content
stringlengths
35
416k
sha1
stringlengths
40
40
id
int64
0
710k
import os def get_linux_memory_limit(): # pragma: no cover """This generally shows the full address space by default. >> limit = get_linux_memory_limit() >> assert isinstance(limit, int) """ if os.path.isfile("/sys/fs/cgroup/memory/memory.limit_in_bytes"): with open("/sys/fs/cgroup/memory/memory.limit_in_bytes") as limit: mem = int(limit.read()) return mem else: raise RuntimeError("get_linux_memory_limit() failed.")
3d167b1c5eb69e4735fd5e36289ba83ce4f9b050
22,232
def autoBindEvents (sink, source, prefix='', weak=False, priority=None): """ Automatically set up listeners on sink for events raised by source. Often you have a "sink" object that is interested in multiple events raised by some other "source" object. This method makes setting that up easy. You name handler methods on the sink object in a special way. For example, lets say you have an object mySource which raises events of types FooEvent and BarEvent. You have an object mySink which wants to listen to these events. To do so, it names its handler methods "_handle_FooEvent" and "_handle_BarEvent". It can then simply call autoBindEvents(mySink, mySource), and the handlers are set up. You can also set a prefix which changes how the handlers are to be named. For example, autoBindEvents(mySink, mySource, "source1") would use a handler named "_handle_source1_FooEvent". "weak" has the same meaning as with addListener(). Returns the added listener IDs (so that you can remove them later). """ if len(prefix) > 0 and prefix[0] != '_': prefix = '_' + prefix if hasattr(source, '_eventMixin_events') is False: # If source does not declare that it raises any events, do nothing print("Warning: source class %s doesn't specify any events!" % ( source.__class__.__name__,)) return [] events = {} for e in source._eventMixin_events: if type(e) == str: events[e] = e else: events[e.__name__] = e listeners = [] # for each method in sink for m in dir(sink): # get the method object a = getattr(sink, m) if callable(a): # if it has the revent prefix signature, if m.startswith("_handle" + prefix + "_"): event = m[8+len(prefix):] # and it is one of the events our source triggers if event in events: # append the listener listeners.append(source.addListener(events[event], a, weak=weak, priority=priority)) #print("autoBind: ",source,m,"to",sink) elif len(prefix) > 0 and "_" not in event: print("Warning: %s found in %s, but %s not raised by %s" % (m, sink.__class__.__name__, event, source.__class__.__name__)) return listeners
40e1cba92eee53fa74bad8d0d260ba0cd54c7407
22,233
def CustomLanguageModel(path): """ Custom language model. This is actually a dummy wrapper, and you may also pass the path to your custom .klm model directly to the recognizer. :param str path: Path to a .klm language model :return: path to .klm language model :rtype: str """ return path
f1d6ac452e0374edb2ac0ac3f60e6ef9d2fc66ad
22,235
def find_row_in_array(array, column, value): """ Find a single row in a record array. Parameters ---------- array : numpy.recarray The record array to be searched. column : str The name of the column of the array to search. value : int, str, or float The value sought in ``column`` Raises ------ ValueError An error is raised if more than one row is found. Returns ------- row : numpy.recarray row The found row from ``array``. Examples -------- >>> from gisutils import utils >>> import numpy >>> x = numpy.array( [ ('A1', 'Ocean', 'A1_x'), ('A2', 'Ocean', 'A2_x'), ('B1', 'A1', 'None'), ('B2', 'A1', 'B2_x'), ], dtype=[('ID', '<U5'), ('DS_ID', '<U5'), ('Cu', '<U5'),] ) >>> utils.find_row_in_array(x, 'ID', 'A1') ('A1', 'Ocean', 'A1_x', 'A1_y') """ rows = list(filter(lambda x: x[column] == value, array)) if len(rows) == 0: row = None elif len(rows) == 1: row = rows[0] else: raise ValueError("more than one row where {} == {}".format(column, value)) return row
92be94ce7671db74f3742f6049def4949c6d22fd
22,236
from typing import Dict from typing import Any def as_lta_record(catalog_record: Dict[str, Any]) -> Dict[str, Any]: """Cherry pick keys from a File Catalog record to include in Bundle metadata.""" # As created by the nersc_verifier component... # --------------------------------------------- # "uuid": bundle["uuid"], # "logical_name": hpss_path, # "checksum": bundle["checksum"], # "locations": [ # { # "site": "NERSC", # "path": hpss_path, # "hpss": True, # "online": False, # } # ], # "file_size": bundle["size"], # # note: 'lta' is an application-private metadata field # "lta": bundle, KEYS = ['checksum', 'file_size', 'logical_name', 'meta_modify_date', 'uuid'] lta_record = {k: catalog_record[k] for k in KEYS} return lta_record
96eb177bb8de6a8faa5f2647e922e70f2516187e
22,239
import torch def _positive_function(positive): """ Returns the torch function belonging to a positive string """ if positive == 'Abs': return torch.abs elif positive == 'Square': return torch.square elif positive == 'Softplus': return torch.nn.Softplus() elif positive == 'ReLU': return torch.nn.ReLU() elif positive == 'ReLU6': return torch.nn.ReLU6() elif positive == '4': return lambda x: torch.pow(x, 4) elif positive == 'Exp': return torch.exp elif positive == 'None': return torch.nn.Identity() else: error = f"Positve transformation {positive} not supported!" raise ValueError(error)
9166e0f5f4bbb0dce8f43e7d87cb905b7a570476
22,240
def battle(p1_current_unit, p2_current_unit): """ @purpose: To carry out the battle @complexity: Best & Worst Case: O(1), when the army input is invalid, no stack @parameter: p1_current_unit: The current unit of p1 p2_current_unit: The current unit of p2 @precondition: Two units from both sides are passed @postcondition: A gladiatorial battle is carried out, and returns the units after battle """ # Battle is on # Compare the unit's speeds if p1_current_unit.getSpeed() > p2_current_unit.getSpeed(): # if u1 > u2 in speed # u1 attack first atk = p1_current_unit.attack() dmg = p2_current_unit.defend(atk) print("Player 1's " + p1_current_unit.unit_name() + " attacks for " + str(dmg) + " damage!") # after attacking, check if u2 still alive # if yes, u2 retaliates if p2_current_unit.isAlive() == True: atk = p2_current_unit.attack() dmg = p1_current_unit.defend(atk) print("Still standing, Player 2's " + p2_current_unit.unit_name() + " attacks for " + str(dmg) + " damage!") # check if u2's attack killed u1 if p1_current_unit.isAlive() == False: print("Player 1 lost one unit!") else: # if no, u2 dead print("Player 2 lost one unit!") # if u1 < u2 in speed # u2 attack first elif p1_current_unit.getSpeed() < p2_current_unit.getSpeed(): atk = p2_current_unit.attack() dmg = p1_current_unit.defend(atk) print("Player 2's " + p2_current_unit.unit_name() + " attacks for " + str(dmg) + " damage!") # check if u1 still alive # if yes, u1 retaliates if p1_current_unit.isAlive() == True: atk = p1_current_unit.attack() dmg = p2_current_unit.defend(atk) print("Still standing, Player 1's " + p1_current_unit.unit_name() + " attacks for " + str(dmg) + " damage!") # check if u1's retaliation killed u2 if p2_current_unit.isAlive() == False: print("Player 2 lost one unit!") else: print("Player 1 lost one unit!") else: # equal speed print("Player 1's " + p1_current_unit.unit_name() + " and 2's " + p2_current_unit.unit_name() + " attacks!") atk1 = p1_current_unit.attack() atk2 = p2_current_unit.attack() dmg1 = p2_current_unit.defend(atk1) print("Player 2 receive " + str(dmg1) + " damage!") dmg2 = p1_current_unit.defend(atk2) print("Player 1 receive " + str(dmg2) + " damage!") if p2_current_unit.isAlive() == False: print("Player 2 lost one unit!") if p1_current_unit.isAlive() == False: print("Player 1 lost one unit!") # return the units post battle return p1_current_unit, p2_current_unit
09ea8e36f58027e832734b653113717613237a1d
22,241
import decimal import math def factorPR(n: int) -> int: """Return a factor of n using the Pollard Rho method. The return value is 1, if n is prime, and a non-trivial factor, otherwise. Note: This method will occasionally fail to find a non-trivial factor when one exists. Examples: >>> factorPR(2017*2027*12353948231) # product of primes 2017 >>> factorPR(8) == factorPR(4) == 2 # fails False """ numsteps = 2 * int(decimal.Decimal(n).sqrt().sqrt()) for slow in [2, 3, 4, 6]: fast = slow for _ in range(numsteps): slow = (slow * slow + 1) % n fast = (fast * fast + 1) % n fast = (fast * fast + 1) % n g = math.gcd(fast - slow, n) if g != 1: if g == n: break else: return g return 1
a429f4e5c7fa603615a8bd4f687fc076a4becc56
22,242
import os def oci_config_profile(): """ Returns the OCI config profile location. """ return os.environ.get("OCI_CONFIG_PROFILE", "DEFAULT")
d7ebbc950d0f0831e0e670ac43276656dc01b5a2
22,243
def parse_uri(uri): """Parse the doozerd URI scheme to get node addresses""" if uri.startswith("doozer:?"): before, params = uri.split("?", 1) addrs = [] for param in params.split("&"): key, value = param.split("=", 1) if key == "ca": addrs.append(value) return addrs else: raise ValueError("invalid doozerd uri")
deddb9da40303656baf47942153500ca878596bf
22,244
from typing import List from typing import Any def _get_lemmas(synsets: List[Any]) -> List[str]: """ Return all the lemma names associated with a list of synsets. """ return [lemma_name for synset in synsets for lemma_name in synset.lemma_names()]
43b6be39b733c9fee82958476b32b4ab296c5276
22,245
def compile_per_chrom(hbar_list): """Return [{chr: upper: lower:}]""" if hbar_list == []: return [] mylist = [] comp = {"chr": None , "xranges":[], "upper":[], "lower":[]} mylist.append(comp) for i in hbar_list: # same chromosome, add to lists if mylist[-1]['chr'] is None: mylist[-1]['chr'] = i["chr"] mylist[-1]['xranges'].append(i["xranges"]) mylist[-1]['upper'].append(i["hbar_upper"]) mylist[-1]['lower'].append(i["hbar_lower"]) elif mylist[-1]['chr'] == i["chr"]: mylist[-1]['xranges'].append(i["xranges"]) mylist[-1]['upper'].append(i["hbar_upper"]) mylist[-1]['lower'].append(i["hbar_lower"]) else: mylist.append({"chr": i["chr"], "xranges":[i["xranges"]], "upper":[i["hbar_upper"]], "lower":[i["hbar_lower"]]}) return mylist
c8eac7ae54bd39245414cc95533e379453c21bce
22,246
def get_search_context(pos_tags, i, n, head=0, tail=0): """ j = i for n in range(words): j = plaintext.find(' ', j + 1) if j == -1: j = None return plaintext[i:j] """ j = i + n if i - head >= 0: i -= head if j + tail < len(pos_tags): j += tail n = j - i words = [ pos_tag[0].upper() if ((head+tail > 0) and (head <= k < n-tail)) else pos_tag[0] for pos_tag, k in zip(pos_tags[i:j], range(n)) ] return ' '.join(words)
f346ea0b8fd31493e734755f0bece054125cf9d1
22,247
def markSigLoops(key, loops): """ Mark the significance of different loops. """ sig = lambda x: True if x.binomial_p_value <= 1e-10 and x.FDR <= 0.05 and loop.ES >= 2 else False for loop in loops: if sig(loop): loop.significant = 1 else: loop.significant = 0 return key, loops
5976c4e554dc8cea4cd12d638facbd696a6ee1ab
22,248
def get_context(nts): """return context of nucleotide""" if len(nts) < 5: return None if nts[2] == 'C': if nts[3] == 'G': context = 'CG' elif nts[4] == 'G': context = 'CHG' else: context = 'CHH' else: if nts[1] == 'C': context = 'CG' elif nts[0] == 'C': context = 'CHG' else: context = 'CHH' return context
200de8e65277c6153974ce1575e574151cb85d53
22,249
def normalize(x): """ Normalize input data. Args: x (NDarray): Returns: Normalized NDarray """ return (x-x.min())/(x.max()-x.min()) # Normalize (0.0-1.0)
5e6adbaff542afd54490665bc1764aa3c2688545
22,250
def get_linear_equation_parameters(rho, sens_1, spec_1, cov_1, sens_2, spec_2, cov_2): """ Get the slope and intercept of the linear equation of the intersection of two planes (equation A3.3) ZeroDivisionError: planes are parallel """ try: denominator = (cov_1 * (1 - rho) * (1 - spec_1) + cov_1 - 1) - (cov_2 * (1 - rho) * (1 - spec_2) + cov_2 - 1) slope = ((cov_2 * rho * (1 - sens_2) + cov_2 - 1) - (cov_1 * rho * (1 - sens_1) + cov_1 - 1)) / denominator intercept = ((1 - cov_2) - (1 - cov_1)) / denominator if str(intercept) == '-0.0': intercept = 0.0 if str(slope) == '-0.0': slope = 0.0 return slope, intercept except ZeroDivisionError: return None, None
15321849940c7e09ed1a6ea84e20fd0b4d9b82d0
22,251
import json import os def load_config(config_file): """ Load the SCM configuration from a JSON configuration file. Expects that the config file has three values: { "local": <local path to repo>, "remote": <path to remote repo>, "rev": <target revision> } """ data = json.load(open(config_file)) if not os.path.isabs(data['local']): # assume that the data path is relative to the configuration file. config_file_dir = os.path.dirname(config_file) data['local'] = os.path.join(config_file_dir, data['local']) return data
d1a62aa2a40b7250f094837eb62aeb3c2e2e6bed
22,252
def find_epsilon(epsilon, epoch, update_epsilon, start_updates=499): """ Updates epsilon ("random guessing rate") based on epoch. """ if epsilon <= 0.1: epsilon = 0.1 elif (not (epoch % update_epsilon)) and epoch > start_updates: epsilon -= 0.1 return epsilon
b68bb8395663eb0774931915f30f42a3d0de5761
22,253
import functools def compose_functions(*func_list): """ Referenes: https://mathieularose.com/function-composition-in-python/ """ def apply_composition(f, g): def compose(x): return f(g(x)) return compose composed_func = functools.reduce(apply_composition, func_list) return composed_func
2300562314f6ebd4fe1155181f933f3db3446091
22,254
import inspect def LoadHitSignal(ref_date, option_only=True): """ Load signal hit history in database. Return all or option only signal with wide or long format Args: ref_date (str): Date in YYYY-MM-DD format, e.g. 2018-01-01 option_only (bool): Specify whether the signal are for option only stocks. Default true Returns: df.signal (Dataframe): Stock price dataframe with calculated signal in the input date only Example: LoadHitSignal(ref_date = '2020-01-10') """ func_name = inspect.stack()[0][3] return(func_name)
07837a1a9c91c703037ba86822693a9704989e2c
22,255
def augument_data(df): """As many labels seem to be given incorrectly (messages contain category keywords but aren't labeled as them) , when label keyword occurs in text it should be relevant for the label INPUT: df (pd.DataFrame) - cleaned data with messages and categories OUTPUT: df (pd.DataFrame) - augumented data """ category_names = list(df.columns[5:-1]) for category in category_names: category_str= category.replace("_", " ") #numberofcases = len(df[(df["message"].str.contains(category_str)) & (df[category]==0)]) print(len(df[(df["message"].str.contains(category_str)) & (df[category]==0)]), "changes made to column", category) df.loc[(df["message"].str.contains(category_str)) & (df[category]==0), category] = 1 print(len(df.loc[((df[category]==1) & (df["related"]==0) ), "related"] ), "updates to column 'related'") df.loc[((df[category]==1) & (df["related"]==0) ), "related"] = 1 df.loc[((df["related"]==1) & (df["not_related"]==1) ), "not_related"] = 0 return df
01e0a46426035850ccfa1fcaf88bc605d08bb515
22,256
import argparse import numpy import copy import pickle def score_spoof(seq, correl, settings): """ Spoof a score for a given residue sequence according to some internal rules. This function is used only for testing purposes, when settings.SPOOF = True. It plays no role in production. Spoofing is done by assigning a random magnitude to each position proportional to the covariance score and a random type of residue (positive, negative, aromatic, hydrophobic, polar, bulky, small) that is preferred in that position. Then a random synergy score is applied for each pair of residues and this is multiplied by each individual score. Finally, a small amount of random noise is added. Parameters ---------- seq : list The sequence of three-letter residue codes for this mutant correl : list seq-length list of correlation scores by residue settings : argparse.Namespace Settings namespace Returns ------- score : float Spoofed score value for the given sequence """ all_resnames = ['ARG', 'HIS', 'LYS', 'ASP', 'GLU', 'SER', 'THR', 'ASN', 'GLN', 'CYS', 'GLY', 'PRO', 'ALA', 'VAL', 'ILE', 'LEU', 'MET', 'PHE', 'TYR', 'TRP'] noise = 0.001 # weight factor for random noise (multiplied by random from normal distribution) syn_weight = 0.001 # weight factor for synergy terms # First, set up the latent algorithm if it hasn't already been if not settings.spoof_latent: mutability = 0.05 # likelihood that a residue will be assigned a different ideal type than its current type settings.spoof_latent = argparse.Namespace() # initialize settings.spoof_latent.weights = [] # randomly chosen weights proportional to correl settings.spoof_latent.ideals = [] # randomly chosen ideal residue type, odds to be different from wild type are given by mutability settings.spoof_latent.synergies = numpy.ones([len(seq),len(seq)]) # random synergy map resid = -1 # initialize resid for res in seq: resid += 1 # increment resid weight = numpy.random.normal() * correl[resid] settings.spoof_latent.weights.append(weight) if res in ['ARG', 'LYS', 'HIS']: wt_type = 'positive' elif res in ['ASP', 'GLU']: wt_type = 'negative' elif res in ['TRP', 'PHE', 'TYR']: wt_type = 'aromatic' elif res in ['LEU', 'ILE', 'VAL', 'MET']: wt_type = 'hydrophobic' elif res in ['SER', 'THR', 'GLN', 'ASN']: wt_type = 'polar' elif res in ['ALA', 'GLY']: wt_type = 'small' elif res == 'CYS': wt_type = 'CYS' elif res == 'PRO': wt_type = 'PRO' else: raise RuntimeError('Unrecognized residue name: ' + res) if numpy.random.rand() > mutability: settings.spoof_latent.ideals.append(wt_type) else: settings.spoof_latent.ideals.append(['positive', 'negative', 'aromatic', 'hydrophobic', 'polar', 'small', 'CYS', 'PRO'][numpy.random.randint(0, 8)]) for other_index in range(len(seq)): if other_index == resid: continue settings.spoof_latent.synergies[resid, other_index] = numpy.random.normal() settings.spoof_latent.synergies[other_index, resid] = settings.spoof_latent.synergies[resid, other_index] if not settings.dont_dump: temp_settings = copy.copy(settings) # initialize temporary copy of settings to modify temp_settings.__dict__.pop('env') # env attribute is not picklable pickle.dump(temp_settings, open(settings.working_directory + '/settings.pkl', 'wb')) score = 0 # initialize score resid = -1 for res in seq: resid += 1 ideal = settings.spoof_latent.ideals[resid] if res in ['ARG', 'LYS', 'HIS'] and ideal == 'positive': ideal_type = True elif res in ['ASP', 'GLU'] and ideal == 'negative': ideal_type = True elif res in ['TRP', 'PHE', 'TYR'] and ideal == 'aromatic': ideal_type = True elif res in ['LEU', 'ILE', 'VAL', 'MET'] and ideal == 'hydrophobic': ideal_type = True elif res in ['SER', 'THR', 'GLN', 'ASN'] and ideal == 'polar': ideal_type = True elif res in ['ALA', 'GLY'] and ideal == 'small': ideal_type = True elif res == 'CYS' and ideal == 'CYS': ideal_type = True elif res == 'PRO' and ideal == 'PRO': ideal_type = True else: ideal_type = False this_score = 0 if not ideal_type: this_score += settings.spoof_latent.weights[resid] * -1 else: this_score += settings.spoof_latent.weights[resid] this_score += noise * numpy.random.normal() syn_score = 0 for other_index in range(len(seq)): if other_index == resid: continue syn_score += syn_weight * settings.spoof_latent.synergies[resid, other_index] * this_score score += this_score + syn_score return score
4828c2db861c6f0c317674ba23a669a220b4a598
22,257
def rsplit(_str, seps): """ Splits _str by the first sep in seps that is found from the right side. Returns a tuple without the separator. """ for idx, ch in enumerate(reversed(_str)): if ch in seps: return _str[0:-idx - 1], _str[-idx:]
9755b328e0b414721a7db4fe52293100bb03d1a8
22,258
def compare(numA, numB): """ compare(numA, numB): Compares two numbers. Returns: 1, if the first number is greater than the second, 0, if they are equal, -1, if the first number is smaller than the second. Parameters ---------- numA: integer or float numB: integer of float Returns ------- integer """ if numA > numB: return 1 if numA < numB: return -1 if numA == numB: return 0
7ad62cb677882d22b32adb517a31a4149685ecef
22,259
def get_map_winrate(map_list, map_uni, results): """ Computes the inrate of the team over each map Returns 3 dictionnaries with unique map names as keys. map_wr stores the winrate for each map map_w stores the number of wins for each map map_p stores the number of times each map was played """ map_w = [0]*len(map_uni) map_p = [0]*len(map_uni) for i in range(0, len(map_uni)): map_p[i] = sum([1 for mapp in map_list if mapp == map_uni[i]]) map_w[i] = sum([1 for j in range(0, len(map_list)) if ((map_list[j] == map_uni[i]) and (results[j] == 1))]) map_wr = [map_w[i]/map_p[i]*100 for i in range(0, len(map_uni))] return map_wr, map_w, map_p
e3ef1208f9c2ef14f94f3ee7f0c2f8ce0fe1e547
22,262
def atom_footer(): """No templating here, just returning a text string. We may want to expand this later.""" return "</feed>\n"
b8ea5305c0b7a1d6691f2e009e12d55a8d6a51ed
22,263
def ratio_col(df, df_cols): # Tested [Y] """ This function computes the ratio between two columns and returns a Dataframe containing the ratio as a column. Args df (pd.DataFrame): Dataframe containing the columns to compute a ratio. df_cols (tuple): A tuple containing the names of columns in the Dataframe to use in computing the ratio. Format is (<numerator>, <denominator>) Return (pd.Series) The inital dataframe entered with addition columns for the ratio of the two columns specified in the df_cols argument """ df[df_cols[0]] = df[df_cols[0]].div(df[df_cols[1]].values, axis=0) return df[df_cols[0]]
a4bfc13a5e87604ddae865f6df3b9b123359be52
22,264
def clean_hanging_newline(t): """ Many editors will silently add a newline to the final line of a document (I'm looking at you, Vim). This function fixes this common problem at the risk of removing a hanging newline in the rare cases where the user actually intends it. """ if t and t[-1] == "\n": return t[:-1] return t
16c80b00530ef333ce1ad39ebf083e12a04ab58b
22,266
def has_video_search_args(request): """ Returns whether the object has any video search filter args in it """ search_kws = ( "q", "location", "channel_ids", "collection_id", "tag_ids", "date",) for kw in search_kws: if getattr(request, kw, None) is not None: return True
49dcbdc681be0867c80fc9c8e90a1cbf10a9f5bb
22,267
def _parse_one_level_list(dat): """Get list information from queued message Args: dat (bytes): received message data Returns: list: list of information """ results = [] count = int.from_bytes(dat[:2], 'big') for i in range(count): base = 2 + 32 * i results.append(dat[base:base + 32]) return results
6c090cb9e396c1a5ae273f250fd7b0a88fcf418a
22,269
def parse_predecessor_ids(predecessor_ids_string): """Parses a comma seperated list of task IDs Args: predecessor_ids_string: [string] comma separated task IDs Returns: List of task IDs as integers """ predecessor_ids = [] predecessor_ids_strings = predecessor_ids_string.split(',') for predecessor_id_string in predecessor_ids_strings: if predecessor_id_string != '': predecessor_ids.append(int(predecessor_id_string)) return predecessor_ids
a8c344c5c51a5735899515c10df7b51349d4971e
22,270
import re def clean_description(solic_description): """ Separates 'DESCRIPTION' and 'KEYWORDS' section of solicitation text. """ stringer = solic_description description = stringer[stringer.find('DESCRIPTION:')+len('DESCRIPTION: ') : stringer.find('KEYWORDS:')] description = description.replace('</p><p>', '') keywords = stringer[stringer.find('KEYWORDS:')+len('KEYWORDS: ') : stringer.find('<p>References:')] keywords = keywords.split(',') keywords = [w.replace('</p>','') for w in keywords] keywords = [w.replace('<p>','') for w in keywords] keywords = [w.replace(' p ','') for w in keywords] keywords = [w.replace('nbsp','') for w in keywords] keywords = [re.sub(pattern = r'[^\w]', repl = " ", string = word ) for word in keywords] keywords = [w.lower() for w in keywords] keywords = [i for i in keywords if i] keywords = [w.strip() for w in keywords] return description, keywords
5bc5582bd06f00255597894654517f810484bd92
22,272
import socket def _receive_devices(port: int, sock: socket.socket, devices: list) -> list: """ After sending the device discovery request, collect all available devices Args: port (int): Local port sock (socket.socket): Socket object devices (list): List of available devices. [(device_name: str, ip: str)] Returns: list: Updated list of available devices. [(device_name: str, ip: str)] """ try: while True: data, _ = sock.recvfrom(port) split_data = data.decode("utf-8").split(":") if len(split_data) == 3: devices.append((split_data[0].strip(), split_data[2].strip())) else: raise ValueError(data) except (socket.timeout, OSError): pass return devices
176a6606e5179f28edefa56c0d79474715d15b5b
22,274
def update_lr(optimizer,lr): """Scheduler to update learning rate at every iteration""" for param_group in optimizer.param_groups: param_group['lr'] = lr return optimizer
5e4b8bc9b435b502b1e4c7c2eb4299be7222092d
22,277
def parse_patient_record(patient_record): """Parse patient record. Args: patient_record (object): object from DICOMDIR level 0 object Returns: children_object appending_keys """ patient_id = patient_record.PatientID #patient_name = patient_record.PatientName return patient_record.children, patient_id
cce9b64bb07e3303dcab89f79310f9c878c91889
22,278
from typing import List import os def find_yaml_files(base_dir: str) -> List[str]: """find all of yaml files with recursion mode Args: base_dir (str): the base directory of files Returns: List[str]: the yaml files """ files_or_directories: List[str] = [] # 1. find all files/directories in the current dir for file_or_dir in os.listdir(base_dir): path = os.path.join(base_dir, file_or_dir) if os.path.isdir(path): files_or_directories.extend( find_yaml_files(path) ) continue # 2. if there is dir, find with recursion mode if file_or_dir.endswith('.yml') or file_or_dir.endswith('.yaml'): files_or_directories.append(path) return files_or_directories
9441a4f8ae04422c09bea366dc78814cdb3f5781
22,279
def extract_gif_param(proc: str): """ Extracts the parameter for an animated GIF, currently just the frame display duration in milliseconds, from a string that ends with an integer, in parentheses. """ a = proc.strip(")").split("(") assert len(a) == 2 return int(a[1])
0b9f5f6cc7ecfe38ad36731fc28d932316b5b0b3
22,280
def test_unknown_template_error(a, b): """ >>> test_unknown_template_error(1, 2) Traceback (most recent call last): ... InvalidTemplateError: Unknown template type: T2 """ return a + b
c4bd0fcce99ce0ea361a57f3702381cd9de19509
22,281
def hm(seg): """ simple format hour:minute """ return '%02d:%02d'%(seg/60, seg % 60)
5d664a646123c8b440b00de7f7012c248fa9f5f1
22,283
def work(num,x = 0): """thread worker function""" for i in range(10000000): x += 1 return x,x
708248cc304feea87beec1379d6530571d26dd8e
22,284
def R(a0,a1,a2,a3,a4,T): """ Troscompt et al (2009) coefficients using Faure et al (2004) equation: log10(R) = sum(a_n T^{-n/6}) where n=0..4, R is presumably cm^3 s^-1 """ return a0 + a1*T**(-1./6.) + a2*T**(-2./6.) + a3*T**(-3./6.) + a4*T**(-4./6.)
ea5111f0c745bfc396271092596b932822cd4ada
22,285
def permission_check(check): """ Class decorator for subclasses of PublicTask to sprinkle in re-usable permission checks:: @permission_check(user_id_matches) class MyTask(PublicTask): def run_public(self, user_id): pass """ def decorator(cls): cls.check_permission = staticmethod(check) return cls return decorator
14880bf052c7659447dbd9388174860f8f74a133
22,286
def accepts(*types): """ Function decorator. Checks that inputs given to decorated function are of the expected type. Parameters: types -- The expected types of the inputs to the decorated function. Must specify type for each parameter. """ def decorator(f): def newf(*args): assert len(args) == len(types) argtypes = tuple(map(type, args)) if argtypes != types: a = "in %s " % f.__name__ a += "got %s but expected %s" % (argtypes,types) raise TypeError, a return f(*args) return newf return decorator
0820d57edcc8e670eb18d1f250947ce25db8e87a
22,287
import numpy def U_from_array(U_array): """Converts the U array from the optimizer to a bunch of column vectors. Args: U_array, numpy.array[N] The U coordinates in v, av, v, av, ... Returns: numpy.matrix[2, N/2] with [[v, v, v, ...], [av, av, av, ...]] """ return numpy.matrix(U_array).reshape((2, -1), order='F')
2b753ea171cd03cccc73a58c249f1db8232988a6
22,292
def python_list_to_cons_list(python_list): """ Python 形式の (普通の) リストを cons 形式のリストへ変換する。 :param python_list: Python 形式のリスト :return: cons 形式のリスト """ if type(python_list) is list: if len(python_list) == 0: return None else: return python_list[0], python_list_to_cons_list(python_list[1:]) else: print('Error! Not a Python list:', python_list) exit(2)
714781d5aab025febc91fea0c2ac0a72a0761425
22,293
import torch def log_mean_exp(mtx): """ Возвращает логарифм среднего по каждому столбцу от экспоненты данной матрицы. Вход: Tensor - матрица размера n x k. Выход: Tensor, вектор длины n. """ m, _ = torch.max(mtx, dim=1, keepdim=True) outputs = m + (mtx - m).exp().mean(dim=1, keepdim=True).log() outputs = outputs.squeeze(1) return outputs
6a203d0ec2481888854d40cabffca7d1f3702a48
22,298
def get_GOI_record(record, *args): """ defines a list of records corresponding to the GOI """ chrom = 'chr' + str(args[0]) start = int(args[1]) end = int(args[2]) if record['CHROM'] == chrom: if end >= record['POS'] >= start: return 1 else: return 0 else: return 0
8d0a4b543968be2de6329ef6c9b5a2ea52a821cc
22,299
import math def calcFrag(values): """Given a set of parsed values that were generated by macs2 predictd, see get_size fn, this fn calculates the estimated fragment size and the sd. **IMPORTANT: this fn is a python translation of the R code in chilin2/modules/macs2_fragment/qc.py -- stat_frag_std RETURNS: (estimated frag, sd) """ #calculate the estimated frag size: xmax ymax = max(values['ycorr']) i_ymax = values['ycorr'].index(ymax) xmax = values['xcorr'][i_ymax] #print(ymax, xmax) #find expected p_expect=sum([x* p/100.0 for (x,p) in zip(values['x'],values['positive'])]) m_expect=sum([x* m/100.0 for (x,m) in zip(values['x'],values['minus'])]) #print(p_expect, m_expect) #calc sd p_sd = math.sqrt(sum([((x - p_expect)**2)* p/100.0 \ for (x,p) in zip(values['x'],values['positive'])])) m_sd = math.sqrt(sum([((x - m_expect)**2)* m/100.0 \ for (x,m) in zip(values['x'],values['minus'])])) #print(p_sd, m_sd) #FINAL avg std error avg_sd = (p_sd + m_sd) /2.0 return (xmax, avg_sd)
dd4079265ca300760e364cfbfbcf5705dcf265f5
22,300
def solution(integers): """ Finds the two entries that sum to 2020 and returns their product. Raises `ValueError` if there is no solution. """ inverse = set() for n in integers: if 2020 - n in inverse: return n * (2020 - n) inverse.add(n) raise ValueError('no solution found')
188aff6b889b7903361ac347fa3806f94a86d39e
22,301
import logging def get_gp_kwargs(gp_config): """Extract keyword argument parameters for the Gaussian process layer.""" covmat_momentum = gp_config.get('covmat_momentum', 0.999) # Extracts model parameter. logging.info('gp_config.covmat_momentum = %s', covmat_momentum) covmat_momentum = None if covmat_momentum < 0. else covmat_momentum covmat_kwargs = dict(momentum=covmat_momentum) # Assembles into kwargs dictionary. gp_layer_kwargs = dict(covmat_kwargs=covmat_kwargs) return gp_layer_kwargs
4909d8b5231bbae20ae17e1cdc1ae17b0ad6714f
22,302
def canon(raw_attr_name: str) -> str: """ Canonicalize input attribute name for indy proofs and credential offers. Args: raw_attr_name: raw attribute name Returns: canonicalized attribute name """ if raw_attr_name: # do not dereference None, and "" is already canonical return raw_attr_name.replace(" ", "").lower() return raw_attr_name
71858810bc3a65864f4df3c8a2d9c714c12b3692
22,305
def TOC_schmoker1979(rho_b, A=157.0, B=58.1): """ Schmoker (1979) method of TOC caluculation from bulk density to estimate TOC in devonian shales. bulk density units: g/cc """ TOC = (A / rho_b) - B return TOC
530e86cbd3ba1629549c0d5fcc6b0263397d3fa2
22,308
def read_vocabulary_prefixes(lm_filename, vocab_offset, vocab_length): """ Extract the set of all possible prefixes of vocabulary words from LM file in kenlm binary format. Args: lm_filename (pathlib.Path) vocab_offset (int) vocab_length (int or None), None defaults to spanning until the end of file Return: set of str with all possible prefixes of the words in the vocabulary. """ if vocab_length is None: vocab_length = lm_filename.stat().st_size - vocab_offset if vocab_length <= 0: raise RuntimeError("lm_vocabulary_offset parameter beyond the end of file.") elif vocab_offset + vocab_length > lm_filename.stat().st_size: raise RuntimeError("lm_vocabulary_offset + lm_vocabulary_length beyond the end of file.") with open(str(lm_filename), 'rb') as lm_file: lm_file.seek(vocab_offset) vocab_data = lm_file.read(vocab_length) if len(vocab_data) < 6 or vocab_data[:6] != b'<unk>\0': raise RuntimeError( "LM vocabulary section does not start with \"<unk>\\0\". Wrong value of lm_vocabulary_offset parameter? " "lm_vocabulary_offset should point to \"<unk>\" in lm_file." ) if vocab_data[-1:] != b'\0': raise RuntimeError( "The last byte is LM vocabulary strings section is not 0. Wrong value of lm_vocabulary_length parameter? " "Omitting this parameter results in vocabulary strings section spanning to the end of file." ) vocab_list = vocab_data[:-1].decode('utf8').split('\0') def all_prefixes_word(word): # Skipping the empty prefix for prefix_len in range(1, len(word)+1): yield word[:prefix_len] def all_prefixes_vocab(vocab_list): for word in vocab_list: for prefix in all_prefixes_word(word): yield prefix yield '' return set(all_prefixes_vocab(vocab_list))
3842b3a6f09dcbe868dd61f284e3b674d79eb83f
22,309
def get_dtype(table,name): """ get the dtype of a field in a table (recarray) given its name """ return table.dtype.fields[name][0].descr[0][1]
6d63ab0f80b955124ccc94363a860c345c1f92b5
22,311
def internal(fn): """ Decorator which does not affect functionality but it is used as marker which tells that this object is not interesting for users and it is only used internally """ return fn
fa9a31962a4f45f7794ec42fc4f2507c52c4535a
22,312
import click def _cb_shape(ctx, param, value): """ Click callback to validate `--shape`. Returns ------- tuple (height, width) """ for v in value: if not v >= 1: raise click.BadParameter('values must be >= 1') return value
5d978379ab21239dec12340347266cab7f0d14f2
22,313
def parse_database_credentials(db_credentials): """ Parsing database credentials to needed format :param db_credentials: Dictionary :return: Dictionary """ # # Distinguish between database config scheme of TYPO3 v8+ and TYPO3 v7- # if 'Connections' in db_credentials: _db_config = db_credentials['Connections']['Default'] _db_config['name'] = _db_config['dbname'] else: _db_config = db_credentials _db_config['user'] = _db_config['username'] _db_config['name'] = _db_config['database'] if 'port' not in _db_config: _db_config['port'] = 3306 return _db_config
c8e23607f8c2715c8532f0d0d8f653268a2e2813
22,315
def remove_automaton_states(waut, pred_fn): """ Make a copy of L{waut}, with states removed for which L{pred_fn} does not hold. @param waut: Input automaton. @type waut: L{WeightedAutomaton} @param pred_fn: Predicate function. @type pred_fn: C{func} from L{WeightedState} to C{bool} @return: Resulting automaton. @rtype: L{WeightedAutomaton} """ res_waut = waut.copy() for state in waut.get_states(): if not pred_fn(state): res_waut.remove_state(res_waut.get_state(state.number)) return res_waut
e182ada8642894ef20238c7069e612e09b5ff020
22,316
from typing import List def golomb_lst(number: int=1) -> List[int]: """Последовательность Голомба Вычисления проводятся по рекурсивной формуле на основе списка. Wiki: https://en.wikipedia.org/wiki/Golomb_sequence :param number: количество чисел, defaults to 1 :type number: int, optional :return: n первых чисел последовательности Голомба :rtype: List[int] """ sequence = [1] for i in range(1, number): sequence.append(1 + sequence[i - sequence[sequence[i - 1] - 1]]) return sequence
3f429c89081b5c9b30ebef192e0124086b1737cb
22,317
from typing import Set def get_subclasses(cls) -> Set: """Returns the subclasses of the specified class, recursively.""" return set(cls.__subclasses__()).union( [s for c in cls.__subclasses__() for s in get_subclasses(c)])
2247d1e0ae33904d2019591cd939702fdf4cc26a
22,319
def safe_module_name(n): """Returns a module name which should not conflict with any other symbol.""" if n: return "_mod_" + n.replace(".", "_") return n
2c12f48a97a983f69fa39b3b94eb642157d212bf
22,320
def available(test): """ Check if MongoDB is compiled with OpenSSL support """ return 'OpenSSLVersion' in test.tester.info \ or 'openssl' in test.tester.info
e502dd7041f6f3eff4deda6c37640e6c19aef4fb
22,322
def staff_check(user): """A method that checks if a user is a memeber of staff and returns true. It is used by the @user_passes_test() decorator to lock away views that should only be accessed by staff memebers. Returns: Bool: The boolean indicating if a user is a staff memeber or not. """ return user.is_staff
e5832ceb205c31c9d6ff3bdacfaf5c7f6135c024
22,323
import glob import os from datetime import datetime def get_restart_times(wdir, end_time): """ Search for restart files, select the most recent one, and update the model start and end times. Parameters ---------- wdir : str Path of the simulation folder that contains the restart files. end_time : datetime.datetime End time of simulation. Returns ------- run_hours : datetime.datetime Start time of restart run. rst_opt : dict Updated namelist options for restart run. """ # check if already finished runlogs = glob.glob(wdir + "/run_*.log") if len(runlogs) > 0: if len(runlogs) > 1: timestamp = sorted([r.split("/")[-1].split("_")[1].split(".")[0] for r in runlogs])[-1] runlog = wdir + "/run_{}.log".format(timestamp) else: runlog = runlogs[0] with open(runlog) as f: runlog = f.readlines() if "d01 {} wrf: SUCCESS COMPLETE WRF\n".format(end_time) in runlog: print("Run already complete") return -1, None # search rst files and determine start time rstfiles = os.popen("ls -t {}/wrfrst*".format(wdir)).read() if rstfiles == "": print("no restart files found. Run from start...") return None, None restart_time = rstfiles.split("\n")[0].split("/")[-1].split("_")[-2:] print("Restart run from {}".format(" ".join(restart_time))) start_time_rst = datetime.strptime("_".join(restart_time), '%Y-%m-%d_%H:%M:%S') times = {} rst_date, rst_time = restart_time times["start"] = rst_date.split("-") times["start"].extend(rst_time.split(":")) end_time_dt = datetime.strptime(end_time, '%Y-%m-%d_%H:%M:%S') end_d, end_t = end_time.split("_") times["end"] = end_d.split("-") times["end"].extend(end_t.split(":")) run_hours = (end_time_dt - start_time_rst).total_seconds() / 3600 if run_hours <= 0: print("Run already complete") return -1, None rst_opt = "restart .true." for se in ["start", "end"]: for unit, t in zip(["year", "month", "day", "hour", "minute", "second"], times[se]): rst_opt += " {}_{} {}".format(se, unit, t) return run_hours, rst_opt
b9245f5a2bca98bcf1f84c45c7fb09a9a402458f
22,324
def compute_source_marker(line, column, expression, size): """Computes source marker location string. >>> def test(l, c, e, s): ... s, marker = compute_source_marker(l, c, e, s) ... out = s + '\\n' + marker ... ... # Replace dot with middle-dot to work around doctest ellipsis ... print(out.replace('...', '···')) >>> test('foo bar', 4, 'bar', 7) foo bar ^^^ >>> test('foo ${bar}', 4, 'bar', 10) foo ${bar} ^^^ >>> test(' foo bar', 6, 'bar', 6) ··· oo bar ^^^ >>> test(' foo bar baz ', 6, 'bar', 6) ··· o bar ··· ^^^ The entire expression is always shown, even if ``size`` does not accomodate for it. >>> test(' foo bar baz ', 6, 'bar baz', 10) ··· oo bar baz ^^^^^^^ >>> test(' foo bar', 10, 'bar', 5) ··· o bar ^^^ >>> test(' foo bar', 10, 'boo', 5) ··· o bar ^ """ s = line.lstrip() column -= len(line) - len(s) s = s.rstrip() try: i = s[column:].index(expression) except ValueError: # If we can't find the expression # (this shouldn't happen), simply # use a standard size marker marker = "^" else: column += i marker = "^" * len(expression) if len(expression) > size: offset = column size = len(expression) else: window = (size - len(expression)) / 2.0 offset = column - window offset -= min(3, max(0, column + window + len(expression) - len(s))) offset = int(offset) if offset > 0: s = s[offset:] r = s.lstrip() d = len(s) - len(r) s = "... " + r column += 4 - d column -= offset # This also adds to the displayed length size += 4 if len(s) > size: s = s[:size].rstrip() + " ..." return s, column * " " + marker
dcfd8bc74a83f3b2c7431a2a97c16c58c1b84742
22,325
def _get_value_for_key(lines, key): """Given list of |lines| with colon separated key value pairs, return the value of |key|.""" for line in lines: parts = line.split(':') if parts[0].strip() == key: return parts[1].strip() return None
e08bad43f5b095632ef217a4ef7c8a6344d5d32f
22,326
def extract_course(transcript, course): """ (str, int) -> str Return a string containing a course code, course mark and final mark, in that order. The second argument specifies the order in which the course appears in the transcript. >>> extract_course('MAT,90,94,ENG,92,NE,CHM,80,85', 2) 'ENG,92,NE' >>> extract_course('MAT,90,94,ENG,92,NE,CHM,80,85', 4) '' """ if 1 <= course < 4: index = 0; if course == 2: index = 10; elif course == 3: index = 20 return transcript[index: index + 9] else: return ''
6983fa4ec608b068e83a05457d18ca190f37f50a
22,328
import re def cleanStr(x): """ Clean strings so they behave. For some modules, uniqIDs and groups cannot contain spaces, '-', '*', '/', '+', or '()'. For example, statsmodel parses the strings and interprets them in the model. :Arguments: x (str): A string that needs cleaning :Returns: x (str): The cleaned string. self.origString (dict): A dictionary where the key is the new string and the value is the original string. This will be useful for reverting back to original values. """ if isinstance(x, str): val = x x = re.sub(r'^-([0-9].*)', r'__\1', x) x = x.replace(' ', '_') x = x.replace('.', '_') x = x.replace('-', '_') x = x.replace('*', '_') x = x.replace('/', '_') x = x.replace('+', '_') x = x.replace('(', '_') x = x.replace(')', '_') x = x.replace('[', '_') x = x.replace(']', '_') x = x.replace('{', '_') x = x.replace('}', '_') x = x.replace('"', '_') x = x.replace('\'', '_') x = re.sub(r'^([0-9].*)', r'_\1', x) return x
f04752aba472c870abbe4336c5284a6c6d35e409
22,330
import os def get_cal_id(): """ Gets the ID of the calender that this script should write to. This ID should belong to the user that logged in from get_google_creds() 1. From the cal_id.txt file 2. From GOOGLE_MCU_CALENDAR_ID environment variable """ if os.path.exists('cal_id.txt'): with open('cal_id.txt', 'r', encoding='UTF-8') as reader: return reader.read().strip() if 'GOOGLE_MCU_CALENDAR_ID' in os.environ: return os.environ['GOOGLE_MCU_CALENDAR_ID'] # This would normally be secret, but this project is so people can add this calendar # to their calendars, and this information is on the iCal url, so why hide it? return "unofficial.mcu.calendar@gmail.com"
7473d23114d2d8a4fb502d6cfaec1a75b627ba0a
22,331
from typing import Optional def prompt_yes_no(question: str, default: Optional[bool] = None) -> bool: """ Prompts the user a yes/no question and returns their choice. """ if default is True: prompt = "[Y/n]" elif default is False: prompt = "[y/N]" else: prompt = "[y/n]" text = f"{question} {prompt} " wrong_reply = "Please reply with 'yes'/'y' or 'no'/'n'." while True: response = input(text).strip().lower() if response in {"yes", "ye", "y"}: return True if response in {"no", "n"}: return False if response == "" and default is not None: return default print(wrong_reply)
d66ac36e51795f5b63fd0ddf482ae9e1529bc02a
22,333
def first(iterable, condition=lambda x: True): """Return the first item in the `iterable` that satisfies the `condition`. If the condition is not given, returns the first item of the iterable. Raises `StopIteration` if no item satisfying the condition is found. Parameters ---------- iterable : iterable condition : callable callable which returns true when the element is eligible as return value """ return next(x for x in iterable if condition(x))
b031650e39a1acf5185a6760622c2197e34b21e1
22,334
import numpy def gramian_eigenspaces(gramian, eps=1e-5): """Returns eigenspaces of a Gramian matrix.""" # .eigh() will give us an orthonormal basis, while .eigvals() typically would # not (even for a hermitean matrix). eigvals, eigvecsT = numpy.linalg.eigh(gramian) eigenspaces = [] # [(eigval, [eigvec1, eigvec2, ...]), ...] for eigval, eigvec in zip(eigvals, eigvecsT.T): matching_eigenspaces = ( espace for espace in eigenspaces if abs(espace[0] - eigval) <= eps) try: espace = next(matching_eigenspaces) espace[1].append(eigvec) except StopIteration: # Did not have a matching eigenvalue. eigenspaces.append((eigval, [eigvec])) return [(eigval, numpy.vstack(eigvecs)) for eigval, eigvecs in eigenspaces]
3e017cf98cec2cf258bd35f01416c93e58d8506c
22,335
def get_persistence(simplexTree, max_dimension): """Calculate the persistent homology of the abstract simplicial complex, filtering by positive values and dimensions. :param simplexTree: a simplcial complex, as returned by `build_local_complex` :type simplexTree: simplexTree :param max_dimension: max dimension of persistent homology to be returned. :type max_dimension: int. :returns: persistence diagram in the Gudhi format. :rtype: list of tuples (dim, (birth, death)). """ pd = simplexTree.persistence() return [p for p in pd if (p[0] <= max_dimension) & (p[1][0] >= 0.)]
2b55afcc0503f55b8f08903c1164898abc675308
22,336
def find_modules(nn_module, type): """ Find and return modules of the input `type` """ return [module for module in nn_module.modules() if isinstance(module, type)]
d580e570843b7504ab91291fc3a173480c63f376
22,337
def how_many_can_list(num_market_listings: int, number_to_sell: int, num_in_inventory: int) -> int: """ How many items I can actually list on market to have number_to_sell on sale :param num_market_listings: Number of own listing on market. :param number_to_sell: Max number on sale :param num_in_inventory: Number in inventory :return: number that can be listed """ if number_to_sell > num_market_listings: toList = number_to_sell - num_market_listings return min(toList, num_in_inventory) elif number_to_sell == num_market_listings or number_to_sell < num_market_listings: return 0 return 0
29a9844448ebd68710920b83378025ad9ffd74a3
22,338
from typing import Any def sort_object(data_object: Any) -> Any: """ helper function to sort objects """ if isinstance(data_object, dict): for key, value in data_object.items(): if isinstance(value, (dict, list)): data_object[key] = sort_object(value) return dict(sorted(data_object.items())) if isinstance(data_object, list) and data_object: if not all(isinstance(entry, type(data_object[0])) for entry in data_object): return data_object if isinstance(data_object[0], (dict, list)): return [sort_object(entry) for entry in data_object] return sorted(data_object) return data_object
f53899d6b42a047095185e94118b5d99be290708
22,339
from pathlib import Path from typing import List import os def _collect_files(path: Path) -> List[Path]: """Collect all .py files in a package.""" files_list: List = [] if os.path.isdir(path): files = os.listdir(path) for file in files: files_list.extend(_collect_files((Path(path) / file).absolute())) else: if path.name.endswith(".py") and not path.name.startswith("__"): files_list.append(Path(path).absolute()) return files_list
e8a9d8656758601afdca48fb2f57ae634d4b19b4
22,340
import six def _encode_envvars(env): """Encode a hash of values. :param env: A hash of key=value items. :type env: `dict`. """ for key, value in env.items(): env[key] = six.text_type(value) else: return env
ca26d2a2e09b1f74161e3e01cd9d2c46282f1b9a
22,341
def index_of(index: int, of: int): # pylint: disable=invalid-name """Return '$index of $of' Arguments: index {int} -- index of {int} -- count Returns: str -- string """ return '{!r} of {!r}'.format(index, of)
e51053c9baf1c8f7ed9d932c05fa39cec405588f
22,342
def predict_xlogvar_from_epslogvar(*, eps_logvar, logsnr): """Scale Var[eps] by (1+exp(-logsnr)) / (1+exp(logsnr)) = exp(-logsnr).""" return eps_logvar - logsnr
9f6e6e6d49ff2d6f7622d59439961a298d262693
22,343
import math def dcg_trec(r, k=None): """The `trec_eval` version of DCG :param r: results :param k: cut-off :return: sum rel_i / log(i + 2) """ result = sum([rel / math.log(rank + 2, 2) for rank, rel in enumerate(r[:k])]) return result
5223776ddfe0a42eaf826cb72f69d1c91ec2f094
22,344
import os def list_files(folder): """Return list of files under a folder""" return [ x for x in os.listdir(folder) if os.path.isfile(os.path.join(folder, x)) ]
b4702c4b89bd5407fc831558a2f808adeedd0f8a
22,348
import sys import codecs def _b(message): """convert string to correct format for buffer object""" if hex(sys.hexversion) >= '0x30000f0': return codecs.latin_1_encode(message)[0] return message
bf146ff9e00b000510bba55c18067b11530ab406
22,349
import torch def nentr(p, base=None): """ Calculates entropy of p to the base b. If base is None, the natural logarithm is used. :param p: batches of class label probability distributions (softmax output) :param base: base b :return: """ eps = torch.tensor([1e-16], device=p.device) if base: base = torch.tensor([base], device=p.device, dtype=torch.float32) return (p.mul(p.add(eps).log().div(base.log()))).sum(dim=1).abs() else: return (p.mul(p.add(eps).log())).sum(dim=1).abs()
8f54acbf406b1ed17a368c3a4808bf7add279079
22,350
def _strdel(s): """文字列の先頭と最後の分離記号を取り除く""" return s.strip('<>|/(){} \n \t')
d1449c57d2de35fdcf15e6df9823111c2e1b69e4
22,351
def rainbow(x): """ Eq. 3 of sron_colourschemes.pdf """ r = (0.472 - 0.567*x + 4.05*x*x) / (1.0 + 8.72*x - 19.17*x*x + 14.1*x*x*x) g = 0.108932 - 1.22635*x + 27.284*x**2 - 98.577*x**3 + 163.3*x**4 - 131.395*x**5 + 40.634*x**6 b = 1.0 / (1.97 + 3.54*x - 68.5*x**2 + 243.*x**3 - 297.*x**4 + 125.*x**5) return r, g, b
7565f1fb921f81c57102a6651dac27146a4fdc6c
22,352
import torch def th_nearest_interp2d(input, coords): """ 2d nearest neighbor interpolation torch.Tensor """ # take clamp of coords so they're in the image bounds x = torch.clamp(coords[:, :, 0], 0, input.size(1) - 1).round() y = torch.clamp(coords[:, :, 1], 0, input.size(2) - 1).round() stride = torch.LongTensor(input.stride()) x_ix = x.mul(stride[1]).long() y_ix = y.mul(stride[2]).long() input_flat = input.view(input.size(0), -1).contiguous() mapped_vals = input_flat.gather(1, x_ix.add(y_ix)) return mapped_vals.view_as(input)
8000f8da1bde82a7ad190fb26dc0af33b2a0f037
22,355
import unicodedata def strip_accents_and_lowercase(s: str) -> str: """ Strip accents for greek. Args: s (str): Input text. Returns: str: Output text without accents. """ return ''.join(c for c in unicodedata.normalize('NFD', s) if unicodedata.category(c) != 'Mn').lower()
1c93aab8f57862daeb7787fb6a4f7e7a158fb087
22,356
import os def read_data_files_from_folder(foldername): """ Read all source files in folder Return a list of file contents, whereby each file content is a list of strings, each string representing a line :param foldername: name of the folder in which the data files to be read are located :return: a list of files where each file is a list of strings """ # Helper variables data = list() file_names = list() files_in_folder = os.listdir(foldername + "/") # Loop over files in folder for path in files_in_folder: if path[0] != "." and path[-3:] == ".ll": # If this isn't a hidden file and it is an LLVM IR file ('.ll' extension), # open file and import content with open(os.path.join(foldername, path)) as f: data.append(f.read()) # Add file name to dictionary file_names.append(path) return data, file_names
c149b4d6ee8e82cba1c1545a1605b02753a3fa65
22,357
import random def create_random_individual(variable_to_position, intervals_min, intervals_max): """ -> Create an individual (a dict structure) where variable match to number of intervals for discretization (init randomly between intervals_min and intervals_max) -> intervals_min is always >= 2 -> variable_to_position is a dict, obtain from the dichotomization.extract_matrix_from function """ individual = {} for variable_name in variable_to_position.values(): intervals = random.randint(2, intervals_max) individual[variable_name] = intervals return individual
a637db461a7d511fe7196ac4fb5718104c1ca1c2
22,358
def qubo_to_ising(Q, offset=0.0): """Convert a QUBO problem to an Ising problem. Map a quadratic unconstrained binary optimization (QUBO) problem :math:`x' Q x` defined over binary variables (0 or 1 values), where the linear term is contained along the diagonal of Q, to an Ising model defined on spins (variables with {-1, +1} values). Return h and J that define the Ising model as well as the offset in energy between the two problem formulations: .. math:: x' Q x = offset + s' J s + h' s See :meth:`~dimod.utilities.ising_to_qubo` for the inverse function. Args: Q (dict[(variable, variable), coefficient]): QUBO coefficients in a dict of form {(u, v): coefficient, ...}, where keys are 2-tuples of variables of the model and values are biases associated with the pair of variables. Tuples (u, v) represent interactions and (v, v) linear biases. offset (numeric, optional, default=0): Constant offset to be applied to the energy. Default 0. Returns: (dict, dict, float): A 3-tuple containing: dict: Linear coefficients of the Ising problem. dict: Quadratic coefficients of the Ising problem. float: New energy offset. Examples: This example converts a QUBO problem of two variables that have positive biases of value 1 and are positively coupled with an interaction of value 1 to an Ising problem, and shows the new energy offset. >>> Q = {(1, 1): 1, (2, 2): 1, (1, 2): 1} >>> dimod.qubo_to_ising(Q, 0.5)[2] 1.75 """ h = {} J = {} linear_offset = 0.0 quadratic_offset = 0.0 for (u, v), bias in Q.items(): if u == v: if u in h: h[u] += .5 * bias else: h[u] = .5 * bias linear_offset += bias else: if bias != 0.0: J[(u, v)] = .25 * bias if u in h: h[u] += .25 * bias else: h[u] = .25 * bias if v in h: h[v] += .25 * bias else: h[v] = .25 * bias quadratic_offset += bias offset += .5 * linear_offset + .25 * quadratic_offset return h, J, offset
d2df1b581612ab7f93aaf762915d62583a9df148
22,359
def find_indices(lst, element): """ Returns the indices for all occurrences of 'element' in 'lst'. Args: lst (list): List to search. element: Element to find. Returns: list: List of indices or values """ result = [] offset = -1 while True: try: offset = lst.index(element, offset+1) except ValueError: return result result.append(offset)
59df6c2dd7a4c8fd43895210503f7ae03d83618b
22,360
def convertVCFGenotype(vcfGenotype): """ Parses the VCF genotype """ if vcfGenotype is not None: delim = "/" if "|" in vcfGenotype: delim = "|" if "." in vcfGenotype: genotype = [-1] else: genotype = map(int, vcfGenotype.split(delim)) else: genotype = [-1] return genotype
e505d1aa3e6c93e110672509084b6ee02d4f7307
22,362
def get_paths(cursor): """Get the currently watched paths.""" sql = "select path from games" cursor.execute(sql) paths = [row[0] for row in cursor.fetchall()] return paths
1e3cd541970583bfc452b46bf9c5e635bf5555f4
22,363
import math def angle(pos_x, pos_y): """ Angle in degrees of 2D point """ angle_rad = math.atan(abs(pos_y/pos_x)) angle_degree = math.degrees(angle_rad) return angle_degree
9d3b83c3bcb2415af50f5bad7268dd9a72542530
22,366
def _split_storage_url(storage_object_url): """ Returns a list containing the bucket id and the object id. """ return storage_object_url.split("/")[2:]
8506d5071c3061cd73fc0e8ece09279ef39c377a
22,367
def encipher(message: str, cipher_map: dict) -> str: """ Enciphers a message given a cipher map. :param message: Message to encipher :param cipher_map: Cipher map :return: enciphered string >>> encipher('Hello World!!', create_cipher_map('Goodbye!!')) 'CYJJM VMQJB!!' """ return "".join(cipher_map.get(ch, ch) for ch in message.upper())
57053d93841dcc3982e18664a1a3ef6d85766788
22,370
def get_struct_instance_field_type(obj, field_name): """ :param obj: A ctypes struct instance :param field_name: A name of a field in the struct :return: The declared type of the field """ for field in obj._fields_: current_field_name = field[0] if current_field_name == field_name: return field[1] raise KeyError(field_name)
255e088d9f36db652d0cbb4f1c21846b35a9d748
22,371
import pkg_resources import os def image_path(image_name): """ Return the absolute path to an image Parameters ---------- image_name : str Name of image Returns ------- path : str Full path to image """ try: if pkg_resources.resource_exists('flika.images', image_name): return pkg_resources.resource_filename('flika.images', image_name) else: raise RuntimeError("image does not exist: %s" % image_name) except NotImplementedError: # workaround for mac app result = os.path.dirname(__file__) return os.path.join(result.replace('site-packages.zip', 'flika'), image_name)
371b272e303f6a8ae2d12007d127160ad4450c26
22,372