content
stringlengths
39
14.9k
sha1
stringlengths
40
40
id
int64
0
710k
import hashlib def get_hashfunc_by_name(name, data): """ Get a callable hashfunc by name. This function can be used directly or with functools.partial, for example: >>> hashfunc = functools.partial(get_hashfunc_by_name, 'sha256') >>> hashfunc('sir robin').digest() Args: name (str): The string name of the desired algorithm data (buffer): The buffer to hash Returns: callable: The callable hash function of the provided algorithm updated with the data to be hashed """ hashfunc = hashlib.new(name) hashfunc.update(data) return hashfunc
f26c364dc6ba260a8b95fa317f4e6fcdf7af2bd3
75,964
import torch def one_hot(class_n, x): """ Make scalar into one-hot vector :param class_n: number of classes :param x: the scalar :return: converted one-hot vector """ return torch.eye(class_n)[x]
29ae8794f785a2983cefc7a94cc7a3732a7a746a
75,965
def remove_campaigns(api, assessment_id): """Remove all campaigns from an assessment.""" allCampaigns = api.campaigns.get() for campaign in allCampaigns: if campaign.name.startswith(assessment_id): api.campaigns.delete(campaign.id) return True
1b7b0f99798aa7aad115b15aa025ad596f212751
75,969
def replace(_, result, original, substitute): """ Replace substrings within content. """ return result.replace(original, substitute)
e78cc7c00aa6620ef5ed9bb0e469f9ecdc0524f0
75,970
def stacks_to_pyramid_seq(stacks): """ Converts a list of stacked layers to a list of Laplacina pyramids. """ pyramid_seq = list() nr_frames = len(stacks[0]) for frame_idx in range(nr_frames): pyramid = list() for stack in stacks: pyramid.append(stack[frame_idx]) pyramid_seq.append(pyramid) return pyramid_seq
993ef8603e26e82425a87fc7e9b0487d9c53e343
75,974
def set_request_params(request): """ Sets request parameters to format Arg: request (Request): Http request information. Return: dict: Return request parameters into formats. """ return { "sys_id": request.args.get('sys_id'), "sys_master_id": request.args.get('sys_master_id'), "target_name": request.args.get('target_name') }
8fa003c184b9705eb084b2afecc5f60bae3aa77a
75,977
def parse_vector_line(line): """ Takes a line from the .dat file formated according to Bodur style and creates a list of its values. E.g., "[10,10,10]" -> [10, 10, 10] :param line: string - the line with vector values, e.g., "[10,10,10]" or "[[10,10,10]," if it is the first vector of matrix. :return: list with vector elements """ old_line_size = len(line) line = line.strip() # sometimes we have trailing spaces if (old_line_size != len(line)): print(f"WARNING: Spaces at the beginning or at the end of the line are found in the .dat file.") line_start = line[:2] line_end = line[-2:] if line_start == "[[" and line_end == "]]": # vector of the matrix that has only one row, e.g., [[10,10,10]] clean_line = line[2:-2] elif line_start == "[[": # first vector of matrix, e.g., [[10,10,10], clean_line = line[2:-2] elif line_end == "],": # vector of matrix, e.g., [10,10,10], clean_line = line[1:-2] elif line_end == "]]": # last vector of matrix, e.g., [10,10,10]] clean_line = line[1:-2] else: # vector, e.g., [10,10,10] assert(line[0] == "[" and line[-1] == "]") clean_line = line[1:-1] vector = clean_line.split(",") vector_numerical = [] for element in vector: element_numerical = float(element) # keep it as integer if it is one if element_numerical.is_integer(): element_numerical = int(element) vector_numerical.append(element_numerical) return vector_numerical
908284d308db1ebf5a027874b57ae4f1ed1b1fc1
75,979
import math def angle_closeness(a, b, error): """Determine the closeness of two angles, in radians, if they are witin the error closeness, in radians. # Simple angles. >>> angle_closeness(1, 1.1, .2) True >>> angle_closeness(1, 1.2, .1) False # Negative angles. >>> angle_closeness(-1, -1.1, .2) True >>> angle_closeness(-1, -1.2, .1) False # Zero angles. >>> angle_closeness(-.1, .1, .3) True >>> angle_closeness(.1, -.1, .3) True >>> angle_closeness(.1, -.1, .1) False >>> angle_closeness(-.1, .1, .1) False # Angles near PI. angle_closeness(3.1, 3.0, .2) True angle_closeness(-3.1, -3.0, .2) True angle_closeness(-3.1, 3.1, .2) True angle_closeness(3.1, -3.1, .2) True angle_closeness(3.1, 3.0, .05) False angle_closeness(-3.1, -3.0, .05) False angle_closeness(-3.1, 3.1, .05) False angle_closeness(3.1, -3.1, .05) False """ if abs(a - b) < error: return True else: if a < 0: a += math.pi * 2 elif b < 0: b += math.pi * 2 return abs(a - b) < error
12cca6d2edfd4756ac1d1d3515ad79aaef6631aa
75,984
from typing import List from typing import Optional def present_menu(devices: List[dict], saved_device: Optional[dict] = None) -> dict: """ Format the menu of selectable microphones and receive selection from user. Parameters ---------- devices : List[dict] Device logs for detected microphones saved_device : Optional[dict] The device log for the saved device - used to indicate on the menu the current saved device. Returns ------- dict The device log for the user-selected device.""" # Print the menu menuIndex = 0 for device in devices: # If the user previously saved a device, indicate that in the menu with an asterisk isSavedSelection = int(saved_device['index']) == device['index'] \ if saved_device is not None \ else False savedSelectionText = '*' if isSavedSelection else ' ' print('{}) {} {}'.format(str(menuIndex), savedSelectionText, device['name'])) menuIndex = menuIndex + 1 # Get the user's input and select the input device inputValid = False menuSelection = 0 while not inputValid: menuInput = input(" >> ").strip() if menuInput.isdecimal(): menuSelection = int(menuInput) if menuSelection <= menuIndex: inputValid = True else: print("invalid input") else: print("invalid input") return devices[menuSelection]
fa773257092a5c487b51badd5fa027b8e9cf7943
75,989
def get_style_version(request): """Return a string with the 'style' for the app. - 'lite' means to remove headers and other information. - 'standard' is the standard version with the title and info. - anything else is adding the header bar and Plausible script. This is the default option. """ return request.environ.get("HTTP_X_APP_STYLE", "")
bfc98524e18b48358ec1c8b22421f01684830e49
75,991
import shutil def test_output_folder(project_root_path): """(Re)make an output folder for the tests at the begining of each test session.""" folder = project_root_path / 'mfexport/tests/tmp' reset = True if reset: if folder.is_dir(): shutil.rmtree(folder) folder.mkdir(parents=True) return folder
21ea843921e71b2b9817060d5b27f81e6fc07616
75,995
def _timedeltaToSeconds(offset): """ Convert a datetime.timedelta instance to simply a number of seconds. For example, you can specify purely second intervals with timedelta's constructor: >>> td = datetime.timedelta(seconds=99999999) but then you can't get them out again: >>> td.seconds 35199 This allows you to: >>> import epsilon.extime >>> epsilon.extime._timedeltaToSeconds(td) 99999999.0 @param offset: a L{datetime.timedelta} representing an interval that we wish to know the total number of seconds for. @return: a number of seconds @rtype: float """ return ((offset.days * 60*60*24) + (offset.seconds) + (offset.microseconds * 1e-6))
7c53118304373983de6ec67cc621e2f022432e9f
76,009
def average(A_matrices, B_vectors, timesteps): """ Average over matrices. Arguments: A_matrices: a dictionary of NxN matrices, indexed with their timestep. B_vectors: a dictionary of vectors with len N, indexed with their timestep. timesteps: a list or tuple of timesteps. Returns: A: the average of all A_matrices. B: the average of all B_matrices. """ # Initialize empty time = list(B_vectors.keys())[0] A = A_matrices[time] * 0 B = B_vectors[time] * 0 # Average by adding all objects and dividing by their number for timestep in timesteps: A += A_matrices[timestep] B += B_vectors[timestep] # Divide number_snapshots = len(timesteps) A /= number_snapshots B /= number_snapshots return A, B
0d048bfedadf63698b4a3098e2482dc1f8d459a4
76,011
def _breadth_first_search(g, v): """ Return, for each node u, the breadth first search distance from v to u in the graph g. For each node u, returns the distance of a shortest path from v to u in an undirected unweighted graph using the breadth first search algorithm. :param g: an undirected graph :param v: a node of g :return: a dictionary associating for each node u the distance of a shortest path from v to u in g """ to_visit = [v] visited = set() dist = {v: 0} while len(to_visit) != 0: u = to_visit.pop(0) visited.add(u) for v in u.neighbors: if v in visited: continue if v not in dist or dist[v] > dist[u] + 1: dist[v] = dist[u] + 1 to_visit.append(v) return dist
0329001e68dafaa7e9e91a39a62fb0d4a52ffeca
76,012
def read_gmt_multisegment_latlon(input_file, split_delimiter=' '): """ Generalized GMT multisegment file reader. Returns lon and lat in a list of lists, each element with a single segment. :param input_file: name of input file :type input_file: string :param split_delimiter: delimiter between values on the same line, defaults to space :type split_delimiter: string, optional :returns: list of lons, list of lats :rtype: list """ print("reading gmt multisegment file %s" % input_file); ifile = open(input_file); lon_collection = []; lat_collection = []; lon_temp = []; lat_temp = []; for line in ifile: if line.split()[0] == '>>' or line.split()[0] == '>': if lon_temp: lon_collection.append(lon_temp); lat_collection.append(lat_temp); lon_temp = []; lat_temp = []; continue; else: temp = line.split(split_delimiter); lon_temp.append(float(temp[0])); lat_temp.append(float(temp[1])); lon_collection.append(lon_temp); lat_collection.append(lat_temp); return lon_collection, lat_collection;
b88afb943710222215bd9f27c875153f2954d359
76,014
from datetime import datetime def main(config): """ Principal function to get health. :param config: json with the application configuration :return: dict with status """ app_name = config.get("app_name") return { "app_name": app_name, "statusCode": 200, "message": "ALIVE", "timestamp": str(datetime.now()) }
f48769a11e9a0528a3ab0de0a332cbdb9f3fb61b
76,018
import logging def MpiVars(vm) -> str: """Returns the path to the mpivars.sh file. With different versions of Intel software installed the mpivars.sh for 2019.6 can be under compilers_and_libraries_2020.0.166 while the symlink for compilers_and_libraries points to compilers_and_libraries_2018 Args: vm: Virtual machine to look for mpivars.sh on. """ txt, _ = vm.RemoteCommand('readlink -f /opt/intel/compilers_and_libraries*/' 'linux/mpi/intel64/bin/mpivars.sh | sort | uniq') files = txt.splitlines() if not files: raise ValueError('Could not find the mpivars.sh file') if len(files) > 1: logging.info('More than 1 mpivars.sh found, returning first: %s', files) return files[0]
6a82abedd0492455e82e3dedb70d2d8ce7c55132
76,020
def _estimator_has(attr): """Checks if the model has a given attribute. Meant to be used along with `sklearn.utils.metaestimators.available_if` Parameters ---------- attr : str The attribute to check the calling object for Returns ------- fn : callable A function that will either raise an `AttributeError` if the attribute does not exist, or True if it does. """ def check(self): # raise original `AttributeError` if `attr` does not exist getattr(self, attr) return True return check
487d2a5e2bb9ca92927aa7855fecea45ca2d20c7
76,022
import math from functools import reduce def lcm(numbers_list): """Return lowest common multiple.""" def lcm(a, b): return (int(a) * int(b)) // math.gcd(int(a), int(b)) return reduce(lcm, numbers_list, 1)
8991ab26984f82f201454f3b26376e3ec8b1085f
76,028
def set_iscsi_discovery_auth( client, disable_chap=None, require_chap=None, mutual_chap=None, chap_group=None): """Set CHAP authentication for discovery service. Args: disable_chap: CHAP for discovery session should be disabled (optional) require_chap: CHAP for discovery session should be required (optional) mutual_chap: CHAP for discovery session should be mutual (optional) chap_group: Authentication group ID for discovery session (optional) Returns: True or False """ params = {} if disable_chap: params['disable_chap'] = disable_chap if require_chap: params['require_chap'] = require_chap if mutual_chap: params['mutual_chap'] = mutual_chap if chap_group: params['chap_group'] = chap_group return client.call('set_iscsi_discovery_auth', params)
1ef91da9afb4df7c16a55b5b706ccae3b4cb450f
76,029
def sort_keywords(keywords): """Sort keywords in the proper order: i.e. glob-arches, arch, prefix-arches.""" def _sort_kwds(kw): parts = tuple(reversed(kw.lstrip('~-').partition('-'))) return parts[0], parts[2] return sorted(keywords, key=_sort_kwds)
83e3af245e2fa7d4c48d3f3edbe7df7a2705d403
76,030
def diagonal(mat, diag_index): """Returns ith diagonal of matrix, where i is the diag_index. Returns the ith diagonal (A_0i, A_1(i+1), ..., A_N(i-1)) of a matrix A, where i is the diag_index. Args: mat (2-D list): Matrix. diag_index (int): Index of diagonal to return. Returns: Diagonal of a matrix. """ return [mat[j % len(mat)][(diag_index + j) % len(mat)] for j in range(len(mat))]
baa0717254a5cef6972b0c18942ca111e54c5949
76,032
def import_file_section(file, start_token, end_token): """ Load a section of lines between two tokens. Parameters ---------- file: str or pathlib Path Path to the file. start_token: str String in line to start reading file from. end_token: String in line to end reading file from. Returns ------- c_set: list """ spl_lin = lambda x: [e for e in x.strip("\n").split(",") if e != ""] readstate = False c_set = [] with open(file, "r", encoding="latin-1") as f: for _, line in enumerate(f): if start_token in line: readstate = True line = next(f) if end_token in line: readstate = False if readstate: newline = spl_lin(line) c_set.append(newline) return c_set
167d86fdc518b01d3a1145c42fe8882b60003e2a
76,033
def hour_to_sec(hours: float) -> float: """Method to parse hours to seconds""" return hours * 3600
ce9cb3eccfc6e199074b28a57cc8e913dd2a3f51
76,034
from pathlib import Path def is_within(file: Path, excluded: Path) -> bool: """Check if `file` is `excluded` or within `excluded`'s tree. """ return excluded in file.parents or file == excluded
8f20be21a833bddc3b2fa569e823cbe57b15ffd5
76,036
def cadence(a, b, required_gap, start): """ For the pair of numbers determine when they first repeat with the required gap and the period that it will repeat, starting at the given value >>> cadence(67, 7, 1, 0) (335, 469) >>> cadence(67, 7, 2, 0) (201, 469) >>> cadence(1789, 37, 1, 0) (30413, 66193) >>> cadence(17, 13, 21, 0) (187, 221) """ value = start first = None while True: if (value + required_gap) % b == 0: if first is None: first = value else: return (first, value - first) value += a
246b2a38c6354d4178e881ffea0ac63084f5b1df
76,037
def parse_evidence(evidence): """ From an evidence string/element return a dictionary or obs/counts Updated where to handle 0 coverage in an 'N' call! In this case we set N = -1 :param evidence: an evidence string. It looks something like this - Ax27 AGCAx1 AGCAATTAATTAAAATAAx """ obs_count = {} elem = evidence.split(' ') if elem == ['']: obs_count['N'] = -1 else: for e in elem: obs, count = e.split('x') obs_count[obs] = int(count) return obs_count
53132481dc1f75d1ba9c234cf35581a4b502afc5
76,038
def year_list(x): """Return the elements of x that can be cast to year (int).""" lst = [] for i in x: try: int(i) # this is a year lst.append(i) except ValueError: pass return lst
73e9e07f70850d0cb2edf9c04861db1264ee590a
76,044
def compute_ema_from_list(ema0, y_values, alpha=0.1): """ema_t+n = (1-α)^n*ema + αΣ(1-α)^(n-i)*y_i""" assert isinstance(y_values, list), "y_values has to be a list" n = len(y_values) alphy = 1-alpha return (alphy)**n*ema0 + alpha*sum([y_val*alphy**(n-1-i) for i,y_val in enumerate(y_values)])
ef5663708da308d2acd6a4de1a3b07891618fbf6
76,045
from pathlib import Path def bench_name(map_file, scen_file) -> str: """Return a name for the benchmark, composed of file names of map and scenario without suffixes, separated by a dash""" return f"{Path(map_file).stem}-{Path(scen_file).stem}"
bbeb5dc4700e48ed0166a295da85a676010eaad0
76,050
def istmp(name): """Is this a name of a tmp variable?""" return name.startswith("tmp")
45eee9ab7789641aac5b24c7cecb6ead19693477
76,052
import shutil def print_full_width(char, mid_text="", whitespace=" ", ret_str=False, **kwargs): """ Prints a character at the full terminal width. If ``mid_text`` is supplied, this text is printed in the middle of the terminal, surrounded by ``whitespace``. Additional kwargs passed to ``print``. If ``ret_str`` is true, the string is returned; if not, it is printed directly to the console. """ cols, rows = shutil.get_terminal_size() if mid_text: left = cols - len(mid_text) - 2 * len(whitespace) if left <= 0: left = 2 l, r = left // 2, left // 2 if left % 2 == 1: r += 1 out = char * l + whitespace + mid_text + whitespace + char * r else: out = char * cols if ret_str: return out print(out, **kwargs)
04ed511123609a44a235b550d195320c639f14c4
76,055
def center(size, fit_size, offset): """ Center a given area within another area at an offset. Arguments: size: a tuple containing the width and height of the area to be centered. fit_size: a tuple containing the width and heigh of the area in which to center 'size' offset: a tuple representing an x/y coordinate of the offset. """ w, h = size fw, fh = fit_size x, y = offset return x + (fw - w) // 2, y + (fh - h) // 2
6406d9e26eccb31d01e507b813a81fa26ac84f5c
76,058
def delist(list_obj): """ Returns a copy of `list_obj` with all empty lists and tuples removed. Parameters ---------- list_obj : list A list object that requires its empty list/tuple elements to be removed. Returns ------- delisted_copy : list Copy of `list_obj` with all empty lists/tuples removed. """ # Check if list_obj is a list if(type(list_obj) != list): raise TypeError("Input argument 'list_obj' is not of type 'list'!") # Make a copy of itself delisted_copy = list(list_obj) # Remove all empty lists/tuples from this copy off_dex = len(delisted_copy)-1 for i, element in enumerate(reversed(delisted_copy)): # Remove empty lists if(isinstance(element, list) and element == []): delisted_copy.pop(off_dex-i) # Remove empty tuples elif(isinstance(element, tuple) and element == ()): delisted_copy.pop(off_dex-i) # Return the copy return(delisted_copy)
a259e703383ac89e2274956288458bbe851fa225
76,059
import requests def hook_exists(full_name, token): """ Return True if a hook for the repository is listed on travis. """ headers = { 'Authorization': 'token %s' % token, } response = requests.get( 'http://api.travis-ci.org/hooks', headers=headers ) owner, name = full_name.split('/') if response.status_code == 200: repositories = [ repo for repo in response.json() if repo['name'] == name and repo['owner_name'] == owner ] hook_exists = len(repositories) > 0 else: hook_exists = False return hook_exists
12cc41a5ae3870ab9e71d8b583e21708e80e07b7
76,060
def CreateMnemonicsPython(mnemonicsIds): """ Create the opcodes dictionary for Python. """ s = "Mnemonics = {\n" for i in mnemonicsIds: s += "0x%x: \"%s\", " % (mnemonicsIds[i], i) if len(s) - s.rfind("\n") >= 76: s = s[:-1] + "\n" # Fix ending of the block. s = s[:-2] # Remote last comma/space we always add for the last line. if s[-1] != "\n": s += "\n" # Return mnemonics dictionary only. return s + "}"
4aab5f65413e8f2841d52a73b3e3a28396c867ec
76,071
import copy import warnings def get_list_values_larger_than_ref(list_val, ref_val): """ Returns list of values in list_val, which are larger than ref_val Parameters ---------- list_val : list (of floats) Value list ref_val : float Reference value, which defines lower bound for search Returns ------- list_larger : list (of floats) List holding all values of list_val, which are larger than or equal to ref_value """ list_larger = copy.copy(list_val) for val in list_val: if val < ref_val: list_larger.remove(val) if list_larger == []: msg = 'list_larger is empty list. Thus, going to use largest values' \ ' of original list list_val.' warnings.warn(msg) list_larger.append(max(list_val)) return list_larger
3cdbd985e58ed67309a88681bacc7773e92b4a97
76,072
import re def count_lines_with_wrapping(s, linewidth=80): """Count the number of lines in a given string. Lines are counted as if the string was wrapped so that lines are never over linewidth characters long. Tabs are considered tabwidth characters long. """ tabwidth = 8 # Currently always true in Shell. pos = 0 linecount = 1 current_column = 0 for m in re.finditer(r"[\t\n]", s): # Process the normal chars up to tab or newline. numchars = m.start() - pos pos += numchars current_column += numchars # Deal with tab or newline. if s[pos] == '\n': # Avoid the `current_column == 0` edge-case, and while we're # at it, don't bother adding 0. if current_column > linewidth: # If the current column was exactly linewidth, divmod # would give (1,0), even though a new line hadn't yet # been started. The same is true if length is any exact # multiple of linewidth. Therefore, subtract 1 before # dividing a non-empty line. linecount += (current_column - 1) // linewidth linecount += 1 current_column = 0 else: assert s[pos] == '\t' current_column += tabwidth - (current_column % tabwidth) # If a tab passes the end of the line, consider the entire # tab as being on the next line. if current_column > linewidth: linecount += 1 current_column = tabwidth pos += 1 # After the tab or newline. # Process remaining chars (no more tabs or newlines). current_column += len(s) - pos # Avoid divmod(-1, linewidth). if current_column > 0: linecount += (current_column - 1) // linewidth else: # Text ended with newline; don't count an extra line after it. linecount -= 1 return linecount
821654d00ae65153a57a6dbca25fd666616147ac
76,083
def _get_sequence_from_coords(len_prots, proteome_sequence, prot, start, end): """ Gets the amino acid sequence at specified coordinates. Parameters ---------- len_prots : dict A dictionary mapping protein names to lengths. proteome_sequence : function A closure that returns the sequence at given coordinates. prot : str The name of a protein, e.g. "YFP". start : int The 0-based start coordinate of the first position in the sequence. end : int One past the 0-based last position in the sequence. Returns ------- str The amino acid sequence. """ if start > len_prots[prot] or (end > len_prots[prot] + 1) or start < 0: return "" return proteome_sequence(prot, start, end)
26c62d63adb964e296b623df773046e56de247a1
76,092
def has_extension(conn, name): """Checks if the postgres database has a certain extension installed""" return conn.execute("SELECT EXISTS(SELECT TRUE FROM pg_extension WHERE extname = %s)", (name,)).scalar()
6ef0c54d7b520db7e61c602c1b1683cf6310410a
76,096
def accumulate_demand_sequence(demand_sequence: list) -> dict: """ :param demand_sequence: a list of tuples with [(src, dst, demand_size)] :return demand_matrix: accumulated demand matrix with {(src, dst) : demand_size} """ demand_matrix = dict() for src, dst, demand_size in demand_sequence: if (src, dst) not in demand_matrix: demand_matrix[(src, dst)] = 0 demand_matrix[(src, dst)] += demand_size return demand_matrix
d4f8dc1ce73851730b83a994e9e15c44582a1d81
76,097
def find_children(words, word): """Find all children of a word, i.e. words that are revealed by dropping a single letter. words: dictionary of words word: string """ children = [] for i in range(len(word)): possible_child = word[:i] + word[i+1:] if possible_child in words: children.append(possible_child) return children
6790f12b18de2dd700bce7e1c0cddb09b588b4a0
76,099
import re def uncamel(s): """ Convert CamelCase class names into lower_snake_case. Taken from http://stackoverflow.com/a/1176023/3288364 """ return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s).lower()
21990e0df7d590e03d8b9ea61bb2bb4ef4b6e6d6
76,100
def list_to_pairs(l): """ From list(list(str)) ) to list([str, str]) >>> l = [[1, 2, 3], [45, 46], [98, 99, 100, 101]] >>> list_to_pairs(l) [[1, 2], [1, 3], [2, 3], [45, 46], [98, 99], [98, 100], [98, 101], [99, 100], [99, 101], [100, 101]] :param l: :return: """ res = [] for i in l: length_i = len(i) for j in range(length_i-1): for k in range(j+1, length_i): res.append([i[j], i[k]]) return res
e417c1f27f7e2849df673c719cf6ea1f408612c6
76,101
import operator def between(min_value, value, max_value, partial_order=operator.le): """Check if Value is Inbetween Min and Max.""" return partial_order(min_value, value) and partial_order(value, max_value)
3e2d61a510397949798b311d5821e5ce0a19df34
76,103
import json def parse_user_parameters(params_str): """Parses a given UserParameters string. A UserParameters string must be a JSON object. :type params_str: str :param params_str: UserParameters string to be parsed. :rtype: dict :return: parsed user parameters. :raises JSONDecodeError: if ``params_str`` is not a valid JSON text. :raises ValueError: if ``params_str`` is not a JSON object. """ params = json.loads(params_str) if not isinstance(params, dict): raise ValueError(f'UserParameters must be a JSON object not {type(params)}') return params
2e464aba708b2249323c3eec4855d72e8900eac3
76,104
def calc_triangle_area(base, height): """ Calculates the area of the triangle :param base: :param height: :return: area """ return (base * height) / 2
89c74c3ed9629f3459604c57a2c15a0a681790ff
76,109
def clean_url(url: str) -> str: """ Removes unwanted characters from the end of certain URLs. Args: url (:obj:`str`): A URL. Returns: :obj:`str`: A URL without unwanted characters at the end. """ if 'achgut' in url and '/P' in url: return url.rsplit('/P', 1)[0] if 'focus' in url: return url.rsplit('_id_', 1)[0] if 'sueddeutsche' in url and '1.508' in url: return url.rsplit('-', 1)[0] if 'opposition24' in url: return url.rsplit('/?', 1)[0] return url
1ec2bc66dbc9915cd8a7f6ef9e4a0818c4171ca4
76,115
def creator_instrument(lower, upper): """ Generates the aproximated instrument string based in the frequencies, to use directly with CallistoSpectrogram """ lower = int(lower) upper = int(upper) if lower>=1200 and upper<=1800 : return "BLEN5M" if lower>=110 and upper<=870 : return "BLEN7M" #The Upper value is set to 110 in order to download a bigger wide of flares if lower>=20 and upper<=110 : return "BLENSW"
d6687d30be0f0ec2bd7ca1a64b4938400bde9ed0
76,119
def getErrorPair(model, pair): """ get error for the given pair of points and the model. ie calculate error = (p' - pcalc)**2, with pcalc = model * p """ tx = model[0] ty = model[1] p = pair[0] pprime = pair[1] x = p[0] y = p[1] xprime = pprime[0] yprime = pprime[1] xcalc = x + tx ycalc = y + ty xdiff = xcalc-xprime ydiff = ycalc-yprime err = xdiff**2 + ydiff**2 return err
e50f995daad306ce2bb2a521460145e9fbfb4303
76,123
def resize_image(image, size=None, fx=1.0, fy=1.0): """Resize image to new size. If new_size is None, scaling factors fx and fy are used instead.""" if size is None: width = int(fx * image.size[0]) height = int(fy * image.size[1]) new_size = (width, height) else: new_size = size return image.resize(new_size)
d361f5d4d54e2b90d4e5ecb8838b70b7f56937d8
76,129
def remove_self(dictionary): """Remove entry with name 'self' from dictionary. This is useful when passing a dictionary created with locals() as kwargs. Args: dictionary: Dictionary containing 'self' key Returns: dictionary without 'self' key """ del dictionary['self'] return dictionary
e4e4b827bf993a4089d2cb116455b3cdd330f4ac
76,130
def _proteinTagPresent(fastaHeader, tag): """Checks wheter a tag string is present in the fastaHeader. :param fastaHeader: str, protein entry header from a fasta file :returns: bool, True if tag is present in fastaHeader """ return (tag in fastaHeader)
eb732c3fe0d0d3a09a74b0d4706bf950e5606509
76,131
from typing import Counter def in_degrees_by_uid(conv): """ Returns a Counter of the post IDs mapping to the # of replies that post received in this Conversation Parameters ---------- conv : Conversation A collection of posts Returns ------- Counter A mapping from post IDs to the # of replies they receive in `conv` """ cnt = Counter() for p in conv.posts.values(): if p.uid not in cnt: cnt[p.uid] = 0 for r in p.reply_to: if r in conv.posts: cnt[r] += 1 return cnt
251b63874a55a8f9f3daece033c036b1b261cd53
76,132
def AxisAng3(expc3): """Converts a 3-vector of exponential coordinates for rotation into axis-angle form :param expc3: A 3-vector of exponential coordinates for rotation :return omghat: A unit rotation axis :return theta: The corresponding rotation angle Example Input: expc3 = np.array([1, 2, 3]) Output: (np.array([0.26726124, 0.53452248, 0.80178373]), 3.7416573867739413) """ return (expc3.normalized(), expc3.norm())
5c554bddc6eec2d837e87f5fa140e03d793a448a
76,134
def _add_padding(byte_list, intended_length, padding_byte=0x00): """ Pads a list with 0's so that it reaches the intended length. """ for i in range(intended_length - len(byte_list)): byte_list.append(padding_byte) return byte_list
e742e19f0f4ef69fbdf381c9c52969f9e17347ec
76,138
def should_load_from_existing_db(database_loader, cursor, *, config): """ Helper method to determine whether or not a backup database should be loaded to begin test execution. A backup db should be used if that backup exists, and if the pytest config options don't indicate that the database should be freshly created to start the the test suite execution. Args: database_loader (DatabaseLoader): A DatabaseLoader instance cursor (django.db.connection.cursor): A database cursor config (Config): The pytest configuration Returns: bool: Whether or not a backup database should be loaded to begin test execution """ # We should load a db backup to start the test suite if that backup exists, # and if the config options don't indicate that the database should be freshly # created to start the the test suite execution return ( config.option.reuse_db and not config.option.create_db and database_loader.has_backup(db_cursor=cursor) )
975eccafe56935f66ca3e89aa7d91aad4dff191f
76,139
def cycle_list(k, n): """ Returns the elements of the list ``range(n)`` shifted to the left by ``k`` (so the list starts with ``k`` (mod ``n``)). Examples ======== >>> from sympy.crypto.crypto import cycle_list >>> cycle_list(3, 10) [3, 4, 5, 6, 7, 8, 9, 0, 1, 2] """ k = k % n return list(range(k, n)) + list(range(k))
0be03fd6e1a11c656b632161a3cd302bb88b769b
76,140
def GetHealthChecks(args, resource_parser): """Returns health check URIs from arguments.""" health_check_refs = [] if args.http_health_checks: health_check_refs.extend(resource_parser.CreateGlobalReferences( args.http_health_checks, resource_type='httpHealthChecks')) return [health_check_ref.SelfLink() for health_check_ref in health_check_refs]
38b8ab7ff6c409f2838b21967d19e2fccc234daf
76,144
def get_dataset(training_info_txt: str) -> str: """get dataset name from training_info.txt Args: training_info_txt (str): path to training_info.txt in checkpoints dir Returns: str: dataset name """ with open(training_info_txt, "r") as f: dataset = f.read().split("\n")[0].split(":")[-1].replace(" ", "") return dataset
778eba4f0666cb8879d626cf7a411764a98f5da5
76,147
def _difference_in_years(start, end): """ calculate the number of years between two dates """ diff = end - start diff_in_years = (diff.days + diff.seconds/86400)/365.2425 return diff_in_years
78ed24bcb2863a7150748ef557af86aec3358554
76,148
def phase_structure(phase_a, phase_b, axis=-1): """Structure function for phase fluctuations. See Daigle, equation 18. The last term accounts for the fact that the mean phase difference of the signals may be nonzero. """ return ((phase_a-phase_b)**2.0).mean(axis=axis) - ((phase_a-phase_b).mean(axis=axis))**2.0
c402b34ea7b682c81c33516c896e67ecbaf41740
76,149
def parse_exif_string(exif_tag): """ Parses given exif tag assuming it is a string and return its value. Parameters ---------- exif_tag : ExifTag Exif tag to parse. Returns ------- str Parsed exif tag value. """ return str(exif_tag.value)
db95e0eede84aa253ded122f0667aca04e038403
76,153
def _toOperation(info, resource, handler): """ Augment route info, returning a Swagger-compatible operation description. """ operation = dict(info) operation['tags'] = [resource] # Operation Object spec: # Unique string used to identify the operation. The id MUST be unique among # all operations described in the API. if 'operationId' not in operation: operation['operationId'] = str(resource) + '_' + handler.__name__ return operation
a7e173627677d2087f7615f78ae64dd903935da6
76,156
def popall(multidict, key): """ Pops and returns all values of the key in multidict""" values = multidict.getall(key) if values: del multidict[key] return values
8eed9cee0ac6b66a1bf9c642d330cd715b1e8b57
76,158
def collection_keys(coll, sep='.'): """Get a list of all (including nested) keys in a collection. Examines the first document in the collection. :param sep: Separator for nested keys :return: List of str """ def _keys(x, pre=''): for k in x: yield (pre + k) if isinstance(x[k], dict): for nested in _keys(x[k], pre + k + sep): yield nested return list(_keys(coll.find_one()))
7ac4b59865f97a92a0da31746843cc5a55f94821
76,159
def authenticate(username, password): """ Returns the user payload (dict) if login is valid else returns False. """ if username == "test" and password == "test": user_payload = {"username": username} return user_payload else: return False
184a34aad8b475db68bff3357a00228410865cff
76,162
from typing import List def _parse_experience(experience: str) -> List[int]: """ Convert a string representation of a list of integers to a proper list of ints. """ if not experience: return list() return [int(x) for x in experience.rstrip(",").split(",")]
958cb94afef1460c0fbb6eece6032db7b0d00e02
76,166
import inspect import warnings def _sort_key(test): """Accepts test method, returns module name and line number.""" method = getattr(test, test._testMethodName) while hasattr(method, '_wrapped'): # If object is wrapped with a method = method._wrapped # decorator, unwrap it. try: lineno = inspect.getsourcelines(method)[1] except IOError: warnings.warn('Unable to sort {0}'.format(method)) lineno = 0 return (method.__module__, lineno)
91aea49068c8011a06d2ce064e56b120067da7fe
76,168
from datetime import datetime import click def extract_simulation_times(logfile): """Returns a newline-separated string of (start, elapsed) times. The starting timestamps are extracted from the logfile based on the starting time stamp at which the Singularity/Docker container was invoked. The elapsed times follow then from the difference between consecutive starting time. """ def is_simulation_start(string: str): """Return True if the line started a Singularity/Docker run-command.""" string = string.lower() return ('singularity run' in string) or ('docker run') in string def to_timestamp(string): """Convert a log-line to its starting time as a datetime entry.""" time_stamp_format = '%Y-%m-%d %H:%M:%S' return datetime.strptime(string[0:string.find(',')], time_stamp_format) # Note: requires `click.open_file` to account for passing a dash (`-`) as # the filename specifier to read from `stdin`. with click.open_file(logfile, 'r') as log: starts = list(map(to_timestamp, filter(is_simulation_start, log))) timings = [f'{starts[0]}\tElapsed (HH:MM:SS)'] for start, stop in zip(starts[:-1], starts[1:]): timings.append(f'{start}\t{stop - start}') return "\n".join(timings)
de32f3f82e39ae2fd05f6f23df21ce577ea31eae
76,171
import math def scale_sizes(size_dict, dimensions=1): """Normalizes a list of sizes so the largest is 1.0. Use `dimensions` if the sizes are non-linear, i.e. 2 for scaling area. """ # x -> (x/max)^(1/dimensions) max_size = float(max(size_dict.values())) scaled_sizes = dict() for k, v in size_dict.items(): scaled_sizes[k] = math.pow(v / max_size, 1.0 / dimensions) return scaled_sizes
75a9290261d40686722bdae137c5f37847807065
76,172
import re def get_train_dataset_name(config_train_name: str, shot: int, seed: int) -> str: """Returns a modified version of a given train dataset with proper shot and seed numbers""" # We replace the given config name's shot number with ours, unless they are already equal. if '1shot' in config_train_name: # Replace shot number config_train_name = config_train_name.replace('1shot', str(shot) + 'shot') elif f'{shot}shot' in config_train_name: # Leave shot as-is assert False # pass else: assert False # Modify or add seed number in name. if 'seed' in config_train_name: # Replace current seed number # Example: name_seedX with name_seed{SEED}, where SEED is our current seed assert len(re.findall('seed.', config_train_name)) == 1 config_train_name = re.sub('seed.', 'seed{}'.format(seed), config_train_name) else: # Append seed string config_train_name = config_train_name + f'_seed{seed}' return config_train_name
a0ad0ba4613e13f6d742f67735227b167f3498e0
76,175
import torch def tensor_to_image(tensor): """ transforms a tensor to an image Args: tensor: tensor of size (1, 3, x, y) Returns: tensor of size(x, y, 3) """ x, y = tensor.size()[-2:] a, b, c = tensor[0] return torch.cat( (a.reshape(x, y, 1), b.reshape(x, y, 1), c.reshape(x, y, 1)), 2)
355698e3e44afd936a0bc92c8f74f8c7d10bf393
76,178
from typing import Callable def search(low: int, high: int, test: Callable[[int], bool]) -> int: """Binary search: [low..high) is the range to search; function "test" takes a single value from that interval and returns a truth value. The function must be ascending: (test(x) and y >= x) => test(y). Returns smallest argument in the interval for which the function is true, or "high" if the function is false for the entire interval. """ while low < high: mid = (low + high - 1) // 2 if test(mid): if mid == low: return low # found high = mid + 1 else: low = mid + 1 return high
047ee9fbb21461d02299f7d8a27dd37d29757717
76,181
def is_ipv4(hosts): """ Function to validate IPv4 Addresses :param hosts: Takes a single host or subnet (ex. 127.0.0.1/24) :return: Boolean True or False """ hosts = hosts.strip() if "/" not in hosts: # Assume that if no mask is specified, use a single host mask hosts = hosts + "/32" # Check if there are 4 octets and a cidr mask if hosts.count(".") == 3: # Check if the octets are no more than 255 mask = int(hosts.split("/")[-1]) octets = hosts.split("/")[0].split(".") for octet in octets: octet = int(octet) if octet <= 255: if mask <= 32: # OK! pass else: return False else: return False return True else: return False
9990949e0faa05d1cbd70fd85cd82e1dc910c1c6
76,182
def getInputParameter(inputParametersPandas,key): """ Parameters: ----------- inputParametersPandas : pandas.df pandas dataframe with two columns key : string key string. Returns: ----------- string the respective parameter value in the df """ #this locates the row, gets the result out of its array form and strips whitespaces away return (((inputParametersPandas.loc[inputParametersPandas['key'] == key]).values)[0,1]).strip()
cf87b66e3b3cb18eae0070a0b66636166623fb8c
76,184
import json import click def upload_config(mwdb, family, config_file, config_type, parent, private, public, share_with): """Upload config object""" with click.open_file(config_file, 'rb') as f: content = json.loads(f.read()) obj = mwdb.upload_config( family=family, cfg=content, config_type=config_type, parent=parent, private=private, public=public, share_with=share_with ) return dict(message="Uploaded config {object_id}", object_id=obj.id)
99a50eecfa68e7850c7d197ab4f60c45e6ec5d0c
76,185
from typing import Any def isnan(x: Any) -> bool: """ Return True if x is NaN where x can be of any type :param x: any object for which (in)equality can be checked """ return x != x
7e352628c7074654a3d32d3de83040e46d3748c1
76,191
def strings_intersect(s_one, s_two): """ Checks if two strings have any intersections :param s_one: first string :type s_one: str :param s_two: second string :type s_two: str :return: whether or not these strings intercept :rtype: bool """ return not set(s_one).isdisjoint(s_two)
2324c8560bf517e6e811115f3fc5b5da8cf7eb3b
76,192
def loadOutputList(expt_name,outputType): """Loads a file containing all file names with a specified output data into a local list Args: expt_name (String): Name of experiment (which contains how many ever simulation output files) outputType (String): molpos or simtime. Determines which set of output filenames to load. Returns: TYPE: List """ datalist = [] if(outputType=='molpos'): path='data/'+expt_name+'/outputMolposList.txt' elif(outputType=='simtime'): path='data/'+expt_name+'/outputSimtimeList.txt' else: raise Exception('outputType required to be either \'molpos\' or \'simtime\'') with open(path) as f: for outputfile in f: datalist.append("data/"+expt_name+"/"+outputfile.rstrip()) return datalist
22f98f554b7cb6161a893a2f81cc4b916460ccc6
76,194
def _version_str(version): """ Convert a tuple of int's to a '.' separated str. """ return ".".join(map(str, version))
2c8422d86ef2cf9987a63f31f7c9c63623ed029a
76,197
def guess_xyz_columns(colnames): """ Given column names in a table, return the columns to use for x/y/z, or None/None/None if no high confidence possibilities. """ # Do all the checks in lowercase colnames_lower = [colname.lower() for colname in colnames] for x, y, z in [('x', 'y', 'z')]: # Check first for exact matches x_match = [colname == x for colname in colnames_lower] y_match = [colname == y for colname in colnames_lower] z_match = [colname == z for colname in colnames_lower] if sum(x_match) == 1 and sum(y_match) == 1 and sum(z_match) == 1: return colnames[x_match.index(True)], colnames[y_match.index(True)], colnames[z_match.index(True)] # Next check for columns that start with specified names x_match = [colname.startswith(x) for colname in colnames_lower] y_match = [colname.startswith(y) for colname in colnames_lower] z_match = [colname.startswith(z) for colname in colnames_lower] if sum(x_match) == 1 and sum(y_match) == 1 and sum(z_match) == 1: return colnames[x_match.index(True)], colnames[y_match.index(True)], colnames[z_match.index(True)] return None, None, None
46c36d67e42d50c7da4e5bd1ea2e73d850f16dae
76,199
from typing import Dict from typing import Any def empty_invoice_data(full_invoice_data: Dict[str, Any]) -> Dict[str, Any]: """Returns data for an `Invoice` without items. Args: full_invoice_data (Dict[str, Any]): Data for an invoice with items. Returns: Dict[str, Any]: Data for an empty `Invoice`. """ full_invoice_data.pop("items") return full_invoice_data
2d5a41811c465bbfd8a0db79a365be22d4e43124
76,201
def tryGetListFromDict(d: dict, key: str): """ Gets element from dict, if not present returns empty list :param d: dict :param key: key for element :return: element or empty list """ try: return d[key] except KeyError: return []
73f1ffd8b13b56b9371e4c66db83f8c8dfa13a3b
76,203
def arduino_map(x, in_min, in_max, out_min, out_max): """Return x mapped from in range to out range. >>> arduino_map(0, 0, 10, 100, 1000) 100 >>> arduino_map(5, 0, 10, 100, 1000) 550 >>> arduino_map(10, 0, 10, 100, 1000) 1000 >>> arduino_map(0, 10, 0, 100, 1000) 1000 >>> arduino_map(5, 10, 0, 100, 1000) 550 >>> arduino_map(10, 10, 0, 100, 1000) 100 >>> arduino_map(0, 0, 10, 1000, 100) 1000 >>> arduino_map(10, 0, 10, 1000, 100) 100 >>> arduino_map(0, -10, 10, -100, 100) 0 >>> arduino_map(128, 0, 255, -100, 100) 0 >>> arduino_map(128, 255, 0, 100, -100) 0 >>> arduino_map(255, 255, 0, 100, -100) 100 >>> arduino_map(0, 255, 0, 100, -100) -100 """ return (x - in_min) * (out_max - out_min) // (in_max - in_min) + out_min
def5d846b1cde359c9b173f59fd054ef3acf2631
76,207
def hr_range_formatter(start, end, step): """Format a range (sequence) in a simple and human-readable format by specifying the range's starting number, ending number (inclusive), and step size. Parameters ---------- start, end, step : numeric Notes ----- If `start` and `end` are integers and `step` is 1, step size is omitted. The format does NOT follow Python's slicing syntax, in part because the interpretation is meant to differ; e.g., '0-10:2' includes both 0 and 10 with step size of 2 whereas 0:10:2 (slicing syntax) excludes 10 Numbers are converted to integers if they are equivalent for more compact display. Examples -------- >>> hr_range_formatter(start=0, end=10, step=1) '0-10' >>> hr_range_formatter(start=0, end=10, step=2) '0-10:2' >>> hr_range_formatter(start=0, end=3, step=8) '0-3:8' >>> hr_range_formatter(start=0.1, end=3.1, step=1.0) '0.1-3.1:1' """ if int(start) == start: start = int(start) if int(end) == end: end = int(end) if int(step) == step: step = int(step) if int(start) == start and int(end) == end and step == 1: return '{}-{}'.format(start, end) return '{}-{}:{}'.format(start, end, step)
445a23c9931ef3b4a950227c51c0a4c551cf3c64
76,209
import math def next_even_number(val): """Returns the next even number after the input. If input is even, returns the same value.""" return math.ceil(val / 2) * 2
700334e60c4abfa949524c1825b7ee97dd8f75cd
76,213
def has_token(node, token): """Has the node the specified token?""" return any(filter(lambda t: t.spelling == token, node.get_tokens()))
e2e3d6a3c4393b557ab5a8c770ad94f2e5112344
76,216
import copy def simplify(mapping, name, **params): """ Reduce the mapping. The method modifies the self object. Args: mapping (Mapping): the mapping to be reduced name (str): name of the reduced mapping params (**kwargs): 'k' (int): desired number of classes (default: None). 'thresholds' (list): list of thresholds (default: None). 'centroids' (list): list of centroids (default: None). 'labels' (list): list of labels (default: None). 'method' (str): method for reduction of the mapping: 'linear', 'kmeans' (default: 'auto'=='kmeans') Applicable if neither thresholds nor centroids given. 'iters' (int): number of iterations if method is 'kmeans' (default: 0) 'label_from' (int): numerical label of the first class. Applicable if 'mean_labels' is False. 'mean_labels' (bool): whether class labels are to be numerical (False, default) or be means of elements in the class (True). 'default': default value if an input value not in the mapping keys (the default default is 'self.default' if 'mean_labels' is True; otherwise None). Returns the reduced mapping. Raises: ValueError if: if more than one from 'thresholds', 'centroids' and 'k' are provided at the same time. if neither 'thresholds' nor 'centroids' nor 'k' are provided and also 'labels' are not provided. 'k' < 1, 'method' is neither 'linear' nor 'kmeans' nor 'auto', number of 'labels' is less than number of classes. Method simplifies the mapping according to provided 'thresholds' or 'centroids' or cluster the data to 'k' classes. If none of these is specified, the desired number of classes is deduced from the number of labels. Clustering using the 'linear' method simply divide the 1d space evenly. Clustering using the 'kmeans' method divide the 1d space using even percentiles of the original mapping values distribution. Then k-means iterations are performed if 'iters' > 0. If 'labels' are given, they are assigned to classes. Otherwise, if 'mean_labels' are set to True, mean values in each class is assigned as the class label; otherwise, class number + 'label_from" is assigned as the class label. So created class labels become the mapping values of the new reduced mapping. Note that it is often required to adjust the 'default' value for the input values not in the mapping keys (except if new mapping labels are 'mean_labels'). """ new_mapping = copy.deepcopy(mapping) new_mapping.__name__ = name return new_mapping.simplify(**params)
5185ab0f0b3d9540f1c6701b1d9cf848fd9b3fe8
76,218
def load_labels(labels_path): """Loads labels of the Standard365 Places2 Dataset Parameters ---------- labels_path : str The location of the Standard365 Place2 labels file. Returns ------- Two lists. First represents class labels. Second indoors/outdoors labels matching the first list`s labels. """ classes = [] outdoors_indoors = [] with open(labels_path) as labels_file: for line in labels_file: classes.append(line[3:line.find(' ')]) outdoors_indoors.append(line[line.find(' '):].strip()) return classes, outdoors_indoors
e5db98f147c8a363dbea4fa59b66a46ef8d1c5b0
76,219
def sequence(find, numbers): """This function checks to see if an object is in a sequence >>> sequence(1, [1,2,3,4]) 1 >>> sequence("i", "Hello world") 'Nothing' >>> sequence(4, (2,4,6)) 4 """ for n in numbers: if find == n: return(n) else: return("Nothing")
e82540f2fcef534ecbaa5c2fff03d5de3f31bdf2
76,220
from typing import Tuple def match_shape_lengths(s1: Tuple, s2: Tuple) -> Tuple: """ Ensure s1 and s2 have the same count of axes with the largest count of axes as the desired size. If s1 or s2 is shorter in axis count, add new axes of dimension 1 to the left of the shape. Returns the correctly sized two shapes. See twit_test.py This is used to get two tensor shapes able to be used by twit with the same number of axes each. """ if len(s2) == 0: raise AttributeError("Tensor destination shape can not be length 0, nowhere to put the results!") while len(s1) < len(s2): s1 = (1,) + s1 while len(s2) < len(s1): s2 = (1,) + s2 return s1, s2
5f0ddfcbfb0d6523a795b3b81f3268c9501c5512
76,221
def get_cat_code_dict(df, col): """Returns a dict to pase a categorical column to another categorical but using integer codes in order to use it with shap functions. Parameters ---------- df : pd.DataFrame col : str Column to transform Returns ------- dict Original names as key and codes as values. """ d = dict( zip( df[col], df[col].cat.codes.astype("category") ) ) return d
9b0cb51072133cf1896f1bd24313f9160c05fd37
76,222
def is_super(node): """return True if the node is referencing the "super" builtin function """ if getattr(node, 'name', None) == 'super' and \ node.root().name == '__builtin__': return True return False
bea8392d69271c20c6b0648fdd20e67006c55016
76,227
def shu_osher_change_alpha_ij(alpha,beta,i,j,val): """ **Input**: - alpha, beta: Shu-Osher arrays - i,j: indices - val -- real number **Output**: Shu-Osher arrays alph, bet with alph[i,j]=alpha[i,j]+val. """ alpha[i,j] = alpha[i,j]+val alpha[i,:] -= val*alpha[j,:] beta[i,:] -= val* beta[j,:] return alpha,beta
f1ce978eb667dcc6c0a1e14c7a0675b1fe78a521
76,228
import typing def no_parsing(f: typing.Callable): """Wrap a method under test so that it skips input parsing.""" return lambda *args, **kwargs: f(*args, _parse=False, **kwargs)
ca2222ef87f25dda6beb2a9af12dbd5e2f76ea01
76,229
from typing import List from typing import Dict import pathlib import json def seed_game_entries() -> List[Dict]: """Consumes a `seed.json` file and outputs a list of dicts """ data = None with open(pathlib.Path(__file__).parent.absolute()/'seed.json') as in_file: data = json.load(in_file) return data
03f0d32642e5eb3924a0d33ab4b3a02f49a5a1a2
76,232
def return_duplicates(d_list): """ A 'set()' is a kind of list that can not have duplicates. Steps to follow to return the duplicates of a list: 1) create an empty list 2) create an empty set 3) Step through each item in the list by using a for-loop 4) Get the length of the set 5) Attempt to add an item from the list into the set 6) Get the new length of the set 7) Compare the two lengths: if they are the same, the item is a duplicate 8) Append the duplicate item to the list of duplicates 9) At the end of the loop, return the list of duplicates :param d_list: the list :return: list of duplicates """ duplicates = [] my_set = set() for i in d_list: length_one = len(my_set) my_set.add(i) length_two = len(my_set) if length_one == length_two: duplicates.append(i) return duplicates
700efb1b03266d5465d1ac2795d2a05cbb300243
76,234
import uuid import json def _create_uuid(filename): """Create a uuid for the device.""" with open(filename, "w") as fptr: new_uuid = uuid.uuid4() fptr.write(json.dumps({"nexia_uuid": str(new_uuid)})) return new_uuid
26ab24f444377b9f2c63b569af1b3924099f1a84
76,236
def reverse_rec(tempstr): """ recursively reverses a string and returns it """ if tempstr == "": #checks if string is empty return '' else: #calls reverse_rec starting from the second element and concatinating the first element to it return reverse_rec(tempstr[1:]) + tempstr[0]
1e507abd9b466dcecf40b3d3216f0ddf33ca5645
76,237