content
stringlengths 35
416k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
|---|---|---|
def decomp(n):
""" Retorna a decomposição em fatores primos de um inteiro em forma de dicionário onde as chaves são
as bases e o valores os expoentes.
Ex:
>>> decomp(12)
{2: 2, 3: 1}
>>> decomp(72)
{2: 3, 3: 2}
:param n: number
:return: dictionary
"""
expoente = 0
base = 2
decomposicao = {}
while n > 1:
while n % base == 0:
expoente += 1
n = n/base
if expoente > 0:
decomposicao[base] = expoente
expoente = 0
base += 1
return decomposicao
|
999d8be04ffd197ebdd14c88b525eb8ca4379bb9
| 14,075
|
def sanitize_type_instance(index_name):
"""
collectd limit the character set in type_instance to ascii and forbids
the '/' character. This method does a lossy conversion to ascii and
replaces the reserved character with '_'
"""
ascii_index_name = index_name.encode('ascii', 'ignore')
# '/' is reserved, so we substitute it with '_' instead
return ascii_index_name.replace('/', '_')
|
ece5008944a80ec45f20c3c8bf01575f162bb8e0
| 14,076
|
def validWorkspace(uri):
"""Function to check whether workspace is a geodatbase"""
if ".gdb" in str(uri) or ".sde" in str(uri):
return True
else:
return False
|
073c1b992eee78dcb939b46215faed57e9bcf96c
| 14,077
|
def get_run_zip_file_slug_sets(new_run, old_run_zip_files):
"""
:param old_run_zip_files: A list of run zip files.
:return: A set of provider slugs for each zip file.
"""
data_provider_task_records = new_run.data_provider_task_records.exclude(provider__isnull=True)
all_run_zip_file_slugs = [
data_provider_task_record.provider.slug for data_provider_task_record in data_provider_task_records
]
run_zip_file_slug_sets = []
for old_run_zip_file in old_run_zip_files:
run_zip_file_slug_set = []
for data_provider_task_record in old_run_zip_file.data_provider_task_records.all():
run_zip_file_slug_set.append(data_provider_task_record.provider.slug)
# Don't rerun the overall project zip file.
if all_run_zip_file_slugs != run_zip_file_slug_set:
run_zip_file_slug_sets.append(run_zip_file_slug_set)
return run_zip_file_slug_sets
|
3dd2c472bcf3113f2544dcf7b4c13f956714429b
| 14,078
|
import requests
def sendRequest(url, type="POST", params=None, headers=None):
"""
Send a request to a URL
### Input:
- `url` (str) | the url to send the request to
- `type` (str) | the type of request (GET or POST)
- `params` (dict) | parameters to be sent with the request
- `headers` (dict) | headers to be sent with the request
### Output:
- `response` (dict) | the JSON response of the request
"""
## Perform a GET request
if type == "GET":
rawResponse = requests.get(url, params=params, headers=headers)
## Perform a POST request
else:
rawResponse = requests.post(url, params=params, headers=headers)
## Convert the response to a json object, if possible
if hasattr(rawResponse, "json"):
response = rawResponse.json()
## Otherwise, get the text response
else:
response = rawResponse.text
return response
|
7f450b8eedf6405b237730b9f7d6da5277c41e7b
| 14,080
|
def extract_milestones(github_issues: list) -> list:
"""Extracts milestone information from parsed issues."""
# Extract individual milestone fields, dedupe
deduped_milestone_names = {
x.get('milestone').get('name') for x in github_issues}
deduped_milestone_descriptions = {
x.get('milestone').get('description') for x in github_issues}
deduped_milestone_dates = {
x.get('milestone').get('due_date') for x in github_issues}
# Reconstruct deduped milestone list, remove null values
github_milestones = list(zip(deduped_milestone_names,
deduped_milestone_descriptions,
deduped_milestone_dates))
github_milestones.remove((None, None, None))
return github_milestones
|
236f2f55eeff9de9e149fcb920b642684f3ee1ab
| 14,081
|
def format_number(value: float) -> str:
"""
Format a number into a string, where “.0” is removed if number does not have a decimal part.
:param value: The number to format.
"""
return str(int(value) if value % 1 == 0 else value)
|
7f34c689a64753c97c664dadf61d57bdf837c8a6
| 14,082
|
def get_span_row_count(span):
"""
Gets the number of rows included in a span
Parameters
----------
span : list of lists of int
The [row, column] pairs that make up the span
Returns
-------
rows : int
The number of rows included in the span
Example
-------
Consider this table::
+--------+-----+
| foo | bar |
+--------+ |
| spam | |
+--------+ |
| goblet | |
+--------+-----+
::
>>> span = [[0, 1], [1, 1], [2, 1]]
>>> print(get_span_row_count(span))
3
"""
rows = 1
first_row = span[0][0]
for i in range(len(span)):
if span[i][0] > first_row:
rows += 1
first_row = span[i][0]
return rows
|
e226e0f78bd6711a7ddbe9c749ed43d1d2bc476c
| 14,083
|
def parse_score_qa(output, metric, digits=4):
"""Function for parsing the output from `pyserini.eval.evaluate_dpr_retrieval`. Currently, the implementation is
the same as `parse_score_msmacro`, but we're keeping separate in case they diverge in the future."""
for line in output.split('\n'):
if metric in line:
score = float(line.split()[-1])
return round(score, digits)
return None
|
dbb2179fc1706618cc5a4ccfd88818d32086680b
| 14,084
|
def get_logbook_by_name(logbook_name, conn):
"""
Get a logbook by name from a persistence backend connection
:param str logbook_name: The name of the logbook to get
:param obj conn: A persistence backend connection
:return obj logbook: The logbook with the specified name
"""
return next(
iter([i for i in conn.get_logbooks() if i.name == logbook_name])
)
|
7ed83cfca3d7f0313046b39032c2b906c4bff410
| 14,085
|
def is_inside_relative_range(value, ref_value, pct):
"""
Parameters
----------
value : numeric
ref_value : numeric
pct : numeric
pct should be smaller than 1.
Returns
-------
boolean
"""
if ref_value * (1 - pct) <= value <= ref_value * (1 + pct):
return True
else:
return False
|
9e60eda7b3ba979c9dc33be890d46394aa954436
| 14,087
|
from typing import List
def get_label_list(labels: List[List[int]]) -> List[int]:
"""Gets a sorted list of all the unique labels from `labels`.
Args:
labels: A list of lists, each corresponding to the label-sequence of a text.
Returns:
All the unique labels the ever appear in `labels`, given in a sorted list.
Example:
Given `labels=[[0, 0, 3, 2, 5], [4, 0], [5, 2, 3]]`, returns `[0, 2, 3, 4, 5]`.
"""
unique_labels = set()
for label in labels:
unique_labels = unique_labels | set(label)
label_list = list(unique_labels)
label_list.sort()
return label_list
|
be795ff63c1eaccd221289708551a8ddd02b2cc5
| 14,088
|
def format_message(date_str, node, msg):
"""Format log message"""
message = f"{date_str}: {node.site_name}: {node.location or node.model} ({node.serial}) {msg}"
return message
|
53dc7e2716f935a083c36e40ad4887cfe23c0aad
| 14,089
|
def _deep_value(*args, **kwargs):
""" Drills down into tree using the keys
"""
node, keys = args[0], args[1:]
for key in keys:
node = node.get(key, {})
default = kwargs.get('default', {})
if node in ({}, [], None):
node = default
return node
|
fc821b5fe0758b582388c91be4139737970704b3
| 14,090
|
import os
def abspath(current_path, relative_path):
"""Build an absolute path from relative path"""
parent = os.path.abspath(os.path.dirname(current_path))
return os.path.join(parent, relative_path)
|
19ec82d8629112bd2deb7c5bb80106426115f02a
| 14,091
|
import tempfile
def create_tmpdir():
"""Create temporary directory where all intermediate files will be placed."""
return tempfile.mkdtemp(prefix='xl-')
|
7cac5eb979b3d7150084daf68749b30a3986e52b
| 14,093
|
import re
def get_aws_local_file(aws_creds_file):
"""
Converting aws config and credentials files into dictionaries
:param aws_creds_file: string
:return: dictionary
"""
aws_config = {}
current_profile = ''
input_file = open(aws_creds_file, 'r')
for line in input_file.readlines():
# print line
if re.match('^\[', line):
current_profile = line.strip()[1:-1]
aws_config[current_profile] = {}
if re.match('\w', line):
key, val = line.split('=')
aws_config[current_profile][key.strip()] = val.strip()
input_file.close()
return aws_config
|
3c0b323f8dc61f17953d72f9e8adb74ac3e0e828
| 14,094
|
def _bowtie_args_from_config(data):
"""Configurable high level options for bowtie.
"""
config = data['config']
qual_format = config["algorithm"].get("quality_format", "")
if qual_format.lower() == "illumina":
qual_flags = ["--phred64-quals"]
else:
qual_flags = []
multi_mappers = config["algorithm"].get("multiple_mappers", True)
multi_flags = ["-M", 1] if multi_mappers else ["-m", 1]
multi_flags = [] if data["analysis"].lower().startswith("smallrna-seq") else multi_flags
cores = config.get("resources", {}).get("bowtie", {}).get("cores", None)
num_cores = config["algorithm"].get("num_cores", 1)
core_flags = ["-p", str(num_cores)] if num_cores > 1 else []
return core_flags + qual_flags + multi_flags
|
57e86765444657812d0bebc9b1a3c3dcb234d300
| 14,095
|
def split_unk(str_, vocab):
"""
将所有不在词表中的符号切分开,尽量保留在词表中的符号
"""
rstring = ""
for c in str_:
if c in vocab.keys():
rstring += c
else:
rstring += " " + c + " "
str_ = rstring
return str_
|
c54da92f9e69f32949bba538242ea91cfdb197f9
| 14,096
|
def _world2fig(ff, x, y):
"""
Helper function to convert world to figure coordinates.
Parameters
----------
ff : `~aplpy.FITSFigure`
`~aplpy.FITSFigure` instance.
x : ndarray
Array of x coordinates.
y : ndarray
Array of y coordinates.
Returns
-------
coordsf : tuple
Figure coordinates as tuple (xfig, yfig) of arrays.
"""
# Convert world to pixel coordinates
xp, yp = ff.world2pixel(x, y)
# Pixel to Axes coordinates
coordsa = ff._ax1.transData.transform(zip(xp, yp))
# Axes to figure coordinates
coordsf = ff._figure.transFigure.inverted().transform(coordsa)
return coordsf[:, 0], coordsf[:, 1]
|
99df767d948bc1c0807b676e2178de1478a1ac71
| 14,098
|
def is_palindrome(number):
""" Returns True if `number` is a palindrome, False otherwise.
"""
num_str = str(number)
num_comparisons = len(num_str) // 2
for idx in range(num_comparisons):
if num_str[idx] != num_str[-1-idx]:
return False
return True
|
391aec57bba8366d7e7ef2c8187fda377f5a786d
| 14,099
|
from typing import Iterable
def flatten_list(li: Iterable):
"""Flattens a list of lists."""
if isinstance(li, Iterable):
return [a for i in li for a in flatten_list(i)]
else:
return [li]
|
306536fdadf231b0a0f752bb63d7e01317819674
| 14,100
|
def improve_ensemble(energy, positions, ensemble, ensemble_energies, unchanged_iterations):
"""
Given an energy and positions for a single pose, as well as the same data for a reference ensemble, this function "improves" the quality of the ensemble by identifying poses with the lowest potential energy.
:param energy: The energy for a pose.
:type energy: `Quantity() <http://docs.openmm.org/development/api-python/generated/simtk.unit.quantity.Quantity.html>`_
:param positions: Positions for coarse grained particles in the model, default = None
:type positions: `Quantity() <http://docs.openmm.org/development/api-python/generated/simtk.unit.quantity.Quantity.html>`_ ( np.array( [cgmodel.num_beads,3] ), simtk.unit )
:param ensemble: A group of similar poses.
:type ensemble: List(positions(np.array(float*simtk.unit (shape = num_beads x 3))))
:param ensemble_energies: A list of energies for a conformational ensemble.
:type ensemble_energies: List(`Quantity() <http://docs.openmm.org/development/api-python/generated/simtk.unit.quantity.Quantity.html>`_ )
:param unchanged_iterations: The number of iterations for which the ensemble has gone unchanged.
:type unchanged_iterations: int
:returns:
- ensemble (List(positions(np.array(float*simtk.unit (shape = num_beads x 3))))) - A list of the positions for all members in the ensemble.
- ensemble_energies ( List(`Quantity() <http://docs.openmm.org/development/api-python/generated/simtk.unit.quantity.Quantity.html>`_ )) - A list of the energies that were stored in the PDB files for the ensemble, if any.
- unchanged_iterations ( int ) - The number of iterations for which the ensemble has gone unchanged.
"""
if any([energy < ensemble_energies[i] for i in range(len(ensemble_energies))]):
ensemble_energies[ensemble_energies.index(max(ensemble_energies))] = energy
ensemble[ensemble_energies.index(max(ensemble_energies))] = positions
unchanged_iterations = 0
else:
unchanged_iterations = unchanged_iterations + 1
return (ensemble, ensemble_energies, unchanged_iterations)
|
ac1dcf2ec104a886b61e2abe4b4e090724d47ce7
| 14,101
|
def get_static_welcome_message():
"""
Get the static welcome page.
"""
return \
"""
<h3>Search Help</h3>
<ul><li>The display below the line is an example of the output the browser
shows you when you enter a search word. The search word was <b>green</b>.</li>
<li>The search result shows for different parts of speech the <b>synsets</b>
i.e. different meanings for the word.</li>
<li>All underlined texts are hypertext links. There are two types of links:
word links and others. Clicking a word link carries out a search for the word
in the Wordnet database.</li>
<li>Clicking a link of the other type opens a display section of data attached
to that link. Clicking that link a second time closes the section again.</li>
<li>Clicking <u>S:</u> opens a section showing the relations for that synset.</li>
<li>Clicking on a relation name opens a section that displays the associated
synsets.</li>
<li>Type a search word in the <b>Next Word</b> field and start the search by the
<b>Enter/Return</b> key or click the <b>Search</b> button.</li>
</ul>
"""
|
f630c67ab66069baf8b82b5b4c5fe111b9191a73
| 14,102
|
def platform_name(project, platform):
""""Get the untrusted platform name."""
return project.upper() + '_' + platform.upper()
|
3f63ab210ef040114a536cac40efbad168631273
| 14,103
|
import numpy
def lat2g0(lat):
"""Calculate surface gravitational acceleration for latitude
This function is stolen from atmlab:
https://www.sat.ltu.se/trac/rt/browser/atmlab/trunk/geophysics/pt2z.m
From the original description:
Expression below taken from Wikipedia page "Gravity of Earth", that is stated
to be: International Gravity Formula 1967, the 1967 Geodetic Reference System
Formula, Helmert's equation or Clairault's formula.
:param lat: Latitude [degrees]
:returns: gravitational acceleration [m/s]
"""
x = numpy.abs( lat );
# see docstring for source of parametrisation
return 9.780327 * ( 1 + 5.3024e-3*numpy.sin(numpy.deg2rad(x))**2
+ 5.8e-6*numpy.sin(numpy.deg2rad(2*x)**2 ))
|
7c907a8016b6a579dd0a16a1662bf02358778d16
| 14,104
|
def tpearson(x, y, axis=0):
"""Tensor-based pearson correlation."""
n = x.shape[axis]
xc = x - x.mean(axis=axis, keepdims=True)
yc = y - y.mean(axis=axis, keepdims=True)
xystd = x.std(axis=axis) * y.std(axis=axis)
cov = (xc * yc).sum(axis=axis) / n
corr = cov / xystd
return corr
|
37da10d2e21f04296a2cc0b3f8b239e0fcba8957
| 14,105
|
import re
def remove_unwanted_chars(x: str, *chars: str, to_replace: str = "") -> str:
"""Remove unwanted characters from a string."""
return re.sub(f"[{''.join(chars)}]", to_replace, x)
|
4a1e25b1ad12f47f835d4f6cdbac4a6e08413077
| 14,106
|
def write_the_species_tree(annotated_species_tree, output_file):
"""
this function writes the species tree to file
args:
annotated_species_tree : a string of annotated species tree in .newick format
output_file : a file name to write to
output:
a file containing the annotated species tree
"""
with open(output_file, "w") as out:
out.write(annotated_species_tree)
print("wrote the annotated species besttree to "+output_file)
return output_file
|
7db9d5fc10cd27b1e7a5e51427e7de6991a1157a
| 14,107
|
import functools
def compose(*functions):
"""
A functional helper for dealing with function compositions. It ignores any None functions, and if all are None,
it returns None.
Parameters
----------
*functions
function arguments to compose
Returns
-------
function or None
The composition f(g(...)) functions.
"""
# help from here: https://mathieularose.com/function-composition-in-python/
def f_of_g(f, g):
if f is not None and g is not None:
return lambda x: f(g(x))
elif f is not None:
return f
elif g is not None:
return g
else:
return lambda x: x
if any(functions):
return functools.reduce(f_of_g, functions, lambda x: x)
else:
return None
|
8a18b1e0beef43c0cfac4439fa158675a486b560
| 14,108
|
def pretty_print_list(lst, name = 'features', repr_format=True):
""" Pretty print a list to be readable.
"""
if not lst or len(lst) < 8:
if repr_format:
return lst.__repr__()
else:
return ', '.join(map(str, lst))
else:
topk = ', '.join(map(str, lst[:3]))
if repr_format:
lst_separator = "["
lst_end_separator = "]"
else:
lst_separator = ""
lst_end_separator = ""
return "{start}{topk}, ... {last}{end} (total {size} {name})".format(\
topk = topk, last = lst[-1], name = name, size = len(lst),
start = lst_separator, end = lst_end_separator)
|
d199261e6b9fd226256a151601d0bd86e7458fe1
| 14,109
|
def factorial(n):
"""
:type n: int
:rtype: int
"""
f = n
for i in range(n - 1, 0, -1):
f = f * i
return f
|
17d6e211911417507e5887232f181bf774396c73
| 14,110
|
def _generate_fake_input_arg_componentsdk(arg_spec):
"""Generate a fake argument value for inputs of module spec
Args:
arg_spec (dict) : argument specification from yaml module spec
Returns:
object: sample fake value
Raises:
NotImplementedError: if arg type is not implemented
"""
if "AzureMLDataset" in arg_spec.type:
return "/mnt/fakeinputdatasetpath"
if "AnyDirectory" in arg_spec.type:
return "/mnt/fakeinputdirectorypath"
if "AnyFile" in arg_spec.type:
return "/mnt/fakeinputfilepath/file.txt"
if arg_spec.default:
return arg_spec.default
if "String" in arg_spec.type:
return "0"
if "Integer" in arg_spec.type:
return arg_spec.min or arg_spec.max or "0"
if "Boolean" in arg_spec.type:
return False
if "Float" in arg_spec.type:
return arg_spec.min or arg_spec.max or "0.32"
if "Enum" in arg_spec.type:
return arg_spec.enum[0]
raise NotImplementedError(
"input type {} is not implemented in our test suite yet".format(arg_spec.type)
)
|
62d92059ff6df74f4f08e6c2d09186f48058b617
| 14,112
|
def docker_compose_project_name():
"""Set a consistent project name to enable optional reuse of containers."""
return "pytest-python-gitlab"
|
0c8ed2e63692fec969c042b4e2e8094459045c5b
| 14,116
|
def _partition(entity, sep):
"""Python2.4 doesn't have a partition method so we provide
our own that mimics str.partition from later releases.
Split the string at the first occurrence of sep, and return a
3-tuple containing the part before the separator, the separator
itself, and the part after the separator. If the separator is not
found, return a 3-tuple containing the string itself, followed
by two empty strings.
"""
parts = entity.split(sep, 1)
if len(parts) == 2:
return parts[0], sep, parts[1]
else:
return entity, '', ''
|
0172ce09bd0451eb538122bd9566a3e70d0dcc15
| 14,117
|
def get_phe_title(db, phename):
"""
Search bar
SciDBnew:
res = str(list(phef[phef['description'] == "asthma_diagnosed_by_doctor"]['title'])[0])
"""
phef = db.get_phenotype_fields(association_set=str(db.list_association_sets()['name'][0]))
if phef.empty:
return None
else:
res = str(list(phef[phef['description'] == phename]['title'])[0])
return res
|
93ef978e9b79760d0226cc0fd00d827f7b3872ff
| 14,118
|
def compatibility_g_m(gen_1, gen_2, name_1, name_2):
"""Check compatibility."""
print("Checking compatibility of {} with {}.".format(name_1, name_2))
r_code = 0
for seq in gen_1:
if seq not in gen_2:
print("FAIL\t{} sequence not found in {}.".format(seq, name_2))
r_code = 2
elif gen_1[seq] != gen_2[seq]:
print("FAIL\t{} sequence lengths missmatch"
"(lengths are {} and {}).".format(seq, gen_1[seq], gen_2[seq]))
r_code = 2
print()
return r_code
|
0ce34eb6ebe97bca179425939c95a2a6a19f6e6a
| 14,119
|
import sys
import subprocess
def _GetGitRevision(in_directory):
"""Returns the git hash tag for the given directory.
Args:
in_directory: The directory where git is to be run.
Returns:
The git SHA1 hash string.
"""
git_exe = 'git.bat' if sys.platform.startswith('win') else 'git'
p = subprocess.Popen(
[git_exe, 'rev-parse', 'HEAD'],
cwd=in_directory, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
(stdout, _) = p.communicate()
return stdout.strip()
|
4ee7abe93c3d63bec84e478725d7ca086599d74b
| 14,120
|
import socket
def getaddrinfo(host, port=None, family=0, socktype=0, proto=0, flags=0):
"""return (family, socktype, proto, canonname, sockaddr)
>>> socket.getaddrinfo("www.python.org", 80, 0, 0, socket.SOL_TCP)
[(2, 1, 6, '', ('82.94.164.162', 80)),
(10, 1, 6, '', ('2001:888:2000:d::a2', 80, 0, 0))]"""
return socket.getaddrinfo(host, port, family, socktype, proto, flags)
|
5fde1bc04887e002199e119b24cde08227d14c0b
| 14,121
|
def coref_cleaning(t, new_coref_np, current_coref):
"""Assign the correct coreference tag according to
Args: t (token), new_coref_np (Boolean), current_coref (int)
Return: new_coref_np (Boolean), current_coref (int)
"""
if t.coref.startswith('(') and t.coref.endswith(')'):
current_coref = t.coref[1:-1]
t.change_coref(current_coref)
new_coref_np = False
# nested coref
elif t.coref.startswith('('):
current_coref = t.coref[1:]
t.change_coref(current_coref)
new_coref_np = True
if t.full_pos == 'PRELS':
new_coref_np = False
# if value is - , get last found integer
elif new_coref_np and t.coref.startswith('-'):
t.change_coref(current_coref)
if t.full_pos == 'PRELS':
new_coref_np = False
# end of nested coref
elif new_coref_np == True and t.coref.endswith(')'):
current_coref = t.coref[:-1]
if t.sim_pos=='V':
current_coref = '_'
t.change_coref(current_coref)
new_coref_np = False
# no coref entity
elif new_coref_np == False:
t.change_coref('_')
return (new_coref_np, current_coref)
|
9e2d1db3316c6ddd2c09050b64838cc92d5dd651
| 14,123
|
def get_default_tokenizer():
"""Only support split tokenizer
"""
def _split_tokenizer(x, delimiter=None):
if delimiter == "":
return list(x)
return x.split(delimiter)
return _split_tokenizer
|
91cc23378d230d9cb47fbe0c47cf7a33cbce5265
| 14,124
|
import json
def load_dict_from_json(filename: str) -> dict:
"""
Load the given file as a python `dict`
Parameters
----------
filename: `str` an absolute path to the json file to be loaded.
Returns
-------
`dict` The loaded json file as a python dictionary.
"""
with open(filename, 'r') as file:
return json.loads(file.read())
|
1d55e5dbcf33e7f1d21063be7b722a5ed5bc6bb3
| 14,125
|
def collect_not_null_kwargs(**kwargs) -> dict:
"""
Collect not null key value pair from keyword arguments.
.. versionadded:: 1.0.1
"""
return {
k: v
for k, v in kwargs.items()
if v is not None
}
|
84e3438b5a4f0a48a4b558cc50b65a21e5883af9
| 14,127
|
def get_n_neighborhood_start_stop_indices_3D(volume_shape, point, n):
"""
Compute the start and stop indices along the 3 dimensions for the n-neighborhood of the point within the 3D volume.
Note that this returns an index range where the end is *non-inclusive*! So for a point at x,y,z with 0-neighborhood (only the point itself), you will get x,x+1,y,y+1,z,z+1 as return values.
Parameters
----------
volume_shape: 3-tuple of int
The shape of the volume (e.g., whole 3D image)
point: 1D array of length 3
The x, y, and z coordinates of the query point. Must lie within the volume. This is the point around which the neighborhood will be computed.
n: int >= 0
The neighborhood size (in every direction, the neighborhood is always square). For 0, only the index of the point itself will be returned. For 1, the 26 neighbors in distance 1 plus the index of the point itself (so 27 indices) will be returned. If the point is close to the border of the volume, only the valid subset will be returned of course. For n=2 you get (up to) 125 indices.
Returns
-------
xstart: int
The x start index, inclusive.
xend: int
The x end index, exclusive.
ystart: int
The y start index, inclusive.
yend: int
The y end index, exclusive.
zstart: int
The z start index, inclusive.
zend: int
The z end index, exclusive.
Examples
--------
>>> volume = np.zeros((3, 3, 3))
>>> point = [2, 2, 2]
>>> xstart, xend, ystart, yend, zstart, zend = st.get_n_neighborhood_start_stop_indices_3D(volume.shape, point, 1) # 1-neighborhood
"""
vx = volume_shape[0]
vy = volume_shape[1]
vz = volume_shape[2]
# now set valid ones to 1
xstart = max(0, point[0]-n)
xend = min(point[0]+1+n, vx)
ystart = max(0, point[1]-n)
yend = min(point[1]+1+n, vy)
zstart= max(0, point[2]-n)
zend = min(point[2]+1+n, vz)
return xstart, xend, ystart, yend, zstart, zend
|
6eb1c6f0b4ff537b3d0eb1b647b019a2d61480b7
| 14,128
|
from typing import Dict
from typing import Any
def add_to_dict_with_swapped_keys(old_dict: Dict[Any, Dict],
new_dict: Dict[Any, Dict]) -> Dict[Any, Dict]:
"""
Swap the keys of two nested dictionaries in a new dictionary.
{'Key1': {'Key2': 42}} -> {'Key2': {'Key1': 42}}
Args:
old_dict: a nested dictionary whose keys are to be swapped
new_dict: an initiated dictionary, does not have to be empty
Returns:
the new_dict with the addition of swapped keys of the old_dict
"""
for key1, nested_dict in old_dict.items():
for key2, value in nested_dict.items():
new_dict.setdefault(key2, {})[key1] = value
return new_dict
|
2b4d0a0d8bd2734d8c0bc7abde1fa659454f1464
| 14,129
|
import os
def splitpath(full_path):
"""
Splits a path into all possible pieces (vs. just head/tail).
"""
head, tail = os.path.split(full_path)
result = [tail]
while len(head) > 0:
[head, tail] = os.path.split(head)
result.append(tail)
result = [x for x in result if len(x)]
return result[::-1]
|
427a9de5772459504026d235e5e9ff59259a5c80
| 14,130
|
import typing
import functools
def build_simple_validator(func: typing.Callable, *args, **kwargs) -> typing.Callable[[typing.Any], typing.Any]:
"""Build a ready-to-use simple validator out of a function.
Args:
- func: callable, the function to be called to validate an input
- args: list, args to partially apply to func
- kwargs: dict, kwargs to partially apply to func
Returns:
validator: functools.partial, a partial function based on ``func``, with ``args`` and ``kwargs`` partially
applied and run through functools.update_wrapper
"""
validator = functools.partial(func, *args, **kwargs)
return functools.update_wrapper(validator, func)
|
cc8227cce228579e51aa05ceb25d9020d51eb199
| 14,131
|
import torch
def quat_conjugate(a: torch.Tensor) -> torch.Tensor:
"""Computes the conjugate of a quaternion.
Args:
a: quaternion to compute conjugate of, shape (N, 4)
Returns:
Conjugated `a`, shape (N, 4)
"""
shape = a.shape
a = a.reshape(-1, 4)
return torch.cat((-a[:, :3], a[:, -1:]), dim=-1).view(shape)
|
530eb2a8d8b9b87de2bfcaeb48729704908131cc
| 14,132
|
import struct
def discard_blanks(data):
"""Remove blank spaces from the data file"""
pos = 0
for i_char in data:
char = struct.unpack('s', data[pos:pos + 1])[0].decode()
if char not in ["*", " "]:
break
else:
pos += 1
return data[pos:]
|
aff090ab188bffd6bca86eb3b861d25a0440dbcc
| 14,135
|
def blank_lines(logical_line, blank_lines, indent_level, line_number,
previous_logical):
"""
Separate top-level function and class definitions with two blank lines.
Method definitions inside a class are separated by a single blank line.
Extra blank lines may be used (sparingly) to separate groups of related
functions. Blank lines may be omitted between a bunch of related
one-liners (e.g. a set of dummy implementations).
Use blank lines in functions, sparingly, to indicate logical sections.
"""
if line_number == 1:
return # Don't expect blank lines before the first line
if previous_logical.startswith('@'):
return # Don't expect blank lines after function decorator
if (logical_line.startswith('def ') or
logical_line.startswith('class ') or
logical_line.startswith('@')):
if indent_level > 0 and blank_lines != 1:
return 0, "E301 expected 1 blank line, found %d" % blank_lines
if indent_level == 0 and blank_lines != 2:
return 0, "E302 expected 2 blank lines, found %d" % blank_lines
if blank_lines > 2:
return 0, "E303 too many blank lines (%d)" % blank_lines
|
0f2d89ae662ffd39170e83f8788cf2946f7cd045
| 14,136
|
def gem_cov(frags, weight_flag):
"""
GEM coverage.
Args:
frags (list of list): [chrom,start,end] for each fragment in a GEM
weight_flag (binary): True if weighted by fragment number; False otherwise
Returns:
gem_all (list of bed entries): bed entries in format [chrom,start,end]
"""
gem_all = frags[0][0:2]
gem_all.append(frags[-1][2])
if weight_flag == True:
gem_fin = [gem_all] * len(frags)
else:
gem_fin = [gem_all]
return gem_fin
|
cd515d0f358992e07d9bf441c486ce088ce7c7a3
| 14,137
|
def unnormalise_density(c, rho):
"""Reverses any desnity normalisation
As a general rule this should be done using the units read in from the file,
with unit conversion done afterwards"""
return c * rho
|
1ffa7b4f5e08a071d5f8e94489d363a085f31930
| 14,138
|
import random
def mutate_color(color):
"""
Mutates one coordinate of a color in a HSV cube.
"""
color[random.randrange(0, 3)] = random.random() % 1
return color
|
5fdfef8b7c29be367dee85f195458924bb8421aa
| 14,141
|
def container_with_most_water(heights):
"""
Parameters
----------
heights : list
A list of integers representing heights of containers
Returns
-------
int
area of container with most water
>>> container_with_most_water([1, 8, 6, 2, 5, 4, 8, 3, 7])
49
>>> container_with_most_water([1, 1])
1
"""
max_area = 0
left_idx, right_idx = 0, len(heights) - 1
while left_idx < right_idx:
left_height, right_height = heights[left_idx], heights[right_idx]
min_height = min(left_height, right_height)
width = right_idx - left_idx
current_area = min_height * width
if left_height < right_height:
left_idx += 1
elif right_height < left_height:
right_idx -= 1
else:
left_idx += 1
right_idx -= 1
max_area = max(current_area, max_area)
return max_area
|
d25c602bac1aab4484ca60680bcaa21abbb78dc7
| 14,143
|
import datetime as dt
import calendar
def _parse_date(row):
"""parse the date of a single row into datetime object."""
day_ix = 4; mon_ix = 5; year_ix = 6;
date = dt.date(int(row[year_ix]),
list(calendar.month_abbr).index(row[mon_ix]),
int(row[day_ix]))
del row[day_ix:year_ix+1]
row.insert(day_ix, date)
return row
|
51b3c86d98f2c7686b34fbae3dd1306e0f00f817
| 14,147
|
def shiny_gold_in(bag: str, rules: dict) -> bool:
"""Recursively check for shiny gold bags."""
if "shiny gold" in rules[bag].keys():
return True
elif not rules[bag]: # bag holds no others
return False
else:
for inner in rules[bag]:
if shiny_gold_in(inner, rules):
return True
return False
|
1859f499b72a938a58a78af5ca1a78e9f7221731
| 14,148
|
def get_position_type(salary_plan):
"""
Given a salary plan code, map to one of the VIVO position types
"""
position_dict = {
'CPFI': 'postdoc',
'CTSY': 'courtesy-faculty',
'FA09': 'faculty',
'FA9M': 'clinical-faculty',
'FA10': 'faculty',
'FA12': 'faculty',
'FACM': 'clinical-faculty',
'FAPD': 'postdoc',
'FASU': 'faculty',
'FELL': None, # Fellowship, lump sum payment only
'FWSP': None, # student-assistant
'GA09': None, # graduate-assistant
'GA12': None, # graduate-assistant
'GASU': None, # graduate-assistant
'HOUS': 'housestaff',
'ISCR': None, # Scholarship, lump sum payment only
'OF09': 'temp-faculty',
'OF12': 'temp-faculty',
'OFSU': 'temp-faculty',
'OPSE': None, # OPS
'OPSN': None, # OPS
'STAS': None, # student-assistant
'STBW': None, # student-assistant
'TA09': 'non-academic',
'TA10': 'non-academic',
'TA12': 'non-academic',
'TASU': 'non-academic',
'TU1E': 'non-academic',
'TU2E': 'non-academic',
'TU9E': 'non-academic',
'TUSE': 'non-academic',
'TU1N': None, # TEAMS Hourly
'TU2N': None, # TEAMS Hourly
'TU9N': None, # TEAMS Hourly
'TUSN': None, # TEAMS Hourly
'US1N': None, # USPS
'US2N': None, # USPS
'US9N': None, # USPS
'USSN': None, # USPS
'US2E': 'non-academic', # USPS Exempt
}
position_type = position_dict.get(salary_plan, None)
return position_type
|
eaaa64bfe35d27476eb9218d6401e0565126392d
| 14,149
|
import ast
import logging
def _generate_trees(filename, with_filenames=False, with_file_content=False):
"""
Generated trees.
:param filename: filename
:param with_filenames: boolean
:param with_file_content: boolean
:return: list of ast object
"""
trees = []
with open(filename, 'r', encoding='utf-8') as attempt_handler:
main_file_content = attempt_handler.read()
try:
tree = ast.parse(main_file_content)
except SyntaxError as e:
logging.exception("Exception occurred.")
tree = None
if with_filenames:
if with_file_content:
trees.append((filename, main_file_content, tree))
else:
trees.append((filename, tree))
else:
trees.append(tree)
return trees
|
258ccfabebb4de21d971939dfa3369a4658bace4
| 14,150
|
def str2ms(s):
"""
Convert the time strings from an SRT file to milliseconds.
Arguments:
s: A time value in the format HH:MM:SS,mmm where H, M, S and m are
digits.
Returns:
The time string converted to an integer value in milliseconds.
"""
s = s.strip()
time, ms = s.split(",")
h, m, s = time.split(":")
return int(ms) + 1000 * (int(s) + 60 * (int(m) + 60 * int(h)))
|
552f9ffbd557cc0729c035901dc1a1a1bfae66d8
| 14,153
|
def parse(file):
"""parse out information from data_text and get information about image size, and class names"""
(str_height, str_width, str_names) = file.readlines()[0].split("*")
(height, width) = (int(str_height), int(str_width))
names = str_names.strip("][").replace("'", "").split(", ")
return (height, width, names)
|
554bc1bf07671aecbe7da2ba2cfbb0bd51aa511c
| 14,155
|
import torch
def get_device(inputs):
""" Get used device of a tensor or list of tensors. """
if isinstance(inputs, torch.Tensor):
device = inputs.device
elif isinstance(inputs, (tuple, list)):
device = inputs[0].device
else:
raise TypeError(f'Inputs can be a tensor or list of tensors, got {type(inputs)} instead!')
return device
|
eb67cb3a5ae226c4136bc172d37225ba6a64b45f
| 14,157
|
def pythagorean_distance_equation(path1, path2):
"""Pythagorean Distance Equation.
Function for counting distance,
derived from the Pythagorean theorem.
"""
# point path dot X1
dotX1 = path1[0]
# point path dot X2
dotX2 = path2[0]
# point path dot Y1
dotY1 = path1[1]
# point path dot Y2
dotY2 = path2[1]
# result distance --> revise
result_distance = ((((dotX2-dotX1)**2)+((dotY2-dotY1)**2))**0.5)
# return result
return result_distance
|
a16f9d2a3f4ba824ebeb020ed2e5b1bb4068cc0e
| 14,160
|
def quick_sort(sequence: list) -> list:
"""Simple implementation of the quick sort algorithm in Python
:param sequence: some mutable ordered collection with heterogeneous comparable items inside
:return: the same collection ordered by ascending
"""
if len(sequence) < 2:
return sequence
_sequence = sequence[:]
pivot = _sequence.pop()
lesser = []
greater = []
for element in _sequence:
(greater if element > pivot else lesser).append(element)
return quick_sort(lesser) + [pivot] + quick_sort(greater)
|
73470224b8f149568b84c7b723097fc0c2ef353f
| 14,161
|
def _is_gradient_task(task_id, num_tasks):
"""Returns True if this task should update the weights."""
if num_tasks < 3:
return True
return 0 <= task_id < 0.6 * num_tasks
|
11d37b1095e40ef0be840c63a0c184e63630e945
| 14,162
|
def score_tup(t):
"""
Score an ngram tuple returned from a database ngram table. A higher scoring
term is more deserving of inclusion in the resulting acrostic
:param t: (Term string, initials string, Corpus count, Used count)
:return: Fitness score for this term
"""
term = t[0]
inits = t[1]
pop = t[2]
used = t[3]
raw = (len(term)*pop/(10*used*used*used))**(len(inits))
if "#" in term:
score = 2*raw
else:
score = raw
return max(score, 1)
|
eea34dbf2d6a7dec37dc95cde289560a77c72f7e
| 14,163
|
import torch
def get_optimizer(parameters, lr, weight_decay):
"""
Initiate Adam optimizer with fixed parameters
Args:
parameters: filter, parameters to optimize
lr: float, initial learning rate
weight_decay: float, between 0.0 and 1.0
Return:
a torch.optim.Adam optimizer
"""
return torch.optim.Adam(parameters, lr=lr, weight_decay=weight_decay)
|
54b4c6a4cd02672ebfc8ff9c850f0d601fc6510f
| 14,165
|
def DoesMoleculeContainsPAINSPattern(Mol, PAINSPatternMols):
"""Check presence of PAINS pattern in the molecule"""
MolMatched = False
for PatternMol in PAINSPatternMols:
if Mol.HasSubstructMatch(PatternMol, useChirality = True):
MolMatched = True
break
return MolMatched
|
15b8684b69c02508f24b075db654efcb4c903188
| 14,166
|
def encrypt_decrypt():
"""Decide whether to encrypt or decrypt."""
while True:
choice = input("Enter E for encryption or D for decryption:")
if choice == "E":
return "E"
elif choice == "D":
return "D"
else:
print("Wrong input! Please try again.\n")
|
1361e86939cf333680ba9c640487bf246a8faf2d
| 14,168
|
def get_P_Elc_toilet_seat_heater(theta_ave_d, P_Elc_toilet_seat_heater_rtd):
"""暖房時の消費電力を計算する
Parameters
----------
theta_ave_d : float
日付dにおける平均外気温度(地域、季節によらず 11.23), ℃
P_Elc_toilet_seat_heater_rtd : float
便座暖房時の定格消費電力, W
Returns
----------
P_Elc_toilet_seat_heater : float
便座暖房時の消費電力, W
"""
theata_toilet_ave_d = 0.4984 * theta_ave_d + 13.427
# E_Elc_toilet_seat_heater_d = -20.01 * theata_toilet_ave_d \
# + 922.4 * P_Elc_toilet_seat_heater_rtd / 45
E_Elc_toilet_seat_heater_d = -20.1 * theata_toilet_ave_d \
+ 922.4 * P_Elc_toilet_seat_heater_rtd / 45
P_Elc_toilet_seat_heater = E_Elc_toilet_seat_heater_d / (24 * 1)
return P_Elc_toilet_seat_heater
|
48ca59bbf2ca88e4e93febb4c83c80564050757b
| 14,169
|
def splunk_setup(splunk):
"""
Override this fixture in conftest.py, if any setup is required before the test session.
splunk fixture can provide the details of the splunk instance in dict format.
**Possible setups required**:
1. Enable Saved-searches before running the tests
2. Restart Splunk
3. Configure inputs of an Add-on.
**Example**::
from splunklib import binding
@pytest.fixture(scope="session")
def splunk_setup(splunk):
splunk_binding = binding.connect(**splunk)
splunk_binding.post(
f"/servicesNS/nobody/{addon_name}/saved/searches/{savedsearch}/enable"
, data=''
)
"""
return splunk
|
88255ac6efd493cc6cb8cf6201ca1f9528534451
| 14,170
|
import requests
def get_gist(url):
""" Get gist contents from gist url.
Note the gist url display the raw gist instead of usual gist page.
Args:
url (str) : url containing the raw gist instead of usual gist page.
Returns:
(str): output gist str.
"""
r = requests.get(url)
assert r.status_code==200, "Failed Page query code {}".format(r.status_code)
return r.text
|
853623c31af246dc07e22ac8a7dd0b515a74a080
| 14,171
|
import struct
def encode_struct(fmt, value):
"""Generic method for encoding arbitrary python "struct" values"""
return struct.pack(fmt, value)
|
57285e612f1f2798eceace6de7be0a71fd4520a0
| 14,172
|
import re
def is_email(addr):
"""
判断是否是合法邮箱
:param addr: 邮箱地址
:return: True or False
"""
re_is_email = re.compile("^[a-z0-9]+([._-]*[a-z0-9])*@([a-z0-9]+[-a-z0-9]*[a-z0-9]+.){1,63}[a-z]+$")
if re_is_email.search(addr):
return True
else:
return False
|
c48d931af7f57420d4b5829da02aa72203275f0f
| 14,173
|
def merge_unique(a: list, b: list) -> set:
"""
merges all of the unique values of each list into a new set
>>> merge_unique([1, 2, 3], [3, 4, 5])
{1, 2, 3, 4, 5}
"""
ret = set()
a.extend(b)
for element in a:
ret.add(element)
return ret
|
6a969c6beaee46e5618d25c5714cec223ebf1686
| 14,174
|
def get_wanted_parameter(season_data, names, index_para):
""" Take in a list of players' names, a wanted parameter and return
:param season_data: a dictionary of players' statistics
:param names: a list of players' names
:param index_para: index of the wanted parameter depending on the file
:return:
a_list_of_wanted_para: a list of wanted parameter for each player
"""
a_list_of_wanted_para = []
for name in names:
stat_for_player = season_data[name]
para = stat_for_player[index_para]
a_list_of_wanted_para.append(para)
return a_list_of_wanted_para
|
0d278abd79f28c922dfcacf4984af7efe14a9070
| 14,175
|
import argparse
def parse_args():
"""Parse args
:return: args
"""
parser = argparse.ArgumentParser(
description='Params for pulling aws instances for appetite')
parser.add_argument("-n", "--name-query", help="filter on name based on aws tag",
dest="name_query")
parser.add_argument("-x", "--regex", help="Secondary regex used for instance filtering",
dest="regex_filter", default="(.*?)")
parser.add_argument("-r", "--region", help="region to query", default="us-west-2")
parser.add_argument("-q", "--add-quotes", help="If quotes are added to output", action='store_true',
default=False, dest="add_quotes")
parser.add_argument("-i", "--just-ips", help="get just the ips", action='store_true',
default=False, dest="just_ip")
parser.add_argument("-t", "--tag", help="Tag to query",
dest="tag", default="Name")
return parser.parse_args()
|
8e5f1a67de324502ba801bfa9971e891c79fcbda
| 14,176
|
import requests
def get_FREQ(
APIKey='AP8DA23',
FromDateTime='2021-01-01 00:01:00',
ToDateTime='2021-02-01 23:59:00',
ServiceType='csv',
endpoint='https://api.bmreports.com/BMRS/FREQ/v1'
):
"""Rolling System Frequency
"""
params = {
'APIKey': APIKey,
'FromDateTime': FromDateTime,
'ToDateTime': ToDateTime,
'ServiceType': ServiceType,
}
r = requests.get(endpoint, params=params)
return r
|
9e28b80f2b10c998047f10181cd6612a63392111
| 14,177
|
def cxDummy(ind1, ind2):
"""Dummy crossover that does nothing. This is used when we have a single gene in the chromosomes, such that
crossover would not change the population.
"""
return ind1, ind2
|
d5a3667cb714663348d5f8f421c167e134eed612
| 14,178
|
def comtypes_get_refcount(ptr):
"""Helper function for testing: return the COM reference count of
a comtypes COM object"""
ptr.AddRef()
return ptr.Release()
|
d2e7addf5a4bfa497d46597f194bfaef48b129d7
| 14,179
|
def convert_cookie_str(_str):
"""
convert cookie str to dict
"""
_list = [i.strip() for i in _str.split(';')]
cookie_dict = dict()
for i in _list:
k, v = i.split('=', 1)
cookie_dict[k] = v
return cookie_dict
|
de6ada63afb3490e793a62e7de98460c48f3b1c8
| 14,180
|
def DL_ignore(answers):
"""Return False if any dictionary-learning method was selected.
Arguments
---------
answers: dict
Previous questions answers.
Returns
-------
bool
True if DL verbosity question should be ignored.
"""
expected = ['ITKrMM', 'wKSVD', 'BPFA']
flag = [meth in answers['method'] for meth in expected]
return True not in flag
|
fda853fc0f959dd5302a90bc9d56f012a1d7da8f
| 14,183
|
def wait(status, timeout=None, *, poll_rate="DEPRECATED"):
"""(Blocking) wait for the status object to complete
Parameters
----------
status: StatusBase
A Status object
timeout: Union[Number, None], optional
Amount of time in seconds to wait. None disables, such that wait() will
only return when either the status completes or if interrupted by the
user.
poll_rate: "DEPRECATED"
DEPRECATED. Has no effect because this does not poll.
Raises
------
WaitTimeoutError
If the status has not completed within ``timeout`` (starting from
when this method was called, not from the beginning of the action).
Exception
This is ``status.exception()``, raised if the status has finished
with an error. This may include ``TimeoutError``, which
indicates that the action itself raised ``TimeoutError``, distinct
from ``WaitTimeoutError`` above.
"""
return status.wait(timeout)
|
3311714c7aee5cbbecf658bfa563826c363752e2
| 14,186
|
import re
def find_md_links(md):
"""Returns dict of links in markdown:
'regular': [foo](some.url)
'footnotes': [foo][3]
[3]: some.url
"""
# https://stackoverflow.com/a/30738268/2755116
INLINE_LINK_RE = re.compile(r'\[([^\]]+)\]\(([^)]+)\)')
FOOTNOTE_LINK_TEXT_RE = re.compile(r'\[([^\]]+)\]\[(\d+)\]')
FOOTNOTE_LINK_URL_RE = re.compile(r'\[(\d+)\]:\s+(\S+)')
links = list(INLINE_LINK_RE.findall(md))
footnote_links = dict(FOOTNOTE_LINK_TEXT_RE.findall(md))
footnote_urls = dict(FOOTNOTE_LINK_URL_RE.findall(md))
footnotes_linking = []
for key in footnote_links.keys():
footnotes_linking.append((footnote_links[key], footnote_urls[footnote_links[key]]))
return links
|
d630d22d571e774312516fc4005444087d23392f
| 14,187
|
def sex(return_expectations=None):
"""
Returns M, F or empty string if unknown or other
"""
return "sex", locals()
|
4f461d76d96f6c0559d20693b28280436af1a594
| 14,188
|
def epoch_time(start_time, end_time):
"""
Computes the time for each epoch in minutes and seconds.
:param start_time: start of the epoch
:param end_time: end of the epoch
:return: time in minutes and seconds
"""
elapsed_time = end_time - start_time
elapsed_mins = int(elapsed_time / 60)
elapsed_secs = int(elapsed_time - (elapsed_mins * 60))
return elapsed_mins, elapsed_secs
|
8265cb78c26a96a83a1035c09a7dccb0edf8c4d0
| 14,189
|
def fibonaccinumber(n):
"""
>>fibonaccinumber(6)
1 1 2 3 5 8
>>fibonaccinumber(10)
1 1 2 3 5 8 13 21 34 55
"""
if n<0:
print("Incorrect input")
elif n==0:
return 0
elif n==1:
return 1
else:
n1 , n2 =1,1
count = 1
while count < n:
print(n1 , end = ' ')
nth = n1 + n2
# update values
n1 = n2
n2 = nth
count += 1
return n1
|
c69d23d2603360cba6b5d5e600da1aa96dcfec60
| 14,191
|
def play(pet) -> bool:
"""Return False if any of the stats is 0."""
if (not pet.hunger) or (not pet.thirst) or (not pet.energy) or (not pet.fitness) or (not pet.mental_health):
print("Oh no! Take better care of", pet.name, "next time!")
print("Thank you for playing!")
print(" - - - ")
print(pet)
print(" - - - ")
return False
return True
|
482b38868d402d40687ed0c7495a122c50783fe3
| 14,192
|
def base_prob(phred_score):
""" Returns the probabilty that a base is incorrect, given its
Phred score.
"""
prob = 10.0**(-float(phred_score)/10)
return prob
|
8231019213204e65d577ea86d1e2e0e7352a3f70
| 14,193
|
import re
def need_format(line: str) -> bool:
"""
Return true if line as a title declaration followed by content
"""
return (
(
re.search("\t+e_\w*[-'\w]*\W*=", line) is not None
and re.search("\t+e_\w*[-'\w]*\W*=\W*{[\w\t]*\n", line) is None
and re.search("\t+e_\w*[-'\w]*\W*=\W*{\W*#", line) is None
)
or (
re.search("\t+k_\w*[-'\w]*\W*=", line) is not None
and re.search("\t+k_\w*[-'\w]*\W*=\W*{[\w\t]*\n", line) is None
and re.search("\t+k_\w*[-'\w]*\W*=\W*{\W*#", line) is None
)
or (
re.search("\t+d_\w*[-'\w]*\W*=", line) is not None
and re.search("\t+d_\w*[-'\w]*\W*=\W*{[\w\t]*\n", line) is None
and re.search("\t+d_\w*[-'\w]*\W*=\W*{\W*#", line) is None
)
or (
re.search("\t+c_\w*[-'\w]*\W*=", line) is not None
and re.search("\t+c_\w*[-'\w]*\W*=\W*{[\w\t]*\n", line) is None
and re.search("\t+c_\w*[-'\w]*\W*=\W*{\W*#", line) is None
)
)
|
61576aa02a745db8b0ce0c9c4c9a4d4589e8d842
| 14,195
|
import argparse
def parse():
"""
Handles the arguments and options.
"""
parser = argparse.ArgumentParser(
formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument(
"-w", "--what", dest="what",
help="REQUIRED - The absolute path to the folder containing the tests"
)
parser.add_argument(
"-t", "--tags", dest="tags", default=[],
help="Collects tags to run specific tests\n" + \
"USAGE: -t=tag1 || -t=tag1,tag2"
)
parser.add_argument(
"-e", "--extra", dest="extra_assignments", default=False,
action="store_true", help="Includes tests for extra assignments"
)
parser.add_argument(
"--trace", dest="trace_assertion_error", default=False,
action="store_true", help="Adds a traceback option for assertion errors"
)
parser.add_argument(
"--exam", dest="exam", default=False,
action="store_true", help="Use when running test for an exam"
)
args, _empty = parser.parse_known_args()
if args.tags:
args.tags = args.tags.split(",")
return args
|
ef1700cc5a3692fd5cd85d84cd24f37f859df7a7
| 14,196
|
def builderFor(action, hypervisor=None, template=None, service=None):
"""
This decorator is used to supply metadata for functions which is then used to find suitable methods
during building just by these properties.
:param action: Name of the generic step/action (see planner) that this function implements
:type action: str
:param hypervisor: Name of the hypervisor that this function can be used for
:type action: str
:param template: A list of template properties this function is suitable for (e.g. OS, certain software)
:type action: [str]
:param service: Production or type of the service that this function can be used for
:type action: str
:returns: The deocorated input function with the given attribute values
:rtype: function
"""
def decorate(f):
f.action = action
f.hypervisor = hypervisor
f.template = template
f.service = service
return f
return decorate
|
1dddfd8dc5dbc87e5a018fc4fb144bef8a8f98e3
| 14,197
|
def undeployed_value_only_calculator(repository, undeployed_value_tuple, deployed_value_tuple):
"""
Just return the undeployed value as the value.
This calculator can be used when there will be no deployed value.
"""
return undeployed_value_tuple[2]
|
58294274d37b4c7bb9cad21bb01260986cb0d6ae
| 14,198
|
import re
def _remove_inner_punctuation(string):
"""
If two strings are separated by & or -, remove
the symbol and join the strings.
Example
-------
>>> _remove_inner_punctuation("This is AT&T here")
'This is ATT here'
>>> _remove_inner_punctuation("A T & T")
'A T T'
"""
string = re.sub('[\&\-]', '', string)
return string
|
4ca3e7f91e35dba2e0a34f1dfd935e004623875e
| 14,199
|
def _scrape_main_synonym_section(left_content):
"""Scrapes the main/default synonym section for a word.
If there is no pos listed, use the one listed for the word
"""
synonym_header = left_content.find('div',
{'class' : 'synonyms_list'})
synonym_labels = synonym_header.find_all('p',
{'class' : 'function-label'})
synonym_lists = synonym_header.find_all('p', {'class' : None})
if len(synonym_labels) != len(synonym_lists):
raise ValueError('There are an uneven number of labels and lists')
synonym_list = []
for label, s_list in zip(synonym_labels, synonym_lists):
word_list = s_list.find_all('a')
word_list_text = [word for word in word_list]
pos_synonym_flag = label.getText().lower()
synonym_list.append((pos_synonym_flag, word_list_text))
return synonym_list
|
21063c652e733e6e6f6ca32bdf0d343bdbbb80f4
| 14,200
|
import re
def generateHashtags(randomTests):
"""Generates a hashtag from a level 1+ category name using Regular Expressions and other rules.
Arguments:
randomTests {Dictionary} -- A test category and hashtag (level 1+) categories
Returns:
Dictionary -- The input dictionary with added hashtag names
"""
tests = randomTests
hashtags = []
for i in range(len(tests["hashtagCategories"])):
unmodCat = tests["hashtagCategories"][i]
tests["hashtagCategories"][i] = tests["hashtagCategories"][i].replace(re.sub('([^>]+)', '', tests["hashtagCategories"][i]), "") # remove texts in brackets, e.g. (E.12)
tests["hashtagCategories"][i] = tests["hashtagCategories"][i].replace(" ", "") # remove spaces
tests["hashtagCategories"][i] = tests["hashtagCategories"][i].split("&") # split words by '&' (beacause these can be considered as two separate words)
for j in range(len(tests["hashtagCategories"][i])): # since we now have arrays of one or more words
tests["hashtagCategories"][i][j] = re.sub(r'[^A-Za-z]', '', tests["hashtagCategories"][i][j]) # remove non alphabetic characters
tagAndCat = {
"hashtag" : tests["hashtagCategories"][i][j].lower(),
"category" : unmodCat
}
hashtags.append(tagAndCat)
tests["hashtagCategories"] = hashtags
return tests
|
96478924f04706b88cb367d5aca334225771788b
| 14,201
|
def get_longest_element(focus):
"""
cycles thru the status_results dictionary in the indicated key or field list and finds the
longest piece of text in it
:param focus: the key or field in value list that is being searched for longest value
:return: the longest value
"""
return (len(max(focus, key=len)))
|
d00c02d3d02ebd371f16ef16fd2e7daa0ead47ac
| 14,202
|
def get_num_classes(labels):
"""Get total number of classes.
Arguments:
labels {list} -- label values.
"""
num_classes = max(labels) + 1
missing_classes = []
for l in range(num_classes):
if l not in labels:
missing_classes.append(l)
if len(missing_classes):
raise ValueError('Missing labels: {missing_classes}'.format(missing_classes=missing_classes))
if num_classes <= 1:
raise ValueError('Invalid number of labels: {num_classes}'.format(num_classes=num_classes))
return num_classes
|
4573bbf81fab0396454167287e86492e0ee7cd48
| 14,203
|
def store_edges(edge_data):
"""Store edges in a dict where the keys are the edge times"""
time_edge_map = {}
for i in range(len(edge_data)):
current_time = edge_data[i,0]
if not current_time in time_edge_map:
time_edge_map[current_time] = []
time_edge_map[current_time].append(edge_data[i,1:3].tolist())
sorted_times = sorted(time_edge_map.keys())
print('Number of unique epochs: ' + str(len(sorted_times)))
return sorted_times, time_edge_map, len(edge_data)
|
885bb4f4e6480904a09bb7afe7d85053643a3f1a
| 14,204
|
def filter_linker_flavour(args):
"""Remove `-flavor gnu`."""
new_args = []
ignore = False
for arg in args:
if ignore:
ignore = False # ignore this argument
else:
if arg == '-flavor':
ignore = True
else:
new_args.append(arg)
return new_args
|
f37aac3c7b14f25350c945c5258d851402292330
| 14,205
|
import random
def random_string(length, charset):
"""
Return a random string of the given length from the
given character set.
:param int length: The length of string to return
:param str charset: A string of characters to choose from
:returns: A random string
:rtype: str
"""
n = len(charset)
return ''.join(charset[random.randrange(n)] for _ in range(length))
|
1370f86a2e696ba6030b719ec8e32631f1865e01
| 14,206
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.