content
stringlengths
39
14.9k
sha1
stringlengths
40
40
id
int64
0
710k
import torch def matrix_to_rotation_6d(matrix: torch.Tensor) -> torch.Tensor: """ Converts rotation matrices to 6D rotation representation by Zhou et al. [1] by dropping the last row. Note that 6D representation is not unique. Args: matrix: batch of rotation matrices of size (*, 3, 3) Returns: 6D rotation representation, of size (*, 6) [1] Zhou, Y., Barnes, C., Lu, J., Yang, J., & Li, H. On the Continuity of Rotation Representations in Neural Networks. IEEE Conference on Computer Vision and Pattern Recognition, 2019. Retrieved from http://arxiv.org/abs/1812.07035 """ return matrix[..., :2, :].clone().reshape(*matrix.size()[:-2], 6)
d07acc00fb89bc3786a412a7baf0911a5cdd9fb2
78,077
from collections import defaultdict import netaddr def build_reverse_mappings_from_anm_input(anm): """Builds reverse mappings from ANM input graph, assumes addresses have already been allocated onto input graph, either externally or by previous run""" g_in = anm['input'] rev_map = { "loopbacks": {}, "infra_interfaces": {}, "subnets": {}, } subnets = defaultdict(list) for node in g_in: rev_map["loopbacks"][str(node.loopback_v4)] = node for interface in node.physical_interfaces: rev_map["infra_interfaces"][str(interface.ipv4_address)] = interface prefixlen = interface.ipv4_prefixlen cidr_string = "%s/%s" % (interface.ipv4_address, prefixlen) intermediate_subnet = netaddr.IPNetwork(cidr_string) subnet_cidr_string = "%s/%s" % (intermediate_subnet.network, prefixlen) subnet = netaddr.IPNetwork(subnet_cidr_string) subnets[subnet].append(interface) for subnet, interfaces in subnets.items(): subnet_str = str(subnet) rev_map['subnets'][subnet_str] = "_".join(str(i.node) for i in interfaces) return rev_map
efd43d8594889b15cce0b00be3e2278cf46906ba
78,080
from typing import List def extend(layout: List[List[str]]) -> List[List[str]]: """ Extend layout by adding a border of empty seats :param layout: initial layout :return: layout with a border of empty seats """ empty_row = ['.'] * (2 + len(layout[0])) retval = list() retval.append(empty_row) for r in layout: r.insert(0, '.') r.insert(len(r), '.') retval.append(r) retval.append(empty_row) return retval
0a14b8a551aa36674c47703c2f820b0f98c8f048
78,081
import re def get_fine_type(attributes): """ Compute fine-grained mention type. Args: attributes (dict(str, object)): Attributes of the mention, must contain values for "type", "tokens" and "pos". Returns: str: The fine-grained mention type, one of - DEF (definite noun phrase), - INDEF (indefinite noun phrase), - PERS_NOM (personal pronoun, nominative case), - PERS_ACC (personal pronoun, accusative), - REFL (reflexive pronoun), - POSS (possessive pronoun), - POSS_ADJ (possessive adjective) or - None. """ coarse_type = attributes["type"] start_token = attributes["tokens"][0] start_pos = attributes["pos"][0] if coarse_type == "NOM": if re.match("^(the|this|that|these|those|my|your|his|her|its|our|" + "their)$", start_token.lower()): return "DEF" elif re.match("^NNP$", start_pos): # also matches NNPS! return "DEF" else: return "INDEF" elif coarse_type == "PRO": if re.match("^(i|you|he|she|it|we|they)$", start_token.lower()): return "PERS_NOM" elif re.match("^(me|you|him|her|it|us|you|them)$", start_token.lower()): return "PERS_ACC" elif re.match("^(myself|yourself|yourselves|himself|herself|itself|" + "ourselves|themselves)$", start_token.lower()): return "REFL" elif start_pos == "PRP" and re.match("^(mine|yours|his|hers|its|" + "ours|theirs|)$", start_token.lower()): return "POSS" elif start_pos == "PRP$" and re.match("^(my|your|his|her|its|our|" + "their)$", start_token.lower()): return "POSS_ADJ"
2ac80d7a48614c33844754aee72d7fcc4ae21460
78,082
from pathlib import Path from datetime import datetime def _age(path: Path) -> int: """ Calculate age of log file at `path` in days. The creation timestamp is extracted from the ISO filename. """ created_at = datetime.fromisoformat(path.stem) difference = datetime.utcnow() - created_at return difference.days
6f7c3f3275f3458a514f5a21cb0fee879c4ef1c2
78,083
def make_terms_table(terms_dict, n = None): """ Given a dictionary of terms and corresponding values, reformats in tabular (2-D list) format. terms_dict - a dictionary of {term: value}. n - optionally, the number of (top) records considered. >> Default: None. Returns a 2-D list of sorted (term, value) in descending order. """ # Set n to length of dataset if not specified if not n: n = len(terms_dict) return sorted(terms_dict.items(), key = lambda x: x[1], reverse = True)[:n]
35c011a235b72f072f44162dbfcab8367b5387cf
78,086
import random def gen_random_string(length): """ Generates a random digit string. Parameter: length -- The lenght of the strings. Return: The random string. """ s = '' for i in range(length): s = s + str(random.randrange(0,10)) return s
62469e37022cb09805b729f50282a102cbea7498
78,092
import multiprocessing def _set_resources(parallel, config): """Set resource availability for programs, downsizing to local runs. """ for program in ["gatk", "novoalign"]: if not config["resources"].has_key(program): config["resources"][program] = {} if parallel["type"] == "local": cores = min(parallel["cores"], multiprocessing.cpu_count()) config["resources"][program]["cores"] = cores return config
21140d6519f627b2016b07e7504f7fc435ebef3d
78,093
import requests def get_url_content(url: str) -> bytes: """Access a given url and return its content.""" page = requests.get(url) if page.status_code != requests.codes.ok: raise requests.HTTPError(f"Unable to access {url}") return page.content
1f78f988f60448f1c54861de79b999eb4ba1da9c
78,094
def get_child_list(item): """ Get a list of an item's children :param item: Node to be queried. :type item: Node :return: Elements, Tag, and Text :rtype: List, List, List """ elist = list(item.iterfind('*')) etags = [elem.tag for elem in elist] etext = [elem.text for elem in elist] return etags, etext, elist
060bbdf8ef8bca8db484a92472e685ba5ae27930
78,096
def filter_pairs(pairs, max_len): """ Filter pairs with either of the sentence > max_len tokens ============== Params: ============== pairs (list of tuples): each tuple is a src-target sentence pair max_len (Int): Max allowable sentence length """ return [pair for pair in pairs if (len(pair[0].split()) <= max_len)]
cf43ecfbacbdf8a0ee90ac09a3f48f3a0f6f4828
78,099
from typing import Tuple import random def generate_color() -> Tuple[int, int, int]: """ Generates a random RGB color Returns ------- Tuple[int, int, int] : color in (r,g,b) format """ return ( random.randint(0, 255), random.randint(0, 255), random.randint(0, 255) )
0a3d223ebdc9b624a6a7918a218bff625d841a08
78,109
def calc_total_crab_fuel_complex(input_positions: list) -> int: """ Determine the fuel required for each crab to move to each position and return the fuel for the minimum consumption position Args: input_positions: list of input crab submarine positions Returns: total fuel required for all crabs to move to the lowest total fuel position using advanced calculation """ possible_positions = [0] * max(input_positions) for pos in range(len(possible_positions)): for crab in input_positions: dist = abs(crab - pos) possible_positions[pos] += int(dist * (dist + 1) / 2) return min(possible_positions)
377a6d53c2cfefe4cab7b91afcb4245c10eef0d1
78,116
from typing import Dict from typing import List def set_user_defined_floats( sia: Dict[str, float], floats: List[float] ) -> Dict[str, float]: """Set the user-defined float values for the user-defined calculations. :param sia: the similar item assessment dict. :param list floats: the list of float values. :return: sia; the similar item assessment dict with updated float values. :rtype: dict """ for _idx in [11, 12, 13, 14, 15]: _key = list(sia.keys())[_idx] try: sia[_key] = float(floats[_idx - 11]) except IndexError: sia[_key] = 0.0 return sia
fe2cc1ce5fbe997e9774c155c11dcd37a59edca4
78,117
import json def get_json_from_file(file_path): """ Get json data from file wich placed on file_path as dict :param file_path: path to json file :return: json data as dict from file """ # get json bytes from json file json_file = open(file_path, 'r') # convert json bytes to python dict json_data_as_dict = json.load(json_file) # close json file json_file.close() # return json data as dict return json_data_as_dict
e41289f4f23ff1940c7b7d269eac9cef7d9ef407
78,118
from typing import Tuple def get_main_version_part(version: Tuple[int, int, int, str, int]) -> str: """Retrieves the main part of version information - the main verison consists of only the major, minor and patch components. Parameters ---------- version Version information. Returns ------- str The main version part. """ parts = 2 if version[2] == 0 else 3 return '.'.join(str(x) for x in version[:parts])
1dfffd9b9190f0f0c1125f99feab26e43fde3f16
78,120
import csv def import_trials_duration(path): """ Import some already existing local csv of times Parameters ---------- path : string the path that the file is located in Returns ------- list a list of times to be plotted or viewed """ with open(path, "r") as times_file: csv_object = csv.reader(times_file) times = [[float(time) for time in row] for row in csv_object] return times
567ea262acbf8b758bf8a6dcc4620fdc659f8e94
78,121
def count_ngram(hyps_resp, n): """ Count the number of unique n-grams :param hyps_resp: list, a list of responses :param n: int, n-gram :return: the number of unique n-grams in hyps_resp """ if len(hyps_resp) == 0: print("ERROR, eval_distinct get empty input") return if type(hyps_resp[0]) != list: print("ERROR, eval_distinct takes in a list of <class 'list'>, get a list of {} instead".format( type(hyps_resp[0]))) return ngram = set() for resp in hyps_resp: if len(resp) < n: continue for i in range(len(resp) - n + 1): ngram.add(' '.join(resp[i: i + n])) return len(ngram)
4ab063744e48812c360dbb79421a51b003f79700
78,122
def find_shape(bottom_lines, max_len): """ Finds a shape of lowest horizontal lines with step=1 :param bottom_lines: :param max_len: :return: list of levels (row values), list indexes are columns """ shape = [1] * max_len for i in range(max_len): for line in bottom_lines: if line[0] <= i + 1 < line[2]: shape[i] = line[1] break return shape
a2ff03a955e368eba7195aadb8107e78e29b52e6
78,126
import re def camel2snake(string1): """ Convert string from camelCase style to snake_case style Args: string1 (str): camelCase style string Returns: snake_case style string """ if string1 is None: return None else: s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', string1) return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower()
6c26c7571c65e86e42110f0554df4256818b9a5a
78,131
def load(fp): """Deserialize our domain-specific configuration file.""" obj = {} for line in fp: line = line.strip() if not line or line.startswith('#'): continue try: key, value = map(str.strip, line.split(' ', 1)) except ValueError: key = line value = '' try: value = int(value) except ValueError: pass obj[key] = value return obj
f57aaea8b9946d2eafb46fc87a9c6f3f595d05a9
78,134
import re def to_kebab(s): """Convert string to kebab case.""" s = re.sub(r'[^a-zA-Z0-9]+', ' ', s) s = re.sub(r'\s+', ' ', s) s = s.replace(' ', '-') return s.lower()
bb75b7bf4763dbe24e2dd74dd9b664a436eabe52
78,150
def _version_format(version): """Return version in dotted string format.""" return '.'.join(str(x) for x in version)
62306f7c374f1a7d7cce5b3fc45009312514bf6e
78,155
def svn_repo(repo): """ Tests if a repo URL is a svn repo, then returns the repo url. """ # we can just go for known providers of svn services = ('svn://', 'https://svn.code.sf.net/p/', 'http://svn.savannah.gnu.org/svn/', 'https://svn.icculus.org/', 'http://svn.icculus.org/', 'http://svn.uktrainsim.com/svn/', 'https://rpg.hamsterrepublic.com/source/wip') if any(repo.startswith(service) for service in services): return repo # not svn return None
c19f6a4a874d2aa2191682f4bc461dd38f2440d3
78,157
def split_text_by_delims(text): """Splits the string by special characters specified. Filters out empty strings (as a result of the splitting) before returning. """ for ch in [":", ".", "/", "'", "\"", "(", ")", "\\", "[", "]", ",", "\t", "\n", "*", "-"]: text = text.replace(ch, " ") return text.split(" ")
da1cf1772184c84fd4b6f06500f6701c25686b86
78,161
def enclose_periods_in_braces(value): """ Perform sanitization by enclosing any periods in square braces. Example: "domain.com" becomes "domain[.]com" :param value: The value to be sanitized :return: The sanitized value """ return value.replace('.', '[.]')
8c0e585fc97dbc934966df2dc12c25bfe921992f
78,163
def read_uint(file): """Read a uint from a file.""" result = 0 shift = 0 while True: try: byte = ord(file.read(1)) except TypeError: raise EOFError if byte&128: result |= (byte&127)<<shift shift += 7 else: return result|(byte<<shift)
ed74180b7a22720adb6255df39cd1e21682f8f6e
78,164
def _normalize_data(data, mean, std): """Util function to normalized data based on learned mean and std.""" data -= mean data /= std return data
5b411f39197caf41d28a7435a6d522821c3eb9a6
78,166
import requests import ast def prepare_api_request(request): """Takes a dict of the form: {"type": "POST", "url": "www.xyz.com/api/v1.0/order", "params: {"param_1": "start_time=1"}, "headers": {"header_1": "header"}, "data": {"data_1": "some_data"}, "json": {"json_data": {"json_stuff": "data"}} } Only working with GET or POST currently """ req = requests.Request(request["type"]) req.url = request["url"] req.headers = request["headers"] if "headers" in request else {} req.data = ast.literal_eval(request["data"]) if "data" in request else [] req.params = ast.literal_eval(request["params"]) if "params" in request else {} req.json = ast.literal_eval(request["json"]) if "json" in request else {} prepped = req.prepare() return prepped
0c7aabced68e3ad8533ee673bf1768b6a80dfcef
78,171
import math def average_length_in_sentences(groundtruth): """ Returns the average length of all daily summaries (in sentences). The average ist first computed over all summaries in each timeline in `groundtruth`. Then the average over all averages obtained in this way is computed. Params: groundtruth (Groundtruth): Reference timelines. Returns: Average daily sumamry length. """ all_avgs = [] for tl in groundtruth.timelines: all_avgs.append(sum(len(x) for x in tl.dates_to_summaries.values()) / len(tl.get_dates())) return math.floor(sum(all_avgs) / len(all_avgs))
cfdc7c8e6a9a29f1f1a7d4ce39198c781c543d90
78,177
import torch def init_shift1d_nfold(shift, nfold=8, noise=1e-3): """ Mimic TSM hard-coded shift. First 1/nfold channels shift one time step to the past Second 1/nfold channels shift one time step to the future Remaining channels remain unchanged """ dim, channels = shift.size() assert dim == 1, "only works with rubiks1d" with torch.no_grad(): group = channels // nfold shift[:, :group] = 1 shift[:, group : 2 * group] = -1 # perturb to stay away from zero shift[:, 2 * group :].uniform_(-noise, noise) return shift
960c8ba263c2157898550a9d0340c32a8461c2d8
78,179
def determine_special_faces(graph, dist): """Determines the special faces, which are those nodes whose distance is at least k Args: graph (Gerrychain Graph): graph to determine special faces of dist (numeric): distance such that nodes are considered special if they have a 'distance' of at least this value Returns: list: list of nodes which are special """ return [node for node in graph.nodes() if graph.nodes[node]['distance'] >= dist]
c09f8c6cdefaca05e04576ad75decc81466ba57a
78,181
def pad_sequence(sequence, pad_tok=0, max_length=None): """Pad batched dataset with shape = (batch_size, seq_length(various)) :param sequence: input sequence :param pad_tok: padding token, default is 0 :param max_length: max length of padded sequence, default is None :return: padded sequence """ if max_length is None: max_length = max([len(seq) for seq in sequence]) sequence_padded, seq_length = [], [] for seq in sequence: seq_ = seq[:max_length] + [pad_tok] * max(max_length - len(seq), 0) sequence_padded.append(seq_) seq_length.append(min(len(seq), max_length)) return sequence_padded, seq_length
472d6ce3979be6acd6cf370bf5ef7b2b71c9f3b0
78,183
def get_anion_neighbors(site, structure, radius, anions, get_distance=False): """ Gets neighboring anions of sites Args: :param site: (Site) target site to find anion neighbors of :param structure: (Structure) structure that contains target site :param radius: (float) radius to which anion neighbors should be looked for :param anions: (List of Strings) list of species considered anions :param get_distance: (boolean) whether or not to get distance between cation and anion :return: (List of either Sites or [Site, float]) list of either anion neighboring sites or [Site, float] if getDistance is True """ anion_neighbors = [] neighbors = structure.get_neighbors(site, radius) for neighbor in neighbors: if neighbor[0].species_string in anions and neighbor[1] < radius: if get_distance: anion_neighbors.append(neighbor) else: anion_neighbors.append(neighbor[0]) return anion_neighbors
e9473f77ee2b5006e79503ebb14890c0e85904cf
78,193
def camelcase(text): """Convert text to camel case Notes: The algorithm sets the first letter of each word to uppercase. Existing uppercase letters are left unchanged. Words are split on whitespace. Args: text: string, text to convert Returns: string, converted text. """ if text is None: return if not text: return text words = [x[0].upper() + x[1:] for x in text.split() if x] return ''.join(words)
e27ccce9c9fffe62e73a552270a9358f248b759a
78,197
def do_remove_first(s, remove): """ Removes only the first occurrence of the specified substring from a string. https://github.com/Shopify/liquid/blob/b2feeacbce8e4a718bde9bc9fa9d00e44ab32351/lib/liquid/standardfilters.rb#L218 """ return s.replace(str(remove), '', 1)
286498e8cc8149620a188d98cccf9a360e7367bc
78,204
def _high_bit(value: int) -> int: """Return index of the highest bit, and -1 if value is 0.""" return value.bit_length() - 1
d01e575f36b1644a91eb9c08dc21bf3b099959be
78,206
def is_iterable(something): """ Test if it is an iterable other than a string. Returns ------- bool True if an iterable other than str, False otherwise. """ try: iter(something) except TypeError: return False return True and not isinstance(something, str)
58257390972ff9887676fe3d938cfe25bb2321cf
78,207
def select_range(df, window, range_column="t", include_end=True): """ Select a range of data for multiple Pandas DataFrames at once. It was designed for using it with the output of the bout methods. Parameters ---------- df : pandas.DataFrame/list The (list of) DataFrame to use window : list A 2-list containing the minimum and maximum value of the range to select range_column : str Optional column in the DataFrame to use for the range (usually timestamp) include_end : bool Optional whether to include the max value in the range Returns ------- list(pandas.DataFrame) A list of DataFrames selections """ if not isinstance(df, list): df = [df] return [ dff[(dff[range_column] >= window[0]) & (dff[range_column] <= window[1])] if include_end else dff[(dff[range_column] >= window[0]) & (dff[range_column] < window[1])] for dff in df ]
7850d2a1dc2c19b923aae1cba6f1f71dae568e0e
78,208
def loop(clip, n=None, duration=None): """ Returns a clip that plays the current clip in an infinite loop. Ideal for clips coming from GIFs. Parameters ---------- n Number of times the clip should be played. If `None` the the clip will loop indefinitely (i.e. with no set duration). duration Total duration of the clip. Can be specified instead of n. """ previous_duration = clip.duration clip = clip.time_transform( lambda t: t % previous_duration, apply_to=["mask", "audio"] ) if n: duration = n * previous_duration if duration: clip = clip.with_duration(duration) return clip
60c193f6c0d8a974cef33ec80e21400bf5269096
78,211
import json def json_response(response): """ Convert json response """ return json.loads(response.data.decode('utf8'))
7908d7a3b749313ac664b83c8f89871535c521cd
78,213
def sort_idx(m, reverse=False): """Return the indices of m in sorted order (default: ascending order)""" return sorted(range(len(m)), key=lambda k: m[k], reverse=reverse)
abaf52bd00f7f540ade2512c1c750d348e761b44
78,214
def fahr_to_celsius(temp_fahr): """Function to convert temperatures from fahranhiet to celsius Parameters -------- temp_fahr: int | float Input temperature in fahranheit (should be a number) Returns ------ Temperature in celsius (float) """ return (temp_fahr -32)/(1.8)
f8c98f6b80e6b235715190f7e8e73180d1227857
78,215
def remove_first_line(string): """ Returns the copy of string without first line (needed for descriptions which differ in one line) :param string: :return: copy of string. """ return '\n'.join(string.split('\n')[1:])
2cd0c57801cf4f86c53ac9a61bc5ab0874338253
78,218
def getList(listFile): """ Imports a text file line by line into a list. """ file = open(listFile) svgFile = [] while 1: line = file.readline() if not line: break svgFile.append(line) return svgFile
b00ccf82774502a837755796466f0aaf38588ebd
78,224
def argument_set_new(arg_i, arg_history): """ If the arguments in arg_i are not contained in arg_history -1 is returned in indicating a new branch, otherwise the branch number is returned """ if len(arg_history) == 0: return -1 else: for c, arg_set in enumerate(arg_history): if arg_i == arg_set: return c return -1
d62d0ebdf264094730ea9e429ca9f34df178ea09
78,227
def _read_Btw_item(data,control): """Read a Btw item from the start of DATA. Returns a tuple containing the item read (as a string) and what is left of DATA. The order of octets is: "B" MSOF (most significant octet first) "b" LSOF (least significant octet first) (as discussed in 6.4.3.3 h)) In the case of a "b" format, we reorder the octets into MSOF """ # We have a Btw or btw item # If it is complex, it is double the size if control.control[1] == "5": size = control.size * 2 else: size = control.size # First off, we can extract the relevant number of octets item = data[:size] data = data[size:] # And now interpret them if control.control[0] == "b": # LSOF form - reverse it thing = "" for count in range(control.size-1,-1,-1): thing = thing + item[count] item = thing # So we've now got the MSOF form, regardless of the format # As of yet, we don't do anything with it... return (item,data)
7bb6b546894a644d1e454264124275f64aa77a43
78,235
from typing import Any from typing import get_args def is_type(tp: Any) -> bool: """isinstance is not enough because in py39: isinstance(list[int], type) == True""" return isinstance(tp, type) and not get_args(tp)
07817aec17ce3dbacf3d96bcfb5a3d6f408eef51
78,240
import torch def grad(x, y, model, params, criterion): """Compute new parameters with computation graph intact. Arguments: x (torch.Tensor): input tensor. y (torch.Tensor): target tensor. model (Warp): warped model. params (list): list of parameters to differentiate the loss with respect to. criterion (fun): task loss criterion. """ device = next(model.parameters()).device x = x.to(device, non_blocking=True) y = y.to(device, non_blocking=True) p = model(x, cache_parameters=False) loss = criterion(p, y) return torch.autograd.grad(loss, params, create_graph=True)
aaf7eb1eb4a3c3b5405d0350020c5893b1118f89
78,244
def polygonal_number(n, k): """ Returns the kth n-gonal number P(n, k) given by the general formula: P(n, k) = [(n - 2)k^2 - (k - 4)n] / 2 """ return int(((n - 2) * k ** 2 - (n - 4) * k) / (2))
df67d20f9b3d4bea30ffdbb390a7a863a3a1467a
78,248
def dumb_factor(x, primeset): """ If x can be factored over the primeset, return the set of pairs (p_i, a_i) such that x is the product of p_i to the power of a_i. If not, return [] """ factors = [] for p in primeset: exponent = 0 while x % p == 0: exponent = exponent + 1 x = x//p if exponent > 0: factors.append((p,exponent)) return factors if x == 1 else []
d01a1faa90a62521b0e9881e2a62791b69482087
78,249
import re def format_input(text): """ Formats the text for purposes of storage. """ text = re.sub(r"\s+", " ", text) return text.strip()
0ee870734664375c842a4aba6a983f28f25b52a6
78,259
def is_eresource_callno(callno: str) -> bool: """ Checks if call number is for electronic resource Args: callno: call number string Returns: bool """ try: norm_callno = callno.lower() except AttributeError: return False if norm_callno.startswith("enypl"): # NYPL pattern return True elif norm_callno in ("ebook", "eaudio", "evideo"): # BPL pattern return True else: return False
88092c0a7fbf5b95937b91687191f79fc5bc5e53
78,265
def convert_endianness(array: bytes): """ Switch between big-endian order and little-endian order. Bitcoin stores bytes in little-endian byte order but we human beings are more comfortable with big-endian one. Therefore, we convert the endianness before showing values to users. Note that bytes objects are immutable """ assert isinstance(array, bytes) return array[::-1]
a7dc068b749e24742f54a41ce159572bd96f3b2c
78,272
def workerRunner(worker): """ Run a worker. :return: Finished worker. """ return worker.run()
d5af901106628c6b3927fcf1f63ac92e6f9ee18b
78,273
import torch import math def cosine_cutoff(input: torch.Tensor, cutoff: torch.Tensor): """ Behler-style cosine cutoff. .. math:: f(r) = \begin{cases} 0.5 \times \left[1 + \cos\left(\frac{\pi r}{r_\text{cutoff}}\right)\right] & r < r_\text{cutoff} \\ 0 & r \geqslant r_\text{cutoff} \\ \end{cases} Args: cutoff (float, optional): cutoff radius. """ # Compute values of cutoff function input_cut = 0.5 * (torch.cos(input * math.pi / cutoff) + 1.0) # Remove contributions beyond the cutoff radius input_cut *= (input < cutoff).float() return input_cut
8c10baa10cd26856cfb8338c4921d11f94e131af
78,275
import torch def get_xy(dls): """Grabs data as tensors from a DataLoaders instance.""" x, y = [], [] for batch in dls.train: x.append(torch.cat(list(batch)[:-1], dim=-1) if len(batch) > 2 else batch[0]) y.append(batch[-1]) return torch.cat(x, dim=0), torch.cat(y, dim=0)
8380d86262f8ba25d09134da780264febd3f534e
78,285
def generate_makefile(input_dsf_file, output_dgb_file, output_trace_file, max_n, dgasm_line, dgsim_line): """ Generates a very simple Makefile. """ makefile_template = f"{output_trace_file}:{output_dgb_file}\n" \ f"\t{dgsim_line}\n\n" \ f"{output_dgb_file}:{input_dsf_file}\n" \ f"\t{dgasm_line}\n\n" \ f"html:{output_trace_file}\n" \ f"\txdg-open {output_trace_file}\n\n" \ f"clean:\n" \ f"\t rm *.dgb\n" \ f"\t rm *.html\n" \ f"\t rm *.css\n" return makefile_template
e374bd727c12479af39996846fef715cee1e5147
78,286
def get_outputs(db, job_id): """ :param db: a :class:`openquake.server.dbapi.Db` instance :param job_id: ID of a calculation. :returns: A sequence of :class:`openquake.server.db.models.Output` objects """ return db('SELECT * FROM output WHERE oq_job_id=?x', job_id)
e4a60c0adf71f8bb65e82ea61b78aea6d5afa99a
78,290
def points_bounds(points): """Return bounding rect of 2D point list (as 4-tuple of min X, min Y, max X, max Y).""" min_x, min_y, max_x, max_y = ( points[0][0], points[0][1], points[0][0], points[0][1], ) for point in points[1:]: min_x = min(min_x, point[0]) min_y = min(min_y, point[1]) max_x = max(max_x, point[0]) max_y = max(max_y, point[1]) return (min_x, min_y, max_x, max_y)
4c0cbd47bef32fe5d3c1787789d806016d0db4ff
78,291
def get_filename(name): """ greates a file name of the form test_<name>.py :param name: the name of the test """ return "test_{0}.py".format(name)
171b8069fcf893bb85c4046cceae89340ef93925
78,292
def read_network(file): """ Read a (switched) Boolean network from a text file: Line 1: number of state variables Line 2: number of control inputs Line 3: number of sub-networks Line 4: transition matrix of the first sub-network (linear representation of a logical matrix) line 5: transition matrix of the second sub-network (linear representation of a logical matrix) ... :param file: a text file :return: (n, m, w, Ls), where n: number of state variables m: number of control inputs w: number of sub-systems Ls: a list of transition matrices, each for one sub-system """ with open(file, 'r') as f: n = int(f.readline().strip()) m = int(f.readline().strip()) w = int(f.readline().strip()) N = 2 ** n M = 2 ** m Ls = [] for _ in range(w): line = f.readline().strip() assert line, f'{w} transition matrices must be provided!' numbers = line.split() assert len(numbers) == M * N, f'The transition matrix must have {M * N} columns' Ls.append([int(num) for num in numbers]) return n, m, w, Ls
76907cb8342e3f96b88f519cb09a2c28bc6e137e
78,297
import re def has_parentheses(formula): """ 判断是否还有括号 :param formula: str :return: boolean """ if re.search("[()]", formula): return True return False
8f194b182d38bcd903be1a917b1947575718722f
78,298
from pathlib import Path def get_tile_id(tile_path): """ Given the path to an SRTM1 or SRTM3 tile, return the ID of the tile (a string), e.g. "S36E174" for the path "bingo/S36E174.SRTMGL1.hgt.zip" Assume that the tile ID is the first part of the file name, as is the SRTM convention. """ path = Path(tile_path) return path.stem.split('.')[0]
1a4b07b3059915d821438ec4e5d45d93265335b6
78,300
def create_experiment_on_server(experiment, uploader): """ :type experiment: mytardis_models.Experiment :type uploader: mytardis_uploader.MyTardisUploader :return: The url path of the experiment created. :rtype: str """ expt_url = uploader.create_experiment(experiment.package()) return expt_url
3dc7482d50be634479840a0a522e8d9acfaf8064
78,302
def get_maximum_time(note_tracks): """ Determines the largest value of end_time among all notes. This is required to know when the video should end. """ maximum_time = -999999.9 for t in note_tracks: for pitch_list in t: if pitch_list != []: if pitch_list[-1].end_time > maximum_time: maximum_time = pitch_list[-1].end_time return maximum_time
7c6c65df9b0a99591297e7a6633e662b695027e5
78,305
def get_parentdirs(path): """Generate a list of all parent directories for a path. :param path: Path to find parent directories for. :return: List of all parent directories for the path (including the path). """ # Split path into a list for each level path_split = [x + '/' for x in path.split('/')[:-1]] # Build up all parent directories and return as a list parentdirs = [] for path in path_split[1:]: parentdirs.append(''.join(path_split)) path_split = path_split[:-1] return parentdirs
c138b12e14ea96827bfdea7a5081f35131863fd5
78,313
import logging def fpiterate(func, _x0, tol, maxits=100): """ fixed-point iteration is a method of computing fixed points of a function """ _xp = _x0 # previous approximation _x = _x0 k = 0 while k < maxits and (k == 0 or abs(_x - _xp) > tol): _xp = _x _x = func(_x) k += 1 logging.info('k = {:2d}, x = {:15.8e}'.format(k, _x)) logging.info('terminated after %s iterations', k) logging.info('x = %s f(x) = %s', _x, func(_x)) return _x
ab04a0031b69c0ebb4fece1101eb0c73eeecf590
78,314
def norm_lon(x): """ Normalize longitude x into range [0,360]. """ if x == 360: return 360 else: return x % 360
806ba03353b29ca26e4e469d85e739d5d416ddac
78,316
import click def cb_bbox(ctx, param, value): """ Click callback to handle ``--bbox`` syntax and validation. Parameters ---------- ctx : click.Context Ignored. param : click.Parameter Ignored. value : tuple x_min, y_min, x_max, y_max Raises ------ click.BadParameter Returns ------- tuple (x_min, y_min, x_max, y_max) """ if not value: return None bbox = value x_min, y_min, x_max, y_max = bbox if (x_max < x_min) or (y_max < y_min): raise click.BadParameter('min exceeds max for one or more dimensions: {0}'.format(' '.join(bbox))) return bbox
3b4ba822ccb1d53b91618c2cb864d838c80876cb
78,318
from string import punctuation import re def normalize_text(text, method='str'): """ Parameters ---------- text : str method : {'str', 'regex'}, default 'str' str: cleans digits and puntuations only ('!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~') regex : clean digits and all special characters Returns ------- text : str """ # Conver to lower case text = text.lower() if method=='str': # Remove digits text = ''.join(c for c in text if not c.isdigit()) # Remove punctuation text = ''.join(c for c in text if c not in punctuation) # Remove extra spaces text = " ".join(text.split()) elif method=='regex': # Remove digits text = re.sub(r'\d+', ' ', text) # Remove all special characters text = re.sub(r'\W+', ' ', text) # Remove extra spaces text = re.sub('\s\s+', ' ', text) return text
6baae1a8e352b4d2ec608fe3091d3f11a20f5d5d
78,325
def hello(bot, args): """Salute function Without decorator to see what happens... Returns a string as a salute message """ return "Hello sir, welcome"
a364a100ae637fe683a9eda716cc6fa958a054e3
78,327
def listToIndex2item(L): """converts list to dict of list index->list item""" d = {} for i, item in enumerate(L): d[i] = item return d
bc350045d72e5f7d7338a433782f7a56e4f0db58
78,329
def max_sequence(arr): """Find the largest sum of any contiguous subarray.""" best_sum = 0 # or: float('-inf') current_sum = 0 for x in arr: current_sum = max(0, current_sum + x) best_sum = max(best_sum, current_sum) return best_sum
d17f69534eda79649236438df7a1576ebbea789c
78,330
def iterate_json_keys_for_value(jsonObj, key, value): """Return True if *jsonObj* contains a toplevel *key* set to *value*.""" for i in jsonObj: if i[key] == value: return True return False
f43acdbfcb0ebc5bd68e39180458cf89f5e1cd04
78,334
def copy_attribute(name, src, dst): """ Given a name copy attribute from source object to destination object @param name: field name @param src: source object @param dst: destination object @return: destination object """ if src and name in src: dst[name] = src[name] return dst
f74587764727728f9ed216b01b13cb14b04b655a
78,338
def _occupied_cols(piece): """ Returns a list of which cols are occupied in a piece. Ex: >>> list(map(_occupied_cols, PIECE_I)) [[0, 1, 2, 3], [2], [0, 1, 2, 3], [1]] """ return [i for i, row in enumerate(zip(*piece)) if any(row)]
c647966c9c96f783148c2d30edcb20c309f2de61
78,341
import glob def _parse_batch_params(params): """Transform batch parameter strings into lists of tuples. Parameters ---------- params : list of str The string should have the form "key=val1,val2,val3". Returns ------- A generator that, for each key, yields a list of key-value tuple pairs. """ def maybe_glob(x): return glob.glob(x) if glob.has_magic(x) else [x] seen_keys = set() for param in params: if "=" not in param: raise ValueError( "param value should be formatted as 'key=value,...'") key, value_str = param.split("=", maxsplit=1) if key in seen_keys: raise ValueError("Key '{}' was given more than once".format(key)) seen_keys.add(key) yield [(key, v) for v_unexpanded in value_str.split(",") for v in maybe_glob(v_unexpanded)]
8d67d19cc6cc55b81c289d5be7a7bd93bbde5b92
78,344
def vanilla_grad_desc(para, grad_para, lr): """ Update function for the vanilla gradient descent: w = w - learningRate * grad_w :param para: Parameter to be updated :param grad_para: Gradient at the parameter :param lr: learning rate :return: """ return para - lr * grad_para
66ecd06ed70c5c95bde2048dc001d282d6ab424c
78,345
from typing import List def get_module_parents(full_module_name: str) -> List[str]: """ Returns a list module's parent packages and subpackages. Example: package1.subpackage1.module1 -> [package1, package1.subpackage1] """ parts = full_module_name.split('.') parts.pop() parents = [] while parts: parents.insert(0, '.'.join(parts)) parts.pop() return parents
8f2c6c7ae79a999a7c12c8f9208268a47c5b207c
78,356
def __prep_importance( df_vim_structured, s_vim_importance, style="tail", shadow="null", num_features=50): """Given a DataFrame containing the structured VIM scores and a Series containing mean VIMs, finds the n head or tail features (and the top shadow, if it's not among the n), and returns the columns of df_vim_structured for those features. """ s_sorted = s_vim_importance.copy() s_sorted.sort_values(inplace=True) # subset the top or bottom features s_truncated = None if style is 'tail': # gives us the names of the n best features s_truncated = s_sorted.tail(num_features) else: # gives us the names of the n worst features s_truncated = s_sorted.head(num_features) # ensure that the passed shadow feature is included if shadow and shadow not in s_truncated: s_truncated[shadow] = s_sorted[shadow] return df_vim_structured[s_truncated.index]
b97c5b7ab29c9897b6829600a27b4bea0efcd7b8
78,367
def xor(data, key): """ XORs data with a given key :param data: :param key: :return: """ return bytearray(a ^ b for a, b in zip(*map(bytearray, [data, key])))
490b0d441f2e7590bb55276c6bc3621b4aca1cb0
78,374
from typing import List import math def generate_tt(num_variables: int) -> List[List[bool]]: """ Generates a truth table for all boolean combinations of the possible variables. """ tt = [] # the binary representation of each number in the # range 0..(2^num_variables) gives us all # possibilities for the truth table # using this because it is compact and simple for i in range(int(math.pow(2, num_variables))): tt.append([x == "0" for x in list(f"{{0:0{num_variables}b}}".format(i))]) return tt
f08711dcf35bdb0e6b1df5352aec90307d88b6d5
78,383
def replace_at_idx(tup, i, val): """Replaces a value at index *i* of a tuple *tup* with value *val* :param tup: tuple to be updated :param i: index at which the value should be replaced :type i: integer :param val: new value at index i :type val: value :return: new tuple with replaced value """ tup_list = list(tup) tup_list[i] = val return tuple(tup_list)
db4a8bd4d36eec5a393e7f45f7059b38f8c19715
78,384
def M_from_t(t,n,M0,t0): """ find mean anomaly at time t Parameters ---------- t time to find M for n mean motion M0 reference mean anomaly at time t0 t0 reference time t0 Note that M = 0 at pericentre so if t0 = pericentre passage time then M0 = 0 """ M = M0 + (n*(t-t0)) return M
3f40608013c92fe6309618165ac7e991aa833daa
78,387
def read_unique_lines(data_file): """Loads the data from the given files as lines (unique), in preparation for training or testing. """ encountered = set() with open(data_file) as f: for line in f: encountered.add(line) return list(encountered)
bc72e195b38bcab2d158be9c4d5da7279886a955
78,390
def node_type(node) -> str: """ Get the type of the node. This is the Python equivalent of the [`nodeType`](https://github.com/stencila/schema/blob/bd90c808d14136c8489ce8bb945b2bb6085b9356/ts/util/nodeType.ts) function. """ # pylint: disable=R0911 if node is None: return "Null" if isinstance(node, bool): return "Boolean" if isinstance(node, (int, float)): return "Number" if isinstance(node, str): return "Text" if isinstance(node, (list, tuple)): return "Array" if isinstance(node, dict): type_name = node.get("type") if type_name is not None: return type_name return "Object"
4b04f4c94eaec8c9746fe7db5174b045e1f9a14b
78,401
from typing import List def int_to_rgba(v: int) -> List[float]: """Get rgba (0-1) e.g. (1, 0.5, 0, 1) from integer. >>> print(int_to_rgba(0)) [0.0, 0.0, 0.0, 0.0] >>> print([round(x, 3) for x in int_to_rgba(100100)]) [0.0, 0.004, 0.529, 0.016] """ return [x / 255 for x in v.to_bytes(4, signed=True, byteorder="big")]
0d7ae444420d9336bce10d781dafa805fd21e39f
78,404
def determine_set_y_logscale(cfg, metadata): """ Determine whether to use a log scale y axis. Parameters ---------- cfg: dict the opened global config dictionairy, passed by ESMValTool. metadata: dict The metadata dictionairy for a specific model. Returns ---------- bool: Boolean to flag whether to plot as a log scale. """ set_y_logscale = True if 'set_y_logscale' in cfg: set_y_logscale = cfg['set_y_logscale'] if 'set_y_logscale' in metadata: set_y_logscale = metadata['set_y_logscale'] return set_y_logscale
c6def09b9b7468d9e5aec073d73ab9ad29146ea5
78,406
import re def vet_pdb_id(pdbid): """PDB ID must be exactly four characters long, alphanumeric, and the first character must be an integer. """ if len(pdbid) < 4 or not \ pdbid.isalnum() or not \ re.match(r'^[0-9][A-Za-z0-9]{3}$', pdbid): return False return True
c661855de4852312450f6bf4502b83e77bae0acd
78,407
from datetime import datetime def get_course_dates(course_dates_df): """ Get the start and end dates for the course """ def get_datetime_col(col_name): """ Get column as a datetime object """ return datetime.strptime(course_dates_df[col_name][0], '%Y-%m-%d') course_start_date = get_datetime_col('CourseRunStartDate') course_end_date = get_datetime_col('CourseRunEndDate') return (course_start_date, course_end_date)
a665f172c6653e0af44c2f9b0d298c28867e98e5
78,413
from pathlib import Path from typing import Union from typing import Dict from typing import Any from typing import List import json def read_json_file( src_path: Path ) -> Union[Dict[str, Any], List[Dict[str, Any]]]: """Reads json file and returns either python dict or python list.""" if not src_path.exists(): raise ValueError( 'Provided json file does not exist!' ) json_string = src_path.read_text() return json.loads(json_string)
dd3d5bfe8eaeb6986c41d9a542cbaab7c5ec7d49
78,414
def create_params(options, base_params, keys=None): """ Given a dictionary of parameters and possible values, creates a list of the cross products of all parameter values. Note that b has [3] as an element. The cross product is shallow so [3] will be a value in the output. Example: options = { a: [1,2], b: [[3],4] } returns: [ {a:1, b:[3]}, {a:1, b:4}, {a:2, b:[3]}, {a:2, b:4} ] """ if keys is None: keys = options.keys() if len(keys) == 0: return [dict(base_params)] ret = [] key = keys[0] vals = options[key] if not isinstance(vals, list): vals = [vals] for val in vals: param = dict(base_params) param[key] = val ret.extend(create_params(options, param, keys[1:])) return ret
075743f723d7fc81b9192730d77dd95d5e285bb6
78,418
def Sn(x,y): """ Calculate Sn Parameters: ----------- 'x' (numpy array): predictions 'y' (numpy array): observations Returns: -------- 'Sn' """ if float(sum(x+y==2) + sum(x-y==-1))!=0: return float(sum(x+y==2)) / float(sum(x+y==2) + sum(x-y == -1)) else: return 0.
0aaf87fd778b9e1bcde710906da5862568112266
78,424
def selection_smallest_first(lst): """Find smallest element and put it in index 0, sort from there.""" for i in range(len(lst)): smallestIndex = i for j in range(i + 1, len(lst)): if lst[j] < lst[smallestIndex]: smallestIndex = j if smallestIndex != i: lst[smallestIndex],lst[i] = lst[i],lst[smallestIndex] return lst
137baeb1fc8f63227028a61f22b23a56e2976495
78,426
def msb_32(val) -> int: """Returns the MSB of a 32 bit value.""" return (val & 0x80000000)>>31
177fad51198945ab7eae40a010761078108fb62f
78,429
def train_model(model, data, epochs=1000): """Training Routine :param model: Model :type model: tf.keras.Model object :param data: Data :type data: tuple :param epochs: Number of Epochs, defaults to 1000 :type epochs: int, optional :return: History of training :rtype: dict """ # Data x_train = data['x_train'] y_train = data['y_train'] x_test = data['x_test'] y_test = data['y_test'] # Compile model.compile( loss='mse', optimizer='adam', metrics=['mae'], ) # Train history = model.fit( x=x_train, y=y_train, batch_size=20, epochs=epochs, validation_data=(x_test, y_test), # callbacks=[TqdmCallback()], verbose=0, ) return history
8c825d3572c4143aed5cb0edf146fc3661f724a7
78,430
def select_desired_features(full_features, desired_features, feature_dict): """ A function which reduces a feature set down to only the desired features specified in a list Features must match with keys stored in the passed dictionary """ # print(f"{full_features.shape[1]} attributes available for selection") feature_index_list = [] for i in desired_features: feature_index_list.append(feature_dict[i]) new_features = full_features[:,feature_index_list] # print(f"{new_features.shape[1]} attributes selected for classification") return new_features
64720e093ceccd0035b9a7ba8d05c7e6f547c467
78,436
def getTimeString(seconds): """ Get a pretty time string, using hours, minutes, seconds and milliseconds as required. :param seconds: The desired time span, given in seconds. Can be an int or a float. :return: A string representing the desired time span, given in hours, minutes, seconds and milliseconds. """ units = list() msecs = (seconds % 1) * 1000 if msecs >= 1: units.append('{0}ms'.format(int(msecs % 60))) units.append('{0}s'.format(int(seconds % 60))) minutes = seconds/60 if minutes >= 1: units.append('{0}m'.format(int(minutes % 60))) hours = minutes/60 if hours >= 1: units.append('{0}h'.format(int(hours % 60))) return ' '.join(units[::-1])
383871f7d79e19742ea64788397bca5f13a9f3ee
78,438
def tail_swap(word_list): """ Creates a format for the final replacement Picks the head and tail for each string in the list via tuple unpacking Swaps the tails using the format created. :param word_list: The word list with 2 strings which contain exactly 1 colon :return: a list with the tails of each string swapped :rtype: list """ # create a format for final replacement fmt = '{}:{}'.format # pick the head and tail for each word in the list (head, tail), (head_2, tail_2) = (a.split(':') for a in word_list) # return the formatted list return [fmt(head, tail_2), fmt(head_2, tail)]
092508637f024fe3271d5d553104501be93f5bc0
78,439