content
stringlengths 35
416k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
|---|---|---|
def _escape(input_string: str) -> str:
"""
Adopted from https://github.com/titan550/bcpy/blob/master/bcpy/format_file_builder.py#L25
"""
return (
input_string.replace('"', '\\"')
.replace("'", "\\'")
.replace("\r", "\\r")
.replace("\n", "\\n")
)
|
65cfa65d2dc7acdfe80d5a7555b48f19bb267955
| 17,172
|
def make_word_class_dict(word_info):
"""
根据数据库查询结果,构造词-类字典
:param word_info: 数据库中记录
:return: 根据查询结果建立的词-类字典
"""
word_class_dict = {}
for entry in word_info:
word = entry[1]
word_class = entry[5] # 第五列为词语的类别字段
word_class_dict[word] = word_class
return word_class_dict
|
5bd29c1145d02eea18e750261e724c78b0e31f33
| 17,175
|
import re
def baselineNumber (Title):
"""Extract the processing baseline number from the given product title."""
return re.sub(r".+_N(\d{4})_.+", r"\1", Title)
|
c69d099c6173cb771d14d35f520f12f32079229f
| 17,178
|
import html
def html_unescape(text: str) -> str:
"""
convert HTML content to readable
1. unescape html
2. remove some empty code
Args:
text:
Returns:
"""
text = html.unescape(text).strip()
text = text.replace("\xa0", "")
return text
|
ed6fe87ab678ef4094248d2047d046d992a1db59
| 17,179
|
def _charlson():
"""
Wrapper function for charlson comorbidity dictionary
"""
return {
'Myocardial infarction':{
10:['I21.x', 'I22.x', 'I25.2'],
9:[ '410.x', '412.x'],
'Original':1,
'Quan11':0,
},
'Congestive heart failure':{
10:['I09.9', 'I11.0', 'I13.0', 'I13.2', 'I25.5', 'I42.0', 'I42.5-I42.9', 'I43.x', 'I50.x', 'P29.0'],
9:['398.91', '402.01', '402.11', '402.91', '404.01', '404.03', '404.11', '404.13', '404.91', '404.93', '425.4-425.9', '428.x'],
'Original':1,
'Quan11':2,
},
'Peripheral vascular disease':{
10:['I70.x', 'I71.x', 'I73.1', 'I73.8', 'I73.9', 'I77.1', 'I79.0', 'I79.2', 'K55.1', 'K55.8', 'K55.9', 'Z95.8', 'Z95.9'],
9:['093.0', '437.3', '440.x', '441.x', '443.1-443.9', '47.1', '557.1', '557.9', 'V43.4'],
'Original':1,
'Quan11':0,
},
'Cerebrovascular disease':{
10:['G45.x', 'G46.x', 'H34.0', 'I60.x-I69.x'],
9:['362.34', '430.x-438.x'],
'Original':1,
'Quan11':0,
},
'Dementia':{
10:['F00.x-F03.x', 'F05.1', 'G30.x', 'G31.1'],
9:['290.x', '294.1', '331.2'],
'Original':1,
'Quan11':2,
},
'Chronic pulmonary disease':{
10:['I27.8', 'I27.9', 'J40.x-J47.x', 'J60.x-J67.x', 'J68.4', 'J70.1', 'J70.3'],
9:['416.8', '416.9', '490.x-505.x', '506.4', '508.1', '508.8'],
'Original':1,
'Quan11':1,
},
'Rheumatic disease':{
10:['M05.x', 'M06.x', 'M31.5', 'M32.x-M34.x', 'M35.1', 'M35.3', 'M36.0'],
9:['446.5', '710.0-710.4', '714.0-714.2', '714.8', '725.x'],
'Original':1,
'Quan11':1,
},
'Peptic ulcer disease':{
10:['K25.x-K28.x'],
9:['531.x-534.x'],
'Original':1,
'Quan11':0,
},
'Mild liver disease':{
10:['B18.x', 'K70.0-K70.3', 'K70.9', 'K71.3-K71.5', 'K71.7', 'K73.x', 'K74.x', 'K76.0', 'K76.2-K76.4', 'K76.8', 'K76.9', 'Z94.4'],
9:['070.22', '070.23', '070.32', '070.33', '070.44', '070.54', '070.6', '070.9', '570.x', '571.x', '573.3', '573.4', '573.8', '573.9', 'V42.7'],
'Original':1,
'Quan11':2,
},
'Diabetes without chronic complication':{
10:['E10.0', 'E10.1', 'E10.6', 'E10.8', 'E10.9', 'E11.0', 'E11.1', 'E11.6', 'E11.8', 'E11.9', 'E12.0', 'E12.1', 'E12.6', 'E12.8', 'E12.9', 'E13.0', 'E13.1', 'E13.6', 'E13.8', 'E13.9', 'E14.0', 'E14.1', 'E14.6', 'E14.8', 'E14.9'],
9:['250.0-250.3', '250.8', '250.9'],
'Original':1,
'Quan11':0,
},
'Diabetes with chronic complication':{
10:['E10.2-E10.5', 'E10.7', 'E11.2-E11.5', 'E11.7', 'E12.2-E12.5', 'E12.7', 'E13.2-E13.5', 'E13.7', 'E14.2-E14.5', 'E14.7'],
9:['250.4-250.7'],
'Original':2,
'Quan11':1,
},
'Hemiplegia or paraplegia':{
10:['G04.1', 'G11.4', 'G80.1', 'G80.2', 'G81.x', 'G82.x', 'G83.0-G83.4', 'G83.9'],
9:['334.1', '342.x', '343.x', '344.0-344.6', '344.9'],
'Original':2,
'Quan11':2,
},
'Renal disease':{
10:['I12.0', 'I13.1', 'N03.2-N03.7', 'N05.2-N05.7', 'N18.x', 'N19.x', 'N25.0', 'Z49.0-Z49.2', 'Z94.0', 'Z99.2'],
9:['403.01', '403.11', '403.91', '404.02', '404.03', '404.12', '404.13', '404.92', '404.93', '582.x', '583.0-583.7', '585.x', '586.x', '588.0', 'V42.0', 'V45.1', 'V56.x'],
'Original':2,
'Quan11':1,
},
'Any malignancy, including lymphoma and leukemia, except malignant neoplasm of skin':{
10:['C00.x-C26.x', 'C30.x-C34.x', 'C37.x-C41.x', 'C43.x', 'C45.x-C58.x', 'C60.x-C76.x', 'C81.x-C85.x', 'C88.x', 'C90.x-C97.x'],
9:['140.x-172.x', '174.x-195.8', '200.x-208.x', '238.6'],
'Original':2,
'Quan11':2,
},
'Moderate or severe liver disease':{
10:['I85.0', 'I85.9', 'I86.4', 'I98.2', 'K70.4', 'K71.1', 'K72.1', 'K72.9', 'K76.5', 'K76.6', 'K76.7'],
9:['456.0-456.2', '572.2-572.8'],
'Original':3,
'Quan11':4,
},
'Metastatic solid tumor':{
10:['C77.x-C80.x'],
9:['196.x-199.x'],
'Original':6,
'Quan11':6,
},
'AIDS/HIV':{
10:['B20.x-B22.x', 'B24.x'],
9:['042.x-044.x'],
'Original':6,
'Quan11':4,
},
}
|
3248380ef5e717b3761ffded11db17631311c5c6
| 17,180
|
def _is_expecting_event(event_recv_list):
""" check for more event is expected in event list
Args:
event_recv_list: list of events
Returns:
result: True if more events are expected. False if not.
"""
for state in event_recv_list:
if state is False:
return True
return False
|
befbe6a614ede6a7e5b59d3bda9c148c04ddadde
| 17,182
|
def get_orders_dict(orders):
"""Form a dictionary of current order buys and sells
"""
list_orders = list(orders)
orders_dict = {}
orders_dict["sells"] = []
orders_dict["buys"] = []
for order in list_orders:
if order["side"] == "sell":
temp_price = round(float(order["price"]), 2)
orders_dict["sells"].append(temp_price)
if order["side"] == "buy":
temp_price = round(float(order["price"]), 2)
orders_dict["buys"].append(temp_price)
return orders_dict
|
9d126d759dd0b3da7c584f6d4163243d8b2cee43
| 17,183
|
def data_gen(list_length):
"""
>>> data_gen(3)
{'numbers_list': [0, 1, 2]}
>>> data_gen(7)
{'numbers_list': [0, 1, 2, 3, 4, 5, 6]}
"""
numbers_list = [number for number in range(list_length)]
return {"numbers_list" : numbers_list}
|
265c5925c086afc04816ac3e965f0487d31ec9d9
| 17,184
|
import re
def get_offer_total_floors(html_parser, default_value=''):
"""
This method returns the maximal number of floors in the building.
:param html_parser: a BeautifulSoup object
:rtype: string
:return: The maximal floor number
"""
# searching dom for floor data
floor_raw_data = html_parser.find(class_="param_floor_no")
if hasattr(floor_raw_data, 'span'):
floor_data = floor_raw_data.span.text
else:
return default_value
# extracting information about floor
match = re.search(r"\w+\s(?P<total>\d+)", floor_data)
total_floors = default_value
if match:
total_floors = match.groupdict().get("total")
return total_floors
|
170e75a04104f6fa1c544788c3d25324edd6b2e8
| 17,185
|
import functools
def request(req=None, method=None, requires_response=True):
"""Call function req and then emit its results to the LSP server."""
if req is None:
return functools.partial(request, method=method,
requires_response=requires_response)
@functools.wraps(req)
def wrapper(self, *args, **kwargs):
if self.lsp_ready:
params = req(self, *args, **kwargs)
if params is not None:
self.emit_request(method, params, requires_response)
return wrapper
|
925ab1289389a8a2402dde4c0a96002f64833010
| 17,186
|
from typing import Counter
def word_lookup(words: list, rand_string: str):
"""
This function takes the list of words that can be used for the game and the
random string of consonants and vowels as arguments. The function then
iterates through every word in the list. A list is created from the
random string. Then the function iterates through every letter in the
word, if the letter is in the random string list, it is appended to the
letters_found variable. Once this is complete, we subtract the character
occurrences in both the word, and the letters_found variable; if the
length of the resulting dictionary is 0, the word is added to the
possible answers list. The function then checks the length of the word
found, if it is longer than the current longest word, its length is set
as the new longest word. After all the possible answers are found, the
function creates a list of longest answers by using the length of the
longest word and appending all words that are this long to the longest
answers list.
:param words: The list of words parsed by the dictionary_reader function
:type words: list
:param rand_string: The string of random characters generated by the user
:type rand_string: str
:return: The list of longest_answers, and the list of possible_answers
:rtype: list
"""
longest_word_length: int = 0
possible_answers: list = []
longest_answers: list = []
for word in words:
letters_found: str = ""
rand: list = list(rand_string)
for letter in word:
if letter in rand:
letters_found += rand.pop(rand.index(letter))
if len(Counter(word) - Counter(letters_found)) == 0:
possible_answers.append(word)
if len(word) > longest_word_length:
longest_word_length = len(word)
for word in possible_answers:
if len(word) == longest_word_length:
longest_answers.append(word)
return longest_answers, possible_answers
|
4c5ab00cc318a3c9a1ec357750495ee08ce99499
| 17,187
|
def rreplace(s, old, new, occurrence):
"""This function performs a search-and-replace on a string for a given
number of occurrences, but works from the back to the front.
:param s: string to manipulate
:param old: substring to search for
:param new: substring to replace with
:param occurrence: number of occurrences
:return: Modified string.
"""
li = s.rsplit(old, occurrence)
return new.join(li)
|
eac6d5ffb8adb7940e6d3374eec130cafcc311e7
| 17,188
|
import requests
def get_all_episodes(cfg, series_id):
"""
Request all episodes within a series.
:param series_id: Unique identifier for series
:param cfg: Opencast configuration
:return: List of pair of eventIds and titles for episodes
"""
url = cfg['uri'] + "/api/events"
params = {"filter": "is_part_of:" + series_id,
"sort": "start_date:ASC"}
result = []
r = requests.get(url=url, params=params, auth=(cfg['user'], cfg['password']))
json_data = r.json()
for elem in json_data:
result.append([elem['identifier'], elem['title']])
return result
|
05ea8c7c36641ec5ed3dacebe9579a903ef01fe7
| 17,189
|
def default_sid_function(id, rsid):
"""
The default function for turning a Bgen (SNP) id and rsid into a
:attr:`pysnptools.distreader.DistReader.sid`.
If the Bgen rsid is '' or '0', the sid will be the (SNP) id.
Otherwise, the sid will be 'ID,RSID'
>>> default_sid_function('SNP1','rs102343')
'SNP1,rs102343'
>>> default_sid_function('SNP1','0')
'SNP1'
"""
if rsid == "0" or rsid == "":
return id
else:
return id + "," + rsid
|
f13b8adab14eb4476a151059938eddf9763d35ef
| 17,190
|
def filter_BF_matches(matches: list, threshold=45) -> list:
"""
filter matches list and keep the best matches according to threshold
:param matches: a list of matches
:param threshold: threshold filtering
:return: matches_tmp: list of the best matches
"""
matches_tmp = []
sorted_matches = sorted(matches, key=lambda x: x.distance)
threshold_percent = int(len(sorted_matches) * threshold / 100)
for match_index in range(threshold_percent):
matches_tmp.append([sorted_matches[match_index].queryIdx, sorted_matches[match_index].trainIdx])
return matches_tmp
|
cce90d95f72b00148355552d0284b87cb16a40c1
| 17,192
|
def get_school_total_funding(school_id, aug_school_info):
"""
Gets (total) funding associated with a school.
Args:
district_id (str): NCES ID of target school (e.g. '010000500889').
aug_school_info (pandas.DataFrame): Target augmented school information
(as formatted by `auxiliary.data_handler.DataHandler`).
Returns:
float: Single number comprising school-level data.
"""
return float(aug_school_info.loc[school_id]["adjusted_total_revenue_per_student"] * aug_school_info.loc[school_id]["total_students"])
|
1827c5499d5af0c06e213b7a1517647d63e9c7ad
| 17,193
|
def _convert_key_and_value(key, value):
"""Helper function to convert the provided key and value pair (from a dictionary) to a string.
Args:
key (str): The key in the dictionary.
value: The value for this key.
Returns:
str: The provided key value pair as a string.
"""
updated_key = f'"{key}"' if isinstance(key, str) else key
updated_value = f'"{value}"' if isinstance(value, str) else value
return f"{updated_key}: {updated_value}, "
|
075c0a9a7fe54c35c19296e3da827484b579d4c8
| 17,194
|
def max_value_bits(b):
"""
Get maximum (unsigned) value of a given integer bit size variable.
Parameters
----------
b : int
Number of bits (binary values) that are used to describe a putative variable.
Returns
-------
max_value : int
Maximum value that putative variable can hold (integer unsigned).
"""
return (2 ** b) - 1
|
24041ed8833da09c1ecc8dea1c12f63ca7b29ed0
| 17,195
|
def aligned_output(cols, indent, tab_size=4):
"""
Pretty printing function to output tabular data containing multiple
columns of text, left-aligned.
The first column is aligned at an indentation of "indent". Each
successive column is aligned on a suitable multiple of the "tab_size"
with spaces for all indentation.
"cols" is assumed to be a list of columns, with each column holding
an equal length list of string values.
"""
# Check the input data
ncols = len(cols)
if ncols == 0: return ""
nrows = len(cols[0])
if nrows == 0: return ""
# Work out the indentations and widths of each column
indents = [ indent ]
widths = []
for col in range(1, ncols):
width = max(len(x) for x in cols[col-1])
indents.append(((indents[col-1]+width+tab_size) / tab_size) * tab_size)
widths.append(indents[col] - indents[col-1])
# Now output the actual tabular values
result = ""
for row in range(0, nrows):
if row > 0:
result += ",\n" + (" " * indent)
if len(cols) > 1:
for col in range(0, ncols-1):
result += cols[col][row].ljust(widths[col])
result += cols[-1][row]
return result
|
856391043607c4570f75b804917c10b4c4b42dc1
| 17,197
|
def max_path_sum_in_triangle(triangle):
"""
Finds the maximum sum path in a triangle(tree) and returns it
:param triangle:
:return: maximum sum path in the given tree
:rtype: int
"""
length = len(triangle)
for _ in range(length - 1):
a = triangle[-1]
b = triangle[-2]
for y in range(len(b)):
b[y] += max(a[y], a[y + 1])
triangle.pop(-1)
triangle[-1] = b
return triangle[0][0]
|
bbac81a717e3e8ceeedf1a3d61e0ae3915e3efce
| 17,198
|
import re
def remove_blank(text):
"""
Args:
text (str): input text, contains blank between zh and en, zh and zh, en and en
Returns:
str: text without blank between zh and en, zh and zh, but keep en and en
Examples:
>>> text = "比如 Convolutional Neural Network,CNN 对应中 文是卷 积神 经网络。"
>>> remove_blank(text)
"比如Convolutional Neural Network,CNN对应中文是卷积神经网络。"
"""
# filter blank space between Chinese characters
text = re.sub(r'([^a-zA-Z])([\u0020]*)', r'\1', text)
# remove blank space between English characters and Chinese characters
text = re.sub(r'([\u0020]*)([^a-zA-Z])', r'\2', text)
return text
|
8b2093254aeefc26e72c507f0ec5f9e7400a41ea
| 17,199
|
def last_of_list(the_list):
"""Return the last item of the provided list."""
if len(the_list) == 0:
return None
return the_list[len(the_list) - 1]
|
b88bf4c2f55497093888cebe703a14c1eb45199d
| 17,202
|
import torch
def get_mean_std(loader):
"""Calculate mean and standard deviation of the dataset
Args:
loader (instance): torch instance for data loader
Returns:
tensor: mean and std of data
"""
channel_sum, channel_squared_sum, num_batches = 0,0,0
for img,_ in loader:
channel_sum += torch.mean(img/255., dim=[0,1,2])
channel_squared_sum += torch.mean((img/255.)**2, dim=[0,1,2])
num_batches += 1
mean = channel_sum / num_batches
std = (channel_squared_sum/num_batches - mean**2)**0.5
print("The mean of dataset : ", mean)
print("The std of dataset : ", std)
return mean,std
|
f5ee2a66edc5925aec3f78811c8ec6b8b943a1d3
| 17,203
|
from typing import Tuple
def get_sweep_time_ascii(
data: str, sweep_b: Tuple[int, int], time_b: Tuple[int, int]
) -> Tuple[int, int]:
"""Get sweep and time from a given ASCII string.
:param data: ASCII string
:param sweep_b: Boundaries of sweep
:param time_b: Boundaries of time
:return: sweep, time
"""
sweep_val = int(data[sweep_b[0] : sweep_b[1]], 2)
time_val = int(data[time_b[0] : time_b[1]], 2)
return sweep_val, time_val
|
f1848b70439314dff5d4a5e50ae0706f64315378
| 17,204
|
def getFrameLength(socketFile, boundary, skipLines):
"""Get frame length from stream"""
line = socketFile.readline()
# Find boundary
while len(line) > 0 and line.count(boundary) == 0:
line = socketFile.readline()
length = 0
# Read in chunk headers
while len(line) > 0 and line.strip() != "" and length == 0:
parts = line.split(b":")
if len(parts) > 1 and parts[0].lower().count(b"content-length") > 0:
# Grab chunk length
length = int(parts[1].strip())
# Skip lines before image data
i = skipLines
while i > 0:
line = socketFile.readline()
i -= 1
else:
line = socketFile.readline()
return length
|
c21d3baa8994d86aae94dd9bafdbb65d29db14ec
| 17,205
|
def bubbles_from_fixed_threshold(data, threshold=0, upper_lim=True):
"""
@ Giri at al. (2018a)
It is a method to identify regions of interest in noisy images.
The method uses a fixed threshold.
Parameters
----------
data : ndarray
The brightness temperature or ionization fraction cube.
threshold : float
The fixed threshold value (Default: 0).
upper_lim : bool
This decides which mode in the PDF is to be identified.
'True' identifies ionized regions in brightness temperature, while
'False' identifies in the xfrac data (Default: True).
Returns
-------
Binary cube where pixels identified as region of interest are the True.
"""
if upper_lim: return (data<=threshold)
else: return (data>=threshold)
|
63977ae51eaa80a99b8325124e2d78b98f61b549
| 17,206
|
def coords_deplacees(c, direction):
"""
Permet d'avoir les nouveaux coordonnées du gardien
:param c: liste avec les coordonnées du gardien
:param direction: direction du placement du gardien
:return: liste avec les nouveaux coordonnées du gardien
"""
if direction == 'haut':
c[0] -= 1
elif direction == 'bas':
c[0] += 1
elif direction == 'gauche':
c[1] -= 1
elif direction == 'droite':
c[1] += 1
return c
|
169eb358cea335fb18e91376c487767ba0468150
| 17,207
|
import re
def lower_case_all_tags(s):
"""
Change all the tags to lower-case
"""
return re.sub(r'(<.*?>)', lambda pat: pat.group(1).lower(), s,
flags=re.IGNORECASE)
|
54b8dfdeb81e7cc21c930fd97e1787616a2a8939
| 17,209
|
import binascii
def unpack(packet):
"""
unpack a packet into its hex
"""
return binascii.unhexlify(packet)
|
8ab24367d583cea1e44e283a9d10298c0f8ca0ee
| 17,210
|
import argparse
import pathlib
def get_parser():
"""Returns an argument parser."""
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
'--out', required=True, type=pathlib.Path,
help='file to output diff result')
parser.add_argument(
'--cpp', required=True, type=pathlib.Path,
help='header file generated by generate-chromeos-dbus-bindings')
parser.add_argument(
'--go', required=True, type=pathlib.Path,
help='header file generated by go-generate-chromeos-dbus-bindings')
return parser
|
793bd88219906f88154b5d8176b1c2c6e7373bc6
| 17,211
|
def check(file1, file2):
"""Compare file1 and file2.
Ignore leading and trailing whitespaces of the file"""
with open(file1) as f1:
test_output = f1.read()
with open(file2) as f2:
ref_output = f2.read()
#p = subprocess.run(['diff', file1,file2], stdout=subprocess.PIPE)
#print(p.stdout)
return test_output.strip() == ref_output.strip()
#return test_output == ref_output
|
3a10065ea681188fd4453bade2a04207aadf954a
| 17,213
|
def trim_lcs(lcs : dict, cut_requirement : int = 0) -> dict :
"""
Remove epochs from a lightcurve that occur before object discovery, which
is defined as the first mjd with SNR >= 3.0.
Args:
lcs (dict): dictionary from a lightcurve file
cut_requirement (int, default=0): cut number to require
Returns:
copy of lcs with pre-discovery epochs removed from each lightcurve
"""
out_lcs = {}
for snid, info in lcs.items():
# Skip if the lightcurve will get cut during feature extraction
if not (info['cut'] == -1 or info['cut'] > cut_requirement):
continue
# Get discovery MJD, skip if light curve is never discovered
flux = info['lightcurve']['FLUXCAL'].values.astype(float)
fluxerr = info['lightcurve']['FLUXCALERR'].values.astype(float)
detection_mask = ((flux / fluxerr) >= 3.0)
if sum(detection_mask) == 0:
continue
mjds = info['lightcurve']['MJD'].values.astype(float)
mjd0 = mjds[detection_mask].min()
# Trim lightcurve
lc = info['lightcurve'][mjds >= mjd0].copy().reset_index(drop=True)
# Store results
out_lcs[snid] = {'lightcurve': lc, 'cut': info['cut']}
return out_lcs
|
0071682cebb6cca56d93eb808d3d662d8e908787
| 17,214
|
def format_data_types(s):
"""
apply the correct data type to each value in the list created from a comma
separated sting "s"
x1: PDB ID (string)
x2: Macro molecule overlaps (int)
x3: Symmetry overlaps (int)
x4: All overlaps (int)
x5: Macro molecule overlaps per 1000 atoms (float)
x6: Symmetry overlaps per 1000 atoms (float)
x7: All overlaps per 1000 atoms (float)
x8: year model deposited in PDB (int)
x9: experiment type (string)
"""
d = [x.strip() for x in s.split(',')]
if len(d) == 9:
# integer values
for i in [1,2,3,7]:
d[i] = int(d[i])
# float values
for i in [4,5,6]:
d[i] = round(float(d[i]),1)
return d
else:
return None
|
b027e98e3fcba4439c9073936cc9bcfc6df93b9d
| 17,215
|
def prep_first_file(ds, chan):
"""
Take the dataset for chan and drop spurious variables and
rename the main variables
"""
drop_vars = (
"nominal_satellite_subpoint_lat",
"nominal_satellite_subpoint_lon",
"nominal_satellite_height",
"geospatial_lat_lon_extent",
"algorithm_dynamic_input_data_container",
"earth_sun_distance_anomaly_in_AU",
"processing_parm_version_container",
"algorithm_product_version_container",
"band_id",
"band_wavelength",
"esun",
"kappa0",
"max_reflectance_factor",
"mean_reflectance_factor",
"min_reflectance_factor",
"outlier_pixel_count",
"percent_uncorrectable_GRB_errors",
"percent_uncorrectable_L0_errors",
"planck_bc1",
"planck_bc2",
"planck_fk1",
"planck_fk2",
"std_dev_reflectance_factor",
"total_number_of_points",
"valid_pixel_count",
"focal_plane_temperature_threshold_exceeded_count",
"maximum_focal_plane_temperature",
"focal_plane_temperature_threshold_increasing",
"focal_plane_temperature_threshold_decreasing",
)
drop_attr = (
"id",
"production_data_source",
"dataset_name",
"title",
"summary",
"processing_level",
"date_created",
)
out = ds.rename({"CMI": f"CMI_C{chan:02d}", "DQF": f"DQF_CMI_C{chan:02d}"})
out.attrs["timezone"] = "UTC"
out.attrs["datasets"] = (ds.dataset_name,)
for attr in drop_attr:
del out.attrs[attr]
out = out.drop(drop_vars, errors="ignore").set_coords("goes_imager_projection")
return out.load()
|
8e192cddfcef81d482fb076bcf68a01fa0afd181
| 17,216
|
import math
def choose(n,k):
"""Standard Choose function.
:param n: The total sample size.
:type n: int
:param k: The number of elements you're choosing.
:type k: int
:return: n choose k
:rtype: int
"""
return (math.factorial(n)/(math.factorial(k)*math.factorial(n-k)))
|
faf862e502971ec55a34eb8ee2909b9790252a32
| 17,217
|
import re
def sanitize_target(target: str = "") -> str:
"""
Format target, allow only numeric character e.g.
- "012345678901234" => "012345678901234"
- "080-123-4567" => "0801234567"
- "1-1111-11111-11-1" => "1111111111111"
- "+66-89-123-4567" => "66891234567"
:param target:
:return:
"""
result = re.sub(r"\D", "", target)
return result
|
ee490997a96a409967f7c8eebcb0e8daa28180b6
| 17,218
|
import numpy
import math
def analytic(x):
""" analytic solution """
return numpy.cos(math.pi*x/2) + 2.0*numpy.sin(math.pi*x/2) - 1.0
|
953e995dfe91a7ed76ff04394f7094b894d177b1
| 17,219
|
def create_label_dict(signal_labels, backgr_labels, discard_labels):
""" Create label dictionary, following the convetion:
* signal_labels are mapped to 1,2,3,...
* backgr_labels are mapped to 0
* discard_labels are mapped to -1
Args:
signal_labels: list, or list of lists
Labels of interest. Will be mapped to 1,2,3,...
Several labels can be mapped to the same integer by using nested lists. For example,
signal_labels=[A,[B,C]] would result in A being mapped to 1 and B and C both being mapped
to 2.
backgr_labels: list
Labels will be grouped into a common "background" class (0).
discard_labels: list
Labels will be grouped into a common "discard" class (-1).
Returns:
label_dict: dict
Dict that maps old labels to new labels.
"""
label_dict = dict()
for l in discard_labels: label_dict[l] = -1
for l in backgr_labels: label_dict[l] = 0
num = 1
for l in signal_labels:
if isinstance(l, list):
for ll in l:
label_dict[ll] = num
else:
label_dict[l] = num
num += 1
return label_dict
|
75ef46153cb1cd1c5bc2b56ea540e89f8c5fa4b5
| 17,220
|
import os
import re
def list_image_dir(directory, ext='jpg|jpeg|bmp|png|ppm'):
"""
列出目录下的所有图片的路径
:param directory:
:param ext:
:return:
"""
return [os.path.join(root, f)
for root, _, files in os.walk(directory) for f in files
if re.match(r'([\w]+\.(?:' + ext + '))', f)]
|
d1f881d71a4eb33481030624ec7ef406af657c7a
| 17,221
|
def search_event_using_event_name(df):
"""
Search event using event name
:df : dataframe
:return : dataframe
"""
event_name = input("Please enter the event name to be searched : ")
event_name = df[df["event_type"] == f"{event_name}"]
print(event_name["name"])
return df
|
c996ac2f19530b6d1d9554a85597d0b1dae46476
| 17,222
|
import json
def fix_mgame_str(mgame):
"""Create info for handling a data game"""
return json.dumps(mgame.to_json())
|
7663861fc38e63e1ff5f5ee34c43ed52ff25b940
| 17,226
|
def checkread(stream, n):
"""Read exactly *n* bytes from *stream*.
A ParseError is raised if less than *n* bytes are available.
"""
data = stream.read(n)
if len(data) < n:
raise ValueError("unexpected end of file")
return data
|
4b6dcaf1b1b553146f269f431846cbebd960ab9e
| 17,229
|
from typing import Optional
import torch
def check_nans_(x, warn: Optional[str] = None, value: float = 0):
"""Mask out all non-finite values + warn if `warn is not None`"""
msk = torch.isfinite(x)
if warn is not None:
if ~(msk.all()):
print(f'WARNING: NaNs in {warn}')
x.masked_fill_(msk.bitwise_not(), value)
return x
|
5817f1488e7f187af6f68f97f3e943115a08e066
| 17,230
|
def get_element_text(element):
"""Builds the element text by iterating through child elements.
Parameters
----------
element: lxml.Element
The element for which to build text.
Returns
-------
text: str
The inner text of the element.
"""
text = ''.join(element.itertext())
return text
|
41409e83a23927a5af0818c5f3faace0ca117751
| 17,234
|
def _sum_counters(*counters_list):
"""Combine many maps from group to counter to amount."""
result = {}
for counters in counters_list:
for group, counter_to_amount in counters.items():
for counter, amount in counter_to_amount.items():
result.setdefault(group, {})
result[group].setdefault(counter, 0)
result[group][counter] += amount
return result
|
0806ec754397d00a72ed985ef44081c9deb025c7
| 17,235
|
def solution(A, target): # O(N)
"""
Similar to src.arrays.two_sum, find all the combinations that can be added
up to reach a given target. Given that all values are unique.
>>> solution([1, 2, 3, 4, 5], 5)
2
>>> solution([3, 4, 5, 6], 9)
2
"""
remaining = {} # O(1)
combinations = [] # O(1)
for count, value in enumerate(A): # O(N)
if value in remaining: # O(1)
combinations.append([remaining[value], count]) # O(1)
else: # O(1)
remaining[target - value] = value # O(1)
return len(combinations) # O(1)
|
adcdaa6825569a0d589b6abc01a514ce9d5f38f5
| 17,237
|
def exponential_ease_in_out(p):
"""Modeled after the piecewise exponential
y = (1/2)2^(10(2x - 1)) ; [0,0.5)
y = -(1/2)*2^(-10(2x - 1))) + 1 ; [0.5,1]
"""
if p == 0.0 or p == 1.0:
return p
if p < 0.5:
return 0.5 * pow(2, (20 * p) - 10)
else:
return -0.5 * pow(2, (-20 * p) + 10) + 1
|
8d528b7628b735e1dd2e3e8b89d0ef398c696ed6
| 17,239
|
import re
def extract_urls(tweets, exclude_pattern):
"""Extract urls from twitter data."""
extracted_urls = []
twitter_pattern = r'(http[s]*://)(twitter.com)[\D\d]+'
for tweet in tweets:
temp = set()
if tweet.get("retweeted_status"):
for url in tweet["retweeted_status"]['entities']['urls']:
expanded_url = url['expanded_url']
if re.match(twitter_pattern, url['expanded_url']):
continue
if re.match(exclude_pattern, expanded_url):
continue
temp.add(expanded_url)
if tweet.get('entities'):
for url in tweet['entities']['urls']:
expanded_url = url['expanded_url']
if re.match(twitter_pattern, url['expanded_url']):
continue
if re.match(exclude_pattern, expanded_url):
continue
temp.add(expanded_url)
for temp_url in temp:
extracted_urls.append(temp_url)
return extracted_urls
|
c6da6d3870d21f5698cb16c41283f7a3d685425e
| 17,240
|
from bs4 import BeautifulSoup
import requests
import re
def get_new_vacancies(tag='machinelearning'):
"""returns list of new vacancies which are up to date"""
def extract_text(obj):
"""Extraxt text from html code"""
ans = []
for i in obj:
for ii in i:
try:
ans.append(ii.get_text())
except AttributeError:
ans.append(ii)
pass
return ' '.join(str(i) for i in ans)
url_ds = 'https://yandex.ru/jobs/vacancies/dev/?cities=213&tags=' + tag
try:
page = requests.get(url_ds, timeout=30.0) # URL HERE ###
except: # There may be unknown error via server block
return ['While server parsing error occured. There are no respond from server.']
data = page.text
structured_links = BeautifulSoup(data, 'lxml')
try:
vacancies = structured_links.find_all(class_='serp__item')
except: # Error cause extraction failed
return ['Extraction from server Error']
list_of_matched_vacancies = [vacancy for vacancy
in vacancies if re.findall(tag, vacancy.get('data-bem'))]
matched_vacancies = [extract_text(vacancy) for vacancy in list_of_matched_vacancies]
return matched_vacancies
|
48a7fec3ce745d3f84f81c645d1b89d71d036777
| 17,242
|
import inspect
def issetdescriptor(object):
"""Return true if the object is a method descriptor with setters.
But not if ismethod() or isclass() or isfunction() are true.
"""
if inspect.isclass(object) or inspect.ismethod(object) or inspect.isfunction(object):
# mutual exclusion
return False
tp = type(object)
return hasattr(tp, "__set__")
|
9d292444eebd8fe4ff8141fe64de2b319572727d
| 17,243
|
def _trim_data(data, max_rows, max_columns=None):
"""Prints a warning and returns trimmed data if necessary."""
# If the number of columns per row exceeds the max, we need to trim each row.
if max_columns is not None and len(data) and len(data[0]) > max_columns:
for i, _ in enumerate(data):
data[i] = data[i][:max_columns]
if len(data) <= max_rows:
return data
print(('Warning: total number of rows (%d) exceeds max_rows (%d). '
'Limiting to first max_rows.') % (len(data), max_rows))
return data[:max_rows]
|
1e6426a4aac1163251c6b1f876dad776bc054a12
| 17,244
|
def unique_2d_list(list_: list):
"""
Only keep those lists inside the big list which are unique.
Args:
list_: list of list where second dimension can contain duplicates
Returns:
"""
return list(map(lambda x: list(x), set(map(lambda x: tuple(x), list_))))
|
15d3512c4fb00d6c7d624af230c019e9438c0cd5
| 17,245
|
import sys
def ask_confirm(question, default_yes):
"""Ask the user a yes/no question.
This only looks at the first character of the response, and
is case-insensitive.
Takes:
question (str): The question to ask the user. Include a
question mark.
default_yes (bool): If the user just hits enter, should
we assume 'yes'?
Returns a bool of True for a 'yes' response, False for 'no'.
"""
while True:
sys.stdout.write("{} [{}] ".format(question,
"Y/n" if default_yes else "y/N"))
sys.stdout.flush()
response = sys.stdin.readline()
if response[0].lower() == 'y':
return True
elif response[0].lower() == 'n':
return False
elif len(response) == 1:
return default_yes
|
caae040c2a7013bdeec6c41e08ce5c3204d76995
| 17,246
|
def calculate_total_clones(haplotypes):
"""
# ========================================================================
CALCULATE TOTAL CLONES
PURPOSE
-------
Calculates the total number of clones accross multiple haplotypes. Note
that there may be multiple clones associated with each haplotype.
INPUT
-----
[HAPLOTYPE LIST] [haplotypes]
The list of Haplotypes from which to build the distance matrix.
RETURN
------
[INT]
The total number of clones accross all the haplotypes in the list.
# ========================================================================
"""
total = 0
for haplotype in haplotypes:
total += haplotype.count
return total
|
43ac5e77f0411cedd2b74a3107e8d101fb4e32cd
| 17,247
|
def xor_bytes(a, b):
"""Returns a byte array with the values from XOR'ing each byte of the input arrays."""
if len(a) != len(b):
raise ValueError("Both byte arrays must be the same length.")
return bytes([a[i] ^ b[i] for i in range(len(a))])
|
7cf107be20d916eeef6414118b8da35926997814
| 17,248
|
def _is_numeric(obj):
"""Return True if obj is a number, otherwise False.
>>> _is_numeric(2.5)
True
>>> _is_numeric('spam')
False
"""
try:
obj + 0
except TypeError:
return False
else:
return True
|
8122eea635fd5ed9b2d0e42bda284631cc6cd07b
| 17,249
|
def run_migration(connection, queries):
"""
Apply a migration to the SQL server
"""
# Execute query
with connection.cursor() as cursorMig:
cursorMig.execute(queries)
connection.commit()
return True
|
b7364b51bbefecd7222dfe0be972fd697f4c10e8
| 17,251
|
def _get_arg_parser_delete(parser):
"""
Parses arguments given at the command line
:return: Namespace object built from attributes parsed from command line.
"""
parser.add_argument(
"-i", "--index", type=str, required=True, help=f"index to delete",
)
return parser
|
2244ce50ac29c0a6c67aff3b6abbb63eaa8ce8d0
| 17,252
|
def identity(x):
"""
恒等関数
Args:
x(np.array): 入力値
Returns: 入力値と同じ配列
"""
return x
|
76a5d06675e9244b49acf74cf955a1dd9c6462c4
| 17,253
|
def has_divisor(n):
"""Dado un entero n >= 0, devuelve None si es primo, o el menor divisor encontrado si no"""
factor = 2 # para iterar en los posibles divisores que iremos comprobando
max_factor = int(round(n ** 0.5))
salto = 1
while factor <= max_factor:
if n % factor == 0:
return factor # no hace falta seguir
factor = factor + salto
salto = 2 # después del 2, no hace falta comprobar ningún otro factor par!
return None
|
1279c3becb4367f200fbf4ea6da6477f8b7bba2d
| 17,256
|
def get_books_by_year(args, books):
"""
Get books published between two year arguments
:param args: args object containing all arguments
:param books: A list of book objects read from csv file
:return: A list of book objects published between two year arguments
"""
if not args.year:
return None
# If an odd number of year arguments are entered, pop out the last one.
if (len(args.year) % 2) == 1:
args.year.pop()
i = 0
year_book_list = []
sorted_years = sorted(args.year)
while i < (len(args.year) - 1):
for book in books:
if int(book.year) >= sorted_years[i] and int(book.year) <= sorted_years[i + 1]:
if not book in year_book_list:
year_book_list.append(book)
i += 2
return year_book_list
|
b9009c9d6a08eec9db263d82e43da04255f6fe67
| 17,262
|
def rivers_by_station_number(stations, N):
"""Builds and returns a list of the N rivers with the greatest number of stations (as a tuple: river name, number of stations)
In the case where there are multiple rivers with the same number of stations as the Nth station, these are also included.
"""
rivers = []
for station in stations:
rivers.append(station.river)
counts = set()
for river in rivers:
counts.add((river, rivers.count(river), ))
counts = sorted(counts, reverse = True, key=lambda x: x[1])
top_n = counts[:N]
for i in range(N,len(counts)):
if top_n[N-1][1] == counts[i][1]:
top_n.append(counts[i])
return top_n
|
e892743c6c953c926eada8f648d929bfcd368dbb
| 17,263
|
import os
def get_tldr_root():
"""
Get the path of local tldr repository for environment variable TLDR_ROOT.
"""
# If this script is running from tldr/scripts, the parent's parent is the root
f = os.path.normpath(__file__)
if f.endswith("tldr/scripts/set-more-info-link.py"):
return os.path.dirname(os.path.dirname(f))
if "TLDR_ROOT" in os.environ:
return os.environ["TLDR_ROOT"]
else:
raise SystemExit(
"\x1b[31mPlease set TLDR_ROOT to the location of a clone of https://github.com/tldr-pages/tldr.\x1b[0m"
)
|
2a6aa6bc225ebae2f839afb01cd1a76468e30f1d
| 17,265
|
def GetGLGetTypeConversion(result_type, value_type, value):
"""Makes a gl compatible type conversion string for accessing state variables.
Useful when accessing state variables through glGetXXX calls.
glGet documetation (for example, the manual pages):
[...] If glGetIntegerv is called, [...] most floating-point values are
rounded to the nearest integer value. [...]
Args:
result_type: the gl type to be obtained
value_type: the GL type of the state variable
value: the name of the state variable
Returns:
String that converts the state variable to desired GL type according to GL
rules.
"""
if result_type == 'GLint':
if value_type == 'GLfloat':
return 'static_cast<GLint>(round(%s))' % value
return 'static_cast<%s>(%s)' % (result_type, value)
|
aa2c283985fb824c603efe76b69479667c4fdd96
| 17,266
|
def list_to_csv(row):
"""
Takes a list and converts it to a comma separated string.
"""
format_string = ",".join(["{}"] * len(row))
return format_string.format(*row)
|
104cc3e75d9c5d39fbdc7b7decd274a50b6e1b08
| 17,267
|
import torch
def collate_fn(batch):
"""
function needed for data loaders
"""
feature_list, protein_seq_list, label_list = [], [], []
for _features, _protein_seq, _label in batch:
#print(type(_features), type(_protein_seq), type(_label))
feature_list.append(_features)
protein_seq_list.append(_protein_seq)
label_list.append(_label)
return torch.Tensor(feature_list), torch.Tensor(protein_seq_list), torch.Tensor(label_list)
|
59925b5636cb26c9652208ba3ae4dad418713329
| 17,269
|
def get_deformation_field_scales(reg_params):
"""
Calculates the scaling of the deformation field from real space
to voxels
:param reg_params:
:return:
"""
x_scale = 1000 / float(reg_params.atlas_x_pix_size)
y_scale = 1000 / float(reg_params.atlas_y_pix_size)
z_scale = 1000 / float(reg_params.atlas_z_pix_size)
return x_scale, y_scale, z_scale
|
ae3f8c2cd97ed719d045dfa866fc585927c1a87f
| 17,270
|
def add_link(s):
"""
if `s` is a url, then adds anchor tags for html representation in ipynb.
"""
if s.startswith('http'):
a = '<a href="{0}" target="_blank">'.format(s)
a += s
a += '</a>'
return a
|
5a85592b9c976e2f20874849287e9eded552c98c
| 17,271
|
def GenerateCompareBuildsLink(build_ids, siblings):
"""Return the URL to compare siblings for this build.
Args:
build_ids: list of CIDB id for the builds.
siblings: boolean indicating whether sibling builds should be included.
Returns:
The fully formed URL.
"""
params = ['buildIds=%s' % ','.join([str(b) for b in build_ids])]
if siblings:
params.append('includeSiblings=true')
return 'http://go/buildCompare?%s' % '&'.join(params)
|
c309d71cff85becaa0d9cac26dd2a0481475a6ff
| 17,272
|
from functools import reduce
def compute_fitness(tree, features, data):
"""
Computes a normalized MAE on the predictions made by one tree.
"""
predicted = [tree.predict(feat) for feat in features]
difference = [abs(predicted[i] - data[i]) for i in range(len(data))]
mae = reduce(lambda a,b: a+b, difference) / len(data)
fitness = 1 / mae if mae != 0 else 1.0
fitness /= len(tree.nodes)
return fitness
|
57f158cbb9e9cc6137e328fd006a97d3abc431e7
| 17,274
|
import os
import time
def _cache_load_base(save_fn, load_fn, filepath, preprocess_fn, *args,
**kwargs):
"""
Args:
save_fn (callable): save dataset function
load_fn (callable): load dataset function
filepath (str): filepath to cache dataset
preprocess_fn (callable): dataset preparation function
*args: args for `preprocess_fn`
**kwargs: kwargs for `preprocess_fn`
Returns: dataset
"""
SLEEP_TIME = 3 # 3sec
if not os.path.exists(filepath):
if preprocess_fn is None:
raise ValueError('filepath {} does not exist, '
'preprocess_fn must not be None'.format(filepath))
# Preprocess and cache(save) datasets
print('[INFO] _cache_load_base: Preprocessing dataset...')
datasets = preprocess_fn(*args, **kwargs)
if not isinstance(datasets, tuple):
datasets = (datasets, )
save_fn(filepath, datasets)
# Now the datasets should be ready.
retry_count = 0
while not os.path.exists(filepath):
# This case may happen when `save_fn` was async method.
print('[WARNING] {} not found, retry in {} sec.'
.format(filepath, SLEEP_TIME))
time.sleep(SLEEP_TIME)
retry_count += 1
assert retry_count < 100, '[ERROR] {} not found after cache.'
return load_fn(filepath)
|
24c63ac5506d427e735d4e0100c0fb0869e5e781
| 17,275
|
import requests
def get_displayable_tracks_metadata(authorization_header,track_ids):
"""
get the relevant metadata for the tracks that will be displayed on the page
Args:
authorization_header (dict): valid authorization header
track_ids (list): list of track_ids to get data for
Returns:
Dictionary: relevant tracks and their metadata in JSON format
"""
track_ids_string = ','.join(track_ids)
query_params = f'?ids={track_ids_string}'
retrieved_metadata = requests.get(f'https://api.spotify.com/v1/tracks{query_params}', headers=authorization_header).json()
total_track_metadata = []
for track_data in retrieved_metadata['tracks']:
# i just need the name and the album cover and url to play
track_name = track_data['name']
artists = ' / '.join([artist['name'] for artist in track_data['artists']])
playable_url = track_data['external_urls']['spotify']
album_cover_url = track_data['album']['images'][0]['url']
track_metadata = {'name': track_name, 'playable_url':playable_url, 'album_cover_url':album_cover_url, 'artists':artists}
total_track_metadata.append(track_metadata)
return dict(zip(track_ids,total_track_metadata))
|
83254cc7e15055fafb8a3720d48bba1c718cd25d
| 17,277
|
def int_to_bool(value):
"""Turn integer into boolean."""
if value is None or value == 0:
return False
else:
return True
|
aa8f0f15be18f0c682ad1df4ed0f710880d5ecd5
| 17,278
|
def apply(func, bound_args):
"""Function to properly apply a function with the arguments we have"""
return func(*bound_args.args, **bound_args.kwargs)
|
e524b229b63fd2742d5775e5d0fedc14a50b347c
| 17,279
|
def deep_merge(base, changes):
"""
Create a copy of ``base`` dict and recursively merges the ``changes`` dict.
Returns merged dict.
:type base: dict
:param base: The base dictionary for the merge
:type changes: dict
:param changes: The dictionary to merge into the base one
:return: The merged ``result`` dict
"""
def merge(result, changes):
for k, v in changes.items():
if not isinstance(v, dict):
result[k] = v
else:
if k not in result or not isinstance(result[k], dict):
result[k] = v.copy()
else:
result[k] = result[k].copy()
merge(result[k], changes[k])
result = base.copy()
merge(result, changes)
return result
|
b74ac0e4213e8bfb0792f9e84053a96af3bb29f0
| 17,280
|
def arctanh(x):
"""
[Definition] x的反双曲正切函数
[Category] 反双曲函数
domain of definition: (-1, 1)
"""
return 'arctanh(%s)' %x
|
0d2ba74f154580b7429cffd6b124263f0f0a49ad
| 17,282
|
from typing import Optional
def admin_obj_url(obj: Optional[object], route: str = "", base_url: str = "") -> str:
"""
Returns admin URL to object. If object is standard model with default route name, the function
can deduct the route name as in "admin:<app>_<class-lowercase>_change".
:param obj: Object
:param route: Empty for default route
:param base_url: Base URL if you want absolute URLs, e.g. https://example.com
:return: URL to admin object change view
"""
if obj is None:
return ""
if not route:
route = "admin:{}_{}_change".format(obj._meta.app_label, obj._meta.model_name) # type: ignore
path = reverse(route, args=[obj.id]) # type: ignore
return base_url + path
|
19601794a2455cf6f76231fd3a1c932fdbe09eae
| 17,283
|
def contains_subsets(iter_of_sets):
"""
Checks whether a collection of sets contains any sets which are subsets of
another set in the collection
"""
for si in iter_of_sets:
for sj in iter_of_sets:
if si != sj and set(sj).issubset(si):
return True
return False
|
2b5055f0a31f5f00d975b49b08a4976c3c251fc5
| 17,285
|
def parse_owner(this_sample_id, owner):
"""
Extract name and contact from owner
:param this_sample_id:
:param owner:
:return:
"""
name = ""
email = ""
for child in owner:
if "Name" == child.tag and child.text:
name = child.text
elif "Contact" == child.tag and "email" in child.attrib:
email = child.attrib['email']
return name, email
|
99d0d7ece452f7479b821ee1e62168bccd64fe5a
| 17,286
|
import re
def href_html2tex(link):
"""Converts html links to Latex links"""
link = link.replace("\n", "^%")
matcher = r'<a href=[\'"]?([^\'" >]+)[\'"]?.*?>(<\w+>)*([^<>"]+).*?</a>'
texfmt = r"\\href{\1}{\\textcolor{heading}{\\textbf{\3}}}"
output = re.sub(matcher, texfmt, link)
return output.replace("^%", "\n")
|
0f24da36da2bc8db62f82de42bf333142a9abf46
| 17,291
|
def evaluate(data):
""" Cost function evaluation parameters:
- average_total_time
- average_total_queue_time
- average_utility_rate (inverse relationship)
"""
average_total_time = sum(v[10] - v[0]
for v in data.values()) / len(data.values())
average_total_queue_time = sum(
sum(v[1::2]) - sum(v[:-1:2]) for v in data.values()) / len(data.values())
return average_total_time + average_total_queue_time
|
10011e192eb344d51b4f82bdac310c37e6dc9d45
| 17,292
|
import numpy
def generate_regular_ngon_vertices(n: int, radius: float) -> numpy.ndarray:
"""Generate the vertices of a regular N-gon centered at zero."""
angles = (numpy.arange(n, dtype=float) * 2 * numpy.pi / n).reshape(-1, 1)
return radius * numpy.hstack([numpy.cos(angles), numpy.sin(angles)])
|
8fcca53c55a99d4e2af9dcaad9bae0b52f6afa0d
| 17,293
|
def list_formatter(values):
"""
Return string with comma separated values
:param values:
Value to check
"""
return u', '.join(values)
|
3163d1303dac17b5c995386967759b4475790d47
| 17,294
|
import random
import string
def random_numeric_token(length):
"""Generates a random string of a given length, suitable for typing on a numeric keypad.
"""
return ''.join(random.choice(string.digits) for i in range(length))
|
b63ac76ff32b86d01fb3b74772340cf1ebfcc321
| 17,295
|
def tensor_to_string_list(tensor):
"""Convert a tensor to a list of strings representing its value"""
scalar_list = tensor.squeeze().numpy().tolist()
return ["%.5f" % scalar for scalar in scalar_list]
|
4c8844c5401850e6fb3364b4efbe745d7e5f0dad
| 17,296
|
def eval_if_exist_else_none(name, global_symbol_table):
"""
Args:
name([str]): Expression passed into `eval`.
local_symbol_table(dict): Specified from `globals()`. DO NOT use `locals()`,
because all STATIC_CONVERT_VAR_SHAPE_SUFFIX vars is
declared with keyword `global`.
Returns:
Return the variable if found in global_symbol_table else None.
"""
try:
return eval(name, global_symbol_table)
except:
return None
|
146167724424da54f73cfbb05d6209a6f75127b7
| 17,297
|
def to_brackets(field_name, format_spec):
"""Return PEP 3101 format string with field name and format specification.
"""
if format_spec:
format_spec = ':' + format_spec
return '{' + field_name + format_spec + '}'
return '{' + field_name + '}'
|
b699b664d1d6bee8c5009bc04513e67c3c15755b
| 17,299
|
import glob
import os
def find_osx_sdks():
"""
Finds installed osx sdks, returns dict mapping version to file system path
"""
res = {}
sdks = glob.glob("/Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX*.sdk")
for sdk in sdks:
sdk_base = os.path.split(sdk)[1]
ver = sdk_base[len("MacOSX"):sdk_base.rfind(".")]
res[ver] = sdk
return res
|
fe6c285a1025d55e589c8b076a3455f2fa7c0cc5
| 17,301
|
def line_2d(p1=(), p2=()):
"""
:param p1: Coordinates of first point
:param p2: Coordinates of second point
:return: Slope, intersection
"""
try:
m = (p2[1] - p1[1]) / (p2[0] - p1[0])
b = p1[1] - m * p1[0]
return [m, b]
except ZeroDivisionError:
if p2[1] == p1[1]:
return ['']
else:
m = 'N.D.'
b = 'N.D.'
return [m, b]
|
e04b26b07d472086b0d81956b6955bd76ce7a184
| 17,302
|
import os
import gc
def software_details():
"""
returns software details
"""
try:
lists=[]
for value in os.uname():
lists.append(value)
sw_data={'sysname':lists[0],'nodename':lists[1],'release':lists[2],'version':lists[3],'machine':lists[4]}
return sw_data
except Exception as e:
print(e)
finally:
gc.collect()
|
220d8ed760001024da9166f917d20c1c60007f83
| 17,304
|
def loweRatio(matches, kp1, kp2, LOWE_RATIO=0.7):
"""Reduce list of keypoints to likeliest matches using Lowe's Ratio test.
[Reference]
David G. Lowe. Distinctive Image Features from Scale-Invariant Keypoints.
IJCV 2004"""
# Store all the good matches as per Lowe's ratio test
good = []
pts1 = []
pts2 = []
for m, n in matches:
if m.distance < LOWE_RATIO * n.distance:
good.append(m)
pts1.append(kp1[m.queryIdx].pt)
pts2.append(kp2[m.trainIdx].pt)
return good, pts1, pts2
|
e284bfb2f45bc5c77bd4660885651f222c41bbba
| 17,305
|
import random
def direction():
"""Return a random direction as a tuple in the form:
( x-direction, y-direction)"""
x = random.randint(-1, 1)
y = random.randint(-1, 1)
if (x, y) != (0, 0):
return x, y
return direction()
|
4c403581cba25569eb61a89887694592ccd57ea5
| 17,306
|
def clear_exceptions(estimates_output, param_dict):
"""Clears exceptions column of estimates_output df for all models that are
going to be run (this is needed because the str defining exceptions get
concatenated)
"""
estimates_output = estimates_output.copy()
for code in param_dict.keys():
estimates_output.loc[code, 'exception_count'] = 0
estimates_output.loc[code, 'exception_comment'] = '.'
return estimates_output
|
2532c2a61666c231897afbfbc4f243b1c81217a8
| 17,307
|
def bud_function(input_branch, output_branch, callable, args=[], kwargs={}):
"""callable(input_branch, *args, **kwargs) -> output_branch"""
def bud(manager):
return {output_branch:callable(manager[input_branch], *args, **kwargs)}
return bud
|
442432402adbb36023507aadf072cd57ead1282e
| 17,308
|
def dtype_is_supported(dtype):
"""Check if data type is supported by BNNS backend"""
return dtype in ("", "float32")
|
aaf0460dba171f532b914af38eec12858295b5a7
| 17,309
|
def concat_fields(one, two, sep):
"""
(str, str, str) -> str
Function concat two multiline strings
"""
line = ""
s_one, s_two = one.split("\n"), two.split("\n")
for i in range(len(s_one)):
line += (s_one[i]+sep+s_two[i]+"\n")
return line
|
5c7847b24a797d7e07fde4731f6eec91ca2a86bf
| 17,311
|
import torch
def decode_arr_to_seq(arr, idx2vocab):
"""Taken from OGB repo"""
eos_idx_list = torch.nonzero(arr == len(idx2vocab) - 1)
if len(eos_idx_list) > 0:
clippted_arr = arr[: torch.min(eos_idx_list)] # find the smallest __EOS__
else:
clippted_arr = arr
return list(map(lambda x: idx2vocab[x], clippted_arr.cpu()))
|
8fdf960dd9d8c958dd66ff990bbeb31a2de34a34
| 17,312
|
import re
def _get_valid_filter_terms(filter_terms, colnames):
"""Removes any filter terms referencing non-existent columns
Parameters
----------
filter_terms
A list of terms formatted so as to be used in the `where` argument of
:func:`pd.read_hdf`.
colnames :
A list of column names present in the data that will be filtered.
Returns
-------
The list of valid filter terms (terms that do not reference any column
not existing in the data). Returns none if the list is empty because
the `where` argument doesn't like empty lists.
"""
if not filter_terms:
return None
valid_terms = filter_terms.copy()
for term in filter_terms:
# first strip out all the parentheses - the where in read_hdf
# requires all references to be valid
t = re.sub('[()]', '', term)
# then split each condition out
t = re.split('[&|]', t)
# get the unique columns referenced by this term
term_columns = set([re.split('[<=>\s]', i.strip())[0] for i in t])
if not term_columns.issubset(colnames):
valid_terms.remove(term)
return valid_terms if valid_terms else None
|
a47dff6d9c34e6fc75a77ecc2f9828bb1667f7bb
| 17,313
|
def chunk_size(value):
"""Calculate nice value for chunk size."""
return round(value / 1000 + 0.5) * 1000
|
06c075f964c8baa0fc32b047375e8cec8c9a560b
| 17,314
|
def dekker(
t: float,
x1: float,
y1: float,
x2: float,
y2: float,
x3: float,
y3: float,
x4: float,
y4: float,
) -> float:
"""
Estimates the root using Dekker's method.
Uses a secant line from (x2, y2) to either (x1, y1) or (x3, y3), depending on
which point is closest.
Note
----
If x3 is closer to x2 but using it does not result in a value
between x1 and x2, then it is rejected and bisection is used.
Division by 0 is checked here, and the solver checks if 0 < t < 1
before defaulting to bisection.
"""
# If x2 is closer to x1, then use (x1, y1).
if abs(x2 - x1) <= abs(x2 - x3):
return y2 / (y2 - y1)
# If division by 0, then use bisection.
elif y2 == y3:
return 0.5
# If x2 is closer to x3 and using (x3, y3) does
# not result in division by 0, then use (x3, y3).
else:
return y2 * (x3 - x2) / ((y2 - y3) * (x1 - x3))
|
a50d57f6961dc11293975f03eb047a659598abcb
| 17,316
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.