content
stringlengths 35
416k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
|---|---|---|
from io import StringIO
import sys
def mock_print_stderr() -> StringIO:
"""Mock the print command to stderr"""
mocked_print_output_stderr = StringIO()
sys.stderr = mocked_print_output_stderr
return mocked_print_output_stderr
|
177908b7536d70f1774283e8b7d031cffc2b0dd1
| 19,506
|
import os
def mkdir(dirpath: str) -> None:
"""
Create directory. Check if directory exists and handles error.
"""
if not os.path.exists(dirpath):
# Might seem redundant, but the multiprocessing creates error.
try:
os.mkdir(dirpath)
except FileExistsError:
pass
return None
|
4a47a8868e128270cacabb9a77bb5c59d8f51381
| 19,508
|
import os
import tempfile
def _get_cache_dir():
""" Obtain location to store downloaded files for temporary caching.
Uses `tempfile.gettempdir` by default. The environment variable
``PDS4TOOLSCACHEDIR`` may be used to specify an alternate directory.
Returns
-------
str or unicode
Path to directory used to store a temporary cache of downloaded files.
"""
environ_cache_dir = os.environ.get('PDS4TOOLSCACHEDIR')
if environ_cache_dir:
cache_dir = environ_cache_dir
else:
cache_dir = tempfile.gettempdir()
return cache_dir
|
247fc5a6ea7f9c6166a2f7aa7a4609a9283cf7a2
| 19,509
|
def prompt_to_continue():
"""Prompt the user for whether they would like to continue with the commit and tag operation."""
print("Check the updated version files, then press 'y' to commit and tag. " +
"Press any other key to abort.")
choice = input().strip().lower()
return True if choice == 'y' else False
|
e0990fcd9b72a5277a5b0509db4bcd53d9d7017d
| 19,510
|
def bernoulli():
"""
Return model code for a Beta-Bernouilli model to be compiled by PyStan.
Compares two arrays of binary data, where each entry in an array indicates
success on an associated trial. Must provide hyperparameters `alpha_` and
`beta_` as input data fields.
Input Data
----------
{
n_control : int # the number of control samples
n_variation : int # the number of variation samples
control : sequence[int] # the control samples (binary)
variation : sequence[int] # the variation samples (binary)
alpha_ : float # hyperparameter
beta_ : float # hyperparameter
}
"""
return """
data {
int<lower=0> n_control;
int<lower=0,upper=1> control[n_control];
int<lower=0> n_variation;
int<lower=0,upper=1> variation[n_variation];
real<lower=0> alpha_; // beta prior alpha hyperparameter
real<lower=0> beta_; // beta prior beta hyperparameter
}
parameters {
real<lower=0, upper=1> theta_control;
real<lower=0, upper=1> theta_variation;
}
transformed parameters {
real delta;
real delta_relative;
real effect_size;
delta = theta_variation - theta_control;
delta_relative = theta_variation / theta_control - 1.0;
effect_size = delta / sqrt((theta_control * (1 - theta_control) + theta_variation * (1 - theta_variation)) / 2);
}
model {
// Beta prior
theta_control ~ beta(alpha_, beta_);
theta_variation ~ beta(alpha_, beta_);
// Bernoulli Likelihoods
control ~ bernoulli(theta_control);
variation ~ bernoulli(theta_variation);
}
"""
|
78acb4d329988e4393f090e80d72c13333199bf4
| 19,511
|
def lerp(a, b, i):
"""Linearly interpolates from a to b
Args:
a: (float) The value to interpolate from
b: (float) The value to interpolate to
i: (float) Interpolation factor
Returns:
float: Interpolation result
"""
return a + (b-a)*i
|
8422222416668a70feb2a75790a25d7ab1f0af14
| 19,512
|
def strip_datetime_for_db_operations(dt):
"""
Some of our queries get very slow unless we remove the timezone info
before we put them into sql.
"""
return dt.replace(tzinfo=None)
|
4cf19578afdb213f2f57a845f711ebbb96b869f6
| 19,513
|
from typing import Union
from pathlib import Path
import os
def pathify(path: Union[str, Path, os.PathLike]) -> Path:
"""Convert path-like argument to ``pathlib.Path``."""
if isinstance(path, Path):
return path
else:
return Path(path)
|
a608922b27d0bd465fddde26ebf761cfcf088e89
| 19,514
|
def format_number(s):
"""Formata os numeros num formato comercial mais user-friendle"""
#print('im in format number')
s = str(s)
def split1000(s, sep='.'):
return s if len(s) <= 3 else split1000(s[:-3], sep) + sep + s[-3:]
s = s.replace('.', ',')
s = s.split(',')
d = ''
if len(s) > 1:
d = s[1]
s = s[0]
simbol = ''
if len(s) > 2 and s[0] == '-':
s = s[1:]
simbol = '-'
s = split1000(s)
if d != '':
d = ',' + d
#print(simbol + s + d)
return simbol + s + d
|
debf97566ba7f4bf73957ea6b45aa6a61968dabe
| 19,515
|
from shutil import which
def is_nmap_installed():
"""Check whether `nmap` is on PATH and marked as executable."""
return which("nmap") is not None
|
719f4da32355293e4a12b532a916e1a76eeb5ddc
| 19,516
|
import os
import json
def get_all_map_metadata(cup, season=None):
"""
Get metadata for all maps for the specified cup and season.
"""
map_data_file = os.path.join(
os.path.abspath(os.path.dirname(__file__)), "data", f"{cup}.json"
)
if not os.path.exists(map_data_file):
raise Exception(f"Could not find map metadata for specified cup: {cup}")
with open(map_data_file, "r") as f:
mapdat = json.load(f)
# If the user does not specify a season, return every map's metadata
if season is None:
return mapdat
# If the user specifies a season, return only the maps for that specified season
keep_maps = []
for this_map in mapdat:
keep = False
if "mapStartSeason" in this_map:
if this_map["mapStartSeason"] <= season:
keep = True
if "mapEndSeason" in this_map:
if this_map["mapEndSeason"] <= season:
keep = False
if keep:
keep_maps.append(this_map)
return keep_maps
|
0a09332a4a1b02e96a671ae3c7ba610cf2d0dc58
| 19,517
|
def get_jcts_ms_from_job_id(finished_simulator, job_id):
"""Extracts the ideal and actual Job completion time for the specified Job.
Returns:
The ideal and actual JCTs (in ms) for the Job with the specified ID, as executed by the provided
Simulator, which is assumed to have finished executing.
"""
for job, jcts_ms in finished_simulator.job_to_jcts.iteritems():
if job.job_id == job_id:
return jcts_ms
raise KeyError("Cannot find Job with id %s" % job_id)
|
d5cf0adec503d48a9ddeeb7e8837cc162ffc35d3
| 19,518
|
def response(update=None):
"""
Emulates JSON response from ulogin serivce for test purposes
"""
data = {
'network': 'vkontakte',
'identity': 'http://vk.com/id12345',
'uid': '12345',
'email': 'demo@demo.de',
'first_name': 'John',
'last_name': 'Doe',
'bdate': '01.01.1970',
'sex': '2',
'photo': 'http://www.google.ru/images/srpr/logo3w.png',
'photo_big': 'http://www.google.ru/images/srpr/logo3w.png',
'city': 'Washington',
'country': 'United States',
}
if update:
data.update(update)
return data
|
8a29ba65c38d5833e1474486135a9648f860a9a6
| 19,519
|
from pipes import quote
def make_input_json_cmd(bam_fn, json_fn, sample):
"""CMD which creates a json file with content [['path_to_bam', 'sample']], which will later
be used as pbsv call input.
"""
c0 = 'echo [[\\\"{}\\\", \\\"{}\\\"]] > {}'.format(quote(bam_fn), quote(sample), quote(json_fn))
return c0
|
5d50ea49027f6b7110193fed22a2990cc978c545
| 19,523
|
def iter_first_value(iterable, default=None):
""" Get first 'random' value of an iterable or default value. """
for x in iterable:
if hasattr(iterable, "values"):
return iterable[x]
else:
return x
return default
|
7fac2cbbe1a6923a1f737b0a86b208a62cfe6d50
| 19,524
|
import requests
def download_tigrfam_info(tigrfam, api_endpoint):
"""
Download TIGRFAM from API endpoint.
"""
return requests.get(api_endpoint+tigrfam).text
|
4573fed797c3f3e6b16330fb7dd41aa57b156db1
| 19,525
|
def url_basename(url, content_type):
"""Return best-guess basename from URL and content-type.
>>> from django_downloadview.utils import url_basename
If URL contains extension, it is kept as-is.
>>> print(url_basename(u'/path/to/somefile.rst', 'text/plain'))
somefile.rst
"""
return url.split("/")[-1]
|
2ac158fe50199c367c8acac10c5c0f7a7a9a2607
| 19,526
|
import re
def parse_line(line):
"""Reads the line from the dictionary, and gets the word and syllable count"""
word = ''
count = 0
groups = re.split('[^A-Za-z]+', line)
for match in groups:
if match:
word = word + match
count = count + 1
return [word, count]
|
7ac8029add3148b22f11840c915f166604e8b84b
| 19,527
|
def is_palindrome_permutation(input_string):
"""Checks to see if input_string is a permutation of a palindrome
Using bool (is even?) instead of int value reduces space usage.
Parameters
----------
input_string : str
String to check
Returns
-------
bool
True if input_string is a palindrome permutation, False otherwise
"""
# Generate is even counts hash table
char_counts_is_even = {}
for char in input_string:
if char not in char_counts_is_even:
char_counts_is_even[char] = False
else:
# if True (even count), swithc it to False (odd count)
if char_counts_is_even[char]:
char_counts_is_even[char] = False
# if False switch to True
else:
char_counts_is_even[char] = True
# Check is even counts are mostly even (allow up to 1 odd count)
num_odd_counts = 0 # keep track of how many counts are odd
for key, is_char_count_even in char_counts_is_even.items():
# Check to see if count is odd
if not is_char_count_even:
num_odd_counts += 1
# Check not too many odds
if num_odd_counts > 1:
return False
return True
|
4867a94bd9051f07b04e60288739b3e98333fbda
| 19,529
|
def rec_map(callable, dict_seq_nest):
"""Recursive map that goes into dics, lists, and tuples.
This function tries to preserve named tuples and custom dics. It won't
work with non-materialized iterators.
"""
if isinstance(dict_seq_nest, list):
return type(dict_seq_nest)(rec_map(callable, x) for x in dict_seq_nest)
if isinstance(dict_seq_nest, tuple):
return type(dict_seq_nest)(*[rec_map(callable, x) for x in dict_seq_nest])
if isinstance(dict_seq_nest, dict):
return type(dict_seq_nest)((k, rec_map(callable, v)) for k, v in dict_seq_nest.items())
return callable(dict_seq_nest)
|
7d0f91a6af4c3e7dc6abdee9bcf059b421f9f784
| 19,530
|
def convert_box_xy(x1, y1, width, height):
"""
Convert from x1, y1, representing the center of the box to the top left
coordinate (corner).
:param x1: the x coordinate for the center of the bounding box
:param y1: the y coordinate for the center of the bounding box
:param width: with of the bounding box
:param height: height of the bounding box
:param img_width: the width of the image
:param img_height: the height of the image
:return: the top left coordinate (corner) of the bounding box
"""
left = (x1 - width // 2)
top = (y1 - height // 2)
if left < 0: left = 0
if top < 0: top = 0;
return left, top
|
7524dd86f8c8ebff84cd9da0e75abd0b580547a0
| 19,531
|
from typing import List
def longest_str(obj: List[str]) -> int:
"""Determine the length of the longest string in a list of strings.
Args:
obj: list of strings to calculate length of
"""
return round(max([len(x) + 5 for x in obj]), -1)
|
c9c33da184ff745fa4cfa8b8db38080b1330a642
| 19,534
|
def _get_tuple_state_names(num_states, base_name):
"""Returns state names for use with LSTM tuple state."""
state_names = [
("{}_{}_c".format(i, base_name), "{}_{}_h".format(i, base_name))
for i in range(num_states)
]
return state_names
|
8d96508174ec4893e9a9812d75471303ff972248
| 19,535
|
import functools
def tp_cache(func):
"""Internal wrapper caching __getitem__ of generic types with a fallback to
original function for non-hashable arguments.
"""
cached = functools.lru_cache(maxsize=None, typed=True)(func)
@functools.wraps(func)
def inner(*args, **kwargs):
try:
return cached(*args, **kwargs)
except TypeError: # pragma: no cover
pass # All real errors (not unhashable args) are raised below.
return func(*args, **kwargs) # pragma: no cover
return inner
|
22b8f866be0c0edb0839bf9d80d62ca7d5e2e0cc
| 19,538
|
def _position_is_valid(position):
"""
Checks if given position is a valid. To consider a position as valid, it
must be a two-elements tuple, containing values from 0 to 2.
Examples of valid positions: (0,0), (1,0)
Examples of invalid positions: (0,0,1), (9,8), False
:param position: Two-elements tuple representing a
position in the board. Example: (0, 1)
Returns True if given position is valid, False otherwise.
"""
if type(position) != tuple or len(position) != 2:
return False
return 0 <= position[0] < 3 and 0 <= position[1] < 3
|
f7f277a472ea7046b6029a657215fa7006a4d808
| 19,542
|
def pitch_info(data):
"""
Function for assigning pitch color and name
"""
# pitch color dictionary
color = {'FF': 'red', 'FT': 'red', 'FC': 'red', 'FS': 'red',
'SI': 'red', 'CH': 'blue', 'CU': 'purple', 'CB': 'purple',
'KC': 'purple', 'KN': 'orange', 'SL': 'green', 'PO': 'black',
'IN': 'black', 'EP': 'black', 'SF': 'red'}
# pitch name dictionary
pitch_names = {'FF': 'Four-Seam Fastball', 'FT': 'Two-Seam Fastball',
'FC': 'Cutter', 'FS': 'Sinker', 'SI': 'Sinker',
'SF': 'Splitter', 'SL': 'Slider', 'CH': 'Change-Up',
'CB': 'Curveball', 'CU': 'Curveball', 'KC': 'Knuckle-Curve',
'KN': 'Knuckler', 'EP': 'Eephus', 'UN': 'Unidentified',
'PO': 'Pitch Out', 'XX': 'Unidentified', 'FO': 'Pitch Out'}
pitch_color = []
pitch_name = []
for r in data.iterrows():
# assign pitch color
pitch = r[1]['pitch_type']
try:
pitch_color.append(color[pitch])
pitch_name.append(pitch_names[pitch])
except KeyError:
pitch_color.append('black')
pitch_name.append('Unidentified')
data['color'] = pitch_color
data['pitch_name'] = pitch_name
return data
|
25c17057f5b2cc1c3505f6c9c05f02ac70bb2ddc
| 19,543
|
def parse_grid(data):
"""Parses the string representation into a nested list"""
return data.strip().split('\n')
|
19adc64da16f09da97cefc553c8973c1ba984519
| 19,544
|
import pandas
def order_by_row_group(df, column, groups):
"""
Order a dataframe by groups. Return the dataframe.
Probably a better way to do this already, but I don't know what it is.
"""
dfs = []
for group in groups:
dfs.append(df[df[column] == group])
out_df = pandas.concat(dfs)
out_df = out_df.reset_index()
return out_df
|
21dbc157dc2d901f0775304e7c7ce7acb2a15c2d
| 19,545
|
def generateActMessage(estopState:bool, enable: bool, height, angle):
"""
Accepts an input of two ints between -100 and 100
"""
# Empty list to fill with our message
messageToSend = []
messageToSend.append(int(estopState))
messageToSend.append(int(enable))
messageToSend.append(int(height))
messageToSend.append(int(angle))
print("Sending: %s" % str(messageToSend))
return messageToSend
|
6f62ffe14bce6dfe34fb15da882ea737ab8afa9c
| 19,546
|
def url_wrapper(urls):
"""
拼接请求 url,调用对应的模块,如拼接 users 和 regist 成 url /users/regist,
调用 views.users.users_views.RegistHandle 模块
"""
wrapper_list = []
for url in urls:
path, handles = url
if isinstance(handles, (tuple, list)):
for handle in handles:
# 分离获取字符串(如regist)和调用类(如views.users.users_views.RegistHandle)
pattern, handle_class = handle
# 拼接url,新的url调用模块
wrap = ('{0}{1}'.format(path, pattern), handle_class)
wrapper_list.append(wrap)
else:
wrapper_list.append((path, handles))
return wrapper_list
|
23b7c6020892656c85567900138581becb9129e9
| 19,548
|
from typing import Counter
def canConstruct(self, ransomNote, magazine):
"""
:type ransomNote: str
:type magazine: str
:rtype: bool
"""
m_dict = Counter(magazine)
r_dict = Counter(ransomNote)
for key, value in r_dict.items():
if key in m_dict:
if m_dict[key] >= value:
continue
else:
return False
else:
return False
return True
|
a51fdb4fc7e2bc4dcc78049d19a1d5c79912920c
| 19,549
|
def hire(request):
"""
Hire page.
Give us the $$$
"""
return {}
|
86a73a4f024eea794d73dfc86d08e3ce073b28f1
| 19,550
|
def read_questions(file):
"""读取questions测试集 - 完全多轮模式,即 QQ + A"""
q_sep = "<q>"
with open(file, 'r') as f:
test_q = [x.strip("\n") for x in f.readlines()]
single_turn = [x for x in test_q if "<s>" in x]
multi_turn = [x for x in test_q if "<s>" not in x]
test_set = []
# 单轮测试数据
for i in range(len(single_turn)):
tq = single_turn[i]
q_split = tq.split("<s>")
if len(q_split) == 5:
q_split = [q_split[2], q_split[4]]
elif len(q_split) == 3:
q_split = [q_split[0], q_split[2]]
else:
q_split = q_split[-2:]
tq = q_sep.join(q_split)
test_set.append(tq)
# 多轮测试数据
for i in range(len(multi_turn)):
# 遇到空行,跳过
if multi_turn[i] == "":
continue
# 首行
if i == 0:
test_set.append(multi_turn[i])
continue
# 逐行处理(构造QQ)
if multi_turn[i - 1] == "":
test_set.append(multi_turn[i])
else:
q = multi_turn[i - 1] + q_sep + multi_turn[i]
test_set.append(q)
return test_set
|
eaabd6461a0c85be2b5b8d02865a352052d3fcca
| 19,552
|
def getInv(wmap):
"""
Get the inverse map of a dictionary.
:param wmap: Dictionary
:returns: Dictionary which is an inverse of the input dictionary
"""
inv_map = {}
for k, v in wmap.items():
inv_map[v] = inv_map.get(v, [])
inv_map[v].append(k)
return inv_map
|
441bfa8e543a3aa24494d290e1e3cf6baa81437e
| 19,553
|
def optimal_noverlap(win_name,win_len):
"""
This function is intended to support scipy.signal.stft calls with noverlap parameter.
:param win_name: (str) name of the window (has to follow scipy.signal.windows naming)
:param win_len: (int) lenght of the FFT window
:return : (int) optimal overlap in points for the given window type
"""
window_to_overlap_coef = {'hann': 0.5,
'hamming': 0.75,
'blackmanharris': 0.75,
'blackman': 2/3,
'flattop': 0.75,
'boxcar': 0}
try:
noverlap = int(win_len*window_to_overlap_coef[win_name])
except KeyError as exc:
print(exc)
print('The window you have selected is not recognized or does not have optimal overlap. Setting window overlap to default 75%.')
noverlap = int(win_len*0.75)
return noverlap
|
d98db08a9e08b6639a38a324799d1141e65b1eb4
| 19,554
|
from contextlib import suppress
def dictify(value):
"""Ensure value is a dictionary."""
with suppress(AttributeError):
return {k: dictify(v) for k, v in value.items()}
if isinstance(value, str):
return value
with suppress(TypeError):
return [dictify(x) for x in value]
return value
|
3ea2a84bc38180bbe8db7f89495cc2227a881241
| 19,555
|
def compact(f):
""" remove spaces from str output of f, used for test for convenience"""
def _wrapper(*args, **kwargs):
return f(*args, **kwargs).replace(' ', '')
return _wrapper
|
5eb18fc529172def0b829409f5fcbc402ee12353
| 19,557
|
def split_name_from_full_name(full_name) -> dict:
"""
Retrieves given, middle, family name from full_name.
:param str full_name:
"""
name = {}
full_name = full_name.split()
name["given_name"] = full_name[0]
if len(full_name) >= 2:
name["family_name"] = full_name[-1]
if len(full_name) >= 3:
name["middle_name"] = " ".join(full_name[1:-1])
return name
|
81afb234e3551dca01f87890131ce63873428e13
| 19,558
|
def _prefix_range(target, ge, le):
"""Verify if target prefix length is within ge/le threshold.
Arguments:
target {IPv4Network|IPv6Network} -- Valid IPv4/IPv6 Network
ge {int} -- Greater than
le {int} -- Less than
Returns:
{bool} -- True if target in range; False if not
"""
matched = False
if target.prefixlen <= le and target.prefixlen >= ge:
matched = True
return matched
|
536eea3be670e21065f5cd81b5f0e268d564c559
| 19,559
|
def extract_bytecode(compiled, contract_name):
"""
:compiled - content from smart contract file
:contract_name - list / empty of contract names
"""
return [{
contract: {
'bytecode': compiled[contract]['bin'],
'abi': compiled[contract]['abi']
}
} for contract in contract_name]
|
2b30db4a37e555efb2831524f9e909ce6259bb51
| 19,560
|
def _get_nodes_perms_key(user, parent_id=None) -> str:
"""
Returns key (as string) used to cache a list of nodes permissions.
Key is based on (user_id, parent_id) pair i.e we cache
all nodes' permissions dictionary of folder.
If parent_id == None - we will cache all root documents of given user.
"""
uid = user.id
pid = parent_id or ''
nodes_perms_key = f"user_{uid}_parent_id_{pid}_readable_nodes"
return nodes_perms_key
|
fb3875a53c17b6a818f9bb97738a47222733af70
| 19,561
|
from typing import OrderedDict
def train(model, dataloader, criterion, optimizer, device='cpu', t=None, best_acc=None):
"""One iteration of model training. Intentionally kept generic to increase versatility.
:param model: The model to train.
:param dataloader: Dataloader object of training dataset.
:param criterion: The loss function for measuring model loss.
:param device: 'cuda' if running on gpu, 'cpu' otherwise
:param t: Optional tqdm object for showing progress in terminal.
:param best_acc: Optional parameter to keep track of best accuracy in case code is run in multiple iterations.
:return: Training accuracy
"""
# Initialize variables
model.train()
train_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(dataloader):
inputs, targets = inputs.to(device), targets.to(device)
# Forwards pass
optimizer.zero_grad()
outputs = model(inputs)
# Backpropagation
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
# Keep track of loss
train_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
# Print results to terminal
if t is not None and dataloader.num_workers == 0:
od = OrderedDict()
od['type'] = 'train'
od['loss'] = train_loss / (batch_idx + 1)
od['acc'] = 100. * correct / total
od['test_acc'] = best_acc if best_acc is not None else None
od['iter'] = '%d/%d' % (correct, total)
t.set_postfix(ordered_dict=od)
t.update(inputs.shape[0])
else:
print('Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (train_loss/(batch_idx+1), 100.*correct/total, correct, total))
return 100. * correct / total
|
f65899cd5d769cef628c15e35835bcd7a93bde60
| 19,562
|
import json
def cvclass_to_qid(array):
""" Turn computer vision classes into Wikidata qids"""
with open( "../data/classes_places.json", "r", encoding="utf-8" ) as f:
classes = json.load(f)
try:
qid_array = []
for el in array:
key = el.split( '/' )[0].lower().strip()
qid_array.append( "wd:" + [i['wiki_id'] for i in classes if i['original_class'] == key][0] )
return qid_array
except (IndexError, TypeError) as e:
print( 'no match' )
|
421c99889160756fbac2ebb08a3a660600b0a977
| 19,563
|
def bezout(a, b):
"""returns u, v such as au+bv = pgcd(a,b)"""
if b == 0:
return (1, 0)
else:
(u, v) = bezout(b, a % b)
return (v, u - (a // b) * v)
|
eb4915f18d09ba344df64ded886a73dad7638acb
| 19,564
|
def get_columns(filters):
"""return columns based on filters"""
columns = [
{
'fieldname': 'item_code',
'fieldtype': 'Link',
'label': 'Item Code',
'options': 'Item',
'width': 120
},
{
'fieldname': 'item_name',
'fieldtype': 'Data',
'label': 'Item Name',
'width': 100
},
{
'fieldname': 'stock_uom',
'fieldtype': 'Link',
'label': 'UOM',
'options': 'UOM',
'width': 60
},
{
'fieldname': 'warehouse',
'fieldtype': 'Link',
'label': 'Warehouse',
'options': 'Warehouse',
'width': 100
},
{
'fieldname': 'shelf',
'fieldtype': 'Link',
'label': 'Shelf',
'options': 'Shelf',
'width': 100
},
{
'fieldname': 'batch_no',
'fieldtype': 'Link',
'label': 'Batch',
'options': 'Batch',
'width': 100
},
{
'fieldname': 'opening_qty',
'fieldtype': 'Float',
'label': 'Opening Qty',
'width': 120
},
{
'fieldname': 'in_qty',
'fieldtype': 'Float',
'label': 'In Qty',
'width': 100
},
{
'fieldname': 'out_qty',
'fieldtype': 'Float',
'label': 'Out Qty',
'width': 100
},
{
'fieldname': 'bal_qty',
'fieldtype': 'Float',
'label': 'Balance Qty',
'width': 100
},
{
'fieldname': 'creation',
'fieldtype': 'Datetime',
'label': 'Creation',
'width': 180
},
{
'fieldname': 'valuation_rate',
'fieldtype': 'Float',
'label': 'Valuation Rate',
'width': 180
}
]
return columns
|
4b12a723a0372b7b45908b6d13882c5bd6800a35
| 19,565
|
def frequency(string, word):
""" Find the frequency of occurrences of word in string
as percentage """
word_l = word.lower()
string_l = string.lower()
# Words in string
count = string_l.count(word_l)
# Return frequency as percentage
return 100.0*count/len(string_l)
|
dd2183dcec04bdf835ab22a8a351d53571f6e5e9
| 19,566
|
import math
def calc_nrows_ncols(N, aspect=(16, 9)):
"""
Computs the number of rows and columns to fit
a given number N of subplots in a figure with
aspect `aspect`.
from: https://stackoverflow.com/questions/36482328/how-to-use-a-python-produce-as-many-subplots-of-arbitrary-size-as-necessary-acco
"""
width = aspect[0]
height = aspect[1]
area = width * height * 1.0
factor = (N / area) ** (1 / 2.0)
cols = math.floor(width * factor)
rows = math.floor(height * factor)
rowFirst = width < height
while rows * cols < N:
if rowFirst:
rows += 1
else:
cols += 1
rowFirst = not (rowFirst)
return rows, cols
|
2e6f2be133e60f4ae4d096a4d5402c9dd4b2015b
| 19,567
|
def get_func_names(job_content):
"""
Get function names from job content json
:param job_content: job content info
:return: function names
"""
func_names = []
for op in job_content["op_list"]:
if "func_name" in op:
func_names.append(op["func_name"])
return func_names
|
58d32e48f308758a2d6028f3312c2b376e04c9f5
| 19,568
|
def split_res(res):
""" """
res = res.lower()
x, y = res.split("x")
return int(x), int(y)
|
4baae2a5d6ad632b213a529919d7051b3e9eaf8a
| 19,570
|
from functools import reduce
def compose(*funcs):
"""Performs right-to-left function composition. The rightmost function may have
any arity; the remaining functions must be unary.
Note: The result of compose is not automatically curried"""
return lambda v: reduce(lambda accum, f: f(accum), funcs[::-1], v)
|
000e209c941678f3336a4dfff301a65c6ec20f06
| 19,571
|
def month(day):
"""
Given a the number of days experienced in the current year it returns a month
:param day: Current number of days in the year
:return: str, month
"""
if 1 >= day <= 31:
return "January"
elif 31 >= day <= 59:
return "February"
elif 60 >= day <= 90:
return "March"
elif 91 >= day <= 120:
return "April"
elif 121 >= day <= 151:
return "May"
elif 152 >= day <= 181:
return "June"
elif 182 >= day <= 212:
return "July"
elif 213 >= day <= 243:
return "August"
elif 244 >= day <= 273:
return "September"
elif 274 >= day <= 304:
return "October"
elif 305 >= day <= 334:
return "November"
else:
return "December"
|
37ae648375aaa6c5f59ba356119686b8fb89b224
| 19,572
|
import random
def insert_node(G, route):
"""
Inserts a random node in a route to modify it.
Args:
G - graph of the network
route - the route, as a sequence of edges.
Returns: A modified route, with an extra node.
"""
# Initialize list
removed_edge_index = []
ins_candidate_edges = []
ins_candidate_nodes = []
# Search viable nodes
for i, edge in enumerate(route):
# Generate list of nodes 'k' as (u, k) and (k, v)
in_nodes = [v for u, v in G.edges(edge[0])]
out_nodes = [v for u, v in G.edges(edge[1])]
# Generate intersection
candidate_nodes = list(set(in_nodes) & set(out_nodes))
# If len(candidate_nodes) > 0...
if len(candidate_nodes) > 0:
removed_edge_index.append(i)
ins_candidate_edges.append(edge)
ins_candidate_nodes.append(candidate_nodes)
# Check for a viable solution
if len(ins_candidate_edges) and len(ins_candidate_nodes) > 0:
# Select random edge from candidates
selection_index = random.randint(0, len(removed_edge_index) - 1)
selected_edge = ins_candidate_edges[selection_index]
selected_edge_index_in_route = removed_edge_index[selection_index]
# Select random node from candidates for selected edge
selected_node = random.choice(ins_candidate_nodes[selection_index])
# Generate new edges to add
edge_1 = (selected_edge[0], selected_node)
edge_2 = (selected_node, selected_edge[1])
# Remove edge from route
route.pop(selected_edge_index_in_route)
# Add new edges
route.insert(selected_edge_index_in_route, edge_1)
route.insert(selected_edge_index_in_route + 1, edge_2)
return route
|
ab1ab82e88ec9069a1a5c83c8f6adbd5b772ea1c
| 19,574
|
def start_server(enode, path):
"""
Start or restart the tftp server. Looks for xined config file followed
by tftpd-hpa config file and uses the first service found.
:param str path: sets the root folder for the tftp server
:rtype: bool
:return: true if the service started
"""
path = path.replace('/', '\/')
if(enode('[ -f /etc/xinetd.d/tftp ] && echo "Y"') == 'Y'):
cfg_file = "/etc/xinetd.d/tftp"
enode("sed -i '/disable/ s/yes/no/' {}".format(cfg_file))
enode("sed -i '/server_args/ s/=.*/= -s {}/' {}".format(path,
cfg_file))
result = enode("service xinetd restart")
elif(enode('[ -f /etc/default/tftpd-hpa ] && echo "Y"') == 'Y'):
cfg_file = "/etc/default/tftpd-hpa"
enode("sed -i '/DIRECTORY/ s/=.*/=\"{}\"/' {}".format(path, cfg_file))
result = enode("service tftpd-hpa restart")
else:
raise Exception(
"Cannot find supported tftp service (no config file found)."
)
return('failed' not in result)
|
4ed74e994e964fc5ea2c171662f09d7353ad261c
| 19,575
|
import os
def extension_of_markdown_file(file_path_without_ext):
"""
Find markdown file with the specific file path
:param file_path_without_ext: file path without extension
:return: file extension
"""
if os.path.exists(file_path_without_ext + '.md') is not False:
return 'md'
elif os.path.exists(file_path_without_ext + '.MD') is not False:
return 'MD'
elif os.path.exists(file_path_without_ext + '.mdown') is not False:
return 'mdown'
elif os.path.exists(file_path_without_ext + '.markdown') is not False:
return 'markdown'
else:
return None
|
4e258b54906a1bae8a7195d05ba206dbd0722b0f
| 19,576
|
def build_query_result_object(page):
""" Builds result object for an image info.
Parameters:
page (obj): Page object of search result.
Returns:
query_result_object (obj): Result object of image.
"""
result_object = {}
result_array = []
query_result_object = {}
result_object["id"] = "M" + str(page["pageid"])
result_object["name"] = page["title"]
result_object["score"] = 100
result_object["match"] = True
result_array.append(result_object)
query_result_object["result"] = result_array
return query_result_object
|
a0eb0b2828d6c62587f12d73f27cfeb5d96ea6c2
| 19,578
|
def filter_out_dict_keys(adict, deny):
"""Return a similar dict, but not containing the explicitly denied keys
Arguments:
adict (dict): Simple python dict data struct
deny (list): Explicits denied keys
"""
return {k: v for k, v in adict.items() if k not in deny}
|
a377c35f4eaedf0ed3b85eeaedbd45f7af0e8ec7
| 19,580
|
def loadraw(path, static=False):
"""Loads raw file data from given path with unescaped HTML.
Arguments:
path (str): Path to the file to read.
static (bool):
If True, all the `{` and `}` will be replaced
with `{{` and `}}` respectively.
Example:
>>> # $ cat path/to/file.html
>>> # <p>{foo}</p>
>>>
>>> loadtxt("path/to/file.html")
>>> b'<p>{foo}</p>'
>>>
>>> loadtxt("path/to/file.html", static=True)
>>> b'<p>{{foo}}</p>'
"""
with open(path) as f:
data = f.read().strip()
if static:
data = data.replace("{", "{{").replace("}", "}}")
return data.encode()
|
438d4128bd72a81f46e581984d1cf53b3d11254a
| 19,581
|
def is_prompt_toolkit_available():
"""Checks if prompt_toolkit is available to import."""
try:
return True
except ImportError:
return False
|
0c447a07f35e4830f1f8fe65233d2ce957397850
| 19,582
|
def get(obj, path):
"""
Looks up and returns a path in the object. Returns None if the path isn't there.
"""
for part in path:
try:
obj = obj[part]
except(KeyError, IndexError):
return None
return obj
|
f7d936174f1171c42cd7ec2fa4237a887e78bb0e
| 19,584
|
from typing import List
def minimum_sum(triangle: List[List[int]]) -> int:
"""使用动态规划求解"""
if not triangle:
return 0
res = triangle[-1]
for i in range(len(triangle) - 2, -1, -1):
for j in range(len(triangle[i])):
res[j] = triangle[i][j] + min(res[j], res[j + 1])
return res[0]
|
e0fa2a1e91ec834454a0c16e75424fe5d84de8ac
| 19,585
|
def break_time_point(cape_cube, precip_cube):
"""Modifies cape_cube time points to be incremented by 1 second and
returns the error message this will trigger"""
cape_cube.coord("time").points = cape_cube.coord("time").points + 1
return r"CAPE cube time .* should be valid at the precipitation_rate_max cube lower bound .*"
|
70f16939983024d58745745abd0a921aa015615c
| 19,586
|
import platform
from pathlib import Path
def get_nlp_path(user="yanndubs") :
"""Return (create if needed) path on current machine for NLP stanford."""
machine_name = platform.node().split(".")[0]
machine_path = Path(f"/{machine_name}/")
user_paths = list(machine_path.glob(f"*/{user}"))
if len(user_paths) == 0:
possible_paths = [p for p in machine_path.iterdir() if "scr" in str(p)]
user_path = possible_paths[-1] / user
user_path.mkdir()
else:
user_path = user_paths[-1]
return user_path
|
cb0c50ae6bab81487c92475069875a0dba5ab684
| 19,587
|
def _build_msg_string(instead: str, since: str) -> str:
"""Build a deprecation warning message format string.
.. versionadded:: 3.0
.. versionchanged:: 7.0
`since`parameter must be a release number, not a timestamp.
:param instead: suggested replacement for the deprecated object
:param since: a version string string when the method was deprecated
"""
if since and '.' not in since:
raise ValueError('{} is not a valid release number'.format(since))
if instead:
msg = '{{0}} is deprecated{since}; use {{1}} instead.'
else:
msg = '{{0}} is deprecated{since}.'
return msg.format(since=' since release ' + since if since else '')
|
7ba4d54bc8edb9efa0c7161164754cfd76cd5c21
| 19,589
|
import time
def Sleep(x, duration=1):
"""
iterable >> Sleep(duration)
Return same input as console but sleep for each element.
>>> from nutsflow import Collect
>>> [1, 2, 3] >> Sleep(0.1) >> Collect()
[1, 2, 3]
:param iterable iterable: Any iterable
:param object x: Any input
:param float duration: Sleeping time in seconds.
:return: Returns input unaltered
:rtype: object
"""
time.sleep(duration)
return x
|
4d37f22a1f00f0157c10fe8f25983d7abf5ef63d
| 19,590
|
import pickle
def load_pickle_object(filename: str):
"""Load/Unpickle a python object binary file into a python object.
Args:
filename (string): pickle filename to be loaded. (<filename>.pkl)
Returns:
python object: returns the loaded file as python object of any type
"""
obj = None
with open(filename, 'rb') as fp:
obj = pickle.load(fp)
return obj
|
d079728fce59420cba6d17da8743d6dba8d4d37d
| 19,592
|
def nonzero_reference_product_exchanges(dataset):
"""Return generator of all nonzero reference product exchanges"""
return (exc for exc in dataset['exchanges']
if exc['type'] == 'reference product'
and exc['amount'])
|
77796243c4f07b0877c997a9103a4d14ab48f2c7
| 19,596
|
def __update_agent_state(current_agent_state, transition_probability, rng):
"""
Get agent state for next time step
Parameters
----------
current_agent_state : int
Current agent state.
transition_probability : ndarray
Transition probability vector corresponding to current state.
rng : numpy random number generator
Returns
-------
agent_state : int
Agent state at next time step.
"""
choice = rng.uniform()
agent_state = current_agent_state
for i in range(len(transition_probability)):
if choice < sum(transition_probability[0: i + 1]):
agent_state = i
break
return agent_state
|
4d447f196ac6a326720cdf69c67286fe5053e5fc
| 19,597
|
def get_train_test_ind(paths):
"""
Select from the list of all files the train and test files
:param paths: all files
:return: list of train and list of test data
"""
list_train = []
list_test = []
for i, str_path in enumerate(paths):
str_sequence = str_path.split('/')[0]
int_sequence = int(str_sequence.replace('s', ''))
# sequence 3,7,10 are for test as in the original paper
if int_sequence == 3 or int_sequence == 7 or int_sequence == 10:
list_test.append(i)
elif int_sequence <= 11:
list_train.append(i)
else:
print("There is a problem")
return list_train, list_test
|
a241732ece42ab92ad18c7df5dbf8f7b00efdf25
| 19,598
|
def qcMito(contint, records):
"""
If the total coverage of mitochondrial matches from (3) is >75% of the
sequence length then flag the sequence as being mitochindrial sequence
to be excluded.
Return: set of regions to be trimmed
"""
# list of sequence to modify
tomodify = {}
# go through each record in the fasta file
for record in records:
modifications = {}
if record in contint:
# check if sum of intervals is smaller than 75% of the
# record length
recordlength = len(records[record].seq)
allcontint = contint[record]
coverage = 0
for interval in allcontint:
coverage = coverage + abs(interval[0]-interval[1])+1
if coverage/recordlength > 0.75:
modifications["remove"] = 1
if len(modifications):
tomodify[record] = modifications
return tomodify
|
2eb1c06e26d93c68440045f173bd5301119046a7
| 19,599
|
import operator
def get_final_color(worst_pos, array, graph): # worst_pos вершина графа смежная с
# max кол-вом вершин того же цвета
""" записываем в словарь все вершины смежные с worst_pos, проверяем их цвета,
исходя из этого находим цвет, в который окрашено минимальное количество смежных с worst_post вершин,
т.е. находим наиболее валидный цвет из УЖЕ имеющихся"""
connected_nodes = [] # все вершины, связанные с worst_pos, не включая саму worst_pos
for edge in graph.edges:
if edge.start == worst_pos:
connected_nodes.append(edge.end)
if edge.end == worst_pos:
connected_nodes.append(edge.start)
colors_dict = {} # словарь= цвет: кол-во вершин этого цвета
for i in set(array):
colors_dict.update({i: 0}) # заполняем словарь нулями
# итерируемся по смежным с worst_pos вершинам
# узнаем их цвет, и находим этот цвет в словаре colors_dict
# увеличиваем значение этого цвета на один
for node in connected_nodes:
colors_dict[array[node]] += 1
# получение ключа из той пары в словаре, значение у которой самое большое
return min(colors_dict.items(), key=operator.itemgetter(1))[0]
|
35b71b66c9c2031c786d4072183f0398b642badf
| 19,600
|
def is_leap_year(year):
"""
Indicates whether the specified year is a leap year.
Every year divisible by 4 is a leap year -- 1912, 1996, 2016, 2032, etc.,
are leap years -- UNLESS the year is divisible by 100 AND NOT by 400. Thus,
1200, 1600, 2000, 2400, etc., are leap years, while 1800, 1900, 2100, etc.,
are not.
Why do we have this logic?
This is because the earth orbits the sun in approximately 365.2425 days.
Over 400 orbits, that comes out to 146,097 days (365.2425 * 400).
Ignoring the century rule (making every fourth year a leap year, including
1800, 1900, etc.), gives us 146,100 days, overcounting by 3 days every
400 years. Thus, making 3 out of every 4 century boundaries non-leap years
fixes this overcounting.
"""
return year % 400 == 0 or (year % 4 == 0 and year % 100 != 0)
|
7e56255a4d3d969f56bb27b9b4474b56b047b022
| 19,601
|
def shingle_similarity(s1, s2, size=1):
"""Shingle similarity of two sentences."""
def get_shingles(text, size):
shingles = set()
for i in range(0, len(text) - size + 1):
shingles.add(text[i:i + size])
return shingles
def jaccard(set1, set2):
x = len(set1.intersection(set2))
y = len(set1.union(set2))
return x, y
x, y = jaccard(get_shingles(s1, size), get_shingles(s2, size))
return x / float(y) if (y > 0 and x > 2) else 0.0
|
49a161f1745ed5ef8b412504687c37415261d0fd
| 19,602
|
import argparse
import os
def args():
"""
命令行参数以及说明
"""
parser = argparse.ArgumentParser()
parser.add_argument('-r', '--read', dest='read', help='input whois file path')
parse_args = parser.parse_args()
# 参数为空 输出--help命令
if parse_args.read is None:
parser.print_help()
os._exit(0)
return parse_args.read
|
6e2ac8c3d87d5afae1da46da9fb38e66660de8cb
| 19,603
|
def get_version(pseudo_revision, mergebase, tainted_text, tag):
"""Returns version based on given args."""
# Build version, trimming mergebase to 7 characters like 'git describe' does
# (since 40 chars is overwhelming)!
version = '%s-%s' % (pseudo_revision, mergebase[:7])
version += tainted_text
if tag:
version += '-' + tag
return version
|
2481d672b8f01641ea02d63a8cb0d940c2751ba3
| 19,606
|
from numpy import seterr, fill_diagonal
def inverse_distance_matrix(Rab):
"""
Calculate the inverse distance matrix, with zeros on the diagonal
Args:
Rab (matrix-like): matrix of the atomic distances in squareform
Returns:
matrix-like: inverse distance matrix, with diagonal values set to 0
"""
err = seterr(divide='ignore')
rabm1 = 1.0/Rab
seterr(**err)
fill_diagonal(rabm1, 0.0)
return rabm1
|
69bfdda11889a231d4eb12101c9320b1f4599f25
| 19,607
|
import os
import logging
def get_optional_env(key, default):
"""
Return the value of an optional environment variable, and use
the provided default if it's not set.
Arguments keywords:
key -- Name of variable we want to get the value
default -- Value to return if 'key' not found in environment variables
"""
if not os.environ.get(key):
logging.warning(
"The optional environment variable {} is not set, using '{}' as default".format(key, default))
return os.environ.get(key, default)
|
07a05e72b8bbf645c85c59890a9a455b8dc13c17
| 19,608
|
import numpy
def convertToSlice(x, increment=False):
"""
Convert a int, float, list of ints or floats, None, or slice
to a slice. Also optionally increments that slice to make it easy to line
up lists that don't start with 0.
Use this with numpy.array (numpy.ndarray) types to easily get selections of it's elements.
Parameters
----------
x : multiple types allowed.
int: select one index.
list of int: select these index numbers.
None: select all indices.
slice: select this slice
Returns
-------
slice : slice
Returns a slice object that can be used in an array
like a[x] to select from its members.
Also, the slice has its index numbers decremented by 1.
It can also return a numpy array, which can be used
to slice other numpy arrays in the same way as a slice.
Examples
--------
a = numpy.array([10, 11, 12, 13])
>>> convertToSlice(2)
slice(2, 3, None)
>>> a[convertToSlice(2)]
array([12])
>>> convertToSlice(2, increment=-1)
slice(1, 2, None)
>>> a[convertToSlice(2, increment=-1)]
array([11])
>>> a[convertToSlice(None)]
array([10, 11, 12, 13])
>>> a[utils.convertToSlice([1, 3])]
array([11, 13])
>>> a[utils.convertToSlice([1, 3], increment=-1)]
array([10, 12])
>>> a[utils.convertToSlice(slice(2, 3, None), increment=-1)]
array([11])
"""
if increment is False:
increment = 0
if not isinstance(increment, int):
raise Exception("increment must be False or an integer in utils.convertToSlice")
if x is None:
x = numpy.s_[:]
if isinstance(x, list):
x = numpy.array(x)
if isinstance(x, (int, numpy.integer)) or isinstance(x, (float, numpy.floating)):
x = slice(int(x), int(x) + 1, None)
# Correct the slice indices to be group instead of index based.
# The energy groups are 1..x and the indices are 0..x-1.
if isinstance(x, slice):
if x.start is not None:
jstart = x.start + increment
else:
jstart = None
if x.stop is not None:
if isinstance(x.stop, list):
jstop = [x + increment for x in x.stop]
else:
jstop = x.stop + increment
else:
jstop = None
jstep = x.step
return numpy.s_[jstart:jstop:jstep]
elif isinstance(x, numpy.ndarray):
return numpy.array([i + increment for i in x])
else:
raise Exception(
(
"It is not known how to handle x type: " "{0} in utils.convertToSlice"
).format(type(x))
)
|
6c041a369205401ef9a60cd8bc2af5678174f54b
| 19,609
|
def get_ranking11():
"""
Return the ranking with ID 11.
"""
return [
("a6", 0.983188),
("a3", 0.980454),
("a5", 0.968182),
("a2", 0.967595),
("a4", 0.808142),
("a1", 0.033316),
]
|
24ff71def7e23ba61d9acfe13e1da5512072309f
| 19,610
|
def prune_container(container):
"""Prune a tree of containers.
Recursively prune a tree of containers, as described in step 4 of
the algorithm. Returns a list of the children that should replace
this container.
Arguments:
container (Container): Container to prune
Returns:
List of zero or more containers.
"""
# Prune children, assembling a new list of children
new_children = []
for ctr in container.children[:]: # copy the container.children list
pruned_child = prune_container(ctr)
new_children.extend(pruned_child)
container.remove_child(ctr)
for child in new_children:
container.add_child(child)
if container.get('message') is None and not len(container.children):
# step 4 (a) - nuke empty containers
return []
elif (container.get('message') is None and
(len(container.children) == 1 or
container.parent is not None)):
# step 4 (b) - promote children
children = container.children[:]
for child in children:
container.remove_child(child)
return children
else:
# Leave this node in place
return [container]
|
38589c8e4447ef06e79dc34815d6718becbdfd80
| 19,611
|
def dollarify(value):
"""Filter to convert int to dollar value"""
return '${:,.2f}'.format(value)
|
388c25914506ccbefd0ab0b8657f40ec0e827edc
| 19,612
|
def findfiles(wo, fn=None):
"""Return a list CWL workflow files."""
if fn is None:
fn = []
if isinstance(wo, dict):
if wo.get("class") == "File":
fn.append(wo)
findfiles(wo.get("secondaryFiles"), fn)
elif wo.get("class") == "Directory":
fn.append(wo)
findfiles(wo.get("secondaryFiles"), fn)
else:
for w in wo.values():
findfiles(w, fn)
elif isinstance(wo, list):
for w in wo:
findfiles(w, fn)
return fn
|
e8db2aa76507f848f31d35a6b80e9bb0a918d462
| 19,613
|
def mask2zero(img):
""" Converts masked pixels into zeros
:param img: Image contained in the Collection
:type img: ee.Image
"""
theMask = img.mask()
return theMask.where(1, img)
|
a42e3e9924bcf1e839b330a4e3e9e8b49fc36267
| 19,614
|
def hotel_name(hotel):
"""Returns a human-readable name for a hotel."""
if hotel == "sheraton_fisherman_s_wharf_hotel":
return "Sheraton Fisherman's Wharf Hotel"
if hotel == "the_westin_st_francis":
return "The Westin St. Francis San Francisco on Union Square"
if hotel == "best_western_tuscan_inn_fisherman_s_wharf_a_kimpton_hotel":
return "Best Western Fishermans Wharf"
return hotel
|
d7e6118f25caa59174480c44fc4be63198d0c2c0
| 19,615
|
def always_true(*args, **kwargs): # pylint: disable=unused-argument
"""
Returns ``True`` whatever the arguments are.
"""
return True
|
6f755e48a482dba4a3cccc8dad92cb6fbb610a1b
| 19,616
|
from typing import List
def parse_cmd(commands: List[str]) -> str:
"""
We need to take into account two cases:
- ['python code.py foo bar']: Used mainly with dvc as a library
- ['echo', 'foo bar']: List of arguments received from the CLI
The second case would need quoting, as it was passed through:
dvc run echo "foo bar"
"""
def quote_argument(arg: str):
should_quote = " " in arg and '"' not in arg
return f'"{arg}"' if should_quote else arg
if len(commands) < 2:
return " ".join(commands)
return " ".join(map(quote_argument, commands))
|
cd682115b70fcb0cb74af59f2ca7f5963b844a30
| 19,617
|
def excretion_dic(vs, zooplankton, nutrient):
"""Zooplankton excretes nutrients after eating. Poop, breathing..."""
return {nutrient: vs.redfield_ratio_CN * vs.excretion_total}
|
1fdbe5830793354b4241a94a516f09bd9f3077d5
| 19,619
|
def enrich_dataframe(df, name):
"""Enrich dataframe for KPIs that need to be calculated.
Only three KPIs are needed to be calculated :
taux_incidence, taux_positivite and taux_occupation
"""
if(name == 'taux_incidence'):
df['taux_incidence'] = df['P']*100000/df['pop']
if(name == 'taux_positivite'):
df['taux_positivite'] = df['P']/df['T'] * 100
if(name == 'taux_occupation'):
df['TO'] = df['TO']*100
if(name == 'vaccins_vaccines_couv_majeurs'):
df['couv_complet'] = 100 * df['n_cum_complet'] / df['pop']
if(name == 'vaccins_vaccines_couv_ado_majeurs'):
df['couv_complet'] = 100 * df['n_cum_complet'] / df['pop']
if(name == 'taux_classes_fermees'):
df['taux_classes'] = 100* df['nombre_classes_fermees'] / df['nombre_total_classes']
if(name == 'taux_structures_fermees'):
df['taux_structures'] = 100* df['nombre_structures_fermees'] / df['nombre_total_structures']
return df
|
0f4e1f4d05eb96b82d4fcdaee53082194e0ac74d
| 19,620
|
def undocumented(func):
"""Prevents an API function from being documented"""
func._undocumented_ = True
return func
|
135de1a166927dda811c6a9f7b6d5f826a13e42d
| 19,621
|
def get_mask_bool(mask, threshold=1e-3):
"""
Return a boolean version of the input mask.
Parameters
----------
mask : enmap
Input sky mask.
threshold : float, optional
Consider values below this number as unobserved (False).
Returns
-------
mask_bool : bool enmap
Boolean version of input mask.
"""
# Makes a copy even if mask is already boolean, which is good.
mask_bool = mask.astype(bool)
if mask.dtype != bool:
mask_bool[mask < threshold] = False
return mask_bool
|
f7950e1b332c5b6de6b963578e510a3e4fe65799
| 19,622
|
import torch
def activate_gpu(gpu='GPU'):
"""Use GPU if available and requested by user. Defaults to use GPU if available."""
if torch.cuda.is_available() and gpu.lower() == 'gpu':
print('Running on GPU')
device = torch.device('cuda:0')
else:
print('Running on CPU')
device = torch.device('cpu')
return device
|
3d5fbda4709a1307373156d8fab269445d24aeda
| 19,623
|
def iota_b(t):
"""This incidence is slightly more complicated."""
if t > 60:
return 0.002
elif t > 20:
return 0.005
else:
return 0
|
aee9816596601ce46fa8b85087500fffe70db68c
| 19,625
|
def round_if_near(value: float, target: float) -> float:
"""If value is very close to target, round to target."""
return value if abs(value - target) > 2.0e-6 else target
|
005a7d7110265bbb1abd5f5aef6092fb67186a62
| 19,626
|
import os
def find_pdfs(top_folder_path):
"""Walks through folder structure and calls the passed function on each pdf.
Accepts the top file directory as first argument and a callback function as the second. The callback
function should accept one argument: The pdf's absolute path."""
if not os.path.isdir(top_folder_path):
raise ValueError('The passed path is not a valid folder.')
pdf_list = []
for top_folder, _, files in os.walk(top_folder_path):
for file in files:
_, file_type = os.path.splitext(os.path.join(top_folder,file))
if file_type == '.pdf':
pdf_list.append(os.path.join(top_folder,file))
return pdf_list
|
fefab581942d9af9dd17e4ea621aef35f55f639f
| 19,627
|
def get_authors() -> str:
"""Ask for an author until nothing is entered."""
authors = []
while True:
author = input("Author: ")
if not author:
break
authors.append(author.title())
return ' and '.join(authors)
|
2332f9ff2680d2d5612fc2f0a32e1020f0c674a0
| 19,628
|
def version_to_tuple(version):
"""
version_to_tuple(string) -> tuple
converts a version as string to tuple, to make versions comparable
string to tuple: https://www.codespeedy.com/comma-separated-string-to-tuple-in-python/
"""
splitted = []
if version != "":
for subnum in version.split('.'):
splitted.append(int(subnum))
return tuple(splitted)
|
a67a633b63c59e3ee46ffa2e9681535342a2723d
| 19,629
|
def ksi_of_t_discrete(x_func, T, y0, g):
"""
Local regressor.
Discrete system
"""
return x_func(T) * (g - y0)
|
2094a0d5f52dff2938d29794656762dad32af3ac
| 19,630
|
import torch
def sample_points_with_roi(rois, points, sample_radius_with_roi, num_max_points_of_part=200000):
"""
Args:
rois: (M, 7 + C)
points: (N, 3)
sample_radius_with_roi:
num_max_points_of_part:
Returns:
sampled_points: (N_out, 3)
"""
if points.shape[0] < num_max_points_of_part:
distance = (points[:, None, :] - rois[None, :, 0:3]).norm(dim=-1)
min_dis, min_dis_roi_idx = distance.min(dim=-1)
roi_max_dim = (rois[min_dis_roi_idx, 3:6] / 2).norm(dim=-1)
point_mask = min_dis < roi_max_dim + sample_radius_with_roi
else:
start_idx = 0
point_mask_list = []
while start_idx < points.shape[0]:
distance = (points[start_idx:start_idx + num_max_points_of_part, None, :] - rois[None, :, 0:3]).norm(dim=-1)
min_dis, min_dis_roi_idx = distance.min(dim=-1)
roi_max_dim = (rois[min_dis_roi_idx, 3:6] / 2).norm(dim=-1)
cur_point_mask = min_dis < roi_max_dim + sample_radius_with_roi
point_mask_list.append(cur_point_mask)
start_idx += num_max_points_of_part
point_mask = torch.cat(point_mask_list, dim=0)
sampled_points = points[:1] if point_mask.sum() == 0 else points[point_mask, :]
return sampled_points, point_mask
|
12095c625efb6b98f4c63b12ac651a559f841e5d
| 19,631
|
import copy
def sanitise_json_error(error_dict):
"""
Exact contents of JSON error messages depend on the installed version
of json.
"""
ret = copy.copy(error_dict)
chop = len('JSON parse error - No JSON object could be decoded')
ret['detail'] = ret['detail'][:chop]
return ret
|
d91162616530ae494274b9a63baf324d22de2c38
| 19,632
|
import re
def parse_csr(csr_as_text):
"""Parse a Certificate Signing Request (CSR).
Returns the list of domains this CSR affects.
"""
domains = set([])
common_name = re.search(r'Subject:.*? CN\s*=\s*([^\s,;/]+)', csr_as_text)
if common_name is not None:
domains.add(common_name.group(1))
for subject_alt_names in re.finditer(r'X509v3 Subject Alternative Name: \n +([^\n]+)\n', csr_as_text, re.MULTILINE | re.DOTALL):
for san in subject_alt_names.group(1).split(', '):
if san.startswith('DNS:'):
domains.add(san[4:])
return sorted(domains)
|
6ac5b52126741215ad9042cf26a3e6619e33438a
| 19,634
|
def get_corpus(data: list) -> list:
"""
Получение списка всех слов в корпусе
:param data: Данные
:return: список слов в корпусе
"""
corpus = []
for phrase in data:
for word in phrase.split():
corpus.append(word)
return corpus
|
6cbd38c71c9f926df21561ef6ab57e4e9d07dd95
| 19,635
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.