content
stringlengths
35
416k
sha1
stringlengths
40
40
id
int64
0
710k
def checksum(numbers): """Form checksum from list of numbers.""" return numbers[0] * numbers[1]
cdab30f2be037940d4d6f3cf39f15ce4d7efb072
15,423
def Normalize(D): """ Method to normalize feature matrix. Parameters: - - - - - D : array input feature matrix Returns: - - - - D_norm : array normalized feature matrix """ mu = D.mean(0) stdev = D.std(0) zs = (stdev != 0) D_norm = (D[:, zs] - mu[zs][None, :]) / stdev[zs][None, :] return D_norm
93ce0760850ef1aeb40685589f843efe35e78384
15,424
import math def nernst_potential(ion_conc_out, ion_conc_in, charge, T, constants=None, units=None, backend=math): """ Calculates the Nernst potential using the Nernst equation for a particular ion. Parameters ---------- ion_conc_out: float with unit Extracellular concentration of ion ion_conc_in: float with unit Intracellular concentration of ion charge: integer Charge of the ion T: float with unit Absolute temperature constants: object (optional, default: None) constant attributes accessed: F - Faraday constant R - Ideal Gas constant units: object (optional, default: None) unit attributes: coulomb, joule, kelvin, mol backend: module (optional, default: math) module used to calculate log using `log` method, can be substituted with sympy to get symbolic answers Returns ------- Membrane potential """ if constants is None: F = 96485.33289 R = 8.3144598 if units is not None: F *= units.coulomb / units.mol R *= units.joule / units.kelvin / units.mol else: F = constants.Faraday_constant R = constants.molar_gas_constant return (R * T) / (charge * F) * backend.log(ion_conc_out / ion_conc_in)
2a2171df2b6fc6789f7a8d4add044b70404f49ed
15,425
def offer_publication_list(): """ A simple exemple of ids used in OfferPublicationList in Offers.xml """ return [1, 16]
9d8e936c8cea8e568f4941dc84eeee4b2bebeca2
15,426
def smallest_with_symbols(expr, symbols): """ Return the smallest sub-tree in an expression that contains all given symbols. """ assert all(x in expr.free_symbols for x in symbols) if len(expr.args) == 1: return smallest_with_symbols(expr.args[0], symbols) candidates = [ arg for arg in expr.args if any(x in arg.free_symbols for x in symbols) ] return ( smallest_with_symbols(candidates[0], symbols) if len(candidates) == 1 else expr )
1706c58a53e8a7718969d0194af81964cc673926
15,427
def get_title_elements(soup): """Get title elements from the homepage""" title_elements = soup.select('span[class*="k-card__title-piece"]') return title_elements
0df3606c78abe5550b2aae959083b670513a9d05
15,428
def _get_ch_type_mapping(fro='mne', to='bids'): """Map between BIDS and MNE nomenclatures for channel types. Parameters ---------- fro : str Mapping from nomenclature of `fro`. Can be 'mne', 'bids' to : str Mapping to nomenclature of `to`. Can be 'mne', 'bids' Returns ------- mapping : dict Dictionary mapping from one nomenclature of channel types to another. If a key is not present, a default value will be returned that depends on the `fro` and `to` parameters. Notes ----- For the mapping from BIDS to MNE, MEG channel types are ignored for now. Furthermore, this is not a one-to-one mapping: Incomplete and partially one-to-many/many-to-one. Bio channels are supported in mne-python and are converted to MISC because there is no "Bio" supported channel in BIDS. """ if fro == 'mne' and to == 'bids': mapping = dict(eeg='EEG', misc='MISC', stim='TRIG', emg='EMG', ecog='ECOG', seeg='SEEG', eog='EOG', ecg='ECG', resp='RESP', bio='MISC', dbs='DBS', # MEG channels meggradaxial='MEGGRADAXIAL', megmag='MEGMAG', megrefgradaxial='MEGREFGRADAXIAL', meggradplanar='MEGGRADPLANAR', megrefmag='MEGREFMAG', ias='MEGOTHER', syst='MEGOTHER', exci='MEGOTHER') elif fro == 'bids' and to == 'mne': mapping = dict(EEG='eeg', MISC='misc', TRIG='stim', EMG='emg', ECOG='ecog', SEEG='seeg', EOG='eog', ECG='ecg', RESP='resp', # No MEG channels for now # Many to one mapping VEOG='eog', HEOG='eog', DBS='dbs') else: raise ValueError('Only two types of mappings are currently supported: ' 'from mne to bids, or from bids to mne. However, ' 'you specified from "{}" to "{}"'.format(fro, to)) return mapping
b90bd99da3ad0a59fcf3fcd38f04670ba5ed16b0
15,430
def get_deid_field_dict(item): """ Return a dictionary with custom fields from the DeID Upload metadata. :param item: the item with data. :returns: a dictionary of key-vlaue pairs. """ deid = item.get('meta', {}).get('deidUpload', {}) if not isinstance(deid, dict): deid = {} result = {} for k, v in deid.items(): result['CustomField.%s' % k] = str(v).replace('|', ' ') return result
4de64e7dc205687c193a70c4e4dcfb6d30d436c3
15,435
def _split_constraints(constraints, type_): """Split list of constraints in two list. The first list contains all constraints of type and the second the rest. """ filtered = [c for c in constraints if c["type"] == type_] rest = [c for c in constraints if c["type"] != type_] return filtered, rest
28a54eb323dc61ef69fd57a01eacb26689290385
15,436
def scrub(txt): """Returns sluggified string. e.g. `Sales Order` becomes `sales_order`.""" return txt.replace(' ','_').replace('-', '_').lower()
32546e1fa96337b351ef4dabc020d65659f8f2bd
15,437
def insertion_sort(nums): """Insertion Sort""" if not nums: return None for i in range(1, len(nums)): value = nums[i] j = i - 1 while j >= 0: if nums[j] > value: nums[j + 1] = nums[j] else: break j = j - 1 nums[j + 1] = value return
60c0f89df9fcfcc4cc2bd683a903483cf7c1590f
15,438
import os import glob def load_acdc_files(path): """ path: root path for all acdc patient folders returns: a tuple (images, masks) with full file names """ assert (os.path.exists(path)), 'Path: {} does not exist'.format(path) images = sorted(glob.glob(os.path.join(path, '**/*frame[0-9][0-9].nii.gz'))) masks = sorted(glob.glob(os.path.join(path, '**/*frame*_gt.nii.gz'))) return images, masks
60cbb78dea9659745bd97ecbbfe7ad2bf5d68d81
15,439
def _headers(source_parameters) -> dict: """Return the headers for the url-check.""" return {"Private-Token": source_parameters["private_token"]} if "private_token" in source_parameters else {}
1aaae1e716871000d83c9610a71080dc7b5e550c
15,440
import functools def cached_property(inputs=None): """Returns a cached proeprty that is calculated once. If inputs are specified, then if those properties change the propery is recalculated. Usage is as follows; given a class, you can declare a cached property with the `@cached_property` decorator: ```python class Swallow: def __init__(self, laden): self.mass = 5 self.laden = laden @cached_property(['mass', 'laden']) def air_speed(self): mass = self.mass + 16 if laden else 0 time.sleep(100) # must sleep after flying return mass / 400 ``` you can do the following: ``` s = Swallow(laden=False) s.air_speed # will be slow first time s.air_speed # returns instantly using cache s.laden = True # invalidate cache s.air_speed # will recalculate ``` i,.e. the `air_speed` will be lazily recalculated if `self.mass`, or `self.laden` change. Parameters: inputs - dependencies which should be checked for changes to determine whether to recalculate the property. If None then this property is only laxily calculated once. """ # Handle defaults inputs = inputs or [] # Wrap property method def smart_cached_property(func): @functools.wraps(func) def get(self): # Determine whether we can use the cached value input_values = dict((k, getattr(self, k)) for k in inputs) try: # Pull from cache if possible x = self._property_cache[func] if input_values == self.property_input_cache[func]: return x except AttributeError: # We haven't created the property cache yet self._property_cache = {} self._property_input_cache = {} except KeyError: # Input cache has been invalidated pass # Recalculate value x = self._property_cache[func] = func(self) self._property_input_cache[func] = input_values return x return property(get) return smart_cached_property
25c8291e4ba798727b6cf14161393085b269cc3f
15,441
import subprocess def git_tracked_files(): """ Returns ------- list or None List of tracked files or None if an error happened None of str None if successfully retrieved tracked files, str if an error happened """ res = subprocess.run(['git', 'ls-tree', '-r', 'HEAD', '--name-only'], stdout=subprocess.PIPE, stderr=subprocess.PIPE) if not res.returncode: return res.stdout.decode().splitlines(), None else: return None, res.stderr.decode().strip()
e32a7ab4b2a210be0f6b7e4de4378c15598b41f3
15,442
def binarize(y, thres=3): """Given threshold, binarize the ratings. """ y[y< thres] = 0 y[y>=thres] = 1 return y
385a10a652aa3a89874ee65520511f1554295ffe
15,443
def preserve_linefeeds(value): """Escape linefeeds. To make templates work with both YAML and JSON, escape linefeeds instead of allowing Jinja to render them. """ return value.replace("\n", "\\n").replace("\r", "")
ee8e4c33d81b0a31c8a0cbf99369235e34327a61
15,444
import os def is_non_zero_file(fpath): """Check if file exists and is not empty""" return True if os.path.isfile(fpath) and os.path.getsize(fpath) > 0 else False
fc37f01c6d92e6b0f6b82a1b544494943072e3b5
15,445
from typing import List from typing import Set from typing import FrozenSet def get_packed_items(weights: List[int], profits: List[float], solution: List[List[float]]) -> Set[FrozenSet[int]]: """ Returns the possible solution from a solved knapsack instance. :param weights: Weights of items :param profits: Profits of items :param solution: Solution matrix of the solved knapsack instance. :return: Set of item allocation of given knapsack instance """ def _get_packed_items_rek(solution: List[List[float]], weights: List[int], profits: List[float], item: int, c: int, items: FrozenSet[int], solution_set: Set[FrozenSet[int]]) -> Set[FrozenSet[int]]: """ Recursive function for calculating the packed items :param solution: The matrix of the solved knapsack instance :param weights: The list of the weight of the items :param profits: The list of the profit of the items :param item: The current index of the item :param c: The current capacity of the baggage :param items: The set of the currently packed items :param solution_set: The set of all the gathered solutions to the knapsack instance :return: The solution set with all the item combinations used """ if item == 0 or c == 0: if solution[item][c] != 0: # When we need to pack in the first item items |= frozenset({item + 1}) return solution_set | {items} if solution[item][c] - profits[item] == solution[item - 1][c - weights[item]]: # When we pack the item solution_set |= _get_packed_items_rek(solution, weights, profits, item - 1, c - weights[item], items | frozenset({item + 1}), solution_set) if solution[item][c] == solution[item - 1][c]: # When we do not pack the item, because the maximal profit would stay the same solution_set |= _get_packed_items_rek(solution, weights, profits, item - 1, c, items, solution_set) return solution_set number_items: int = len(solution) n: int = len(solution[0]) return _get_packed_items_rek(solution, weights, profits, number_items - 1, n - 1, frozenset(), set())
97f9142b49418918e483cae14675a38f16b24a7c
15,447
import sys def get_best_config(results, objective, objective_higher_is_better=False): """ Returns the best configuration from a list of results according to some objective """ func = max if objective_higher_is_better else min ignore_val = sys.float_info.max if not objective_higher_is_better else -sys.float_info.max best_config = func(results, key=lambda x: x[objective] if isinstance(x[objective], float) else ignore_val) return best_config
3e68d644a472255ec4aacbad4da0574136346372
15,448
def count_1(a: int) -> int: """ 计算数值的二进制表示的1的数量 :param a: :return: """ count = 0 while (a): a = a & a - 1 count += 1 return count
7217b3501cee8fff8eb6cf5887e982c879f95880
15,451
import os import shutil import subprocess def ExtractLibraries(deb_paths, work_directory, output_directory): """Extract libraries from .deb packages.""" extract_directory = os.path.join(work_directory, 'extracted') if os.path.exists(extract_directory): shutil.rmtree(extract_directory, ignore_errors=True) os.mkdir(extract_directory) for deb_path in deb_paths: subprocess.check_call(['dpkg-deb', '-x', deb_path, extract_directory]) extracted = [] for root, _, filenames in os.walk(extract_directory): if 'libx32' in root or 'lib32' in root: continue for filename in filenames: if (not filename.endswith('.so') and '.so.' not in filename and not filename.endswith('.a') and '.a' not in filename): continue file_path = os.path.join(root, filename) rel_file_path = os.path.relpath(file_path, extract_directory) rel_directory = os.path.dirname(rel_file_path) target_dir = os.path.join(output_directory, rel_directory) if not os.path.exists(target_dir): os.makedirs(target_dir) target_file_path = os.path.join(output_directory, rel_file_path) extracted.append(target_file_path) if os.path.lexists(target_file_path): os.remove(target_file_path) if os.path.islink(file_path): link_path = os.readlink(file_path) if os.path.isabs(link_path): # Make absolute links relative. link_path = os.path.relpath( link_path, os.path.join('/', rel_directory)) os.symlink(link_path, target_file_path) else: shutil.copy2(file_path, target_file_path) return extracted
9bb8ea0bd86dafef80b1294be07143a5b21708d7
15,452
import json def is_json(data): """ Test, if a data set can be expressed as JSON. """ try: json.dumps(data) return True except: return False
a0e1da7dc341b2f8867fa1721cb0fe0cc0bcfa24
15,453
from typing import List def _make_array(parts: List[str]) -> str: """ Utility to format an array of strings for passing to command line. :param parts: List of strings. :return: Formatted string. """ return "\"" + ",".join(parts) + "\""
3c364ee9b483274c2aad1f8df6afcebaabd09ed1
15,454
def parse_V1A_fname(fname): """ Note: See http://info.geonet.org.nz/display/appdata/Accelerogram+Data+Filenames+and+Formats The file name can take three forms: XNNSITEJJ, where X is the instrument code1, NN is the two-digit year of acquisition, SITE is the 4 character site code, and JJ is the site's unique accelerogram number for that year. YYYYMMDD_HHMM_SITE, where YYYY/MM/DD HH:MM is the earthquake origin time (UTC) and SITE is the 3 or 4 character site code. YYYYMMDD_HHMM_SITE_XX, where YYYY/MM/DD HH:MM is the instrument trigger time (UTC), SITE is the 3 or 4 character site code, and XX is the sensor location code. The latter is most appropriate for arrays of borehole sensors. fname: name of geoNet data file, must not include path """ form1 = "XNNSITEJJ" form2 = "YYYYMMDD_HHMM_SITE" form3 = "YYYYMMDD_HHMM_SITE_XX" #Remove .V1A, .V2A extension fname = fname.split(".")[0] YYYYMMDD = "" HHMM = "" if fname.count("_") == form1.count("_"): stat_code = fname[3:7] elif fname.count("_") == form2.count("_"): YYYYMMDD, HHMM, stat_code = fname.split("_") elif fname.count("_") == form3.count("_"): YYYYMMDD, HHMM, stat_code, XX = fname.split("_") else: raise Exception("{:s} is unknow file name format for .V1A files\n".format(fname)) return YYYYMMDD, HHMM, stat_code
7fb355c395cdc9b45f3cb0350c1df9469a471fb4
15,457
def make_snake_case(text: str) -> str: """ A very basic way to converts some text into snake case. Strips out any non a-z, 0-9 characters. :param text: :return: a string which snake cases the text provided """ chars = 'abcdefghijklmnopqrstuvwxyz1234567890_' unclean = text.lower().strip().replace(' ', '_') return ''.join(e for e in unclean if e in chars)
cd4c46918da543f3f537020cf1e084c54182229e
15,459
import torch def instance_aware_loss(solo_masks, instance_map, pred_param, k_inv_dot_xy1, valid_region, gt_depth, return_loss=True): """ calculate loss of parameters first we combine sample segmentation with sample params to get K plane parameters then we used this parameter to infer plane based Q loss as done in PlaneRecover the loss enforce parameter is consistent with ground truth depth :param solo_masks: tensor with size (K, h, w) :param instance_map: tensor with size (h, w) :param pred_param: tensor with size (3, h, w) :param valid_region: tensor with size (1, 1, h, w), indicate planar region :param gt_depth: tensor with size (1, 1, h, w) :param return_loss: bool :return: loss inferred depth with size (1, 1, h, w) corresponded to instance parameters """ _, _, h, w = gt_depth.size() # # combine sample segmentation and sample params to get instance parameters # instance_param = [] # for mask in solo_masks: # param = torch.cat([param[mask > 0] for param in pred_param], dim=0) # param = param.view(3, -1).mean(dim=1) # instance_param.append(param.detach().cpu().numpy()) # instance_param = torch.tensor(instance_param, device=pred_param.device) # (K, 3) # # # infer depth for every pixels and select the one with highest probability # depth_maps = 1. / torch.matmul(instance_param, k_inv_dot_xy1) # (K, h*w) # solo_ins = instance_map.view(-1) # inferred_depth = depth_maps.t()[range(h * w), solo_ins].view(1, 1, h, w) # infer depth for every pixels param = pred_param.clone() instance_param = [] for mask in solo_masks: mask = (mask > 0) ins_param = pred_param[:, mask].mean(dim=1) param[:, mask] = ins_param.repeat(mask.sum(), 1).transpose(0, 1) instance_param.append(ins_param) instance_param = torch.cat(instance_param, dim=0).view(-1, 3) # (K, 3) param = param.view(-1, h*w) inferred_depth = 1. / torch.sum(param * k_inv_dot_xy1, dim=0, keepdim=True) # (1, h*w) inferred_depth = inferred_depth.view(1, 1, h, w) if not return_loss: return _, inferred_depth, _, instance_param # select valid region valid_region = ((valid_region + (gt_depth != 0.0)) == 2).view(-1) valid_param = param[:, valid_region] # (3, N) ray = k_inv_dot_xy1[:, valid_region] # (3, N) valid_depth = gt_depth.view(1, -1)[:, valid_region] # (1, N) valid_inferred_depth = inferred_depth.view(1, -1)[:, valid_region] # abs distance for valid infered depth abs_distance = torch.mean(torch.abs(valid_inferred_depth - valid_depth)) # Q_loss for every instance Q = valid_depth * ray # (3, N) q_diff = torch.abs(torch.sum(valid_param * Q, dim=0, keepdim=True) - 1.) instance_loss = torch.mean(q_diff) # # weight Q_loss with probability # Q_loss = torch.abs(torch.matmul(instance_param, Q) - 1.) # (K, N) # solo_masks = solo_masks.view(-1, h*w)[:, valid_region] # (K, N) # weighted_Q_loss = Q_loss * solo_masks # (K, N) # instance_loss = torch.sum(torch.mean(weighted_Q_loss, dim=1)) return instance_loss, inferred_depth, abs_distance, instance_param
2c5c15aab5c12d147d5670b9b6ba249befbbc6c9
15,461
def get_batches(dataloader): """ Args: Pytorch Dataloader object returns a list of samples from the dataloader """ batch_list = [] count = 0 for fname, fobj in dataloader: fname = [x.split("/")[-1] for x in fname] batch_list.append(list(zip(fname, fobj))) count += 1 return batch_list
11970ec2f74112d9d7cf56ec26eefc585328c04c
15,463
def annalistuser_create_values( coll_id="testcoll", user_id="testuser", user_name="Test User", user_uri="mailto:testuser@example.org", user_permissions=["VIEW", "CREATE", "UPDATE", "DELETE", "CONFIG", "ADMIN"] ): """ Values used when creating a user record """ d = ( { 'annal:type': "annal:User" , 'rdfs:label': user_name , 'rdfs:comment': "User %s: permissions for %s in collection %s"%(user_id, user_name, coll_id) , 'annal:user_uri': user_uri , 'annal:user_permission': user_permissions }) return d
e28b27e0d716123efd4738d976385ef5f703154e
15,464
import importlib def can_contact_customer_support(botengine): """ Leverages the com.domain.YourBot/domain.py file or organization properties to determine if customer support is available for this bot :return: """ try: properties = importlib.import_module('properties') except ImportError: return False if properties.get_property(botengine, "CS_SCHEDULE_URL") is not None: if len(properties.get_property(botengine, "CS_SCHEDULE_URL")) > 0: return True if properties.get_property(botengine, "CS_EMAIL_ADDRESS") is not None: if len(properties.get_property(botengine, "CS_EMAIL_ADDRESS")) > 0: return True if properties.get_property(botengine, "CS_PHONE_NUMBER") is not None: if len(properties.get_property(botengine, "CS_PHONE_NUMBER")) > 0: return True
5916b9346d7853d1cd838f50ba67d2871b233772
15,465
import random def set_folders_cv5(users_items_dict): """set_folders_cv5 function distributes items per each user randomly for different cross-validation splits Args: users_items_dict (dictionary): dictionary which was generated by fill_users_items_dict function Returns: users_items_dict: dictionary with filled information about splitting folders """ for user, items in users_items_dict.items(): # for each user shuffle data and split at n-items folders random.shuffle(items) n = len(items) // 5 for i, item in enumerate(items): if 0 <= i < n: item['folder'] = 1 elif n <= i < 2 * n: item['folder'] = 2 elif (2 * n) <= i < (3 * n): item['folder'] = 3 elif (3 * n) <= i < (4 * n): item['folder'] = 4 elif (4 * n) <= i: item['folder'] = 5 return users_items_dict
c3bfe53c55866ed0c7593ff0873f4fe2e6272067
15,467
import os import io def upload_file(client, bucket, file_path, minio_file_path, content_type=None, metadata=None): """ Uploads single file directly to a minio_path. """ size = os.stat(file_path).st_size with io.open(file_path, 'rb') as f: client.put_object( bucket, minio_file_path, f, size, content_type=content_type or 'application/octet-stream', metadata=metadata ) return minio_file_path
8b979a115b1e65f59e8813a82abf64c21e53bd28
15,468
def identity(x): """Simple identity """ return x
abebf1ea2ef1579164a9ead43348c10fbfc1a43e
15,469
from typing import Mapping def is_upload(association): """ Indicates whether the association corresponds to an upload object. """ upload_keys = set([ 'created_at', 'id', 'job_id', 'updated_at', 'upload_content_type', 'upload_file_name', 'upload_file_size', 'upload_updated_at' ]) association_value = association.value return (isinstance(association_value, Mapping) and association_value.keys() == upload_keys)
d2adf1ea3077b2021a448f7f5ecbb28ab342b3cc
15,470
def lenprefix(data, nbytes=2): """Prefix `data` with its length, in `nbytes` big-endian bytes. If `data` is a string, it is first converted to bytes as UTF-8. """ assert type(data) in (str, bytes) if type(data) is str: data = bytes(data, "utf8") return len(data).to_bytes(nbytes, "big") + data
b59e9aff1c7500fdcfa1482012ee9bab16c04022
15,471
import sys import time def display_events(events, shift): """display the text according to its start and end time, time starts at 'shift'""" write, flush = sys.stdout.write, sys.stdout.flush begin_time = time.time() msg, back_len = '', 0 def update_msg(text): nonlocal msg seconds = time.time() - begin_time m, s = divmod(seconds, 60) h, m = divmod(m, 60) time_str = "%d:%02d:%02d" % (h, m, s) msg = ' '.join([time_str, text]) def flush_msg(): nonlocal back_len write('\x08' * back_len + ' ' * back_len) write('\x08' * back_len + msg) flush() back_len = len(msg.encode('utf-8')) def to_seconds(time_str): ftr = [3600, 60, 1] return sum([a * b for a, b in zip(ftr, map(float, time_str.split(':')))]) if shift: begin_time -= to_seconds(shift) i = 0 while i < len(events): start, end, text = events[i] if time.time() < begin_time + to_seconds(start): update_msg('') elif time.time() < begin_time + to_seconds(end): update_msg(text) else: i += 1 flush_msg() time.sleep(0.01)
7ac38b80e80a9122f5773a687c464fe6a9925b24
15,472
from stat import ST_MTIME import os def is_newer(source, target): """Return true if 'source' exists and is more recently modified than 'target', or if 'source' exists and 'target' doesn't. Return false if both exist and 'target' is the same age or younger than 'source'. Raise ValueError if 'source' does not exist. """ if not os.path.exists(source): raise ValueError("file '%s' does not exist" % source) if not os.path.exists(target): return 1 mtime1 = os.stat(source)[ST_MTIME] mtime2 = os.stat(target)[ST_MTIME] return mtime1 > mtime2
c2cf21c1f95938ed38a5cf7b4c70e69ff1d18788
15,473
from typing import List def _create_path_from_parts(path_parts: List[str]) -> str: """Creates the typical path format from a list of the individual parts Args: path_parts (List[str]): list containing the parts of a path Ex.: ['home', 'usr', 'dir1'] Returns: str: Concatenation of the parts to a path format Ex..: home/usr/dir """ return '/'.join(path_parts)
4e8f38f98c2d5da9db5d4607b49c0a70cc8c9c33
15,474
def tie(p, ptied = None): """Tie one parameter to another.""" if (ptied == None): return p for i in range(len(ptied)): if ptied[i] == '': continue cmd = 'p[' + str(i) + '] = ' + ptied[i] exec(cmd) return p
621100a4cb3cf1a576e8d71c2870d0cf79959d77
15,475
def hamming_distance(w1: str, w2: str)->int: """Compute the hamming distance between the given strings""" d = 0 for i in range(len(w1)): if i >= len(w2): return d + len(w1) - len(w2) if w1[i] != w2[i]: d += 1 return d
3eda58c4c56a1b8fbb79719051c650884a396f68
15,476
def crime_filter(df, categories, column="Straftat"): """Construct filter for crimes listed in [categories] Args: df ([type]): [description] column (str, optional): [description]. Defaults to "Straftat". Returns: [type]: [description] """ filt = df[column] == categories[0] for cat in categories: filt = filt | (df[column] == cat) return filt
1800933bc879f6153d5fcf640327cd9ad86e6d62
15,477
def btsearch(f, b, f0=None, maxiter=20, tau=0.5): """ Backtracking search Arguments: f -- function f(x) b -- end point f0 -- f(0) """ x = b for i in range(maxiter): fx = f(x) if fx.F > f0: x *= tau else: return x, fx raise ValueError('backtracking search could not find a new minimum')
2125e7c48b157dee68ff2b3cca0dd3b277e6f662
15,478
import re def break_down(compound, forgiving=True): """ Breaks a string representing a chemical formula down into constituent parts. Things in parentheses are considered one part. Any string of a capital letter followed by lower case letters is considered to be an irriducible element. Any number is considered to quantify the element imediately proceeding it. Space is ignored Other characters raise a ValueError unless forgiving=True Example: >>> break_down('CH3(CH2)5CHO') >>> {'C':2, 'H':4', 'CH2':5, 'O':1} This function is called recursively by get_elements. """ parts = {} number = "" element = "" subcompound = "" nest = 0 N = len(compound) addit = False for i, char in enumerate(compound): if char == "(": if nest == 0: addit = True else: subcompound += char nest += 1 elif nest > 0: if char == ")": nest -= 1 if nest == 0: element = subcompound subcompound = "" else: subcompound += char else: if re.search("[/.0-9]", char): number += char elif re.search("[a-z]", char): element += char elif re.search("[A-Z\-\+]", char): addit = True elif re.search("\S", char): print( "Not quite sure what you're talking about, mate, when you say ", char, ) if not forgiving: raise ValueError if i == N - 1: addit = True # print('char = ' + char + '\nelement = ' + element + '\naddit = ' + str(addit)) if addit: if len(number) > 0: try: n = int(number) except ValueError: n = float(number) number = "" else: n = 1 if len(element) > 0: if element in parts: parts[element] += n else: parts[element] = n if nest == 0: element = char if i == N - 1 and re.search("[A-Z\-\+]", char): if element in parts: parts[element] += 1 else: parts[element] = 1 addit = False return parts
d09c038423f5a89d75499c1395e31c3328c9df17
15,479
def note_and_bend(mycents, middle_note=60): """Take a cent value and return a MIDI note and bend. Scale to '0 cents = middle-C' if middle_c=True. """ note, remain = divmod(mycents + 50, 100.0) note = int(note + middle_note) bend = 8192 + int(round((remain - 50) * 40.96)) return note, bend
69ce2fb0e8089061f2c14e6e2828ccb0feef122a
15,481
def cgc_posneg(header='', data_dir='.', extension='.obfs', save=True, recurse=0, save_dir=None, posfile='pos', negfile='neg'): """ This preprocessing function uses the cgc directory README scheme to split files into separate data sets of positive and negative samples. We assume no recursion is required, i.e. data_dir points directly to the codeflaws directory. We assume there are two .txt files in the direcotry pos_labels.txt - with the positive CWE labels neg_labels.txt - with the negative CWE labels """ posdata = [] negdata = [] return posdata, negdata
46d7853b6c9c46bdd99e1735fd92815583ec7c22
15,482
def _convert_coords_dt_to_np_coords(coords_dt): """convert coord_dt to numpy coords """ return coords_dt.view(int).reshape(-1, 3)
90db6d289834a1764acc53154a2d5d6d8a03538d
15,483
def read_row(width): """Reads a grid row of the specific width.""" row = list(input().strip()) if len(row) != width: raise ValueError('wrong row width') return row
5b55f0a5df2c1d966b970705d5b1bbbc8a1aec12
15,484
def multiplicative_inverse_factors(a_value, m_modulus): """[Summary: Returns a list of all the values of 'x' that solve the equation 'ax mod n = 1'.] Arguments: a_value {[int]} -- [description] m_modulus {[int]} -- [description] """ mult_inverse_list = list() for test_mult_inverse in range(1, m_modulus): b_product = test_mult_inverse*a_value mod_result = b_product % m_modulus print(a_value, "*", test_mult_inverse, " mod ", m_modulus, " = ", mod_result) if mod_result == 1: print("SOLUTION FOUND!", test_mult_inverse) mult_inverse_list.append(test_mult_inverse) # print("number of factors:"+str(len(x_result))) # print("list of factors:"+str(x_result)) return mult_inverse_list
f91d28c760963861ef173ef3907f9b77867b3451
15,486
def sum_abs_of_all_without_range(sequence): """ Same specification as sum_abs_of_all above, but with a different implementation. """ # ------------------------------------------------------------------ # EXAMPLE 2. Iterates through a sequence of numbers, summing them. # Same as Example 1 above, but uses the "no range" form. # ------------------------------------------------------------------ total = 0 for number in sequence: total = total + abs(number) return total # ------------------------------------------------------------------ # The above example shows how you can iterate through a sequence # WITHOUT using a RANGE expression. This works ONLY # ** IF you do NOT need the index variable. ** # # You can ALWAYS use the form in Example 1 that uses RANGE; # this form in Example 2 is just "syntactic sugar." # Use this form if you like, but: # -- Don't let it keep you from understanding the critical # concept of an INDEX. # -- Be aware of the limitation of this form. # -- Don't confuse the two forms! # ------------------------------------------------------------------
21fdb3d5d4edf6a920a3e0523b8af5948c6244f4
15,487
from operator import eq from operator import le from operator import ge def OperatorFromStr(): """ Module for program-wide constant maps (e.g., dicts that should never change) """ return {"=": eq, "le": le, "ge": ge}
1767821ea0b734312b41a49e5226df682aece430
15,489
def _default_inner_shape_for_pylist(pylist, ragged_rank): """Computes a default inner shape for the given python list.""" def get_inner_shape(item): """Returns the inner shape for a python list `item`.""" if not isinstance(item, (list, tuple)): return () elif item: return (len(item),) + get_inner_shape(item[0]) else: return (0,) def check_inner_shape(item, shape): """Checks that `item` has a consistent shape matching `shape`.""" is_nested = isinstance(item, (list, tuple)) if is_nested != bool(shape): raise ValueError('inner values have inconsistent shape') if is_nested: if shape[0] != len(item): raise ValueError('inner values have inconsistent shape') for child in item: check_inner_shape(child, shape[1:]) # Collapse the ragged layers to get the list of inner values. inner_values = pylist for dim in range(ragged_rank): if not all(isinstance(v, (list, tuple)) for v in inner_values): raise ValueError('pylist has scalar values depth %d, but ragged_rank=%d ' 'requires scalar value depth greater than %d' % (dim + 1, ragged_rank, ragged_rank)) inner_values = sum((list(v) for v in inner_values), []) # Compute the inner shape looking only at the leftmost elements; and then # use check_inner_shape to verify that other elements have the same shape. inner_shape = get_inner_shape(inner_values) check_inner_shape(inner_values, inner_shape) return inner_shape[1:]
33ef55f87c65707ff2f92989ba6874964042fddf
15,492
def get_progress_string(tag, epoch, minibatch, nbatches, cost, time, blockchar=u'\u2588'): """ Generate a progress bar string. Arguments: tag (string): Label to print before the bar (i.e. Train, Valid, Test ) epoch (int): current epoch to display minibatch (int): current minibatch to display nbatches (int): total number of minibatches, used to display relative progress cost (float): current cost value time (float): time elapsed so far in epoch blockchar (str, optional): character to display for each step of progress in the bar. Defaults to u2588 (solid block) """ max_bar_width = 20 bar_width = int(float(minibatch) / nbatches * max_bar_width) s = u'Epoch {:<3} [{} |{:<%s}| {:4}/{:<4} batches, {:.2f} cost, {:.2f}s]' % max_bar_width return s.format(epoch, tag, blockchar * bar_width, minibatch, nbatches, cost, time)
9c5a927433795426fe6466708d24b925ae37e4a5
15,493
import random def coin_toss(): """Simulates a coin toss.""" coin = random.randint(0,1) if coin == 0: return 0 else: return 1
4b02cf069963d53b5cafd75bbdcfcdeb55d8eb4d
15,495
import json def interface_format_params(params_list): """ 格式化存入数据库中的参数 :param params_list: :return: """ if params_list: var = [] params_list = eval(params_list) for i in range(len(params_list)): var.append({"var_name": "", "var_remark": ""}) var[i]['var_name'] = params_list[i]['var_name'] return json.dumps(var) else: return []
9663b07c2ad19e4f51118441babf1ef2b04e239a
15,497
def cell_has_code(lines): """Is there any code in this cell?""" for i, line in enumerate(lines): stripped_line = line.strip() if stripped_line.startswith('#'): continue # Two consecutive blank lines? if not stripped_line: if i > 0 and not lines[i - 1].strip(): return False continue return True return False
c7094accae4d7c1a9f8eae3aa33eda2e980993bb
15,498
def pointsInRect(array, rect): """Determine which points are inside a bounding rectangle. Args: array: A sequence of 2D tuples. rect: A bounding rectangle expressed as a tuple ``(xMin, yMin, xMax, yMax)``. Returns: A list containing the points inside the rectangle. """ if len(array) < 1: return [] xMin, yMin, xMax, yMax = rect return [(xMin <= x <= xMax) and (yMin <= y <= yMax) for x, y in array]
53fdd42520c38b3ffcb19edc655955caf063ebfc
15,499
def _get_nearest_value(value, step_width): """ helper function. Sould not be used from the api. :param value: :param step_width: :return: """ steps = value // step_width return min(steps * step_width, (steps + 1) * step_width, key=lambda new_value: abs(new_value - value))
c2af02e059ec62911bf549b4b5d6013e02e34df9
15,500
def numtocn(data, cny=True): """ 算法说明:要求字符串输入,现将字符串差费为整数部分和小数部分生成list[整数部分,小数部分] 将整数部分拆分为:[亿,万,仟]三组字符串组成的List:['0000','0000','0000'](根据实际输入生成阶梯List) 例如:600190000010.70整数部分拆分为:['600','1900','0010'] 然后对list中每个字符串分组进行大写化再合并 最后处理小数部分的大写化 """ cdict = {1: '', 2: '拾', 3: '佰', 4: '仟'} if cny else {1: '', 2: '十', 3: '百', 4: '千'} xdict = {2: '万', 3: '亿', 4: '兆'} xdict[1] = '元' if cny else '' if cny: gdict = {'0': '零', '1': '壹', '2': '贰', '3': '叁','4': '肆', '5': '伍', '6': '陆', '7': '柒', '8': '捌', '9': '玖'} else: gdict = {'0': '零', '1': '一', '2': '二', '3': '三', '4': '四', '5': '五', '6': '六', '7': '七', '8': '八', '9': '九'} cdata = str(data).split('.') integer = ''.join(list(reversed(cdata[0]))) decimal = cdata[1] if len(cdata) == 2 else [] ch_str = '' # 分解字符数组[亿,万,仟]三组List:['0000','0000','0000'] split_integer = list( reversed([''.join(list(reversed(integer[i:i+4]))) for i in range(0,len(integer),4)]) ) split_integer_len = len(split_integer) # 获取拆分后的List长度 # 大写合并 for i in range(split_integer_len): split_integer_group = split_integer[i] grouped_str = '' # 对[亿,万,仟]的list中每个字符串分组进行大写化再合并 split_integer_group_len = len(split_integer_group) lk = split_integer_group_len for j in range(split_integer_group_len): this_char = split_integer_group[j] if this_char == '0': if j < split_integer_group_len-1: if split_integer_group[j+1] != '0': grouped_str = grouped_str+gdict[this_char] else: grouped_str = grouped_str+gdict[this_char]+cdict[lk] lk -= 1 if grouped_str == '': # 有可能一个字符串全是0的情况 ch_str += grouped_str # 此时不需要将数字标识符引入 else: # 合并:前字符串大写+当前字符串大写+标识符 ch_str += grouped_str+xdict[split_integer_len-i] # 处理小数部分 decimal_len = len(decimal) if cny: if decimal_len == 0: ch_str += '整' elif decimal_len == 1: # 若小数只有1位 if int(decimal[0]) == 0: ch_str += '整' else: ch_str += gdict[decimal[0]]+'角整' else: # 若小数有两位的四种情况 if int(decimal[0]) == 0 and int(decimal[1]) != 0: ch_str += '零'+gdict[decimal[1]]+'分' elif int(decimal[0]) == 0 and int(decimal[1]) == 0: ch_str += '整' elif int(decimal[0]) != 0 and int(decimal[1]) != 0: ch_str += gdict[decimal[0]]+'角'+gdict[decimal[1]]+'分' else: ch_str += gdict[decimal[0]]+'角整' else: if decimal_len != 0: ch_str = ch_str + '点' for decimal_char in decimal: ch_str += gdict[decimal_char] return ch_str
e7c07b19d426b3c0abeaa4a6ae8058f6391b316e
15,501
def clip(number,start,end): """Returns `number`, but makes sure it's in the range of [start..end]""" return max(start, min(number, end))
c2fed329f855e36c08a05cc5e72d33e743c183c4
15,504
def mean_feat(col_list, feature, feat_table): """ trace_df() can output for eg. TR and SI values off nn nearest neighbour positions. This function calculates the mean of all neighbouring positions and also the zero position and returns a pandas Series of the means for each read Parameters ---------- col_list : list List of strings, each of which is the name of the feature columns present in the table outputted by trace_df() in get_features.py for eg. SI_0, TR_-1 etc feature : str string which is an element of col_list without the position number, of which the mean is going to be calculated eg SI in case of calculation of mean of signal intensity for all positions feat_table : pandas DataFrame Dataframe of the kind returned by trace_df() Returns ------- mean : pandas Series Series which is a column of the mean values of the required feature across all positions (-nn,nn) """ cols = [] for feat in col_list: if feature in feat: cols.append(feat) feat_table = feat_table[feat_table.columns.intersection(cols)] mean = feat_table.mean(axis=1) mean = mean.rename(feature + "_mean") return mean
4acbddc86aceb69d4e6f624c9c5927084020d44f
15,505
import argparse def parse_args(): """Parse command-line arguments.""" p = argparse.ArgumentParser(description=__doc__) p.add_argument('--verbose', '-v', action='count', help='be more verbose') p.add_argument('--thresholds', '-t', nargs=2, type=float, default=(0.5, 0.1), help='thresholds for labeling as prostate, lesion') p.add_argument('pmaps', nargs='+', help='input pmaps') return p.parse_args()
8f89e2d118ae181ff32bf60a7ac0847dd0164b13
15,506
def get_nested_value(d: dict, path: dict): """ Retrieves value from nested dictionary :param d: {key: {key_2: {key_2_1: hey}, key_1: 1234} :param path: {key: {key_2: key_2_1}} path to take through the dictionary d :return: d[key][key_2][key_2_1] """ if isinstance(path, dict): for k, v in path.items(): if k in d: return get_nested_value(d[k], v) else: raise KeyError(f'Dictionary {d} does not have key {k}') else: return d[path]
a9eaf03cd549b6794b4ea7ffd9bb3ab853a7d35d
15,508
import math def entropia(p): """Entropía de una Bernoulli de parámetro p.""" if p == 0 or p == 1: return 0 else: return - p * math.log(p, 2) - (1 - p) * math.log(1 - p, 2)
2ded93b09f5199fbd9d7564d45d1937735fb73eb
15,509
def predict(data, best_stump): """ Predicting data through decision stumps @param data: Data to be predicted @param best_stump: Decision stump @return: """ if (best_stump["unequal"] == 'lt' and data[best_stump["feature"]] <= best_stump["threshold"]) or ( best_stump["unequal"] == 'gt' and data[best_stump["feature"]] >= best_stump["threshold"]): return 1 else: return -1
6b80ca7ce12541de1ddd21648050861c74afe36a
15,510
def img_to_pencil(raw_image, threshold=15): """ Convert color map to simple pencil style. Args: raw_image: Image path to be processed. threshold: Thresholds are defined between 0 and 100. Returns: array. """ if threshold < 0: threshold = 0 if threshold > 100: threshold = 100 width, height = raw_image.size raw_image = raw_image.convert('L') # convert to gray scale mode pixel = raw_image.load() # get pixel matrix for w in range(width): for h in range(height): if w == width - 1 or h == height - 1: continue src = pixel[w, h] dst = pixel[w + 1, h + 1] diff = abs(src - dst) if diff >= threshold: pixel[w, h] = 0 else: pixel[w, h] = 255 return raw_image
8d56d4b88db1d33d31d40c23ce0a6058e69c2c53
15,511
import pkg_resources def to_pep440(version: str) -> str: """Derive pep440 compliant version string from PyCalVer version string. >>> to_pep440("v201811.0007-beta") '201811.7b0' """ return str(pkg_resources.parse_version(version))
91a5c19a95320b04fbdcf0917058168d7d1e2704
15,512
def getIdForMember(member): """ Returns the member's unique id as a string. """ return member['@Member_Id']
5aca8b6413581313fffee8ca21761a23c9315e38
15,515
import re def course_item(soup): """ Gets the course items and lectures for the soup object. """ course_list_html = soup.find('div',class_='course-lectures-list') topic_html = course_list_html.find_all('div',class_='course-item-list-header expanded') view = [] for topics in topic_html: top_html = str(topics.find('h3')) TAG_RE = re.compile(r'<[^>]+>') topic = TAG_RE.sub('', top_html).replace('\xc2\xa0','').replace(' ','') ul_html = topics.findNextSibling('ul') li_html = ul_html.find_all('li',class_="unviewed") count = len(li_html) ob = (count,topic) view.append(ob) return view
1d31abdee9a9d48d4484eabdfd838251e5b35fdb
15,517
def binary_search(array, x): """ Vanilla BS algorithm Look for x in the sorted array return the index if found or else return None [8, 9, 10] """ # A: init the low and high values low, high = 0, len(array) - 1 # B: search the array while low <= high: # find the middle value middle = (low + high) // 2 mid_elem = array[middle] # if found, return the index if mid_elem == x: return middle # if not, divide the array into two subproblems elif mid_elem < x: # go right low = middle + 1 elif mid_elem > x: # go left high = middle - 1 # C: if not found, return None return -1
99fb659774efabbbd5f53c91fd47d6e106542a4c
15,519
from typing import List from typing import Dict import json def load_jsonl(filepath: str) -> List[Dict[str, str]]: """ Load data from a `.jsonl` file, i.e., a file with one dictionary per line Args: filepath (str): Path to `.jsonl` file. Returns: List[Dict[str, str]]: A list of dictionaries, one per paper. """ with open(filepath, "r") as f: data = [json.loads(line) for line in f.readlines()] return data
defed6436b4e6dd17aae7163db19a3558446fb34
15,521
def shell_sort(arr): """ Here lies the shell sort algorithm """ comp = 0 arr_len = len(arr) gap = 1 # Get the gap number while gap < arr_len/3: gap = 3*gap + 1 while gap >= 1: for i in range(gap, arr_len): j = i while (j >= gap): if (arr[j] < arr[j-gap]): arr[j], arr[j-gap] = arr[j-gap], arr[j] j -= gap comp += 1 else: comp += 1 break gap = gap // 3 return comp
87774557017093d1152b45f29947ba5f2b8b33b6
15,523
def get_select_options(form): """ Return a dict or tags and descriptions based on the SELECT field in the given form. """ tags = {} selects = [] for input in form.inputs: if not input.attrib.has_key('type'): selects.append(input) for select in selects: tags[select.attrib['name']] = [] for child in select.getchildren(): tags[select.attrib['name']].append(child.attrib['value']) return tags
15773b1fd7483a71e6bae7d5d00647af788b8c8a
15,524
def write_kpts_vasp(kpts): """ Write a list of kpoints to a vasp-formatted KPOINTS file. """ output = "Supercell_k-points_from_primitive_cell\n" output += str(len(kpts))+"\n" output += "reciprocal\n" for i in range(len(kpts)): for j in range(3): output += str(kpts[i,j])+" " output += "1.0\n" return output
66a0f5b5128172d64c1e3d0af55695ffb10653b3
15,525
def _justify_and_indent(text, level, munge=0, width=72): """ indent and justify text, rejustify (munge) if specified """ indent = " " * level if munge: lines = [] line = indent text = text.split() for word in text: line = ' '.join([line, word]) if len(line) > width: lines.append(line) line = indent else: lines.append(line) return '\n'.join(lines) else: return indent + \ text.strip().replace("\r\n", "\n") .replace("\n", "\n" + indent)
dafa407bdf42832d92f8c3592ec9ab4f29711710
15,526
import random def total(): """Produce a random purchase amount.""" return round(random.random() * 1000, 2)
5034ed943b1860384c3a19f129d0ab1b7d14629e
15,527
import os def get_current_working_directory(): """ Returns current working directory :return: str, path to the current working directory """ return os.getcwd()
3e0364700576ff86a9ddd48286759c74dd71f705
15,529
def prettyprint_binding(binding, indent_level=0): """Pretty print a binding with variable id and data.""" indent = " " * indent_level if not binding: return indent + "<>" return "%s<v%d : %r>" % (indent, binding.variable.id, binding.data)
e1e196afd53027bbab076585dd8b6b6464b578bc
15,531
def database_oops(exc, _): """View triggered when the database falls over.""" return { 'no_database': True, 'exception': exc }
f5fdaf887659f62c849a9beaa7a2cba5333ffe01
15,533
def get_surface_albedo() -> float: """ :return: 地面の日射反射率(アルベド), - """ return 0.2
dc0bb08520d0858fdd6a95ab33932e7db4f710ef
15,534
def dist(p,q): """ Calculates the distance between the points p and q. Parameters --------- p : Point the first point q : Point the second point Returns ---------- Float The distance between the points p and q. """ return (sum((p.array()-q.array())**2))**0.5
97c0beb7f8c22e59da9551e35e66a7d8e39bf667
15,535
def try_int(text, default=0): """Try to parse an integer but return a default if it fails.""" try: return int(text) except ValueError: return default
b699bbd7209a88e1df3d2b941d581904bf30e737
15,536
from typing import IO from typing import Any from typing import Sequence import struct def read_bytes_as_tuple(f: IO[Any], fmt: str) -> Sequence[Any]: """Read bytes using a `struct` format string and return the unpacked data values. Parameters ---------- f : IO[Any] The IO stream to read bytes from. fmt : str A Python `struct` format string. Returns ------- Sequence[Any] The unpacked data values read from the stream. """ data = f.read(struct.calcsize(fmt)) return struct.Struct(fmt).unpack(data)
b2622d5aad02c528163cb3318b5c70ea0510ea01
15,537
import os def Prex_img(cls,img_name): """ Add root_path to each img e.g. root_path = '/Users/lees/Desktop/img_folder/cls_name img = 1.png then return: /Users/lees/Desktop/img_folder/cls_name/1.png """ return os.path.join(cls,img_name)
98cfd559c02d5e1a7739843bfaa7fd26e06f6881
15,538
def clean_record(rec: list, field_names: list) -> dict: """ Parses the record supplied by the calling function and returns a dictionary that can be transformed into a database record. :param rec: record extracted from file :ptype rec: list :param field_names: field names for the record :ptype field_names: list :rtype: Dictionary of cleaned elements. """ return dict(zip(field_names, [elem.strip('~') for elem in rec]))
a76974cb8f7e12aec80404df85b90001df2a69f4
15,539
import re def _get_changelist(perforce_str): """Extract change list from p4 str""" rx = re.compile(r'Change: (\d+)') match = rx.search(perforce_str) if match is None: v = 'UnknownChangelist' else: try: v = int(match.group(1)) except (TypeError, IndexError): v = "UnknownChangelist" return v
26b08d8ccf6251e0d3a9698147093e2bb6e89919
15,540
def parse_step_id_from_sacct(output, step_name): """Parse and return the step id from a sacct command :param output: output of sacct --noheader -p --format=jobname,jobid --job <alloc> :type output: str :param step_name: the name of the step to query :type step_name: str :return: the step_id :rtype: str """ step_id = None for line in output.split("\n"): sacct_string = line.split("|") if len(sacct_string) < 2: continue if sacct_string[0] == step_name: step_id = sacct_string[1] return step_id
2ed06aba82665ad2a42c12a39c589d10258883f4
15,541
def validate_course_policy(module_store, course_id): """ Validate that the course explicitly sets values for any fields whose defaults may have changed between the export and the import. Does not add to error count as these are just warnings. """ # is there a reliable way to get the module location just given the course_id? warn_cnt = 0 for module in module_store.modules[course_id].values(): if module.location.block_type == 'course': if not module._field_data.has(module, 'rerandomize'): # lint-amnesty, pylint: disable=protected-access warn_cnt += 1 print( 'WARN: course policy does not specify value for ' '"rerandomize" whose default is now "never". ' 'The behavior of your course may change.' ) if not module._field_data.has(module, 'showanswer'): # lint-amnesty, pylint: disable=protected-access warn_cnt += 1 print( 'WARN: course policy does not specify value for ' '"showanswer" whose default is now "finished". ' 'The behavior of your course may change.' ) return warn_cnt
5725d03bd3b3823f0c6dc6f5d6d4a1cb94692420
15,543
def extract_items(topitems_or_libraryitems): """ Extracts a sequence of items from a sequence of TopItem or LibraryItem objects. """ seq = [] for i in topitems_or_libraryitems: seq.append(i.item) return seq
6a6918b4fc8153f4c98f5df906ce584422b3df78
15,544
def city_data(): """The data for the one and only `City` object as a `dict`.""" return { 'id': 1, 'name': 'Paris', 'kml': "<?xml version='1.0' encoding='UTF-8'?> ...", 'center_latitude': 48.856614, 'center_longitude': 2.3522219, 'northeast_latitude': 48.9021449, 'northeast_longitude': 2.4699208, 'southwest_latitude': 48.815573, 'southwest_longitude': 2.225193, 'initial_zoom': 12, }
346e067ecb48e8f3c56eb0834af92a78867ce9f5
15,545
def get_custom_module_description(name): """Return string with description for custom modules.""" return "Custom module from corpus directory ({}.py).".format(name.split(".")[1])
647e2df266a25b888558c34b4d425e09b0f58ca1
15,546
def _showcompatlist( context, mapping, name, values, plural=None, separator=b' ' ): """Return a generator that renders old-style list template name is name of key in template map. values is list of strings or dicts. plural is plural of name, if not simply name + 's'. separator is used to join values as a string expansion works like this, given name 'foo'. if values is empty, expand 'no_foos'. if 'foo' not in template map, return values as a string, joined by 'separator'. expand 'start_foos'. for each value, expand 'foo'. if 'last_foo' in template map, expand it instead of 'foo' for last key. expand 'end_foos'. """ if not plural: plural = name + b's' if not values: noname = b'no_' + plural if context.preload(noname): yield context.process(noname, mapping) return if not context.preload(name): if isinstance(values[0], bytes): yield separator.join(values) else: for v in values: r = dict(v) r.update(mapping) yield r return startname = b'start_' + plural if context.preload(startname): yield context.process(startname, mapping) def one(v, tag=name): vmapping = {} try: vmapping.update(v) # Python 2 raises ValueError if the type of v is wrong. Python # 3 raises TypeError. except (AttributeError, TypeError, ValueError): try: # Python 2 raises ValueError trying to destructure an e.g. # bytes. Python 3 raises TypeError. for a, b in v: vmapping[a] = b except (TypeError, ValueError): vmapping[name] = v vmapping = context.overlaymap(mapping, vmapping) return context.process(tag, vmapping) lastname = b'last_' + name if context.preload(lastname): last = values.pop() else: last = None for v in values: yield one(v) if last is not None: yield one(last, tag=lastname) endname = b'end_' + plural if context.preload(endname): yield context.process(endname, mapping)
a0e717c645aa00a8dd239a435cdec42593d58411
15,547
def get_pixdist_ratio(m_size, ant_rad): """Get the ratio between pixel number and physical distance Returns the pixel-to-distance ratio (physical distance, in meters) Parameters ---------- m_size : int The number of pixels used along one-dimension for the model (the model is assumed to be square) ant_rad : float The radius of the antenna trajectory during the scan, in meters Returns ------- pix_to_dist_ratio : float The number of pixels per physical meter """ # Get the ratio between pixel and physical length pix_to_dist_ratio = m_size / (2 * ant_rad) return pix_to_dist_ratio
b307ee5da49b9cd92958aa6d94c4e3ffa860bf1d
15,549
def sstrip(s, suffix): """Suffix strip >>> sstrip('foo.oof', '.oof') 'foo' >>> sstrip('baroof', '.oof') 'baroof' """ i = - len(suffix) if s[i:] == suffix: return s[:i] return s
7f4d0f118caa48d68ae826813b65e3d452c2c1e8
15,550
import textwrap def wrap_string(data, width=40, indent=32, indentAll=False, followingHeader=None): """ Print a option description message in a nicely wrapped and formatted paragraph. followingHeader -> text that also goes on the first line """ data = str(data) if len(data) > width: lines = textwrap.wrap(textwrap.dedent(data).strip(), width=width) if indentAll: returnString = ' ' * indent + lines[0] if followingHeader: returnString += " " + followingHeader else: returnString = lines[0] if followingHeader: returnString += " " + followingHeader i = 1 while i < len(lines): returnString += "\n" + ' ' * indent + (lines[i]).strip() i += 1 return returnString else: return data.strip()
4e983e4116058da1fa263e65aa3516a275d89001
15,551
def initial(x, idx): """ Get first value of series. """ if idx is None: return x.iloc[0] return x.iloc[idx.start or 0]
28d364329af3f579868807773efb8a074e2c3cb5
15,552
import torch def _conjugate_gradient(f_Ax, b, cg_iters, residual_tol=1e-10): """Use Conjugate Gradient iteration to solve Ax = b. Demmel p 312. Args: f_Ax (callable): A function to compute Hessian vector product. b (torch.Tensor): Right hand side of the equation to solve. cg_iters (int): Number of iterations to run conjugate gradient algorithm. residual_tol (float): Tolerence for convergence. Returns: torch.Tensor: Solution x* for equation Ax = b. """ p = b.clone() r = b.clone() x = torch.zeros_like(b) rdotr = torch.dot(r, r) for _ in range(cg_iters): z = f_Ax(p) v = rdotr / torch.dot(p, z) x += v * p r -= v * z newrdotr = torch.dot(r, r) mu = newrdotr / rdotr p = r + mu * p rdotr = newrdotr if rdotr < residual_tol: break return x
ab8aa89ae15bef9214dbecfcff2b587993d550f9
15,556
def list_to_bytes(input_list): """将字节串数组拼接成字节串 Args: input_list (list): 字节串列表 Returns: bytes: 拼接后的字节串 """ return b''.join(input_list)
7a2341540c131316ec0eebf06e3ffe447a95c9d6
15,557
from typing import Dict from typing import Optional def get_task_exhaustation_date( plan_worktime_dict: Dict[str, float], annotation_not_started: int, velocity_per_task: float ) -> Optional[str]: """ タスクの枯渇予定日を求める。 教師付されていないタスク数がすでに0ならば、Noneを返す。 Args: plan_worktime_dict: annotation_not_started: velocity_per_task: Returns: """ if annotation_not_started <= 0 or velocity_per_task <= 0: return None remaining_task: float = annotation_not_started for date in sorted(plan_worktime_dict.keys()): plan_worktime = plan_worktime_dict[date] task_count = plan_worktime / velocity_per_task remaining_task -= task_count if remaining_task <= 0: return date return None
ae4d61398e856403614b47fa95dd7b90a02b07b5
15,558
def rb_is_true(value: str) -> bool: """String to bool conversion function for use with args.get(...). """ return value.lower() == "true"
05835733e90e1bd756f8e1b02bb1c5683e628798
15,559
import torch def most_confident(scores, thresh=0.3): """ :param scores: (n_way, n_queries) :param thresh: float :return: """ confidence, idx = torch.sort(scores, dim=1, descending=True) d = (confidence.min(dim=0, keepdim=True).values > thresh).sum() idx = idx[:, :d] return idx
953d1699019bc6a325faa5b7f84a1c3de656ebf2
15,561