content
stringlengths
35
416k
sha1
stringlengths
40
40
id
int64
0
710k
def get_outdir_simupara(fp, line): """ get output directory and simulation parameters (in format: time steps) :param fp: opened file :param line: current line :return: output directory and simulation parameters Note: output directory is '' if not specified and list of simulation parameters is empty if not specified """ outdir = '' simupara = [] while line: line = fp.readline() if not line: break if line == '--\n': continue line = line.strip('\n') line = line.split(' ') if len(line) == 1: outdir = str(line[0]) else: simupara = line return outdir, simupara
22da06da0466657a5905ba3333b270787cf98a58
17,854
import re def ShortenDsn(connect_str_clear): """ This must be very fast because used in loops. It abbreviates the DSN especially if this is a connection string. """ mtch_dsn = re.match(".*DSN=([^;]+).*", connect_str_clear, re.IGNORECASE) if mtch_dsn: return mtch_dsn.group(1) mtch_dsn = re.match(".*SERVER=([^;]+).*", connect_str_clear, re.IGNORECASE) if mtch_dsn: return mtch_dsn.group(1) return connect_str_clear
1041a7e3e731d24593268150e074624ef92d0b86
17,855
def grid_coordinates(bbox: tuple, gridsize: int) -> list: """ Returns a matrix of gridsize with the real world coordinates of each cell's center :param bbox: :param gridsize :return: """ x_min = bbox[0] y_min = bbox[1] x_max = bbox[2] y_max = bbox[3] cell_width = (x_max-x_min)/gridsize cell_height = (y_max-y_min)/gridsize # "array" gridsize*gridsize with a tuple (x, y) for each cell center's coordinates row = [None]*gridsize grid = [] for i in range(gridsize): grid.append(list(row)) # list(list) trick to copy instead of reusing the list # see http://stackoverflow.com/questions/2612802/how-to-clone-or-copy-a-list-in-python for u in range(gridsize): for v in range(gridsize): x = x_min + cell_width/2 + (cell_width*u) y = y_min + cell_height/2 + (cell_height*v) grid[u][v] = (x, y) return grid
9c522d9a24307e34d564f2fc8d1a135168e8f8ff
17,856
def get_indexing(string): """ Parse numpy-like fancy indexing from a string. Args: string (str): string represent the indices to take a subset of from array. Indices for each dimension are separated by `,`; indices for different dimensions are separated by `;`. e.g.: For a numpy array `arr` of shape (3,3,3), the string "1,2;1,2" means taking the sub-array `arr[[1,2], [1,2]] Returns: final_indexing (tuple): the parsed indexing. """ index_ls = string.strip().split(";") final_indexing = [] for index in index_ls: index_single_dim = index.split(",") index_single_dim = [int(i) for i in index_single_dim] final_indexing.append(index_single_dim) return tuple(final_indexing)
327054d0387f4bda1f3345d2886541a20e96e962
17,857
import pytz def timezonize(timezone): """Convert a string representation of a timezone to its pytz object, or do nothing if the argument is already a pytz timezone.""" # Check if timezone is a valid pytz object is hard as it seems that they are spread arount the pytz package. # Option 1): Try to convert if string or unicode, else try to # instantiate a datetiem object with the timezone to see if it is valid # Option 2): Get all memebers of the pytz package and check for type, see # http://stackoverflow.com/questions/14570802/python-check-if-object-is-instance-of-any-class-from-a-certain-module # Option 3) perform a hand.made test. We go for this one, tests would fail if it gets broken if not 'pytz' in str(type(timezone)): timezone = pytz.timezone(timezone) return timezone
1145bb17bf9c50985d88770e8fa0437bfb3e9a18
17,859
import numpy def multivariate_gaussian(x_array, mean_mu, corr_sigma): """ Computes the probability density function of the multivariate gaussian distribution. Parameters ---------- x_array : array_like The dataset of shape (m x n). Where there are m examples of n-dimensions. mean_mu : array_like A vector of shape (n,) contains the means for each dimension (feature). corr_sigma : array_like Either a vector of shape (n,) containing the variances of independent features (i.e. it is the diagonal of the correlation matrix), or the full correlation matrix of shape (n x n) which can represent dependent features. Returns ------ p : array_like A vector of shape (m,) which contains the computed probabilities at each of the provided examples. """ k = mean_mu.size # if sigma is given as a diagonal, compute the matrix if corr_sigma.ndim == 1: corr_sigma = numpy.diag(corr_sigma) x_array = x_array - mean_mu factor = (2*numpy.pi)**(-k/2)*numpy.linalg.det(corr_sigma)**(-0.5) exp_part = numpy.exp(-0.5*numpy.sum(numpy.dot(x_array, numpy.linalg.pinv(corr_sigma))*x_array, axis=1)) probabilities = factor*exp_part return probabilities
7c2c08642531e2790289db1179924cff440fd23a
17,860
import inspect from typing import get_type_hints import sys def _class_get_type_hints(obj, globalns=None, localns=None): # noqa: MAN001,MAN002 """ Return type hints for an object. For classes, unlike :func:`typing.get_type_hints` this will attempt to use the global namespace of the modules where the class and its parents were defined until it can resolve all forward references. """ if not inspect.isclass(obj): return get_type_hints(obj, localns=localns, globalns=globalns) mro_stack = list(obj.__mro__) if localns is None: localns = {} while True: try: # pylint: disable=R8203 return get_type_hints(obj.__init__, localns=localns, globalns=globalns) except NameError: if not mro_stack: raise klasse = mro_stack.pop(0) if klasse is object or klasse.__module__ == "builtins": raise localns = {**sys.modules[klasse.__module__].__dict__, **localns}
c04d6d391c7b06980fa33407e6bca809ff86c07e
17,861
import time def convert_to_timestamp(seconds): """ Converts an integer into a string 'HH:MM:SS'. We differ a bit from python's standard time library in that if a number is negative, instead of reversing back into the 24hr mark, we return 00:00:00. """ if seconds < 0: return '0:00' tt = time.strftime('%H:%M:%S', time.gmtime(seconds)) if tt[:2] == '00': tt = tt[3:] # slice off leading ':' also if tt[:1] == '0': tt = tt[1:] return tt
45428766c440c15366030b07cac95c304cefee89
17,862
def unpack_string(byte_stream): """Return decoded ASCII string from bytestring. Decode a bytes object via UTF-8 into a string Args: byte_stream (bytes): arbitrary length Returns: string: UTF-8 decoded string """ out_string = byte_stream.decode("utf-8", "replace") return out_string
5caaf20a41a05fb0026cb9131dd4825f036ec837
17,863
from sys import getsizeof from typing import Mapping from typing import Iterable def get_size(obj, seen=None): """Return size of any Python object.""" if seen is None: seen = set() size = getsizeof(obj) if id(obj) in seen: return 0 seen.add(id(obj)) if hasattr(obj, "__dict__"): size += get_size(obj.__dict__, seen) if hasattr(obj, "__slots__"): size += sum( get_size(getattr(obj, attr), seen) for attr in obj.__slots__ if hasattr(obj, attr) ) if isinstance(obj, Mapping): size += sum( get_size(k, seen) + get_size(v, seen) for k, v in obj.items() ) elif isinstance(obj, Iterable) and not isinstance(obj, (str, bytes)): size += sum(get_size(item, seen) for item in obj) return size
8bb39d45f1a5a44199e81a65bedc7005d22eaeba
17,864
import os def _make_concatenated_data_dirs(suite_locs, area): """Create dirs to hold cubeList files.""" suites_locations = {} supermeans_locations = {} for suite_dir in suite_locs: suite_data = os.path.join(suite_locs[suite_dir], area) if not os.path.exists(suite_data): os.makedirs(suite_data) suites_locations[suite_dir] = suite_data # create supermeans directory: [area]_supermeans sup_data = os.path.join(suite_locs[suite_dir], area + '_supermeans') if not os.path.exists(sup_data): os.makedirs(sup_data) supermeans_locations[suite_dir] = sup_data return suites_locations, supermeans_locations
0977fc4cec9f0b5bd1baadf5b7b24a76fccb19f8
17,865
import importlib def import_from_module_name(module_name): """Imports a module and returns it and its name.""" module = importlib.import_module(module_name) return module, module_name
87d38536dc23c3ef86bcc1d0b5b0ec937ba397d6
17,866
def get_external_results_priorities(results): """ Return additional, external results priorities. Results priorities from external plugins (e.g. DonPedro) are coming together with results. """ priorities = {} for plugin_name, plugin_results in results.iteritems(): if 'results_priority' in plugin_results: priorities[plugin_name] = plugin_results['results_priority'] return priorities
f18927a19929b52229aa10ea17ddb5d5e16bc832
17,869
def get_range_around(range_value, current_item, padding): """ Returns a range of numbers around the given number. This is useful for pagination, where you might want to show something like this:: << < ... 4 5 (6) 7 8 .. > >> In this example `6` would be the current page and we show 2 items around that page (including the page itself). Usage:: {% load libs_tags %} {% get_range_around page_obj.paginator.num_pages page_obj.number 5 as pages %} :param range_amount: Number of total items in your range (1 indexed) :param current_item: The item around which the result should be centered (1 indexed) :param padding: Number of items to show left and right from the current item. """ total_items = 1 + padding * 2 left_bound = padding right_bound = range_value - padding if range_value <= total_items: range_items = range(1, range_value + 1) return { 'range_items': range_items, 'left_padding': False, 'right_padding': False, } if current_item <= left_bound: range_items = range(1, range_value + 1)[:total_items] return { 'range_items': range_items, 'left_padding': range_items[0] > 1, 'right_padding': range_items[-1] < range_value, } if current_item >= right_bound: range_items = range(1, range_value + 1)[-total_items:] return { 'range_items': range_items, 'left_padding': range_items[0] > 1, 'right_padding': range_items[-1] < range_value, } range_items = range(current_item - padding, current_item + padding + 1) return { 'range_items': range_items, 'left_padding': True, 'right_padding': True, }
28a18ff5e998ed6b5eb7ec7a0aaf540037ac1946
17,870
import math def _scale_gaussian_param(snr, data): """ A helper function to convert given gaussian parameters in SNR dB according to standard deviation, and scale to correct values according to given data set features. """ return math.sqrt(data.std() ** 2 / math.pow(10, snr / 10.0))
e08c8fe67ef37cfe98c9bae35be86818cea541ff
17,872
def purify(dirty_word): """ Очищає від пробільних символів та конвертурє в lowercase """ purify = dirty_word.strip().lower() for i in ",.[]_()'": purify = purify.replace(i, '') if not purify: raise ValueError("Не може бути пустий рядок") return purify
2d1ad098d971d5473cadea4463893d26f1fa50d0
17,874
import logging def create_tair10_featureset( genes, config, dfu, gsu ): # pylint: disable=too-many-locals """Create an Arabidopsis thaliana featureset from a list of genes.""" params = config.get("params") workspace_id = params["workspace_id"] genome_ref = "Phytozome_Genomes/Athaliana_TAIR10" genome_features = gsu.search( { "ref": genome_ref, "limit": len(genes), "structured_query": {"$or": [{"feature_id": gene} for gene in genes]}, "sort_by": [["feature_id", True]], } )["features"] genes_found = {feature.get("feature_id") for feature in genome_features} genes_matched = [gene for gene in genes_found if gene in genes_found] genes_unmatched = set(genes).difference(genes_found) if len(genes_unmatched) > 0: genes_unmatched_str = ", ".join(genes_unmatched) logging.warning( """The following genes were not found in the genome: """ f"""{genes_unmatched_str}""" ) new_feature_set = dict( description=params.get("description", ""), element_ordering=genes_matched, elements={gene: [genome_ref] for gene in genes_matched}, ) save_objects_params = { "id": workspace_id, "objects": [ { "type": "KBaseCollections.FeatureSet", "data": new_feature_set, "name": params["output_name"], } ], } dfu_resp = dfu.save_objects(save_objects_params)[0] featureset_obj_ref = f"{dfu_resp[6]}/{dfu_resp[0]}/{dfu_resp[4]}" return [{"ref": featureset_obj_ref, "description": "Feature Set"}]
c42a01cdc1ceef25806cd8055d6e6cf30a93fd40
17,875
import requests def get_ticket(tgt: str) -> str: """ Get ticket """ params = {'service': 'http://umlsks.nlm.nih.gov'} headers = { 'Content-type': 'application/x-www-form-urlencoded', 'Accept': 'text/plain', 'User-Agent': 'python' } req = requests.post(tgt, data=params, headers=headers) return req.text
52adcb7d87c97f3d0706260e972cc25caadc362e
17,876
def get_solved (sol_dict): """Returns the solved variables of a solution dictionary""" return filter(lambda k: sol_dict[k] is not None, sol_dict)
a712caa09be029f0ad7054248cce7762644a6644
17,877
def generate_legend_marker_colour_orders(plot_order, method_legend_colour_marker_dict): """ Generates a list of legends, colours, and markers based off the dictionary. """ plot_legends = [method_legend_colour_marker_dict[meth]['legend'] for meth in plot_order] plot_colours = [method_legend_colour_marker_dict[meth]['colour'] for meth in plot_order] plot_markers = [method_legend_colour_marker_dict[meth]['marker'] for meth in plot_order] plot_linestyles = [method_legend_colour_marker_dict[meth]['linestyle'] for meth in plot_order] return plot_legends, plot_colours, plot_markers, plot_linestyles
60d957517f97a7ba5c78aa31ea4f222d37ad7195
17,879
import os def create_dir(*args) -> str: """Creates directory if it does not exist yet. Recursive. Input: - unknown number of string parameters Output: - names: full path name """ names = os.path.join(*args) if not os.path.exists(names): os.makedirs(names, exist_ok=True) print(f' -> created directory: {names}') return names
209c292192751f69b19e097908b64f91420ff8b4
17,880
def strip_stac_item(item: dict) -> dict: """ Strips a stac item, removing not stored fields :param item dict: input stac item :rtype: dict :return: stripped stac item """ strip = item s3_key = None for link in item["links"]: if link["rel"] == "self": s3_key = link["href"] assert s3_key is not None, "Can't find self key" # Remove fields that will not be stored strip.pop("stac_version") strip.pop("stac_extensions") strip.pop("type") strip.pop("links") strip.pop("bbox") strip.pop("assets") # https://cbers-stac-0-6.s3.amazonaws.com/CBERS4/PAN5M/156/107/CBERS_4_PAN5M_20150610_156_107_L4.json strip["s3_key"] = "/".join(s3_key.split("/")[3:]) return strip
1909b44f316875f0cd0d65fff8bd62329cd229e5
17,881
import numpy def sort_visibility(vis, order=None): """ Sort a visibility on a given column :param vis: :param order: Array of string of column to be used for sortin :return: """ if order is None: order = ['index'] vis.data = numpy.sort(vis.data, order=order) return vis
c5f7f835c2cff1bb4d0daac5fda85af77ab09e74
17,882
def no_zipped(): """ No-zipped strings """ return [ ('', []), ('123', [123]), ('123,456', [123, 456]) ]
9aa18599d98f9d22e5597cc6078489617fb1e3aa
17,883
import subprocess def execute_cmdline(lst, output): """execute_cmdline(lst: list of str)-> int Builds a command line enquoting the arguments properly and executes it using popen4. It returns the output on output. popen4 doesn't return a code, so it will always return 0 """ proc = subprocess.Popen(lst, shell=True, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) proc.wait() if proc.stdout: output.extend(proc.stdout.readlines()) return proc.returncode
769d5aab23b416894933fcd59dbba7559fdbe2d6
17,886
def mul(a, b): """ >>> mul(2, 3) 6 >>> mul('a', 2) 'aa' """ return a * b
990465cb677ea9b0f848b0a9bfc6bfdc5d8b373f
17,887
import numpy def gsim_imt_dt(sorted_gsims, sorted_imts): """ Build a numpy dtype as a nested record with keys 'idx' and nested (gsim, imt). :param sorted_gsims: a list of GSIM instances, sorted lexicographically :param sorted_imts: a list of intensity measure type strings """ dtlist = [(imt, numpy.float32) for imt in sorted_imts] imt_dt = numpy.dtype(dtlist) return numpy.dtype([(str(gsim), imt_dt) for gsim in sorted_gsims])
e5a885efc5f404ef19f931ebe194141c88980c46
17,888
def prepare(raw_input): """ Input is organized in three chunks: (1) rules, (2) my ticket, (3) tickets nearby. Must be prepared following different rules. (1) label ':' lower 'or' upper ',' lower 'or' upper (2) header line "your ticket:" followed by one line of comma separated integers (3) same as (2), but many lines of comma separated integers The CSV lines have always as many fields as there are rules in (1). """ rules, my_ticket, tickets_nearby = [line for line in raw_input.split('\n\n')] return rules, my_ticket, tickets_nearby
a784da2ad5ef864d3114187766acd8af2b69b868
17,889
import codecs def rot_13(char): """Special case of shift alphabet by half.""" return codecs.encode(char, "rot_13")
7a08262ece3c2151cfdf7ac66361802aa93c6ee1
17,890
import os def list_files(camera, path="/"): """List all files in a camera directory.""" result = [] # get files for name, value in camera.folder_list_files(path): result.append(os.path.join(path, name)) # read folders folders = [] for name, value in camera.folder_list_folders(path): folders.append(name) # recurse over subfolders for name in folders: result.extend(list_files(camera, os.path.join(path, name))) return result
42060038d3645badb5bc9a7121331024deb813e0
17,892
import os def __get_files(root_dir, file_types, filters): """__get_files. file_types = ['.css', '.js', '.htm'] filters = ['', '.min.', 'sweet-alert'] """ def is_vaild_file(filename, file_types): if not file_types: return False for x in file_types: if filename.endswith(x): return True return False def is_filter_file(file_path, filters): if not filters: return False for y in filters: if file_path.find(y) > 0: return True return False for root, _, files in os.walk(root_dir): for filename in files: file_path = os.path.join(root, filename) if not is_vaild_file(filename, file_types): continue if is_filter_file(file_path, filters): continue yield (file_path, filename, filename[filename.rfind('.'):])
95b7c8c4057b724d46e15d4a73b7a213c5f9dd40
17,894
def string_empty(string: str) -> bool: """Return True if the input string is None or whitespace.""" return not (bool(string) or isinstance(string, str) and bool(string.strip()))
cca19df1eda7039f7299c49fcb9832ce11847524
17,895
import sys def src_mul_edge(src, edge, out): """Builtin message function that computes message by performing binary operation mul between src feature and edge feature. Notes ----- This function is deprecated. Please use :func:`~dgl.function.u_mul_e` instead. Parameters ---------- src : str The source feature field. edge : str The edge feature field. out : str The output message field. Examples -------- >>> import dgl >>> message_func = dgl.function.src_mul_edge('h', 'e', 'm') """ return getattr(sys.modules[__name__], "u_mul_e")(src, edge, out)
4a703a09b0ebce8fb9cdf24739d8449873bf91b6
17,896
def get_attr_flows(results, key='variable_costs'): """ Return all flows of an EnergySystem for a given attribute, which is not zero. Parameters ---------- results : dict Results dicionary of the oemof.solph optimisation including the Parameters with key 'param'. key : str Returns ------- list : List of flows, where a non zero attribute value is given either at the 'scalars' or 'sequences'. """ param = results['param'] list_keys = list(param.keys()) var_scalars = [ x for x in list_keys if key in param[x]['scalars'].keys() if abs(param[x]['scalars'][key]) > 0 ] var_sequences = [ x for x in list_keys if key in param[x]['sequences'].keys() if abs(param[x]['sequences'][key].sum()) > 0 ] var_cost_flows = var_scalars + var_sequences return var_cost_flows
756ec66cdf7b01cdbc6b872b4f30cf27e4ff524f
17,897
from typing import Callable import hmac import hashlib def generate_hash_key(chain_url: str, privkey: bytes, strategy: Callable): """Generate a hash key to use as `client_id`, using the :mod:`hmac` library. The message is the concatenation of `chain_url` plus the `__name__` attribute of the `strategy`. The `privkey` is used to sign it using `sha256`. The result is hexdigested before we return it. """ k = hmac.new(privkey, (chain_url + strategy.__name__).encode("UTF-8"), hashlib.sha256) return k.hexdigest()
1bb6b69f06c6ecb245b8ea8b4c772ede872c460c
17,898
import hashlib def hash(filepath): """ function responsible for generating a hash of a given file in SHA256. param filepath: directory where the file is located. return: SHA256 requested file hash """ with open(filepath, 'rb') as stream: hash = hashlib.sha256(stream.read()) return hash.hexdigest()
320bcb258a5eb13e29c1f53c0caa4d3ed0b33a5e
17,899
def _rename_artifact(ctx, tpl_string, src_file, packaging_type): """Rename the artifact to match maven naming conventions.""" artifact = ctx.new_file(ctx.bin_dir, tpl_string % (ctx.attr.artifact_id, ctx.attr.version, packaging_type)) ctx.action( inputs = [src_file], outputs = [artifact], command = "cp %s %s" % (src_file.path, artifact.path), ) return artifact
6c5bf6928e79bfaf20f222bea9815643aaff3dc5
17,901
def get_config_data(config_data): """ Parameters ---------- config_data : list containing config parameters Returns ------- [config parameters] : various parameters and values from the config file """ exp_type = config_data['RobotSettings']['commandFile'] reward_dur = config_data['ExperimentSettings']['rewardWinDur'] x_p = config_data['RobotSettings']['xCommandPos'] y_p = config_data['RobotSettings']['yCommandPos'] z_p = config_data['RobotSettings']['zCommandPos'] x0 = config_data['RobotSettings']['x0'] y0 = config_data['RobotSettings']['y0'] z0 = config_data['RobotSettings']['z0'] r = config_data['RobotSettings']['x'] t1 = config_data['RobotSettings']['y'] t2= config_data['RobotSettings']['z'] return exp_type, reward_dur, x_p, y_p, z_p, x0, y0, z0,r,t1,t2
b6f8199547d8177660336c8c0aab09deddf96118
17,902
import socket import struct import random def randip(): """Return random IP address Returns: str -- IP address """ return socket.inet_ntoa(struct.pack('>I', random.randint(1, 0xffffffff)))
e1baec43b7616a7f7345d5bf83c79f868bf95c80
17,903
def dumb_portfolio_evaluate(assets, weights): """ Takes weighted sum of asset reward and risk. :param assets: Cassandra ORM model for asset stat table. :param weights: Vector of weights for each asset (should sum to 1) :return: Dictionary containing portfolio reward, risk and weight vector. """ reward = 0 risk = 0 for i in range(len(assets)): asset = assets[i] reward += asset.reward * weights[i] risk += asset.risk * weights[i] * weights[i] portfolio_stat = {'reward': reward, 'risk': risk, 'weights': weights} return portfolio_stat
6945974d40247d585a5595a5eb7b0e5ff4625e41
17,904
import six def is_list_of_strings(vals): """Returns True if val is a list (or enumerable) of strings. False otherwise""" try: # check if everything is a string for val in vals: if not isinstance(val, six.string_types): return False except: # vals is not enumerable return False # everything is a string return True
61c48b7b43acc1ab8f86c47273606a830ccb0bab
17,905
def clean_url(raw_url): """ Returns a clean URL from garbage """ return 'https' + raw_url.split(' https')[1].split('#')[0]
f34581e230182c026ff26d2f8e8da91137417930
17,907
def removeSearchIndice(doc): """ Remove search indices for isotopes Uranium and Thorium """ if (doc.has_key("sort_indices")): del doc["sort_indices"] return doc
cd0239b9e96d3eed70fbf41b5d0aec9bd7589c35
17,908
def getPruning(table, index): """Extract pruning value""" if ((index & 1) == 0): res = table[index // 2] & 0x0f else: res = (table[index // 2] & 0xf0) >> 4 return res # return table[index] & 0xf
45e9e81bef153edfa7003f5256a3e9b169a6a2c0
17,909
import torch def append_homog(tensor: torch.Tensor, homog_value: float = 1.) -> torch.Tensor: """Appends a homogeneous coordinate to the last dimension of a Tensor. Args: tensor: A Tensor. homog_value: Value to append as homogeneous coordinate to the last dimension of `tensor`. (Default: 1.0) Returns: A Tensor identical to the input but one larger in the last dimension. The new entries are filled with ones. """ shape = list(tensor.shape) shape[-1] = 1 appendage = torch.ones(shape, dtype=tensor.dtype, device=tensor.device) * homog_value return torch.cat([tensor, appendage], -1)
d07361ded84608d0aa2d4587b5418be0a6f5c395
17,910
def get_fitness(solution): """Return the fitness value of the passed solution""" if not solution: return 0 # the fitness of a valid solution coincides with its value return solution.value
bd3abcb2600ee074ce33b543c7a19b58924e3415
17,911
def sortByHeight(a): """ >>> sortByHeight([-1, 150, 190, 170, -1, -1, 160, 180]) [-1, 150, 160, 170, -1, -1, 180, 190] """ tree_positions = sorted([index for index, value in enumerate(a) if value == -1]) a = sorted(a)[len(tree_positions) :] for tree_pos in tree_positions: a.insert(tree_pos, -1) return a
a98de199fc5a9580986b91548693fe05f60f2340
17,912
def white_spaces(x): """ Blank Spaces """ x -= 2 espac = ' ' * x return espac
a9a7af435add1400429116b04884cac3241d9c8b
17,913
def pretty_size(size, unit=1024): """ This function returns a pretty representation of a size value :param int|long|float size: the number to to prettify :param int unit: 1000 or 1024 (the default) :rtype: str """ suffixes = ["B"] + [i + {1000: "B", 1024: "iB"}[unit] for i in "KMGTPEZY"] if unit == 1000: suffixes[1] = 'kB' # special case kB instead of KB # cast to float to avoid losing decimals size = float(size) for suffix in suffixes: if abs(size) < unit or suffix == suffixes[-1]: if suffix == suffixes[0]: return "%d %s" % (size, suffix) else: return "%.1f %s" % (size, suffix) else: size /= unit
abeafa97d45212c0170b981e9448e63acc1a54d2
17,914
import copy def json_row_to_dict(row): """Convert a sqlalchemy row object into a plain python dictionary. Assumes that row object contains the following columns: - id (int(64)) - version (int(64)) - data (JSON) Contains the rest of the fields as a single JSON column in postgres Args: row (BaseModel): The db row object """ d = copy.deepcopy(row.data) if row.data else {} if row.id: d['id'] = row.id return d
902d45a9beb717e56ad8d8468eb0815b9171013c
17,915
import logging import requests def request_image(image_url): """Attempts to download the file at the URL specified and, if available, returns it as a raw response object.""" if image_url is None: logging.error("Image URL is None") return None logging.info(f"Downloading roll image {image_url}") response = requests.get(image_url, stream=True) if response.status_code == 200: response.raw.decode_content = True return response logging.error(f"Unable to download {image_url} - {response}") return None
c5d0847859b9e036ebf0121f1c8a71492d0923f6
17,916
import binascii import os import requests import base64 def test_kvstore(put_host_addr, get_host_addr): """Executes a simple test against the key/value store running on the given Tendermint node.""" url = "http://%s" % put_host_addr # generate a random hex value to send through to the kv store test_value = binascii.b2a_hex(os.urandom(15)).decode('utf-8') payload = {'tx': '"test_value=%s"' % test_value} r = requests.get(url+"/broadcast_tx_commit", params=payload) if r.status_code >= 400: print("Failed to send broadcast_tx_commit request. Got status: %d" % r.status_code) return 2 # now try to fetch the value url = "http://%s" % get_host_addr payload = {'data': '"test_value"'} r = requests.get(url+'/abci_query', params=payload) if r.status_code >= 400: print("Failed to send abci_query request. Got status: %d" % r.status_code) return 3 # check the response value stored_value = base64.b64decode(r.json()['result']['response']['value']).decode('utf-8') if stored_value != test_value: print("Expected %s, but got %s" % (test_value, stored_value)) return 4 print("kvstore test completed successfully!") return 0
5386e80439490f3180cbf6dcbee673b2ba2d6ba8
17,917
def phrase_feature(sentences, phrase_list): """ List of values from 0 to 1 rating the number of phrases that appear in the sentence from a list """ total_number_words = 0 phrase_frequency = [] # Calculate the number of words of the text # Number of phrase that appear in that sentence for sentence in sentences: count_phrase_per_sentence = 0 for phrase in phrase_list: if phrase in sentence.original: count_phrase_per_sentence += 1 phrase_frequency.append(count_phrase_per_sentence/len(sentence.bag_of_words)) return phrase_frequency
36d21a6dfd0c7beefa1739e522783d2ecc6241cb
17,918
def set_title(title=None, property_name=None, channel=None): """Set title for map. Parameters: title (str): If ``None``, try to set automatically from property (and channel) name(s). For no title, set to ''. Default is ``None``. property_str (str): Map property name. Default is ``None``. channel (str): Map channel name. Default is ``None``. Returns: str """ if title is None: property_name = property_name if property_name is not None else '' channel = channel if channel is not None else '' title = ' '.join((property_name, channel)) title = ' '.join(title.split('_')).strip() return title
6483c8df9fafaa7e46ef667801a24a921ae871da
17,919
from pathlib import Path def ready_for_postinstall(chroot): """True if the chroot path exists and nothing mounted inside, False otherwise""" path = Path(chroot) return path.exists() and not any(path.iterdir())
c684cf9f4940f4f6e102752a2456737b5de56cff
17,920
import sys def modules(modulePath): """Load a module and retrieve a reference to that module.""" __import__(modulePath) return sys.modules[modulePath]
f25fe4f7ce16086949583e69bc7d60537b2cdaab
17,921
def null_action(env, ob): """ Do nothing. """ if hasattr(env.action_space, 'n'): # Is descrete return 0 if hasattr(env.action_space, 'low') and hasattr(env.action_space, 'high'): # Is box return (env.action_space.low + env.action_space.high) / 2.0 # Return the most average action raise NotImplementedError()
1ed066f6719af853a539ee077a47320d84bf8bfd
17,922
def transition_model(corpus, page, damping_factor): """ Return a probability distribution over which page to visit next, given a current page. With probability `damping_factor`, choose a link at random linked to by `page`. With probability `1 - damping_factor`, choose a link at random chosen from all pages in the corpus. """ damping_prob = 1 / len(corpus) if len(corpus[page]) == 0: # If page has no links, all pages have equal prob distribution = {ipage: damping_prob for ipage in corpus} else: linked_prob = 1 / len(corpus[page]) distribution = {ipage: damping_prob * (1 - damping_factor) for ipage in corpus} for ipage in corpus[page]: # Add links probabilities distribution[ipage] += damping_factor * linked_prob return distribution
c7ea20809acce0f9290f3b5890122c7d34acd416
17,923
import uuid def new_uuid(): """Return a string UUID.""" return uuid.uuid4().hex
cdbe6cb239d719b0a6a31be60bcb8585971a6e1c
17,924
import torch def generate_spixel(logits, img_in): """ generate superpixels (Not used) Args: logits: torch.Tensor A Tensor of shape (b, nSpixel, h, w) that could be regarded as a soft assignment matrix img_in: torch.Tensor A Tensor of shape (b, c, h*w) whose prototype is normalized rgbxy image in default Return: avg_spixel_feat: tensor.Tensor A Tensor of shape (b, c, nSpixel) """ # prob is a row-normalized (b, h*w, nSpixel) Tensor prob = logits.view(*logits.shape[:2], -1).permute(0, 2, 1) # avoid calculating invalid spixels spixel_cardinality = prob.sum(1, keepdim=True) spixel_mask = spixel_cardinality > 1e-5 avg_spixel_feat = torch.bmm(img_in, prob) / (spixel_cardinality + 1e-5) avg_spixel_feat *= spixel_mask.float() return avg_spixel_feat
6f8c24dde059203bb52028747191161fa90b0d9f
17,925
def is_developer_certificate_getter(self): """Return whether this certificate is a developer certificate or not. :param self: Instance of the entity for which this is a custom method. :type self: mbed_cloud.foundation.TrustedCertificate :return: True if a developer certificate, False otherwise. :rtype: bool """ return self._device_execution_mode.value == 1
cebb9ba74150c0a9ae5d3fb2b99e504977525b1f
17,927
from typing import OrderedDict def dismantle_dict_values_to_deep_list(dict_): """ returns a list of dict values even if the values of the dict are dicts again. """ dict_ = OrderedDict(sorted(dict_.items())) return [val if not isinstance(val, dict) else dismantle_dict_values_to_deep_list( val) for val in dict_.values()]
045268625aa63266ef988fb56ae9eaeb329ac412
17,928
import os def get_whence_string(whence): """Retrieves a human readable string representation of the whence.""" if whence == os.SEEK_CUR: whence_string = "SEEK_CUR" elif whence == os.SEEK_END: whence_string = "SEEK_END" elif whence == os.SEEK_SET: whence_string = "SEEK_SET" else: whence_string = "UNKNOWN" return whence_string
b02cc04ddfb7b028d626f750ea3da612e908b542
17,929
def average_speed(s1 : float, s0 : float, t1 : float, t0 : float) -> float: """ [FUNC] average_speed: Returns the average speed. Where: Delta Space = (space1[s1] - space0[s0]) Delta Time = (time1[t1] - time0[t0]) """ return ((s1-s0)/(t1-t0));
8125fb0454433288b506ffd277fa6b1bd21b06c9
17,930
from typing import Coroutine from typing import Any import asyncio def await_async(task: Coroutine[Any, Any, Any]) -> Any: """Await async task in sync function. Parameters ---------- task : Coroutine task to be awaited, eg f() where f is async function. Returns ------- Any Result returned from awaited task. """ try: loop = asyncio.get_running_loop() except RuntimeError: loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) return loop.run_until_complete(task)
9dc6c3301dcc91036e05059b695b3edba9de61a1
17,931
def multiply2by2Matricies(A, B): """This performs matrix multiplication in only 7 multiplies.""" ##Thank you the internet and Strassen... M_1 = (A[0][0]+A[1][1])*(B[0][0]+B[1][1]) M_2 = (A[1][0]+A[1][1])*B[0][0] M_3 = A[0][0]*(B[0][1]-B[1][1]) M_4 = A[1][1]*(B[1][0]-B[0][0]) M_5 = (A[0][0]+A[0][1])*B[1][1] M_6 = (A[1][0]-A[0][0])*(B[0][0]+B[0][1]) M_7 = (A[0][1]-A[1][1])*(B[1][0]+B[1][1]) return [[M_1+M_4-M_5+M_7, M_3+M_5], [M_2+M_4 , M_1-M_2+M_3+M_6]]
cfdf29632265c1161ea7808aa9241c04c0cb47ed
17,932
from argparse import ArgumentParser from pathlib import Path def parse_args_berry(args): """Argument parser for `berry` subcommand.""" parser = ArgumentParser(prog='pwproc berry') parser.add_argument('in_file', nargs='+', type=Path) parser.add_argument('--phase', type=Path) parser.add_argument('--vec', type=Path) parser.add_argument('--pol', type=Path) parser.add_argument('--out', type=str) return parser.parse_args(args)
de7ca37b6882154c2da49820ef8c8f373775d11e
17,933
import json def wrap_error_data(mes): """包装错误消息""" return json.dumps({ 'mes': mes }).encode()
dfc1274d38859fc15d06474b34336f9af132a694
17,936
def create_arrays_from_input(dir_arr): """ This function gets: :param dir_arr: an array of 24 strings: matchsticks' directions: up('U')/down('D')/left('L')/right('R') :return: 3 arrays of 24 integers: Each index represents a matchstick The values represent rows, columns and diagonals: matchsticks' directions: row - must be 1 - 4 col - must be 1 - 4 di - must be 1 or 2 (0 - not pointing to any diagonal) """ match_rows = [] match_cols = [] match_dis = [] row = 0 col = 0 di = 0 for i in range(0, 24): if 0 <= i <= 2: row = 1 if 3 <= i <= 6: if dir_arr[i] == 'U': row = 1 elif dir_arr[i] == 'D': row = 2 if 7 <= i <= 9: row = 2 if 10 <= i <= 13: if dir_arr[i] == 'U': row = 2 elif dir_arr[i] == 'D': row = 3 if 14 <= i <= 16: row = 3 if 17 <= i <= 20: if dir_arr[i] == 'U': row = 3 elif dir_arr[i] == 'D': row = 4 if 21 <= i <= 23: row = 4 match_rows.append(row) if i % 7 == 3: col = 1 if i % 7 == 4: col = 2 if i % 7 == 5: col = 3 if i % 7 == 6: col = 4 if i % 7 == 0: if dir_arr[i] == 'L': col = 1 elif dir_arr[i] == 'R': col = 2 if i % 7 == 1: if dir_arr[i] == 'L': col = 2 elif dir_arr[i] == 'R': col = 3 if i % 7 == 2: if dir_arr[i] == 'L': col = 3 elif dir_arr[i] == 'R': col = 4 match_cols.append(col) if i == 1 or i == 10 or i == 13 or i == 22: di = 0 if i == 8: if dir_arr[i] == 'R': di = 2 if dir_arr[i] == 'L': di = 1 if i == 15: if dir_arr[i] == 'R': di = 1 if dir_arr[i] == 'L': di = 2 if i == 11: if dir_arr[i] == 'U': di = 1 if dir_arr[i] == 'D': di = 2 if i == 12: if dir_arr[i] == 'U': di = 2 if dir_arr[i] == 'D': di = 1 if i in [0, 3, 4, 7, 16, 19, 20, 23]: if match_cols[i] == match_rows[i]: di = 1 else: di = 0 if i in [2, 5, 6, 9, 14, 17, 18, 21]: if match_cols[i] == 5 - match_rows[i]: di = 2 else: di = 0 match_dis.append(di) return match_rows, match_cols, match_dis
d16f1bd28d53d92dff675defff2e91a1bedf5f55
17,937
def multiline_rstrip(s: str) -> str: """ Takes a multiline string and returns a copy with trailing spaces from all lines removed. """ return "\n".join((l.rstrip() for l in s.splitlines()))
51ee39528918e1a5a35f840d1524a17941a7a170
17,938
import sys def strip_indent(s): """ Given a multiline string C{s}, find the minimum indentation for all non-blank lines, and return a new string formed by stripping that amount of indentation from all lines in C{s}. """ # Strip indentation from the template. minindent = sys.maxsize lines = s.split('\n') for line in lines: stripline = line.lstrip() if stripline: minindent = min(minindent, len(line)-len(stripline)) return '\n'.join([l[minindent:] for l in lines])
ca128a349bb9f0a1538e9fc8e3638b7f64806538
17,939
import socket import struct def send_packet(mac_str): """Send magic packet to given mac address :param mac_str: mac address string separated by : :return: """ def broadcast(magic): s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) s.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, 1) s.sendto(magic, ('<broadcast>', 9)) def build_packet(mac_str): bytes = [255] * 6 + [int(x, 16) for x in mac_str.split(':')] * 16 magic = struct.pack('B' * 102, *bytes) return magic magic_packet = build_packet(mac_str) broadcast(magic_packet)
cd6a8fe49d43b1970995068302f611839b454187
17,940
import argparse def parse_args(args): """ Parse and return command-line arguments. """ parser = argparse.ArgumentParser( description="Execute clang-format on your working copy changes." ) parser.add_argument( "-d", "--diff", action="store_true", default=False, help="Determine whether running clang-format would produce changes", ) parser.add_argument("--verbose", "-v", action="store_true", default=False) parser.add_argument("--max-processes", type=int, default=50, help="Maximum number of subprocesses to create to format files in parallel") return parser.parse_args(args)
a5663ab8c1df586b334d5a608a7ccc8c46d83a31
17,941
def gaussian2D_from_shape(shape = (100,100), amplitude = 3000, position = (100,100), sigma = (5,5), dtype = 'uint16'): """ return 2D gaussian function in a given 'position' on the provided image. The input image can be made of all zeros. """ from numpy import sqrt,exp,copy,zeros r_mu = position[0] c_mu = position[1] r_sigma = sigma[0] c_sigma = sigma[1] gaussian = zeros(shape = shape) for r in range(gaussian.shape[0]): for c in range(gaussian.shape[1]): gaussian[r,c] = amplitude*exp(-((r-r_mu)**2/(2.0*r_sigma**2))-( (c-c_mu)**2 /( 2.0 * c_sigma**2) ) ) return gaussian.astype(dtype)
9557b6df7ae575740be97e21cca8065561051ed8
17,942
import hashlib def hash_file(file_content): """Create an md5 of file contents""" the_hash = hashlib.md5(file_content.encode('utf-8')) return the_hash.hexdigest()
ba3b84edb78ccb70e4fb37b8cc6c8eb73c0d108b
17,944
def visit(event, *args): """ This decorator is used to indicate which nodes the function should examine. The function should accept (self, node) and return the relevant node or None. """ def _decorate(fn): fn._visit_event = event fn._visit_nodes = args return fn return _decorate
a2ee19945446d100e3282f5cb5bc080ff4e568c2
17,945
from datetime import datetime def unrets_date(rets_date): """ Converts a RETS date (ISO 8601 format) into a Python datetime :param rets_date: a RETS/ISO 8601 date :type rets_date: str :rtype: datetime.datetime :return: rets_date as a Python datetime """ # For datetimes with microseconds return datetime.strptime(rets_date, '%Y-%m-%dT%H:%M:%S.%f')
9f8cae6880ac4d2f285eff856db09da0a39ec4ee
17,946
def compute_mae(y_pred, y, center_to_border_dict=None): """ Returns the absolute distance of predicted value to ground truth. Args center_to_border_dict is for compatibility issues in quanfification error analysis. """ return abs(y_pred - y)
a28f638779aa11dafdfb8d430eb0ad1a5515aefa
17,947
def add_nones(word): """Change word into a list and add None at its beginning, end, and between every other pair of elements. Works whether the word is a str or a list. """ def yield_it(word_string): yield None it = iter(word_string) yield next(it) for x in it: yield None yield x yield None if isinstance(word, str): return list(yield_it(word.split(' '))) else: return list(yield_it(word))
63c8437361f2f0cc200665d7cdf6a41aab7eaf67
17,948
import sys def is_py3(): """ Function for checking if we are in python3. This is used in other part of Bip for compatibility between python2 and python3. """ return sys.version_info[0] == 3
5264206d68c4a77aa9243ce97f95819941146555
17,949
import six def make_key(*args, **kwargs): """ Given any number of lists and strings will join them in order as one string separated by the sep kwarg. sep defaults to u"_". Add exclude_last_string=True as a kwarg to exclude the last item in a given string after being split by sep. Note if you only have one word in your string you can end up getting an empty string. Example uses: >>> from mongonaut.forms.form_utils import make_key >>> make_key('hi', 'my', 'firend') >>> u'hi_my_firend' >>> make_key('hi', 'my', 'firend', sep='i') >>> 'hiimyifirend' >>> make_key('hi', 'my', 'firend',['this', 'be', 'what'], sep='i') >>> 'hiimyifirendithisibeiwhat' >>> make_key('hi', 'my', 'firend',['this', 'be', 'what']) >>> u'hi_my_firend_this_be_what' """ sep = kwargs.get('sep', u"_") exclude_last_string = kwargs.get('exclude_last_string', False) string_array = [] for arg in args: if isinstance(arg, list): string_array.append(six.text_type(sep.join(arg))) else: if exclude_last_string: new_key_array = arg.split(sep)[:-1] if len(new_key_array) > 0: string_array.append(make_key(new_key_array)) else: string_array.append(six.text_type(arg)) return sep.join(string_array)
b5c48386304ab248518a7330605fbcfb37ecad23
17,950
def has_restart_file(job): """Check if the job has a restart file.""" return job.isfile("fort.77")
d6d5bd748722ab5bdc83461728d5a02e539d25ed
17,951
from typing import List def fixture_sample_tag_names(vcf_tag_name: str, sample_tag_name: str) -> List[str]: """Return a list of the sample tag names""" return [vcf_tag_name, sample_tag_name]
40f38b1c5e17254b1a0c9974216b98bdc8d27c43
17,952
import hashlib def compute_file_checksum(path): """ Compute a SHA1 checksum for a file. """ with open(path, 'rb') as f: checksum = hashlib.sha1(f.read()).hexdigest() return checksum
d253d98039a916be19ee3ad1c3d050b2dd251c1e
17,955
def get_default_titles(combine, plot_data, nfunc_list, **kwargs): """Get some default titles for the plots.""" adfam = kwargs.pop('adfam', False) adfam_nn = kwargs.pop('adfam_nn', False) true_signal = kwargs.pop('true_signal', True) if kwargs: raise TypeError('Unexpected **kwargs: {0}'.format(kwargs)) titles = [] if plot_data: if true_signal: titles.append('true signal') else: titles.append('signal') titles.append('noisy data') if combine: titles.append('fit') else: if any([isinstance(nfunc, list) for nfunc in nfunc_list]): assert all([isinstance(nfunc, list) for nfunc in nfunc_list]) nfunc_to_use = [nf[-1] for nf in nfunc_list] else: nfunc_to_use = nfunc_list if not adfam: for nfunc in nfunc_to_use: titles.append('$N={}$'.format(nfunc)) else: for nfunc in nfunc_to_use: titles.append('$T=1,N={}$'.format(nfunc)) for nfunc in nfunc_to_use: titles.append('$T=2,N={}$'.format(nfunc)) if adfam_nn: # label adfam param L rather than T titles = [title.replace('T', 'L') for title in titles] return titles
236b29386f2ea4c38e803240a2a7fa167336c952
17,957
def FillAbstractObject(service, objectType, valueDict): """This method is useful for creating the "cartItems" and "payments" fields of the CheckoutShoppingCart method. It takes in the array currently being built, the name in the WSDL of the element to be added (e.g. DebitAccountInfo for payments or Package for the Item field of a CartItem.""" newObject = service.factory.create(objectType) for currField in valueDict.keys(): setattr(newObject, currField, valueDict[currField]) return newObject
d2a8d7625c05a70cad7e0e9a359e1326973ea3ff
17,958
import subprocess def get_file_contents(branch, path): """Get the contents of a file on a particular branch.""" result = subprocess.run( ['git', 'show', f'{branch}:{path}'], check=True, capture_output=True, ) return result.stdout.decode('utf-8')
9e92f041cef6e82ec48f66aadf22d296321a4c8d
17,959
import win32api, win32process from typing import Optional def _set_win_process_priority() -> Optional[bool]: """ Sets the process priority class to an elevated value. Microbenchmarks are typically very short in duration and therefore are prone to noise from other code running on the same machine. Setting the process priority to an elevated level while running the benchmarks helps mitigate that noise so the results are more accurate (and also more consistent between runs). Returns ------- success : bool, optional Indication of whether (or not) setting the process priority class succeeded. If the priority did not need to be elevated (because it was already), None is returned. """ # Psuedo-handle for the current process. # Because this is a psuedo-handle (i.e. isn't a real handle), it doesn't need to be cleaned up. curr_proc_hnd = win32api.GetCurrentProcess() # We use the 'ABOVE_NORMAL_PRIORITY_CLASS' here, as that should be good enough to reduce general noise; # if necessary, we can try the 'HIGH_PRIORITY_CLASS' but that class and higher can begin to cause the system # to become unresponsive so we'll avoid it unless needed; or we can control it with something like a # 'strong_hint' bool parameter which chooses between ABOVE_NORMAL_PRIORITY_CLASS and HIGH_PRIORITY. target_priority_class: int = win32process.ABOVE_NORMAL_PRIORITY_CLASS try: # Get the current process priority class. If it's already equal to or higher than the class # we were going to set to, don't bother -- we don't want to lower it. current_priority_class = win32process.GetPriorityClass(curr_proc_hnd) if current_priority_class >= target_priority_class: return None else: # Try to set the priority level for the current process. # It can fail if the user (or process) hasn't been granted the PROCESS_SET_INFORMATION right. # https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-setpriorityclass return win32process.SetPriorityClass(curr_proc_hnd, target_priority_class) except: return False
c69e2ffcf1de40507f77113ea9d4a15730ed3f1a
17,960
import random def find_junk(a, nodes, edge_list, cur_cci_junk): """ """ c = random.choice(nodes) while [a, c] in nodes or [a, c] in cur_cci_junk: c = random.choice(nodes) return a, c
258cea57cbff782a4d26863f46c31483e0263e6a
17,962
def linear_interp(x, in_min, in_max, out_min, out_max): """ linear interpolation function maps `x` between `in_min` -> `in_max` into `out_min` -> `out_max` """ return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min
eff41353ee48e1c2b1372030fa5480ce8e3bb817
17,963
def get47Dfeatures(): """ Returns list containing the names of the 47 features found in the data accessible through `ttbarzp.import47Ddata()` """ return [ 'pT b1', 'pT b2', 'pT b3', 'pT b4', 'sdEta b1 b2', 'sdEta b1 b3', 'sdEta b1 b4', 'sdEta b2 b3', 'sdEta b2 b4', 'sdEta b3 b4', 'sdPhi b1 b2', 'sdPhi b1 b3', 'sdPhi b1 b4', 'sdPhi b2 b3', 'sdPhi b2 b4', 'sdPhi b3 b4', 'dR b1 b2', 'dR b1 b3', 'dR b1 b4', 'dR b2 b3', 'dR b2 b4', 'dR b3 b4', 'MET', 'pT l', 'MT l MET', 'M b1 b2', 'M b1 b3', 'M b1 b4', 'M b2 b3', 'M b2 b4', 'M b3 b4', 'MT b1 l MET', 'MT b2 l MET', 'MT b3 l MET', 'MT b4 l MET', 'M j1 j2', 'pT j1', 'pT j2', 'dR j1 j2', 'dR b1 l', 'dR b2 l', 'dR b3 l', 'dR b4 l', 'sdPhi b1 l', 'sdPhi b2 l', 'sdPhi b3 l', 'sdPhi b4 l']
de433bf6e326978bf78205b7ed513a191a424c3b
17,964
def lrange(*args): """For compatibility with range() in python 2""" return list(range(*args))
5b70d400cd9725284f9ba7b6d512386988f00b2e
17,965
def migrate_autoload_details(autoload_details, shell_name, shell_type): """ Migrate autoload details. Add namespace for attributes :param autoload_details: :param shell_name: :param shell_type: :return: """ mapping = {} for resource in autoload_details.resources: resource.model = "{shell_name}.{model}".format(shell_name=shell_name, model=resource.model) mapping[resource.relative_address] = resource.model for attribute in autoload_details.attributes: if not attribute.relative_address: # Root element attribute.attribute_name = "{shell_type}.{attr_name}".format(shell_type=shell_type, attr_name=attribute.attribute_name) else: attribute.attribute_name = "{model}.{attr_name}".format(model=mapping[attribute.relative_address], attr_name=attribute.attribute_name) return autoload_details
f316a0a63520a9b245d3000d23181c2fff3b2292
17,966
def new_list(a): """ Converts lists into number format with minimal decimal places :param a: list :return: new list with floats """ b = [] for i in a: b.append(float(format(i, ".2f"))) return b
f1f80ea44f58f0780f02e8df698dbeb81d7ac934
17,967
def z2g(r_geoid, g0, z): """Calculate gravitational acceleration at elevation Derived from atmlabs equivalent function https://www.sat.ltu.se/trac/rt/browser/atmlab/trunk/geophysics/pt2z.m :param r: surface radius at point [m] :param g0: surface gravitational acceleration at point [m/s^2] :param z: elevation [m] :returns: gravitational acceleration at point [m/s^2] """ #137 function g = z2g(r_geoid,g0,z) #138 % #139 g = g0 * (r_geoid./(r_geoid+z)).^2; return g0 * (r_geoid/(r_geoid+z))**2;
c04080156670e137f56ba4dfc872530bbada4d27
17,969
import re def a_bytes_copied(plugin_ctx, fsm_ctx): """Capture number of bytes copied.""" m = re.search(r"\d+ bytes copied in .* secs", fsm_ctx.ctrl.before) if m: plugin_ctx.info('{}'.format(m.group(0))) else: plugin_ctx.info('{}'.format(fsm_ctx.ctrl.before)) return True
5b5f9135660a0ab7e634b2b0630f8af47ae02dd5
17,970
def get_crawled_date(df): """ Extract crawled date from the 'scrape_id' field. """ df['crawled_date'] = df['scrape_id'].astype(str) df['crawled_date'] = df['crawled_date'].apply(lambda x: x[:8]) return df
af5242fa98de713eaa0bbd8684f797b5db563033
17,971
import random import math def box_optimizer(f, starting_point, gs=[], x_range=[-1000, 1000], alpha=1.3, epsilon=1e-6, limit_iter=-1): """Finds minimum for function for given restrictions Args: f (TargetFunction): [function for which minimum needs to be found] starting_point ([list]): [starting point for optimizations] gs (list, optional): [implicit limitations, lambda expressions]. Defaults to []. x_range (list, optional): [explicit limitations, range]. Defaults to [-1000, 1000]. alpha (float, optional): [alpha for calculating reflection]. Defaults to 1.3. epsilon ([float], optional): [threshold for stopping criteria]. Defaults to 1e-6. limit_iter (int, optional): [maximum iterations]. Defaults to -1. Raises: ValueError: [raised in case starting point doesn't match implicit or explicit restrictions] Returns: [list]: [point for which function is minimal] """ X0 = starting_point for x in X0: if x > x_range[1] or x < x_range[0]: raise ValueError( "Starting point doesn't meet x_range requirements") if len(gs) != 0: for g in gs: if g(*X0) < 0: raise ValueError("Starting point doesn't meet gs requirements") n = len(X0) Xc = X0 Xes = [X0] for _ in range(2 * len(Xc) - 1): r = random.random() X_new = [x_range[0] + r * (x_range[1] - x_range[0])] * len(Xc) while any([g(*X_new) < 0 for g in gs]): X_new = [(1 / 2) * (x + c) for x, c in zip(X_new, Xc)] Xes.append(X_new) Xc = [sum([x[i] for x in Xes]) / len(Xes) for i in range(n)] it = 0 while True: f_vals = [f(*x) for x in Xes] h = f_vals.index(sorted(f_vals, reverse=True)[0]) h2 = f_vals.index(sorted(f_vals, reverse=True)[1]) Xc = [sum([x[i] for x in Xes if Xes.index(x) != h]) / (len(Xes) - 1) for i in range(n)] Xr = [(1 + alpha) * Xc[i] - alpha * Xes[h][i] for i in range(n)] for i in range(n): if Xr[i] < x_range[0]: Xr[i] = x_range[0] elif Xr[i] > x_range[1]: Xr[i] = x_range[1] while any([g(*Xr) < 0 for g in gs]): Xr = [(1 / 2) * (x + c) for x, c in zip(Xr, Xc)] if f(*Xr) > f(*Xes[h2]): Xr = [(1 / 2) * (x + c) for x, c in zip(Xr, Xc)] Xes[h] = Xr if math.sqrt((1/len(Xes)) * sum([(f(*Xes[i]) - f(*Xc)) ** 2 for i in range(len(Xes))])) <= epsilon: f_vals = [f(*x) for x in Xes] return Xes[f_vals.index(min(f_vals))] if limit_iter > 0 and it >= limit_iter: print( '\033[93mMax iteration {} reached for box optimizer\033[0m'.format(limit_iter)) f_vals = [f(*x) for x in Xes] return Xes[f_vals.index(min(f_vals))] it += 1
9ff50db7711d2d94025bd956278749d6c59547c6
17,972
async def add_future_callback(fut, success_callback, fail_callback=None, need_fut_as_success_cb_args=True): """ adding a callback after future completed :param fut: :param callback: :param args: :return: """ try: result = await fut if need_fut_as_success_cb_args: await success_callback(result) else: await success_callback() except Exception: if fail_callback: await fail_callback() raise return result
a42c8e2cc31d91da7333842710ed8677cabb1baa
17,973
from typing import Union from typing import Callable from typing import List from typing import Tuple def make_cmd( to_fn_call: Union[str, Callable[[List[str]], str]], arity: int ) -> Tuple[str, int]: """ Returns a tuple with the transpiled command and its arity. :param to_fn_call If Callable, takes a list of variables that hold values popped from the stack (reversed) and returns a string representing a value created by running some function. If str, its format method will be called with the aforementioned list of variables as arguments. on those variables :param arity The arity of the function """ var_names = [f"x{n}" for n in range(arity, 0, -1)] if isinstance(to_fn_call, str): if arity > 0: fn_call = to_fn_call.format(*var_names) else: fn_call = to_fn_call else: fn_call = to_fn_call(var_names) if arity > 0: cmd = f"{', '.join(var_names[::-1])} = pop(vy_globals.stack, {arity});" else: cmd = "" cmd += f"res = {fn_call}; vy_globals.stack.append(res);" return cmd, arity
bf71c9cb40aee40df3cee1ee08e156bca62091ff
17,974