaa1d8b44722af81562cdb447951530c9fadc0
| 28,055
|
import numpy
def index_to_mask(x,n=100):
"""
Converts the list of indices x into a (nx1) boolean mask, true at those particular indices
"""
nrange=numpy.arange(n)
boole = numpy.zeros(nrange.shape, dtype=bool)
for xi in x: boole += nrange==xi
return boole
|
da460820c38ceede2d1495c6186ffd1e8a6a7e6b
| 28,056
|
import re
def is_hex_color(color: str) -> bool:
"""
Checks if a given color string is a valid hex color
:param color:
:return:
"""
match = re.search(r"^#(?:[0-9a-fA-F]{3}){1,2}$", color)
if not match:
return False
return True
|
a86632883ccc05bc393b1b310c0fdf2eff559e55
| 28,057
|
import logging
def get_logger(name):
"""
Retrieves a logger.
:param name: The name of the logger
:returns: The requested logger
:rtype: logging.getLogger instance
"""
log = logging.getLogger(name)
log.setLevel(logging.ERROR)
return log
|
45d36a78d1a076123a93b3460774056685befc1e
| 28,058
|
def str2ascii_arr(name):
"""
0-255
"""
arr = [ord(c) for c in name]
return arr, len(arr)
|
fd3917a052bc60166aad6ca2a1a4b19154eda108
| 28,059
|
def find_ranges_index(ranges, item):
"""Find the index where an entry *may* be."""
lo = 0
hi = len(ranges)
while lo < hi:
mid = (lo + hi) // 2
test = ranges[mid]
try:
test = test[1]
except TypeError:
pass
if item > test:
lo = mid + 1
else:
hi = mid
return lo
|
55815410b96a3591f8389880a3606d9849e4ce9d
| 28,060
|
def get_cls_db(db_name):
"""
Get benchmark dataset for classification
"""
if db_name.lower() == 'cls_davis':
return './dataset/classification/DAVIS'
elif db_name.lower() == 'cls_biosnap':
return './dataset/classification/BIOSNAP/full_data'
elif db_name.lower() == 'cls_bindingdb':
return './dataset/classification/BindingDB'
|
89cf36b94299e4a4e1b2a4880ae1e891e37e77ac
| 28,061
|
import random
def random_mac():
"""Return a random Ethernet MAC address
@link https://www.iana.org/assignments/ethernet-numbers/ethernet-numbers.xhtml#ethernet-numbers-2
"""
head = "ca:fe:"
hex_digits = '0123456789abcdef'
tail = ':'.join([random.choice(hex_digits) + random.choice(hex_digits) for _ in range(4)])
return head + tail
|
0cace2b7928a9df1b0faea33e9df27b478c9eea7
| 28,063
|
import subprocess
def env_run(env_path, command, *args, **kwargs):
"""
Run a command on the context of the virtual environment at
the specified path.
"""
return subprocess.run([env_path/"bin"/command] + list(args), **kwargs).returncode == 0
|
ff34f0ee37ad2c4f9c171d3a27ccaa74b1ed4b7b
| 28,064
|
import pandas
def timestamp2period(ts):
"""Get 6-hour period around timestamp
Taking a timestamp, take the 6-hour period starting at the most recent
analysis, containing the requested timestamp. That will be the
period [ts.hour//6, ts.hour//6+6].
Args:
ts: pandas.Timestamp
"""
return pandas.Period(ts.floor("6H"), "6H")
|
622cb45693c9a9261afbea0cddf432db0a14cb59
| 28,065
|
import sys
def getPythonContainers(meth):
"""Walk up the Python tree from method 'meth', finding its class, its module
and all containing packages."""
containers = []
containers.append(meth.im_class)
moduleName = meth.im_class.__module__
while moduleName is not None:
module = sys.modules.get(moduleName, None)
if module is None:
module = __import__(moduleName)
containers.append(module)
moduleName = getattr(module, '__module__', None)
return containers
|
ec5e5563ecf2905b7c037d966bde8f4f7239bcdf
| 28,066
|
def remap_CIELab(image):
"""
INPUT:
image: the image to be remapped. The input colorspace should be CIELab
image.shape=(image_x, image_y, 3)
OUTPUT:
an image where the L a and b layers are scaled to be between 0 and 1 for most frequently used colors.
they could however be beyond the scale! (this colorspace is called CIEL*a*b* from now on)
"""
# Normalize image so that all layers are between 0 - 1 (this is to fit the hole rgb part of the LAB space in a unit-cube)
# Max(L) = 99.6549222328
# Max(a) = 97.9408293554
# Max(b) = 94.1970679706
# Min(L) = 0.0
# Min(a) = -85.9266517489
# Min(b) = -107.536445411
# White:
# L = 1.00000000e+02
# a = -2.45493786e-03 ~ 0
# b = 4.65342115e-03 ~ 0
# Black:
# L = 0
# a = 0
# b = 0
# Keep aspectratio constant between a and b layers, so devide both a and b by 108, and recenter around 0.5:
image[:,:,0] /= 100.
image[:,:,1] = (image[:,:,1] + 108.) / (2.*108) # take the same subset as for the b values, so the colors wont be skewed
image[:,:,2] = (image[:,:,2] + 108.) / (2.*108) # Normalize all b values
return image
|
4ee5bed4763dce56f757e686b4416ce43f01afa4
| 28,067
|
import pathlib
def get_file_size(file_path):
""" Returns file size """
file = pathlib.Path(file_path)
return file.stat().st_size
|
aa90923cd117b2b96a76c8d29d6218e3a577d5df
| 28,069
|
import os
def os_specific_env(env_var_name):
"""
Gets the operating system specific environment variable format string.
:param env_var_name: Environment variable name.
:type env_var_name: str
"""
current_os = os.environ["TEMPLATE_OS"]
if current_os.lower() == "linux":
return "${}".format(env_var_name)
else:
return "%{}%".format(env_var_name)
|
fc32fcc2d2af81d9cd1f53330368ba7f58a5ee3b
| 28,070
|
import pandas
def df_getitem_tuple_at_codegen(self, row, col):
"""
Example of generated implementation:
def _df_getitem_tuple_at_impl(self, idx):
row, _ = idx
data = self._dataframe._data[1][0]
res_data = pandas.Series(data, index=self._dataframe.index)
return res_data.at[row]
"""
func_lines = ['def _df_getitem_tuple_at_impl(self, idx):',
' row, _ = idx']
check = False
for i in range(len(self.columns)):
if self.columns[i] == col:
col_loc = self.column_loc[col]
type_id, col_id = col_loc.type_id, col_loc.col_id
check = True
func_lines += [
f' data = self._dataframe._data[{type_id}][{col_id}]',
f' res_data = pandas.Series(data, index=self._dataframe.index)',
' return res_data.at[row]',
]
if check == False: # noqa
raise KeyError('Column is not in the DataFrame')
func_text = '\n'.join(func_lines)
global_vars = {'pandas': pandas}
return func_text, global_vars
|
c785a9ce7a8879df43945dfb4224d7f897261cb4
| 28,072
|
import math
def deRuiter_radius(src1, src2):
"""Calculates the De Ruiter radius for two sources"""
# The errors are the square root of the quadratic sum of
# the systematic and fitted errors.
src1_ew_uncertainty = math.sqrt(src1.ew_sys_err**2 + src1.error_radius**2) / 3600.
src1_ns_uncertainty = math.sqrt(src1.ns_sys_err**2 + src1.error_radius**2) / 3600.
src2_ew_uncertainty = math.sqrt(src2.ew_sys_err**2 + src2.error_radius**2) / 3600.
src2_ns_uncertainty = math.sqrt(src2.ns_sys_err**2 + src2.error_radius**2) / 3600.
ra_nom = ((src1.ra - src2.ra) * math.cos(math.radians(0.5 * (src1.dec + src2.dec))))**2
ra_denom = src1_ew_uncertainty**2 + src2_ew_uncertainty**2
ra_fac = ra_nom / ra_denom
dec_nom = (src1.dec - src2.dec)**2
dec_denom = src1_ns_uncertainty**2 + src2_ns_uncertainty**2
dec_fac = dec_nom / dec_denom
dr = math.sqrt(ra_fac + dec_fac)
return dr
|
55c7f174b61c249427f09cec3c885c049f1d38dc
| 28,075
|
import logging
def get_job_source_code_hashes(self, job_info, provider, job_key, index, job_id=0, received_block_number=None):
"""Source_code_hashes of the completed job is obtained from its event."""
if received_block_number is None:
received_block_number = self.get_deployed_block_number()
to_block = "latest"
else:
to_block = int(received_block_number)
try:
event_filter = self._eBlocBroker.events.LogJob.createFilter(
fromBlock=int(received_block_number),
toBlock=to_block,
argument_filters={"provider": str(provider)},
)
logged_jobs = event_filter.get_all_entries()
for logged_job in logged_jobs:
if logged_job.args["jobKey"] == job_key and logged_job.args["index"] == int(index):
job_info.update({"source_code_hash": logged_job.args["sourceCodeHash"]})
return job_info
except Exception as e:
logging.error(f"E: Failed to get_Job_source_code_hash: {e}")
raise
|
d38f02e328500853180f1d50d7629cd5e1be8328
| 28,076
|
from typing import Dict
def extract_method_arguments(line: str) -> Dict[str, str]:
"""Read method arguments from text"""
# Use the method call to break the string
arguments_str = line.split("(")[1].split(")")[0]
if not arguments_str:
return {}
args = {}
for entry in arguments_str.split(","):
type_, argname = entry.strip().split()
args[argname.strip()] = type_.strip()
return args
|
9f3ca90775933b2b32549d7bf12f5c407181bd2d
| 28,079
|
def twitterMatrix(db, query):
"""Run a Cypher query that returns pairs of Twitter screen_names lists of others to which they are linked."""
def matrix_query_as_list(tx):
return list(tx.run(query))
with db.session() as session:
result = session.read_transaction(matrix_query_as_list)
screen_names = [record[0] for record in result if record[0]]
name_set = set(screen_names)
def get_row(row):
row_names = set(result[row][1]).intersection(name_set)
return [float(1 & (i in row_names)) for i in screen_names]
return screen_names, [get_row(i) for i in range(len(screen_names))]
|
ceab8245b976a09362f97b7bcb0eb2ac1463e0d8
| 28,080
|
def flatten(list_of_lists):
"""List[List[X]] -> List[X]"""
return sum(list_of_lists, [])
|
8f75134151897bcb58eb5524a40ad2dd515ee49a
| 28,081
|
def regions_to_compound_region(regions):
"""Create compound region from list of regions, by creating the union.
Parameters
----------
regions : `~regions.Regions`
List of regions.
Returns
-------
compound : `~regions.CompoundSkyRegion` or `~regions.CompoundPixelRegion`
Compound sky region
"""
region_union = regions[0]
for region in regions[1:]:
region_union = region_union.union(region)
return region_union
|
51c0844c30b0ec32f547e6922bf22508e8f066cf
| 28,082
|
def fix_data(text):
"""Add BOS and EOS markers to sentence."""
if "<s>" in text and "</s>" in text:
# This hopes that the text has been correct pre-processed
return text
sentences = text.split("\n")
# Removing any blank sentences data
sentences = ["<s> " + s + " </s>" for s in sentences if len(s.strip()) > 0]
return " ".join(sentences)
|
b502784e9e8fa8875030730595dcaaae66e2f31b
| 28,083
|
import base64
def b64_encode(value: bytes) -> bytes:
"""
URL safe base 64 encoding of a value
:param value: bytes
:return: bytes
"""
return base64.urlsafe_b64encode(value).strip(b"=")
|
40a7dfbec7ec390a71cdacc5ab54ce8e2a092754
| 28,084
|
import subprocess
def safe_subprocess(command_array):
"""Executes shell command. Do not raise
Args:
command_array (list): ideally an array of string elements, but
may be a string. Will be converted to an array of strings
Returns:
bool, str: True/False (command succeeded), command output
"""
try:
# Ensure all args are strings
if isinstance(command_array, list):
command_array_str = [str(x) for x in command_array]
else:
command_array_str = [str(command_array)]
return True, subprocess.check_output(command_array_str,
stderr=subprocess.STDOUT)
except OSError as ex:
return False, ex.__str__()
except subprocess.CalledProcessError as ex:
return False, ex.output
|
fa7d6b0c1045f865bc3c888f8f751507120f86a9
| 28,087
|
def _get_tap(baseVal, powerVal):
"""Retrieve pre-defined list of tap sequences for a given base & power, or raise ValueError.
"""
if not baseVal in [2,3,5,9]:
raise ValueError('baseVal must be in [2,3,5,9], not %s' % str(baseVal))
tap = []
if baseVal == 2:
if powerVal == 2:
tap = [[1,2]]
elif powerVal == 3:
tap = [[1,3], [2,3]]
elif powerVal == 4:
tap = [[1,4], [3,4]]
elif powerVal == 5:
tap = [[2,5], [3,5], [1,2,3,5], [2,3,4,5], [1,2,4,5], [1,3,4,5]]
elif powerVal == 6:
tap = [[1,6], [5,6], [1,2,5,6], [1,4,5,6], [1,3,4,6], [2,3,5,6]]
elif powerVal == 7:
tap = [[1,7], [6,7], [3,7], [4,7], [1,2,3,7], [4,5,6,7], [1,2,5,7], [2,5,6,7],
[2,3,4,7], [3,4,5,7], [1,3,5,7], [2,4,6,7], [1,3,6,7], [1,4,6,7],
[2,3,4,5,6,7], [1,2,3,4,5,7], [1,2,4,5,6,7], [1,2,3,5,6,7] ]
elif powerVal == 8:
tap = [[1,2,7,8], [1,6,7,8], [1,3,5,8], [3,5,7,8], [2,3,4,8], [4,5,6,8],
[2,3,5,8], [3,5,6,8], [2,3,6,8], [2,5,6,8], [2,3,7,8], [1,5,6,8],
[1,2,3,4,6,8], [2,4,5,6,7,8], [1,2,3,6,7,8], [1,2,5,6,7,8] ]
elif powerVal == 9:
tap = [[4,9], [5,9], [3,4,6,9], [3,5,6,9], [4,5,8,9], [1,4,5,9], [1,4,8,9],
[1,5,8,9], [2,3,5,9], [4,6,7,9], [5,6,8,9], [1,3,4,9], [2,7,8,9],
[1,2,7,9], [2,4,7,9], [2,5,7,9], [2,4,8,9], [1,5,7,9], [1,2,4,5,6,9],
[3,4,5,7,8,9], [1,3,4,6,7,9], [2,3,5,6,8,9], [3,5,6,7,8,9],
[1,2,3,4,6,9], [1,5,6,7,8,9], [1,2,3,4,8,9], [1,2,3,7,8,9],
[1,2,6,7,8,9], [1,3,5,6,8,9], [1,3,4,6,8,9], [1,2,3,5,6,9],
[3,4,6,7,8,9], [2,3,6,7,8,9], [1,2,3,6,7,9], [1,4,5,6,8,9],
[1,3,4,5,8,9], [1,3,6,7,8,9], [1,2,3,6,8,9], [2,3,4,5,6,9],
[3,4,5,6,7,9], [2,4,6,7,8,9], [1,2,3,5,7,9], [2,3,4,5,7,9],
[2,4,5,6,7,9], [1,2,4,5,7,9], [2,4,5,6,7,9], [1,3,4,5,6,7,8,9],
[1,2,3,4,5,6,8,9] ]
elif powerVal == 10:
tap = [[3,10], [7,10], [2,3,8,10], [2,7,8,10], [1,3,4,10], [6,7,9,10],
[1,5,8,10], [2,5,9,10], [4,5,8,10], [2,5,6,10], [1,4,9,10],
[1,6,9,10], [3,4,8,10], [2,6,7,10], [2,3,5,10], [5,7,8,10],
[1,2,5,10], [5,8,9,10], [2,4,9,10], [1,6,8,10], [3,7,9,10],
[1,3,7,10], [1,2,3,5,6,10], [4,5,7,8,9,10], [2,3,6,8,9,10],
[1,2,4,7,8,10], [1,5,6,8,9,10], [1,2,4,5,9,10], [2,5,6,7,8,10],
[2,3,4,5,8,10], [2,4,6,8,9,10], [1,2,4,6,8,10], [1,2,3,7,8,10],
[2,3,7,8,9,10], [3,4,5,8,9,10], [1,2,5,6,7,10], [1,4,6,7,9,10],
[1,3,4,6,9,10], [1,2,6,8,9,10], [1,2,4,8,9,10], [1,4,7,8,9,10],
[1,2,3,6,9,10], [1,2,6,7,8,10], [2,3,4,8,9,10], [1,2,4,6,7,10],
[3,4,6,8,9,10], [2,4,5,7,9,10], [1,3,5,6,8,10], [3,4,5,6,9,10],
[1,4,5,6,7,10], [1,3,4,5,6,7,8,10], [2,3,4,5,6,7,9,10], [3,4,5,6,7,8,9,10],
[1,2,3,4,5,6,7,10], [1,2,3,4,5,6,9,10], [1,4,5,6,7,8,9,10], [2,3,4,5,6,8,9,10],
[1,2,4,5,6,7,8,10], [1,2,3,4,6,7,9,10], [1,3,4,6,7,8,9,10]]
elif powerVal == 11: tap = [[9,11]]
elif powerVal == 12: tap = [[6,8,11,12]]
elif powerVal == 13: tap = [[9,10,12,13]]
elif powerVal == 14: tap = [[4,8,13,14]]
elif powerVal == 15: tap = [[14,15]]
elif powerVal == 16: tap = [[4,13,15,16]]
elif powerVal == 17: tap = [[14,17]]
elif powerVal == 18: tap = [[11,18]]
elif powerVal == 19: tap = [[14,17,18,19]]
elif powerVal == 20: tap = [[17,20]]
elif powerVal == 21: tap = [[19,21]]
elif powerVal == 22: tap = [[21,22]]
elif powerVal == 23: tap = [[18,23]]
elif powerVal == 24: tap = [[17,22,23,24]]
elif powerVal == 25: tap = [[22,25]]
elif powerVal == 26: tap = [[20,24,25,26]]
elif powerVal == 27: tap = [[22,25,26,27]]
elif powerVal == 28: tap = [[25,28]]
elif powerVal == 29: tap = [[27,29]]
elif powerVal == 30: tap = [[7,28,29,30]]
elif baseVal == 3:
if powerVal == 2:
tap = [[2,1], [1,1]]
elif powerVal == 3:
tap = [[0,1,2], [1,0,2], [1,2,2], [2,1,2]]
elif powerVal == 4:
tap = [[0,0,2,1], [0,0,1,1], [2,0,0,1], [2,2,1,1], [2,1,1,1],
[1,0,0,1], [1,2,2,1], [1,1,2,1] ]
elif powerVal == 5:
tap = [[0,0,0,1,2], [0,0,0,1,2], [0,0,1,2,2], [0,2,1,0,2], [0,2,1,1,2],
[0,1,2,0,2], [0,1,1,2,2], [2,0,0,1,2], [2,0,2,0,2], [2,0,2,2,2],
[2,2,0,2,2], [2,2,2,1,2], [2,2,1,2,2], [2,1,2,2,2], [2,1,1,0,2],
[1,0,0,0,2], [1,0,0,2,2], [1,0,1,1,2], [1,2,2,2,2], [1,1,0,1,2],
[1,1,2,0,2]]
elif powerVal == 6:
tap = [[0,0,0,0,2,1], [0,0,0,0,1,1], [0,0,2,0,2,1], [0,0,1,0,1,1],
[0,2,0,1,2,1], [0,2,0,1,1,1], [0,2,2,0,1,1], [0,2,2,2,1,1],
[2,1,1,1,0,1], [1,0,0,0,0,1], [1,0,2,1,0,1], [1,0,1,0,0,1],
[1,0,1,2,1,1], [1,0,1,1,1,1], [1,2,0,2,2,1], [1,2,0,1,0,1],
[1,2,2,1,2,1], [1,2,1,0,1,1], [1,2,1,2,1,1], [1,2,1,1,2,1],
[1,1,2,1,0,1], [1,1,1,0,1,1], [1,1,1,2,0,1], [1,1,1,1,1,1] ]
elif powerVal == 7:
tap = [[0,0,0,0,2,1,2], [0,0,0,0,1,0,2], [0,0,0,2,0,2,2], [0,0,0,2,2,2,2],
[0,0,0,2,1,0,2], [0,0,0,1,1,2,2], [0,0,0,1,1,1,2], [0,0,2,2,2,0,2],
[0,0,2,2,1,2,2], [0,0,2,1,0,0,2], [0,0,2,1,2,2,2], [0,0,1,0,2,1,2],
[0,0,1,0,1,1,2], [0,0,1,1,0,1,2], [0,0,1,1,2,0,2], [0,2,0,0,0,2,2],
[0,2,0,0,1,0,2], [0,2,0,0,1,1,2], [0,2,0,2,2,0,2], [0,2,0,2,1,2,2],
[0,2,0,1,1,0,2], [0,2,2,0,2,0,2], [0,2,2,0,1,2,2], [0,2,2,2,2,1,2],
[0,2,2,2,1,0,2], [0,2,2,1,0,1,2], [0,2,2,1,2,2,2] ]
elif baseVal == 5:
if powerVal == 2:
tap = [[4,3], [3,2], [2,2], [1,3]]
elif powerVal == 3:
tap = [[0,2,3], [4,1,2], [3,0,2], [3,4,2], [3,3,3], [3,3,2], [3,1,3],
[2,0,3], [2,4,3], [2,3,3], [2,3,2], [2,1,2], [1,0,2], [1,4,3], [1,1,3]]
elif powerVal == 4:
tap = [[0,4,3,3], [0,4,3,2], [0,4,2,3], [0,4,2,2], [0,1,4,3], [0,1,4,2],
[0,1,1,3], [0,1,1,2], [4,0,4,2], [4,0,3,2], [4,0,2,3], [4,0,1,3],
[4,4,4,2], [4,3,0,3], [4,3,4,3], [4,2,0,2], [4,2,1,3], [4,1,1,2],
[3,0,4,2], [3,0,3,3], [3,0,2,2], [3,0,1,3], [3,4,3,2], [3,3,0,2],
[3,3,3,3], [3,2,0,3], [3,2,2,3], [3,1,2,2], [2,0,4,3], [2,0,3,2],
[2,0,2,3], [2,0,1,2], [2,4,2,2], [2,3,0,2], [2,3,2,3], [2,2,0,3],
[2,2,3,3], [2,1,3,2], [1,0,4,3], [1,0,3,3], [1,0,2,2], [1,0,1,2],
[1,4,1,2], [1,3,0,3], [1,3,1,3], [1,2,0,2], [1,2,4,3], [1,1,4,2]]
elif baseVal == 9:
if powerVal == 2:
tap = [[1,1]]
if not tap:
raise ValueError('M-sequence %.0f^%.0f is not defined by this function' % (baseVal, powerVal))
return tap
|
dc40edf1a09d5ad7fa76945a31b13570eacddb64
| 28,088
|
def comment_scalar(a_dict, key):
"""Comment out a scalar in a ConfigObj object.
Convert an entry into a comment, sticking it at the beginning of the section.
Returns: 0 if nothing was done.
1 if the ConfigObj object was changed.
"""
# If the key is not in the list of scalars there is no need to do anything.
if key not in a_dict.scalars:
return 0
# Save the old comments
comment = a_dict.comments[key]
inline_comment = a_dict.inline_comments[key]
if inline_comment is None:
inline_comment = ''
# Build a new inline comment holding the key and value, as well as the old inline comment
new_inline_comment = "%s = %s %s" % (key, a_dict[key], inline_comment)
# Delete the old key
del a_dict[key]
# If that was the only key, there's no place to put the comments. Do nothing.
if len(a_dict.scalars):
# Otherwise, put the comments before the first entry
first_key = a_dict.scalars[0]
a_dict.comments[first_key] += comment
a_dict.comments[first_key].append(new_inline_comment)
return 1
|
f2121caa4e58ec88527ae128a0ac9669efa066d7
| 28,089
|
from datetime import datetime
def xml2date(s):
"""Convert XML time string to python datetime object"""
return datetime.strptime(s[:22]+s[23:], '%Y-%m-%dT%H:%M:%S%z')
|
762480533d8e64544b4b4c4c67093098dcfebb56
| 28,091
|
import numpy
def _find_next_batch(
example_to_file_indices, num_examples_per_batch, next_example_index):
"""Determines which examples are in the next batch.
E = total number of examples
:param example_to_file_indices: length-E numpy array of indices. If
example_to_file_indices[i] = j, the [i]th example comes from the [j]th
file.
:param num_examples_per_batch: Number of examples per batch.
:param next_example_index: Index of next example to be used.
:return: batch_indices: 1-D numpy array with indices of examples
in the next batch.
"""
num_examples = len(example_to_file_indices)
if next_example_index >= num_examples:
return None
first_index = next_example_index
last_index = min([
first_index + num_examples_per_batch - 1,
num_examples - 1
])
batch_indices = numpy.linspace(
first_index, last_index, num=last_index - first_index + 1, dtype=int
)
file_index = example_to_file_indices[next_example_index]
subindices = numpy.where(
example_to_file_indices[batch_indices] == file_index
)[0]
batch_indices = batch_indices[subindices]
if len(batch_indices) == 0:
batch_indices = None
return batch_indices
|
8a38521630cb701cb695a06aa8db697fd8307525
| 28,095
|
def rivers_with_stations(stations):
"""Returns a set with the names of any rivers with a monitoring station"""
counter = 0
valid_rivers = set()
while counter < len(stations):
valid_rivers.add(stations[counter].river)
counter += 1
if counter > 200000:
break
else:
pass
return valid_rivers
|
2003b12a875cd34b6faa85f564da56dff679dc99
| 28,096
|
def min(x, y):
"""Minimum"""
return min(x, y)
|
8c6b242ae050cd1e80102677a043735fdf05be34
| 28,097
|
import os
def _absolute_template_path(fn):
"""
Return absolute path for filename from local ``xslt/`` directory.
Args:
fn (str): Filename. ``MARC21slim2MODS3-4-NDK.xsl`` for example.
Returns:
str: Absolute path to `fn` in ``xslt`` dicretory..
"""
return os.path.join(os.path.dirname(__file__), "xslt", fn)
|
ef9c46fe965cbf5e37ca66c186e4fcc44c004df8
| 28,098
|
def solution(ar):
"""
Return exactly once
:param ar:
:return:
"""
xor_sum = 0
# xor cancels the same elements ie. 2 xor 2 = 0
for item in ar:
xor_sum = xor_sum ^ item
return xor_sum
|
f0370136ba87fed1b8d40ece176e23257c7757b8
| 28,099
|
import re
def format_header ( parsed_args ):
"""
parse the RVDB formatted FASTA headers and re-writes in desired format
"""
accessions = []
with open (parsed_args.inputFASTA) as infile:
reader = infile.readlines()
try:
with open (parsed_args.output, 'w') as outfile:
for line in reader:
if re.search('^>',line):
newline = line.split('|')[2:]
newline = '>gb|'+'|'.join(newline)
accessions.append(newline[0])
outfile.writelines(newline)
else: outfile.writelines(line)
except:
outfile = 'HIVE_'+parsed_args.inputFASTA
with open (outfile, 'w') as outfile:
for line in reader:
if re.search('^>',line):
newline = line.split('|')[2:]
accessions.append(newline[0])
newline = '>gb|'+'|'.join(newline)
outfile.writelines(newline)
else: outfile.writelines(line)
return accessions
|
cdc10767f36166f73e30e2c0b342db5ef8d524ec
| 28,100
|
import os
def take_checkpoint(root):
"""
Calls the perforce server and takes a snapshot
"""
cmd = 'p4d -r %s -z -jc' % root
ret = os.system(cmd)
if ret == 0:
return True
return False
|
a7c022c9b240d60b800c1ec75b5741a6a11c12f1
| 28,102
|
def atom2dict(atom, dictionary=None):
"""Get a dictionary of one of a structure's
:class:`diffpy.structure.Structure.atoms` content.
Only values necessary to initialize an atom object are returned.
Parameters
----------
atom : diffpy.structure.Structure.atom
Atom in a structure.
dictionary : dict, optional
Dictionary to update with structure atom information. If None
(default), a new dictionary is created.
Returns
-------
dictionary : dict
Dictionary with structure atoms information.
"""
if dictionary is None:
dictionary = {}
dictionary.update(
{
attribute: atom.__getattribute__(attribute)
for attribute in ["element", "label", "occupancy", "xyz", "U"]
}
)
return dictionary
|
6873c64bd39d211a43f302375d6a6c76e3bd0b7e
| 28,103
|
def get_connectivity(input_nodes):
"""Create a description of the connections of each node in the graph.
Recurrent connections (i.e. connections of a node with itself) are excluded.
Args:
input_nodes (:obj:`list` of :obj:`Node`): the input operations of
the model.
Returns:
graph (:obj:`dict` of :obj:`dict` of :obj:`set`): a description of the
graph's connectivity in terms of inbound-outbound nodes of each
node.
"""
graph = dict()
nodes = input_nodes.copy()
while len(nodes) != 0:
# select a node
current_node = nodes.pop(0)
# if no information has been collected yet, set up dict entry
if current_node not in graph:
graph[current_node] = {'inbound': set(), 'outbound': set()}
# scroll through current node's outbound nodes
for node in current_node.outbound_nodes:
# skip recurrent connections (for RNN cells)
if node == current_node:
continue
# if no information has been collected yet, set up dict entry
if node not in graph:
nodes.append(node)
graph[node] = {'inbound': set(), 'outbound': set()}
# add reciprocal connectivity information
graph[current_node]['outbound'].add(node)
graph[node]['inbound'].add(current_node)
return graph
|
ea14ff70f4c821744079219a2ec3ee50acc0483b
| 28,104
|
def get_message_with_context(msg: str, context: str) -> str:
"""
Concatenates an error message with a context. If context is empty
string, will only return the error message.
:param msg: the message
:param context: the context of the message
:return: the message with context
"""
if len(context) == 0:
return msg
else:
msg = "\t" + "\n\t".join(msg.splitlines())
return "%s\n%s" % (context, msg)
|
8d625b297ba4510fdef3476138bafd1e210fcaa6
| 28,105
|
def get_default_keras_loss_names():
"""
Get the default available losses from Keras and return them as list of strings.
:return:
"""
return ['categorical_crossentropy']
|
a26d5f8042d4728db36fa97fe838cd5437415bf8
| 28,106
|
def mean(array, axis=0):
"""Calculates standard error."""
return array.mean(axis=axis) if len(array) > 0 else 0.0
|
5ea0fe92b1a882a47d8418574978bf6adc592748
| 28,107
|
def unique(list1, list2):
"""Get the unique items that are in the first list but not in the second
list.
NOTE: unique(l1,l2) is not always equal to unique(l2,l1)
Args:
list1 (list): A list of elements.
list2 (list): A list of elements.
Returns:
list: A list with the unique elements.
Examples:
>>> unique([1,2,3], [2,3,4])
[1]
>>> unique([2,3,4], [1,2,3])
[4]
"""
return list(set(list1) - set(list2))
|
9e870319287ef7296cb5f54dc1089dc676ecc553
| 28,109
|
def all_belong(candidates,checklist):
"""Check whether a list of items ALL appear in a given list of options.
Returns a single 1 or 0 value."""
return 1-(0 in [x in checklist for x in candidates])
|
05aca77653dad3cd8221a66f45493aa53cb93654
| 28,110
|
from six import PY2
import sys
def write_bytes_to_stdout(b):
"""Write bytes (python 3) or string (python 2) to stdout."""
if PY2:
return sys.stdout.write(b)
else:
return sys.stdout.buffer.write(b)
|
533d4c7f55adf890269334dd52bfc8e787d6aae4
| 28,111
|
def get_classes(module, superclass=None):
"""
Return a list of new-style classes defined in *module*, excluding
_private and __magic__ names, and optionally filtering only those
inheriting from *superclass*. Note that both arguments are actual
modules, not names.
This method only returns classes that were defined in *module*.
Those imported from elsewhere are ignored.
"""
objects = [
getattr(module, name)
for name in dir(module)
if not name.startswith("_")]
# filter out everything that isn't a new-style
# class, or wasn't defined in *module* (ie, it
# is imported from somewhere else)
classes = [
obj for obj in objects
if isinstance(obj, type) and (obj.__module__ == module.__name__)
]
# if a superclass was given, filter the classes
# again to remove those that aren't its subclass
if superclass is not None:
classes = [
cls for cls in classes
if issubclass(cls, superclass)]
return classes
|
9b31c7179a29b148e8e7503fa8bc06282e1248b4
| 28,112
|
from hashlib import md5 as _md5
def get_filesize_and_checksum(filename):
"""Opens the file with the passed filename and calculates
its size and md5 hash
Args:
filename (str): filename to calculate size and checksum for
Returns:
tuple (int,str): size of data and its md5 hash
"""
md5 = _md5()
size = 0
with open(filename, "rb") as f:
for chunk in iter(lambda: f.read(4096), b""):
md5.update(chunk)
size += len(chunk)
return (size, str(md5.hexdigest()))
|
b8e1c0dc6bcb9785d2c6f47dbebe6ccedf18b1af
| 28,113
|
def to_datetimepicker_format(python_format_string):
"""
Given a python datetime format string, attempts to convert it to
the nearest PHP datetime format string possible.
"""
python2PHP = {
"%a": "D",
"%A": "l",
"%b": "M",
"%B": "F",
"%c": "",
"%d": "d",
"%H": "H",
"%I": "h",
"%j": "z",
"%m": "m",
"%M": "i",
"%p": "A",
"%S": "s",
"%U": "",
"%w": "w",
"%W": "W",
"%x": "",
"%X": "",
"%y": "y",
"%Y": "Y",
"%Z": "e",
}
php_format_string = python_format_string
for py, php in python2PHP.items():
php_format_string = php_format_string.replace(py, php)
return php_format_string
|
525563b4857e8cedb90c4180ee959b2c408ac92c
| 28,115
|
import os
def _image_file_path(instance, filename):
"""Returns the subfolder in which to upload images for articles. This results in media/article/img/<filename>"""
return os.path.join(
'article', str(instance.article.pk), 'images', filename
)
|
f917666d7704f005e776ca75ecb296c5b1508be4
| 28,116
|
def getNameToIdDict(tree):
"""Get a mapping from name to id for an nxtree. Will be invalid if
changes are made to the tree.
"""
ret = {}
for id in tree.postOrderTraversal():
if tree.hasName(id):
ret[tree.getName(id)] = id
return ret
|
a94f6f9a90c1874c3f07f20e2e096929c923b60e
| 28,117
|
def get_boundary():
"""
Before I used:
boundary = mimetools.choose_boundary()
But that returned some "private" information:
'127.0.0.1.1000.6267.1173556103.828.1'
Now I simply return a fixed string which I generated once and now re-use
all the time.
There is a reason for having a fixed boundary! When comparing two fuzzable
requests it's easier to do it if the boundaries are static. This allows
get_request_hash() to work as expected.
The problem with fixed boundaries is that they might be used to fingerprint
w3af, or that they might appear in the data we send to the wire and break
the request.
:return:
"""
return 'b08c02-53d780-e2bc43-1d5278-a3c0d9-a5c0d9'
|
82c70fe3b03de09f654aebe80691d235fadba4d0
| 28,118
|
def rebase(input_base, digits, output_base):
"""
Change digits of a number from input base to output base
"""
if input_base < 2:
raise ValueError("input base must be >= 2")
if any(map(lambda x: x < 0 or x >= input_base, digits)):
raise ValueError("all digits must satisfy 0 <= d < input base")
if output_base < 2:
raise ValueError("output base must be >= 2")
base10 = 0
for index, digit in enumerate(digits[::-1]):
base10 += digit * input_base ** index
result = []
while base10 != 0:
result.append(base10 % output_base)
base10 //= output_base
return result[::-1] if result else [0]
|
8a242dae905559e8048cfb92e053bae5a8dde596
| 28,119
|
import json
def parse_json(s, **kwargs):
""" Wrapper to read JSON, stubbed for now """
return json.loads(s, **kwargs)
|
1e22fcfbb8d2b6a61d74f5cf2f2ea4fb537bf21b
| 28,120
|
import random
def generator_random_email():
"""生成随机的10位数邮箱
:return:
Examples:
| ${email} | Generator Random Email |
=>
| ${email} = 45tghmju79@email.com
"""
char_num = [a for a in range(0, 10)]
char_lower_case = list('abcdefghijklmnopqrstuvwxyz')
char_capital = list('abcdefghijklmnopqrstuvwxyz'.upper())
char_list = char_num + char_lower_case + char_capital
email_first = ''
for i in range(0, 10):
random_index = random.randint(0, len(char_list) - 1)
email_first += str(char_list[random_index])
email_second_list = ['@qq.com', '@mo9.com', '@gmail.com', '@163.com']
email_second = email_second_list[random.randint(0, len(email_second_list) - 1)]
email = email_first + email_second
return email
|
8d0ec38d614f67c06ce200afc88e6286d5ba82cd
| 28,121
|
def rotate_convert(value) -> int:
"""
:param value:midi values: 1-63 plus
65-127 minus
:return: value to add
"""
if value & 64:
return -(value - 64)
else:
return value
|
435048382ded63201da93654d4ab679534cd75f6
| 28,122
|
def convert_string(data_to_convert):
"""
Parse ASCII string from byte array
:param data_to_convert: Input byte array
:return: Parsed string
"""
return data_to_convert[2:].decode('hex')
|
3bd234db7793d9d694e6c40f74f1acfcc09ca60f
| 28,125
|
import os
import sqlite3
def get_properties(elt):
"""
Retrieve properties of an element such as its density, lattice constant, etc. as a dictionary
If no information is found in the database then at least Element, Z and mass will be returned
Examples
--------
> get_properties("C")
{'Element': 'C', 'Z': 6, 'mass': 12.010735896764459}
> get_properties("Si")
{'Element': 'Si',
'Q': 0.78,
'Z': 14,
'density': 5e+22,
'ion_nrj': 8.15,
'lattice_const': 5.431,
'lattice_type': 'diamond_fcc',
'mass': 28.085498706418875,
'sublim_nrj': 4.63,
'work_func': 4.85}
"""
DB_PATH = os.path.join(os.path.abspath(os.path.join(__file__,"../..")),"data", "elements.db")
conn = sqlite3.connect(DB_PATH)
c = conn.cursor()
c.execute("SELECT * from properties where Element='{}'".format(elt))
res = c.fetchone()
r = {}
if res:
for idx, col in enumerate(c.description):
r[col[0]] = res[idx]
else:
res = c.execute("SELECT mass,abund,symbol,Z from elements where symbol='{}'".format(elt))
if res:
row = res.fetchall()
r['Element'] = row[0][2]
r['Z'] = row[0][3]
r['mass'] = sum([x[0]*x[1] for x in row])
return r
|
8e820aa22f501437bd4a6fd8115ca4245ef70d76
| 28,128
|
def exception_str(exc):
"""Call this to get the exception string associated with the given exception
or tuple of the form (exc, traceback) or (exc_class, exc, traceback).
"""
if isinstance(exc, tuple) and len(exc) == 3:
return str(exc[1])
return str(exc)
|
eb3729cc49a5e346fbd9c064f2fe0fc4ef4bd2c2
| 28,129
|
def sanityCheck(url):
"""
Checks for a valid url pattern, and returns True if valid, False otherwise
url: string
valid: boolean
"""
splitted_url = url.split('/')
valid = False
try:
if splitted_url[0] == "https:" and splitted_url[1] == "" and splitted_url[2] == "github.com" and splitted_url[4].split('.')[1] == "git":
valid = True
except:
pass
return valid
|
21fc0fe52803ad010a0c5ca06aa3dfe750df4518
| 28,130
|
def xidz(numerator, denominator, value_if_denom_is_zero):
"""
Implements Vensim's XIDZ function.
This function executes a division, robust to denominator being zero.
In the case of zero denominator, the final argument is returned.
Parameters
----------
numerator: float
denominator: float
Components of the division operation
value_if_denom_is_zero: float
The value to return if the denominator is zero
Returns
-------
numerator / denominator if denominator > 1e-6
otherwise, returns value_if_denom_is_zero
"""
small = 1e-6 # What is considered zero according to Vensim Help
if abs(denominator) < small:
return value_if_denom_is_zero
else:
return numerator * 1.0 / denominator
|
45782f957c56a0f91528d6d945c5d7887fd68e95
| 28,131
|
def mock_exists(file_map, fn):
""" mock os.path.exists() """
return (fn in file_map)
|
f68741c4bd4da3e5f4d32dce1ef9c249495c8f5a
| 28,132
|
def linear_function(x,m,b):
"""
Get the y value of a linear function given the x value.
Args:
m (float): the slope
b (float): the intercept
Returns:
The expected y value from a linear function at some specified x value.
"""
return m*x + b
|
929882eb3f3e4b0767458c63ed17ca67fc6ab17f
| 28,133
|
def pp_timestamp(t):
"""
Get a friendly timestamp represented as a string.
"""
if t is None:
return ''
h, m, s = int(t / 3600), int(t / 60 % 60), t % 60
return "%02d:%02d:%05.2f" % (h, m, s)
|
d1766cabcff9f09c145d98536900e9a82e734f63
| 28,139
|
import numpy
def pt2numpy(pt):
"""Translate WKT Raster pixel type to NumPy data type"""
numpytypes = {
'8BUI' : numpy.uint8,
'16BSI' : numpy.int16,
'16BUI' : numpy.uint16,
'32BSI' : numpy.int32,
'32BUI' : numpy.uint32,
'32BF' : numpy.float32,
'64BF' : numpy.float64
}
return numpytypes.get(pt, numpy.uint8)
|
ec5dad598da7ac2604dda7bf7e9cf2842006e493
| 28,140
|
def remove_hook_words(text, hook_words):
"""
removes hook words from text with one next word
for text = "a b c d e f"
and hook_words = ['b', 'e']
returns "a d" (without b, e and next words)
"""
words = text.split()
answer = []
k = 0
while k < len(words):
if words[k] in hook_words:
k += 2
else:
answer.append(words[k])
k += 1
return ' '.join(answer)
|
aaa1706fe7d9322d900ef346f3189824d06f8df2
| 28,142
|
def Farm_Loc(player):
"""farm location function"""
player.coins += 3
return (player)
|
849e452774ea2446d4c6972044c1d6c2777b6554
| 28,144
|
def simdata2obsconditions(sim):
"""Pack simdata observation conditions into a dictionary.
Parameters
----------
simdata : Table
Simulation data table.
Returns
-------
obs : dict
Observation conditions dictionary.
"""
obs = dict(AIRMASS=sim.airmass,
EXPTIME=sim.exptime,
MOONALT=sim.moonalt,
MOONFRAC=sim.moonfrac,
MOONSEP=sim.moonsep,
SEEING=sim.seeing)
return obs
|
3a3d5ab351842d53e5c753b83f09ac68de1a9b55
| 28,145
|
import socket
def get_real_ip():
"""
Attempts to get the IP address that's used for interesting things.
"""
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
try:
s.connect(("8.8.8.8", 53))
except:
return False
ip_address = s.getsockname()[0]
first_octet = ip_address.split('.')
if first_octet != '127' and first_octet != '169':
return ip_address
else:
return False
|
56de5f9fa00a083fc1682f70d500486c99147aad
| 28,146
|
def is_u2f_enabled(user):
"""
Determine if a user has U2F enabled
"""
return user.u2f_keys.all().exists()
|
39b3b93e03eee230fc978ad5ec64ba4965b2d809
| 28,149
|
def extend_feature_columns(feature_columns):
""" Use to define additional feature columns, such as bucketized_column and crossed_column
Default behaviour is to return the original feature_column list as is
Args:
feature_columns: [tf.feature_column] - list of base feature_columns to be extended
Returns:
[tf.feature_column]: extended feature_column list
"""
# examples - given:
# 'x' and 'y' are two numeric features:
# 'alpha' and 'beta' are two categorical features
# feature_columns['alpha_X_beta'] = tf.feature_column.crossed_column(
# [feature_columns['alpha'], feature_columns['beta']], int(1e4))
#
# num_buckets = parameters.HYPER_PARAMS.num_buckets
# buckets = np.linspace(-2, 2, num_buckets).tolist()
#
# feature_columns['x_bucketized'] = tf.feature_column.bucketized_column(
# feature_columns['x'], buckets)
#
# feature_columns['y_bucketized'] = tf.feature_column.bucketized_column(
# feature_columns['y'], buckets)
#
# feature_columns['x_bucketized_X_y_bucketized'] = tf.feature_column.crossed_column(
# [feature_columns['x_bucketized'], feature_columns['y_bucketized']], int(1e4))
return feature_columns
|
11d0c77331745719d445f7926f041e2fe1c70903
| 28,150
|
import torch
def max_matching(scores):
""" Matching according to maximum similarity.
Input matrix shape: [D, T] (dim=0)
Return ids shape: [T]
"""
ids = scores.new_full((scores.size(1), ), -1).long()
# assume t2d
t2d_max, t2d_idxs = scores.max(dim=0)
match_t_idxs = torch.nonzero(t2d_max > 0).squeeze(1)
if match_t_idxs.shape[0] == 0:
return ids
t2d_max = t2d_max[match_t_idxs.tolist()]
t2d_idxs = t2d_idxs[match_t_idxs.tolist()]
_, d2t_idxs = scores[:, match_t_idxs].max(dim=1)
flag_d2t = d2t_idxs[t2d_idxs].long()
flag_t2d = torch.arange(t2d_idxs.size(0)).to(scores.device)
is_match = (flag_d2t == flag_t2d)
if not is_match.all():
true_match_t_idxs = torch.nonzero(is_match == 1).squeeze(1)
ids[match_t_idxs[true_match_t_idxs]] = t2d_idxs[true_match_t_idxs]
scores[t2d_idxs[true_match_t_idxs], :] = 0
unmatch_t_idxs = torch.nonzero(is_match == 0).squeeze(1)
_ids = max_matching(scores[:, match_t_idxs[unmatch_t_idxs]])
ids[match_t_idxs[unmatch_t_idxs]] = _ids
else:
ids[match_t_idxs] = t2d_idxs
return ids
|
63bf51639050371d55bcd3413738c26e82c878f2
| 28,151
|
def get_initial_user_settings(argv):
"""
Parses the given command line arguments to extract the user's desired
user_set_speed and safe_distance.
If a value is not given then None is returned in place of that value.
>>> get_initial_user_settings(["speed=20", "distance=150"])
(20, 150)
>>> get_initial_user_settings(["foo", "distance=150"])
(None, 150)
:param list[str] argv: The command line arguments to parse.
:return: A tuple containing the desired user_set_speed and safe_distance.
:rtype: tuple[int, int]
"""
user_set_speed = None
safe_distance = None
for a in argv[1:]:
splitted = a.split("=")
if splitted[0] == "speed":
user_set_speed = int(splitted[1])
elif splitted[0] == "distance":
safe_distance = int(splitted[1])
return user_set_speed, safe_distance
|
058c5543688646a37e61a5e8f6e0b1f6abd5eacf
| 28,152
|
def clean_data(players):
"""Sanitize the list of player data."""
cleaned_players = []
for player in players:
cleaned_player = {}
for key, value in player.items():
cleaned_value = value
if key == "height":
cleaned_value = int(value[0:2])
elif key == "experience":
cleaned_value = value == "YES"
elif key == "guardians":
cleaned_value = value.split(" and ")
cleaned_player[key] = cleaned_value
cleaned_players.append(cleaned_player)
return cleaned_players
|
88836eb154ff1a3cb32c567634adf813ac234de6
| 28,153
|
def _jupyter_server_extension_paths():
"""python module to load as extension"""
return [{"module": "ipydrawio_export"}]
|
a4a3cf100b8cfeb6acec9ff0d1482f2fe1587068
| 28,154
|
import argparse
import os
def parse_args():
""" Parse arguments for program
"""
parser = argparse.ArgumentParser(description="Program for renaming files")
parser.add_argument("find",help="Find pattern")
parser.add_argument("-i","--ignore_case", action="store_true", help = "Ignore case")
parser.add_argument("rename",help="Rename pattern")
parser.add_argument("-d","--directory",default=os.getcwd(), help = "Directory")
parser.add_argument("-y","--no_confirm", action="store_true", help="Don't ask for confirmation")
return parser.parse_args()
|
561ce79282688360f8122e7f89abbcf3f0d70f7d
| 28,155
|
import shutil
def exe_exists(exe):
""" Returns the full path if executable exists and is the path. None otherwise """
return shutil.which(exe)
|
38bed97a3d195e6adc8e0dba936d213828f15e2f
| 28,156
|
def is_term_mod(label):
"""Check if `label` corresponds to a terminal modification.
Parameters
----------
label : str
Returns
-------
out : bool
"""
return label[0] == '-' or label[-1] == '-'
|
c7ed745be0ab0dac54c8846bb2865832e5aa4778
| 28,157
|
def confusion_stats(set_true, set_test):
"""
Count the true positives, false positives and false
negatives in a test set with respect to a "true" set.
True negatives are not counted.
"""
true_pos = len(set_true.intersection(set_test))
false_pos = len(set_test.difference(set_true))
false_neg = len(set_true.difference(set_test))
return true_pos, false_pos, false_neg
|
401b216b1317f16a424830e71b48f1d21d603956
| 28,159
|
def verif_lettres_joueur(plateau, lettres_joueur, coup):
"""
Cette fonction renvoie True:
- Si le mot à placer appartient au lettres du joueur (lettres_joueurs)
ou
- Si une ou plusieurs lettres manquent mais sont déjà placées à la place
adéquate sur le plateau (plateau).
Sinon, la fonction renvoie False.
On pré-suppose que le mot ne dépasse pas des bornes du plateau
Arguments :
- plateau (liste) : une liste de sous-listes qui représentent
chacune une ligne du plateau de jeu.
Elles contiennent chacune, soit un underscore pour
indiquer que la case est vide, soit une lettre
si elle a déjà été placée là auparavant.
- lettres_joueur (liste) : une liste qui contient chacune
des lettres que le joueur possède sur son chevalet.
Toutes ces lettres sont en MAJUSCULE.
- coup (tuple): un tuple à 3 éléments:
- mot (str): une chaine de caractère en majuscule qui indique le mot à placer
- pos (tuple) : un tuple d'entiers (l,c) qui indiquent le numéro de ligne (l),
et le numéro de la colonne (c) de la première lettre du mot à placer
- dir (str) : un charactère (h ou v) qui indique la direction du mot
Valeurs de retour:
- bool (True ou False)
"""
re = False
ret = []
mot, pos, dir = coup
l, c = pos
if dir == 'h':
for i in range(len(mot)):
current_letter = plateau[l][c + i]
if (mot[i] in lettres_joueur) or (mot[i] == current_letter):
ret.append('True')
else:
ret.append('False')
elif dir == 'v':
for j in range(len(mot)):
current_letter = plateau[l + j][c]
if (mot[j] in lettres_joueur) or (mot[j] == current_letter):
ret.append('True')
else:
ret.append('False')
if 'False' not in ret:
re = True
return(re)
|
8a05bbe54b281afec4bc31bb6577528aa6cf3816
| 28,160
|
def get_item_nodeid(item):
"""Build item node id."""
# note: pytest's item.nodeid could be modified by third party, so build a local one here
if item.location and len(item.location) > 2:
return item.location[0].replace("\\", "/") + "::" + item.location[2].replace(".", "::")
return item.fspath.relto(item.config.rootdir).replace("\\", "/") + "::" + item.getmodpath().replace(".", "::")
|
a25594640d96dd387a4fbecc11ef874b8000faf7
| 28,161
|
def category_parents(category):
"""
Get list parents of category
:param category: Object category, product. e.g <8c8fff64-8886-4688-9a90-24f0d2d918f9>
:return: Dict | List | List categories and sub-categories. e.g.
[
{
"id": "c0136516-ff72-441a-9835-1ecb37357c41",
"name": "Sombreros y Gorros"
},
{
"id": "ff2cbe7e-a817-41d5-9363-6175bb757505",
"name": "Accesorios"
},
{
"id": "7b68e61c-516a-45b4-8eda-654f3af39e03",
"name": "ROPA MUJER"
}
]
"""
if not category.parent_category:
return []
parent_list = []
while category.parent_category:
parent_list.append({
'id': str(category.id),
'name': category.name,
}
)
category = category.parent_category
parent_list.append({
'id': str(category.id),
'name': category.name,
}
)
return parent_list
|
84616c76fb4179eb2f91600699e1f07d0de9b15f
| 28,162
|
def missingNumber(nums: list) -> int:
"""
解法2:数学公式。
"""
n = len(nums)
expected_sum = n*(n+1) // 2
actual_sum = sum(nums)
return expected_sum - actual_sum
|
ae6c0a7533e81c1c3d0e61a49298cdf551eda261
| 28,163
|
from typing import Iterable
from typing import Dict
from typing import Any
from typing import List
import collections
def _list_dict_to_dict_list(samples: Iterable[Dict[Any, Any]]) -> Dict[Any, List[Any]]:
"""Convert a list of dictionaries to a dictionary of lists.
Args:
samples: a list of dictionaries
Returns:
a dictionary of lists
.. versionadded:: 0.2
"""
collated = collections.defaultdict(list)
for sample in samples:
for key, value in sample.items():
collated[key].append(value)
return collated
|
a5bd1dea71306f5e8151f6dfcc94b96f328b6d76
| 28,165
|
def count_rule_conditions(rule_string: str) -> int:
"""
Counts the number of conditions in a rule string.
Parameters
----------
rule_string : str
The standard Iguanas string representation of the rule.
Returns
-------
int
Number of conditions in the rule.
"""
n_conditions = rule_string.count("X['")
return n_conditions
|
4dc8bc3fdc7ee4d4302101a39b7849bcd7dff6e8
| 28,166
|
def check_length_of_shape_or_intercept_names(name_list,
num_alts,
constrained_param,
list_title):
"""
Ensures that the length of the parameter names matches the number of
parameters that will be estimated. Will raise a ValueError otherwise.
Parameters
----------
name_list : list of strings.
Each element should be the name of a parameter that is to be estimated.
num_alts : int.
Should be the total number of alternatives in the universal choice set
for this dataset.
constrainted_param : {0, 1, True, False}
Indicates whether (1 or True) or not (0 or False) one of the type of
parameters being estimated will be constrained. For instance,
constraining one of the intercepts.
list_title : str.
Should specify the type of parameters whose names are being checked.
Examples include 'intercept_params' or 'shape_params'.
Returns
-------
None.
"""
if len(name_list) != (num_alts - constrained_param):
msg_1 = "{} is of the wrong length:".format(list_title)
msg_2 = "len({}) == {}".format(list_title, len(name_list))
correct_length = num_alts - constrained_param
msg_3 = "The correct length is: {}".format(correct_length)
total_msg = "\n".join([msg_1, msg_2, msg_3])
raise ValueError(total_msg)
return None
|
d83ed7d6989c7e3ccdbbb256eaa72759a7f242d3
| 28,167
|
def compose_terms(terms):
"""
Compose a sequence of terms.
Composition is done with *time* ordered left-to-right. Thus composition
order is NOT the same as usual matrix order.
E.g. if there are three terms:
`terms[0]` = T0: rho -> A*rho*A
`terms[1]` = T1: rho -> B*rho*B
`terms[2]` = T2: rho -> C*rho*C
Then the resulting term T = T0*T1*T2 : rho -> CBA*rho*ABC, so
that term[0] is applied *first* not last to a state.
Parameters
----------
terms : list
A list of terms to compose.
magnitude : float, optional
The magnitude of the composed term (fine to leave as None
if you don't care about keeping track of magnitudes).
Returns
-------
RankOneTerm
"""
assert(len(terms) > 0) # otherwise return something like RankOneTerm(1.0, None, None)?
return terms[0].compose(terms)
|
dc6cdbe5f05e1a93335f0436136dfe4f0ec7a5d3
| 28,168
|
def get_token_object(auth):
"""
Retrieve the object or instance from a
token creation. Used for knox support.
:param auth: The instance or tuple returned by the token's .create()
:type auth tuple | rest_framework.authtoken.models.Token
:return: The instance or object of the token
:rtype: rest_framework.authtoken.models.Token | knox.models.AuthToken
"""
return auth[0] if isinstance(auth, tuple) else auth
|
3651951e413f3fd44f159ed6070542d54f2923b2
| 28,169
|
def format_interconnector_loss_demand_coefficient(LOSSFACTORMODEL):
"""Re-formats the AEMO MSS table LOSSFACTORMODEL to be compatible with the Spot market class.
Examples
--------
>>> LOSSFACTORMODEL = pd.DataFrame({
... 'INTERCONNECTORID': ['X', 'X', 'X', 'Y', 'Y'],
... 'REGIONID': ['A', 'B', 'C', 'C', 'D'],
... 'DEMANDCOEFFICIENT': [0.001, 0.003, 0.005, 0.0001, 0.002]})
>>> demand_coefficients = format_interconnector_loss_demand_coefficient(LOSSFACTORMODEL)
>>> print(demand_coefficients)
interconnector region demand_coefficient
0 X A 0.0010
1 X B 0.0030
2 X C 0.0050
3 Y C 0.0001
4 Y D 0.0020
Parameters
----------
LOSSFACTORMODEL : pd.DataFrame
================= ======================================================================================
Columns: Description:
INTERCONNECTORID unique identifier of a interconnector (as `str`)
REGIONID unique identifier of a market region (as `str`)
DEMANDCOEFFICIENT the coefficient of regional demand variable in the loss factor equation (as `np.float64`)
================= ======================================================================================
Returns
----------
demand_coefficients : pd.DataFrame
================== =========================================================================================
Columns: Description:
interconnector unique identifier of a interconnector (as `str`)
region the market region whose demand the coefficient applies too, required (as `str`)
demand_coefficient the coefficient of regional demand variable in the loss factor equation (as `np.float64`)
================== =========================================================================================
"""
demand_coefficients = LOSSFACTORMODEL.loc[:, ['INTERCONNECTORID', 'REGIONID', 'DEMANDCOEFFICIENT']]
demand_coefficients.columns = ['interconnector', 'region', 'demand_coefficient']
return demand_coefficients
|
a7a87543eedb33248f6532ec234d47b7fe5455b3
| 28,170
|
import sys
def identify_column(query_column, header):
""" Identifies the query column of interest if entered as an integer
or a string and gives the index values of that column.
Parameters
----------
query_column: integer or string
The column to search for the query_value in.
header: list of strings
The header of the file of interest which contains the column
titles to be searched for a match with inputted strings for query
columns.
Returns:
--------
index: integer
Index value of the query column.
"""
index = 0
# checks if integer for column was inputted
# assumes counting starting at 0
for column_header in header:
try:
type(int(query_column)) == int
column = int(query_column)
# checks for array length exception
if column > (len(header) - 1):
print("Searching for result column "
+ str(query_column)
+ " but there are only "
+ str(len(header)-1)
+ " fields")
sys.exit(1)
else:
index = column
except ValueError:
if query_column == column_header:
break
else:
index += 1
# checks for str(query_column) match exception
if index > (len(header)-1):
print("Searching for result column "
+ query_column
+ " but this file does not contain it")
sys.exit(1)
return(index)
|
1dfbc16974dcfe971722636b99ffc22300d3ea28
| 28,171
|
from datetime import datetime
def to_time_string(value):
"""
gets the time string representation of input datetime with utc offset.
for example: `23:40:15`
:param datetime | time value: input object to be converted.
:rtype: str
"""
time = value
if isinstance(value, datetime):
time = value.timetz()
return time.isoformat(timespec='seconds')
|
b81ffff8b4ab626e0094bcfeb0bf6916de89d344
| 28,172
|
def u(string: str) -> bytes:
"""Shortcut to encode string to bytes."""
return string.encode('utf8')
|
3310da2d9f24be94c0426128ac19db2481dd2c2d
| 28,173
|
from pathlib import Path
import typing
import subprocess
def git_get_toplevel(repo_path: Path
) -> typing.Optional[Path]:
"""
Get top-level working tree path for @repo_path. Returns None
when not in repository.
"""
sp = subprocess.Popen(['git', 'rev-parse', '--show-toplevel'],
cwd=repo_path,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
sout, serr = sp.communicate()
if sp.returncode != 0:
return None
return Path(sout.decode().strip())
|
ff047fed00839a27650e04cbc816b3a5d3ec9d28
| 28,176
|
import random
def random_selection(similarity_matrix, nb_items=None):
"""
Selects randomly an item from the given similarity_matrix
:param similarity_matrix: (pandas.DataFrame) an NxN dataframe; should be (a) symmetric and (b) values {i,j} to
represent the similarity between item of row i and column j
:param nb_items: (int) number of items to be selected; if None all items are selected in the returned list
:return: (list) a list of random items
"""
selected_items = []
nb_total_items = similarity_matrix.shape[0]
if (nb_items is None) or (nb_items > nb_total_items):
nb_items = nb_total_items
for i in range(nb_items):
temp = random.sample(list(similarity_matrix), 1)[0]
selected_items.append(temp)
return selected_items
|
dd54045f690dc63c3a5b8c21685c6d610b45fccb
| 28,177
|
def try_guess(guess, current_game, game_word):
"""Test input letter"""
result = False
for i, value in enumerate(game_word):
if value == guess:
result = True
current_game[i] = guess
return current_game, result
|
5f73dc0a4592ad3de7c880eb41f26660fee9ce68
| 28,178
|
def dictToTuple(heading, d):
"""Convert dict into an ordered tuple of values, ordered by the heading"""
return tuple([d[attr] for attr in heading])
|
1a76201da4e5348a4c4ba9607992ad41a1c87163
| 28,179
|
def nrl(tb37v, tb37h):
"""Lo/Naval Research Laboratory (NRL)
"""
A0 = 1.3 # values from Leif
A1 = 0.019
c = A0 - A1*(tb37v - tb37h)
return c
|
be3ffb39683126df089d1298a87f7d3ab351514a
| 28,180
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.