content
stringlengths
35
416k
sha1
stringlengths
40
40
id
int64
0
710k
def dmlab_level_label(level) -> str: """Returns the label for a DMLab level.""" return level.replace('_', ' ').title()
332de2e4b0a834083ec6ed6b3921c43c99b0678a
21,280
def get_classifier_index(chain, i, point=None): """ :param chain: Ensemble chain :param i: index of the classifier in the chain :return: The classifier id in the index i """ c = chain.get(chain.get_start()) if point is not None: c = chain.get(point) if c is not None: next = c.component_id i_ = 0 while i_ != i: trigger = chain.get(next) if trigger is None: return None c = chain.get(trigger.component_ids[0]) if c is None: return None next = c.component_id i_ += 1 else: return None return c.id
9adc727436f1faf9111a9deed5f39b82d7a4656c
21,281
import os def _process_exists(pid): """Check if a process with PID ``pid`` exists :param pid: PID to check :type pid: ``int`` :returns: ``True`` if process exists, else ``False`` :rtype: ``Boolean`` """ try: os.kill(pid, 0) except OSError: # not running return False return True
c382daa8b47c8c05d23e5c5962ec796b77e14911
21,282
import time def epochnow(): """Returns now as UNIX timestamp. Invariant: epochnow() ~= datetime_to_timestamp(utcnow()) """ return time.time()
02e253c154971fd41cfb015ae249b14d13b3e580
21,283
from typing import Dict from typing import List from typing import Tuple def get_raw_dependency_information_from_dep_file(dep_file: str) -> Dict[str, List[Tuple[str, str]]]: """return RAW dependency information contained in dep_file in the form of a dictionary. Format: {source_line: [(sink_line, var_name)] :param dep_file: path to dependency file :return: RAW dictionary """ raw_dependencies: Dict[str, List[Tuple[str, str]]] = dict() with open(dep_file) as f: for line in f.readlines(): line = line.replace("\n", "") # format of dependency entries in _dep.txt-file: # sourceLine NOM RAW sinkLine|variable if " NOM " not in line: continue split_line = line.split(" NOM ") source_line = split_line[0] # split entries entries = [] current_entry = "" for word in split_line[1].split(" "): word = word.replace(" ", "") if word == "RAW" or word == "WAR" or word == "WAW" or word == "INIT": if len(current_entry) > 0: entries.append(current_entry) current_entry = "" if len(current_entry) > 0: current_entry += " " + word else: current_entry += word if len(current_entry) > 0: entries.append(current_entry) if source_line not in raw_dependencies: raw_dependencies[source_line] = [] for entry in entries: # filter for RAW dependencies split_entry = entry.split(" ") if split_entry[0] != "RAW": continue split_sink_line_var = split_entry[1].split("|") sink_line = split_sink_line_var[0] var_name = split_sink_line_var[1].replace(".addr", "") raw_dependencies[source_line].append((sink_line, var_name)) return raw_dependencies
84a137b0620215f27fc04b92d23d1004e6241b7d
21,284
def flag(s): """Turn 'flag_name' into `--flag-name`.""" return '--' + str(s).replace('_', '-')
3f76ba5a765d9f050576e1535d0d72bbd260bc43
21,288
def pmi(financedamount, pmirate): """Return annual private mortgage insurance cost. :param financedamount: Amount of money borrowed. :type financedamount: double :param pmirate: Rate charged when loan-to-value > 80%. :type pmirate: double :return: double """ return financedamount * pmirate
5290fd7bd6e90d8d6b5447e4d367b6e91f94ced3
21,289
def backend(entry): """Custom spam checker backend for testing Zinnia""" return False
6c1505fec7d76043da53e33cff42b7c12ae2bed1
21,290
from OpenSSL.SSL import Error import ssl import sys def is_ssl_error(error=None): """Checks if the given error (or the current one) is an SSL error.""" exc_types = (ssl.SSLError,) try: exc_types += (Error,) except ImportError: pass if error is None: error = sys.exc_info()[1] return isinstance(error, exc_types)
aa69b5df2b0fbe39ac779de96ae8070464835de5
21,291
def get_relevant_files(session_data: dict): """ Generates the pipeline's "starting node" Parameters ---------- session_data : dict A dictionary with the locations of all necessary session's data Returns ------- str,str The "starting" node for processing """ return session_data.get("dwi"), session_data.get("fmap")
ceac08ed24fa081f63fb931cb97e8c433646114e
21,292
import hashlib def md5hex(src: bytes) -> str: """生成字符串的md5 hash值 Args: src: 要生成md5的源, 必须是二进制字节数组(bytes) Returns: md5的16进制字符串, 长度: 32, 类型: str """ m = hashlib.md5() m.update(src) return m.hexdigest()
04bed72aa6e420b50f433757bd9d731f1fc220eb
21,293
def _last_index(x, default_dim): """Returns the last dimension's index or default_dim if x has no shape.""" if x.get_shape().ndims is not None: return len(x.get_shape()) - 1 else: return default_dim
e6fe7892329b623c59c7e1c41f51bf7d9b1e81b6
21,296
def qsize(queue): """Return the (approximate) queue size where available; -1 where not (OS X).""" try: return queue.qsize() except NotImplementedError: # OS X doesn't support qsize return -1
155dc900a4d31be6b3e1cdad2f3b9caf39c096b4
21,297
def get_color(r, g, b): """Bitshift the red, green and blue components around to get the proper bits that represent that color""" return ((r & 0xFF) << 16) | ((g & 0xFF) << 8) | (b & 0xFF)
e77322dc3ee7fc172bf9f543c7a26ae216906d83
21,298
import torch def get_gradient(params): """ Function used to get the value of the gradient of a set of torch parameters. Args: parameters (list): list of parameters to be considered. """ views = [] for p in params: if p.grad is None: view = p.new(p.numel()).zero_() else: view = p.grad.view(-1) views.append(view) return torch.cat(views, 0)
61e5ead705df5285db1b52fc965658bd38df7d1c
21,299
def layer_point_to_map(map_layer, point): """Convert a pair of coordinates from layer projection to map projection.""" return [point[0] / map_layer.data.tilewidth, point[1] / map_layer.data.tileheight]
178472c93947405f855d1860b84105bd0290edcd
21,301
def prodigal_gene_start(rec_description: str) -> int: """Get a gene start index from a Prodigal FASTA header Examples -------- Given the following Prodigal FASTA output header, parse the gene start index (i.e. 197) >>> prodigal_gene_start("k141_2229_1 # 197 # 379 # 1 # ID=4_1;partial=00;start_type=ATG;rbs_motif=AGGAGG;rbs_spacer=5-10bp;gc_cont=0.437") 197 Parameters ---------- rec_description : str SeqRecord description of Prodigal FASTA header Returns ------- int Gene start index """ return int(rec_description.split('#')[1].strip())
d0aaa9d09d67dea75537f2f48c550a9df31bcf45
21,302
def dummy_file_to_dataset(file): """Find dataset name associated to file Can parse the file name, query a data base, whatever :param file: Path of the input file :type file: string :return: Dataset name associated to that file :rtype: string """ return "dummy"
22e8a529002907eba67a3e470bbf3272518e508f
21,304
from typing import List def split_segment(segment: str) -> List[str]: """different payers use different characters to delineate elements""" asterisk = '*' pipe = '|' asterisk_segment_count = len(segment.split(asterisk)) pipe_segment_count = len(segment.split(pipe)) if asterisk_segment_count > pipe_segment_count: return segment.split(asterisk) else: return segment.split(pipe)
2225d8309e8e64f24afa5d8b4468d394c3e68c4a
21,305
def ini_conf_to_bool(value): """ Depending INI file interpreter, False values are simple parsed as string, so use this function to consider them as boolean :param value: value of ini parameter :return: bollean value """ if value in ('False', 'false', '0', 'off', 'no'): return False return bool(value)
f9e5e14066bf4d2e17bbdb5cb97f3b2f1ba867c7
21,308
def strip_sensitive_data(data: dict): """ Function that strips request data before it is sent to our graylog server. """ sensitive_keys = ("password", "response", "user_responses") # don't overwrite request! data = dict(data) # Scrub Request Data for key in sensitive_keys: if key in data: data[key] = "[CENSORED]" return str(data)
6c52fe7d0e0f9294a7b922e2427530cccb12a748
21,309
def shift(aid, afold, bid, bfold): """determine direction of change. pos to neg - proximal neg to pos - distal fold change does not flip - indicate whether both increased or decreased """ if aid > bid: return shift(bid, bfold, aid, afold) else: assert afold != 0 if afold < 0: if bfold > 0: return "distal" if bfold < 0: return "decreased" if afold > 0: if bfold < 0: return "proximal" if bfold > 0: return "increased"
bdbbff188b2ec7cbed55d563d1a61a99e458622b
21,310
def has_cloned_parent(c, p): """Return True if p has a cloned parent within the @rst tree.""" root = c.rstCommands.root p = p.parent() while p and p != root: if p.isCloned(): return True p.moveToParent() return False
1e0964520e188dad082b0f3e7c70f17bb945c063
21,312
def auto_num(num, model, **kwargs): """自动返回编号的最大值""" if not num: if not model.query.filter_by(**kwargs).all(): return 1 else: return model.query.filter_by(**kwargs).order_by(model.num.desc()).first().num + 1 return num
ddddc30738ac68d8fd8369128c925e03cc78f2f9
21,313
import re def get_depth_of_exec_function(backtrace): """ >>> get_depth_of_exec_function(["#1 0x00007f29e6eb7df5 in standard_ExecutorRun (queryDesc=0x562aad346d38,"]) 1 >>> get_depth_of_exec_function(["#27 0x00007f29e6eb7df5 in pgss_ExecutorRun (queryDesc=0x562aad346d38,"]) 27 >>> get_depth_of_exec_function(["#13 0x00007f29e6eb7df5 in explain_ExecutorRun (queryDesc=0x562aad346d38,"]) 13 >>> get_depth_of_exec_function(["#4 0x00007f29e6eb7df5 in ExecEvalNot (notclause=<optimized out>,"]) 4 >>> get_depth_of_exec_function(["#5 0x00007f29e6eb7df5 in ExecProcNode (node=node@entry=0x562aad157358,)"]) 5 >>> get_depth_of_exec_function(["#12 0x00007f29e6eb7df5 in ExecutePlan (dest=0x562aad15e290,"]) 12 >>> get_depth_of_exec_function(["#21 standard_ExecutorRun (queryDesc=0x562aad0b46f8, direction=<optimized out>,"]) 21 >>> bt = ["#0 palloc0 (size=size@entry=328)", \ "#1 0x0000562aac6c9970 in InstrAlloc (n=n@entry=1, instrument_options=4)", \ "#2 0x0000562aac6bdddb in ExecInitNode (node=node@entry=0x562aad49e818,"] >>> get_depth_of_exec_function(bt) 2 """ exec_regexp = re.compile(r"#([0-9]+) .*Exec[a-zA-Z]+ \(") for frame in backtrace: m = exec_regexp.search(frame) if m: return int(m.group(1)) return None
8e5af7d4cda5db53f3be87916a60d2f6f146ed6c
21,314
def get_parse_script_date( job ): """ The last time the job log file was parsed for the start/stop dates. """ if hasattr( job, 'parse_script_date' ): return job.parse_script_date return 0
c6174aebf3e468a62019d7598f74dacf65ad462e
21,316
def read_weights_file(weights_file): """ Given a tab separated file with leaf names for a phylogenetic tree in column one and multipliers for that leaf's branch length in column two, will create a dictionary with leaf names as keys and multipliers as values :param weights_file: Path to a tab-separated text file described above. :return: dictionary with leaf names as keys and multipliers as values """ weights = dict() with open(weights_file) as f: for line in f: stripped_line = line.rstrip() x = stripped_line.split('\t') if len(x) != 2 and stripped_line != '': raise RuntimeError('One of the lines in your weights file ({}) is not formatted correctly. ' 'Correct format is leafname\tweight, tab-separated. ' 'Offending line was: {}'.format(weights_file, stripped_line)) elif len(x) == 2: try: weight = float(x[1]) except ValueError: raise ValueError('The second column in your weights file ({}) must be a number. Please fix the ' 'following line: {}'.format(weights_file, stripped_line)) weights[x[0]] = weight return weights
68b1af3238f1f2b564c18139e55ee644f0bd4da0
21,317
def modelSpin(model, nodes): """ Determines and reports spin state of nodes. Args: model: an instance of a Model object. nodes: a dictionary of node objects. Returns: state: a list of node spins for the model, either -1 or +1. """ state = [] for e in nodes: state.append(nodes[e].getSpin()) state = ['+' if x > 0 else '-' for x in state] return state
bf64721f47ab061cb0dc0c4a5f606a1987debc3e
21,318
import argparse def create_arg_parser(): """ Create ArgumentParser """ parser = argparse.ArgumentParser(description='Prepare SCHISM input files.') parser.add_argument(dest='main_inputfile', default=None, help='main input file name') return parser
24531b243936bc0d019ce11c23fd02d5bd878f36
21,319
def engineer_data(data): """ Returns modified version of data with left and right aggregate features while dropping weight and distance features :param data: data to work with :return: modified dataframe """ data['left'] = data['left_weight'] * data['left_distance'] data['right'] = data['right_weight'] * data['right_distance'] data = data.drop(['left_weight', 'left_distance', 'right_weight', 'right_distance'], axis=1) return data
38774fe9213c95eb743679b5162daadeefe8f2ac
21,320
def feast(beast: str, dish: str) -> bool: """ A function feast that takes the animal's name and dish as arguments and returns true or false to indicate whether the beast is allowed to bring the dish to the feast. Assume that beast and dish are always lowercase strings, and that each has at least two letters. beast and dish may contain hyphens and spaces, but these will not appear at the beginning or end of the string. They will not contain numerals. :param beast: :param dish: :return: """ return beast[0] == dish[0] and beast[-1] == dish[-1]
490bbd83b99855578384725aab36eb38c001cd09
21,322
def filter_items(value, startswith=None, strip_prefix=False): """Jinja2 filter used to filter a dictionary's keys by specifying a required prefix. Returns a list of key/value tuples. .. code-block:: jinja {{ my_dict|filter_items }} {{ my_dict|filter_items("MY_PREFIX_") }} {{ my_dict|filter_items("MY_PREFIX_", True) }} This is most useful in combination with the special :ref:`_all_env <all_env>` variable that shpkpr injects into every template. For example, to iterate over only the template variables that start with ``LABEL_`` you could do: .. code-block:: jinja {% for k, v in _all_env|filter_items("LABEL_", strip_prefix=True) %} "{{k}}": "{{v}}", {% endfor %} """ if startswith is not None: value = [x for x in value.items() if x[0].startswith(startswith)] else: value = value.items() if startswith is not None and strip_prefix: value = [(x[0].replace(startswith, "", 1), x[1]) for x in value] return value
456bb82c4c76de40795a64930d2c00163bd79055
21,323
import os def check_user_proxy(): """ Check whether there is a user proxy. """ if 'X509_USER_PROXY' in os.environ: client_proxy = os.environ['X509_USER_PROXY'] else: client_proxy = '/tmp/x509up_u%d' % os.geteuid() if not os.path.exists(client_proxy): return False else: return True
da412d98299b8bee27a80c07f1b201aeebe0f7eb
21,324
def convert_8_int_to_tuple(int_date): """ Converts an 8-digit integer date (e.g. 20161231) to a date tuple (Y,M,D). """ return (int(str(int_date)[0:4]), int(str(int_date)[4:6]), int(str(int_date)[6:8]))
733982c2de2c74c5116c15a1a91adf03c3bd6871
21,325
import pytz from datetime import datetime def epoch_seconds_to_datetime(secs, tz=pytz.utc): """get time in UTC""" utc_dt = datetime.utcfromtimestamp(secs).replace(tzinfo=pytz.utc) # convert it to tz return tz.normalize(utc_dt.astimezone(tz))
5b105e2fb3b027c7add9d8e1c3c5ebc5d3c0bbc3
21,326
def _ShouldGenerateVM(options): """Returns true if we will need a VM version of our images.""" # This is a combination of options.vm and whether or not we are generating # payloads for vm testing. return options.vm and (options.basic_suite or options.full_suite)
2932e7c8621a689cf627e54e29c446d67158e999
21,327
def clean(iterator) -> list: """ Takes an iterator of strings and removes those that consist that str.strip considers to consist entirely of whitespace. """ iterator = map(str.strip, iterator) return list(filter(bool, iterator))
9c24da4a8cdfe59bf92fee3cea4b98b4b479147d
21,328
import os def check_if_folder_exists(ctx, param, value): """ check_if_folder_exists and if not, create it """ # making path absolute value = os.path.abspath(value) if not os.path.exists(value): os.makedirs(value) return value + '/'
3ec5bd39908a499e2eaf7d4dbc8e46f6e6a6c0b8
21,329
import json def load_js(fname): """ Parameters ---------- fname: str Returns ------- obj content of the json file, generally dict """ with open(fname,"r") as f: jsdict = json.load(f) return jsdict
6742fd1744eb30d51e937c7aa4069c161bb459c5
21,331
from typing import Union import pathlib from typing import Optional import os def delete_file(filepath: Union[pathlib.Path, str]) -> Optional[str]: """Deletes the file given by `filepath`. Args: filepath (Union[pathlib.Path, str]): Path to the file to be deleted. Returns: str: The error message, if the file could not be deleted. """ # Try to delete the file try: os.remove(filepath) return None except OSError as e: # catch exception # print("Error: %s - %s." % (e.filepath, e.strerror)) return str(f"Error: {e.filename} - {e.strerror}.")
2fcabb180a95e118f92498cacf27ddc4dbb1ba69
21,332
def clean_submission(submission): """ Take Reddit submission and turn into dictionary """ try: submission_author = submission.author.name except: submission_author = "None" data = { "id": submission.id, "title": submission.title, "score": submission.score, "url": submission.url, "name": submission.name, "author": submission_author, "is_video": submission.is_video, "selftext": submission.selftext, "shortlink": submission.shortlink, "subreddit_subscribers": submission.subreddit_subscribers, "thumbnail": submission.thumbnail, "ups": submission.ups, "downs": submission.downs, "created": submission.created } for k, v in data.items(): if v == "": data[k] = "None" return data
725426160b275f9c132e2119eac792140ab72675
21,334
from pathlib import Path def default_path_factory(refname: str, ispkg: bool) -> Path: """Default path factory for markdown.""" path = Path(*refname.split(".")) if ispkg: filepath = path / "index.md" else: filepath = path.with_suffix(".md") return filepath
96fb86391567269695b3638fec80d7f32f88407a
21,337
def loadtxt(filename): """Read list fo strings from file""" txt = [] with open(filename, 'r') as f: for l in f: txt.append(l.strip()) return txt
ce4d3c411d571a4fc629d1664ee06d15a11b8614
21,338
import os import logging def check_project_src_path(project_src_path): """Returns True if |project_src_path| exists.""" if not os.path.exists(project_src_path): logging.error( 'PROJECT_SRC_PATH: %s does not exist. ' 'Are you mounting it correctly?', project_src_path) return False return True
0aa54ee3d4bd8c9deb446cf4bb9a8517c8785c73
21,339
import torch def deltaE(lab1, lab2): """Delta E (CIE 1976). lab1: Bx3xHxW lab2: Bx3xHxW return: Bx1xHxW >>> lab1 = torch.tensor([100., 75., 50.]).view(1, 3, 1, 1) >>> lab2 = torch.tensor([50., 50., 100.]).view(1, 3, 1, 1) >>> deltaE(lab1, lab2).item() 75.0 """ return torch.norm(lab1 - lab2, 2, 1, keepdim=True)
cbf123e42c74c15e4a4851e17ab5f475280387b1
21,340
def _execute_with_retries(request): """Executes a request, retrying with exponential backup. Args: request: Request to be executed. Returns: Response from server. """ return request.execute()
41bff6ea5ead548174b7a9be6d7dcab8a8d13040
21,341
def derivative_relu(relu_output): """ Compute derivative of ReLu function """ relu_output[relu_output <= 0] = 0 relu_output[relu_output > 0] = 1 return relu_output
eb5d3d2f3fe912c4426cbd60a33bc96b81bfe5a0
21,344
import torch def pdist2(x, y): """ Compute distance between each pair of row vectors in x and y Args: x: tensor of shape n*p y: tensor of shape m*p Returns: dist: tensor of shape n*m """ p = x.shape[1] n = x.shape[0] m = y.shape[0] xtile = torch.cat([x] * m, dim=1).view(-1, p) ytile = torch.cat([y] * n, dim=0) dist = torch.pairwise_distance(xtile, ytile) return dist.view(n, m)
2e3694f58c3b7b7b743c57c64a0aeacbb78288b6
21,345
import json def handle_success(resp): """ We discovered a few cases where response body can be empty so we handle the case """ response = "" try: response = resp.json().get("response", {}) except (json.JSONDecodeError, json.decoder.JSONDecodeError): response = resp.text return response
56de367045a1f428c625a6c8654bf2812d8291e2
21,349
def run(a, b): """ >>> a = 3 >>> b = 30 >>> run(a, b) 33 """ return a + b
3d96bfa0c2230ef155ba27f780d1a239263d4303
21,350
import os def read_datapoint(path): """ Read an image and it's metadata from disk. """ fname = os.path.basename(path) fname = os.path.splitext(fname)[0] elems = fname.split("_") if len(elems) != 3: raise Exception('Invalid data set: ' + path) # return id, timestamp, steering value return int(elems[0]), int(elems[1]), float(elems[2])
28e396d38d2c4191eeed80daabe35d3cff0e374a
21,351
import os import re def _check_new_pkg(module, package, repository_path): """ Check if the package of fileset is correct name and repository path. :param module: Ansible module arguments spec. :param package: Package/fileset name. :param repository_path: Repository package path. :return: Bool, package information. """ if os.path.isdir(repository_path): installp_cmd = module.get_bin_path('installp', True) rc, package_result, err = module.run_command("%s -l -MR -d %s" % (installp_cmd, repository_path)) if rc != 0: module.fail_json(msg="Failed to run installp.", rc=rc, err=err) if package == 'all': pkg_info = "All packages on dir" return True, pkg_info else: pkg_info = {} for line in package_result.splitlines(): if re.findall(package, line): pkg_name = line.split()[0].strip() pkg_version = line.split()[1].strip() pkg_info[pkg_name] = pkg_version return True, pkg_info return False, None else: module.fail_json(msg="Repository path %s is not valid." % repository_path)
4825ac69953c57cd1a776aff8fc212d151965773
21,353
import json def format_json(item, **kwargs): """ formats a datatype object to a json value """ try: json.dumps(item.value) return item.value except TypeError: if 'time' in item.class_type.lower() \ or 'date' in item.class_type.lower(): return item.value.isoformat() raise
8fd6a6732b0de8964a84c2980895791b47662ff3
21,354
def s2ca(s): """Takes a string of cipher texts and returns it as an array of cipher texts""" cypher_array = [] for i in range(int((len(s))/314)): cypher_array.append(s[i:i+314]) return cypher_array
c92bb8d2ec4bf48b2ca1c1b2b8143450ae6a3ac3
21,355
def is_dict(value): """ is value a dict""" return isinstance(value, dict)
73244012a40dd73cc8bdfea34a9453b03af5941f
21,356
def rec_binary_search(array, l, u, num): """recursively performs binary search for a given array. l = lower index set to zero u = upper index set to zero num = target value """ if all(isinstance(x, (int, float)) for x in array): if l < u: #initialize the upper/lower index mid = (l+u)//2 #find midway point if array[mid] == num: return True elif num < array[mid]: return rec_binary_search(array, l, mid-1, num) else: return rec_binary_search(array, mid+1, u, num) else: return False else: print('all values in array must be numbers')
3e88d892b95d1304221aa583ff8885d0eeb6d5ca
21,359
import collections def dict_constructor(loader, node): """ Constructor with OrderedDict """ return collections.OrderedDict(loader.construct_pairs(node))
8f8e4220566ded1081f04500d19d90718e90ab9a
21,360
def _kernel_seq(inputs, estimator): """ Wrapper around a function that computes anything on two sequences and returns a dict While it is written as a general purpose kernel for anything, here it is used for causal discovery and estimation from CCM based methods. The function unpacks inputs into an index element and a sequence pair and runs the estimator function on the sequence pair, returning various estimates in a dict Parameters ---------- inputs : tuple Tuple of two elements - (a, b) where a is an index, b is a tuple of two. a can be produced manually or more typically using enumerate; b holds the two sequences usually passed in by zip-ping larger iterables or itertools' product/combinations. a, the index, is passed to keep track of order in case of asynchronous execution Should look like this: (index, (sequence_x, sequence_y) estimator : function A function that can compute something on two arrays and return a dict. Preferably one that can compute something meaningful, like causal discovery Returns ------- out : dict Estimates obtained by running estimator on inputs. """ # Unpack inputs idx, seqs = inputs # Unpack sequences idx_x, idx_y, seq_x, seq_y = seqs # Initialize dictionary of output estimates with index out = {"index_pair": idx, "index_x": idx_x, "index_y": idx_y} # Execute the estimator function on the sequence pair out.update(estimator(seq_x, seq_y)) # Some feedback to console # print(".", end="") return out
bd1b02ae84e959f9dabf712d7193408f5ddc6ff0
21,362
def _lookup_response_str(status_code): """ Simple function to return a response string for a Ping StatusCode :param status_code: int: :return: str: Response string """ status_msg = {0: 'Success', 11001: 'Buffer Too Small', 11002: 'Dest Net Unreachable', 11003: 'Dest Host Unreachable', 11004: 'Dest Protocol Unreachable', 11005: 'Dest Port Unreachable', 11006: 'No Resources', 11007: 'Bad Option', 11008: 'Hardware Error', 11009: 'Packet Too Big', 11010: 'Timed Out', 11011: 'Bad Request', 11012: 'Bad Route', 11013: 'TTL Expired Transit', 11014: 'TTL Expired Reassembly', 11015: 'Parameter Problem', 11016: 'Source Quench', 11017: 'Option Too Big', 11018: 'Bad Destination', 11032: 'Negotiating IPSEC', 11050: 'General Failure'} return status_msg.get(status_code, 'Unknown StatusCode')
984b857b4fbc0bd407d5da592ead5e19160cadcd
21,363
def __create_python_code_block(message): """Create a python code block""" return f"```python\n{message}```"
8397187487af0780542e8a227118994e1fc8ced8
21,364
def label_map(value): """ Function that determines the diagnosis according to the Glucose level of an entry. The three possible diagnosis are: Hypoglycemia, hyperglycemia and normal :param value: Glucose level :return: Diagnosis (String) """ hypoglycemia_threshold = 70 hyperglycemia_threshold = 180 severe_hyperglycemia_threshold = 240 if value < hypoglycemia_threshold: return 'Hypoglycemia' elif value > hyperglycemia_threshold: if value > severe_hyperglycemia_threshold: return 'Severe_Hyperglycemia' else: return 'Hyperglycemia' else: return 'In_Range'
7c9798dbce01c3de3ec4a09b20523ef2b3ba5888
21,365
def unshift(arr: list, *args): """ 将一个或多个元素添加到目录中,并返回该方法的新长度(该方法原有修改目录) """ arr[0:0] = args return len(arr)
5e4dfc5f7f84eca7c910ad406988423943ebb0bd
21,366
def getSizeOfVST(vst): """ Description: Return the size of the vector space of an vst variable. Look for the first existing vector of the vst and get its size. NB: Used only to not have to pass the size of the vst as a parameter. """ size = 0 for key in vst: if vst[key] is not None: #size = vst[key].size size = len(vst[key]) break return size
c8704d51fac22ad3ada5cf14bf2df268f7f0558e
21,367
def within_bounds( x: float, y: float, min_x: float, min_y: float, max_x: float, max_y: float ): """ Are x and y within the bounds. >>> within_bounds(1, 1, 0, 0, 2, 2) True """ return (min_x <= x <= max_x) and (min_y <= y <= max_y)
d57c8f63b8548dd62efd126ccb68a92c3d4ca5af
21,372
import socket def is_ipv6(host): """ Checks if address is IPv6, and returns true if matches regex """ try: check = bool(socket.inet_pton(socket.AF_INET6, host)) except socket.error: check = False return check
1c7be22644cbed238019a05609e1601de7a0f455
21,373
def validate_sp(sp): """Validate seasonal periodicity. Parameters ---------- sp : int Seasonal periodicity Returns ------- sp : int Validated seasonal periodicity """ if sp is None: return sp else: if not isinstance(sp, int) and (sp >= 0): raise ValueError(f"Seasonal periodicity (sp) has to be a positive integer, but found: " f"{sp} of type: {type(sp)}") return sp
265bed38cad2f6eae96c3611a90e8e4b3ef4d620
21,375
from typing import List def convertFrom(data) -> List[dict]: """ Converts scores data from old to new format. :param data: Old format data :return: Old format data """ return [ { 'teamno': oldteam['Team']['Number'], 'teamname': oldteam['Team']['DisplayName'], 'scores': oldteam['Scores'] } for oldteam in data ]
e48e7619a1b031a2900547b9c5052a3d6e79875a
21,376
def integrate(func, interval=None, rects=100000): """ Returns the result of the integral from the inclusive interval (a, b) using a Riemann sum approximation """ if interval is None or not isinstance(interval, tuple): interval = eval(input('Interval (a, b): ')) a, b = interval if a > b: print('note: the calculated area will be negative') if b - a > rects: rects = b - a area = 0 x = a dx = (b - a) / rects for n in range(rects): try: area += func(x) * dx except Exception as e: print('Error:', e) x += dx return area
1068e78718c411c151952de27bca5c9b6bb3dcf5
21,377
import os import subprocess def clean_directory(dir): """ Recursively remove all directories and files including the hidden ones in the given directory """ if os.path.exists(dir): if os.path.isdir(dir): myCmd = "rm -rf ./..?* ./.[!.]* ./*" myProcess = subprocess.Popen( myCmd, shell=True, cwd=dir, stdout=subprocess.PIPE, stderr=subprocess.PIPE) myStdout, myStderr = myProcess.communicate() if myProcess.returncode != 0: return { "statusFlag": False, "statusDescr": "'%s' in %s finished with return code %d." % (myCmd, dir, myProcess.returncode), "stdout": myStdout.rstrip(), "stderr": myStderr.rstrip()} else: os.remove(dir) return {"statusFlag": True}
b86e8fe6ee83f2241313dc541afadc856af1f195
21,378
def log_hide(message): """Hide security sensitive information from log messages""" if type(message) != dict: return message if "token" in message: message["token"] = "xxxxxxxx-xxxx-xx" if "AccessToken" in message: message["AccessToken"] = "xxxxxxxx-xxxx-xx" return message
cb19624b7e6153c4eba70024c5b584edf42e5b9a
21,379
def extractLabels(data, label_column): """ Extracts the labels from the data Arguments: data {Dict/List of times series} -- Time series label_column {str} -- Name of the column to extract """ if isinstance(data, dict): labels = {d: data[d][label_column] for d in data} data = {d: data[d][[c for c in data[d].columns if c != label_column]] for d in data} else: labels = data[label_column] data = data[[c for c in data.columns if c != label_column]] return data, labels
19990c64bfa2055b739928797f875656724995fa
21,380
from functools import reduce def product(nums): """ Like sum, but for product. """ return reduce(lambda x,y:x*y,nums)
fdc492d6aa94ccbeb83de21d4c5164c62f1b2ca8
21,381
def get_published_templateid(context): """ Return the template id, as of the PUBLISHED variable, or None """ request = context.REQUEST if request.has_key('PUBLISHED'): return request['PUBLISHED'].__name__ return None
5e036a957e2085690437a8e6d927a5bafc75d53f
21,382
def get_result(): """Demo function for test_offloading""" return 'abc'
6569a387828ade976792e1f7f2ce37a818515bc5
21,384
def pyBoolToSQL(inBool: bool): """ Simple function for converting a python bool to a database insertable integer(bit). :param inBool: The bool to insert to the database. :return: The integer(bit) to insert to the database. note:: Author(s): Mitch """ if inBool: return 1 else: return 0
b5fdb11f7e736a4336bb5867c5e8a6eb82405935
21,385
import subprocess def cpucorethreads(): """The number of hardware treads per a CPU core Used to specify CPU affinity dedicating the maximal amount of CPU cache L1/2. """ # -r or -E - extended regex syntax, -n - quiet output, /p - print the match return int(subprocess.check_output( [r"lscpu | sed -rn 's/^Thread\(s\).*(\w+)$/\1/p'"], shell=True))
702e8855a6689bbf711c13996020f6a533297b17
21,386
import os def get_configfile_path(args): """ Return the path to the test suite config file """ args_configfile = args.get('config_file') if not args_configfile: raise FileNotFoundError('Config file is not provided') configfile_path = os.path.join(os.getcwd(), args_configfile) if not os.path.exists(configfile_path): raise FileNotFoundError( 'Config file path does not exist {PATH}'.format( PATH=configfile_path)) return configfile_path
910d0dc9e3bd05acba7d513c3c3047d849ff40af
21,387
def CalcTimeStep(CFL, diff, conv, dX, dY, Dimension, Model): """Return the time step size in the numerical approximation. Call Signature: CalcTimeStep(CFL, diff, conv, dX, dY, Dimension, Model) Parameters ---------- CFL: float In this program, CFL is treated as the diffusion number for diffusion equations, and Courant number for the convection equations. Caution: This is not a true numerical definition of CFL though. diff: float Physics specific coefficient in the diffusion model. For example, kinematic viscosity or thermal diffusivity. conv: float Physics specific coefficient in the convection model. For example, speed of sound in the first-order linear wave eq. dX: float Grid step size along X-axis. dY: float Grid step size along Y-axis. Value required for 2D applications. Dimension: str Dimension of the domain. Allowed inputs are "1D" or "2D". Model: str Model of the governing equation. To see available options for this parameter, type the following command on your terminal python fetchoption.py "model" Returns ------- TimeStep: float Time step in the model equation. """ print("Calculating time step size for the simulation: Completed.") # ************** DIFFUSION EQN. ****************** if Model.upper() == "DIFFUSION": dX2 = dX*dX if Dimension.upper() == "1D": TimeStep = CFL*dX2/diff return TimeStep elif Dimension.upper() == "2D": dY2 = dY*dY TimeStep = CFL*(1.0/((1/dX2) + (1/dY2)))/diff return TimeStep # ************** FIRST-ORDER WAVE EQN. ***************** elif Model.upper() == "FO_WAVE": if Dimension.upper() == "1D": TimeStep = CFL*dX/conv return TimeStep # ************** BURGERS EQN. ***************** elif Model.upper() == "INV_BURGERS": if Dimension.upper() == "1D": TimeStep = CFL*dX return TimeStep elif Model.upper() == "VISC_BURGERS": if Dimension.upper() == "1D": dX2 = dX*dX TimeStep = CFL*dX2 return TimeStep
0ecbfb3c9179140b920947240e25f6e91296e387
21,390
import math def smooth(x): """ smooth value x by using a cosinus wave (0.0 <= x <= 1.0) """ return (-math.cos(math.pi * x) + 1) / 2
5b8c041835e49cd858f439a4a902935bb78b87a7
21,391
from pathlib import Path def create_temp_files(tmpdir): """Return temp file factory function.""" temp_dir = Path(tmpdir) def _create_temp_files(number): """Create `number` tempfiles in seperate directories and yield paths.""" for _number in range(number): temp_file = temp_dir / str(_number) / f'file{_number}.temp' temp_file.parent.mkdir(parents=True) temp_file.touch() yield temp_file return _create_temp_files
9f4ccb032f05ebe9033df4ae41d1559e934d7ed0
21,392
import ast def matches(value, pattern): """Check whether `value` matches `pattern`. Parameters ---------- value : ast.AST pattern : ast.AST Returns ------- matched : bool """ # types must match exactly if type(value) != type(pattern): return False # primitive value, such as None, True, False etc if not isinstance(value, ast.AST) and not isinstance(pattern, ast.AST): return value == pattern fields = [ (field, getattr(pattern, field)) for field in pattern._fields if hasattr(pattern, field) ] for field_name, field_value in fields: if not matches(getattr(value, field_name), field_value): return False return True
a7e05fc31e6387794f28d04e5aedfdbe7eb5f9bc
21,393
def int_to_base36(integer: int) -> str: """Convert an integer to a base36 string.""" char_set = "0123456789abcdefghijklmnopqrstuvwxyz" if integer < 0: raise ValueError("Negative base36 conversion input.") if integer < 36: return char_set[integer] b36 = "" while integer != 0: integer, index = divmod(integer, 36) b36 = char_set[index] + b36 return b36
115091a7b8766fe4488127d9b5fcfc904f67bae0
21,394
def _fit_estimator(clf, X, y): """Helper to fit estimator""" return clf.fit(X, y)
1f99369f29260336f5a5f2a6e10e9c5721421831
21,395
import torch def sign(input, *args, **kwargs): """ Returns a tree of new tensors with the signs of the elements of input. Examples:: >>> import torch >>> import treetensor.torch as ttorch >>> ttorch.sign(ttorch.tensor([12, 0, -3])) tensor([ 1, 0, -1]) >>> ttorch.sign(ttorch.tensor({ ... 'a': [12, 0, -3], ... 'b': {'x': [[-3, 1], [0, -2]]}, ... })) <Tensor 0x7f1c81d02d30> ├── a --> tensor([ 1, 0, -1]) └── b --> <Tensor 0x7f1c81d02a60> └── x --> tensor([[-1, 1], [ 0, -1]]) """ return torch.sign(input, *args, **kwargs)
768b4a6a4d12d4f7de5854c060fe1d7a494e8e6a
21,396
def _get_included_folds(folds, holdout_index = None): """ Returns a list that contains the holds to include whe joining. If a holdout index is specified, it will not be included. :param folds: the folds to join :param holdout_index: an index to holdout :return: the folds to use when joining """ return [folds[index] for index in range(len(folds)) if index != holdout_index]
f6715734620d3acbb43fc1146b84d312199ad741
21,398
def determine_colors(percentage): """ Determine the color of the duplicated section. The color depends on the amount of code duplication. """ colors = [] if 3 >= percentage > 0: colors.append("rgb(121, 185, 79)") elif 5 >= percentage > 3: colors.append("rgb(255, 204, 5)") elif 20 >= percentage > 5: colors.append("rgb(251, 135, 56)") else: colors.append("rgb(204, 5, 5)") colors.append("rgb(121, 185, 79)") return colors
3b9aa1071476a34c30fef274fb2a0d86f3eeb687
21,399
def fetch_vertex(known_vertices, chromosome, pos, gene_id): """ Look for a vertex matching the input criteria. Throw error if not found""" try: vertex_matches = known_vertices[chromosome][pos] for v in vertex_matches: if v.gene_id == gene_id: return v except Exception as e: raise ValueError('Vertex at ' + chromosome + ':' + str(pos) + ' does not exist!')
79bc55a25bb41d390661b06356ee0f130da0cbe4
21,400
import fileinput def import_muts(path, effect=False, gene_filter=None): """Import mutations into a dictionary""" mutations = {} with fileinput.input(path) as fun_file: header = next(fun_file).strip().split('\t') if effect: for line in fun_file: line = line.strip().split('\t') if gene_filter is None or line[0] in gene_filter: line_id = ' '.join(line[:2]) mutations[line_id] = {'effect': line[2], 'gene': line[0], 'pos_aa': line[1][1:-1], 'ref_aa': line[1][:1], 'alt_aa': line[1][-1]} else: for line in fun_file: line = line.strip().split('\t') if gene_filter is None or line[6] in gene_filter: line_id = ''.join((line[6], ' ', line[4], line[3], line[5])) mutations[line_id] = {header[i]:line[i] for i in range(8)} return mutations
664b49e7b379481bee54d6f6dd9173927d94a42f
21,401
def init_table_config_data(): """Initialize the dictionary to store the channel master table data Items are the channels or attributes fullname in a list items_data is a dictionary with each channel configuration, the keys is the fullName Returns: dict: configuration dictionary """ config_data = {} config_data["channels"] = [] config_data["channels_data"] = {} return config_data
cc87d1987b6451ca6fcd83b6001eaa29bd10a4fc
21,402
def equal_near(item_1: float, item_2: float, thresold: float = 0.1) -> bool: """Is two item close to equl? Return True is difference less than thresold. Args: item_1 (float): First item. item_2 (float): Second item. thresold (float, optional): Thresold for compare. Defaults to 0.01. Returns: bool: Return True if difference less than thresold. """ return abs(1 - (item_1 / item_2)) < thresold
e9d61f1e14d7c09a42444d32da19e0d81be56af2
21,403
def _pg_utcnow(element, compiler, **kw): """Postgresql-specific compilation handler.""" return "(CURRENT_TIMESTAMP AT TIME ZONE 'utc')::TIMESTAMP WITH TIME ZONE"
f66ffec3883b4b3fcd2ac8fae531a8beb9da2c12
21,406
import itertools def reject(iterable, conditional=None): """ Returns the values in list without the elements that the truth test (predicate) passes. The opposite of filter. params: iterable, conditional iterable -> list, sequenece, set, dictionary, generator etc conditional -> a lambda or function that takes one or two inputs, first is element from iterable, second is index (optional) Examples: >>> odds = _.reject([1, 2, 3, 4, 5, 6], lambda x: x % 2 == 0) >>> list(odds) >>> [1,3,5] """ return itertools.filterfalse(conditional, iterable)
02baa409454d20c07e328b669014768fdd971e5c
21,407
import os def transform_id(id: str, rel_url: str): """normalize id to foo/bar/section:id""" head, tail = os.path.split(rel_url) section, _ = os.path.splitext(tail) if len(head) > 0: head += '/' return '{}{}:{}'.format(head, section, id)
e36dcad483cb81cfb39e1b20a001ce2427b1aa90
21,408
import shlex def extract_info_from_line(line): """ Translate one line from txt file into arguments for execution: instance, process, parameters :param line: Arguments for execution. E.g. instance="tm1srv01" process="Bedrock.Server.Wait" pWaitSec=2 :return: instance_name, process_name, parameters """ parameters = {} for pair in shlex.split(line): param, value = pair.split("=") # if instance or process needs to be case insensitive if param.lower() == 'process' or param.lower() == 'instance': parameters[param.lower()] = value.strip('"').strip() # parameters (e.g. pWaitSec) are case sensitive in TM1 REST API ! else: parameters[param] = value.strip('"').strip() instance_name = parameters.pop("instance") process_name = parameters.pop("process") return instance_name, process_name, parameters
f55c5d711f5dd4762a01abd199b916c62f74d2a9
21,409
def build_msg(request, msg_type, name, drink): """Personalize SMS by replacing tags with customer info""" msg = request.form.get(msg_type) msg = msg.replace('<firstName>', name) msg = msg.replace('<productType>', drink) return msg
2a22f1b48717d9a874e2397791f734fce483e703
21,410
from typing import Dict from typing import Any def temperature_module_set_temp( temperature_module_default: Dict[str, Any] ) -> Dict[str, Any]: """Temperature module with user-specified temperature settings.""" temperature_module_default["hardware-specific-attributes"]["temperature"] = { "degrees-per-tick": 5.0, "starting": 20.0, } return temperature_module_default
19812e01ea07199be22d6d481a6f6730dd2d79fa
21,411
import csv import sys def import_actual_data(fname): """ Method to parse a csv of data into the correct format for comparing with simulated data. Inputs: ====== :param fname: Filepath/filename of the actual data to parse :type fname: str Returns: ======= :return: Dictionary of actual data. Keys are columns headers, values are lists of data. :rtype: dict """ actual_data = {} with open(fname, "r") as csvfile: reader = csv.DictReader(csvfile, delimiter=",") for row in reader: for k in row.keys(): try: actual_data.setdefault(k.strip(), []).append(float(row[k])) except ValueError as e: print(e) sys.exit(1) return actual_data
1d81270bf060ac00baf7bdef515150a19fe4a85d
21,413
import argparse def get_training_input_args(): """ Retrieves and parses the command line arguments provided by the user when they run the program from a terminal window. This function uses Python's argparse module to create and define these command line arguments. If the user fails to provide some or all of the arguments, then the default values are used for the missing arguments. The following command line arguments let the user specify the model training specification. Command Line Arguments: 1. Image Folder as --dir with default value '/flowers' - Required Input 2. CNN Model Architecture as --arch with default value 'vgg' 3. Hyperparameter --learning_rate with default value 0.001 4. Hyperparameter --hidden_units with default value 1000 5. Hyperparameter --epochs with default value 10 6. Hyperparameter --dropout with default value of 0.2 7. Device --gpu with default value of 'cpu' 8. Save Directory --save_dir to specify where the checkpoint should be saved to. This function returns these arguments as an ArgumentParser object. Parameters: None - simply using argparse module to create & store command line arguments Returns: parse_args() -data structure that stores the command line arguments object """ parser = argparse.ArgumentParser(description= "Process the command line arguments provide by the user") parser.add_argument("dir", type=str, help="Path to the folder of flower images" ) parser.add_argument("--arch", type=str, choices=["vgg16", "densenet121"], default = "densenet121", help="Type of CNN model architecture to use") parser.add_argument("--learning_rate", type=float, default= 0.001, help="The learning rate of the CNN training") parser.add_argument("--hidden_units", type=int, default= 1000, help="Number of units in the hidden layer of the classifier") parser.add_argument("--epochs", type=int, default= 5, help="Number of epochs for training") parser.add_argument("--dropout", type=float, default= 0.2, help="Probability of unit dropout") parser.add_argument("--gpu", action='store_true', help="Select to run the programme with GPU") parser.add_argument("--save_dir", type=str, help="Specify the folder path to save the trained model checkpoint to") return parser.parse_args()
46733f28fa2876f51d08ee8c62cee04675a52a47
21,414
import subprocess def collect_and_install(supress_output: bool = False) -> bool: """Recursively collects requirements.txt and installs all of them Args: supress_output (bool, optional): Produces no output if True. Defaults to False. Returns: bool: Returns True if requirements were found """ if not supress_output: print('Collecting requirements...') out = subprocess.run( ["find", ".", "-name", "requirements.txt"], stdout=subprocess.PIPE) files = list(filter(lambda x: x, out.stdout.decode().split('\n'))) if not supress_output: print('Found:', end=" ") try: if not files: if not supress_output: print('Nothing, exiting...') return False else: print() for f in files: print('>\t', f) except: pass requirements = ' '.join( map(lambda file: "-r {}".format(file), files) ) command = "./bin/pip install %s" % requirements if not supress_output: print('Running: %s' % command) subprocess.run(command.split(' ')) print("Done installing.") return True
c5f60040aadd301d9183bf46a053b998acdde747
21,415
def _pascal_case_to_underscore_case(value: str) -> str: """ Converts a pascal case string (e.g. MyClass) into a lower case underscore separated string (e.g. my_class). """ result = "" state = "initial" partial = "" for char in value: if "A" <= char <= "Z": if state == "initial": state = "upper" elif state == "upper": state = "multi-upper" else: if result: result += "_" result += partial partial = "" state = "upper" partial += char.lower() else: if state == "multi-upper": if result: result += "_" result += partial partial = "" partial += char state = "lower" if result: result += "_" result += partial return result
540d4b7525424d3e2f40f52d357fcb6c94b77d52
21,416