content
stringlengths 35
416k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
|---|---|---|
def decode_modified_utf8(s: bytes) -> str:
"""
Decodes a bytestring containing modified UTF-8 as defined in section
4.4.7 of the JVM specification.
:param s: bytestring to be converted.
:returns: A unicode representation of the original string.
"""
s_out = []
s_len = len(s)
s_ix = 0
while s_ix < s_len:
b1 = s[s_ix]
s_ix += 1
if b1 == 0:
raise UnicodeDecodeError(
'mutf-8',
s,
s_ix - 1,
s_ix,
'Embedded NULL byte in input.'
)
if b1 < 0x80:
# ASCII/one-byte codepoint.
s_out.append(chr(b1))
elif (b1 & 0xE0) == 0xC0:
# Two-byte codepoint.
if s_ix >= s_len:
raise UnicodeDecodeError(
'mutf-8',
s,
s_ix - 1,
s_ix,
'2-byte codepoint started, but input too short to'
' finish.'
)
s_out.append(
chr(
(b1 & 0x1F) << 0x06 |
(s[s_ix] & 0x3F)
)
)
s_ix += 1
elif (b1 & 0xF0) == 0xE0:
# Three-byte codepoint.
if s_ix + 1 >= s_len:
raise UnicodeDecodeError(
'mutf-8',
s,
s_ix - 1,
s_ix,
'3-byte or 6-byte codepoint started, but input too'
' short to finish.'
)
b2 = s[s_ix]
b3 = s[s_ix + 1]
if b1 == 0xED and (b2 & 0xF0) == 0xA0:
# Possible six-byte codepoint.
if s_ix + 4 >= s_len:
raise UnicodeDecodeError(
'mutf-8',
s,
s_ix - 1,
s_ix,
'3-byte or 6-byte codepoint started, but input too'
' short to finish.'
)
b4 = s[s_ix + 2]
b5 = s[s_ix + 3]
b6 = s[s_ix + 4]
if b4 == 0xED and (b5 & 0xF0) == 0xB0:
# Definite six-byte codepoint.
s_out.append(
chr(
0x10000 |
(b2 & 0x0F) << 0x10 |
(b3 & 0x3F) << 0x0A |
(b5 & 0x0F) << 0x06 |
(b6 & 0x3F)
)
)
s_ix += 5
continue
s_out.append(
chr(
(b1 & 0x0F) << 0x0C |
(b2 & 0x3F) << 0x06 |
(b3 & 0x3F)
)
)
s_ix += 2
else:
raise RuntimeError
return u''.join(s_out)
|
bb51073289d8592eb71c8132f8350bad1b36bf27
| 14,876
|
def get_links(links, row):
"""
Process & flatten the links section in the yaml. Values within the subgroup
are comma separated & the subgroups are pipe separated.
"""
l_name_str = []
l_backref_str = []
l_label_str = []
l_target_str = []
l_multiplicity_str = []
l_required_str = []
g_exclusive_str = []
g_required_str = []
for link in links:
if isinstance(link, dict) and link != {}:
if 'subgroup' in link:
sub_name = []
sub_backref = []
sub_label = []
sub_target = []
sub_multi = []
sub_req = []
for l in link['subgroup']:
sub_name.append(l['name'])
sub_backref.append(l['backref'])
sub_label.append(l['label'])
sub_target.append(l['target_type'])
sub_multi.append(l['multiplicity'])
sub_req.append(str(l['required']))
l_name_str.append(', '.join(sub_name))
l_backref_str.append(', '.join(sub_backref))
l_label_str.append(', '.join(sub_label))
l_target_str.append(', '.join(sub_target))
l_multiplicity_str.append(', '.join(sub_multi))
l_required_str.append(', '.join(sub_req))
g_exclusive_str.append(str(link['exclusive']))
g_required_str.append(str(link['required']))
else:
try:
l_name_str.append(link['name'])
l_backref_str.append(link['backref'])
l_label_str.append(link['label'])
l_target_str.append(link['target_type'])
l_multiplicity_str.append(link['multiplicity'])
l_required_str.append(str(link['required']))
g_exclusive_str.append('')
g_required_str.append('')
except KeyError:
pass
row['<link_name>'] = ' | '.join(l_name_str)
row['<link_backref>'] = ' | '.join(l_backref_str)
row['<link_label>'] = ' | '.join(l_label_str)
row['<link_target>'] = ' | '.join(l_target_str)
row['<link_multiplicity>'] = ' | '.join(l_multiplicity_str)
row['<link_required>'] = ' | '.join(l_required_str)
row['<link_group_exclusive>'] = ' | '.join(g_exclusive_str)
row['<link_group_required>'] = ' | '.join(g_required_str)
return row
|
8d2233ffc5180cb2fc9411665e6b5021f7961a76
| 14,877
|
def compile_column(name: str, data_type: str, nullable: bool) -> str:
"""Create column definition statement."""
null_str = 'NULL' if nullable else 'NOT NULL'
return '{name} {data_type} {null},'.format(name=name,
data_type=data_type,
null=null_str)
|
e1db7bfc78509d394de645b90394f8d796f97a5b
| 14,878
|
def convert_255_to_hex(color255):
"""
>>> color255 = [255, 51, 0]
target_rgb01 = pt.FALSE_RED[0:3]
target_rgb = np.array([[target_rgb01]]).astype(np.float32) / 25
target_lab = vt.convert_colorspace(target_rgb, 'lab', 'rgb')
# Find closest CSS color in LAB space
dist_lab = {}
dist_rgb = {}
css_colors = ub.map_vals(convert_hex_to_255, mcolors.CSS4_COLORS)
for k, c in css_colors.items():
rgb = np.array([[c]]).astype(np.float32) / 255
lab = vt.convert_colorspace(rgb, 'lab', 'rgb')
dist_lab[k] = np.sqrt(((target_lab - lab) ** 2).sum())
dist_rgb[k] = np.sqrt(((target_rgb - rgb) ** 2).sum())
best_keys = ub.argsort(dist_lab)
ub.odict(zip(best_keys, ub.take(dist_lab, best_keys)))
"""
colorhex = '0x' + ''.join(['%02x' % c for c in color255])
return colorhex
|
355ad47715a3c188b1b6660a76d816b0124a3f69
| 14,880
|
import logging
def group_samples(samples, tokenizer):
"""Groups generated and ground truth texts."""
groups = {}
for i, row in enumerate(samples):
gt = tokenizer.decode(row['ground_truth_text'])
sample = tokenizer.decode(row['sample_tokens'])
if gt not in groups:
groups[gt] = (gt.split(), [sample.split()])
else:
groups[gt][-1].append(sample.split())
if (i + 1) % 100 == 0:
logging.info('Processed %d samples', i + 1)
return groups
|
b8bbdb02157d20fd3a9aed774c3a90a24fe18e86
| 14,881
|
import io
import os
def filter_alt_hap_chromosomes(inputfile, outputfile):
"""
Filter chromosomes with names containing alt or hap
as preparation for STAR map index
"""
line_buffer = io.StringIO()
keep = False
just_link = True
with open(inputfile, 'r') as fasta:
for line in fasta:
if line.startswith('>'):
if 'alt' in line or 'hap' in line:
keep = False
just_link = False
else:
keep = True
if keep:
line_buffer.write(line)
if just_link:
os.symlink(inputfile, outputfile)
else:
with open(outputfile, 'w') as fasta:
_ = fasta.write(line_buffer.getvalue())
return outputfile
|
249ef2b6b6b22202f31f406ec1d107dc0fa5b356
| 14,882
|
def xy_data(dataset, variable):
"""X-Y line/circle data related to a dataset"""
# import time
# time.sleep(5) # Simulate expensive I/O or slow server
if dataset == "takm4p4":
return {
"x": [0, 1e5, 2e5],
"y": [0, 1e5, 2e5]
}
else:
return {
"x": [0, 1e5, 2e5],
"y": [0, 3e5, 1e5]
}
|
153e6ccd16c86bebb5c4597a02e64d0f90c10e63
| 14,883
|
from datetime import datetime
def get_datetime_utcnow():
"""Returns local datetime in UTC"""
return datetime.utcnow()
|
a64843d111344b30eacc5e99258e28f12376a321
| 14,884
|
import os
import numpy as np
from math import sin, cos
def eddy_rotate_bvecs(in_bvec, eddy_params):
"""
Rotates the input bvec file accordingly with a list of parameters sourced
from ``eddy``, as explained `here
<http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/EDDY/Faq#Will_eddy_rotate_my_bevcs_for_me.3F>`_.
"""
name, fext = os.path.splitext(os.path.basename(in_bvec))
if fext == '.gz':
name, _ = os.path.splitext(name)
out_file = os.path.abspath('%s_rotated.bvec' % name)
bvecs = np.loadtxt(in_bvec).T
new_bvecs = []
params = np.loadtxt(eddy_params)
if len(bvecs) != len(params):
raise RuntimeError(('Number of b-vectors and rotation '
'matrices should match.'))
for bvec, row in zip(bvecs, params):
if np.all(bvec == 0.0):
new_bvecs.append(bvec)
else:
ax = row[3]
ay = row[4]
az = row[5]
Rx = np.array([[1.0, 0.0, 0.0],
[0.0, cos(ax), -sin(ax)],
[0.0, sin(ax), cos(ax)]])
Ry = np.array([[cos(ay), 0.0, sin(ay)],
[0.0, 1.0, 0.0],
[-sin(ay), 0.0, cos(ay)]])
Rz = np.array([[cos(az), -sin(az), 0.0],
[sin(az), cos(az), 0.0],
[0.0, 0.0, 1.0]])
R = Rx.dot(Ry).dot(Rz)
invrot = np.linalg.inv(R)
newbvec = invrot.dot(bvec)
new_bvecs.append(newbvec / np.linalg.norm(newbvec))
np.savetxt(out_file, np.array(new_bvecs).T, fmt='%0.15f')
return out_file
|
846e2af6fa072c711b6ca69462e58c6e6a0b3a29
| 14,886
|
def expand_grid(grid):
"""Expand grid by one in every direction."""
new_length = len(grid) + 2
row = [0 for _ in range(new_length)]
new_grid = [[0] + row + [0] for row in grid]
return [row[:]] + new_grid + [row[:]]
|
773ccd3f0bb308ed294f6c3b202818e9a8f7511a
| 14,887
|
def stratify(all_labels, types):
"""
Divide label into three categories.
"""
coarse = types[:9]
fine = types[9:130]
return ([l for l in all_labels if l in coarse],
[l for l in all_labels if ((l in fine) and (not l in coarse))],
[l for l in all_labels if (not l in coarse) and (not l in fine)])
|
699a632786249d0f1ea59db34bfe4b50c7a93080
| 14,888
|
def dbdisconnect(connection) -> bool:
"""Close connection to SQLite-Database
:param connection:
:return: Result of success (true/false)
"""
if connection:
connection.close()
return True
return False
|
6c5d17d14e898696885730ef86fad9eab03af02f
| 14,889
|
def GetAllocationAffinity(args, client):
"""Returns the message of allocation affinity for the instance."""
if not args.IsSpecified('allocation_affinity'):
return None
type_msgs = (client.messages.
AllocationAffinity.ConsumeAllocationTypeValueValuesEnum)
if args.allocation_affinity == 'none':
allocation_type = type_msgs.NO_ALLOCATION
allocation_key = None
allocation_values = []
elif args.allocation_affinity == 'specific':
allocation_type = type_msgs.SPECIFIC_ALLOCATION
# Currently, the key is fixed and the value is the name of the allocation.
# The value being a repeated field is reserved for future use when user
# can specify more than one allocation names from which the Vm can take
# capacity from.
allocation_key = args.allocation_label.get('key', None)
allocation_values = [args.allocation_label.get('value', None)]
else:
allocation_type = type_msgs.ANY_ALLOCATION
allocation_key = None
allocation_values = []
return client.messages.AllocationAffinity(
consumeAllocationType=allocation_type,
key=allocation_key,
values=allocation_values)
|
c52f4a95120aa2ca13b2ec37857ad2f398634d77
| 14,890
|
def boom_7_for(number):
"""itirate from zero to number with for,if number is divisable by 7 or contain 7 as a digit we'll add 'BOOM' to the list else we'll add the number"""
ls = []
for num in range(number +1):
if '7' in str(num) or num % 7 == 0:
ls.append("BOOM")
else:
ls.append(num)
return ls
|
ca3126849aa48d9b1578678d5679837304037fb7
| 14,891
|
def lcase(i):
"""
>>> lcase("Cat")
'cat'
"""
return i.lower()
|
88eb1d7681c442757a372aeb06338412eac869ae
| 14,892
|
from typing import List
def transla(name_row: List[str], language_1: List[str], language_2: List[str]):
"""
:param name_row: The name in row
:param language_1: List of the first language
:param language_2: List of the second language
:return: translated name for each row
Usage:
gdf['type_eng'] = gdf['type'].apply(transla,args=(lst_1,lst_2))
"""
b = [(a[0], a[1]) for a in zip(language_1, language_2)]
for tup in b:
if tup[0].lower() == name_row.lower(): # type: ignore
return tup[1].lower()
|
038536ed52970a077aca4e98961f5ef52c98e2c8
| 14,893
|
import os
def preflight_check(blacklist_file, geoip_file, root_domains_file):
""" Checks the existence of all the lookup files. Returns False if one is missing.
:return: Bool
"""
if not os.path.isfile(blacklist_file):
return False
elif not os.path.isfile(geoip_file):
return False
elif not os.path.isfile(root_domains_file):
return False
else:
return True
|
111b4f88f2d52dad117195d082c94ca7ac4e5d7f
| 14,894
|
def rdict(x):
"""
recursive conversion to dictionary
converts objects in list members to dictionary recursively
attributes beginning with '_' is converted to fields excluding the '_'
"""
if isinstance(x, list):
l = [rdict(y) for y in x]
return l
elif isinstance(x, dict):
x2={}
for k, v in x.items():
if k.endswith('__'):
continue
if k.startswith('_'):
k2 = k[1:]
x2[k2] = rdict(v)
else:
x2[k] = rdict(v)
return x2
else:
if hasattr(x, '__dict__'):
d = x.__dict__
toremove=[]
# convert _key -> key
for k, v in d.items():
if k.startswith('_'):
k2 = k[1:]
d[k2] = v
toremove.append(k)
if k.endswith('__'): # internal use only
toremove.append(k)
# remove items with a None value
for k, v in d.items():
if v is None:
toremove.append(k)
for k in set(toremove):
del(d[k])
# go deep
for k, v in d.items():
d[k] = rdict(v)
return d
else:
return x
|
5da3d680b9ec191e5962ac4ce4469cbfef608ed4
| 14,895
|
import base64
def diff_kubernetes_secret(secret, desired_fields):
"""Computes a set of changed fields (either added, removed, or modified)
between the given existing secret and the set of desired fields.
:param secret: an existing secret as a KubernetesAPIResponse containing
encoded secret data
:type secret: KubernetesAPIResponse
:param desired_fields: a dict of desired fields
:type desired_fields: dict[str, str]
:return: set[str]
"""
current_keys = set(secret.data.keys())
desired_keys = set(desired_fields.keys())
differences = current_keys.symmetric_difference(desired_keys)
for field in current_keys.intersection(desired_keys):
decoded_bytes = base64.b64decode(secret.data[field])
decoded_str = decoded_bytes.decode('utf-8')
if decoded_str != desired_fields[field]:
differences.add(field)
return differences
|
eb3d219a40bc68ba00d3d876aade936f8b062e75
| 14,896
|
def find_indexes_where_lists_differ(list1: list, list2: list) -> list:
"""This function returns the indexes where the two input lists differ. THe input lists are expected to have same length
Args:
list1 (list): first input list
list2 (list): second input list
Returns:
out_list (list): output list containing the indexes where the two input list differ
Raises:
AssertionError: if the two input lists do not have the same length
"""
assert len(list1) == len(list2), "The two input lists must have same length"
out_list = [idx for idx, (first, second) in enumerate(zip(list1, list2)) if first != second]
return out_list
|
888d850b692a1920058f53a4617dcd08d5ed31cc
| 14,897
|
def removeprefix(self: str, prefix: str) -> str:
""" Backport of `removeprefix` from PEP-616 (Python 3.9+) """
if self.startswith(prefix):
return self[len(prefix):]
else:
return self
|
109770b8467a3c1e86156e40f9735ade8f2d08aa
| 14,898
|
import hashlib
def hash_string(string):
"""
returns hash of bytes
"""
return hashlib.sha1(string.encode(encoding="utf-8")).hexdigest()
|
87b31dbf655077234eafcf98b7acbe573e7c0bf8
| 14,900
|
def values_of(choices):
"""
Returns a tuple of values from choices options represented as a tuple of
tuples (value, label). For example:
.. sourcecode:: python
>>> values_of((
... ('1', 'One'),
... ('2', 'Two'),))
('1', '2')
:rtype: tuple
"""
return tuple([value for value, label in choices])
|
1b152cfab229d2eddd5bf0ff3cbf53954b1934e5
| 14,901
|
def get_minio_notification_response(
minio_client, bucket_name: str, prefix: str, suffix: str, events: list[str]
):
"""Start listening to minio events. Copied from minio-py."""
query = {"prefix": prefix, "suffix": suffix, "events": events}
# pylint: disable=protected-access
return minio_client._url_open(
"GET", bucket_name=bucket_name, query=query, preload_content=False
)
|
d28bf1bb40a7702a7174972b300c44701c0e45d6
| 14,902
|
import re
def estimate_investment_net_worth(results):
"""Currently only using investment table to calculate net worth"""
key_codes = {
"A": [1, 1000],
"B": [1001, 2500],
"C": [2501, 5000],
"D": [5001, 15000],
"E": [15001, 50000],
"F": [50001, 100000],
"G": [100001, 1000000],
"H1": [1000001, 5000000],
"H2": [ # This is inaccurate as their is no upper bound
5000000,
1000000000,
],
"J": [1, 15000],
"K": [15001, 50000],
"L": [50001, 100000],
"M": [100001, 250000],
"N": [250001, 500000],
"O": [500001, 1000000],
"P1": [1000001, 5000000],
"P2": [5000001, 25000000],
"P3": [25000001, 50000000],
"P4": [ # This is inaccurate as their is no upper bound
50000001,
1000000000,
],
}
gross_values = []
for k, v in results["sections"]["Investments and Trusts"]["rows"].items():
if v["C1"]["text"] != "" and v["C1"]["text"] != "•":
gross_values.append(key_codes[v["C1"]["text"]])
if v["D3"]["text"] != "" and v["D3"]["text"] != "•":
gross_values.append(key_codes[v["D3"]["text"]])
low = sum(x[0] for x in gross_values)
high = sum(x[1] for x in gross_values)
cd = {}
cd["investment_net_worth"] = (low, high)
net_change = []
for k, v in results["sections"]["Investments and Trusts"]["rows"].items():
B1, D4 = v["B1"]["text"], v["D4"]["text"]
for code in [B1, D4]:
if code != "" and code != "•":
net_change.append(key_codes[code])
low = sum(x[0] for x in net_change)
high = sum(x[1] for x in net_change)
cd["income_gains"] = (low, high)
liabilities_total = []
try:
for k, v in results["sections"]["Liabilities"]["rows"].items():
if (
v["Value Code"]["text"] != ""
and v["Value Code"]["text"] != "•"
):
liabilities_total.append(key_codes[v["Value Code"]["text"]])
low = sum(x[0] for x in liabilities_total)
high = sum(x[1] for x in liabilities_total)
cd["liabilities"] = (low, high)
except:
cd["liabilities"] = (0, 0)
try:
salaries = []
for k, v in results["sections"]["Non-Investment Income"][
"rows"
].items():
if v["Income"]["text"] != "" and v["Income"]["text"] != "•":
salary = v["Income"]["text"].replace(",", "").strip("$")
if not re.match(r"^-?\d+(?:\.\d+)?$", salary) is None:
salaries.append(float(salary))
cd["salary_income"] = sum(salaries)
except:
cd["salary_income"] = 0
return cd
|
a5b0134ab428f0b0f3f3f3ba0d2391325fff87b1
| 14,904
|
def objc_provider_framework_name(path):
"""Returns the name of the framework from an `objc` provider path.
Args:
path: A path that came from an `objc` provider.
Returns:
A string containing the name of the framework (e.g., `Foo` for `Foo.framework`).
"""
return path.rpartition("/")[2].partition(".")[0]
|
cafb53a64cc8654a992d325faa34721a19d5a38a
| 14,905
|
import sys
def average(arr):
"""average of the values, must have more than 0 entries.
:param arr: list of numbers
:type arr: number[] a number array
:return: average
:rtype: float
"""
if len(arr) == 0:
sys.stderr.write("ERROR: no content in array to take average\n")
sys.exit()
if len(arr) == 1: return arr[0]
return float(sum(arr))/float(len(arr))
|
e3560867ccd709d7c8af56f21d551e140e09450b
| 14,907
|
import re
def clean_server_response(d):
"""cleans the server reponse by replacing:
'-' -> None
'1,000' -> 1000
:param resp_dict:
"""
for key, value in d.items():
if type(value) is str or isinstance(value, str):
if re.match('-', value):
value = None
elif re.search(r'^[0-9,.]+$', value):
# replace , to '', and type cast to int
value = float(re.sub(',', '', value))
else:
value= str(value)
d[key] = value
return d
|
55a3a02e1be3502ebc8a7a7b5511e57ab3ec24f5
| 14,908
|
from multiprocessing import Process
def run_in_subprocess(func, *args, **kwargs):
"""
多进程工具函数,不涉及返回值等细节处理时使用
:param func: 被进程委托的函数
:return: 返回multiprocessing进程对象
"""
process = Process(target=func, args=args, kwargs=kwargs)
process.daemon = True
process.start()
return process
|
a2a3586ab8975102b38f6caf2b07984287cc4f7c
| 14,909
|
import json
def extract_session_parameters(response_json: str):
"""Extracts session parameters from the json response of a Dialogflow webhook."""
response = json.loads(response_json)
return response["session_info"]["parameters"]
|
45cde22d7271512e4f90fc3078c327c9ccbd86b0
| 14,913
|
def scalar_multiply(c, u):
""" return the vector u scaled by the scalar c """
return tuple((c * a for a in u));
|
9ace577e852179893e90544754b8010d3476f3ae
| 14,914
|
def grouper_orig(cc):
"""grouper based on gaps in timestamps"""
diffs = cc.timestamps().diff()
grpr_orig = (diffs>cc.timedelta).cumsum()
grpr_orig.name = 'g_orig'
return grpr_orig
|
ecc755be0d107a3ac86c35069546ac920c4d42ce
| 14,917
|
def flip_2d(arr):
"""
Flip a board layout (nxm becomes mxn)
@param {Array} arr Rectangle layout
@return {Array} Rectangle layout flipped along diagonal
"""
return tuple(zip(*arr[::]))
|
7204265236d367ef03b858560b1f2fe31f14388c
| 14,918
|
def make_save_string(file_name):
"""
Returns a complete save string for saving a model.
======================================
Input:
file_name (string) - Filename used in save string.
Output:
save_string (string) - Save string for specified model.
"""
# Filepath for saved file
filepath = r'C:\Developer\electric_motor_thermal_modelling\Models'
filepath_full = filepath + '\\' + file_name
return filepath_full
|
fb00690f4c5a4d7063220918709a8a45daa0a538
| 14,919
|
import numpy
def _kl_divergence(xs, p1, p2):
"""Calculate Kullback-Leibler divergence of p1 and p2, which are assumed to
values of two different density functions at the given positions xs.
Return divergence in nats."""
with numpy.errstate(divide='ignore', invalid='ignore'):
kl = p1 * (numpy.log(p1) - numpy.log(p2))
kl[~numpy.isfinite(kl)] = 0 # small numbers in p1 or p2 can cause NaN/-inf, etc.
return numpy.trapz(kl, x=xs)
|
433c10350bac2f92b9aafeb61d9fe7823f763073
| 14,920
|
def fraction_str(*numbers):
"""normalized numbers list by sum and return as str
Parameters
----------
- numbers: numbers to print fractions of
"""
total = sum(numbers)
fractions = [number / float(total) for number in numbers]
return '(' + ', '.join('{:0.03f}'.format(item) for item in fractions) + ')'
|
150a35b6cfcbf623ee91d6b9db416ec359c850d0
| 14,921
|
def v7_multimax(iterable):
"""Return a list of all maximum values.
Or we could make a new list out of the given iterable and then find
the max and loop over it again just as we did before
"""
iterable = list(iterable)
max_item = max(iterable, default=None)
return [
item
for item in iterable
if item == max_item
]
|
6997aa3c7ec0cd549e25c4016d64ce32c6fa0f61
| 14,923
|
def _get_job_dir(jenkins_directory, job_name):
"""
Returns the directory for a job configuration file relative
to the jenkins home directory.
"""
return jenkins_directory + '/jobs/' + job_name
|
b77a56efa394b4d43209b7f47da96a4f5f0ca96b
| 14,924
|
import tempfile
import os
def mkstemp(*args, **kwargs):
"""
Helper function which does exactly what ``tempfile.mkstemp()`` does but
accepts another argument, ``close_fd``, which, by default, is true and closes
the fd before returning the file path. Something commonly done throughout
Salt's code.
"""
if "prefix" not in kwargs:
kwargs["prefix"] = "__hubble.tmp."
close_fd = kwargs.pop("close_fd", True)
fd_, f_path = tempfile.mkstemp(*args, **kwargs)
if close_fd is False:
return fd_, f_path
os.close(fd_)
del fd_
return f_path
|
e1867f2b72c8e5165da32154c08cdec321e796cd
| 14,925
|
def check_n_levels(parsed, n):
"""Make sure there are n levels in parsed"""
if len(parsed) == n:
return True
else:
return False
|
f4040e4cf53730e61e5c06fed5dbe8f271020c6a
| 14,926
|
import re
import glob
def find_files(input_path, framerange=None):
"""
Discovers files on the filesystem.
:param input_path: Path to the file sequence
:param framerange: optional framerange
:return: array of single file paths
"""
files = []
if '%' not in input_path:
return [input_path]
if framerange:
for part_range in framerange.split(','):
if '-' in part_range:
first, last = part_range.split('-')
for i in range(int(first), int(last) + 1):
files.append(input_path % i)
else:
files.append(input_path % int(part_range))
else:
input_path = re.sub(r'(\%0[4-8]d)(\.[exr|EXR])', r'*\2', input_path)
files = glob.glob(input_path)
files = sorted(files)
return files
|
8f2818b6c8b72f344c70adee0e79ac52c2313902
| 14,927
|
import pathlib
def _parse_requirements(path: pathlib.Path):
"""Read and strip comments from a requirements.txt-like file. """
lines = [line.strip() for line in path.read_text().splitlines() if line]
return [line for line in lines if not line.startswith('#')]
|
af010076d79cca83bfbc6590b833e1bf5f68ddcd
| 14,928
|
import configparser
from typing import Optional
def input_with_default(label: str, defaults: configparser.ConfigParser, fallback: str = "", key: Optional[str] = None) -> str:
"""Return the string if non empty otherwise use the default."""
key = label.replace(" ", "_") if key is None else key
default = defaults.get("DEFAULT", key, fallback=fallback)
prompt = f"{label}: " if default == "" or default.startswith("{") else f"{label} ({default}): "
value = input(prompt).strip()
if value == "":
return default
return value
|
1e900f2164c5ef975b16d74d39c7e587b0444fe3
| 14,930
|
import torch
import numpy as np
def one_hot(labels, dim):
"""Convert label indices to one-hot vector"""
batch_size = labels.size(0)
out = torch.zeros(batch_size, dim)
out[np.arange(batch_size), labels.long()] = 1
return out
|
ba7cefef066229bd578fb7cdec4f4033f353cd73
| 14,931
|
from typing import Iterable
def detokenize(tokens: Iterable[str], with_treebank: bool = True) -> str:
"""
Given a list of tokens, join them together into a string.
with_treebank = True is typically used when rendering utterances, so we don't need to deal with things like
"andrew's"
with_treebank = False is typically for rendering express.
"""
if with_treebank:
return " ".join(tokens).replace(" ", " ")
return "".join(tokens)
|
d6a90c5181a18fe45118b83bdf605c534ceeeac8
| 14,932
|
def pair(k1, k2):
"""
Cantor pairing function
"""
z = int(0.5 * (k1 + k2) * (k1 + k2 + 1) + k2)
return z
|
83de1d237049ac8f76ec09f7b23037ab581792d5
| 14,933
|
import os
from typing import Counter
def test_count(path):
""" Counts terms in each test file"""
legit_docs = [] # stores term frequencies of each legit file
spam_docs = [] # stores term frequencies of each spam file
path_legit = path + "/test/legitimate"
for root, dirs, filenames in os.walk(path_legit):
for filename in filenames:
if filename.endswith('.txt'):
filepath = path_legit + "/" + filename
file = open(filepath,"r")
text = file.read().split()
legit_docs.append(Counter(text)) # append term frequency dictionary to the list
file.close()
path_spam = path + "/test/spam"
for root, dirs, filenames in os.walk(path_spam):
for filename in filenames:
if filename.endswith('.txt'):
filepath = path_spam + "/" + filename
file = open(filepath,"r")
text = file.read().split()
spam_docs.append(Counter(text)) # append term frequency dictionary to the list
file.close()
return (legit_docs, spam_docs)
|
f9887e549acff96b73be6266edabe1938478a836
| 14,934
|
import json
def rpc_error(message = 'Invalid Request'):
"""
Generates an rpc error message
"""
return json.dumps({"result":None, 'error':{'message':message}, 'id':1})
|
4aa061e25be938b882cac71cb935f2153ad958cf
| 14,935
|
import os
import yaml
def get_config(confname="main.yaml", confdir=""):
"""Try to retrieve the best configuration file
:param confname: name of the configuration file
:param confdir: name of the configuration directory
:return: a dictionary containing the configuration
"""
_global_config = {}
for filename in (
confname,
os.path.join(os.getcwd(), ".{}".format(confname)),
os.path.join(os.getenv("HOME", "/tmp"), ".{}".format(confname)), # nosec
"/etc/spider/{0}/{1}".format(confdir, confname),
os.path.join(confdir, confname),
):
try:
_global_config = yaml.safe_load(open(filename))
except FileNotFoundError:
continue
if not _global_config:
raise BaseException("Could not find a usable configuration file {}/{}".format(confdir, confname))
return _global_config
|
f3f5fbcd9c84be701d39b26f798cf13752f6ceb7
| 14,937
|
def gen_input_config():
"""
Generates an input configuration for providing to a vault client in tests
"""
def _gen_input_config(
vault_secrets={"acme.user": "secret/acme/server/user", "acme.pwd": "secret/acme/server/user"}
):
input_config = {
"acme": {"host": "https://acme.com", "cert_path": "/secret/cert"},
"vault_secrets": vault_secrets,
}
return input_config
return _gen_input_config
|
2d238e91de03641889c0aac9a41d2284294af15d
| 14,938
|
def celsius_to_fahrenheit(bot, trigger):
""" Convert Celsius to Fahrenheit """
try:
celsius = float(trigger.group(2))
except ValueError:
bot.reply(
"Could not understand input. Please input the temperature in Celsius, e.g. !fa 100"
)
return False
if celsius is not None:
bot.reply(
"%.1f degrees Celsius is equal to %.1f degrees Fahrenheit"
% (celsius, (celsius * 1.8 + 32))
)
|
04cfa7b0e7b5a2b2b784dc7b1d158efe1f3dfbb2
| 14,940
|
def create_init_weights_fn(initialization_fn):
"""Returns a function that wraps :func:`initialization_function` and applies
it to modules that have the :attr:`weight` attribute.
Args:
initialization_fn (callable): A function that takes in a tensor and
initializes it.
Returns:
Function that takes in PyTorch modules and initializes their weights.
Can be used as follows:
.. code-block:: python
init_fn = create_init_weights_fn(variance_scaling_)
network.apply(init_fn)
"""
if initialization_fn is not None:
def init_weights(m):
if hasattr(m, "weight"):
initialization_fn(m.weight)
return init_weights
else:
return lambda m: None
|
9b8344bf86ff02181228f2bf6412d1c5e867c876
| 14,941
|
def extract_bits(n, n_bits, offset_from_lsb):
"""Extract a number of bits from an integer.
Example:
>>> bin(extract_bits(0b1101011001111010, n_bits=5, offset_from_lsb=7))
'0b1100'
0b1101011001111010 -> 0b01100
^^^^^<- 7 ->
The bits marked with ^ will be extracted. The offset is counted from the
LSB, with the LSB itself having the offset 0.
"""
try:
bitmask = (2**n_bits - 1) << offset_from_lsb
except TypeError as err:
raise ValueError(err)
return (n & bitmask) >> offset_from_lsb
|
08a92d319975915b3b0f453144cc73cba620c5b1
| 14,943
|
import torch
def tanh_clip(x, clip_val=10.0):
"""soft clip values to the range [-clip_val, +clip_val]"""
if clip_val is not None:
x_clip = clip_val * torch.tanh((1.0 / clip_val) * x)
else:
x_clip = x
return x_clip
|
48205e984549b1bdf38b66155a1fd7f57c1bafa9
| 14,945
|
def _category_errmsg(particle, category: str) -> str:
"""
Return an error message when an attribute raises an
`~plasmapy.utils.InvalidElementError`,
`~plasmapy.utils.InvalidIonError`, or
`~plasmapy.utils.InvalidIsotopeError`.
"""
article = 'an' if category[0] in 'aeiouAEIOU' else 'a'
errmsg = (
f"The particle {particle} is not {article} {category}, "
f"so this attribute is not available.")
return errmsg
|
c9d916f6808d989aee3b9523f2322c5a2586367a
| 14,946
|
def get_species_units(input):
"""
Retrieve units for GEOS-CF species and derived values
"""
if 'NOy/' in input:
units = 'unitless'
elif 'pm25' in input:
units = '$\mu$g m$^{-3}$'
elif 'Dust' in input:
units = '$\mu$g m$^{-3}$'
elif 'NOy' in input:
units = 'ppbv'
else:
units = 'v/v'
return units
|
5daa3a065afd99cc713e3084c4e694d9fa789ccc
| 14,950
|
def get_git_sha_from_dockerurl(docker_url: str, long: bool = False) -> str:
""" We encode the sha of the code that built a docker image *in* the docker
url. This function takes that url as input and outputs the sha.
"""
parts = docker_url.split("/")
parts = parts[-1].split("-")
sha = parts[-1]
return sha if long else sha[:8]
|
4bb598da76ada2fdf34fdc3ff24bf046dbeaf9bf
| 14,951
|
def get_class_name(obj):
"""
Dunders in python are ugly, this gets the class name of an object
"""
return obj.__class__.__name__
|
ad1940f84f58031751be503dc686adef3cfcb48f
| 14,952
|
def get_token(context):
"""
Retrieves the token the lambda was assigned when it was invoked.
:param context: AWS Lambda context
:type context: object
:return: Lambda token, usually a UUID
:rtype: str
"""
# If that fails, fall back to the requestID
# http://docs.aws.amazon.com/lambda/latest/dg/python-context-object.html
return context.aws_request_id
|
83fced7364d6fad8d632edfb0d82efb7bb7cf5de
| 14,954
|
def nonlinearitywarning(band, bin_ix, events, verbose=0):
"""
Flag count rates above the 10% local nonlinearty dropoff, per the
calibration paper.
:param band: The band that is being used, either 'FUV' or 'NUV'.
:type band: str
:param bin_ix: Array indices designating which events are in the time bin
of interest.
:type bin_ix: numpy.ndarray
:param events: Set of photon events to check if they are in the
non-linearity regime.
:type events: dict
:param verbose: Verbosity level, a value of 0 is minimum verbosity.
:type verbose: int
:returns: bool -- Returns True/False whether a given set of events are at
the non-linearity regime.
"""
cps_10p_rolloff = {'NUV':311, 'FUV':109}
cps = events['flat_counts'][bin_ix]/events['exptime'][bin_ix]
return True if cps >= cps_10p_rolloff[band] else False
|
2a85bf6c6100e39caef169f57b26c72b6d22e257
| 14,955
|
import os
import glob
def remove_file(file_path):
"""Remove a feature/raster and all of its anciallary files
This function was grabbed from python_common, as it's the only function
from that module that is called within geofunctions.
Args:
filepath (str): Filepath of the raster or shapfile to remove
Returns:
bool: True on success
"""
file_ws = os.path.dirname(file_path)
for file_name in glob.glob(os.path.splitext(file_path)[0]+".*"):
os.remove(os.path.join(file_ws, file_name))
return True
|
38a7b6d2154467505aede55c0fbb8dd7e508856e
| 14,956
|
def cx2x(cx, e):
"""Transform from *x* index value to *x* index value, using the
*e.css('cw')* (column width) as column measure."""
if cx is None:
x = 0
else:
x = e.parent.pl + cx * (e.css('cw', 0) + e.gw)
return x
|
5d04d7f017c0fa54e19c649133139b2e4439562f
| 14,957
|
def q(s):
""" Quote the given string """
return "'" + str(s) + "'"
|
0c0a1477e740b430d5e6997c0115ef317457526c
| 14,958
|
def speaker_companies(talk):
""" Return a set of the companies of the speakers of the talk."""
companies = sorted(
set(speaker.user.attendeeprofile.company
for speaker in talk.speakers.all()
if speaker.user.attendeeprofile))
return companies
|
39a1cbf046779dd3ad2e798c950fa3d8211a08e1
| 14,959
|
def _diff_count(string1, string2):
"""
Count the number of characters by which two strings differ.
"""
assert isinstance(string1, str)
assert isinstance(string2, str)
if string1 == string2:
return 0
minlen = min(len(string1), len(string2))
diffcount = abs(len(string1) - len(string2))
for ii in range(0,minlen):
if string1[ii] != string2[ii]:
diffcount += 1
return diffcount
|
82c9ef604db3afee79266e4eb7851164ff43bfd1
| 14,962
|
def calc_basic_indispensability(p, n):
"""
>>> calc_basic_indispensability(3, 0)
2
>>> calc_basic_indispensability(2, 1)
0
>>> calc_basic_indispensability(5, 4)
2
>>> calc_basic_indispensability(7, 5)
2
>>> calc_basic_indispensability(13, 4)
10
"""
table = {
2: [1, 0, ],
3: [2, 0, 1, ],
5: [4, 0, 1, 3, 2, ],
7: [6, 0, 4, 1, 5, 2, 3, ],
11: [10, 0, 6, 3, 9, 1, 7, 2, 8, 4, 5, ],
13: [12, 0, 7, 3, 10, 1, 8, 4, 11, 2, 9, 5, 6, ],
17: [16, 0, 9, 4, 13, 2, 11, 6, 15, 1, 10, 5, 14, 3, 12, 7, 8, ],
19: [18, 0, 10, 3, 13, 6, 16, 1, 11, 4, 14, 7, 17, 2, 12, 5, 15, 8, 9, ],
23: [22, 0, 12, 6, 18, 3, 15, 9, 21, 1, 13, 7, 19, 2, 14, 8, 20, 4, 16, 5, 17, 10, 11, ],
29: [28, 0, 15, 7, 22, 4, 19, 11, 26, 1, 16, 8, 23, 5, 20, 12, 27, 2, 17, 9, 24, 3, 18, 10, 25, 6, 21, 13, 14, ],
31: [30, 0, 16, 5, 21, 10, 26, 3, 19, 8, 24, 13, 29, 1, 17, 6, 22, 11, 27, 2, 18, 7, 23, 12, 28, 4, 20, 9, 25, 14, 15, ],
}
return table[p][n]
|
44189ce2c5244bed5e56d9efde616afebc47c1f2
| 14,963
|
def getInversePermutation(permutation):
"""Invert a given permutation vector.
:param list | tuple | np.ndarray permutation: Permutation vector to invert.
:return: Inverted permutation vector.
:rtype: list
"""
inverse = [0] * len(permutation)
for i, p in enumerate(permutation):
inverse[p] = i
return inverse
|
f8fe339f2b0a7fc8180252b99f3fce742f215a13
| 14,964
|
def is_image(content_type):
"""is the given content_type string for an image?
Args:
content_type: string containing Content-Type HTTP header value
Returns:
Boolean
"""
return (str(content_type).count("image") > 0)
|
c69f163e09d8b68e179dd8765ef8401d988ac433
| 14,967
|
import numpy
def matrix_multiply(m1,m2):
"""
Multiplies the input matrices.
Inputs:
m1,m2: the input matrices
Returns:
result: matrix product of m1 and m2
in a list of floats
"""
product = numpy.matmul(m1,m2)
if type(product) == numpy.int64:
return float(product)
else:
result = list(product)
return result
|
0447553f7fa7968cbb13fcaf7319391650377e49
| 14,968
|
import base64
def read_encoded(filename: str) -> str:
"""Read a file and return the base64 encoding of its contents."""
with open(filename, 'rb') as infile:
return base64.b64encode(infile.read()).decode('utf-8')
|
4d2c5c8f36b2ebe67a67714f6313a32d4d6bf005
| 14,969
|
import re
def strip_irc_colors(data):
"""Strip mirc colors from string. Expects data to be decoded."""
return re.sub('[\x02\x0F\x16\x1D\x1F]|\x03(\d{1,2}(,\d{1,2})?)?', '', data)
|
2c4e480cc00e3704a0086522c8bb7409fca0af6e
| 14,970
|
def normalised_ellipse_mask(ellipse):
"""Return a normalized copy of the supplied ellipse.
Here 'normalised' means that the rotation is as close to zero as possible.
Examples:
>>> normalised_ellipse_mask(
... ((1, 2), (100, 200), 90)
... )
((1, 2), (200, 100), 0)
"""
# Don't overwrite the original, we'll return a new ellipse.
centre, extents, rotation = ellipse
centre = list(centre[:])
extents = list(extents[:])
# Get the rotation as close to zero as possible.
while rotation > 45:
extents[0], extents[1] = extents[1], extents[0]
rotation -= 90
while rotation < -45:
extents[0], extents[1] = extents[1], extents[0]
rotation += 90
return tuple(centre), tuple(extents), rotation
|
af5316ace76642667340a986f3d1c2d69934a333
| 14,971
|
from functools import reduce
def xor(*values):
"""An `exclusive or`_ operation on a list of values.
.. _exclusive or: https://en.wikipedia.org/wiki/Exclusive_or
:rtype: bool
:returns: ``True`` when an odd number of values are ``True`` or ``False`` when an even number of values are
``True``.
.. note::
The provided values *must* support casting as a ``bool``.
"""
return reduce(lambda x, y: bool(x) ^ bool(y), values)
|
d5dfbff2648f208dc192fd06da0c988c6bb9baaf
| 14,973
|
def probability_of_sum(total:int, dice1, dice2):
"""
Brief:
Basic probability - Dice cast
Suppose a pair of fair 6-sided dice are thrown.
What is the probability that the sum of the rolls is 6? (Answer as a simple fraction of integers)
reference: https://statweb.stanford.edu/~susan/courses/s60/split/node65.html
"""
n = dice1.shape[0]
m = dice2.shape[0]
comb = n * m
count = 0
for i in dice1:
for j in dice2:
sum = int(i + j)
if sum == total:
count += 1
prob = count / comb
return print("{:.2%}".format(prob))
|
b48e9db4dd40048d24a3dfb481406346076b7132
| 14,974
|
def get_source_with_id(result):
"""Return a document's `_source` field with its `_id` added.
Parameters
----------
result : dict
A document from a set of Elasticsearch search results.
Returns
-------
dict
The document's `_source` field updated with the doc's `_id`.
"""
result['_source'].update({'_id': result['_id']})
return result['_source']
|
be9b25ad65a8474aa41d3f927664abdb89a674d5
| 14,975
|
def apply_x_frame(response):
"""Include X-frame header in http response to protect against clickhiJacking."""
response.headers["X-Frame-Options"] = "SAMEORIGIN"
return response
|
3cc3b572eb64e856512fd8b41191f601bcbcc96c
| 14,976
|
def multiply_probs(ln_pa, ln_pb):
"""
Returns the log probability of multiplied probabilities.
Pc = Pa * Pb => ln(Pc) = ln(Pa)+ln(Pb)
"""
return ln_pa+ln_pb
|
5e541072c9aaf327536196ab4ffc9e3bf488ccf0
| 14,977
|
import subprocess
def del_ovs_port(bridge, port):
"""
Remove port from OVS bridge.
"""
cmd = "sudo ovs-vsctl del-port {0} {1}".format(bridge, port)
return subprocess.call(cmd.split(" "))
|
8682c5bda58a78f42b5025ae3ef0db6e0d0576db
| 14,978
|
def get_height(image):
"""get_height(image) -> integer height of the image (number of rows).
Input image must be rectangular list of lists. The height is
taken to be the number of rows.
"""
return len(image)
|
3aa94c4b2458d2a233f32ee10889e52566c04ecb
| 14,979
|
import torch
def normalize_image_into_standard_form(img):
"""the input image should in gray x,y"""
img = (img-img.min())/(img.max()-img.min())
sz = [1,1]+ list(img.shape)
img_t = torch.Tensor(img)
img_t = img_t.view(sz)
return img_t
|
8da901135cffc3cc36d5be969ee2e2f94f75f74e
| 14,981
|
def is_power_of_two(n: int) -> bool:
"""
>>> is_power_of_two(1024)
True
>>> is_power_of_two(5)
False
"""
return n & (n - 1) == 0
|
e56997fd768c5b6e74f179969b1681a1e0c33e78
| 14,982
|
import tempfile
import pathlib
import subprocess
import os
def input_from_file(starting_text=''):
"""Ask user for input by opening a file in their preferred editor.
The file is filled with ``starting_text``. If the user quits the
editor without saving (or if an error occurrs), ``None`` is
returned.
"""
with tempfile.NamedTemporaryFile('w+') as tmp:
path = pathlib.Path(tmp.name)
path.write_text(starting_text)
with subprocess.Popen(f"$EDITOR {path}", shell=True) as process:
process.wait()
if process.returncode != os.EX_OK:
return None
return path.read_text()
|
131f643fa7d3181ab13469364761801512c6b273
| 14,983
|
import os
def output(data):
"""Takes a dictionary |data| of filenames and execution counts and generates
a LCOV coverage output."""
out = ''
for filename, counts in data.iteritems():
out += 'SF:%s\n' % (os.path.abspath(filename))
for line, count in enumerate(counts):
if count != None:
out += 'DA:%d,%s\n' % (line + 1, count)
out += 'end_of_record\n'
return out
|
13d6f2494ced8519be39d4c66d2e103fc21142c9
| 14,984
|
def format_rows_to_columns(forecast_dict):
"""
Helper function to reformat list of courses from Student object's
self.plan (student_object.py) into a format appropriate for forecast.html
i.e. rows from student object will be converted into columns for forecast.html
"""
# these lists will contain the info for the columns but will still need
# to be parsed as columns later. for now, they are lists of lists, where the
# inner lists represent different years. i.e. fall_col will have the form:
# fall_col = [ [year 1 fall courses], [year 2 fall courses], etc]
fall_col = []
winter_col = []
spring_col = []
summer_col = []
student_plan = forecast_dict
# grabs the inner lists from the dictionary that represent each term from
# their corresponding year (the key represents the year, the value represents
# the courses taken that year, with it's inner lists being each term in that year)
# stores all the lists of the Fall term courses from each year in "fall_col",
# each year's Winter terms in winter_col, and so on.
for year in student_plan:
for term_i in range(len(student_plan[year])):
term = student_plan[year][term_i]
if term_i == 0:
fall_col.append(term)
elif term_i == 1:
winter_col.append(term)
elif term_i == 2:
spring_col.append(term)
elif term_i == 3:
summer_col.append(term)
# formatted_columns is a list containing 5 sub-lists
# These sub-lists represents the courses taken in the 1st year, 2nd year,
# and so on. They are formatted to display as columns rather than rows.
# For example:
# example = [
# [["CIS 210", "CIS 211", "CIS 212", ""],["CIS 110", "CIS 111", "CIS 199", ""]],
# [["CIS 313", "CIS 315", "CIS 425", ""],["CIS 314", "MATH 343", "CIS 471", ""]]
# ]
# This example list represents a possible course-plan for the 1st and 2nd year,
# where Year 1 Fall Term the student is taking CIS 210 and CIS 110
# Year 1 Winter Term the student is taking CIS 211 and CIS 111
# Year 1 Spring Term the student is taking CIS 212 and CIS 199
# Year 1 Summer Term the student is taking no courses
# Year 2 Fall Term the student is taking CIS 313 and CIS 314
# Year 2 Winter Term the student is taking CIS 315 and MATH 343
# Year 2 Spring Term the student is taking CIS 425 and CIS 471
# Year 2 Summer Term the student is taking no courses
# Assumes a maximum of 4 courses allowed per term
formatted_columns = []
for year in student_plan:
# This is hardcoding the max number of courses taken each term (4 lists
# of empty strings to be in line with the established 16 credit max set in student_objects)
formatted_columns.append([ ["", "", "", ""],["", "", "", ""],["", "", "", ""], ["", "", "", ""] ])
# formatted_columns[i][j][0]
# i represents which Year the courses were taken
# j represents how many courses taken that term
# 0 is hard coding the location for Fall
fall_col_len = len(fall_col)
for i in range(fall_col_len):
fall_col_i_len = len(fall_col[i])
for j in range(fall_col_i_len):
formatted_columns[i][j][0] = fall_col[i][j].name
# formatted_columns[i][j][1]
# i represents which Year the courses were taken
# j represents how many courses taken that term
# 1 is hard coding the location for Winter
winter_col_len = len(winter_col)
for i in range(winter_col_len):
winter_col_i_len = len(winter_col[i])
for j in range(winter_col_i_len):
formatted_columns[i][j][1] = winter_col[i][j].name
# formatted_columns[i][j][2]
# i represents which Year the courses were taken
# j represents how many courses taken that term
# 2 is hard coding the location for Spring
spring_col_len = len(spring_col)
for i in range(spring_col_len):
spring_col_i_len = len(spring_col[i])
for j in range(spring_col_i_len):
formatted_columns[i][j][2] = spring_col[i][j].name
# formatted_columns[i][j][3]
# i represents which Year the courses were taken
# j represents how many courses taken that term
# 3 is hard coding the location for Summer
summer_col_len = len(summer_col)
for i in range(summer_col_len):
summer_col_i_len = len(summer_col[i])
for j in range(summer_col_i_len):
formatted_columns[i][j][3] = summer_col[i][j].name
return formatted_columns
|
e7e5fc765641543130be4c103e77b73ed1e2b53e
| 14,986
|
def get_query_range(count: int, page: int):
"""Generate query for range of the search results
:type count: ``int``
:param count: Max amount of the search results
:type page: ``int``
:param page: Current page, depends on count
:return: A query range
:rtype: ``str``
"""
if page < 1:
raise ValueError('page value can\'t be less than 1')
if count < 1:
raise ValueError('max results value can\'t be less than 1')
return f'from={(page-1)*count + 1}&to={page*count}'
|
c29285c56eed77275d2ec28a45de148ce3b7f591
| 14,987
|
def chunkify(l, chunk_size):
"""Return list of evenly sized lists"""
book_chunks = []
for i in range(0, len(l), chunk_size):
book_chunks.append(l[i:i + chunk_size])
return book_chunks
|
d205d8a916582e86d736e1372a18d7dd173e4683
| 14,989
|
def sort_and_pick_median(seq):
"""Standard and most apparent way or algorithm to find median of some
sequence or list O(nlog(n))
:param seq: list, string, tuple, or other type
:return: the value of the median of the sequence
"""
i = (len(seq) - 1) // 2
return sorted(seq)[i]
|
7f8566493d8764a9b6e68cbf798117ae2cdbc9dc
| 14,991
|
def dataDirection_1(datas, offset=0):
"""
极小型指标正向化
:param datas: 迭代器
:param offset: 防止出现除以 0 的错误
"""
def normalization(data):
return 1 / (data + offset)
return list(map(normalization, datas))
|
d5a70e8e3b0e232d6e3f7a420b815a2323efe065
| 14,992
|
def single_file_output(in_file):
"""
Extract sample name from file ie. /path/to/test.fa --> test
:param in_file: path/to/file (str)
:return: extracted sample name (str)
"""
return in_file.split('/')[-1].split('.')[-2]
|
4dd5c5f0de584f479fdf91e88cdede33c8072f10
| 14,993
|
def single_exon_transcript(single_exon_dict,transiddict):
"""Give single exon reads a transcript.
Parameters
----------
single_exon_dict : dict
read id is key, value is list [chromosome,start,end,strand]
transiddict : dict
read id is key, transcript id is value
Returns
-------
dict
a dictionary of single exon reads, where read id is key, transcript id is value
"""
single_exon_reads_transcripts = {}
single_exon_reads_transcripts_multi = {}
for read in single_exon_dict.keys():
if read in single_exon_reads_transcripts.keys():
print("Read " + read + " has multimapping!")
single_exon_reads_transcripts_multi.setdefault(read,set()).add(transiddict[read])
continue
else:
single_exon_reads_transcripts[read] = transiddict[read]
return single_exon_reads_transcripts, single_exon_reads_transcripts_multi
|
215e7e2c67ab5f880db58a3a5efd03c5397e9ab4
| 14,994
|
def VerifyFileID(fi_disk, fi_ours):
"""Verifies that two file IDs are matching.
Differences in the inode/device are not accepted, but and older
timestamp for fi_disk is accepted.
@param fi_disk: tuple (dev, inode, mtime) representing the actual
file data
@param fi_ours: tuple (dev, inode, mtime) representing the last
written file data
@rtype: boolean
"""
(d1, i1, m1) = fi_disk
(d2, i2, m2) = fi_ours
return (d1, i1) == (d2, i2) and m1 <= m2
|
c32acadd21b249904374eb44bcab3db42fe3972c
| 14,995
|
import os
def get_migration_filenames(app_dir):
"""
Return list of filenames of all migrations in the given app dir.
"""
filenames = []
migrations_dir = os.path.join(app_dir, 'migrations')
for filename in os.listdir(migrations_dir):
if not filename.endswith('.py'):
continue
if filename == '__init__.py':
continue
filenames.append(filename)
return filenames
|
21d7e477c27b83ef74d851476c06a4d9e6faad73
| 14,997
|
import six
def list_as_string(option):
"""Returns the argument as a string.
Useful for insuring that ConfigObj options are always returned
as a string, despite the presence of a comma in the middle.
Example:
>>> print(list_as_string('a string'))
a string
>>> print(list_as_string(['a', 'string']))
a, string
>>> print(list_as_string('Reno, NV'))
Reno, NV
"""
# Check if it's already a string.
if option is not None and not isinstance(option, six.string_types):
return ', '.join(option)
return option
|
0bd269fb455ce8eb20c4c0838fd4611832686baf
| 14,999
|
import subprocess
def _linux_partition_mount_point(part_name):
"""Given a partition name, returns the mount point for the partition, or
None if not mounted.
"""
if not part_name.startswith('/dev'):
part_name = '/dev/' + part_name
cmd = ['findmnt', part_name, '--noheadings', '--output', 'TARGET']
try:
out = subprocess.check_output(cmd)
return out.strip()
except subprocess.CalledProcessError:
# Not mounted...
return None
|
b859433e2a02eca7a78b5fd68d196a998f29b1ad
| 15,000
|
def nip(string):
"""
Rather than escaping special chars like above, this simply deletes them.
For use in CSS classes and other restrictive environments.
N.B. THIS ALSO PUTS EVERYTHING IN LOWERCASE FOR CONSISTENCY
"""
out = ""
for char in string.lower():
if char.isalnum() or char in "_-":
out += char
if out == "":
out = "BADSTRING"
return out
|
cf01e0d2736bbbf1b8046d23bc1f1d2dbfba6da9
| 15,001
|
def rewriter(field, rules):
"""Create a template field function that rewrites the given field
with the given rewriting rules. ``rules`` must be a list of
(pattern, replacement) pairs.
"""
def fieldfunc(item):
value = item._values_fixed[field]
for pattern, replacement in rules:
if pattern.match(value.lower()):
# Rewrite activated.
return replacement
# Not activated; return original value.
return value
return fieldfunc
|
c9cfba499f1dc8683df3918a9f497ec69ad07700
| 15,002
|
def get_response_headers(response):
"""
Django 3.2+ comes with changes to the repsonse headers and the _headers is not present
in the newer versions. So this method checks if it's present in the response or not, else
returns the newer attribute headers from the response.
"""
if hasattr(response, '_headers'):
response_headers = response._headers
else:
response_headers = response.headers
return response_headers
|
a4b135dffbe9ee85c602ea665e43590ff8beedd1
| 15,003
|
def similarity(event, places):
"""
Return a list of dissimilar events to the given event. This is the
successor function used in the search tree: a node's successors are the
list of dissimilar options for the next choice.
event (dict): A potential place/event.
places (list): All potential places.
return: List of dissimilar places.
"""
dissimilar = []
for place in places:
similarity = 0
if place["price"] == event["price"]:
similarity += 1.
for type1 in event["types"]:
for type2 in place["types"]:
if type1 == type2:
similarity += 1.0 / float(len(place["types"]))
# 1.67 is the empirically generated threshold for similarity
# The empirical process behind this is described in the paper
if similarity <= 1.7:
dissimilar.append(place)
return dissimilar
|
ca9a171abe37e7e9d48a604ca92c56092d4fa8c8
| 15,004
|
def define_band_colors():
"""
Define dictionary of colors to be used in plots (e.g. histograms) for representing
data in specific bands
"""
band_color_rep = {'B': 'blue',
'G': 'green',
'R': 'red',
'N': 'black',
'A': None}
return band_color_rep
|
a17bf7d0a2742e2cf2c94beec3f97b27e1c640e3
| 15,005
|
def get_varinfo_from_table(discipline,parmcat,parmnum):
"""
Return the GRIB2 variable information given values of `discipline`,
`parmcat`, and `parmnum`. NOTE: This functions allows for all arguments
to be converted to a string type if arguments are integer.
Parameters
----------
**`discipline`**: `int` or `str` of Discipline code value of a GRIB2 message.
**`parmcat`**: `int` or `str` of Parameter Category value of a GRIB2 message.
**`parmnum`**: `int` or `str` of Parameter Number value of a GRIB2 message.
Returns
-------
**`list`**: containing variable information. "Unknown" is given for item of
information if variable is not found.
- list[0] = full name
- list[1] = units
- list[2] = short name (abbreviated name)
"""
if isinstance(discipline,int): discipline = str(discipline)
if isinstance(parmcat,int): parmcat = str(parmcat)
if isinstance(parmnum,int): parmnum = str(parmnum)
try:
tblname = 'table_4_2_'+discipline+'_'+parmcat
modname = '.section4_discipline'+discipline
exec('from '+modname+' import *')
return locals()[tblname][parmnum]
except(ImportError,KeyError):
return ['Unknown','Unknown','Unknown']
|
d6e3b08dfcbfb023a2725ef1ffbb44448881fa64
| 15,006
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.