content
stringlengths
39
14.9k
sha1
stringlengths
40
40
id
int64
0
710k
from typing import List from typing import Tuple def edge_path_to_node_path(path: List[Tuple]) -> List[str]: """ Convert a path of edges to a simple list of nodes (without direction information) :param path: the path of edges which will be convert :return: a path of nodes """ if len(path) == 0: return [] node_path = [path[0][0]] # first node is the source of the path # the remaining nodes are the destination node_path += [e[1] for e in node_path[1:]] return node_path
079a7352c7084329d19616070bcc51f82f029a5b
87,218
def hex_to_rgb(value='FFFFFF'): """Converts hex color to RGB color. Args: value (str, optional): Hex color code as a string. Defaults to 'FFFFFF'. Returns: tuple: RGB color as a tuple. """ value = value.lstrip('#') lv = len(value) return tuple(int(value[i:i+lv//3], 16) for i in range(0, lv, lv//3))
15fc7fa15a567675a32399490002b998b9044b9a
87,227
def filter_invalid_coords( df, latitude_col, longitude_col, inclusive=False, inplace=False ): """ Filters latitude and longitude of a DataFrame to lie within the latitude range of [-90, 90] or (-90, 90) and longitude range of [-180, 180] or (-180, 180) Parameters ---------- df : pd.DataFrame The DataFrame to filter latitude_col : str The name of the column that contains latitude values longitude_col : str The name of the column that contains longitude values inclusive : bool, default=False True if you would like the bounds of the latitude and longitude to be inclusive e.g. [-90, 90]. Do note that these bounds may not work with certain GIS software and projections. inplace : bool, default=False Whether to return a new DataFrame. If True then no DataFrame copy is not returned and the operation is performed in place. Returns ------- pd.DataFrame or None A DataFrame with invalid latitude and longitude entries removed. If `inplace=True` it returns None. """ if not inplace: df = df.copy() if inclusive: mask = ( (df[latitude_col] >= -90) & (df[latitude_col] <= 90) & (df[longitude_col] <= 180) & (df[longitude_col] >= -180) ) else: mask = ( (df[latitude_col] > -90) & (df[latitude_col] < 90) & (df[longitude_col] < 180) & (df[longitude_col] > -180) ) if not inplace: return df[mask] else: df.mask(~mask, inplace=True) df.dropna(inplace=True)
23e3c7b84e3f8e724f67793aed32ed5b7e4f0037
87,232
def get_diamond_c_from_original_coords(x,y, a,b, width, height,padding =22, radius=22): """ formula is ax + by + c = 0 x = (xorig + padding - wc) / norm y = (yorig + padding - hc) / norm where x, y is in diamond space """ wc = (width + padding * 2 - 1) / 2 hc = (height + padding * 2 - 1) / 2 norm = max(wc, hc) - padding c = -(a * (x+padding -wc)) / norm - (b * (y +padding - hc)) / norm return c
e6144a4969642f16ee92953edfb74ed902854f25
87,234
def get_backend_op_pair(test): """Returns the target backend and operation pair of the test.""" test_suite_backends = { 'check_vmla_vmla': 'vmla', 'check_dylib-llvm-aot_dylib': 'dylib-llvm-aot', 'check_vulkan-spirv_vulkan': 'vulkan-spirv' } for (test_suite, backend) in test_suite_backends.items(): if test_suite in test: # Format: ...TEST_SUITE_OP.mlir start_idx = test.index(test_suite) + len(test_suite) + 1 return backend, test[start_idx:-len('.mlir')] raise LookupError(f'Can not find a backend to match {test}')
b872f434f89c0d9d971a964405da8b152a1e173a
87,238
def _weight_function(G, weight): """Returns a function that returns the weight of an edge. The returned function is specifically suitable for input to functions :func:`_dijkstra` and :func:`_bellman_ford_relaxation`. Parameters ---------- G : NetworkX graph. weight : string or function If it is callable, `weight` itself is returned. If it is a string, it is assumed to be the name of the edge attribute that represents the weight of an edge. In that case, a function is returned that gets the edge weight according to the specified edge attribute. Returns ------- function This function returns a callable that accepts exactly three inputs: a node, an node adjacent to the first one, and the edge attribute dictionary for the eedge joining those nodes. That function returns a number representing the weight of an edge. If `G` is a multigraph, and `weight` is not callable, the minimum edge weight over all parallel edges is returned. If any edge does not have an attribute with key `weight`, it is assumed to have weight one. """ if callable(weight): return weight # If the weight keyword argument is not callable, we assume it is a # string representing the edge attribute containing the weight of # the edge. if G.is_multigraph(): return lambda u, v, d: min(attr.get(weight, 1) for attr in d.values()) return lambda u, v, data: data.get(weight, 1)
77b3b7884ba855241abcdd4a2353ac8c0c1b77b4
87,240
def convert_metadata_pairs_to_array(data): """ Given a dictionary of metadata pairs, convert it to key-value pairs in the format the Nylas API expects: "events?metadata_pair=<key>:<value>" """ if not data: return data metadata_pair = [] for key, value in data.items(): metadata_pair.append(key + ":" + value) return metadata_pair
2375005a57321d73b87a05e0fe95e750aace12c7
87,247
def create_log_file_name(randomString): """ Function that creates a log file with a random name """ log = "augustify_log_" + randomString return(log)
f8c916ef0c112144aafa4df893bd44a8cc1d1da7
87,252
def where(iterable): """Get the positions where conditions are not False. Parameters ---------- iterable : collections.Iterable[any] The conditions to be checked. Returns ------- list[int] Positions where the conditions are not False. """ return [i for i, c in enumerate(iterable) if c]
58a1369743aa2782519e3b3ccbdc85e7abe95772
87,254
def cosalpha(a, b, c): """ Calculate the cosign of an angle in a triangle a, b, c :param a: length of the side opposing the angle :param b: length of the side adjacent to the angle :param c: length of the side adjacent to the angle :return: cosign """ return (b ** 2 + c ** 2 - a ** 2) / (2 * b * c)
31b1922fa8ca20e2451d0558849f717ab288b984
87,260
def get_movies_in_a_year(movies, year): """ Query helper to get all the MOVIES that released that year. :param movies: Dictionary (name of the movie --> Movie Node for the movie) :param year: The year to look for MOVIES in. :return: List of MOVIES that released in the given year. """ movies_in_year = [movie_name for movie_name, movie_node in movies.items() if movie_node.year_released == year] return movies_in_year
148c3eb9a21931f6ce02f4351c4fdf10d914369e
87,262
def validate_lustreconfiguration_deploymenttype(lustreconfiguration_deploymenttype): """ Validate DeploymentType for LustreConfiguration Property: LustreConfiguration.DeploymentType """ VALID_LUSTRECONFIGURATION_DEPLOYMENTTYPE = ( "PERSISTENT_1", "SCRATCH_1", "SCRATCH_2", ) if ( lustreconfiguration_deploymenttype not in VALID_LUSTRECONFIGURATION_DEPLOYMENTTYPE ): raise ValueError( "LustreConfiguration DeploymentType must be one of: %s" % ", ".join(VALID_LUSTRECONFIGURATION_DEPLOYMENTTYPE) ) return lustreconfiguration_deploymenttype
831413e8731ea4e5c9d199a32d970542e14abc49
87,263
def mean_estimator(data_variance, n, ddof=1): """ Get the variance of the mean from a data variance term (e.g. an eigenvalue) and return an estimator of the precision of the mean (e.g. the variance of the mean itself.) Note: this is not used in the actual calculation of PCA planar fitting errors; it is present for testing purposes. """ return data_variance/(n-ddof)
9763db959076fbe1b6582b09be32abc1b254f08b
87,269
import zipfile def extract_file_from_zip(bytes_io, expected_file): """Extracts a file from a bytes_io zip. Returns bytes""" zipf = zipfile.ZipFile(bytes_io) return zipf.read(expected_file)
86ddf274dd96970083f047d0cdc9b29f566020a1
87,273
def _is_interactive_opt(bk_opt): """ Heuristics to detect if a bokeh option is about interactivity, like 'selection_alpha'. >>> is_interactive_opt('height') False >>> is_interactive_opt('annular_muted_alpha') True """ interactive_flags = [ 'hover', 'muted', 'nonselection', 'selection', ] return any(part in interactive_flags for part in bk_opt.split('_'))
2602ec81adf631f584c436a6f07c79978cc379d3
87,280
import base64 def b2s(bs: bytes) -> str: """Bytes to b64 string.""" return base64.b64encode(bs).decode('utf-8')
98d73442c390e8aacbaba8229009730e49d0a88f
87,291
def mock_event(player: dict) -> dict: """ Fixture to create an AWS Lambda event dict :param player: Input character; see above :return: Mock event dict """ return { "body": { "Player": player, "playerId": "player_hash", "action": "attack", "enhanced": False, } }
152e72e4d2e43512da4d929f8e90f085c1476475
87,292
def get_xy_column_type_precision(column_elt): """ Get the Xylinq type precision of a column. @param IN column_elt Column XML element @return The type precision as a (potentially empty) list """ precision_list = [] precision_level = 1 precision = column_elt.get("type_precision_%d" % precision_level) while precision is not None: precision_list.append(precision) precision_level += 1 precision = column_elt.get("type_precision_%d" % precision_level) return precision_list
b5d2e81264b01b77568a354c536b7510d4a7c570
87,302
import random def weighted_choice(weights): """ Choose an index based on the index's weight :param weights: a list of weights :type weights: list(int) :return: a number between 0 and len(weights) - 1 :rtype: int """ totals = [] running_total = 0 for w in weights: running_total += w totals.append(running_total) rnd = random.random() * running_total for i, total in enumerate(totals): if rnd < total: return i
c332751d57b1e2f62d77fcc7aa0bcec2798f8c67
87,306
def find_exml(val, attrib=False): """Test that the XML value exists, return value, else return None""" if val is not None: if attrib: # it's an XML attribute return val else: # it's an XML value return val.text else: return None
31e29937d57134b420a7097c7c576a9983fcdd42
87,307
def hex_string_to_int(value: str) -> int: """returns an int from a hex string""" return int(value, 16)
4eeedbce1fe8bc7533aee1233c7a97c3583bcb6a
87,308
def _use_time_window_post_cue(x, fs=250, t1_factor=1.5, t2_factor=6): """ Prepares the input data to only use the post-cue range. Parameters: - x: np.ndarray, size = [s, C, T], where T should be 1750 - fs: integer, sampling rate - t1_factor: float, window will start at t1_factor * fs - t2_factor: float, window will end at t2_factor * fs Returns np.ndarray, size = [s, C, T'], where T' should be 1125 with default values """ assert t1_factor < t2_factor t1 = int(t1_factor * fs) t2 = int(t2_factor * fs) return x[:, :, t1:t2]
1f726b6ca9bbe33d5f720c5aadf248bd7df19f0b
87,310
import torch def sigmoid_t(x, b=0, t=1): """ The sigmoid function with T for soft quantization function. Args: x: input b: the bias t: the temperature Returns: y = sigmoid(t(x-b)) """ temp = -1 * t * (x - b) temp = torch.clamp(temp, min=-10.0, max=10.0) return 1.0 / (1.0 + torch.exp(temp))
019cf4747daf25070550066eba916149779555a9
87,311
def is_say_ingredients(text: str) -> bool: """ A utility method to determine if the user said the intent 'say_ingredients'. """ exact_match_phrases = [ "ingredient", "ingredients" ] sample_phrases = [ 'say ingredient', 'tell me the ingredient', 'what are the ingredient', 'tell the ingredient', 'say the ingredient', 'say ingredient', 'tell me ingredient', 'tell ingredient' ] return any(text == em for em in exact_match_phrases) or any(phrase in text for phrase in sample_phrases)
3de66c29ae2c7a35a5b3f71242bd958f1084e0de
87,314
import re def camelcase_split(s): """Split camel case into list of strings""" return re.findall(r'[A-Z](?:[a-z]+|[A-Z]*(?=[A-Z]|$))', s)
dfb06975a80be544174918521a2f25debdd56f2c
87,315
def connection_string_to_dictionary(str): """ parse a connection string and return a dictionary of values """ cn = {} for pair in str.split(";"): suffix = "" if pair.endswith("="): # base64 keys end in "=". Remove this before splitting, then put it back. pair = pair.rstrip("=") suffix = "=" (key, value) = pair.split("=") value += suffix cn[key] = value return cn
9cba0c4c600321b4c8d01e02d78d34bd5c60d14e
87,317
def is_pow2(value: int) -> bool: """ Check if value is power of two. """ return value > 0 and ((value & (value - 1)) == 0)
1d30e08ef450a965272cd94d7599bcc39d71992c
87,320
import torch def box_wh_to_xy(x): """ Converts co-ordinates from (x, y, w, h) to (x1, y1, x2, y2) format """ x, y, w, h = x.unbind(-1) x1 = x - 0.5 * w y1 = y - 0.5 * h x2 = x + 0.5 * w y2 = y + 0.5 * h return torch.stack([x1, y1, x2, y2], dim=-1)
ebbd5bcba65539fae6611bd79a3730d98a22725d
87,322
def get_subdir(index): """ Return the sub-directory given the index dictionary. The return value is obtained in the following order: 1. when the 'subdir' key exists, it's value is returned 2. if the 'arch' is None, or does not exist, 'noarch' is returned 3. otherwise, the return value is constructed from the 'platform' key and the 'arch' key (where 'x86' is replaced by '32', and 'x86_64' by '64') """ try: return index['subdir'] except KeyError: arch = index.get('arch') if arch is None: return 'noarch' intel_map = {'x86': '32', 'x86_64': '64'} return '%s-%s' % (index.get('platform'), intel_map.get(arch, arch))
e517a87ba928d9efd37617a6d84393888e9c07ca
87,323
def count_digits(n: int) -> int: """Counts the digits of number in base 10. Args: n: A non-negative integer. Returns: The number of digits in the base-10 representation of ``n``. """ return len(str(n))
1e867e4421a119f5c31a17e50ade417dddd73053
87,325
def is_arabic_only(word): """ Checks if word only contains arabic letters """ horof = ("ضصثقفغعهخحجدشسيبلاتنمكطذئءؤرىةوزظّ") for letter in (word): if letter not in horof: return False return True
3d1223fa563d72b7ac5c3f7360e90ff3c815a0c3
87,326
def fs_get_file_hash(filelist): """Returns a dict associating figshare file id to MD5 hash Parameters ---------- filelist : list of dict HTTP request response from fs_get_file_list Returns ------- response : dict keys are file_id and values are md5 hash """ return {str(f["id"]): "md5:" + f["supplied_md5"] for f in filelist}
1244c6ccd8fe33a4df3df2391abef7766ba9af43
87,327
def replace_bibtex_cite_name(bibtex, current_name, new_name): """replaces the cite_name in a bibtex file with something else :param: string of bibtex to do the replacing on :param current_name: current cite name in the bibtex :param new_name: name to replace it with """ new_bibtex = bibtex.replace(current_name, new_name, 1) return new_bibtex
6ebae691836429c560762d43fe34bb2a2d1b7696
87,329
def get_ip_to_total_traffic_size(stream): """ Returns a dictionary relating IP addresses to their total traffic size. Where total traffic size is the size of all the packets that the address is present in as a source or a destination in the provided stream. """ ip_traffic_size = {} for packet in stream: src = packet.src_addr dst = packet.dst_addr length = packet.length ip_traffic_size[src] = ip_traffic_size[src] + length if src in ip_traffic_size else length ip_traffic_size[dst] = ip_traffic_size[dst] + length if dst in ip_traffic_size else length return ip_traffic_size
95485cd794f702df0b2fc68e16f0c756bcb9b794
87,335
def duns_screener(duns): """ Takes a duns number and returns a modified string to comply with DUNS+4 format common DUNS errors: * leading zero removed: len == 8 --> add leading zero back + '0000' trailing * 9-digits --> duns + '0000' * else: 'error' """ if len(duns) == 9: duns = duns + '0000' return duns elif len(duns) == 8: duns = '0' + duns + '0000' return duns else: return 'error'
bed8c6bff392a31d511cf962cec7c30e32b86d8b
87,346
def is_subset(subsampling, reference): """Return whether indices specified by ``subsampling`` are subset of the reference. Args: subsampling ([int] or None): Sample indices reference ([int] or None): Reference set. Returns: bool: Whether all indices are contained in the reference set. """ if reference is None: return True elif subsampling is None and reference is not None: return False else: return set(subsampling).issubset(set(reference))
66e924370b0698bb0f1c2b73d058cf99d4543259
87,352
import uuid def make_uuid(rng): """ Generate a random UUID using the given random generator. """ return str(uuid.UUID(bytes=bytes(rng.getrandbits(8) for _ in range(16)), version=4))
d44a2cbf30f02caa9f4bac54c93f29cbd6646fb9
87,353
import hashlib def md5(file_path): """Calculates the md5-hash of the file. :param file_path: full path to the file. """ return hashlib.md5(open(file_path,'rb').read()).hexdigest().upper()
594276bfe719a97f36d91b3c1094a601618fe419
87,356
from typing import Dict from typing import Tuple def bbox_to_tf_style(bbox: Dict, img_width: int, img_height: int) -> Tuple: """ Convert Sighthound bounding box to tensorflow box style. In Tensorflow the bounding box is defined by the tuple (y_min, x_min, y_max, x_max) where the coordinates are floats in the range [0.0, 1.0] and relative to the width and height of the image. For example, if an image is 100 x 200 pixels (height x width) and the bounding box is `(0.1, 0.2, 0.5, 0.9)`, the upper-left and bottom-right coordinates of the bounding box will be `(40, 10)` to `(180, 50)` (in (x,y) coordinates). """ decimals = 5 x_min = round(bbox["x"] / img_width, decimals) x_max = round((bbox["x"] + bbox["width"]) / img_width, decimals) y_min = round(bbox["y"] / img_height, decimals) y_max = round((bbox["y"] + bbox["height"]) / img_height, decimals) return (y_min, x_min, y_max, x_max)
f316d456743c0e881725fea9a2efd8eb6df7b636
87,357
def isnum(num): """ Returns true if the inputted argument can be converted into a float or int :param num: :return: Boolean value """ try: float(num) except ValueError: return False return True
a85c85359566cab92c744e4c088d70d92cffca67
87,364
def is_disc_aligned(disc, time_counter, align_offset): """Check if disc is aligned.""" return ((disc['cur_position'] + time_counter + align_offset) % disc['positions'] == 0)
3dded7fbd062920faa0c80edb3e384543e1e81fa
87,368
def sign(n): """ returns the sign of a number """ if n: return n/abs(n); return 1;
f9087a679372d13614189a9cff9ef99214821cd5
87,371
def two_class_palette(x): """ Returns the color palette for two class labels. 0: blue 1: red """ if set(x) != set([0, 1]): raise ValueError('class labels not 0-1') pal = [] for i in range(len(x)): if x[i] == 0: pal.append('blue') else: pal.append('red') return pal
8b0c577ce734846d8acd4c86f37a85d4f650538c
87,372
def fixed_value_thresholder(threshold): """Return a function that indicates scores >= a fixed value.""" def binarize(scores): return scores >= threshold return binarize
31ce3cdb1242fce461799d878676972ad0112619
87,373
def rename_model(connection): """SQL test statements for the RenameModelTests suite. Args: connection (django.db.backends.base.BaseDatabaseWrapper): The connection being tested. Returns: dict: The dictionary of SQL mappings. """ return { 'RenameModel': [ 'ALTER TABLE "tests_testmodel" RENAME TO "tests_destmodel";', ], 'RenameModelSameTable': [], 'RenameModelForeignKeys': [ 'ALTER TABLE "tests_testmodel" RENAME TO "tests_destmodel";', ], 'RenameModelForeignKeysSameTable': [], 'RenameModelManyToManyField': [ 'ALTER TABLE "tests_testmodel" RENAME TO "tests_destmodel";', ], 'RenameModelManyToManyFieldSameTable': [], }
c7c911ba8c81dcbfd7116b79b1e16b1c333a2e63
87,377
def get_filename(problem): """Returns filename in the form `001.py`""" return '{:03d}.py'.format(problem)
9097b559eef6579cf41951f5ff89556cae307206
87,381
from pathlib import Path import pkg_resources def _create_model_folder(url): """ Create the folder for the new model. The new folder is created in the `models_data` folder, i.e., at the same location of the other models (that can be installed independently from this one). Structure of the `models_data` folder. ``` models_data |- path_model (not mandatory) |- snippet_model (independent from this) `- snippet_model_author (created with this method) ``` Parameters ---------- url: str The url of the repository Returns ------- `pathlib.Path` The path of the model folder Raises ------ FileExistsError If the model folder already exists """ # The model name is the name of the author of the repository model_name = 'snippet_model_%s' % url.split('/')[-2] # Get the models_data folder of credentialdigger models_data = Path(pkg_resources.resource_filename('credentialdigger', 'models_data')) # Create model folder. If the model already exists, its folder is already # present at this path. In this case, a FileExistsError is raised by the # instruction mkdir local_model = models_data / model_name local_model.mkdir() return local_model
b6d8a9bcf4a1aa84a3b34413630fc755382c15ae
87,382
def remove_dup(dataframe, cam_id_name): """ Drop rows that have duplicated camera id (keep the first duplicated camera id data) :param dataframe: a pandas dataframe :return: a pandas dataframe after removing duplicates """ dataframe.drop_duplicates(subset=cam_id_name, inplace=True) return dataframe
38bc48fb5fec1ca443697ecb661ae283b5f8d0a8
87,384
import random def get_perspective_params(img, distortion_scale): """Helper function to get parameters for RandomPerspective. """ img_width, img_height = img.size distorted_half_width = int(img_width / 2 * distortion_scale) distorted_half_height = int(img_height / 2 * distortion_scale) top_left = (random.randint(0, distorted_half_width), random.randint(0, distorted_half_height)) top_right = (random.randint(img_width - distorted_half_width - 1, img_width - 1), random.randint(0, distorted_half_height)) bottom_right = (random.randint(img_width - distorted_half_width - 1, img_width - 1), random.randint(img_height - distorted_half_height - 1, img_height - 1)) bottom_left = (random.randint(0, distorted_half_width), random.randint(img_height - distorted_half_height - 1, img_height - 1)) start_points = [(0, 0), (img_width - 1, 0), (img_width - 1, img_height - 1), (0, img_height - 1)] end_points = [top_left, top_right, bottom_right, bottom_left] return start_points, end_points
49528cc8400c6ef7ad4a4cc8b9efd38c64ecf2cb
87,390
def convert_time(time): """Convert time in millisecond to string format MM:SS:MS""" minutes = str(time // 60000).zfill(2) second = str((time % 60000) // 1000).zfill(2) millisecond = str(time % 1000).zfill(3) return "%s:%s:%s" % (minutes, second, millisecond)
94cdf74d037f7976419c36493963ab3a6aea9576
87,391
import re def compile_matcher(regex): """Returns a function that takes one argument and returns True or False. Regex is a regular expression. Empty regex matches everything. There is one expression: if the regex starts with "!", the meaning of it is reversed. """ if not regex: return lambda x: True elif regex == '!': return lambda x: False elif regex.startswith('!'): rx = re.compile(regex[1:]) return lambda x: rx.search(x) is None else: rx = re.compile(regex) return lambda x: rx.search(x) is not None
6632de458c4e95f3009d9a01233d144c6b7d5752
87,394
import webbrowser def get_info_from_website (barcode): """Opens a website containing the nutrition info of the scanned barcode in a new tab For this, I imported and used the webbrowser.open package to open a url in a new window. Details at: https://docs.python.org/3/library/webbrowser.html Parameters ---------- barcode: the barcode for which the nutrition info should be obtained Returns ------- nutrition_info_page: a website containing the nutrition info of the scanned food item. """ # Use webbrowser.open to open the website and use the previously acquired barcode # to pull nutritional data on the scanned barcode nutrition_info_page = webbrowser.open(f"https://world.openfoodfacts.org/product/{barcode}", new=1) return nutrition_info_page
e8c86fef90f2140a862ef3b27dc0268a6d268de9
87,396
def _IsValidComposerUpgrade(cur_version, candidate_version): """Validates that only MINOR and PATCH-level version increments are attempted. (For Composer upgrades) Checks that major-level remains the same, minor-level ramains same or higher, and patch-level is same or higher (if it's the only change) Args: cur_version: current 'a.b.c' Composer version candidate_version: candidate 'a.b.d' Composer version Returns: boolean value whether Composer candidate is valid """ curr_parts = list(map(int, cur_version.split('.', 3))) cand_parts = list(map(int, candidate_version.split('.', 3))) if (curr_parts[0] == cand_parts[0] and (curr_parts[1] < cand_parts[1] or (curr_parts[1] <= cand_parts[1] and curr_parts[2] <= cand_parts[2]))): return True return False
0683c90e22df65eb0e27acd50ee21d08c1a366d9
87,405
def get_actual_preds_dose(dose, df_test, df_model_preds, df_targets): """Get the actual MOA target labels and predictions for each Treatment dose""" dose_cpds_index = df_test[df_test['dose'] == dose].index df_dose_preds = df_model_preds.loc[dose_cpds_index].reset_index(drop = True) df_dose_targets = df_targets.loc[dose_cpds_index].reset_index(drop = True) return df_dose_targets, df_dose_preds
4cbd52932031db3898a5ad3de00f70043190636d
87,408
def poly_lr(epoch, max_epochs, initial_lr, exponent=0.9): """Learning rate policy used in nnUNet.""" return initial_lr * (1 - epoch / max_epochs)**exponent
abdf1b887ee6d24327b7129d7ed06b01a6cbe693
87,411
def mps_to_kmph(mps): """ Function to convert speed in m/sec to km/hr :param mps: the speed in m/sec :return: the speed in km/hr """ return 3.6 * mps
6a5932fa5117594894da1529d8c75e4c122baab6
87,413
def get_input_type(args): """Find input handler with its corresponding parameters based on CLI arguments. :param `argparse.Namespace` args: `argparse.Namespace` instance. :return: tuple of input type and corresponding options :rtype: tuple """ input_type = None options = [] if args.interactive: input_type = 'interactive' elif args.file: input_type = 'file' options.append(args.file) elif args.request: input_type = 'inline' options.append(args.request) elif args.stdin: input_type = 'stdin' return (input_type, options)
3479add51e9479fd0131436074501180a1bafba9
87,416
def isintegral_str(txt: str) -> bool: """Return true iff argument is an integer string.""" if not isinstance(txt, str): return False try: int(txt) return True except ValueError: return False
11ba307d2e276e370b29aee9dfa00f37d865125b
87,425
def getOffset(ann): """ Returns the offset of the supplied Matplotlib annotation object, in pixels from its data point location on its subplot. """ return ann.get_position()
510ceace6a9a0c5745506569ed88efd4dc914ec5
87,427
def ends(iter): """Return the two ends of an iterable""" li = list(iter) return li[0], li[-1]
d8fa5e37b830cd7395a35f04fded74608c9f0acb
87,431
from typing import List def validar_codigos(n: int) -> List[int]: """Valida que los códigos a ingresar no contengan duplicados. Retorna una lista de códigos sin duplicados. :param n: Cantidad de códigos :n type: int :return: Lista de códigos sin duplicados :rtype: List[int] """ codigos = [] i = 1 while i <= n: codigo = int(input(f"Código {i}: ")) if codigo in codigos: print("Error, código duplicado") continue codigos.append(codigo) i += 1 return codigos
ffce90bf582434b06d41ff5f5902080fe9f39d0a
87,435
def _get_axis_idx(header, axis_name): """Return the axis number of the given axis.""" axes = ['right ascension', 'declination', 'stokes', 'frequency'] assert axis_name.lower() in axes, "Unknown `axis_name`." for ax in range(1, len(axes)+1): key = 'ctype{:d}'.format(ax) if header[key].lower() == axis_name.lower(): return ax raise ValueError("Cannot find requested axis in the image.")
6f4a524530aaa8d6c1215bf4fa4cb2026ec87c4f
87,437
def is_printable(char: str) -> bool: """Determine whether a character is printable for our purposes. We mainly use Python's definition of printable (i. e. everything that Unicode does not consider a separator or "other" character). However, we also treat U+F8FF as printable, which is the private use codepoint used for the Apple logo character. """ return char.isprintable() or char == "\uf8ff"
031f924505339888026b2d84dbd55790f67c232f
87,439
def get_threat_detail(threats): """ Iterate over threat details from the response and retrieve details of threats. :param threats: list of threats from response :return: list of detailed elements of threats :rtype: list """ return [{ 'Title': threat.get('title', ''), 'Category': threat.get('category', ''), 'Severity': threat.get('severity', ''), 'Description': threat.get('description', ''), 'Cve': threat.get('cves', []), 'Source': threat.get('source', ''), 'Published': threat.get('published', ''), 'Updated': threat.get('updated', ''), 'ThreatLastTrendingOn': threat.get('threatLastTrendingOn', ''), 'Trending': threat.get('trending', '') } for threat in threats]
7ce4516f34c2dd72b0211a6e4754f0926456ebcc
87,441
def check_rect(rect): """ Check valid Rectangle """ x, y, w, h = rect return x >= 0 and y >= 0 and w > 0 and h > 0
91620370d2a58f72532e3bdd34bf8c7666511337
87,443
def config_from_object(bilby_object): """Extract the configuration file stored within a `bilby.core.result.Result` object (or alike) Parameters ---------- bilby_object: bilby.core.result.Result (or alike) a bilby.core.result.Result object (or alike) you wish to extract the configuration file from """ config = {} if bilby_object.meta_data is not None: if "command_line_args" in bilby_object.meta_data.keys(): config = { "config": bilby_object.meta_data["command_line_args"] } return config
387618da3d0261dd612faf0230ddd531bd468d0d
87,444
import ast def create_return_statement(var_name=None): """ Create a return statement node :param var_name: Name of variable to be returned :return: Instance of `ast.Return` """ if var_name: return ast.Return(value=ast.Name(id=var_name)) else: return ast.Return()
a05eba5ea0756a073333df61abaa2f4ba109bb9c
87,445
def bytes_to_num(bval): """ Convert a four byte sequence to an integer. :param bytes bval: A four byte sequence to turn into an integer. """ num = 0 num += ord(bval[0] << 24) num += ord(bval[1] << 16) num += ord(bval[2] << 8) num += ord(bval[3]) return num
e5ade4caa4602b2a9cef3d2c0997995813eb0d2c
87,446
def _trunc_id(session_id): """Returns truncated session id which is suitable for logging.""" if session_id is not None: return session_id[-5:]
041ceae167aad1bda000ae2de9fb7cb2ff23cc9f
87,451
def get_wheels_speed(encoderValues, oldEncoderValues, delta_t): """Computes speed of the wheels based on encoder readings""" #Encoder values indicate the angular position of the wheel in radians wl = (encoderValues[0] - oldEncoderValues[0])/delta_t wr = (encoderValues[1] - oldEncoderValues[1])/delta_t return wl, wr
7f677321d02d1b29971f246a711d6faf25abb922
87,453
from typing import Tuple def manhattan_heuristic(start_point: Tuple[int, int], end_point: Tuple[int, int]) -> float: """Return the distance between start_point and end_point using Manhattan distance (sum of the absolute differences between the two vectors) """ x1, y1 = start_point x2, y2 = end_point distance = abs(x1 - x2) + abs(y1 - y2) return distance
096bb840bceb81e398807416157ef15d4987b20a
87,461
def _train_batch(loader, model, optimizer, loss_fun): """Train a batch and return the loss""" running_loss = 0 total = 0 for batch_idx, (target, feat) in enumerate(loader): pred = model(feat) optimizer.zero_grad() loss = loss_fun(pred.flatten(), target) loss.backward() optimizer.step() running_loss += loss.item() total = batch_idx return running_loss / (total + 1)
56116d4f040e29df1608ba7c8ef54d0edd3ebfb5
87,462
def mFWQ(mFL, qL): """ mFWQ(mFL, qL): (mole or mass) Fraction Weighted Quantity Parameters: mFL, list of mole or mass fractions, sum(mFL) = 1 qL, list of quantities corresponding to items in mFL Returns: weighted averaged of items in qL """ aveQ = 0 for idx,mF in enumerate(mFL): aveQ += mF*qL[idx] return aveQ
7af160a3f283cbe8e489060754e5d960e5b1d634
87,463
def _fits_section_header(section_name): """ Blank fits header cards for a section header. As in drizzle, one blank line, a line with the section name as a comment, then one more blank. """ return [('', '', ''), ('', '/ ' + section_name, ''), ('', '', '')]
4d7ce0175e40706505bed15e2fc1f5d4f2d27dac
87,464
def check_file_contents(filename, expected_text): """Checks that the given file contains the expected text. Parameters ---------- filename : str Name of file to check expected_text : str Expected contents of file Returns ------- list :obj:`list` of unexpected lines """ # Read the file with open(filename, 'r') as fid: lines = fid.readlines() # Initialize a list of failures failures = [] # Loop through lines for actual_line, expected_line, line_num in zip(lines, expected_text.split('\n'), range(len(lines))): expected_line += '\n' # Test if lines are equal if actual_line != expected_line: failures.append('Unexpected file contents (line {}): ACTUAL: {} -- EXPECTED: {}'.format(line_num, actual_line, expected_line)) return failures
dafaa429be49462284b233eaa43aca9cf00aa2c5
87,467
import re def stmt_type(statement): """Extract type of statement, e.g. SELECT, INSERT, UPDATE, DELETE, ...""" return re.findall(r'[\w]+', statement)[0].upper()
06443f294fd7fc1727d9f738764491f4ece23aac
87,468
def parse_speaker_segments(results): """ From the Amazon Transcribe results JSON response, this function parses a list of all segments, their timeframe and associated speaker label. The individual 'items' key of each segment are not parsed Helper function for ``chunk_up_transcript()`` :param results: Amazon Transcribe results JSON :return: List of segments with their time-frames and speaker labels """ labelled_speaker_segments = results['speaker_labels']['segments'] speaker_segments = [] for label in labelled_speaker_segments: segment = dict() segment["start_time"] = float(label["start_time"]) segment["end_time"] = float(label["end_time"]) segment["speaker"] = label["speaker_label"] speaker_segments.append(segment) return speaker_segments
7a51a9ac076ef34a2b6162cdaff9c9974b07f580
87,470
import hashlib def string_to_num_id(string_id: str) -> int: """ Convert string id into a numeric one. :param string_id: string id to convert :return: numeric id """ # Initialize MD5 algorithm converter and update it with string id. converter = hashlib.md5() converter.update(string_id.encode("utf-8")) # Get hexadecimal numeric id. num_id = converter.hexdigest() # Convert hexadecimal id to decimal one. num_id = int(num_id, 16) # Shorten full numeric id to 10 symbols. num_id = int(str(num_id)[:10]) return num_id
e05a0ef7c9cfb8480a255d9eafbf320f02668d2b
87,472
def indent(string, prefix=' ' * 4): """ >>> indent('foo') ' foo' """ return prefix + string
e81d08254a6d8f2fbb75f47c0e7688ff72c1698f
87,474
def _get_text(path): """Return a string with the textual contents of a file at PATH.""" fp = open(path, 'rb') try: return fp.read() finally: fp.close()
c8ec126801e5175baead8ce9d50b8f237cf9de75
87,475
def get_file_name(filepath, extension=True): """Returns the name of the file of a given filepath or url. Args: filepath: String of full file path extension: Boolean determining whether or not the file type will be returned as part of the file name Returns: String: The filename """ name = filepath.split("/")[-1] if extension: return name else: return name.split(".")[0]
54bd34f5c4859ffecdeb04e9094a17982bb80790
87,478
def lower_but_first(tokens): """Lower-case all tokens of a list except for first one""" return [(tokens[i] if i == 0 else tokens[i].lower()) for i in range(len(tokens))]
339b6576adcf2980ee1b1be95d5af6f884ae5129
87,482
def word_for_ampm(hour, ampm): """Return 'morning', 'afternoon', or 'evening' for the given hour and AM/PM setting. """ if ampm == 'am': return 'morning' if hour < 6: return 'afternoon' return 'evening'
3b5c0a7e3fdbc5ab5d8fa7fe3a8cc95fdc04d5b7
87,485
from pathlib import Path from typing import List import itertools def find_typeshed_search_paths(typeshed_root: Path) -> List[Path]: """ Given the root of typeshed, find all subdirectories in it that can be used as search paths for Pyre. """ search_path = [] third_party_root = typeshed_root / "stubs" third_party_subdirectories = ( sorted(third_party_root.iterdir()) if third_party_root.is_dir() else [] ) for typeshed_subdirectory in itertools.chain( [typeshed_root / "stdlib"], third_party_subdirectories ): if typeshed_subdirectory.is_dir(): search_path.append(typeshed_subdirectory) return search_path
753561d92b905e92d24d38436b58104be2357525
87,494
import difflib def get_diff(new_source, original_source, file_path): """ Get diff from two strings. :param new_source: :param original_source: :param file_path: :return: string with diff :rtype str """ diff = difflib.unified_diff( original_source.splitlines(), new_source.splitlines(), file_path, file_path, "(original)", "(refactored)", lineterm="", ) diff_text = "\n".join(list(diff)) return diff_text
b431837b1e7b9ed50a8932de91d9bbe2a0973c6d
87,495
def get_upstream(version_str): """Given a version string that could potentially contain both an upstream revision and a debian revision, return a tuple of both. If there is no debian revision, return 0 as the second tuple element.""" try: d_index = version_str.rindex('-') except ValueError: # no hyphens means no debian version, also valid. return version_str, '0' return version_str[0:d_index], version_str[d_index+1:]
2ef54d267261bd77fc0c5ac2bbfa526c1552df4d
87,496
import math def factorize(val_to_fac): """Returns prime factorization as a string""" anwser = "" # Divides out as many 2's as possible, appending them to the anwser while val_to_fac % 2 == 0: anwser += "2 " val_to_fac /= 2 # Going through all odd numbers from 3 to root of value for i in range(3, math.ceil(val_to_fac/2), 2): # If the odd number divides value, add to anwser while val_to_fac % i == 0: anwser += (str(i) + " ") val_to_fac /= i return anwser
eecfb4dbde95febec05a122c2c156c713598ba08
87,500
def _filter_internal(iterable, return_internal): """Filter the internal elements of an iterable.""" if return_internal: return iterable return [el for el in iterable if not el.internal]
da6863a31f75e4a1ad1584430c031816544b875b
87,502
def prod(iterable, start=1): """Multiplies ``start`` and the items of an ``iterable``. :param iterable: An iterable over elements on which multiplication may be applied. They are processed from left to right. :param start: An element on which multiplication may be applied, defaults to ``1``. :return: The result of multiplication. """ for i in iterable: start *= i return start
4b5bfb0bf64f03b9697193dd83faf81e00bef25a
87,506
def batch_predict(tf_ds, batch_size, prediction_func): """Returns list of tuples (article_id, prediction, label). Predicts tensorflow dataset in batches. """ evaluation_data = [] for aids, inps, lbls in tf_ds.batch(batch_size).as_numpy_iterator(): ps = prediction_func(inps) evaluation_data += zip(aids, ps, lbls) return evaluation_data
449e912b927bad105090dce321973877bb533573
87,508
import re def git2pep440(git_ver): """Transforms git-describe output into PEP440 compatible format. Examples: v1.0.1.rc5-24-abcdef => 1.0.1.rc5+24.abcdef v3.0-90-a89abc => 3.0+90.a89abc """ def _git2pep440(match): major, minor, _3, patch, _5, rcdevversion, rcdevtype,_8, distance, _10, \ commit = match.groups() version_string = f"{major}.{minor}" if _3: version_string += f".{patch}" if _5: version_string += f".{rcdevversion}" if _8: version_string += f"+{distance}.{commit}" return version_string return re.sub('v?([0-9]+)\.([0-9]+)(\.([0-9]+))?(\.((rc|dev)[0-9]+))?(-([0-9]+))?(-g([0-9a-fA-F]+))?', _git2pep440, git_ver)
86df44f2c1f0c666f2da1b17b689ceeb39ad8a2c
87,512
def split_into_parts(text: str, num_parts: int) -> list[str]: """ Splits text into an array of size num_parts. Parameters ------------ text: str The text to be split up. num_parts: int How many equally sized parts to split the text into. Returns ------------ str[] An array of strings (parts). """ #https://stackoverflow.com/questions/2130016/splitting-a-list-into-n-parts-of-approximately-equal-length #tixxit k, m = divmod(len(text), num_parts) return list(text[i*k+min(i, m):(i+1)*k+min(i+1, m)] for i in range(num_parts))
89e74374385c7a22dde19dd948aa2206ec123efd
87,515
import inspect def _is_method(obj, method): """Returns True if a given method is obj's method. You can not simply test a given method like: return inspect.ismethod(method) This is because functools.wraps converts the method to a function in log_method_call function. """ return inspect.ismethod(getattr(obj, method.__name__, None))
10d5060894ce223d40bc3c4f0e5b1c39d4b0e369
87,518
import math def partition_items(count, bin_size): """ Given the total number of items, determine the number of items that can be added to each bin with a limit on the bin size. So if you want to partition 11 items into groups of 3, you'll want three of three and one of two. >>> partition_items(11, 3) [3, 3, 3, 2] But if you only have ten items, you'll have two groups of three and two of two. >>> partition_items(10, 3) [3, 3, 2, 2] """ num_bins = int(math.ceil(count / float(bin_size))) bins = [0] * num_bins for i in range(count): bins[i % num_bins] += 1 return bins
f335b412273d3c6dea4d27c4dd538a65efcd8cd2
87,525
import re def cleanup(text: str) -> str: """ Function to remove puncutation and clean up a string Parameters ---------- text : string The string needed to be cleaned up Returns ------- string Cleaned up version of text with no punctuation, single spaced seperation, and all lowercase """ text = text.replace("’","") # remove fancy apostrophe with no space text = text.replace("\'","") # remove normal apostrophe with no space text = text.replace("_"," ") # remove underscore with space (regex doesn't catch it) text = re.sub(r'[^\w\s]',' ',text) # replace all other punctuation with a space text = text.replace(" ", " ") # remove double spaces text = text.lower() # change everything to lowercase if text[-1:] == ' ': text = text[:-1] # Remove last character if whitespace return text
f102b885396eaf65bbcd075a3d45cf1e5d76926d
87,528
import pathlib def get_module_dot_notation(module_path: pathlib.Path) -> str: """ Given a module path, return the dot notation import string starting at astro. :param module_path: Path to the module of interest :return: String containing the absolute dot notation path to the module """ # We assume that this function is only being used for Astro submodules # This can be generalised in future if needed base_dir = pathlib.Path(__file__).parent.parent.parent # `astro` directory module_path.relative_to(base_dir) return ".".join(module_path.relative_to(base_dir).with_suffix("").parts)
2a7861dfa54ce3019c6922168cb34f86c80cd239
87,530
def make_play(play, board): """Put the word down on the board.""" (score, (i, j), (di, dj), word) = play for letter in word: board[j][i] = letter i += di j += dj return board
fbc36b89dfebd526e02c3d790d0ac787e6228728
87,532
from typing import List def cross(row: str, col: str) -> List[str]: """This function returns the list formed by all the possible concatenations of a letter r in string row with a letter c in string col. Args: row (str): String of concatenated Characters col (str): String of concatenated Numbers Returns: List[str]: List of all possible cross concatenations. """ return [r + c for r in row for c in col]
5fb4b95bf76401efc30496050c981d4d88660875
87,538
def add_gid(df): """ Add a column to game df with unique game id """ def get_gid(row): tid1, tid2 = sorted((row.WTeamID, row.LTeamID)) return '{0}_{1}_{2}'.format(row.Date, tid1, tid2) df['gid'] = df.apply(get_gid, axis=1)
d9eb65fc57e3135cb727cc66cfe61c1e4d3345bf
87,550
def sort_tag_counts(tag_counts): """ Sort tag counts. sort rules: sort by tag first then frequence. tag_counts: list of tuples. example:[('python', 2), ('abc', 1)] return: sorted tag_counts. """ tag_counts.sort(key=lambda x: x[0]) tag_counts.sort(key=lambda x: x[1], reverse=True) return tag_counts
c8d942ec8fb4ddaddc4a6b58fb2b4111778abb71
87,551