content
stringlengths 35
416k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
|---|---|---|
def get_url_and_type(xml):
"""
Gets the URL of the audio file, and it's type
"""
attr = xml.find('channel').find('item').find('enclosure').attrib
return attr['url'], attr['type']
|
5e6feacb59edaaca0192342e4c1424c8d23f2bfe
| 23,993
|
import random
import math
def create_training_testing_dataset_for_member_prediction(NodeChildrenFile="",NumOfSelect=100, NumOfChild=10, wsFile ="",
catPathFile="", unknownWordsFile = "", lenUNK=100,
TrainPercentage=50, outPutFile=""):
"""
:param NodeChildrenFile:
:param NumOfSelect:
:param NumOfChild:
:param TrainPercentage:
:param outPutFile:
:return:
"""
WSCHD = dict()
outPutFile += "_".join([str(NumOfChild), str(TrainPercentage)])
CATPATHDic = dict()
with open(catPathFile, 'r') as pfh:
for ln in pfh:
wlst = ln[:-1].split()
CATPATHDic[wlst[0]] = wlst[2:-1]
wsLst = []
with open(wsFile, 'r') as ifh:
for ln in ifh:
wsLst.append(ln[:-1])
unkLst = []
with open(unknownWordsFile, 'r') as ifh:
for ln in ifh:
word = ln[:-1]
if '.' not in word and not word.isdigit():
unkLst.append(ln[:-1])
with open(NodeChildrenFile, 'r') as ifh:
for ln in ifh:
wlst = ln[:-1].split()
if len(wlst[1:]) >= NumOfChild:
WSCHD[wlst[0]] = wlst[1:]
klst = list(WSCHD.keys())
random.shuffle(klst)
num = 0
open(outPutFile, 'w').close()
with open(outPutFile, 'a') as ofh:
while num < NumOfSelect and klst:
curKey = klst.pop()
if curKey == "*root*": continue
clst = [ele for ele in WSCHD[curKey] if ele in wsLst]
if len(clst) < NumOfChild: continue
EntitiesInKG = list(CATPATHDic.keys())
allNodesInTree = CATPATHDic[curKey] + [curKey] + clst + ["*root*"]
falseEntityInKG = list(set(EntitiesInKG).difference(allNodesInTree))
random.shuffle(clst)
boarder = math.ceil(len(clst) * TrainPercentage/100)
trainLst = clst[:boarder]
testLst = clst[boarder:]
random.shuffle(falseEntityInKG)
random.shuffle(unkLst)
tRecord = curKey+"#"+" ".join(trainLst)+"#"+" ".join(testLst)+"#"+\
" ".join(falseEntityInKG[:lenUNK])+"#"+" ".join(unkLst[:lenUNK])
ofh.write(tRecord+'\n')
num += 1
print(outPutFile, ' is created for training and testing\n')
return outPutFile
|
ab772c9aff2f9ff059dae2df9156d00e13f4ec51
| 23,996
|
def read_problem(filename):
"""
Read a 0hh1 puzzle from file <filename>
Takes a filename, and returns a problem dictionary with
the following fields:
- 'size': the number of rows/columns (assumed to be the same;
an error will be raised if there is a size mismatch)
- 'variables': the puzzle itself, a dictionary with (row, column)
tuples as keys and the corresponding value 'r', 'b', or '.'
- 'state': initially 'unsolved', to be updated by other methods
"""
with open(filename, 'r') as problem_file:
problem = [['rb' if c == '.' else c for c in line if c in '.rb']
for line in problem_file]
size = len(problem)
assert all(len(v) == size for v in problem)
cells = {(r, c): problem[r][c] for r in range(size) for c in range(size)}
problem_dict = {'size': size, 'variables': cells, 'state': 'unsolved'}
return problem_dict
|
554f97862ddc56337a0ba786052a28955c10b03a
| 23,997
|
import stat
def s_isdev(mode):
"""
Check to see if a file is a device.
"""
return stat.S_ISBLK(mode) | stat.S_ISCHR(mode)
|
9caea3ac877f8b745c6c24487ad26f105ef99ca1
| 23,998
|
def in_dict(obj, key, default=False):
"""
Returns true if key exists in obj.__dict__; false if not in.
If obj.__dict__ is absent, return default
"""
return (key in obj.__dict__) if getattr(obj, '__dict__', None) else default
|
905bc7afe9677f5f1dd70a1c6ec296df608cc6c3
| 24,000
|
def normalize_min_max(img, a=0.1, b=0.9):
"""
Normalize the image with Min-Max scaling to a range of [a, b]
Args:
img: The image to be normalized
Returns:
Normalized image data
"""
# Assume image data is in grayscale, with the current values in
# the range [0, 255] (uint8).
x_min = 0
x_max = 255
# x' = a + ((x - x_min) * (b - a)) / (x_max - x_min)
normalized_img = a + ((img - x_min) * (b - a)) / (x_max - x_min)
return normalized_img
|
0772ce27ca4a7cc75df2ae2d40e37f638b43359f
| 24,002
|
def itraceToStr( trace ):
""" Concerts an instruction trace into a string """
traceStr = ""
for i in trace:
traceStr += "%s," % i[0]
return traceStr[:-1]
|
0961655df019737b5812bc4066ce0c898034a032
| 24,005
|
import yaml
def load_config(config_path):
"""
:param config_path: Path to yaml configuration file.
:type config_path: str
:return: Returns settings as found in configuration file.
"""
with open(config_path, "r") as yaml_file:
cfg = yaml.safe_load(yaml_file)
return cfg
|
d39d3030c3ebdc99f085ab430f27caabb5af7299
| 24,006
|
import json
def addNodeGroup(browser, token, obj):
"""
Create a new node group from the given node group object (a dictionary)
"""
raise NotImplementedError
status, data = APICall(browser, token, "POST", "/api/v2/node_groups.json", body=json.dumps({"node_group": obj}))
return json.loads(data)
|
3b59784bca44040413e4fdb816a8dd8009971520
| 24,008
|
import threading
def wait_for_events(completion_queues, deadline):
"""
Args:
completion_queues: list of completion queues to wait for events on
deadline: absolute deadline to wait until
Returns:
a sequence of events of length len(completion_queues).
"""
results = [None] * len(completion_queues)
lock = threading.Lock()
threads = []
def set_ith_result(i, completion_queue):
result = completion_queue.next(deadline)
with lock:
results[i] = result
for i, completion_queue in enumerate(completion_queues):
thread = threading.Thread(target=set_ith_result,
args=[i, completion_queue])
thread.start()
threads.append(thread)
for thread in threads:
thread.join()
return results
|
fd172ade97f78a538bcd9e6c0c95f5ee2102688c
| 24,010
|
def analyse(text):
"""
Return a dictionary with the number of occurrences for each character in the given string.
"""
frequencies = {}
for c in text:
if c in frequencies:
frequencies[c] += 1
else:
frequencies[c] = 1
return frequencies
|
5f4cabd36ab090ba3f26dab89851947ac8f70616
| 24,012
|
import os
import getpass
import json
def GetUsernameAndPwd():
"""
根据用户的输入或者本地的存储返回学号和密码
"""
# 不使用mysql那种通过命令行传递用户名和密码的方式登录
# 使用Linux的方法,在进程中要求用户给定用户名和密码
if not os.path.exists("user_info.json"):
username = input("请输入您的学号: ")
password = getpass.getpass("请输入您的密码: ")
print()
# 持久化
user_info = {"username": username, "password": password}
with open("user_info.json", "w") as f:
json.dump(user_info, f, indent=4)
else:
with open("user_info.json", "r") as f:
user_info = json.load(f)
username = user_info["username"]
password = user_info["password"]
return username, password
|
d14e1f66f7d28f59cda371c95f5c9fa209f63cab
| 24,013
|
def _eval_split_partition_fn(example, num_partitions, eval_fraction, all_ids):
"""Partition function to split into train/eval based on the hash ids."""
del num_partitions
example_id = example[0]
eval_range = int(len(all_ids) * eval_fraction)
for i in range(eval_range):
if all_ids[i] == example_id:
return 0
return 1
|
93dd87df83f3fdc0ac2cc7181e4c7cabb6e9dfba
| 24,015
|
def norm_vec(lst, idx):
"""Get the normal vector pointing to cube at idx (from previous cube)."""
assert len(lst)>1 and 0 < idx < len(lst)
return [a-a1 for (a,a1) in zip(lst[idx], lst[idx-1])]
|
76fb86ac29b2cd8b5ceab0ba83b9bb8360914764
| 24,016
|
def end_chat(input_list):
"""Function to end the chat.
Parameters
----------
input_list : list
List that contains the input that the user input to the chatbot.
Returns
-------
output : bool
Returns True to end chat or False to continue chat.
"""
if str('quit') in input_list:
output = True
return output
else:
output = False
return output
|
cf9a592af3981706c04aa97f4519a4d58a1d87af
| 24,017
|
def parse_accept_language(accept_header):
"""
Taken from:
https://siongui.github.io/2012/10/11/python-parse-accept-language-in-http-request-header/
"""
languages = accept_header.split(",")
locale_q_pairs = []
for language in languages:
if language.split(";")[0] == language:
# no q => q = 1
locale_q_pairs.append((language.strip(), "1"))
else:
locale = language.split(";")[0].strip()
q = language.split(";")[1].split("=")[1]
locale_q_pairs.append((locale, q))
return locale_q_pairs
|
fbe32beabecec84a543d9612336943120cf6b8b0
| 24,018
|
def next_element(elem):
"""Get sibling elements until we exhaust them."""
while elem is not None:
elem = elem.next_sibling
if hasattr(elem, 'name'):
return elem
|
9039a6db533ba5adeb7e767db3b3a49561ef5aa5
| 24,019
|
def pair_sum_eff(A, n=0):
"""
O(nlogn) but a memory efficient
"""
A = sorted(A)
lst = []
first = 0
last = len(A) - 1
while first < last:
if A[first] + A[last] == n:
lst.append((A[first], A[last]))
first += 1
last -= 1
elif A[first] + A[last] < n:
first += 1
else:
last -= 1
return lst
|
6faf4f4a20dceb9df13c980546d131379b50701d
| 24,020
|
from typing import Iterable
from typing import Sequence
import time
import subprocess
def time_subprocesses(name: str, subprocesses_args: Iterable[Sequence[str]]) -> float:
"""Time several suprocesses running in parallel.
If `check` is set, expect the given exit code (default 0).
"""
print()
print("> Running: {}".format(name))
start = time.time()
subprocesses = []
for subprocess_args in subprocesses_args:
subprocesses.append(subprocess.Popen(subprocess_args))
for subprocess_ in subprocesses:
retcode = subprocess_.wait()
assert retcode == 0
end = time.time()
duration = end - start
print("> Completed: {}, duration: {}".format(name, duration))
print()
return duration
|
3e6d954ca78473f319e57282ae5c82a509b0ce7a
| 24,021
|
import uuid
def _generate_id() -> str:
"""
Returns a string representation of a UUID for use as an identifier for entities. The
identifier will be 32 characters long, each of which will be either a number (0-9) or a
lower case letter in the range a-f. See VALID_CHARS, above.
:return: A string that can be used to uniquely identify an entity.
"""
return str(uuid.uuid4()).replace("-", "", 4)
|
9ad7e8d55caaa8c9acb852b193a5bf54402d0194
| 24,022
|
def poly_integral(poly, C=0):
"""
Calculates the integral of a polynomial:
poly is a list of coefficients representing a polynomial
the index of the list represents the power of x that the coefficient
belongs to
Example: if [f(x) = x^3 + 3x +5] , poly is equal to [5, 3, 0, 1]
C is an integer representing the integration constant
If a coefficient is a whole number, it should be represented as an integer
If poly or C are not valid, return None
Return a new list of coefficients representing the integral of the
polynomial
The returned list should be as small as possible
"""
if type(poly) == list and len(poly) > 0 and type(C) == int:
itg = [C]
if len(poly) > 1:
for i in range(1, len(poly)):
if isinstance(poly[i], (int, float)):
coef = poly[i - 1] / i
if coef.is_integer():
itg.append(int(coef))
else:
itg.append(coef)
else:
return None
else:
if poly[0] == 0:
return itg
else:
return [C, poly[0]]
coef = poly[len(poly) - 1] / len(poly)
if coef.is_integer():
itg.append(int(coef))
else:
itg.append(coef)
for i in range(len(itg)):
if (sum(itg[i:]) == 0):
return itg[:i]
return itg
return None
|
77055a4c0d59411d0acc3d402dc3b55743106d23
| 24,024
|
def isint(s):
""" Is the given string an integer?"""
try:
i = int(s)
except ValueError:
return False
return True
|
fc734c88031b2d0aa1c60b59d0605276b0215a83
| 24,025
|
def is_anagram(word1, word2):
"""Two words are anagrams if you can rearrange the letters from one to spell the other.
Write a function called is_anagram that takes two strings and returns True if they are anagrams."""
chars1 = list(word1)
chars1.remove(" ")
chars2 = list(word1)
chars2.remove(" ")
return sorted(chars1) == sorted(chars2)
|
281fe13616155a755eefd01f09e40ba223e41e0d
| 24,026
|
def aws_account_from_infrastructure_access(cluster, access_level, ocm_map):
"""
Generate an AWS account object from a cluster's awsInfrastructureAccess
groups and access levels
"""
ocm = ocm_map.get(cluster['name'])
account = None
for awsAccess in cluster['awsInfrastructureAccess']:
if awsAccess.get('accessLevel', "") == access_level:
account = {
'name': awsAccess['awsGroup']['account']['name'],
'uid': awsAccess['awsGroup']['account']['uid'],
'terraformUsername':
awsAccess['awsGroup']['account']['terraformUsername'],
'automationToken':
awsAccess['awsGroup']['account']['automationToken'],
'assume_role':
ocm.get_aws_infrastructure_access_terraform_assume_role(
cluster['name'],
awsAccess['awsGroup']['account']['uid'],
awsAccess['awsGroup']['account']['terraformUsername'],
),
'assume_region': cluster['spec']['region'],
'assume_cidr': cluster['network']['vpc']
}
return account
|
091866e997f7a1e07da78cb35b8ec10acd639eda
| 24,028
|
import csv
def import_csv(csv_file: str):
"""Reads a given csv file and returns a list of lists with each list corresponding to the row in the .csv file.
Examples:
>>> manystring = '''
... bob, 21, janitor, sanitization team, 02
... alice, 22, secretary, admin team, 03
... chuck, 23, plumber, construction team, 04
... '''
>>>
>>> export_csv_multiline_string(manystring, 'mytest.csv')\n
>>> import os\n
>>> [file for file in os.listdir() if file.startswith('my')]\n
['mytest.csv']
>>>
>>> import_csv('mytest.csv')\n
[['bob', ' 21', ' janitor', ' sanitization team', ' 02'], ['alice', ' 22', ' secretary', ' admin team', ' 03'], ['chuck', ' 23', ' plumber', ' construction team', ' 04']]
References:
https://realpython.com/python-csv/
Args:
csv_file (str): Reference a .csv file
"""
#
results_list = []
with open(csv_file, 'r') as f:
csv_reader = csv.reader(f)
# line_count = 0
for row in csv_reader:
results_list.append(row)
#
return results_list
|
b9376065f3a560c157b78e3af9574fbd1727c9f1
| 24,029
|
def make_lognormal_params_95_ci(lb, ub):
"""
Provides mean and standard deviation of a lognormal distribution for 95% confidence interval
:param lb: lower bound
:param ub: lower bound and upper bound
:return: mean
:return: std: standard deviation
"""
mean = (ub * lb) ** (1 / 2)
std = (ub / lb) ** (1 / 4)
# http://broadleaf.com.au/resource-material/lognormal-distribution-summary/
# v1 = ub
# v2 = lb
# z1 = 1.96
# z2 = -1.96
# std = log( v1 / v2 ) / (z1 - z2)
# mu = ( z2 * log(v1) - z1 * log(v2)) / (z2 - z1)
return mean, std
|
ea6db5b6478b59687ed39a09e84d5cf189582879
| 24,030
|
def val_proto_to_python(msg):
"""
Converts a `protobuf` `Value` `Message` object into a Python variable.
Parameters
----------
msg : google.protobuf.struct_pb2.Value
`protobuf` `Value` `Message` representing a variable.
Returns
-------
one of {None, bool, float, int, str}
Python variable represented by `msg`.
"""
value_kind = msg.WhichOneof("kind")
if value_kind == "null_value":
return None
elif value_kind == "bool_value":
return msg.bool_value
elif value_kind == "number_value":
return int(msg.number_value) if msg.number_value.is_integer() else msg.number_value
elif value_kind == "string_value":
return msg.string_value
elif value_kind == "list_value":
return [val_proto_to_python(val_msg)
for val_msg
in msg.list_value.values]
elif value_kind == "struct_value":
return {key: val_proto_to_python(val_msg)
for key, val_msg
in msg.struct_value.fields.items()}
else:
raise NotImplementedError("retrieved value type is not supported")
|
4dc710483a599ba16b6e27e0f1af6431c454a632
| 24,031
|
def shed(data):
"""
Drops columns that have been encoded
"""
data = data.drop(['Gender','Education','Married','Self_Employed'],axis=1)
return data
|
a50b8974d09d04d38497d87e3c4c96c05bf973ea
| 24,032
|
import hashlib
def file_hash(filename):
"""Calculates the hash of an entire file on disk
Args:
filename (str)
Location of file on disk
Returns:
hash (str)
SHA256 checksum
"""
hash_sha256 = hashlib.sha256()
with open(filename, "rb") as f:
for chunk in iter(lambda: f.read(4096), b""):
hash_sha256.update(chunk)
return hash_sha256.hexdigest()
|
cebd76ad6dec53056ff829dacb5df6fee639ee10
| 24,034
|
def serialize(tag, headers=(), items=()):
"""Return a text corresponding to given collection ``tag``.
The text may have the given ``headers`` and ``items`` added around the
items if needed (ie. for calendars).
"""
items = sorted(items, key=lambda x: x.name)
if tag == "VADDRESSBOOK":
lines = [item.text for item in items]
else:
lines = ["BEGIN:%s" % tag]
for part in (headers, items):
if part:
lines.append("\n".join(item.text for item in part))
lines.append("END:%s\n" % tag)
return "\n".join(lines)
|
69e827e1e962e0d493645ee068abeb0cb12a432f
| 24,035
|
def argsort_list(seq):
"""Returns indices such that the list is sorted.
Example: argsort_list([2, 1, 3]) = [1, 0, 2].
"""
return sorted(range(len(seq)), key=seq.__getitem__)
|
25e598b3771f1aae0b28dff83909705f9bd76b3d
| 24,036
|
def make_mgt_byte(service, sync=False):
"""
Creates the management byte according to the protocol
:param service: Service code as defined in :obj:`~.Service`
:param sync: boolean if synchronized mode should be used
:return: integer
"""
msg = service + 3*16
if sync:
msg += 64
return msg
|
2e69845f9fd19d03013f39eb0a74e0b5f0c0ea7e
| 24,037
|
def fuzzy_match(pattern, instring, adj_bonus=5, sep_bonus=10, camel_bonus=10,
lead_penalty=-3, max_lead_penalty=-9, unmatched_penalty=-1):
"""Return match boolean and match score.
:param pattern: the pattern to be matched
:type pattern: ``str``
:param instring: the containing string to search against
:type instring: ``str``
:param int adj_bonus: bonus for adjacent matches
:param int sep_bonus: bonus if match occurs after a separator
:param int camel_bonus: bonus if match is uppercase
:param int lead_penalty: penalty applied for each letter before 1st match
:param int max_lead_penalty: maximum total ``lead_penalty``
:param int unmatched_penalty: penalty for each unmatched letter
:return: 2-tuple with match truthiness at idx 0 and score at idx 1
:rtype: ``tuple``
"""
score, p_idx, s_idx, p_len, s_len = 0, 0, 0, len(pattern), len(instring)
prev_match, prev_lower = False, False
prev_sep = True # so that matching first letter gets sep_bonus
best_letter, best_lower, best_letter_idx = None, None, None
best_letter_score = 0
matched_indices = []
while s_idx != s_len:
p_char = pattern[p_idx] if (p_idx != p_len) else None
s_char = instring[s_idx]
p_lower = p_char.lower() if p_char else None
s_lower, s_upper = s_char.lower(), s_char.upper()
next_match = p_char and p_lower == s_lower
rematch = best_letter and best_lower == s_lower
advanced = next_match and best_letter
p_repeat = best_letter and p_char and best_lower == p_lower
if advanced or p_repeat:
score += best_letter_score
matched_indices.append(best_letter_idx)
best_letter, best_lower, best_letter_idx = None, None, None
best_letter_score = 0
if next_match or rematch:
new_score = 0
# apply penalty for each letter before the first match
# using max because penalties are negative (so max = smallest)
if p_idx == 0:
score += max(s_idx * lead_penalty, max_lead_penalty)
# apply bonus for consecutive matches
if prev_match:
new_score += adj_bonus
# apply bonus for matches after a separator
if prev_sep:
new_score += sep_bonus
# apply bonus across camelCase boundaries
if prev_lower and s_char == s_upper and s_lower != s_upper:
new_score += camel_bonus
# update pattern index iff the next pattern letter was matched
if next_match:
p_idx += 1
# update best letter match (may be next or rematch)
if new_score >= best_letter_score:
# apply penalty for now-skipped letter
if best_letter is not None:
score += unmatched_penalty
best_letter = s_char
best_lower = best_letter.lower()
best_letter_idx = s_idx
best_letter_score = new_score
prev_match = True
else:
score += unmatched_penalty
prev_match = False
prev_lower = s_char == s_lower and s_lower != s_upper
prev_sep = s_char in '_ '
s_idx += 1
if best_letter:
score += best_letter_score
matched_indices.append(best_letter_idx)
return p_idx == p_len, score
|
5d5f4164f6230161842f37b29f03758753f36ef6
| 24,038
|
def add_lists(list1, list2):
"""
Add list1 and list2 and remove any duplicates.
Example:
list1=[1,2,3,4]
list2=[3,4,5,6]
add_lists(list1, list2) = [1, 2, 3, 4, 5, 6]
:param list1: input list 1
:param list2: input list 2
:return: added lists with removed duplicates
"""
return list1 + list(set(list2) - set(list1))
|
fc3f024ddbe0de0b6c5cfb92c173fedade0b1f54
| 24,039
|
def group(iterable, n_groups):
"""Group a list into a list of lists
This function can be used to split up a big list items into a set to be
processed by each worker in an MPI scheme.
Parameters
----------
iterable : array_like
A list of elements
n_groups : int
The number of groups you'd like to make
Returns
-------
groups : list
A list of lists, where each element in `groups` is a list of
approximately `len(iterable) / n_groups` elements from `iterable`
See Also
--------
interweave : inverse of this operation
"""
return [iterable[i::n_groups] for i in range(n_groups)]
|
bb981dbc8f1fc8034e2b672652c63d6af7de8f5b
| 24,040
|
import os
def get_files(dirpath, suffix=["png"]):
"""
获得指定目录下的图片
Args:
dirpath: 需要遍历的目录
suffix: 文件后缀格式
Returns:
type(list), 指定目录下所有指定后缀文件的全路径
"""
file = []
for root, dirs, files in os.walk(dirpath, topdown=False):
for name in files:
path = os.path.join(root, name)
if name.split(".")[-1] in suffix:
file.append(path)
return file
|
47f5a2985b5f156d716743491736e5d083c43d8d
| 24,041
|
import torch
def device():
"""Return current CUDA device if on GPUs else CPU device.
"""
if torch.cuda.is_available():
return torch.cuda.current_device()
else:
return torch.device('cpu')
|
77aad6c53753b550cfd3766ad499be1c9b33e87f
| 24,042
|
import os
def _baristaProjectFile(directory):
""" Returns the filename of the config-json file in the given directory """
return os.path.join(directory, "barista_project.json")
|
e73092a948ecb8f545130ddb552029abceeafca9
| 24,043
|
import subprocess
def coursepid(name):
"""
根据进程名称,获得进程id
"""
child = subprocess.Popen(['pgrep', '-f', name], stdout=subprocess.PIPE, shell=False)
response = child.communicate()[0]
return [int(pid) for pid in response.split()]
|
631aefdc30488120d41780dbf69be501e7082826
| 24,044
|
def create_params() -> dict:
"""create_params.
max_results max == 1000
Args:
Returns:
dict:
"""
return {"user.fields": "created_at",
"max_results": "1000"}
|
2520e1e521e20bc361e7414aa3c4432ad6fd718f
| 24,049
|
def emails_parse(emails_dict):
"""
Parse the output of ``SESConnection.list_verified_emails()`` and get
a list of emails.
"""
return sorted([email for email in emails_dict['VerifiedEmailAddresses']])
|
db5b1935057367bdacd923e1f27557727f1b9a00
| 24,050
|
def getSourcefileSetsUsed(runSets):
"""
Returns a list of svcomp categories (or "Sets") for which result sets exist.
This is used to populate the "Category" drop down in index.py.
"""
usedSets = set()
for runset in runSets:
usedSets.add(runset.fileSet)
return sorted(list(usedSets))
|
6b9f2348723d2079a2604ffc2603509d74f34723
| 24,052
|
def create_datafile_url(base_url, identifier, is_filepid):
"""Creates URL of Datafile.
Example
- File ID: https://data.aussda.at/file.xhtml?persistentId=doi:10.11587/CCESLK/5RH5GK
Parameters
----------
base_url : str
Base URL of Dataverse instance
identifier : str
Identifier of the datafile. Can be datafile id or persistent
identifier of the datafile (e. g. doi).
is_filepid : bool
``True`` to use persistent identifier. ``False``, if not.
Returns
-------
str
URL of the datafile
"""
assert isinstance(base_url, str)
assert isinstance(identifier, str)
base_url = base_url.rstrip("/")
if is_filepid:
url = "{0}/file.xhtml?persistentId={1}".format(base_url, identifier)
else:
url = "{0}/file.xhtml?fileId={1}".format(base_url, identifier)
assert isinstance(url, str)
return url
|
d6deece390b3028f45b27a0f6aa1864688ed97fa
| 24,053
|
from colorama import Fore
def ctext(s, color='red'):
""" Colored text support
* BLACK
* RED
* GREEN
* YELLOW
* BLUE
* MAGENTA
* CYAN
* WHITE
* RESET
* LIGHTBLACK_EX
* LIGHTRED_EX
* LIGHTGREEN_EX
* LIGHTYELLOW_EX
* LIGHTBLUE_EX
* LIGHTMAGENTA_EX
* LIGHTCYAN_EX
* LIGHTWHITE_EX
Note
----
* colored text is longer in length and can overlength the screen
(i.e. make the progress-bar ugly).
* ctext(x + y + z) is BETTER than ctext(x) + ctext(y) + ctext(z)
because it save more space.
"""
s = str(s)
try:
color = str(color).strip()
color = color.upper()
# special fix for light color
if 'LIGHT' == color[:5] and '_EX' != color[-3:]:
color = color + '_EX'
color = getattr(Fore, color, '')
return color + s + Fore.RESET
except ImportError:
pass
return s
|
13bbb20677c056a8f2e363369db042a66ef3ff54
| 24,054
|
def nakpair(list):
"""Naked pair."""
pair = []
for i in list:
if len(i) == 2:
pair.append(i)
if len(set(pair)) < len(pair):
pairs = []
for i in range(len(pair)):
for j in range(i + 1, len(pair)):
if pair[i] == pair[j]:
pairs.append(pair[i])
for pa in pairs:
other = set(list) - set([pa])
f = []
for q in other:
if pa[0] in q or pa[1] in q:
f.append(list.index(q))
if len(f) > 0:
position = [i for i, x in enumerate(list) if x == pa]
return (True, pa, position, f)
return (False, 0, 0, 0)
|
13b54d3a03a363277ab22d502a2d479afc1ce04a
| 24,055
|
def pkgsystem_lock(): # real signature unknown; restored from __doc__
"""
pkgsystem_lock() -> bool
Acquire the global lock for the package system by using /var/lib/dpkg/lock
to do the locking. From Python 2.6 on, the apt_pkg.SystemLock context
manager is available and should be used instead.
"""
return False
|
587e804a738b610d5e47469a65b0fb7e99875c0e
| 24,056
|
import glob
import os
def get_text_files(directory):
"""
Returns a list of .txt files in <directory>.
Excludes all filenames beginning with "readme" (case-insensitive).
Args:
directory: the directory to search.
"""
temp = glob.glob(os.path.join(directory, '*.txt'))
result = []
for f in temp:
if not os.path.basename(f).lower().startswith('readme'):
result.append(f)
return result
|
79fe0d8c5b97dbf99b7fddf7913ffc50f594af0e
| 24,058
|
def suffix_all_lines(s, suffix):
"""
Returns 's', with 'suffix' appended to all lines.
If the last line is empty, suffix is not appended
to it. (If s is blank, returns s unchanged.)
"""
split = s.split('\n')
last = split.pop()
final = []
for line in split:
final.append(line)
final.append(suffix)
final.append('\n')
if last:
final.append(last)
final.append(suffix)
return ''.join(final)
|
fe43cb9039254a7acf7cb11375356ef2fc1c01b4
| 24,059
|
def safe_float(x):
"""Returns the value of x converted to float, if fails return None.
"""
try:
return float(x)
except (ValueError, TypeError):
return None
|
a492ce03eeb15c4fe192b56dc447a97fff94b03e
| 24,061
|
def current_piv(power, voltage):
"""Usage: current_piv(power, voltage)"""
return power/voltage
|
c9ea309d11d3ef696f177c961b26c0177a5ce551
| 24,063
|
def string_to_scopes(scopes):
"""Converts stringifed scopes value to a list.
Args:
scopes (Union[Sequence, str]): The string of space-separated scopes
to convert.
Returns:
Sequence(str): The separated scopes.
"""
if not scopes:
return []
return scopes.split(' ')
|
ba304ebc17cd52739809d84c0617cf853de6d21b
| 24,064
|
import subprocess
def panconv(inputfile):
"""Convert inputfile to a markdown string with pandoc"""
o = subprocess.check_output(['pandoc', '-t', 'markdown', inputfile])
return o
|
cc2699cda8285a7afceff4a006d8ffc7f27e2990
| 24,065
|
def calculate_total_bill(subtotal):
"""
(float) -> float
subtotal is passed through as an input
HST_RATE variable in this function is multiplied by inputted variable
Function returns the resulting variable "total", rounded and formatted to 2 decimal points.
Variable "total" is then rounded to the nearest 5 cents using the following nickel rounding scheme standard rules in Canada:
0.01 to 0.02 will round down to 0.00. 0. 03 to 0.04 will round up to 0.05. 0.06 to 0.07 will round down to 0.05.
0.08 to 0.09 will round up to 0.10
>>> calculate_total_bill(3.0)
3.40
>>> calculate_total_bill(6.67)
7.55
>>> calculate_total_bill(2.05)
2.30
"""
HST_RATE = 1.13
total_bill = subtotal *HST_RATE
return format(round(0.05 * round(float(total_bill)/0.05), 2), '.2f')
|
6335c9e85e37e6d897eaa48ad09557b5d77d2e1b
| 24,066
|
import multiprocessing
def consumer_process_factory(kafka_bootstrap_servers):
"""
Use this "factory as a fixture" to create multiprocessing.Process running
a Kafka consumer polling loop in a test function.
Parameters
----------
kafka_bootstrap_servers: pytest fixture (str)
comma-separated list of host:port
Returns
-------
_consumer_process_factory :
function(consumer_factory, topics, group_id, consumer_config, document_queue, **kwargs)
factory function returning a multiprocessing.Process that will run a Kafka
consumer polling loop
"""
def _consumer_process_factory(
consumer_factory, topics, group_id, consumer_config, document_queue, **kwargs
):
"""
Parameters
----------
consumer_factory : function(topics, group_id, consumer_config, **kwargs)
a factory function (or callable) returning a BlueskyConsumer-like object
topics : list of str, required
the underlying Kafka consumer will subscribe to the specified topics
group_id : str, optional
the underlying Kafka consumer will have the specified group_id, "pytest" by default
consumer_config : dict, optional
the underlying Kafka consumer will be created with the specified configuration parameters
document_queue : multiprocessing.Queue
the underlying Kafka consumer will place documents it receives in this queue
kwargs
kwargs will be passed to the consumer_factory to be used in constructing the
underlying Kafka consumer
Returns
-------
document_queue: multiprocessing.Queue
this queue will contain bluesky (name, document) pairs that were delivered
to the underlying Kafka consumer
"""
if consumer_config is None:
consumer_config = {
# it is important to set a short time interval
# for automatic commits or the Kafka broker may
# not be notified by the consumer that messages
# were received before the test ends; the result
# is that the Kafka broker will try to re-deliver
# those messages to the next consumer that subscribes
# to the same topic(s)
"auto.commit.interval.ms": 100,
}
# this function will run in the external process created below
def start_consumer_with_queue(document_queue_):
logger = multiprocessing.get_logger()
logger.warning("constructing consumer process with inter-process queue")
def put_document_in_queue(consumer, topic, name, doc):
logger.warning("BlueskyConsumer putting %s in queue", name)
document_queue_.put((name, doc))
# it is important the BlueskyConsumer be
# constructed in the external process
bluesky_consumer_ = consumer_factory(
topics=topics,
bootstrap_servers=kafka_bootstrap_servers,
group_id=group_id,
consumer_config=consumer_config,
process_document=put_document_in_queue,
**kwargs,
)
# consume messages published by a Kafka broker
bluesky_consumer_.start()
# create an external process for the bluesky_kafka.BlueskyConsumer polling loop
# but do not start it, the client of this function will start the process
consumer_process = multiprocessing.Process(
target=start_consumer_with_queue, args=(document_queue,), daemon=True,
)
return consumer_process
return _consumer_process_factory
|
90222728439dc071a39afa72b83c66c757b0a2a7
| 24,069
|
def pil_to_rgb(pil):
"""Convert the color from a PIL-compatible integer to RGB.
Parameters:
pil: a PIL compatible color representation (0xBBGGRR)
Returns:
The color as an (r, g, b) tuple in the range:
the range:
r: [0...1]
g: [0...1]
b: [0...1]
>>> '(%g, %g, %g)' % pil_to_rgb(0x0080ff)
'(1, 0.501961, 0)'
"""
r = 0xff & pil
g = 0xff & (pil >> 8)
b = 0xff & (pil >> 16)
return tuple((v / 255.0 for v in (r, g, b)))
|
b6c2c3f150ddf2e82120febc676e400582d7db48
| 24,070
|
def get_instance(instances, field, value):
"""Given a list of instances (dicts), return the dictionary where field == value."""
for inst in instances:
if inst[field] == value:
return inst
assert False, "Value '{}' for field '{}' was not found in instances!".format(value, field)
|
56b79d142885c54a356709e99d9333476bbc1c43
| 24,072
|
def version_number_to_array(version_num):
"""Given a version number, return an array of the elements, as integers."""
return [int(x) for x in version_num.split(".")]
|
b55605238bd0b534c92c7867f5f2257226e8382f
| 24,076
|
def get_lr(optimizer):
"""
Return current learning rate from optimiser function
* :param optimiser(torch.optim): Optimiser function
:return (float): Learning rate at current epoch
"""
for param_group in optimizer.param_groups:
return param_group['lr']
|
d35703b89e07bce65113135c78733b282eebffd4
| 24,077
|
def dedup(lst):
"""Remove duplicates from lst"""
result = []
repeated = set()
for element in lst:
if element not in repeated:
result.append(element)
repeated.add(element)
return result
|
367640c9f4795ddc9ee2d7db1d88755a9b901290
| 24,078
|
def qgis_vector_fix_geometries(processing, context, INPUT, OUTPUT):
"""qgis fixgeometries
----------
Notes
-------
Returns:
-------
None,
"""
out = processing.run("native:fixgeometries", {"INPUT": INPUT, "OUTPUT": OUTPUT})
return out
|
f2865c533840ec1b2fc3e09b832631d9c5334e39
| 24,079
|
def cria_coordenada(x, y):
"""
cria_coordenada: {0, 1, 2} x {0, 1, 2} >>> coordenada
- Cria um valor do tipo "coordenada" a partir de dois valores, linha e coluna, coordenadas X e Y
"""
if x not in (0, 1, 2) or y not in (0, 1, 2):
raise ValueError("cria_coordenada: argumentos invalidos.")
return (x, y)
|
4f6d7271df8e6b2618e0c8341eed20b4b06af033
| 24,080
|
def select_all(conn):
"""
Query all rows in the MOVIE table
:param conn: the Connection object
:return:
"""
cur = conn.cursor()
cur.execute("SELECT * FROM ACTOR_SCORE")
rows = cur.fetchall()
print(rows)
return rows
# print('rows count : '+str(len(rows)))
|
1d920ccfaef300b32c7823b280f9a57742ecec23
| 24,082
|
def comma(text):
"""Split a string into components by exploding on a comma"""
components = (el.strip() for el in text.split(','))
return tuple(filter(bool, components))
|
ebfd1d0fe7be436a93973e4ee14f7565414cd5f3
| 24,084
|
import random
def get_random_float(min, max, digits=4):
"""
:param min:
:param max:
:param digits:
:return:
"""
return round(random.uniform(min, max), digits)
|
287a8f69f5a1d9e213978d064c3a4c34860e66eb
| 24,085
|
def calling(cb):
"""Iterfunc which returns its input, but calling callback after every item.
In particular, the returned iterator calls cb() after it has been asked for
a next element, but before returning it.
"""
def iterfunc(iterator):
for item in iterator:
cb()
yield item
return iterfunc
|
eb025659d93fdb6b0d96424e395ef10720621736
| 24,086
|
def bisect(f, left, right):
"""Determine largest value where ``f`` returns ``True``.
If this values lies to the left of the search interval, return ``left - 1``.
If this values lies to the right of the search interval, return ``right + 1``.
"""
if f(left) is False:
return left - 1
if f(right) is True:
return right + 1
while right - left > 1:
at = (left + right) // 2
if f(at):
left = at
else:
right = at
if f(right):
return right
else:
return left
|
03a1147c2a5a841804cbc6aa2dc85f791d9e9ac2
| 24,087
|
def get_column(puzzle: str, col_num: int) -> str:
"""Return column col_num of puzzle.
Precondition: 0 <= col_num < number of columns in puzzle
>>> get_column('abcd\nefgh\nijkl\n', 1)
'bfj'
"""
puzzle_list = puzzle.strip().split('\n')
column = ''
for row in puzzle_list:
column += row[col_num]
return column
|
4d4dd5c6d6345786e4ef0f41c4748e47d1231603
| 24,088
|
def _convert_boolean(value):
"""Convert a string to a boolean value the same way the server does.
This is called by the transform_parameter_value function and shouldn't be
called directly.
Args:
value: A string value to be converted to a boolean.
Returns:
True or False, based on whether the value in the string would be interpreted
as true or false by the server. In the case of an invalid entry, this
returns False.
"""
if value.lower() in ('1', 'true'):
return True
return False
|
0c30185b8745be6b431baab6d6e4331c608c93cb
| 24,089
|
import click
def prompt_tag_selection(tags):
"""Prompt user to chose a tag or <HEAD>."""
# Prompt user to select a tag to export
tags = sorted(tags, key=lambda t: t.created)
text_prompt = 'Tag to export: \n\n<HEAD>\t[1]\n'
text_prompt += '\n'.join(
'{}\t[{}]'.format(t.name, i) for i, t in enumerate(tags, start=2)
)
text_prompt += '\n\nTag'
selection = click.prompt(
text_prompt, type=click.IntRange(1,
len(tags) + 1), default=1
)
if selection > 1:
return tags[selection - 2]
return None
|
913ebd41f23905acf967f466910966e435d957e1
| 24,092
|
def _status_code_for_git_status_line(status_line):
"""Returns the XY status git status.
Git status char ' ' (empty space) is replaced with an underscore
per the MergeFile status spec above.
See `git status --help` for details.
"""
assert len(status_line) >= 2, status_line
return status_line[:2].replace(" ", "_")
|
51e802e4f6aded85d5344eba89bb0f20af192d7f
| 24,093
|
def _alter_str(data, pos=0, incr=1, num=1):
"""Alters a string at the given position by incrementing the char"""
start = pos
assert pos >= 0
assert incr >= 0
assert num >= 0
assert len(data) >= (pos + num)
while pos < num + start:
data = data[:pos] + chr(ord(data[pos]) + incr) + data[pos+1:]
pos += 1
return data
|
2f3eedceb70486ff2ca9a6171c5f5765157c2ca5
| 24,094
|
def open_file(fname):
"""Open <fname> and return its contents."""
with open(fname, "r") as reader:
data = reader.read()
return data
|
c08c02414fcacdffc7fc1391ee9201a6a0151c5a
| 24,096
|
def abi_crs(G, reference_variable="CMI_C01"):
"""
Get coordinate reference system for the Advanced Baseline Imager (ABI).
Parameters
----------
G : xarray.Dataset
An xarray.Dataset to derive the coordinate reference system.
reference_variable : str
A variable in the xarray.Dataset to use to parse projection from.
Returns
-------
Three objects are returned
1. cartopy coordinate reference system
2. data projection coordinates in x direction
3. data projection coordinates in y direction
"""
# We'll use the `CMI_C01` variable as a 'hook' to get the CF metadata.
dat = G.metpy.parse_cf(reference_variable)
crs = dat.metpy.cartopy_crs
# We also need the x (north/south) and y (east/west) axis sweep of the ABI data
x, y = (dat.x, dat.y)
return crs, x, y
|
b420ea4cda12f1acd4b9af6ecd9c2f70c756f761
| 24,097
|
def EncodePublic(pk):
"""
Encode a public key into bytes.
"""
return bytes(pk)
|
a4dcc174f12fa78b3ec425b4129c038d51312fea
| 24,098
|
import os
def validate_report_file(report_file_name):
"""
Raise ValueError if report contains path seps
"""
if not os.path.basename(report_file_name) == report_file_name:
raise ValueError("Path separators are not allowed: {r}".format(r=report_file_name))
return report_file_name
|
bca396f98d32c1d66f59f749daaff90be12941a6
| 24,099
|
def find_mode(*c):
"""mode of a curve"""
i = 0
best = 0
for j in range(len(c)):
if c[j] > best:
i = j
best = c[j]
return i
|
41f663ae3cc549eec37c94c768408b2615fae53c
| 24,100
|
def _without_otter_metadata(metadata):
"""
Return a copy of the metadata with all the otter-specific keys
removed.
"""
meta = {k: v for (k, v) in metadata.get('metadata', {}).iteritems()
if not (k.startswith("rax:auto_scaling") or
k.startswith("rax:autoscale:"))}
return {'metadata': meta}
|
b35a10d3961c1885df4ae9a25b39c639d4f77b9c
| 24,101
|
import re
def cv(row, col_name, arg, current_data_model, df, con):
"""
row[col_name] must contain only values from the appropriate controlled vocabulary
"""
vocabulary = con.vocab.vocabularies
cell_value = str(row[col_name])
col_type = current_data_model.loc[col_name].type
if not cell_value:
return None
elif cell_value == "None":
return None
cell_values = [cell_value]
# split Matrix value rows by semicolons unless they are within quotes
if col_type == 'Matrix':
cell_values = re.split(';(?=(?:[^"]*"[^"]*")*[^"]*$)', cell_value)
# split List and Dictionary values by colons unless they are within quotes
if col_type == 'List' or col_type == 'Dictionary':
cell_values = re.split(':(?=(?:[^"]*"[^"]*")*[^"]*$)', cell_value)
cell_values = [c.strip() for c in cell_values]
# get possible values for controlled vocabulary
# exclude weird unicode
possible_values = []
for val in vocabulary[col_name]:
try:
possible_values.append(str(val).lower())
except UnicodeEncodeError as ex:
print(val, ex)
for value in cell_values:
# only validate the first column in a Matrix row agaist the vocabulary
if col_type == 'Matrix':
value = value.split(':')[0]
if str(value).lower() == "nan":
continue
elif str(value).lower() in possible_values:
continue
elif value.lower() == "none":
continue
else:
try:
if str(float(value)) in possible_values:
continue
except:
pass
return '"{}" is not in controlled vocabulary for {}'.format(value, arg)
return None
|
10a24e990c85f860380609b980656720afb6060b
| 24,102
|
def evaluate_criteria(df):
"""
The evaluation criteria is to select the separator with less standard deviation and with mean above zero.
"""
return df[df["mean"] > 0].sort_values(by="std").iloc[0]["name"]
|
f8eeb03f73b47a5b81612deab6a65a160098e19f
| 24,104
|
from typing import List
def _get_shard_boundaries(num_examples: int, number_of_shards: int) -> List[int]:
"""Shard boundaries based on number of number of shards to generate."""
if num_examples == 0:
raise AssertionError("No examples were yielded.")
if num_examples < number_of_shards:
raise AssertionError("num_examples ({}) < number_of_shards ({})".format(
num_examples, number_of_shards))
return [
round(num_examples * (float(i) / number_of_shards)) for i in range(1, number_of_shards + 1)
]
|
62e8bb025661bf37d6987eb7e792d198fd7f3df7
| 24,105
|
import pickle
def extract_bsl(beta_,sigma_,lambda_,X,y,nb_class,th_class,nb):
"""
Etract beta, sigma, lambda of a specific class
- th_class: the class number extracted
- nb th experience
"""
index = 0
th = 0
for c in range(len(nb_class)):
beta_c = beta_[c,index:index + nb_class[th],:,:]
sigma_c = sigma_[c,index:index + nb_class[th],:,:]
lambda_c = lambda_[c,index:index + nb_class[th],:]
if nb_class[c] == th_class:
beta = open('beta_E'+str(nb)+'_'+str(th_class)+'.pkl', 'wb')
pickle.dump(beta_c, beta)
sigma = open('sigma_E'+str(nb)+'_'+str(th_class)+'.pkl', 'wb')
pickle.dump(sigma_c, sigma)
lambda_ = open('lambda_E'+str(nb)+'_'+str(th_class)+'.pkl', 'wb')
pickle.dump(lambda_c, lambda_)
beta.close()
sigma.close()
lambda_.close()
return beta_c,sigma_c,lambda_c
break
index = index + nb_class[th]
th = th +1
|
7f728ccdf47286babc36099f18f10d8b4df8d523
| 24,108
|
def content_filter(text):
"""
The simple filter of words
Change the values in filter.txt to configurate it.
"""
filter_result = {
'length': True,
'count': True,
'black_list': True
}
with open('filter.txt', 'r') as f:
info = eval(f.read())
if len(text) < info['min_word_length'] or len(text) > info['max_word_length']:
filter_result['length'] = False
if len(text.split(' ')) < info['min_count_of_words'] or len(text.split(' ')) > info['max_count_of_words']:
filter_result['count'] = False
for word in info['black_list']:
if word in text:
filter_result['black_list'] = False
break
return filter_result
|
5008f4a2bd8e56c9972cebd50ced7dc731be8769
| 24,109
|
import math
def griewank(phenome):
"""The bare-bones Griewank function."""
ssum = 0.0
product = 1.0
for i in range(len(phenome)):
ssum += phenome[i] ** 2 / 4000.0
product *= math.cos(phenome[i] / math.sqrt(i + 1.0))
return ssum - product + 1.0
|
b2f5ad697051b3d1e491da9c159aafa2faa1cc6d
| 24,111
|
def evaluate_part_one(expression: str) -> int:
"""Solve the expression from left to right regardless of operators"""
answer = 0
operator = None
for elem in expression.split():
if elem.isdigit():
if operator is None:
answer = int(elem)
elif operator == "+":
answer += int(elem)
elif operator == "*":
answer *= int(elem)
else:
operator = elem
return answer
|
b6f5fcbb3adde53377c369d8744b4fec5be9badf
| 24,112
|
def tx_vport(b2b_raw_config_vports):
"""Returns a transmit vport"""
return b2b_raw_config_vports.ports[0]
|
b2b6629a868d1ee75566a2c86acf5e38c75e992c
| 24,114
|
import json
def get_hosts_deployed(cls):
"""
Method to get all the hosts deployed in the cluster
Args:
cls: cephadm instance object
Returns:
List of the names of hosts deployed in the cluster
"""
out, _ = cls.shell(args=["ceph", "orch", "host", "ls", "-f", "json"])
hosts = list()
host_obj = json.loads(out)
for host in host_obj:
hosts.append(host["hostname"])
return hosts
|
221bd1a437bb4a271c1b85af9f80de5cbf99884c
| 24,116
|
def initial_status_ok (db, status_id, cat_id, is_simple) :
""" Allow "escalated" when submitting new issue. This is allowed in
case the analysis was done in advance. The first (submission)
message should contain the analysis results.
Allow "open" when submitting new non-cert issue. This is allowed
in case the analysis and decision about implementation was made
in advance, the first message should contain the analysis
results and decision.
Allow open for simple kind (the ones using simple_transitions).
"""
status = db.status.get (status_id, 'name')
if status == 'escalated' and not is_simple :
return True
if status == 'open' and is_simple :
return True
if ( status == 'open'
and cat_id
and db.category.get (cat_id, 'valid')
and not db.category.get (cat_id, 'cert_sw')
) :
return True
return False
|
f2e28779258a5f1f590e6cf2a2e9a26a415c16b7
| 24,117
|
def is_anagram_0(s1, s2):
"""
This is my first solution, and it's incorrect because this method checks palindrome, not anagram.
"""
if s1 is None or s2 is None:
return False
if len(s1) != len(s2):
return False
s1_list = list(s1)
s2_list = list(s2)
for i in range((len(s1_list))):
#print("{0}, {1}".format(s1_list[i], s2_list[-i]))
if s1_list[i] != s2_list[len(s2_list)-1-i]:
return False
return True
|
a958a29909e3d5ac9e52d77572b1feae4bc87574
| 24,118
|
import json
def process_synonyms(genes, synonyms_file):
"""Process a list of genes into a dictionary with synonyms
The user may select only a subset of genes to look for,
rather than the entire dictionary. This function creates
a new dictionary for the genes used by the user.
Returns:
dict: Dictionary containing the gene names provided as keys,
and the synonyms as values.
"""
with open(synonyms_file) as f:
gene_to_syns = json.load(f)
target_to_syns = {}
targets_lower = [target.lower() for target in genes]
for symbol, synonyms in gene_to_syns.items():
if symbol in genes:
target_to_syns[symbol] = synonyms
else:
for synonym in synonyms:
if synonym.lower() in targets_lower:
target_to_syns[synonym] = synonyms
target_to_syns[synonym].append(symbol)
return target_to_syns
|
f2452464eb58e70487c8f0fbf3159dcb8a7a0d75
| 24,120
|
from typing import Any
import inspect
from pydantic import BaseModel # noqa: E0611
def _is_basemodel(obj: Any) -> bool:
"""Checks if object is a subclass of BaseModel.
Args:
obj (Any): Any object
Returns:
bool: Is a subclass of BaseModel.
"""
return inspect.isclass(obj) and issubclass(obj, BaseModel)
|
30027d6e5ce9f685c4b227ef3c2f83d76a963da7
| 24,121
|
def get_T(M):
""" Returns T when given [I-P, T].
"""
n = M.shape[0]
return(M[:, n])
|
35ae311abb0864adc96ac0741e44e1069f6a25a1
| 24,122
|
import statistics
def median(wm):
"""
Median Operator
wm = list of importance weighted membership values
returns the middle value in the set
"""
return statistics.median(wm)
|
bee3aa1f17d943ed1951277c17eff958a6b16e12
| 24,123
|
import os
import shutil
def rmpath(path):
"""Wrapper for os.remove or shutil.rmtree as appropriate"""
if os.path.isfile(path):
return os.remove(path)
elif os.path.isdir(path):
return shutil.rmtree(path)
|
a9935d1cc363f8032bd1d3614d374a0f89f12e2e
| 24,124
|
from time import localtime, strftime, time
def get_time(is_bracket=True, return_numerical_time=False):
"""Get the string of the current local time."""
string = strftime("%Y-%m-%d %H:%M:%S", localtime())
if is_bracket:
string = "[{}] ".format(string)
if return_numerical_time:
return string, time()
else:
return string
|
ba26766ea74cf7467e4b8775fa9a964b0d6aff7f
| 24,126
|
def code_huffman(chaine, arbre):
"""Fonction qui retourne l'encodage binaire correspondant à la chaine à l'aide de l'arbre de huffman 'arbre'"""
chaine_retour = ""
ab1 = arbre
for c in chaine:
while ab1.get_val() != c:
chaine_retour += "1" if (gauche := c in ab1.get_ag()) else "0"
ab1 = ab1.get_ag() if gauche else ab1.get_ad()
ab1 = arbre
return chaine_retour
|
0e7abecfaaba2ca97ba58a1849309e7a5cab26cb
| 24,128
|
def title(info):
"""
concatenate page title from info dict
"""
version = info['node']['version']
try: # perhaps cut away "-stable-316fc7ec"
version = version.split("-")[0]
except:
pass
T = "(%s) %s %s with %d txs: %.1f TPS"
T = T % (info['diagrams']['prefix'],
info['node']['name'], version,
info['send']['num_txs'],
info['diagrams']['blocktimestampsTpsAv'])
return T
|
94d1116bfedc2b9f2585ba6479e2cb04a1a05b70
| 24,130
|
def has_duplicates(t):
"""Takes a list returns True if any element appears more than once, otherwise False"""
seen_letters = []
for i in t:
if i in seen_letters:
return True
else:
seen_letters.append(i)
return False
|
dc1316d94ed510eaa468feb26a62ae9afd6cfbc2
| 24,131
|
def rational_polynomial2(data):
"""Rational polynomial benchmark function.
.. list-table::
:widths: 10 50
:stub-columns: 1
* - Range
- :math:`\mathbf{x} \in [0, 6]^2`
* - Function
- :math:`f(\mathbf{x}) = \\frac{(x_1 - 3)^4 + (x_2 - 3)^3 - (x_2 - 3)}{(x_2 - 2)^4 + 10}`
"""
return ((data[0] - 3)**4 + (data[1] - 3)**3 - (data[1] - 3)) / ((data[1] - 2)**4 + 10)
|
99d7802acf72ee57421d543c3a324958e7bb5281
| 24,132
|
import argparse
def use_args():
"""Commandline argument parser"""
parser = argparse.ArgumentParser(description="Search for something")
parser.add_argument("query", help="search query")
parser.add_argument("--tld", default="com",
help="""top-level-domain 'com',
'co.in' default is 'com'""")
parser.add_argument("--pause", type=int, default=2,
help="lapse to wait between HTTP requests")
parser.add_argument("--num", type=int, default=10,
help="number of results per page")
parser.add_argument("--start", type=int, default=0,
help="first result to retrieve")
parser.add_argument("--stop", type=int,
help=("last result to retrieve."
"Use None to search forever"))
parser.add_argument("-f", "--file", action='store_true', help="If Output should be to file")
args = parser.parse_args()
return args
|
1e140238a687bb9fb8f2211bf76cdb1c94dbf344
| 24,133
|
def build_id(*elements, delimiter='.'):
"""
:param elements:
:param str delimiter:
:return: Strings joined by delimiter "."
:rtype: str
"""
return delimiter.join(map(str, elements))
|
9fd0dce65a9f23937b05691ede3002f987286881
| 24,134
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.