content
stringlengths
39
14.9k
sha1
stringlengths
40
40
id
int64
0
710k
from typing import AnyStr import codecs def auto_encode(string: AnyStr, encoding: str = "utf-8", errors: str = "strict") -> bytes: """Lookup a encoder and encode the string if it is bytes, else return it untouched if it's already in bytes (for utf). If its an int, etc, it'll try to wrap it in bytes for you. :param string: The text to encode :param encoding: The encoding-type to use; default is `utf-8` :param errors: optional; pass `replace` or `namereplace` if you don't want the default `strict` for how to process errors :return: The encoded text """ encoder = codecs.getencoder(encoding=encoding) if isinstance(string, bytes): return string elif isinstance(string, str): return encoder(string)[0] else: return encoder(str(string))[0]
ff5854e843f718adaec728ac11083cfa22604e9e
73,544
def list_transit_times(t0, period, steps_or_num_transits=range(0, 10), return_string=False): """List the transit times based on the supplied transit parameters""" if isinstance(steps_or_num_transits, int): steps = range(0, steps_or_num_transits) else: steps = steps_or_num_transits times = [t0 + period * i for i in steps] if return_string: return ",".join(map(str, times)) else: return times
9cc74861f02f05412ef4ac71202b210862087734
73,545
import re def get_version(file_path): """ Return the project version tag. Parameters ---------- file_path : str The path to the project __init__.py file. Returns ------- version : str The project version tag. """ with open(file_path, mode='r') as init_file: init_cont = init_file.read() # PEP 440: [N:]N(.N)*[{a|b|c|rc}N][.postN][.devN] ver_spec = (r'__version__ = ["\'](\d+:)?\d+(\.\d+){1,2}' + r'((a|b|c|rc)\d+)?(\.post\d+)?(\.dev\d+)?["\']') ver_match = re.search(ver_spec, init_cont) if not ver_match: raise RuntimeError('Unable to find (valid) version specifier in {0!r}' .format(file_path)) return ver_match.group(0)[15:-1]
4ccfaadf78466f4124aa3fb2c3c6249257c03e93
73,546
def safe_unicode(obj): """Safe conversion to the Unicode string version of the object.""" try: return str(obj) except UnicodeDecodeError: return obj.decode("utf-8")
f6a592f7ea0de5179f1b8a91e0bd75c9a5d522df
73,547
import random def e2e_slot_to_hotel_slot(slot): """Map an E2E slot onto a slot in the Hotel domain. If there are multiple tokens in the corresponding category in the Hotel domain, randomly pick one from that category. """ slot_map = { 'food': ['address', 'phone', 'postcode'], 'customerrating': ['address', 'phone', 'postcode'], 'familyfriendly': ['acceptscreditcards', 'dogsallowed', 'hasinternet'], 'eattype': ['type'] } if slot in slot_map: if len(slot_map[slot]) == 1: return slot_map[slot][0] else: return random.choice(slot_map[slot]) else: return slot
b8fc7f83d8ce678ebb8df94732f2a1f2f49ceae1
73,555
def prepare_region_data(df, scale_by=1): """Prepare regional data so that it can be used in train_model_region.""" regions = df.region_name.unique() x_region = {} x_t_region = {} y_region = {} for i, region in enumerate(regions): x_region[region] = ( df.loc[ (df.region_name == region) & (df["cases_pos_hospitalized_icu"] > 0), "cases_pos_hospitalized_icu", ].to_numpy()[:-1] / scale_by ) x_t_region[region] = ( df.loc[ (df.region_name == region) & (df["cases_pos_hospitalized_icu"] > 0), "cases_pos_hospitalized_icu_change", ].to_numpy()[1:] / scale_by ) y_region[region] = ( df.loc[ (df.region_name == region) & (df["cases_pos_hospitalized_icu"] > 0), "cases_pos_hospitalized_icu_change", ].to_numpy()[1:] / scale_by ) return x_region, x_t_region, y_region
b9fb87f344378bd1a0b34931ce278f00901d280c
73,557
import functools def cached(f): """ Decorator that creates a cached property. """ key = f.__name__ @property @functools.wraps(f) def decorated(self): if key not in self._cache: self._cache[key] = f(self) return self._cache[key] return decorated
15246ae4c07d9f855c6830e5a60cf3cf3597effe
73,559
import codecs def to_hex(data): """Convert binary data to a hex string""" return codecs.encode(data, 'hex')
4685c0ef6f5a5cfe1b0027bac6d1a9421e86dda6
73,567
def get_unique_list(input_list): """ Return a new list of unique elemets only while preserving original order """ new_list = [] for element in input_list: if element not in new_list: new_list.append(element) return new_list
593bb0cc12f9c98a22490670d136f1a354d5cec0
73,571
import json def parse_advice(json_response) -> str: """Get the advice from the JSON response.""" json_slip = json.loads(json_response) advice = json_slip['slip']['advice'] return advice
d4a8680602917032ecd8a463fafe083851d0446c
73,572
from typing import List from typing import Union from typing import Any def reduce(values: List) -> Union[List[Any], Any]: """ Reduce a list to a scalar if length == 1 """ while isinstance(values, list) and len(values) == 1: values = values[0] return values
3922a86c462d265fd37736e9c9b56069ce4ab8d0
73,573
import requests def get_sequence(UniprotID): """Get protein sequence from UniProt Fasta (using REST API). """ # collect UniProtID data fasta_URL = 'https://www.uniprot.org/uniprot/'+UniprotID+'.fasta' request = requests.post(fasta_URL) request.raise_for_status() fasta_string = request.text.split('\n') sequence = ''.join(fasta_string[1:]) return sequence
ede837154bda738dc8e7e83c97c5f81b284db17c
73,574
def modulus(x, y): """ Modulus """ return x % y
ea2694f98133ddaf43da3f3eb702f5ba22dec597
73,576
def capitalized(piece_name: str) -> str: """Returns a capitalized version of a piece name Args: piece_name: Piece name Returns: Capitalized version """ return '%s%s' % (piece_name[0].upper(), piece_name[1:].lower())
98838f820e90f6b1540f537ed878324d02aefb87
73,579
def isDigit(char): """assumes char is a single character returns a boolean, True is char is a digit, else False""" digits = "0123456789" return char in digits
f26193c9fff51cdaa87d76ac0e638cac09936b6e
73,583
def first(predicate_or_None, iterable, default=None): """ Returns the first item of iterable for which predicate(item) is true. If predicate is None, matches the first item that is true. Returns value of default in case of no matching items. """ return next( filter(predicate_or_None, iterable), default )
e477073ab7c59f3650adc112f9dafd811661b32f
73,587
from typing import Dict import click def prep_secrets(*, environment_mappings: Dict[str, str], secret_values: Dict[str, str]) -> Dict[str, str]: """Convert secrets from standardized name map to required environment variable map. :param dict environment_mappings: Mapping from secret identifiers to environment variable names :param dict secret_values: Mapping from secret identifiers to secret values :returns: Mapping from environment variable names to secret values :raises click.UsageError: if secrets contains an identifier that is not in environment_mappings """ try: return {environment_mappings[key]: value for key, value in secret_values.items()} except KeyError as error: missing_key = error.args[0] raise click.UsageError(f'Identifier key "{missing_key}" not found in environment variable mapping.')
cc73ac7052ff3b4476e64cee671e8501b7cb248e
73,591
def percentageCalculator(x, y, case=1): """Calculate percentages Case1: What is x% of y? Case2: x is what percent of y? Case3: What is the percentage increase/decrease from x to y? """ if case == 1: #Case1: What is x% of y? r = x/100*y return r elif case == 2: #Case2: x is what percent of y? r = x/y*100 return r elif case == 3: #Case3: What is the percentage increase/decrease from x to y? r = (y-x)/x*100 return r else: raise Exception("Only case 1,2 and 3 are available!")
30443f29282cf06443a4276d3cbbe20b7c792382
73,594
def name_matches_object(name, *objects, **kwargs): """Determine if a resource name could have been created by given objects. The object(s) must implement RandomNameGeneratorMixin. It will often be more efficient to pass a list of classes to name_matches_object() than to perform multiple name_matches_object() calls, since this function will deduplicate identical name generation options. :param name: The resource name to check against the object's RESOURCE_NAME_FORMAT. :param *objects: Classes or objects to fetch random name generation parameters from. :param **kwargs: Additional keyword args. See the docstring for RandomNameGenerator.name_matches_object() for details on what args are recognized. :returns: bool """ unique_rng_options = {} for obj in objects: key = (obj.RESOURCE_NAME_FORMAT, obj.RESOURCE_NAME_ALLOWED_CHARACTERS) if key not in unique_rng_options: unique_rng_options[key] = obj return any(obj.name_matches_object(name, **kwargs) for obj in unique_rng_options.values())
f176c6681ea602e5d981a54bf7bb3fe5e2a31a40
73,595
def getRow(array, index): """ Returns the row of the given 2D array at the selected index """ column = [] for i in range(0,9): column.append(array[index][i]) return column
b3ab69bba27f8fecc9d7c0dc5c686aa508e6a169
73,597
import random def getRandomWord(wordList): """ Returns a random string from the passed list of strings. """ wordIndex = random.randint(0, len(wordList) - 1) return wordList[wordIndex]
1045614d50889c29626a0702a979a056c503b285
73,598
def create_time_callback(data): """Creates callback to get total times between locations.""" def service_time(node): """Gets the service time for the specified location.""" return data["demands"][node] * data["time_per_demand_unit"] def travel_time(from_node, to_node): """Gets the travel times between two locations.""" travel_time = data["travel_time_matrix"][from_node, to_node] if travel_time < 15: travel_time = 15 return travel_time def time_callback(from_node, to_node): """Returns the total time between the two nodes""" serv_time = service_time(from_node) trav_time = travel_time(from_node, to_node) return serv_time + trav_time return time_callback
72633675e0f659bfebb5b30a3374818f2c5cedc7
73,599
def export_report(ss, report_id, export_format, export_path, sheet_name): """ Exports a report, given export filetype and location. Allows export format 'csv' or 'xlsx'. :param ss: initialized smartsheet client instance :param report_id: int, required; report id :param export_format: str, required; 'csv' or 'xlsx' :param export_path: str, required; filepath to export sheet to :param sheet_name: str, required; name of sheet exported :return: str, indicating failure or success, with path, filename, extension """ if export_format == 'csv': ss.Sheets.get_sheet_as_csv(report_id, export_path) elif export_format == 'xlsx': ss.Sheets.get_sheet_as_excel(report_id, export_path) if export_format == 'csv' or export_format == 'xlsx': return 'Report exported to {}{}.{}'.format(export_path, sheet_name, export_format) else: return 'export_format \'{}\' is not valid. Must be \'csv\' or \'xlsx\''.format(export_format)
a2ec63fa85a7498043f5848404870a71059ffa9f
73,604
def build_add_edge_query(source_label: str, target_label: str, edge_type: str, edge_props: str) -> str: """Build a standard edge insert query based on the given params""" insert_query = 'UNWIND $props AS prop MERGE (n:Base {{objectid: prop.source}}) ON MATCH SET n:{0} ON CREATE SET n:{0} MERGE (m:Base {{objectid: prop.target}}) ON MATCH SET m:{1} ON CREATE SET m:{1} MERGE (n)-[r:{2} {3}]->(m)' return insert_query.format(source_label, target_label, edge_type, edge_props)
645fe2edef12a2600aa22cdc2228ab7c22e301cc
73,606
from pathlib import Path def default_messages_path() -> Path: """ Get path of included messages. """ return Path(__file__).joinpath("..", "locale").resolve()
ce01a37d9b09000d46720325d79188702001e9c3
73,609
def get_filename(file_name_parts=None): """ This routine creates the filename to be used to store the record. :param file_name_parts: file name parts :return: File Name to store the record """ file_partial = '' if file_name_parts is not None: for part in file_name_parts: file_partial = file_partial + '_' + part output_file = 'record_' + file_partial + '.wav' return output_file
d78a7c53b0db618dffdad3157989b81d699e0008
73,610
def getMetadataSizes(conn, showEmpty = True): """Get sizes of all InterMine metadata entries Returns a dictionary of <name>:<size> conn - open database connection showEmpty - if true then 0 sizes are also shown""" with conn.cursor() as cur: cur.execute("select key, length(value), length(blob_value) from intermine_metadata;") entries = cur.fetchall() results = {} for entry in entries: (name, size, blobSize) = entry size = max(size, blobSize) if showEmpty or size > 0: results[name] = size return results
9ae706eb3d0d45ca27f9551293b33b08b4ea2260
73,614
def merge_properties(previous_val, next_val): """ Function used in reduce for merging several xml properties to dict Example: Source: [ {"name": "name", "value": "cache_name"}, {"name": "groupName", "value": "group_name"} ] Result: { "name": "cache_name", "groupName": "group_name" } :param previous_val: reduce previous value :param next_val: next value :return: properties dict """ if previous_val["name"] == 'name': previous_val["name"] = previous_val["value"] del previous_val["value"] previous_val[next_val["name"]] = next_val.get("value", next_val["_children"]) return previous_val
e91d0abba49e1f9bc1b628e25070d9d6e965b7d5
73,615
def correlation(x, y): """ Fill in this function to compute the correlation between the two input variables. Each input is either a NumPy array or a Pandas Series. correlation = average of (x in standard units) times (y in standard units) Remember to pass the argument "ddof=0" to the Pandas std() function! """ std_x = (x - x.mean()) / x.std(ddof=0) std_y = (y - y.mean()) / y.std(ddof=0) return (std_x * std_y).mean()
669f32eda3fa9508cefe0ea7e1b80c04523e6935
73,616
def dot(x, y): """Dot product of two lists of equal length""" return sum(x_ * y_ for (x_, y_) in zip(x, y))
060c88268aa17d74d3544197110da94c89d755f6
73,619
def get_rank(s, i): """ get number of occurence of s[i] before i. """ c = s[i] return s[:i].count(c)
3b86e8e1678f98ae3a352238110e188732cd3fe5
73,620
def average_absolute_deviation(nums: list[int]) -> float: """ Return the average absolute deviation of a list of numbers. Wiki: https://en.wikipedia.org/wiki/Average_absolute_deviation >>> average_absolute_deviation([0]) 0.0 >>> average_absolute_deviation([4, 1, 3, 2]) 1.0 >>> average_absolute_deviation([2, 70, 6, 50, 20, 8, 4, 0]) 20.0 >>> average_absolute_deviation([-20, 0, 30, 15]) 16.25 >>> average_absolute_deviation([]) Traceback (most recent call last): ... ValueError: List is empty """ if not nums: # Makes sure that the list is not empty raise ValueError("List is empty") average = sum(nums) / len(nums) # Calculate the average return sum(abs(x - average) for x in nums) / len(nums)
a95b5e6fcc9c80ee28be367969959b8b977aeda9
73,625
def users_to_fullnames(users_df): """Returns a list a full names from users DataFrame""" first_names = list(users_df["First name"]) surnames = list(users_df["Surname"]) full_names = [i + " " + j for i,j in zip(first_names, surnames)] return full_names
08b93e71d90b41723e0b219e86144df77a908bd2
73,626
def defuzzify(fired_rule_tuples: list) -> float: """ defuzzify consequent fuzzy values based on weighted average :param fired_rule_tuples: list of tuples containing consequent values and matching rule weights :return: The weighted average """ print(list(map(lambda x: x[0], fired_rule_tuples))) return sum([w*z for w,z in fired_rule_tuples]) / sum(map(lambda x: x[0], fired_rule_tuples))
c401319c6ea5d44ee880b76d28da2dacee24f305
73,630
def least_residue(a , m): """ Returns least residue of a (mod m) Parameters ---------- a : int denotes a in a (mod m) m : int denotes m in a (mod m) return : int returns integer least residue """ return a%m
a697656664fa11c64c32d8902ebce893b70f9203
73,633
import torch def slerp(val, low, high): """Spherical interpolation. val has a range of 0 to 1.""" if val <= 0: return low elif val >= 1: return high elif torch.allclose(low, high): return low omega = torch.arccos(torch.dot(low/torch.norm(low), high/torch.norm(high))) so = torch.sin(omega) return torch.sin((1.0-val)*omega) / so * low + torch.sin(val*omega)/so * high
fe0bfaab8db2bbff15b5f83077a47b60def1390f
73,637
import hashlib def md5sum(filename, blocksize=65536): """Generate md5 sum""" hsh = hashlib.md5() with open(filename, 'rb') as f_handle: for block in iter(lambda: f_handle.read(blocksize), b''): hsh.update(block) return hsh.hexdigest()
b34f2fc913c3132094e04d5f347de8fc704a0dba
73,638
def in_labelset(xmrs, nodeids, label=None): """ Test if all nodeids share a label. Args: nodeids: An iterable of nodeids. label: If given, all nodeids must share this label. Returns: True if all nodeids share a label, otherwise False. """ nodeids = set(nodeids) if label is None: label = xmrs.ep(next(iter(nodeids))).label return nodeids.issubset(xmrs._vars[label]['refs']['LBL'])
1db07cd4f4a24a16ac5f06d09dbe65f9473da4b6
73,643
import itertools def split_to_episodes(iterable, is_splitter): """ Split iterable into sub-lists with func is_splitter :param iterable: The collection to operate on. :param is_splitter: This func is to tell whether the current element is a splitter. Splitter itself will be dropped and never show up in sub-lists. :return: A list of sub-lists, each sub-list has two elements: The first one is the episode information line The send element holds all the quotes mentioned by this episode. """ sentences = [list(g) for k, g in itertools.groupby(iterable, is_splitter) if not k] episodes = [x for x in iterable if is_splitter(x)] return zip(episodes, sentences[1:])
f5523a660a76af24e854c61635c47d4287667375
73,644
def get_prefrosh_and_adjacent(prefrosh_id, prefrosh_list): """Returns a prefrosh and the IDs of the neighboring two frosh in the provided list.""" idx, prefrosh = next(((idx, pf) for idx, pf in enumerate(prefrosh_list) if pf['prefrosh_id'] == prefrosh_id)) prev_id = prefrosh_list[idx - 1]['prefrosh_id'] if idx > 0 else None next_id = prefrosh_list[idx + 1]['prefrosh_id'] if idx < len(prefrosh_list) - 1 else None return [prefrosh, prev_id, next_id]
b56199ad0bdb2ca532bdfcd456864ee59fdb90ba
73,645
def get_bounding_straight_rectangle(points): """Given a list of points, determine the straight rectangle bounding all of them. Returns xywh.""" xs = [point[0] for point in points] ys = [point[1] for point in points] xmin, xmax = (min(xs), max(xs)) ymin, ymax = (min(ys), max(ys)) return xmin, ymin, xmax-xmin, ymax-ymin
d498c96cef4d6d28648349077931e2f32d118564
73,649
import re def _testname(filename): """Transform the file name into an ingestible test name.""" return re.sub(r'[^a-zA-Z0-9]', '_', filename)
af6acb345647eb78d40e3ef1c6b2750c8050b1ac
73,651
def encode_bool(value): """Encode booleans to produce valid XML""" if value: return "true" return "false"
8079fc74cf184485f9cdeb02ea454265d5ed6d38
73,653
import hashlib def _hash_key(k): """ Returns the input k (a large integer key) as a hashed byte array. """ return hashlib.sha256(str(k).encode()).digest()
23b986478078a515f7ab711424fba2fad644bbd7
73,654
def _header2row_numbers(local_header, global_header): """Calculate local grid starting and ending rows in global grid Return: ind_top: the index of the top row ind_bottom: the index of the bottom row """ y_bottom_gap = local_header['yllcorner']-global_header['yllcorner'] row_gap = round(y_bottom_gap/local_header['cellsize']) ind_bottom = global_header['nrows']-1-row_gap ind_top = ind_bottom-local_header['nrows']+1 ind_top = int(ind_top) ind_bottom = int(ind_bottom) return ind_top, ind_bottom
da198dc59e27cdc4eb862f7a47fe08d702eae856
73,656
def commission_low(q, p): """ ํ•œ๊ตญํˆฌ์ž์ฆ๊ถŒ ์ˆ˜์ˆ˜๋ฃŒ(๋‚ฎ์„ ๋•Œ) :param q: (int) ๋งค์ˆ˜ ์ฃผ์‹ ์ˆ˜ :param p: (float) ๋งค์ˆ˜ ์ฃผ์‹ ๊ฐ€๊ฒฉ :return: (float) ์ˆ˜์ˆ˜๋ฃŒ + ์„ธ๊ธˆ """ x = abs(q * p) if q < 0: tax = int(x * 0.003) else: tax = 0 return x * 0.00024164 // 10 * 10 + tax
ba14e427eef0f2c6e3b04b2bb525086bb3ceaad6
73,658
from typing import OrderedDict def parse_re(input, target_re): """ Run re.findall with `target_re` regexp on given `input` Return found targets as OrderedDict with float values. parse_re("G0 S3 P0.1") = {'S': 3, 'P': 0.1} """ x = input.strip() res = target_re.findall(x) return OrderedDict(map(lambda x: (x[0], float(x[1])), res))
f853f4355819a2d18e5f773817f32e3e83365dcc
73,659
def _calc_rates(matrix, thresh): """Calculates true positive rate and false positive rate for a given threshold Arguments: matrix {np.ndarray} -- true labels and predicted probabilities thresh {float} -- threshold for a round of ROC construction Returns: [float, float] -- true positive rate, false positive rate """ tp = 0 fp = 0 tn = 0 fn = 0 n = len(matrix) for i in matrix: pred = 1 if i[0] >= thresh else 0 if pred == 1: if i[1] == 1: tp += 1 else: fp += 1 else: if i[1] == 0: tn += 1 else: fn += 1 tpr = tp / (tp+fn) fpr = fp / (fp + tn) return tpr, fpr
5c94129cb5fb346d945adb76f0247edee75799cd
73,660
def is_standardized(table, has_time=False, verbose=True): """ Check if the table has the correct indices and the minimum required columns. Args: table: pandas DataFrame Annotation table. has_time: bool Require time information for each annotation, i.e. start and stop times. verbose: bool If True and the table is not standardized, print a message with an example table in the standard format. Returns: res: bool True if the table has the standardized Ketos format. False otherwise. """ required_indices = ['filename', 'annot_id'] required_cols = ['label'] if has_time: required_cols = required_cols + ['start', 'end'] mis_cols = [x for x in required_cols if x not in table.columns.values] res = (table.index.names == required_indices) and (len(mis_cols) == 0) message = """ Your table is not in the Ketos format. It should have two levels of indices: filename and annot_id. It should also contain at least the 'label' column. If your annotations have time information, these should appear in the 'start' and 'end' columns extra columns are allowed. Here is a minimum example: label filename annot_id file1.wav 0 2 1 1 2 2 file2.wav 0 2 1 2 2 1 And here is a table with time information and a few extra columns ('min_freq', 'max_freq' and 'file_time_stamp') start end label min_freq max_freq file_time_stamp filename annot_id file1.wav 0 7.0 8.1 2 180.6 294.3 2019-02-24 13:15:00 1 8.5 12.5 1 174.2 258.7 2019-02-24 13:15:00 2 13.1 14.0 2 183.4 292.3 2019-02-24 13:15:00 file2.wav 0 2.2 3.1 2 148.8 286.6 2019-02-24 13:30:00 1 5.8 6.8 2 156.6 278.3 2019-02-24 13:30:00 2 9.0 13.0 1 178.2 304.5 2019-02-24 13:30:00 """ if res == False and verbose == True: print(message) return res
33f5ad6e774c93a2cf5f7a805486eba8e8964fdc
73,664
def find_all_ind2(target, tokens): """ finds all appearances of a target phrase (could be multiple words, e.g. 'dark brown') within a list of tokens. :param target: a String of the feature/country. E.g. 'dark brown', 'Italian wine', etc. :param tokens: the List of tokens of the sentence to be looked at :return: all indices where a match was found """ featur_tokens = target.split() indices = [] i = 0 while i < len(tokens): equal = True for j, ft in enumerate(featur_tokens): if i + j >= len(tokens) or tokens[i + j] != ft: equal = False break if equal: indices.append(i) i += len(featur_tokens) i += 1 return indices
6e54a7e5706b0b3584d2ac46d34aa8fc4655e4e3
73,666
import six def _to_reddit_list(arg): """Return an argument converted to a reddit-formatted list. The returned format is a comma deliminated list. Each element is a string representation of an object. Either given as a string or as an object that is then converted to its string representation. """ if (isinstance(arg, six.string_types) or not ( hasattr(arg, "__getitem__") or hasattr(arg, "__iter__"))): return six.text_type(arg) else: return ','.join(six.text_type(a) for a in arg)
7bc76a0142a1fb8fdcdb61f5b6f9947e83af9d43
73,671
def inRange(p,q,r): """ return true iff q is between p and r """ return ( (p <=q <= r) or (r<=q<=p) )
2243a41abab3c27c1c78062c6833296a11b2f9b7
73,673
import re def clean_spaces(t): """Remove multiple spaces from a string""" if t is None: return t return re.sub('\s+', ' ', t)
3d57ea88d8a09ca3ca1afd910a67f6a297137c23
73,677
def mock_none(self, *args): """ For mocking various FTP methods that should return nothing for tests. """ return None
8cbedd7396dfb123e2d620d4d8e6b478d22eeaff
73,678
import itertools def _powerset(iterable, minsize=0): """From the itertools recipes.""" s = list(iterable) return itertools.chain.from_iterable( itertools.combinations(s, r) for r in range(minsize, len(s) + 1) )
41c5576ae031288957d827d82231eab43f1ce70b
73,679
def buffer_bbox(bbox_osm): """ Buffers a EPSG:4326 bounding box slightly to ensure covering the whole area of interest. :param bbox_osm: array-like of four coordinates: miny, minx, maxy, maxx. :return: array-like of four coordinates: miny, minx, maxy, maxx """ offset_lat, offset_lon = 0.02, 0.02 # degrees bbox_osm[0] -= offset_lat # min lat bbox_osm[1] -= offset_lon # min lon bbox_osm[2] += offset_lat # max lat bbox_osm[3] += offset_lon # max lon return bbox_osm
e705351da7531a270ced4c504e4142388f99d59c
73,684
def remove_chars(seq): """Remove all non digit characters from a string, but cleanly passthrough non strs. Parameters ---------- seq : Any Strings will be modified, any other type is directly returned Returns ------- Any The original sequence, minus non-digit characters if input was a string """ seq_type = type(seq) if seq_type != str: return seq return seq_type().join(filter(seq_type.isdigit, seq))
6257da82d12f9f1b4a446b8ccc93436cbd24278a
73,686
def time_warp(ts): """ >>> time_warp('1 2 3 4 5 5 2 3 3'.split(' ')) ['1', '2', '3', '4', '5', '2', '3'] """ ts = ts.split(' ') result = [] most_recent_elem = None for e in ts: if e != most_recent_elem: result.append(e) most_recent_elem = e return result
d6d8471d017d13cee9b4e9e0f2bdf70c14bb314e
73,687
def determinant(a, b, c, d, e, f, g, h, i): """Calculate the determinant of a three by three matrix. Where the matrix contents match the parameters, like so: |a b c| |d e f| |g h i| """ return a*(e*i - f*h) - b*(d*i - f*g) + c*(d*h - e*g)
2a923d076a2bd027905b1573215e15422ec791e6
73,689
def strip_prefix(s, prefix): """Remove prefix frm the beginning of s is s = "some_something" and prefix = "some_", return "something" if s is not a string return None if prefix is not a string, return s :param str s: string to modify :param str prefix: prefix to remove :rtype: Optional[str]=None """ if not isinstance(s, str): return None if not isinstance(prefix, str): return s if s.startswith(prefix): return s[len(prefix) :] # noqa: E203 return s
747fa22d147cac883dd38b7a7d93a58191b5f2df
73,694
def compute_finance_labels(df, shift=1): """ Computes labels of financial data. Args: df: shift: Returns: df with newly added label columns, nr. of labels """ n = len(df.columns) df["label t"] = df["return"].apply(lambda x: 1. if x > 0 else 0.) df["label t+1"] = df["return"].shift(-shift).apply(lambda x: 1. if x > 0 else 0.) df["label volume"] = df["volume_daily_change"].apply(lambda x: 1. if x > 0 else 0.) # removing last shift rows as there labels can not be computed df = df.iloc[:-shift] nr_labels = len(df.columns) - n return df, nr_labels
631e20a329ad91661411e0f0216b830070e0970d
73,705
import http def build_status(code): """Transform a numeric code (200) in a HTTP status ('200 OK').""" status = http.HTTPStatus(code) return '{:3d} {}'.format(code, status.phrase)
91b4eff1449756aa31d74d1cc63f230b1dcd6ea6
73,708
def read_config(filename): """Read the content of filename and put flags and values in a dictionary. Each line in the file is either an empty line, a line starting with '#' or an attribute-value pair separated by a '=' sign. Returns the dictionary.""" file = open(filename, 'r') config = {} for line in file: line = line.strip() if not line: continue if line.startswith('#'): continue (flag, value) = [s.strip() for s in line.split('=')] config[flag] = value file.close() return config
4659404f16a7b0d6f8a0f90c11df96c15c3e76d1
73,709
import logging def _GetEffectiveVerbosity(verbosity): """Returns the effective verbosity for verbosity. Handles None => NOTSET.""" return verbosity or logging.NOTSET
63825bc4c3e79412bb4d22c27108b17f0ac3e753
73,710
def get_value(testvalue): """Renders the correct value for the given TestValue.""" test = testvalue.test return test.get_value(testvalue.value)
c6f57f5b468865196ff70c32d6c32cbfd6104ea1
73,714
import torch def jitter_node_pos(pos_matrix, scale=1): """ Randomly jitter nodes in xyz-direction. Args: pos_matrix: matrix with xyz-node positions (N x 3). scale: scale factor of jittering """ return pos_matrix + (torch.randn(*pos_matrix.shape).numpy() * scale)
28234011a2f781569fab681d07d4ca6b9bec792b
73,715
def setElements(data, inds, vals): """ Sets the elements in data specified by inds with the values in vals Args: data (ndarray): data to edit inds (ndarray): indexes of data to access vals (ndarray): new values to insert into the data Returns: ndarray: modified data """ res = data.copy() for i in range(len(inds)): res[inds[i]] = vals[i] #res[inds] = vals #for i in range (0,(inds.size-1)): # res[inds[i]] = vals[i] return res
5b8327ac3e95896988bd6626345a4726f36c921d
73,717
def StrReverse(s): """Reverse a string""" l = list(str(s)) l.reverse() return "".join(l)
ec49f74ed9d526891e7d95cbdee249299972967d
73,720
def get(obj, path, default=None): """Gets the value at path of object. If the resolved value is undefined, the default value is returned in its place. Exampele: >>> obj = { 'a': [{ 'b': { 'c': 3 } }] } >>> get(obj, 'a.0.b.c') 3 Args: obj (dict,list): The object to query. path (str): The path of the property to get. default (any, optional): The value returned for unresolved values. Returns: any: Returns the resolved value. """ path_items = path.split(".") value = obj try: for key in path_items: if isinstance(value, (list, tuple)): value = value[int(key)] else: value = value[key] except (KeyError, ValueError, TypeError): value = default return value
282d9ab669e11e032daebd8284a407aea5701781
73,721
def average(stats): """ Compute the average of all values for the next structure: {peer1: {block1: value11, block2: value2}, peer2: {...}, ...} """ total = 0 count = 0 for peer_stats in stats.itervalues(): total += sum(peer_stats.itervalues()) count += len(peer_stats) return total / count
23645a0ebf9d61d68516ea88981012a28d18488b
73,724
def parseInput(input): """ Converts an input string of integers into an array of integers. """ return [int(num) for num in input.split(',')]
0d29a72c1c19b2703c6f736de5819cd58ab08d4d
73,725
import re def include_symbol(tablename, schema=None): """Exclude some tables from consideration by alembic's 'autogenerate'. """ # Exclude `*_alembic_version` tables if re.match(r'.*_alembic_version$', tablename): return False # If the tablename didn't match any exclusion cases, return True return True
cb097a4b6a19c11bccc6dfc780a53431c505f36b
73,727
def get_cve_context(cve_list): """ Prepare CVE context data as per the Demisto standard. :param cve_list: cve list from response. :return: List of cves dictionary representing the Demisto standard context. """ return [{ 'ID': cve_dict.get('cve', ''), 'CVSS': cve_dict.get('baseScore', ''), 'Description': cve_dict.get('summary', '') } for cve_dict in cve_list]
6122a666d42382acf845f819ceb58c1efe189b00
73,728
def reorder_correlator_inputs(input_map, corr_inputs): """Sort a list of correlator inputs into the order given in input map. Parameters ---------- input_map : np.ndarray Index map of correlator inputs. corr_inputs : list List of :class:`CorrInput` objects, e.g. the output from :func:`get_correlator_inputs`. Returns ------- corr_input_list: list List of :class:`CorrInput` instances in the new order. Returns `None` where the serial number had no matching entry in parameter ``corr_inputs``. """ serials = input_map["correlator_input"] sorted_inputs = [] for serial in serials: for corr_input in corr_inputs: if serial == corr_input.input_sn: sorted_inputs.append(corr_input) break else: sorted_inputs.append(None) return sorted_inputs
5d9ccacb60a8843f2a7a66e64ba474c8c9a31c65
73,730
def calculate_city_state_vol_delta(df): """ This function creates the specific market growth (city + state observation) rate using volume by doing the following: 1. Creates the city_state_growth_pop feature out of the total_mortgage_volume_pop 2. Creates the city_state_growth_nc feature out of the total_mortgage_volume_nc 3. Returns the df with the new features """ # create city_state_vol_delta_pop df["city_state_vol_delta_pop"] = df.sort_values(["year"]).groupby(["city", "state"])[["total_mortgage_volume_pop"]].pct_change() # create city_state_vol_delta_nc df["city_state_vol_delta_nc"] = df.sort_values(["year"]).groupby(["city", "state"])[["total_mortgage_volume_nc"]].pct_change() return df
376bb79eef02fd9debba11cfb77380a11d245676
73,731
def factorial(n): """ calculate the factorial n! """ if (n>1): return n*factorial(n-1) return 1
fa4194ba29d4193af6857caa4286d2ed45b7ba1c
73,733
def capture_current_size(thread_list, recorded): """ Amount captured so far is the sum of the bytes recorded by warcprox, and the bytes pending in our background threads. """ return recorded + sum(getattr(thread, 'pending_data', 0) for thread in thread_list)
90d988c7bc37fb4cc5a7c357baf28f425e389cfe
73,735
def join_uri_paths(prefix, suffix): """ Returns the uinion of two URI path strings without creating a double '/' between them. \param prefix The left side of the path, \param suffix The sub-path, \return Combination of the two strings sans '//' in the middle. """ prefix_end = -1 if prefix.endswith('/') else None suffix_start = 1 if suffix.startswith('/') else 0 return prefix[:prefix_end] + '/' + suffix[suffix_start:]
0be6cbe82b721f997d6a459c50e52238c740f191
73,736
def _decode_mask(mask): """splits a mask into its bottom_any and empty parts""" empty = [] bottom_any = [] for i in range(32): if (mask >> i) & 1 == 1: empty.append(i) if (mask >> (i + 32)) & 1 == 1: bottom_any.append(i) return bottom_any, empty
6b93a30881ed526e801b4ad55c4a04af5562d8b6
73,741
def _get_content_type_header(request): """ Get the content type from the request. Return an empty dict if it is not set Args: request (HTTPRequest): The HTTP request Return: a dict containing the content type """ try: return {'Content-Type':request.META['CONTENT_TYPE']} except KeyError: return {}
99aae9764a7afcd1b9c7446d8808d2029baa9a43
73,743
from typing import Iterable def generate_dropdown_options(values: Iterable[str]): """ Generates Dropdown options from a list Parameters ---------- values : Iterable[str] Iterable with the option values Returns ------- Dict Options for the Dropdown """ options = [] for value in values: options.append({"label": value, "value": value}) return options
9675e574c6139635cd97ebae7a50185fc8c47deb
73,744
def shorten_name(name, max_length = 10): """ Makes a string shorter, leaving only certain quantity of the last characters, preceded by '...'. @param name: The string to shorten. @param max_length: Maximum length of the resulting string. @return: A string with max_lenght characters plus '...' """ if len(name) > max_length: return "..."+name[-max_length:] else: return name
77fc27581bf9324797d3ccfbf25edd94f4db0990
73,745
def decode_uint40(bb): """ Decode 5 bytes as an unsigned 40 bit integer Specs: * **uint40 len**: 5 bytes * **Format string**: 'j' """ return int.from_bytes(bb, byteorder='little')
8d241b5052751cfa39b1384c747f260583227fa5
73,748
def sum_right_most(x, ndim): """Sum along the right most `ndim` dimensions of `x`, Parameters ---------- x : Tensor Input tensor. ndim : Int Number of dimensions to be summed. Returns ------- Tensor """ if ndim == 0: return x axes = list(range(-ndim, 0)) return x.sum(axes)
c6d4eb6a2070e9806ba7e358cc8d08750515f369
73,762
def fill_dict(new_dict, mean, adj, degree): """ Create dictionary entry to store in .toml Parameters ---------- new_dict : Dictionary object mean : Mean vector adj : Adjacency matrix degree : Degree matrix Returns ------- new_dict : Filled up dictionary entry """ new_dict["nodes"] = len(mean) new_dict["node_means"] = mean new_dict["Adj"] = adj new_dict["Degree"] = degree return new_dict
1b0202d28529ad9401c2059f35a666f5c0427983
73,765
def get_body(b2_world, index): """ get the body in a given position :param b2_world: an handler to a b2World object :type b2_world: b2World reference :param index: the index in the json list of joints :type index: integer :return: the body in the given position :rtype: b2Body """ return b2_world.bodies[index]
5663138880efc7dc51e3cc65323eed7c88a03047
73,768
import re from typing import Optional def status_detector( phrase: str, stop_patt: re.Pattern, ne_list: list ) -> Optional[str]: """Detects status based on given phrase Args: phrase: phrase string stop_patt: Regex pattern for stop words ne_list: list of named entities Returns: status (suggested-highlight, suggested-stop, None) """ # --------------- Stop Detection --------------- if stop_patt.search(phrase): return "suggested-stop" # --------------- NE Search --------------- words = phrase.split() for word in words: if word not in ne_list: return None return "suggested-highlight"
87690f4fe9b88d5eca4d454e0fb13c790a409b6b
73,775
def sub2ind(shape, row_sub, col_sub): """ Return the linear index equivalents to the row and column subscripts for given matrix shape. :param shape: Preferred matrix shape for subscripts conversion. :type shape: `tuple` :param row_sub: Row subscripts. :type row_sub: `list` :param col_sub: Column subscripts. :type col_sub: `list` """ assert len(row_sub) == len( col_sub), "Row and column subscripts do not match." res = [j * shape[0] + i for i, j in zip(row_sub, col_sub)] return res
bd3e640171f23f80c21a66c92e4d5e3292cddea7
73,776
def parse_command_line_parameters(parser): """ @brief Parses the command line parameters provided by the user and makes sure that mandatory parameters are present. @param[in] parser argparse.ArgumentParser @returns an object with the parsed arguments. """ msg = { '--input-dir': 'Path to the input folder.', '--output-dir': 'Path to the output folder.', '--im-ext': """Extension of the image files inside the input folder. Typically '.jpg'""", '--seg-suffix': """Suffix of the segmentation files. For example, if an input image is called image.jpg, and the corresponding segmentation is image_seg.png, then the suffix is '_seg'.""", '--seg-ext': """Extension of the segmentation mask files. Typically '.png'""", '--max-inst': 'Maximum number of instruments present in the image.', '--max-tips': 'Maximum number of instruments present in the image.', } parser.add_argument('--input-dir', required=True, help=msg['--input-dir']) parser.add_argument('--output-dir', required=True, help=msg['--output-dir']) parser.add_argument('--im-ext', required=False, default='.jpg', help=msg['--im-ext']) parser.add_argument('--seg-suffix', required=False, default='_seg', help=msg['--seg-suffix']) parser.add_argument('--seg-ext', required=False, default='.png', help=msg['--seg-ext']) parser.add_argument('--max-inst', required=True, help=msg['--max-inst']) parser.add_argument('--max-tips', required=True, help=msg['--max-tips']) args = parser.parse_args() args.max_inst = int(args.max_inst) args.max_tips = int(args.max_tips) return args
f79b016118cb818893e484c6902c45f817a3d58a
73,777
def get_user_choice(message, options): """User Interaction: Input string message and list of options, returns user choice""" choice = input(message + " ("+"/".join(map(str, options))+") :").lower() while choice.lower() not in options: choice = get_user_choice(message, options) return choice
3ac387443ff006b47182bba8a64cd582e6732f77
73,785
def are_multisets_equal(x, y): """Return True if both vectors create equal multisets. input: x, y -- 1-d numpy arrays output: True if multisets are equal, False otherwise -- boolean Not vectorized implementation. """ x.sort() y.sort() n = len(x) m = len(y) if (n != m): return False for i in range(n): if (x[i] != y[i]): return False return True
ee911bfacb805ca132d48492d46c12eb558e7f9d
73,789
def _sort_tag_version(release_data: dict) -> tuple: """Sort a list of releases by tag version.""" return tuple(int(x) for x in release_data["tag_name"].lstrip("v").split("."))
709466a10071a3513ebc431b8b1906bf84caf791
73,791
def _parse_header_row(row, **options): """Parse the header row of a table. If a column spans multiple cells, then duplicate values are returned for each. Duplicated columns are appended with ``suffix`` and index for each repeat. Parameters ---------- row : BeautifulSoup Tag object A <tr> tag from the html, all of whose cells are <th> tags suffix : string, optional (default='__') The seperator between column name and index for multi-cols. Returns ------- columns : list The headers as a list. """ suffix = options.pop('suffix', '__') # If exists <td> tags then not a header row if row.find_all('td'): raise ValueError("`row` is not a table header.") columns = [] for x in row.find_all('th'): colspan = int(x.attrs.pop('colspan', 1)) if colspan > 1: columns += \ [x.text.strip() + suffix + str(i) for i in range(colspan)] else: columns += [x.text.strip()] return columns
7cf011da337443d7501ecb4cf8fee68b4c3dca70
73,792
def get_api_url(account): """construct the tumblr API URL""" global blog_name blog_name = account if '.' not in account: blog_name += '.tumblr.com' return 'http://api.tumblr.com/v2/blog/' + blog_name + '/posts'
10efd015940e7afee6173a5cd37560b0e1f4d8da
73,793
def xml_elements_equal(first, second): """ Tests two XML elements for equality. Parameters ---------- first : _Element The first element. second : _Element The second element. Returns ------- bool Whether the two elements are equal. """ if first.tag != second.tag: return False if first.text != second.text: return False if first.tail != second.tail: return False if first.attrib != second.attrib: return False if len(first) != len(second): return False return all(xml_elements_equal(c1, c2) for c1, c2 in zip(first, second))
7dd500c7d0ff795aa6c7dd2ab0c1078738089235
73,794
import yaml def get_config(path: str) -> dict: """Open a yaml file and return the contents.""" with open(path) as input_file: return yaml.safe_load(input_file)
3ba743e2a699aafa972a2dfcde0c9257408cd0fd
73,795
def find_smallest_positive(items) -> int: """ Returns the smallest positive integer that does not exist in the given int array. :param items: array of ints :return: the smallest positive int not in the array """ # Create boolean array to hold if an integer is found # Maps index of array to the integer in items items_b = [False] * len(items) for item in items: if len(items_b) >= item > 0: items_b[item - 1] = True # Return the index(+1) of the first False value for idx, item_b in enumerate(items_b): if not item_b: return idx + 1 # If all ints in items are sequential from 1, return the next positive integer return len(items) + 1
3a8fb34314303a4828af170741f8e9ba58deac49
73,801
from typing import Type import pydantic def get_pydantic_base_orm_config() -> Type[pydantic.BaseConfig]: """ Returns empty pydantic Config with orm_mode set to True. :return: empty default config with orm_mode set. :rtype: pydantic Config """ class Config(pydantic.BaseConfig): orm_mode = True return Config
ef3927339cbccf1ccaa88c9422d1004f0f3ffac3
73,803
def INK(n): """ Returns control codes to set the ink colour (0-7). Use this in a ``PRINT`` or ``SET`` command. Example: ``PRINT("normal",INK(1),"blue",INK(2),"red")`` Args: - n - integer - the ink colour (0-7) """ return "".join((chr(16),chr(int(n))))
6cc3962ec4a6906668c4e2a703c41e99d1e4a175
73,805
def create_window(name, title, message, options=None, required=None, active=True, window_type="FORM"): """ Returns a window `dict` to be used by lottus :param name `str`: name of the window :param title `str`: title of the window :param message `str`: message of the window :param options `list`: list of `dict` options from which the client must choose :param required `dict`: the variable that will be created and stored in the session :param active `bool`: indicates whether the window will be showed to the client :param window_type `str`: indicates whether the will is a FORM or a MESSAGE """ return { 'name': name, 'message': message, 'title': title, 'options': options, 'active': active, 'type': window_type }
3bdb6614541b787c2999ce529433ee207aaa5b87
73,808