content
stringlengths 35
416k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
|---|---|---|
import binascii
def enc( msg, k ):
"""
Simple encoding by exoring stuff with a key k
"""
return int( binascii.hexlify( msg.encode() ), 16 ) ^ k
|
d60a758ab3825d917f84440fce441366453aa073
| 26,648
|
from datetime import datetime
def validate_time_format(time_in):
"""time stamp format checker
validate if the timestamp since is given in the correct format or not.
if not give an warning for the client to change the timestamp format.
Args:
time_in (datetime.datetime): The time stamp in for check
Returns:
True or str: depends on if the format of the timestamp meets the
requirements or not
"""
try:
datetime.strptime(time_in["heart_rate_average_since"],
'%Y-%m-%d %H:%M:%S')
return True
except ValueError:
return "The time in does not satisfy the format, " \
"e.g. '2018-03-09 11:00:36'"
|
9cd10b271875d83b1e30ed6bbec141194e582b50
| 26,649
|
def check_waypoints_correct(waypoints, goal_point):
"""
checks if final waypoint matches with the goal point
has a built in try catch to see if waypoints is empty or not
"""
#waypoints = waypoint_array.tolist()
try:
if waypoints[-1] == tuple(goal_point):
return True
else:
#print("not correct", waypoints[-1], goal_point)
return False
except IndexError:
#print("no waypoints", waypoints)
return False
|
3df3e8ed0b3f17e1b37b969524ed85897b231ded
| 26,650
|
from typing import List
from typing import Dict
def get_index_of_the_arline_sorted_list(airport_sorted_by_nb_of_flights: List[str]) -> Dict:
"""
Create a dictionnary of the flight arranged in alphabetical order with their index as value to keep the right order
of the airport sorted by number of flight.\n
:param airport_sorted_by_nb_of_flights: list of airport sorted by number of flight\n
:return:a dictionnary of the airport with their index as value to keep the right order
"""
sorterIndex = dict(zip(airport_sorted_by_nb_of_flights, range(len(airport_sorted_by_nb_of_flights))))
return sorterIndex
|
004355204a04d053b165569294c513261074f704
| 26,651
|
import math
def hsv_to_rgb(h,s,v):
""" Convert H,S,V values to RGB values.
Python implementation of hsvToRgb in src/neuroglancer/util/colorspace.ts """
h*=6
hue_index = math.floor(h)
remainder = h - hue_index
val1 = v*(1-s)
val2 = v*(1-(s*remainder))
val3 = v*(1-(s*(1-remainder)))
hue_remainder = hue_index % 6
if hue_remainder == 0:
return (v,val3,val1)
elif hue_remainder == 1:
return (val2,v,val1)
elif hue_remainder == 2:
return (val1,v,val3)
elif hue_remainder == 3:
return (val1,val2,v)
elif hue_remainder == 4:
return (val3,val1,v)
elif hue_remainder == 5:
return (v,val1,val2)
|
3795f6bde05f181489be7f7750fdbd1a4886dffd
| 26,652
|
def kron_delta(a:float, b:float) -> int:
"""Cannonical Kronecker Delta function.
Returns 1 if inputs are equal returns 0 otherwise.
Args:
(:obj:`float`): First input argument
(:obj:`float`): Second input argument
Returns:
(:obj:`int`) Kronecker delta result {0, 1}
"""
if a == b:
return 1
else:
return 0
|
0e7bad79e230740cf35a614dbb21cac90e1cae0c
| 26,653
|
def rectangle_area(a,b):
"""Calculate rectangle area"""
return a*b
|
60bfd42f38b489ba04c48badbff8fec717ecc53b
| 26,655
|
import torch
def cross_entropy(y_hat, y):
"""
Compute the cross entropy as the loss of some nets
Parameters
----------
y_hat : [tensor]
the prediction value
y : [tensor]
the real labels
Returns
-------
[tensor]
the vector of every cross entropy loss. They are negetive to be optimized
"""
# here we use gather() to get the according prediction values
# then we compute the log of the tensor to satisfy the cross entropy's need
return -torch.log(y_hat.gather(1, y.view(-1, 1)))
|
622fb9a525c3f99eba0bc3e03a2f4a290f6a36df
| 26,656
|
def iscurried(f):
"""Return whether f is a curried function."""
return hasattr(f, "_is_curried_function")
|
c97efcf3d5df1ce9e4ff90bfdc79b9d0a39e3204
| 26,657
|
def unique_fname(full_path: str) -> str:
"""Get unique file name for given full path to MELD data file. The return format is '[dialog]_[utterance]'.
:param full_path: full path to MELD .mp4 data file
:return: unique id of data file (only unique within dataset directory)
"""
fname = full_path.split('/')[-1].split('.')[0]
return fname.replace('dia', '').replace('utt', '').replace('final_videos_test', '')
|
29bffc8a2028ac126709fe17d9e2e1d2914bf769
| 26,658
|
from typing import List
from typing import Dict
import re
def confidence_cm(
region: List[float],
subfam_counts: Dict[str, float],
subfams: List[str],
subfam_rows: List[int],
repeats: int,
node_confidence_bool: bool,
) -> List[float]:
"""
Computes confidence values for competing annotations using alignment and tandem
repeat scores. Loops through the array once to find sum of 2^every_hit_score in
region, then loops back through to calculate confidence. Converts the alignment
score to account for lambda before summing.
If command line option for subfam_counts, this is included in confidence math.
input:
region: list of scores for competing annotations
subfam_counts: dict that maps subfam name to it's count info
subfams: list of subfam names
subfam_rows: list of subfamily rows that correspond to the the subfams of the region scores
repeats: number of tandem repeat scores found at the end of the region
node_confidence_bool: if False (0) - confidence for filling DP matrices, if True - confidence for nodes
output:
confidence_list: list of confidence values for competing annotations, each input alignment
and tandem repeat score will have one output confidence score
>>> counts = {"s1": .33, "s2": .33, "s3": .33}
>>> subs = ["s1", "s2", "s3"]
>>> conf = confidence_cm([2, 1, 1], counts, subs, [0, 1, 2], 0, False)
>>> f"{conf[0]:.2f}"
'0.50'
>>> f"{conf[1]:.2f}"
'0.25'
>>> f"{conf[2]:.2f}"
'0.25'
>>> conf = confidence_cm([0, 100, 100], 0, subs, [0, 1, 2], 0, False)
>>> f"{conf[0]:.2f}"
'0.01'
>>> conf = confidence_cm([0, 100, 100], 0, subs, [0, 1, 2], 0, True)
>>> f"{conf[0]:.2f}"
'0.00'
>>> counts = {"s1": .31, "s2": .31, "s3": .31, "Tandem Repeat": .06}
>>> subs = ["s1", "s2", "s3", "Tandem Repeat"]
>>> conf = confidence_cm([2, 1, 0.7], counts, subs, [0, 1, 3], 1, False)
>>> f"{conf[0]:.2f}"
'0.65'
>>> f"{conf[1]:.2f}"
'0.32'
>>> f"{conf[2]:.2f}"
'0.03'
"""
confidence_list: List[float] = []
score_total: int = 0
# if command line option to include subfam_counts
if subfam_counts:
# alignment scores
for index in range(len(region) - repeats):
subfam: str = subfams[subfam_rows[index]]
m = re.search(r"(.+?)#.+", subfams[subfam_rows[index]])
if m:
subfam = m.group(1)
converted_score = (2 ** int(region[index])) * subfam_counts[subfam]
confidence_list.append(converted_score)
score_total += converted_score
# TR scores
for index in range(len(region) - repeats, len(region)):
subfam = subfams[subfam_rows[index]]
m = re.search(r"(.+?)#.+", subfams[subfam_rows[index]])
if m:
subfam = m.group(1)
tr_score = (2 ** int(region[index])) * subfam_counts[subfam]
confidence_list.append(tr_score)
score_total += tr_score
# don't include subfam counts (default)
else:
# alignment scores
for index in range(len(region) - repeats):
converted_score = 2 ** int(region[index])
confidence_list.append(converted_score)
score_total += converted_score
# TR scores
for index in range(len(region) - repeats, len(region)):
tr_score = 2 ** int(region[index])
confidence_list.append(tr_score)
score_total += tr_score
for index in range(len(region)):
confidence_list[index] = confidence_list[index] / score_total
# if skip state confidence is < 1 %, increase it to 1 % and normalize all
# others do not do this when computing node confidence (skip state is not
# used)
if confidence_list[0] < 0.01 and not node_confidence_bool:
summ = 0.0
for i in range(1, len(confidence_list)):
summ += confidence_list[i]
confidence_list[0] = 0.01
for i in range(1, len(confidence_list)):
confidence_list[i] = confidence_list[i] * 0.99 / summ
return confidence_list
|
ec61f4d9a006f8e4749c282d977ecc05d5025198
| 26,659
|
def calculate_single_list_score(l):
"""
Input -> list of string
Output -> Dictionary {'item': score}
"""
score_dic = {}
i = 0
for rec in l:
score_dic[rec] = len(l) - i
i = i + 1
return score_dic
|
b77ff4715a41ab59551adec3b8171814878b5c33
| 26,660
|
def partition(f, alist):
"""
Partition is very similar to filter except that it also returns the
elements for which f return false but in a tuple.
>>> partition(lambda x : x > 3, [1,2,3,4,5,6])
([4, 5, 6], [1, 2, 3])
"""
return (filter(f, alist), filter(lambda x: not f(x), alist))
|
928221a285c9e18ae6c9188f2842faf8e94074d6
| 26,661
|
def inferGroup(titlebuffer):
"""infers the function prefix"""
if titlebuffer:
if titlebuffer[0] == "*":
return "*var*"
if titlebuffer[0] in ["-", "_"]: #["*", "-", "_"]
#strip first letter
titlebuffer = titlebuffer[1:]
if titlebuffer.startswith("glfw"):
return "glfw:"
idx = titlebuffer.rfind(":")
# print(idx, titlebuffer[:idx+1])
if idx >= 0:
return titlebuffer[:idx+1]
return ""
|
6bf1104f4f8454ec8251565c098cb5a7e7faf792
| 26,663
|
def phase_increment(f_out, phase_bits, f_clk):
"""
Calculate the phase increment required to produce the desired frequency.
:param f_out:
:param phase_bits:
:param f_clk:
:return:
"""
return int(f_out * 2**phase_bits / f_clk)
|
0b8a3fe25d006058781f13c2cd7e73af0243ac6b
| 26,664
|
def matrixInvert(M):
"""\
Returns the inverse of matrix `M`.
I use Guassian Elimination to calculate the inverse:
(1) 'augment' the matrix (left) by the identity (on the right)
(2) Turn the matrix on the left into the identity by elemetry row ops
(3) The matrix on the right is the inverse (was the identity matrix)
There are 3 elemtary row ops: (I combine b and c in my code)
(a) Swap 2 rows
(b) Multiply a row by a scalar
(c) Add 2 rows
"""
# If the matrix isn't square, return None
if len(M) != len(M[0]): return None
# create the identity matrix (I), and a copy (C) of the original
n = len(M)
I = []
C = []
for row in range(n):
iRow = []
cRow = []
for col in range(n):
iRow.append(1 if row == col else 0) # 1 if on diagonal, else 0
cRow.append(M[row][col]) # copy from the original
I.append(iRow)
C.append(cRow)
# Perform elementary row operations
for i in range(n):
# get the element e on the diagonal
e = C[i][i]
# if we have a 0 on the diagonal (we'll need to swap with a lower row)
if e == 0:
# look through every row below the i'th row
for ii in range(i+1, n):
# if the ii'th row has a non-0 in the i'th col
if C[ii][i] != 0:
# it would make the diagonal have a non-0 so swap it
for j in range(n):
e = C[i][j] # temp store i'th row
C[i][j] = C[ii][j] # replace i'th row by ii'th
C[ii][j] = e # replace ii'th by temp
e = I[i][j] # temp store i'th row
I[i][j] = I[ii][j] # replace i'th row by ii'th
I[ii][j] = e # replace ii'th by temp
# don't bother checking other rows since we've swapped
break
# get the new diagonal
e = C[i][i]
# if it's still 0, not invertable (error)
if e == 0: return None
# Scale this row down by e (so we have a 1 on the diagonal)
for j in range(n):
C[i][j] /= e # apply to original matrix
I[i][j] /= e # apply to identity
# Subtract this row (scaled appropriately for each row) from ALL of
# the other rows so that there will be 0's in this column in the
# rows above and below this one
for ii in range(n):
# Only apply to other rows (we want a 1 on the diagonal
if ii == i: continue
# We want to change this element to 0
e = C[ii][i]
# Subtract this row (scaled appropriately for each row) from ALL of
# current row) but start at the i'th column and assume all the
# stuff left of diagonal is 0 (which it should be if we made this
# algorithm correctly)
for j in range(n):
C[ii][j] -= e * C[i][j] # apply to original matrix
I[ii][j] -= e * I[i][j] # apply to identity
# we've done all operations, C should be the identity
# matrix I should be the inverse
return I
|
f3b763fff8c6b7cd96ca49b8d36dc48ef6fa7e2c
| 26,666
|
import struct
def read_lc_int(buf):
"""
Takes a buffer and reads an length code string from the start.
Returns a tuple with buffer less the integer and the integer read.
"""
if not buf:
raise ValueError("Empty buffer.")
lcbyte = buf[0]
if lcbyte == 251:
return (buf[1:], None)
elif lcbyte < 251:
return (buf[1:], int(lcbyte))
elif lcbyte == 252:
return (buf[3:], struct.unpack('<xH', buf[0:3])[0])
elif lcbyte == 253:
return (buf[4:], struct.unpack('<I', buf[1:4] + b'\x00')[0])
elif lcbyte == 254:
return (buf[9:], struct.unpack('<xQ', buf[0:9])[0])
else:
raise ValueError("Failed reading length encoded integer")
|
fcc1b0fe4cfd8186537700ee124e849473b1fd07
| 26,668
|
def expand_cluster(OW_eddies_box, box, xy, edge, label):
""" Expand the edge dimensions of boundary
If we make it through the column/row, we don't have any more OW masks in this
dimensions and we return True"""
# If moving in x or y direction
if xy == 'x':
n = len(OW_eddies_box[0])
getidx = lambda idx: (edge, idx)
else:
n = len(OW_eddies_box)
getidx = lambda idx: (idx, edge)
# Search through the edge for OW cells
for i in range(n):
val = OW_eddies_box[getidx(i)]
if val == label:
if xy == 'x':
if edge==0: box[0] -= 1; return False
else: box[2] += 1; return False
else:
if edge==0: box[1] -= 1; return False
else: box[3] += 1; return False
return True
|
9fb1fe3e93e41621e310a3b58ba21ae22452fe1f
| 26,669
|
def prefixM(prefix, s):
"""为字符串添加前缀,对于多行字符串,每行都添加前缀"""
if '\n' not in s:
return prefix+s
ret = ''
lines = s.split('\n')
lineCount = len(lines)
for index in range(lineCount):
ret += prefix
ret += lines[index]
if index != lineCount-1: # 最后一行不要添加换行符
ret += '\n'
return ret
|
135043bb3d3f26afe6393a8b6b005c1e4508b1a4
| 26,670
|
def no_magnitude(arr):
"""Return 0 as magnitude for a given matrix, which is used for baseline
without magnitude ordering
Args:
arr (numpy array): a numpy array
Return:
0
"""
return 0
|
3b610ed5e52ce72485b53c198c144cd2d8c11f52
| 26,671
|
def saddle_points(matrix):
"""
Find saddle points in a matrix
:param matrix list - A list of rows containing values.
:return list - A list containing dictionary(ies) indicating
where the saddle point(s) in the matrix are.
It's called a "saddle point" because it is greater than or
equal to every element in its row and less than or equal
to every element in its column.
A matrix may have zero or more saddle points.
The matrix can have a different number of rows and columns (Non square).
"""
points = []
rows_num = len(matrix)
if rows_num > 0:
colums_num = len(matrix[0])
# travese the row, and find highest value
for current_row_index, row in enumerate(matrix):
if len(row) != colums_num:
raise ValueError(f"Irregular matrix, row {current_row_index + 1} "
f"has {len(row)} columns instead of expected {colums_num}.")
max_value = max(row)
# for cases where the highest value occurs in multiple colums, iterate
max_value_count = row.count(max_value)
next_index = 0
while max_value_count > 0:
# Given the column index for candidate (highest value in row)
# Find out if it's the lowest in the column
col_index = row.index(max_value, next_index)
next_index = col_index + 1
max_value_count -= 1
is_lowest_in_col = True
for row_index in range(0, rows_num):
# skip 'current' row
if row_index == current_row_index:
continue
# check to make sure col exists in row
if len(matrix[row_index]) - 1 < col_index:
raise ValueError(f"Irregular matrix, row {row_index} is missing column {col_index}")
#continue
value = matrix[row_index][col_index]
if value < max_value:
# we found a value in the col that's less than the candidate
# so it's not a saddle in this column
is_lowest_in_col = False
break
if is_lowest_in_col:
# current_row_index and col_index start at 0, so up 1
points.append({"row": current_row_index + 1, "column": col_index + 1})
return points
|
d1cd547f2026f3529bea27003b4172ce13e73c8f
| 26,672
|
def Cross(a,b):
"""Cross returns the cross product of 2 vectors of length 3, or a zero vector if the vectors are not both length 3."""
assert len(a) == len(b) == 3, "Cross was given a vector whose length is not 3. a: %s b: %s" % (a, b)
c = [a[1]*b[2] - a[2]*b[1], a[2]*b[0] - a[0]*b[2], a[0]*b[1] - a[1]*b[0]]
return c
|
1e4af47c6e6a1d9ab9572d0618b5c6b9e27829be
| 26,675
|
def provide_dummy_feature_list():
"""Create a list of dictionaries that have similar structure as the featurization output.
Returns:
list -- list of dictionaries
"""
feature_list = [
{
"name": "AZOHEC",
"metal": "Zn",
"coords": [1, 1, 1],
"feature": [2, 45567, 3564, 3574],
},
{
"name": "ACOLIP",
"metal": "Zn",
"coords": [1, 1, 1],
"feature": [2, 45567, 3564, 3574],
},
{
"name": "QAGWIG",
"metal": "Fe",
"coords": [1, 1, 1],
"feature": [2, 45567, 3564, 3574],
},
{
"name": "GOCBAD",
"metal": "Cu",
"coords": [1, 1, 1],
"feature": [2, 45567, 3564, 3574],
},
{
"name": "BUVYIB01",
"metal": "Fe",
"coords": [1, 1, 1],
"feature": [2, 45567, 3564, 3574],
},
{
"name": "GIRNIH",
"metal": "Cd",
"coords": [1, 1, 1],
"feature": [2, 45567, 3564, 3574],
},
{
"name": "FURVEU",
"metal": "Fe",
"coords": [1, 1, 1],
"feature": [2, 45567, 3564, 3574],
},
{
"name": "UKUDIP01",
"metal": "Cu",
"coords": [0, 0, 0],
"feature": [2, 45567, 3564, 3574],
},
{
"name": "UKUDIP01",
"metal": "Gd",
"coords": [1, 1, 1],
"feature": [2, 45567, 3564, 3574],
},
]
return feature_list
|
a8ba36dbd56326cca3d76c30aa3b69220fdd8051
| 26,679
|
from typing import Iterable
from typing import Dict
def get_substr_frequency(string: str, substrings: Iterable[str]) -> Dict[str, int]:
"""Get dictionary with frequencies (vals) of substrings (keys) in given string."""
return {s: string.count(s) for s in substrings}
|
370e0d7fcaef7efa3ca21a80519b9f36934e23a7
| 26,680
|
import torch
def poolfeat(input, prob, avg = True):
""" A function to aggregate superpixel features from pixel features
Args:
input (tensor): input feature tensor.
prob (tensor): one-hot superpixel segmentation.
avg (bool, optional): average or sum the pixel features to get superpixel features
Returns:
cluster_feat (tensor): the superpixel features
Shape:
input: (B, C, H, W)
prob: (B, N, H, W)
cluster_feat: (B, N, C)
"""
B, C, H, W = input.shape
B, N, H, W = prob.shape
prob_flat = prob.view(B, N, -1)
input_flat = input.view(B, C, -1)
cluster_feat = torch.matmul(prob_flat, input_flat.permute(0, 2, 1))
if avg:
cluster_sum = torch.sum(prob_flat, dim = -1).view(B, N , 1)
cluster_feat = cluster_feat / (cluster_sum + 1e-8)
return cluster_feat
|
0bcc1dd7b449997491e1e25378ae09eb8f3d0592
| 26,683
|
from datetime import datetime
import json
def gen_rows(csvdata):
""" Generate rows from data """
rkrows = []
headerline = list(csvdata[0].keys())
rkrows.append(headerline)
for rk in csvdata:
rkline = []
for line in rk.values():
if line is None:
rkline.append("")
elif isinstance(line, (int, float, datetime, str)):
rkline.append(str(line))
elif isinstance(line, (dict)):
rkline.append(json.dumps(line))
else:
rkline.append(line.encode('utf-8'))
rkrows.append(rkline)
return rkrows
|
fc8722fe450da8bbd0523e57e60854ce1874ffbf
| 26,684
|
import hashlib
def calculate_identicon(user_id: str) -> str:
"""
Calculate an identicon hash string based on a user name.
:param user_id: the user name
:return: an identicon string
"""
return hashlib.sha256(user_id.encode()).hexdigest()
|
e22e817da8a38ab289e4c623f8cbcba370317223
| 26,685
|
import sys
import configparser
import os
def load_config(config_file):
""" Returns a ConfigParser for the default config file, or for the file
located at config_file if provided. """
platform = None
if sys.platform.startswith("linux"):
platform = "linux"
else:
platform = "macosx"
config = configparser.ConfigParser({"home": os.environ.get("HOME", "")
, "platform": platform})
config.read(config_file)
return config
|
8822755dbbd04edd0747f8fb70131031bf3699c7
| 26,686
|
def ldap_role_group_exists_any(handle):
"""
Checks if any ldap role group exists
Args:
handle (ImcHandle)
Returns:
None
Examples:
ldap_role_group_delete_all(handle)
"""
mos = handle.query_classid('AaaLdapRoleGroup')
for mo in mos:
if mo.name and mo.domain:
return True
return False
|
b223019ee89780198fcdf22ea62691086ee20829
| 26,687
|
def fold_fortran_code(content, width=79):
"""Simplistic fold to n columns, breaking at whitespace.
Fortran line continuation (&) with a six-space following indent
are used where necessary.
"""
lines = content.split(sep="\n")
result = ""
for input_line in lines:
words = input_line.split()
output_line = ""
l = 0 # current length of output line
for w in words:
# 3 = space before w, space after w, &
if l + len(w) < width - 3:
if len(output_line):
addme = " %s" % (w)
else:
addme = w
output_line += addme
l += len(addme)
else:
if len(output_line):
output_line += " &\n" # Fortran line continuation...
result += output_line
output_line = 6*" " + w # ...and indent
else:
output_line = w
l = len(output_line)
result += (output_line + "\n")
return result
|
17c7288e412fc9567a9bec1b4c1e740145cf27b7
| 26,689
|
import shutil
def command_exists(command: str) -> bool:
"""
Checks whether some external utility is installed and accessible to this script.
Args:
command: The name of the binary/command to look for. It must be a single name; arguments and shell command lines
are not accepted.
Returns:
True if the command exists and is accessible (as per `which`).
"""
return shutil.which(command) is not None
|
f9160163289f75af6a602641fc357addf0fc18bc
| 26,690
|
def assignIfExists(opts, default=None, **kwargs):
"""
Helper for assigning object attributes from API responses.
"""
for opt in opts:
if(opt in kwargs):
return kwargs[opt]
return default
|
5ecc18a6bd9548e7a036aa3956718aa80252359f
| 26,691
|
import os
def has_terminal():
"""Return True if the script is run in a terminal environment
The environment variables USER and TERM are checked.
USER TERM has_terminal
root anything True
root not defined False
http anything False
The check can be overriden by setting the HAS_TERMINAL environment
variable either to 'True' or 'False'
"""
if 'HAS_TERMINAL' in os.environ:
if os.environ['HAS_TERMINAL'] == 'False':
return False
if os.environ['HAS_TERMINAL'] == 'True':
return True
if 'USER' not in os.environ or not os.environ['USER']:
return False
if os.environ['USER'] != 'http' and 'TERM' in os.environ:
return True
return False
|
d92dba4f7b36ea3e2b868db08529b21d82c3f9b1
| 26,692
|
def me_follow(type, ids):
"""
Follow artists or users. Max 50 ids
"""
return 'PUT', '/me/following', {'type': type}, {'ids': ids}
|
d72007e0e06ffe558be893f69b2a8f7c334f5d42
| 26,693
|
from typing import Iterable
from pathlib import Path
def quoted_paths(paths: Iterable[Path]) -> str:
"""Return space separated list of quoted paths.
Args:
paths: iterable of paths.
Returns:
comma separated string of paths.
"""
return " ".join([f'"{p}"' for p in paths])
|
f34d94918c89d999dbbfa318c95b84f419c7aa60
| 26,694
|
import os
def loadSuiteFiles(path, start="test_", end=".yaml"):
"""加载用例文件"""
f = []
if os.path.exists(path):
print(path)
if os.path.isfile(path) and os.path.basename(path).startswith(start) and os.path.basename(path).endswith(end):
f.append(path)
return f
elif os.path.isdir(path):
for root, dirs, files in os.walk(path):
for i in files:
if i.startswith(start) and i.endswith(end):
f.append(os.path.join(root, i))
else:
raise FileNotFoundError(path)
f.sort()
return f
|
518f6f120a123e1790cd653a56dec44e7a3a96db
| 26,695
|
import json
def write_json_to_file(data, outfile):
"""write_json_to_file.
Writes a JSON dump of the passed data to the specified file, or returns to stdout if outfile is None
:param data: Data to dump to JSON
:param outfile: File to write. Uses stdout if None
>>> print(write_json_to_file({'string': 'example', 'key': ['value1', 'value2': , 'value3']}, None))
{
"key": [
"value1",
"value2",
"value3"
],
"string": "example"
}
"""
formatted = json.dumps(data, indent=4, sort_keys=True)
if outfile is None:
return formatted
else:
with open(outfile, 'w') as f:
f.write(formatted)
return ''
|
5dc465aa082731f9191bc2621598951859579862
| 26,696
|
from typing import Sequence
from typing import Iterator
def chunks(elements: Sequence, size, lazy=False) -> Iterator[Sequence] | list[Sequence]:
"""Create successive n-sized chunks from elements."""
generator_ = (elements[i:i + size] for i in range(0, len(elements), size))
if lazy:
return generator_
else:
return list(generator_)
|
1112ebd4868fe5efb6f444a527ced436e4d59f1b
| 26,697
|
def compute_sliced_len(slc, sequence_len):
"""
Compute length of sliced object.
Parameters
----------
slc : slice
Slice object.
sequence_len : int
Length of sequence, to which slice will be applied.
Returns
-------
int
Length of object after applying slice object on it.
"""
# This will translate slice to a range, from which we can retrieve length
return len(range(*slc.indices(sequence_len)))
|
57b330de7bb7a54d2d6331a72f0a88e005c83d10
| 26,700
|
def _get_json_schema_node_id(fully_qualified_name: str) -> str:
"""Returns the reference id (i.e. HTML fragment id) for a schema."""
return 'json-%s' % (fully_qualified_name,)
|
eafdacc1e7c4f2feabcd5b486fb264d33332266d
| 26,701
|
def kg_derive_facts(idx_subject, idx_object, compute_o_idx=False):
"""
derives fact based on pattern matching inside the knowledge graph
therefore the indices (subject -> [object1, ..., objectn] and object -> [sub1, ..., subn]
are used
@param idx_subject: dictionary which maps each subject of a relation to a list of objects
@param idx_object: dictionary which maps each object of a relation to a list of subjects
@param compute_o_idx: computes the reverse index in addition
@return: a new index for the resulting relation (subject -> [obj1, ... objn])
"""
results_idx_s = {}
results_idx_o = {}
amount = 0
for o1, subs1 in idx_object.items():
if o1 in idx_subject:
# join over all s1 and o2
for o2 in idx_subject[o1]:
for s1 in subs1:
# s1 and s2 should not be equal (e.g. can't cause itself)
if s1 == o2:
continue
if s1 not in results_idx_s:
amount += 1
results_idx_s[s1] = set()
results_idx_s[s1].add(o2)
else:
# count only objects which are not included yet
if o2 not in results_idx_s[s1]:
amount += 1
results_idx_s[s1].add(o2)
if compute_o_idx:
if o2 not in results_idx_o:
results_idx_o[o2] = set()
results_idx_o[o2].add(s1)
else:
if s1 not in results_idx_o[o2]:
results_idx_o[o2].add(s1)
if compute_o_idx:
return results_idx_s, results_idx_o, amount
return results_idx_s, amount
|
f57fa608019cddc01d9363dc464a977dd546c6df
| 26,702
|
def create_reverse_complement(input_sequence):
"""
Given an input sequence, returns its reverse complement.
"""
complement = {'A': 'T', 'C': 'G', 'G': 'C', 'T': 'A'}
bases = list(input_sequence)
bases = reversed([complement.get(base, base) for base in bases])
bases = ''.join(bases)
return bases
|
6d33d449f17bcfec59f762c7d1f1e3b86ea8a975
| 26,704
|
def truncate(string, max_bytes):
"""
Truncates a string to no longer than the specified number of bytes.
>>> truncate('foobar', 8)
'foobar'
>>> truncate('hello', 5)
'hello'
Lob off "partial" words, where practical:
>>> truncate('lorem ipsum dolor sit amet', 21)
'lorem ipsum […]'
>>> truncate('lorem ipsum dolor sit amet', 22)
'lorem ipsum […]'
>>> truncate('lorem ipsum dolor sit amet', 23)
'lorem ipsum dolor […]'
Otherwise, break apart the word:
>>> truncate('howdeedoodeethere', 11)
'howdee[…]'
Note that ``max_bytes`` must be ≥ what's required to return the worst-case truncation:
>>> truncate('hello world', 5)
'[…]'
>>> truncate('hello world', 4)
Traceback (most recent call last):
...
AssertionError: max_bytes ≱ 5
"""
# These should really be constants, but meh…
ellipsis = '[…]'
space = ' '
ellipsis_bytes = len(ellipsis.encode())
max_bytes_available_when_truncated = max_bytes - ellipsis_bytes
assert max_bytes_available_when_truncated >= 0, 'max_bytes ≱ {0:d}'.format(ellipsis_bytes)
# If we're within budget, brill…
if len(string.encode()) <= max_bytes:
return string
# Cut things down to size. If we snip across a multibyte character, we've asked the decoder to turn a blind eye…
string = string.encode()[:max_bytes_available_when_truncated].decode(errors='ignore')
# If the string (is non-empty and) ends with a "partial" word, then lob that off…
if string and (not string[-1].isspace()):
split = string.rsplit(maxsplit=1)
if len(split) == 2:
string = split[0] + space
# Finally, tack on the ellipsis, and call it a day…
truncated_string = string + ellipsis
assert len(truncated_string.encode()) <= max_bytes
return truncated_string
|
67c6fd0c0b4ec709ce0d38ae010aed888ce9d11c
| 26,705
|
import os
def stamp_name(workdir, phase, unique):
"""Get a unique name for this particular step.
This is useful for checking whether certain steps have finished (and thus
have been given a completion "stamp").
Args:
workdir: The package-unique work directory.
phase: The phase we're in e.g. "unpack" or "prepare".
unique: A unique name for the step we're checking in this phase.
Returns:
The full file path to the stamp file.
"""
return os.path.join(workdir, '.stamp.%s.%s' % (phase, unique))
|
af92152ef265f993108497c38b628bbd9ba5336e
| 26,706
|
import re
def remove_tags(text):
""" Return the text without any HTML tags in it.
@param text: The text to process
"""
return re.sub('<[^<]+?>', '', text)
|
47c9ff7af6466b92b3dd3a4cdc38616231efaa11
| 26,707
|
def rectangle_to_string(rect):
"""
print out rect
"""
top_left = rect.topLeft()
size = rect.size()
return f"QRect({top_left.x()}, {top_left.y()}) ({size.width()}, {size.height()})"
|
8fbf5156c0e3b375af0a2cdd39ccc059f0b053b0
| 26,709
|
import os
def save_model_name(opt, path_save):
"""
Creates a path and a name for the current model.
:param opt: Args from the script
:type opt: Dict
:param path_save: Folder we want to save the weights
:type path_save: str
:return: Saving path for the model
:rtype: str
"""
if opt["meta"]:
res = "Metastases/" + str(opt["size"]) + "model_" + opt["model_name"]
else:
res = "Poumons/" + str(opt["size"]) + "model_" + opt["model_name"]
if opt["weighted"]:
res += "_weighted" + str(opt["w1"]) + str(opt["w2"])
res += ".h5"
return os.path.join(path_save, res)
|
0a16e27e39bec1c291d40aa1a9f2095ab2feef5d
| 26,711
|
def dig(your_dict, *keys):
"""digs into an dict, if anything along the way is None, then simply return None
"""
end_of_chain = your_dict
key_present = True
for key in keys:
if (isinstance(end_of_chain, dict) and (key in end_of_chain)) or (
isinstance(end_of_chain, (list, tuple)) and isinstance(key, int)):
try:
end_of_chain = end_of_chain[key]
except IndexError:
return None
else:
key_present = False
return end_of_chain if key_present else None
|
f6901018c23324f8d92bfea86c22a2ee02eeed27
| 26,712
|
def _merge_str(l):
"""Concatenate consecutive strings in a list of nodes."""
out = []
for node in l:
if (out and isinstance(out[-1], str) and
isinstance(node, str)):
out[-1] += node
else:
out.append(node)
return out
|
d83de96151ad10576d65866b2f38f38d839ba99f
| 26,715
|
def has_gendered_pronouns(doc):
"""
Doc-level spaCy attribute getter, which returns True if
there are any pronouns (tag_ "PRP" or "PRP$") in the Doc
with a "m" or "f" gender.
"""
pronoun_genders = [token._.gender for token in doc if token.tag_ in ["PRP", "PRP$"]]
has_gendered_pronoun = any([g in ["m", "f"] for g in pronoun_genders])
return has_gendered_pronoun
|
2b58db4fb972766502ca94e17140946ddd51467e
| 26,717
|
def int_to_char(int_):
"""Return an ascii character in byte string form for a given int"""
return bytes([int_])
|
58ea0118590caa730746540761dc6c4bed42b630
| 26,719
|
def leader_kwargs():
"""Input data (as coming from the view layer)."""
leader = {}
leader["length"] = "00000"
leader["status"] = "n"
leader["type"] = "a"
leader["level"] = "m"
leader["control"] = " "
leader["charset"] = "a"
leader["ind_count"] = "2"
leader["sub_count"] = "2"
leader["address"] = "00000"
leader["encoding"] = "z"
leader["description"] = "c"
leader["multipart_resource_record_level"] = "a"
leader["length_field_position"] = "4"
leader["length_starting_character_position_portion"] = "5"
leader["length_implementation_defined_portion"] = "0"
leader["undefined"] = "0"
return leader
|
c58a26f9e2ea52223d46d82b30363051abef3787
| 26,720
|
def notmat(texto,klines=[
'comisi', 'vierne', 'sabado', 'lunes ',
'martes', 'mierco', 'jueves','doming'
]):
"""Return True if line belongs to materia's info, return False otherwise"""
texto=texto.lower()
texto=texto.strip()
if texto[0:6] in klines:
return True
elif texto=='':
return True
else:
return False
|
66b1c6c7dfb95f46a0225ecfae659b9625936dad
| 26,721
|
from typing import List
from typing import Callable
from typing import Any
def decorate(decorators: List[Callable[..., Any]]) -> Callable[..., Any]:
"""Use this decorator function to apply a list of decorators to a function.
Useful when sharing a common group of decorators among functions.
The original use case is with click decorators (see: https://github.com/pallets/click/issues/108)
"""
def func_with_shared_decorators(func: Callable[..., Any]) -> Callable[..., Any]:
for option in reversed(decorators):
func = option(func)
return func
return func_with_shared_decorators
|
2f31acdd75067a8943509c98243c855399092109
| 26,722
|
def drop_trailing_zeros_decimal(num):
""" Drops the trailinz zeros from decimal value.
Returns a string
"""
out = str(num)
return out.rstrip('0').rstrip('.') if '.' in out else out
|
6ef19f6b0ec01a3d8cb41264e6930864bba1cd2a
| 26,723
|
import os
def get_plugin_path(home, plugin_type, plugin_name, editable=False):
"""Return path to plugin.
:param home: Path to honeycomb home
:param plugin_type: Type of plugin (:obj:`honeycomb.defs.SERVICES` pr :obj:`honeycomb.defs.INTEGRATIONS`)
:param plugin_name: Name of plugin
:param editable: Use plugin_name as direct path instead of loading from honeycomb home folder
"""
if editable:
plugin_path = plugin_name
else:
plugin_path = os.path.join(home, plugin_type, plugin_name)
return os.path.realpath(plugin_path)
|
f51418d00a4adc1bb02f7a6d9c6af8dbd6e3cb2a
| 26,724
|
from typing import Deque
def json_path(absolute_path: Deque[str]):
"""Flatten a data path to a dot delimited string.
:param absolute_path: The path
:returns: The dot delimited string
"""
path = "$"
for elem in absolute_path:
if isinstance(elem, int):
path += "[" + str(elem) + "]"
else:
path += "." + elem
return path
|
7c61f784fa269925e42ac5f1cc3de9e2c55b9718
| 26,725
|
def getbytes(obj):
"""Converts an object to bytes.
- If the object is None an empty byte string is returned.
- If the object is a byte string, it is returned.
- If the object is a str, the value of `str.encode('utf-8')` is returned.
- If the object is a memoryview, the value of `memoryview.tobytes()` is returned.
- If the object is a bytearray, the value of `bytes(bytearray)` is returned.
- If the object is an int, the value of `bytes([int])` is returned.
Raises:
TypeError: The object could not be converted to a byte.
ValueError: The object is an integer that can not be represented with a single byte.
"""
if obj is None:
return b''
elif isinstance(obj, bytes):
return obj
elif isinstance(obj, str):
return obj.encode('utf-8')
elif isinstance(obj, memoryview):
return obj.tobytes()
elif isinstance(obj, bytearray):
return bytes(obj)
elif isinstance(obj, int):
if 0 <= obj <= 255:
return bytes((obj,))
raise ValueError(f'{obj} can not be represented with a single byte')
raise TypeError(f'Expected a str, int or bytes-like object, got {type(obj).__name__}')
|
6f44bcbb31fa9c1b0af812932ada08acf2f3cbfe
| 26,726
|
def composite(vol, cmr):
""" Ranks securities in a composite fashion.
Parameters:
- `vol` : :class:`dict` volatility portfolio.
- `cmr` : :class:`dict` momentum portfolio.
.. note::
at this point, the same tickers are present in both portfolios. Their
ranking only is different.
The function builds a :class:`dict` with the tickers and set their score
to zero; sample {'ticker': 0}. Then it adds to the ticker score their index
in volatility and momentum portfolio.
The tickers are then sorted ascendingly, after having been transformed into
a :class:`tuple`.
Returns a :class:`dict` containing tickers and their score.
"""
vector = {} # used to store tickers indexes
v_sort = [] # to store ranked tickers
composite = {} # to store the return of the function
# populates a dict with all the tickers and attributes them a score of 0
for item in vol.keys():
vector[item] = 0
for i, j in enumerate(vol.keys()): vector[j] += i
for i, j in enumerate(cmr.keys()): vector[j] += i
# translates to tuple to sort
for item in vector.keys():
v_sort.append((item, vector[item]))
v_sort.sort(key = lambda x: x[1])
# back to dict
for item in v_sort:
composite[item[0]] = item[1]
return composite
|
e6e74c1f53477b8200b777e749cf556dc981c51e
| 26,729
|
def _get_single_node(nodes, allow_zero=False):
"""Helper function for when a particular set of nodes returned from `xpath` should have exactly one node.
If null_case is False,
"""
if len(nodes) == 1:
return nodes[0]
elif len(nodes) == 0 and allow_zero:
return None
else:
raise ValueError(f"Unexpected number of nodes for {nodes}. Got {len(nodes)}, expected {'zero or ' if allow_zero else ''} one")
|
08efda323d489590d66833a3b4ebe94c400a5205
| 26,730
|
def get_input_mode(mode_description_ls, input_tips=None):
"""
获取输入,并根据 mode_description_ls 返回选择的 mode
:param mode_description_ls: 第一个item为默认模式 [[mode, description], ……]
description 为对应的输入
:param input_tips: 不设定时将根据 mode_description_ls 自动生成
"""
description_mode_dict = {str(description): str(mode) for mode, description in mode_description_ls}
if not input_tips:
input_tips = "pls choose %s(%s|default)" % (mode_description_ls[0][0], mode_description_ls[0][1])
for mode, description in mode_description_ls[1:]:
input_tips += "/%s(%s)" % (mode, description)
input_tips += " mode:\n"
while True:
input_str = input(input_tips)
try:
if not input_str: # 输入""使用默认值
mode = str(mode_description_ls[0][0])
else:
mode = description_mode_dict.get(input_str, None)
if mode is None:
print("ERR:input value exceeds range!")
continue
print("Mode %s is selected" % mode)
break
except Exception as e:
print(Exception, ":", e)
return mode
|
e78209bc3119308af9040e854597f1f7c56b601a
| 26,731
|
import re
def text_url(text_content):
"""
判断文本中是否存在微博URL
:param text_content: 处理对象文本
:return: 是否含有url(1:有,0:无),url数量
"""
url = re.findall('https?://(?:[-\w.]|(?:%[\da-fA-F]{2}))+', text_content)
if url:
return 1,len(url)
else:
return 0,0
|
68177c281d1514f952a3636f0c6381d9e11f33dd
| 26,733
|
from pathlib import Path
import errno
import os
def args_path_ensure_exists(file_path: str) -> Path:
"""Returns a `Path` object containing the resolved `file_path`.
Raises `FileNotFoundError` if the path does not exist.
"""
path = Path(file_path).resolve()
if not path.exists():
raise FileNotFoundError(errno.ENOENT, os.strerror(errno.ENOENT), str(path))
return path
|
4a50d2a76d6f219836ab2d2c200c4269b144f4ba
| 26,734
|
def faConverter(arr):
"""
"""
# print(arr)
results = []
for _s in arr:
converted = []
converted.append('fa')
go_up = True
for _c in _s:
if _c == '-':
go_up = True
continue
if go_up:
converted.append(_c.upper())
else:
converted.append(_c)
go_up = False
results.append(''.join(converted))
return ', '.join(results)
|
8995e0be2ed403c3d8552110e36e11fa01cc22fc
| 26,736
|
def find_namespace_vars_usages(analysis, namespace_usage):
"""
Returns usages of Vars from namespace_usage.
It's useful when you want to see Vars (from namespace_usage) being used in your namespace.
"""
usages = []
for var_qualified_name, var_usages in analysis.get("vindex_usages", {}).items():
namespace, _ = var_qualified_name
if namespace == namespace_usage.get("to"):
usages.extend(var_usages)
return usages
|
8d70b838c18e71e9483d7ccc18c7e70e2ba2a1f6
| 26,737
|
def mf_list(name, y1, y2):
""" list of all yearly files in decade starting in year Y """
return [name+f'{y:04d}-{m:02d}.nc' for y in range(y1,y2) for m in range(1,13)]
|
5db4d90a44292380cd339c96894d229e9379a1e3
| 26,739
|
def f_Wint(a, b, c, dh_IS, m_max):
"""
y-intercept of Willans Line
"""
return (c/a)*(m_max*dh_IS - b)
|
488c133b973f312359602f41edcb70a487d733d1
| 26,740
|
def get_quote():
"""
Responsible for getting a quote.
Args:
Returns:
str - a quote
"""
return "This is quote from latest master branch! Random quotes coming soon!"
|
49236f5b52c08e3bec023c09d52dc13eb07657f9
| 26,741
|
import torch
def linreg(X, w, b):
"""
Return the matrix multiply result of X*w+b
Parameters
----------
X : [tensor]
the variablies of the question
w : [tensor]
the weight of this linear reg
b : [tensor]
the bias of this linear reg
Returns
-------
[tensor]
the matrix multiply result of X*w+b
"""
# mm means matrix multiply
return torch.mm(X, w)+b
|
311cd5636977c608986d536c585e9c50a8a32557
| 26,743
|
def is_annotation_constant(thing):
""" Returns whether the annotator can prove that the argument is constant.
For advanced usage only."""
return True
|
99dd8eb2fd168cc70173a4a17e2b6b50d0c16271
| 26,744
|
import os
from pathlib import Path
def get_datafolder_files(datafolder_path, pattern='.wav'):
"""Get all files with specified extension in directory tree
Return: list of file pathes
"""
filelist = []
for root, _, filenames in os.walk(datafolder_path):
for filename in filenames:
if Path(filename).suffix == pattern:
filelist.append(os.path.join(root, filename))
return filelist
|
90becba841243117624f6de4fedb32c959ca59e0
| 26,745
|
import json
def load_dexpreopt_configs(configs):
"""Load dexpreopt.config files and map module names to library names."""
module_to_libname = {}
if configs is None:
configs = []
for config in configs:
with open(config, 'r') as f:
contents = json.load(f)
module_to_libname[contents['Name']] = contents['ProvidesUsesLibrary']
return module_to_libname
|
b3a8763ee182fa7e9da968404369933e494663b5
| 26,746
|
def reconstruct_standard_path(
data,
next_matrix,
start,
end
):
"""
:param list data: a list of :obj:`decitala.search.Extraction` objects.
"""
path = [start]
if end.onset_range[0] <= start.onset_range[-1]:
return path
while start != end:
start_index = next((index for (index, d) in enumerate(data) if d.id_ == start.id_), None)
end_index = next((index for (index, d) in enumerate(data) if d.id_ == end.id_), None)
start = next_matrix[start_index][end_index]
path.append(start)
return path
|
011feb0e8bbd3fef4405675f6f86789d8d7e8a3a
| 26,747
|
from typing import Any
from typing import Callable
def cast_field(field_value: Any, column_type: Callable) -> Any:
"""
Returns the casted field value according to the DATATYPE_MAPPING above
:param field_value: value of the field (Any)
:param column_type: class constructor / function that casts the datatype to the correct type (Callable)
:return: (Any)
"""
if field_value is None:
return field_value
return column_type(field_value)
|
d2aa57bd593f9bc992e3f1d51af62d1077ccda44
| 26,748
|
def hit_location_cmp(hit1, hit2):
"""
Is the location of hit1 before the location of hit2? Used to sort hits.
"""
diff = hit1.location.start() - hit2.location.start()
return 0 != diff and diff or hit1.location.end() - hit2.location.end()
|
938c9c5e8d8e00afd24b32eaeaa847300268e61d
| 26,749
|
def match(freq1, freq2):
"""
Due to noise considerations, consider frequencies with difference
less than 20Hz as equal.
"""
return abs(freq1 - freq2) < 20
|
ef5d023f8ca9c69e1ee2a2f17387ed825183d94c
| 26,752
|
def CoolerON():
""" Switches ON the cooling. On some systems the rate
of temperature change is controlled until the
temperature is within 3 deg. of the set value.
Control is returned immediately to the calling
application. """
return None
|
1e3e35e687188c98264c9e9c0b4e4d52e2832ba3
| 26,753
|
import pkg_resources
def find_plugins(plug_type):
"""Finds all plugins matching specific entrypoint type.
Arguments:
plug_type (str): plugin entrypoint string to retrieve
Returns:
dict mapping plugin names to plugin entrypoints
"""
return {
entry_point.name: entry_point.load()
for entry_point
in pkg_resources.iter_entry_points(plug_type)
}
|
f6d6e4debdaec478b14c87582b7e69a9a9bf929b
| 26,754
|
from typing import List
def _read_resultset_columns(cursor) -> List[str]:
""" Read names of all columns returned by a cursor
:param cursor: Cursor to read column names from
"""
if cursor.description is None:
return []
else:
return [x[0] for x in cursor.description]
|
cacefb20b12f327647d1f77bb12216c80388fcd6
| 26,755
|
def apply_function_per_metric(metric_type):
""" Select the proper function the applied in the web service that retrieves the values per pod.
Args:
metric_type (str): The type of the metric
Returns:
str: the name of the function
"""
net_metrics = ["container_network_receive_bytes_total",
"container_network_receive_errors_total",
"container_network_receive_packets_dropped_total",
"container_network_receive_packets_total",
"container_network_transmit_bytes_total",
"container_network_transmit_errors_total",
"container_network_transmit_packets_dropped_total",
"container_network_transmit_packets_total", ]
computational_metrics = ["container_cpu_usage_seconds_total",
"container_cpu_user_seconds_total",
"container_cpu_system_seconds_total ",
"container_cpu_cfs_throttled_seconds_total",
"container_fs_writes_bytes_total",
"container_fs_reads_bytes_total", ]
if metric_type in net_metrics or metric_type in computational_metrics:
return "rate"
return "avg_over_time"
|
213cd13f5cceee6888227552e26096a1847edb7e
| 26,757
|
def max_dict(d):
"""Return dictionary key with the maximum value"""
if d:
return max(d, key=lambda key: d[key])
else:
return None
|
446c185a2e986c8a58672d0571f0f100340be7e4
| 26,758
|
def clean_raw_data(df):
"""
Quality Control of the raw dataest.
parameters
-------------
df : data frame
The dataframe of the raw data.
Must have the index of genes & column of time points.
Returns
-------------
df : data frame
A data frame wihout constant genes or duplicates.
"""
# # Check missing values
# print('Check the missing values in the dataframe .... ')
# number_of_missing_values = df.isnull().sum().sum()
# print('# of missing values : ', number_of_missing_values)
# Delete genes with 0 expressions at all time points (all-0 genes)
df_clean = df.loc[ (df!=0).any(axis=1) ]
# num_of_all_0_genes = df.shape[0] - df_clean.shape[0]
# print('# of all-0 genes: ', num_of_all_0_genes)
# Check the number of constant genes:
# num_of_constant_genes = (df_clean.var(axis=1) == 0).sum()
# print('After removing all-0-genes -------------')
# print('num of constant genes = ', num_of_constant_genes)
# Delete constant genes:
df_clean = df_clean.loc[ df_clean.var(axis=1) != 0 ]
# print('shape of clean data frame', df_clean.shape)
# # Check the duplicate genes: True if all value counts == 1
# print('no duplicates? ', (df_clean.index.value_counts() == 1 ).all() )
# print('Finished Data QC ----')
return df_clean
|
7ec5438334cb0b195f2fa3a1b586a60f2bcc29fc
| 26,759
|
import typing
def hex_to_color(color: str) -> typing.Tuple[int, int, int]:
"""
Helper method for transforming a hex string encoding a color into a tuple of color entries
"""
return int(color[:2], base=16), int(color[2:4], base=16), int(color[4:6], base=16)
|
40f0c580822effde33a96027863acafb781e44f9
| 26,760
|
import six
def truncate_rows(rows, length=30, length_id=10):
"""
Truncate every string value in a dictionary up to a certain length.
:param rows: iterable of dictionaries
:param length: int
:param length_id: length for dict keys that end with "Id"
:return:
"""
def trimto(s, l):
"""
Trim string to length.
:param s: string to trim
:param l: length
"""
if isinstance(s, six.string_types):
return s[:l + 1]
return s
result = []
for row in rows:
if isinstance(row, dict):
updated = {}
for k, v in row.items():
if k.endswith('Id'):
updated[k] = trimto(v, length_id)
else:
updated[k] = trimto(v, length)
result.append(updated)
elif isinstance(row, six.string_types):
result.append(trimto(row, length))
else:
result.append(row)
return result
|
db0d02e39f4152ea8dc15a68ab968ae8500bc320
| 26,761
|
def find_adjacent(left, line):
"""
find the indices of the next set of adjacent 2048 numbers in the list
Args:
left: start index of the "left" value
line: the list of 2048 numbers
Returns:
left, right: indices of the next adjacent numbers in the list
if there are no more adjacent numbers, left will be
len(line) - 1
"""
# find the next non zero index for left
while left < (len(line) - 1) and line[left] == 0:
left += 1
right = left + 1
# find the next non zero index after left
while right < len(line) and line[right] == 0:
right += 1
return left, right
|
0bca5a7683d5a7d7ab7c25ae416e6448044823f8
| 26,762
|
def get_examples(mode='train'):
"""
dataset[0][0] examples
"""
examples = {
'train':
({'sentence1': 'Amrozi accused his brother , whom he called " the witness " , of deliberately distorting his evidence .','sentence2': 'Referring to him as only " the witness " , Amrozi accused his brother of deliberately distorting his evidence .', 'labels': 1}),
'dev':
({'sentence1': "He said the foodservice pie business doesn 't fit the company 's long-term growth strategy .", 'sentence2': '" The foodservice pie business does not fit our long-term growth strategy .', 'labels': 1}),
'test':
({'sentence1': "PCCW 's chief operating officer , Mike Butcher , and Alex Arena , the chief financial officer , will report directly to Mr So .", 'sentence2': 'Current Chief Operating Officer Mike Butcher and Group Chief Financial Officer Alex Arena will report to So .'}),
}
return examples[mode]
|
7ed0e97625c833df35aafdf06633cba94289a966
| 26,763
|
import re
def parseStrongs(word_data):
"""
Parses the strong's numbers from word data
:param word_data:
:return:
"""
header = re.findall('^#+\s*Word\s+Data\s*\:?.*', word_data, re.MULTILINE | re.IGNORECASE)
if header:
word_data = word_data.split(header[0])[1]
return re.findall('[HG]\d+', word_data, re.MULTILINE | re.IGNORECASE)
else:
raise Exception('Missing Word Data section')
|
e09d2339096a3ec26e0732e47526b0ef6b08ed93
| 26,764
|
def max_power_rule(mod, g, tmp):
"""
**Constraint Name**: GenVar_Max_Power_Constraint
**Enforced Over**: GEN_VAR_OPR_TMPS
Power provision plus upward services cannot exceed available power, which
is equal to the available capacity multiplied by the capacity factor.
"""
return (
mod.GenVar_Provide_Power_MW[g, tmp] + mod.GenVar_Upwards_Reserves_MW[g, tmp]
<= mod.Capacity_MW[g, mod.period[tmp]]
* mod.Availability_Derate[g, tmp]
* mod.gen_var_cap_factor[g, tmp]
)
|
03cfd061867ce68dcab7068c38eaece69b9906ca
| 26,765
|
import itertools
def powerset(iterable):
"""Yield all subsets of given finite iterable.
Based on code from itertools docs.
Arguments:
iterable -- finite iterable
We yield all subsets of the set of all items yielded by iterable.
>>> sorted(list(powerset([1,2,3])))
[(), (1,), (1, 2), (1, 2, 3), (1, 3), (2,), (2, 3), (3,)]
"""
s = list(iterable)
return itertools.chain.from_iterable( itertools.combinations(s, r)
for r in range(len(s)+1) )
|
8bcc95585393e2790a8081337aeb6e9d54173b3d
| 26,767
|
import re
def clean_str(s):
""" Clean a string so that it can be used as a Python variable name.
Parameters
----------
s : str
string to clean
Returns
-------
str
string that can be used as a Python variable name
"""
# http://stackoverflow.com/a/3305731
# https://stackoverflow.com/a/52335971
return re.sub(r"\W|^(?=\d)", "_", s)
|
26801f0258b61eed5cb2ea7b2da31ccfffad074c
| 26,768
|
def marked(obj):
"""Whether an object has been marked by spack_yaml."""
return (hasattr(obj, '_start_mark') and obj._start_mark or
hasattr(obj, '_end_mark') and obj._end_mark)
|
07a1b4bb3ae5dcdd6aa39bf44c99596fba217cb0
| 26,770
|
import tempfile
import os
import subprocess
def generate_file(parent_dir, size_mb):
""" Generate a file, write random data to it, and return its filepath. """
fd, filepath = tempfile.mkstemp(dir=parent_dir)
os.close(fd)
print("Generating %u MB file to '%s'..." % (size_mb, filepath))
cmd = ("dd", "if=/dev/frandom", "of=%s" % (filepath), "bs=1M", "count=%u" % (size_mb))
subprocess.check_call(cmd,
stdout=subprocess.DEVNULL,
stderr=subprocess.DEVNULL)
return filepath
|
d823d2283b9d786867ae8e34028d3637159846bb
| 26,772
|
def get_path(topology, start, end):
""" Takes a dict (topology) representing the geometry of the
connections, an int (start) representing the starting index
and an int (end) representing the ending index and returns
a list corresponding to the shortest path from end --> start
(assuming a ring topology) """
path_cw = [] # initialize the clockwise traversed path
path_ccw = [] # initialize the counter clockwise traversed path
path_cw.append(end)
path_ccw.append(end) # add the first point
current = end
while start not in topology[current]: # traverse clockwise while adding each intermediate qbit index
current = topology[current][1]
path_cw.append(current)
path_cw.append(start)
current = end
while start not in topology[current]: # traverse counter clockwise while adding each intermediate qbit index
current = topology[current][0]
path_ccw.append(current)
path_ccw.append(start)
if len(path_cw) <= len(path_ccw): # return the shorter among the two paths
return path_cw
else:
return path_ccw
|
ab37a81d11f52f454725926471103f4c173564b9
| 26,773
|
import fileinput
def get_all_ints(fn):
"""Returns a list of integers from 'fn'.
Arguments:
- fn - a string representing input file name. If None or equal to '-' - read
from STDIN; fn is treated as a single input integer if it is a digit.
"""
if fn is None:
fn = '-'
if fn.isdigit():
return [int(fn)] # just a single integer
all_ints = []
for line in fileinput.input(files=fn):
line = line.rstrip()
if line.isspace():
continue
if not line.isdigit():
raise Exception("Wrong integer '%s'!" % line)
all_ints.append(int(line))
return all_ints
|
fc0fa992258c87220a674275429ac9a04f999a05
| 26,774
|
def check_answers(answers, answer_key):
"""
Check students’ answers against answer key.
Inputs: answers, a tuple of tuples of strs.
answer_key, a tuple of strs.
Returns: tuple of tuples of ints.
"""
def check_section(current, start, end):
"""
Mark answers in a section.
Inputs: current, a list of strs.
start, an int.
end, an int.
Returns: an int.
"""
counter = 0
for i in range(start, end):
if current[i] == answer_key[i]:
counter += 1
return counter
final = []
for elem in answers:
results = [
check_section(elem, 0, 12),
check_section(elem, 12, 24),
check_section(elem, 24, 36),
check_section(elem, 36, 47),
check_section(elem, 47, 57),
check_section(elem, 57, 71),
]
final.append(tuple(results))
return tuple(final)
|
3138247b05f6d33d162ac5dc00bb2e1590ff5fe1
| 26,777
|
import csv
def import_callrates(table_in):
"""
Import table of variant callrates
"""
callrates = {}
with open(table_in) as tsvfile:
reader = csv.reader(tsvfile, delimiter='\t')
for vid, callrate in reader:
if vid not in callrates.keys():
callrates[vid] = float(callrate)
return callrates
|
28eab08d976a016503327c8009de42d2823b883e
| 26,778
|
from typing import Optional
from typing import List
def parse_match_phase_argument(match_phase: Optional[List[str]] = None) -> List[str]:
"""
Parse match phase argument.
:param match_phase: An optional list of match phase types to use in the experiments.
Currently supported types are 'weak_and' and 'or'. By default the experiments will use
'weak_and'.
:return: A list with all the match phase types to use in the experiments.
"""
if not match_phase:
match_phase_list = ["weak_and"]
else:
assert all(
[x in ["or", "weak_and"] for x in match_phase]
), "match_phase must be a list containing 'weak_and' and/or 'or'."
match_phase_list = match_phase
return match_phase_list
|
4d70a4936ebf09e0eb8276bf0477895b726941c2
| 26,780
|
def getMaxMinFreq(msg):
"""
Get the max and min frequencies from a message.
"""
return (msg["mPar"]["fStop"], msg["mPar"]["fStart"])
|
3c28882dce3f2ddd420700997c6f65ed906ec463
| 26,781
|
def parse_creator_string(creator):
"""
Creates a string from the creator information in the SPDX document
:param creators: Array of creationinfo objects
:return: string equivalent
"""
print('Begin Parsing Creator')
creators = []
creator_list = creator.replace(" ", "").split(',')
for c in creator_list:
if c[0] != '[':
creators.append(c)
else:
c = c[7:]
c = c[:-1]
creators.append(c)
print('Completed Parsing Creator')
return creators
|
06353584dbc41293980dba3913b56823c9406b28
| 26,782
|
def all_messages():
"""
keep all messages in de
Returns:
all messages in JSON
"""
return \
{
"0": "Nettacker Programm gestartet ...\n\n",
"1": "python nettacker.py [Optionen]",
"2": "Nettacker Hilfe-Menü anzeigen",
"3": "Bitte lesen Sie die Lizenz und Vereinbarungen https://github.com/viraintel/OWASP-Nettacker\n",
"4": "Programm",
"5": "Optionen für das Programm",
"6": "Bitte eine Sprache {0} auswählen.",
"7": "Alle IPs im Bereich scannen",
"8": "Subdomains suchen und scannen",
"9": "Thread-Nummern für Verbindungen zu einem Host",
"10": "Thread-Nummern für Scan-Hosts",
"11": "Alle Protokolle der Datei (results.txt, results.html, results.json) speichern",
"12": "Ziel",
"13": "Optionen für das Ziel",
"14": "Liste der Ziele mit \",\" getrennt",
"15": "Ziele aus Datei lesen",
"16": "Optionen für Scan-Methoden",
"17": "Scan-Methode {0} wählen",
"18": "Scan-Methode auswählen, um {0} auszuschließen",
"19": "Benutzernamen-Liste mit \",\" getrennt",
"20": "Benutzernamen aus Datei lesen",
"21": "Passwörter-Liste mit \",\" getrennt",
"22": "Passwörter aus Datei lesen",
"23": "Port-Liste mit \",\" getrennt",
"24": "Passwörter aus Datei lesen",
"25": "Wartezeit (sleep) zwischen jeder Anfrage",
"26": "Das Ziel kann nicht angegeben werden",
"27": "Das Ziel kann nicht angegeben werden. Die Datei kann nicht geöffnet werden: {0}",
"28": "Die Thread-Nummer sollte kleiner als 100 sein, es wird trotzdem weitergemacht ...",
"29": "Zeitlimit auf {0} Sekunden setzen, es ist zu groß, oder? es wird trotzdem weitergemacht ...",
"30": "Dieses Scan-Modul [{0}] wurde nicht gefunden!",
"31": "Dieses Scan-Modul [{0}] wurde nicht gefunden!",
"32": "Es können nicht alle Scan-Methoden ausgeschlosen werden",
"33": "Es können nicht alle Scan-Methoden ausgeschlosen werden",
"34": "Das Modul {0}, das zum Ausschließen ausgewählt wurde, wurde nicht gefunden!",
"35": "Bitte Eingabe für Methode angeben, Beispiel: \"ftp_brute_users =test,admin&ftp_brute_passwds="
"read_from_file:/tmp/pass.txt&ftp_brute_port=21\"",
"36": "Datei {0} kann nicht gelesen werden",
"37": "Der Benutzername kann nicht angegeben werden. Die Datei kann nicht geöffnet werden: {0}",
"38": "",
"39": "Das Passwort kann nicht angegeben werden. Die Datei kann nicht geöffnet werden: {0}",
"40": "Datei \"{0}\" ist nicht schreibbar!",
"41": "Bitte Scan-Methode wählen!",
"42": "Temporäre Dateien entfernen!",
"43": "Ergebnisse sortieren!",
"44": "fertig!",
"45": "beginne {0}, {1} von {2} anzugreifen",
"46": "Das Modul \"{0}\" ist nicht verfügbar",
"47": "Leider kann diese Version der Software nur unter Linux/OSX/Windows laufen.",
"48": "Die Python-Version wird nicht unterstützt!",
"49": "Überspringe ein doppeltes Ziel (einige Subdomains / Domains können dieselbe IP und Ranges haben)",
"50": "unbekannter Zieltyp [{0}]",
"51": "{0} Bereich prüfen ...",
"52": "Überprüfung {0} ...",
"53": "GASTGEBER",
"54": "USERNAME",
"55": "PASSWORT",
"56": "PORT",
"57": "TYP",
"58": "BESCHREIBUNG",
"59": "ausführliche Meldungen (0-5) (Standardeinstellung 0)",
"60": "Softwareversion anzeigen",
"61": "auf Update überprüfen",
"62": "",
"63": "",
"64": "Wiederholungen beim Verbindungs-Timeout (Standard 3)",
"65": "ftp-Verbindung zu {0}: {1} Zeitüberschreitung, überspringen {2}: {3}",
"66": "ERFOLGREICH EINGELOGGT!",
"67": "ERFOLGREICH ABGESCHLOSSEN, KEINE BERECHTIGUNG FÜR LISTE-BEFEHL!",
"68": "ftp-Verbindung zu {0}: {1} ist fehlgeschlagen, gesamter Schritt wirdübersprungen"
" [process {2} von {3}]! weiter mit nächstem Schritt",
"69": "Das Ziel für das {0} -Modul muss DOMAIN, HTTP oder SINGLE_IPv4 sein, wobei {1}",
"70": "Benutzer: {0} übergeben: {1} Host: {2} Port: {3} gefunden!",
"71": "(KEINE BERECHTIGUNG FÜR LISTEN-DATEIEN)",
"72": "versuche {0} von {1} im Prozess {2} von {3} {4}:{5} {6}",
"73": "SMTP-Verbindung zu {0}: {1} Zeitüberschreitung, überspringe {2}: {3}",
"74": "smtp-Verbindung zu {0}: {1} ist fehlgeschlagen, gesamter Schritt wird übersprungen "
"[process {2} von {3}]! weiter mit nächstem Schritt",
"75": "Ziel für {0} -Modul muss HTTP sein, {1} wird übersprungen",
"76": "ssh-Verbindung zu {0}: {1} Zeitüberschreitung, überspringe {2}: {3}",
"77": "ssh-Verbindung zu {0}: {1} ist fehlgeschlagen, gesamter Schritt wird übersprungen "
"[process {2} von {3}]! weiter mit nächstem Schritt",
"78": "ssh-Verbindung zu% s:% s ist fehlgeschlagen, gesamter Schritt [Prozess% s von% s]"
" wird übersprungen! weiter mit nächstem Schritt",
"79": "OFFENER PORT",
"80": "Host: {0} Port: {1} gefunden!",
"81": "Ziel {0} eingereicht!",
"82": "Kann keine Proxy-Listendatei öffnen: {0}",
"83": "Proxy-Listendatei kann nicht gefunden werden: {0}",
"84": "OWASP-Nettacker-Version {0} {1} {2} {6} mit dem Codenamen {3} {4} {5} wird ausgeführt",
"85": "Diese Funktion ist noch nicht verfügbar! Bitte \"git clone https://github.com/viraintel/"
"OWASP-Nettacker.git\" oder \"pip install -U OWASP-Nettacker\" ausführen, um die letzte"
" Version zu erhalten.",
"86": "Erstellen Sie ein Diagramm aller Aktivitäten und Informationen erstellen, HTML-Ausgabe"
" muss verwendet werden. Verfügbare Diagramme: {0}",
"87": "Um den Graphen verwenden zu können, muss der Ausgabedateiname mit \".html\" oder \".htm\" enden!",
"88": "Diagramm erstellen ...",
"89": "Diagramm fertig bauen!",
"90": "Penetrationstests",
"91": "Diese Grafik wurde von OWASP Nettacker erstellt. Diagramm enthält alle Module Aktivitäten"
", Netzwerkkarte und vertrauliche Informationen, Bitte teilen Sie diese Datei nicht mit"
" jemandem, wenn es nicht zuverlässig ist.",
"92": "OWASP Nettacker Bericht",
"93": "Softwaredetails: OWASP-Nettacker-Version {0} [{1}] in {2}",
"94": "Keine offenen Ports gefunden!",
"95": "Kein Benutzer / Passwort gefunden!",
"96": "{0} Module geladen ...",
"97": "Dieses Grafikmodul wurde nicht gefunden: {0}",
"98": "Dieses Grafikmodul \"{0}\" ist nicht verfügbar",
"99": "ping vor dem Scan des Host",
"100": "Überspringe gesamtes Ziel und Scanmethode {1}, weil --ping-before-scan benutzt wurde und"
" keine Antwort erhalten hat!",
"101": "Es wird nicht die aktuelle Version von OWASP Nettacker verwendet, bitte aktualisieren.",
"102": "Kann nicht nach Update suchen, bitte Internetverbindung überprüfen.",
"103": "Es wird nicht die aktuelle Version von OWASP Nettacker verwendet ...",
"104": "Verzeichniseintrag in {0} gefunden",
"105": "Bitte den Port über die Option -g oder --methods-args anstelle von URL einfügen",
"106": "HTTP-Verbindung {0} Timeout!",
"107": "",
"108": "Kein Verzeichnis oder keine Datei für {0} in Port {1} gefunden",
"109": "Kann {0} nicht öffnen",
"110": "Die Methode für dir_scan_http_method muss GET oder HEAD sein, Standard wird auf GET gesetzt.",
"111": "Zeige alle Methodenargumente an",
"112": "Kann {0} Modulargumente nicht abrufen",
"113": "",
"114": "",
"115": "",
"116": "",
"117": ""
}
|
25a1b28fa717b51fa3add316b22425eebf958e8f
| 26,783
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.