content
stringlengths 39
14.9k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
|---|---|---|
from typing import Optional
def _create_noncompat_join_key_types_errmsg(
left_key_name: str,
left_key_type: type,
right_key_name: str,
right_key_type: type,
reason: Optional[str] = None
) -> str:
"""Create an error message for two column types which are not compatible as join-keys."""
# If the caller didn't supply a reason, provide a generic explanation
# that's (maybe) still helpful for new users.
_reason = reason if reason is not None else "You may need to convert one of them into a different type before joining."
return f'The columns \'{left_key_name}\' ({left_key_type}) and \'{right_key_name}\' ({right_key_type}) are not compatible for use as join-keys. {_reason}'
|
0dc97119e3fc3c7a0b8140fba995d0aa8cece004
| 69,539
|
def _sequence_to_index(seq, dim_list):
"""
Inverse of _index_to_sequence.
Parameters
----------
seq : list of ints
List of coordinates for each particle.
dim_list : list of int
List of dimensions of consecutive particles.
Returns
-------
i : list
Index in a matrix.
"""
i = 0
for s, d in zip(seq, dim_list):
i *= d
i += s
return i
|
5a4e2ddc14ff79ce9210faed4c0ede681f82b6e5
| 69,543
|
import math
def _pdeg2rad(angle):
""" Convert dd.mmss to radian
"""
d = math.floor(angle)
angle = round((angle - d) * 100, 10)
m = math.floor(angle)
s = round((angle - m) * 100, 10)
return math.radians(d + m / 60.0 + s / 3600.0)
|
0447c26f49cba42e442633ed5e192b344bdeaaf4
| 69,544
|
def get_sub_grid(grid, row_index, col_index, split):
"""Get sub_grid from grid containing split numbers of rows and cols."""
return [row[col_index * split:(col_index + 1) * split]
for row in grid[row_index * split:(row_index + 1) * split]]
|
02d84dabc9c8352b86b56f2ff73135ab1e215801
| 69,546
|
def parse_dtypes(df, value):
"""
Get the data type from a string data type representation. for example 'StringType' from 'string'
:param value:
:param df:
:return:
"""
if not isinstance(value, list):
value = [value]
try:
data_type = [df.constants.DTYPES_DICT[df.constants.SHORT_DTYPES[v]] for v in value]
except KeyError:
data_type = value
if isinstance(data_type, list) and len(data_type) == 1:
result = data_type[0]
else:
result = data_type
return result
|
35a779e5f948f3f68700f1ad86b77985131cc1b9
| 69,564
|
def stable_unique(items):
"""
Return a copy of ``items`` without duplicates. The order of other items is
unchanged.
>>> stable_unique([1,4,6,4,6,5,7])
[1, 4, 6, 5, 7]
"""
result = []
seen = set()
for item in items:
if item in seen:
continue
seen.add(item)
result.append(item)
return result
|
2600a22a36566b25bdfce95dc7f4416e5e5979a7
| 69,570
|
def min_max_dates_dict(min_max_dates):
"""Calculates dates needed by the pipeline, starting from min and max dates.
Generates dictionary of dates needed for the calculation starting from a
tuple containing min_date and max_date from the input logs.
Args:
min_max_dates: Tuple containing min_date and max_date for the input
data.
Returns:
Dictionary containing info related to dates needed for the calculation.
"""
min_date, max_date = min_max_dates
tot_days = (max_date - min_date).days
if round(tot_days * 0.05) < 30:
cohort_days = 30
else:
cohort_days = round(round(tot_days * 0.05) / 30) * 30
return {
'min_date': min_date,
'max_date': max_date,
'total_days': tot_days,
'half_days': round((tot_days / 2) + 0.1),
'cohort_days': cohort_days
}
|
14b99c9dd6096131d0d18f77da73a5c1c8d5f885
| 69,572
|
def unpad(x, x_mask):
"""
Unpad a batch of sequences by selecting elements not masked by x_mask.
Returns a list of sequences and their corresponding lengths
"""
x_unp = []
x_unp_mask = []
x_unp_len = []
for seq, seq_mask in zip(x, x_mask):
seq_unp = seq[(1 - seq_mask)]
x_unp.append(seq_unp)
x_unp_mask.append(seq_mask[1 - seq_mask])
x_unp_len.append(seq_unp.shape[0])
return x_unp, x_unp_mask, x_unp_len
|
4a447505e11505fe5fe6139729c488957a30d9df
| 69,574
|
def chaal(current_board, player_character, player_character_position):
"""
Puts the players character on the current board where he/she wants to.
Here chaal stands for Bangla 'চাল'.
:param current_board: the current board
:param player_character: players character assigned randomly.
:param player_character_position: the cell number on the current board he/she wants to put his/her character
:return: the changed board due to the character insertion
"""
for row in range(len(current_board)):
for col in range(len(current_board[row])):
if current_board[row][col] == player_character_position:
current_board[row][col] = player_character
return current_board
|
979b5e2b507a1964e9575e0cc419cb2b1a68821b
| 69,577
|
import typing
import re
def orbital_pattern(compile: bool = True) -> typing.Union[typing.Pattern[str], str]:
"""
Creates a regex pattern for recognizing orbital strings.
Parameters
----------
compile : bool
If true the regex is compiled, otherwise it is returned as a string.
Returns
----------
Returns a compiled pattern or string depending on the compile parameter.
"""
regex_string = r"([A-Q]\d( \d+)+)"
if compile:
return re.compile(regex_string)
return regex_string
|
eb4ed7104e4463e0f65b273010620c456b0c7f14
| 69,580
|
import yaml
def load_config(yamlfile):
"""load yaml to a dict"""
with open(yamlfile, 'r') as stream:
_dict = yaml.safe_load(stream)
return _dict
|
344fd620fad860d7bd24c757aafaa428c1d5a70b
| 69,583
|
def snake(string):
"""Convert to snake case.
Word word -> word_word
"""
return "_".join([word.lower() for word in string.split()])
|
50c2e11d2d650ce061cdefc56effff147eddb057
| 69,584
|
def f_value(ER, EF, dfR, dfF):
"""
Return an F-statistic for a restricted vs. unrestricted model.
Parameters
----------
ER : float
`ER` is the sum of squared residuals for the restricted model
or null hypothesis
EF : float
`EF` is the sum of squared residuals for the unrestricted model
or alternate hypothesis
dfR : int
`dfR` is the degrees of freedom in the restricted model
dfF : int
`dfF` is the degrees of freedom in the unrestricted model
Returns
-------
F-statistic : float
"""
return (ER - EF) / float(dfR - dfF) / (EF / float(dfF))
|
ee59bacef0e0e624cb5dee6fd541670eec1c7dfd
| 69,585
|
def _merge_dicts(*dict_args):
"""Destructively merges dictionaries, returns None instead of an empty dictionary.
Elements of dict_args can be None.
Keys in latter dicts override those in earlier ones.
"""
result = {}
for dictionary in dict_args:
if dictionary:
result.update(dictionary)
return result if result else None
|
e32a021b2836b08d231adee8f3dc070a2ed42898
| 69,591
|
import random
def random_odd(n_bits: int) -> int:
"""
Generates random odd number in range [2 ^ (n_bits - 1), 2 ^ (n_bits) - 1]
Odd number probably is prime number
"""
assert n_bits > 0
value = random.getrandbits(n_bits)
value |= (1 << n_bits) | 1
return value
|
e6a852f941141f7d009142e6821b4184108b5d1e
| 69,592
|
def reverse_taskname(name: str) -> str:
"""
Reverses components in the name of task. Reversed convention is used for filenames since
it groups log/scratch files of related tasks together
0.somejob.somerun -> somerun.somejob.0
0.somejob -> somejob.0
somename -> somename
Args:
name: name of task
"""
components = name.split('.')
assert len(components) <= 3
return '.'.join(components[::-1])
|
a49c97f3e694120b7aecba9ea325dbe78420150e
| 69,595
|
def adjust_timescales_from_daily(ds, tstep):
"""Adjust continuous growth rate parameters from daily scale to the scale of a
single timestep in the dynamic model.
Parameters
----------
ds : :class:`xarray.Dataset`
Dataset containing coords or variables corresponding to rate parameters, e.g.
$\lambda$ (asymptotic exponential growth rate), $\beta$ (daily transmission rate
per infectious individual), $\gamma$ (inverse of duration of infectious period),
and/or $\sigma$ (inverse of latency period).
tstep : float
Timestep of model, in days
Returns
-------
out : :class:`xarray.Dataset`
`ds`, with rate parameters adjusted.
"""
out = ds.copy()
for k, v in ds.variables.items():
if k.split("_")[0] in [
"lambda",
"beta",
"gamma",
"sigma",
]:
# staying in continuous rate
out[k] = out[k] * tstep
return out
|
802b472138be70934ff3e37af367d224970b5517
| 69,597
|
from typing import List
def read_docs(fnames: List[str]) -> List[str]:
"""
Reads in the documents.
param fnames: List of paths to .txt files to read.
returns: List of input documents.
"""
all_docs = []
for docfile in fnames:
doc = open(docfile, 'r').read()
all_docs.append(doc)
return all_docs
|
26c8bd7c31ecfd84144ee5d180ae5d41353945f3
| 69,599
|
def repr_long_list(seq):
"""
>>> repr_long_list(list(range(100)))
'[0, 1, 2, ..., 98, 99]'
"""
if len(seq) < 8:
return repr(seq)
else:
return repr(seq[:3])[:-1] + ', ..., ' + repr(seq[-2:])[1:]
|
9978a1439d66cbd1c2015cb799cace7aeaac411c
| 69,612
|
def get_components(items):
"""Return a list of pairs of IDs and numbers in items.
get_components(list(str)) -> list((str, int))
"""
components = []
for item in items:
item = item.strip()
itemid, _, itemnumstr = item.partition(':')
itemid = itemid.strip()
itemnumstr = itemnumstr.strip()
components.append((itemid, int(itemnumstr)))
return components
|
8b483d351c5c3473b7baa9d4ca6729a7846ea3ca
| 69,613
|
def describe_attribute_change(attribute_key, new_attribute_value, **kwargs):
"""Return description of an attribute change (useful for logging).
Args:
attribute_key (str): Name of the attribute.
new_attribute_value: New value of the attribute.
**kwargs: Arbitrary keyword arguments. See below.
Keyword Args:
feature_id_key (str): Name of the feature ID attribute.
feature_id_value: Value of the feature ID.
old_attribute_value: Old value of the attribute.
Returns:
str: Change description.
"""
desc = "Changed {}=".format(attribute_key)
if 'old_attribute_value' in kwargs:
desc += "{old_attribute_value!r} --> ".format(**kwargs)
desc += "{!r}".format(new_attribute_value)
if 'feature_id_key' in kwargs:
kwargs.setdefault('feature_id_value')
desc += " for {feature_id_key}={feature_id_value!r}".format(**kwargs)
desc += "."
return desc
|
49d3834fa7cf06185c8654647947f2e1c2cbfc77
| 69,614
|
def _get_str_columns(sf):
"""
Returns a list of names of columns that are string type.
"""
return [name for name in sf.column_names() if sf[name].dtype == str]
|
a531714733ff1f4b4badfe855ae009c30dcd9e33
| 69,615
|
def isprimer(n: int) -> bool:
"""Is n prime?
>>> isprimer(2)
True
>>> tuple( isprimer(x) for x in range(3,11) )
(True, False, True, False, True, False, False, False)
"""
def isprime(k: int, coprime: int) -> bool:
"""Is k relatively prime to the value coprime?"""
if k < coprime*coprime:
return True
if k % coprime == 0:
return False
return isprime(k, coprime+2)
if n < 2:
return False
if n == 2:
return True
if n % 2 == 0:
return False
return isprime(n, 3)
|
33fccf076604601bd40298f555180ee5388b00af
| 69,618
|
def normalize_area_name(area_name: str) -> str:
"""Normalize an area name by removing whitespace and case folding."""
return area_name.casefold().replace(" ", "")
|
4f26155ea1299b2387aee783684f9d94e3360132
| 69,626
|
import torch
def axisangle2quat(axis, angle):
"""
axis: B x 3: [axis]
angle: B: [angle]
returns quaternion: B x 4
"""
axis = torch.nn.functional.normalize(axis, dim=-1)
angle = angle.unsqueeze(-1) / 2
quat = torch.cat([angle.cos(), angle.sin() * axis], dim=-1)
return quat
|
7ffa57eff85c7fdc46e5e569fc1ed44d0be80461
| 69,628
|
import math
def get_request_urls(query=None,img_num=0)->list:
"""
get urls for requesting according to the query and numbers of image that wants to download
:param query: keyword of image
:param img_num: numbers of image
:return: requesting urls
"""
request_urls_num=math.ceil(img_num/35)
urls=[f"https://www.bing.com/images/async?q={query}&first={1+35*i}&count=35&cw=1177&ch=577&tsc=ImageBasicHover&datsrc=I&mmasync=1&SFX={i+1}" for i in range(request_urls_num+1)] # 多+1是因為圖片網址不會每次都請求成功,所以故意多請求一次以免圖片不夠
return urls
|
4167f05ba7d68f17760a1f6524f14468737b68d9
| 69,631
|
from pathlib import Path
def make_dir(new_dir, path):
"""Creates a directory if it doesn't exist.
Args:
new_dir (str): Name of the new directory to be created.
path (str): Path where the new directory will be created.
Returns:
str: Path of the newly created directory.
"""
new_path = path / Path(new_dir)
new_path.mkdir(exist_ok=True)
return new_path
|
fc44a70477047958f3fa0f6d3adfde2c1b26c131
| 69,633
|
def mul_vector_by_scalar(vector, scalar):
"""
Multiplies a vector by a scalar
:param vector: vector
:param scalar: scalar
:return: vector * scalar
"""
return tuple([value * scalar for value in vector])
|
5e1215a7cd03265272eff78966d0273b180ad3eb
| 69,636
|
import math
def calculateFreq( pmf , begin, end ):
"""
Calculates the frequencies of the pmf betweer [begin, end)
Args:
pmf: the probability mass function
begin: the first (inclusive) element of the interval
end: the last (exclusive) element of the interval
Return:
the probability, to fall between [begin, end)
Side effect
Normalize the pmf
"""
pmf.Normalize()
items = pmf.GetDict() ;
filtered = [ prob for value, prob in items.iteritems()
if value >= begin and value < end ]
prob_sum = math.fsum(filtered)
return prob_sum
|
30b6a625e37ae1cd10065d4f66d536d64cae010d
| 69,638
|
def default_ssl_connection_selector(connection, app_blame, client_hello):
"""Returns a nogotofail.mitm.connection.handlers class to use for establishing a SSL connection on connection. If None is returned the connection will continue to use the current handler.
"""
return None
|
5c68bd30a62b0ffe5d17e867a124ecb288b76757
| 69,643
|
def cache(request):
"""
Return a cache object that can persist state between testing sessions.
cache.get(key, default)
cache.set(key, value)
Keys must be a ``/`` separated value, where the first part is usually the
name of your plugin or application to avoid clashes with other cache users.
Values can be any object handled by the json stdlib module.
"""
return request.config.cache
|
6b98abc67a32298cee07504944a5d7bd13999410
| 69,651
|
import requests
def get_access_token(api_key):
"""Retrieve an access token from the IAM token service."""
token_response = requests.post(
"https://iam.cloud.ibm.com/identity/token",
data={
"grant_type": "urn:ibm:params:oauth:grant-type:apikey",
"response_type": "cloud_iam",
"apikey": api_key
},
headers={
"Accept": "application/json"
}
)
if token_response.status_code == 200:
print ("Got access token from IAM")
return token_response.json()['access_token']
else:
# print( token_response.status_code, token_response.json())
return None
|
b51c59ec76ec784f8c4d9c88c0f07926e4466565
| 69,652
|
def next_page(dom):
"""Gets link for next page for results from apihub/scihub
:param dom: object coming back from a Copernicus' scihub search request
:type dom: xml.dom object
:return: Link ot the next page or None if we reached the end.
:rtype: str
"""
links = dom.getElementsByTagName('link')
next_page_, this_page, last = None, None, None
for link in links:
if link.getAttribute('rel') == 'next':
next_page_ = link.getAttribute('href')
elif link.getAttribute('rel') == 'self':
this_page = link.getAttribute('href')
elif link.getAttribute('rel') == 'last':
last = link.getAttribute('href')
if last == this_page: # we are not at the end
next_page_ = None
return next_page_
|
ad7a5c5bb31e583ae2886cb9c1acfa79feb45689
| 69,655
|
from pathlib import Path
import socket
def get_uri(dir_name: str | Path) -> str:
"""
Return the URI path for a directory.
This allows files hosted on different file servers to have distinct locations.
Parameters
----------
dir_name : str or Path
A directory name.
Returns
-------
str
Full URI path, e.g., "fileserver.host.com:/full/path/of/dir_name".
"""
fullpath = Path(dir_name).absolute()
hostname = socket.gethostname()
try:
hostname = socket.gethostbyaddr(hostname)[0]
except (socket.gaierror, socket.herror):
pass
return f"{hostname}:{fullpath}"
|
e22cd056d3e09584ceb427f85471287e1e4a2aac
| 69,659
|
def rebalance_A_to_B(A, B, target_relative_weight, transfer_fee):
"""
Say you want to rebalance two investments A and B so that the relative weight of A to B is the
target_relative_weight and transfering the money has a transfer fee proportional to the amount to transfer
with fixed rate transfer_fee
If transfer is the amount to move from A to B, we want to solve:
(A - transfer) / (A - transfer + B + transfer * (1 - transfer_fee)) = target_relative_weight
which can be algebraicely written into the equivalent:
transfer = (A - target_relative_weight * (A + B)) / (1 - target_relative_weight * transfer_fee)
:param A: float, value of A
:param B: float, value of B
:param target_relative_weight: what A / (A + B) should be after rebalancing
:param transfer_fee: a percentage taken from the transfer of value from A to B
:return: the amount to transfer from A to B to achieve the target_relative_weight
A and B are already balanced, nothing must be taken from A
>>> rebalance_A_to_B(10, 10, 0.5, 0)
0.0
For A to be 25% of the total, we need to move 5 unit from A to B (assuming no transfer fee)
>>> rebalance_A_to_B(10, 10, 0.25, 0)
5.0
On the other hand, we need to GIVE to A to make A 0.75% of the total (still assuming no transfer fee)
>>> rebalance_A_to_B(10, 10, 0.75, 0)
-5.0
Example including a transfer fee, here we need to transfer a little more to cover for the fee
>>> a, b = 10, 10
>>> target_ratio = 0.25
>>> fee_percent = 0.01
>>> transfer_amount = rebalance_A_to_B(a, b, target_ratio, fee_percent)
>>> print(transfer_amount)
5.012531328320802
>>> new_a = a - transfer_amount
>>> new_b = b + transfer_amount * (1 - fee_percent) # a portion of the transferred money is lost due to the fees
>>> new_ratio = new_a / (new_a + new_b)
>>> assert new_ratio == target_ratio
>>> print(new_ratio)
0.25
"""
return (A - target_relative_weight * (A + B)) / (
1 - target_relative_weight * transfer_fee
)
|
ea3fd4619819ef8dea380a5f5c768c63e24c15ad
| 69,661
|
def W2kW(x):
"""W -> kW"""
return x/1000
|
4e6cf1bb300050fc03df2287b3c4bdb493c47022
| 69,662
|
def yes_or_no(question):
""" Ask the user a yes or no question. Returns True for yes, False for no """
suffix = " (y/n)? > "
question = question.rstrip()
answer = input(question + suffix).lower().strip()
if answer in ["y", "ye", "yes"]:
return True
elif answer in ["n", "no"]:
return False
else:
print("Please answer with 'y' or 'n'\n")
return yes_or_no(question)
|
d4ed228228fcb7cfa61e76ccc13d5ee5b9047de9
| 69,663
|
import io
def read(path, default=None, encoding='utf8'):
"""Read encoded contents from specified path or return default."""
if not path:
return default
try:
with io.open(path, mode='r', encoding=encoding) as contents:
return contents.read()
except IOError:
if default is not None:
return default
raise
|
cd99cece52d5efa2f15359b584c393de2ac62f48
| 69,664
|
def isvalidIp(ip_addr):
"""Check if valid IPv4 address"""
try:
subnets = list(map(int, ip_addr.split('.')))
return len(subnets) == 4 and all(map(lambda x: 0 <= x <= 255, subnets))
except ValueError:
return False
|
9f60d7fb13d4e827f533ae68e28d04369cbe53f0
| 69,669
|
def log_mapping(conf:str):
"""
Split str of log format into a dict
Example : date:application_date,message:application_message is split in :
{'date':'application_date','message':'application_message'}
"""
mapping = dict()
for i in conf.split(','):
mapping[i.split(':')[0]] = i.split(':')[1]
return mapping
|
21ccc8fb2fd2226d90659fb7cf87f62a1d29b9c2
| 69,670
|
def asst70_variation_descriptors(moa_vid70):
"""Create assertion70 variation_descriptors test fixture."""
return [moa_vid70]
|
1e8d1fc13a55b173674c60c339f6d6a13945ca6f
| 69,673
|
def form_to_dict(urlencoded: str):
"""Decode a form of the structure foo=bar&baz=qux&zap=zazzle"""
return {obj.split('=')[0]: obj.split('=')[1] for obj in urlencoded.split('&')}
|
b2d533e8c10df06ac1cd22d2dcbe15ecdf4413c3
| 69,675
|
def lowest_weight(edges):
""" Get edges based on lowest weight first """
return list(sorted(edges, key=lambda data: data[2]["weight"]))
|
116d47559e0e6495a098285266bff0a19ad7b40e
| 69,676
|
def getFiducials(d, offset=None):
"""Returns fiducials from the given dict as a list of (x,y) pairs, or None on error.
The fiducials are normally translated relative to CROP_RECT_TOP_LEFT_{XY}, but you can
give an explicit [x,y] offset if you want.
The order of points returned is:
left eye out
left eye in
right eye in
right eye out
mouth left
mouth right
"""
KEYS = 'LEFT_EYE_OUT LEFT_EYE_IN RIGHT_EYE_IN RIGHT_EYE_OUT MOUTH_LEFT MOUTH_RIGHT'.split()
if offset is None:
offset = [int(d['CROP_RECT_TOP_LEFT_X']), int(d['CROP_RECT_TOP_LEFT_Y'])]
try:
ret = [(int(d[k+'_X'])+offset[0], int(d[k+'_Y'])+offset[1]) for k in KEYS]
return ret
except KeyError:
return None
|
47deba7c9ac12b028d404bbb7a16f15697ffa7ad
| 69,679
|
def reverse(dictionary):
"""reverses a keys and values of a dictionary"""
return {v: k for k, v in dictionary.items()}
|
fe096809c47f8c19f60024246c46ebce4a9f7ee2
| 69,687
|
import glob
from pathlib import Path
def merge_all_dot_sol(outputs_dir, dot_sol_output, num_rows):
"""
Merge all .SOL into one
:param outputs_dir: directory containing the dynamic .SOL
:param dot_sol_output: file to write the content to. This is the static .SOL
:param num_rows: number of points. This is to make sure that all dynamic SOL are written
:return: pathname to the final .SOL file
"""
# get all the dynamic .SOL
match = str(outputs_dir) + '/*.SOLD'
all_dot_sols = glob.glob(match)
all_dot_sols.sort()
# for i in all_dot_sols:
# print(i)
# if len(all_dot_sols) != num_cells: # something wrong
# print("Stopping: The static database seems not complete")
# return
with open(dot_sol_output, "wb") as outfile:
for f in all_dot_sols:
with open(f, "rb") as infile:
outfile.write(infile.read())
outfile.write('\n'.encode())
dot_sol_output = str(outputs_dir) + '/' + dot_sol_output
return Path(dot_sol_output)
|
2acd298b705a6d832d4e8c9765022f00e08a2d13
| 69,691
|
def get_lomb_y_offset(lomb_model):
"""Get the y-intercept of a fitted Lomb-Scargle model."""
return lomb_model['freq_fits'][0]['y_offset']
|
6b891fed9d9ff422bea20cc6b5d1acf73126aa27
| 69,694
|
import torch
def q(x: torch.Tensor,
min_value: int,
max_value: int,
scale: float,
zero_point: int = 0) -> torch.Tensor:
"""
Fake-quantize the input tensor x, using a pytorch fake-quantization node.
Args:
x: input tensor to quantize.
min_value: lower bound of the quantized domain.
max_value: upper bound of the quantized domain.
scale: quantization scale.
zero_point: quantization zero_point
Returns:
The fake-quantized input tensor.
"""
return torch.fake_quantize_per_tensor_affine(x,
scale=scale,
zero_point=zero_point,
quant_min=min_value,
quant_max=max_value)
|
f2d8db63dff809c364a14735fc4e6078a2db2f64
| 69,695
|
import re
def version_hash(version):
"""Return hash from version dev part as string. Return None if hash
information is not available.
"""
if version and isinstance(version[-1], str):
m = re.match(r'.*([12]\d\d\d[01]\d[0123]\d)[-](\w{10,10}\b)', version[-1])
if m is not None:
return m.groups()[1]
return None
|
d423d2c6c684bb122dd50e126c24a6bed4a8ef3d
| 69,696
|
def empty_line(line):
"""Check if line is emtpy."""
return not bool(line.strip())
|
abbe626f60940a6cb76be3c53730c499857ccbae
| 69,700
|
def get_alt_svms(svms, classes, target_class):
"""
Find alternative SVMs (e.g., for target class 0, find the svms classifying 0 against 1, and 0 against 2).
Parameters
----------
svms : list
List of eTree.Element objects describing the different one-to-one support vector machines in the PMML.
classes : numpy.array
The classes to be predicted by the model.
target_class : str
The target class.
Returns
-------
alt_svms : list
List of eTree.Elements filtered to only include SVMs comparing the target class against alternate classes.
"""
# Noop for regression
if classes[0] is None:
return svms
alt_svms = [
svm for svm in svms
if svm.get('targetCategory') == str(target_class) or svm.get('alternateTargetCategory') == str(target_class)
]
# Sort svms based on target class order
alt_svms = [
next(svm for svm in alt_svms if svm.get('targetCategory') == str(c) or svm.get('alternateTargetCategory') == str(c))
for c in set(classes).difference({target_class})
]
return alt_svms
|
62d0d8f093f20891b080605cbea1f9c2d08c10c8
| 69,702
|
def reverse_dict(dict_):
"""Reverse the key/value status of a dict"""
return dict([[v, k] for k, v in dict_.items()])
|
e60c3c02c2b358ac862691c5e6f289ea671bc0b6
| 69,703
|
def get_new_size(original_size):
"""
Returns each width and height plus 2px.
:param original_size: Original image's size
:return: Width / height after calculation
:rtype: tuple
"""
return tuple(x + 2 for x in original_size)
|
3ce5808c597240f67ab6f0081645282f1d115416
| 69,705
|
def extract_urls_from_soup(soup):
"""
Extract a list of urls from a BeautifulSoup object
:param soup: a BeautifulSoup object
:return: a list of urls (strings)
"""
urls = []
for item in soup.find_all('a'):
href = item.get('href')
urls.append(href)
return urls
|
984613b3344b35a14ac0933f8303bf79b04a085e
| 69,710
|
def is_main(config):
"""Main is true only for the first worker."""
return getattr(config, 'workerinput', {}).get('workerid', 'gw0') == 'gw0'
|
9e59bcbc07c0a1828cfb7b6f1c4cbef1d82eecec
| 69,714
|
def scale(input_interval, output_interval, value):
"""
For two intervals (input and output)
Scales a specific value linear from [input_min, input_max] to [output_min, output_max].
"""
min_to, max_to = output_interval
min_from, max_from = input_interval
mapped_value = min_to + (max_to - min_to) * ((value - min_from) / (max_from - min_from))
return mapped_value
|
2d70fbf0cb19a24f3467a8ff3d6786fca9db9204
| 69,718
|
def get_token(request):
"""
Returns the the CSRF token required for a POST form. The token is an
alphanumeric value.
A side effect of calling this function is to make the the csrf_protect
decorator and the CsrfViewMiddleware add a CSRF cookie and a 'Vary: Cookie'
header to the outgoing response. For this reason, you may need to use this
function lazily, as is done by the csrf context processor.
"""
request.META["CSRF_COOKIE_USED"] = True
return request.META.get("CSRF_COOKIE", None)
|
839b4a8327623d1e595c86cdb497faf30b5b2a39
| 69,720
|
import random
def _randomly_negate(v):
"""With 50% prob, negate the value"""
return -v if random.random() > 0.5 else v
|
dd08e186b97afac1b6eb617e90be383e83b749bd
| 69,725
|
from datetime import datetime
def str_to_datetime(time: str):
"""
convert a string to a datetime. The format of the string is like "1980-12-30"
:param time:
:return:
"""
return datetime.strptime(time, "%Y-%m-%d")
|
03d0efeb7e528ed65d3bc08c891131633eb6a16d
| 69,726
|
def unpack_batch_diagnostics(batch_diagnostics):
""" Unpacks batch diagnostics DataFrame into a python standard dictionary
Targets old data storage schematic
Input:
- batch_diagnostics: pandas DataFrame
Output:
- unpack_batch_diagnostics: dict containing simulation runtime diagnostics
"""
unpack_batch_diagnostics = {}
for sim_name, sim_diagnostics in batch_diagnostics.items():
### unpack simulation diagnostics ###
# runtime diagnostics
runtime_diagnostics = sim_diagnostics # the entire pandas df contains runtime diagnostics
unpacked = [runtime_diagnostics]
### end unpack ###
columns = [
"runtime_diagnostics"
]
diagnostics = {}
for (col, diag) in zip(columns, unpacked):
diagnostics.update({col: diag})
unpack_batch_diagnostics.update({sim_name: diagnostics})
return unpack_batch_diagnostics
|
9ef64c5f08f8d5861404ffc4789c04bbd9b36b7a
| 69,729
|
def elementwise_list_addition(increment, list_to_increment):
"""
Simple method to element-wise increment a list by the values in another list of the same length
(as is needed in output generation).
Args:
increment: A list of values to be added to the previous list
list_to_increment: The original list to be incremented
Returns:
The resulting list with elements being the sum of the elements of the two lists
"""
assert len(increment) == len(list_to_increment), 'Attempted to increment lists with two lists of different lengths'
return [sum(x) for x in zip(list_to_increment, increment)]
|
c1a497cc8e4489360375dee7efacf903e64ccb17
| 69,731
|
import torch
def batch_to_tensors(batch, n_tokens, max_length):
"""
Make input, input mask, and target tensors for a batch of seqa batch of sequences.
"""
input_sequences, target_sequences = batch
sequence_lengths = [len(s) for s in input_sequences]
batch_size = len(input_sequences)
x = torch.zeros(batch_size, max_length, dtype=torch.long)
#padding element
y = torch.zeros(batch_size, max_length, dtype=torch.long)
for i, sequence in enumerate(input_sequences):
seq_length = sequence_lengths[i]
#copy over input sequence data with zero-padding
#cast to long to be embedded into model's hidden dimension
x[i, :seq_length] = torch.Tensor(sequence).unsqueeze(0)
x_mask = (x != 0)
x_mask = x_mask.type(torch.uint8)
for i, sequence in enumerate(target_sequences):
seq_length = sequence_lengths[i]
y[i, :seq_length] = torch.Tensor(sequence).unsqueeze(0)
if torch.cuda.is_available():
return x.cuda(), y.cuda(), x_mask.cuda()
else:
return x, y, x_mask
|
079529318e910177ad52b00f13b5537d2b03a586
| 69,733
|
def save_frontmatter(data: dict) -> str:
"""
Saves the given dictionary as markdown frontmatter.
Args:
data (dict): Dictionary containing all the frontmatter key-value pairs
Returns:
str: A string containing the frontmatter in the correct plaintext format
"""
lines = []
for key, value in data.items():
if isinstance(value, list):
lines.append(str(key) + ": " + "[" + ",".join([f"'{x}'" for x in value]) + "]")
else:
lines.append(str(key) + ": " + str(value))
return "\n".join(lines)
|
96d29a12e00f120fe7da5343beb41930a2cdca6b
| 69,734
|
import re
def replace_links(url, message):
"""Replace the visible email links with the desired URL."""
html_regex = re.compile(r'href=[\'"]?([^\'" >]+)')
html_output = html_regex.sub("href=\"{}".format(url), message)
return html_output
|
ea424acc683747bd69f80121bd067d7c69468dbf
| 69,735
|
def merge_dict(data, *override):
"""
Merges any number of dictionaries together, and returns a single dictionary
Usage::
>>> util.merge_dict({"foo": "bar"}, {1: 2}, {"Doc": "SDK"})
{1: 2, 'foo': 'bar', 'Doc': 'SDK'}
"""
result = {}
for current_dict in (data,) + override:
result.update(current_dict)
return result
|
aabe034524e8ff354982362372d5838eac25fd8b
| 69,737
|
def _output_file_ext(base, dynamic, profiling_enabled):
"""Return extension that output of compilation should have depending on the
following inputs:
Args:
base: usually "o" for object files and "hi" for interface files. Preceding
dot "." will be preserved in the output.
dynamic: bool, whether we're compiling dynamic object files.
profiling_enabled: bool, whether profiling is enabled.
Returns:
String, extension of Haskell object file.
"""
with_dot = False
ext = ""
if base[0] == '.':
with_dot = True
ext = base[1:]
else:
ext = base
if dynamic:
ext = "dyn_" + ext
if profiling_enabled:
ext = "p_" + ext
return ("." if with_dot else "") + ext
|
6bfa3303fe236b128b22ea178ae3cbebc1c35bc5
| 69,745
|
def sjoin(collection) -> str:
"""Sort and join collection of strings into lines."""
return '\n'.join(sorted(collection))
|
e2acbad60c298a71892e20968f933d9b9f8288d7
| 69,750
|
def build_informationmodels_by_publisher_query() -> str:
"""Build query to count informationmodels grouped by publisher."""
return """
PREFIX dct: <http://purl.org/dc/terms/>
PREFIX modelldcatno: <https://data.norge.no/vocabulary/modelldcatno#>
SELECT ?organizationNumber (COUNT(DISTINCT ?informationmodel) AS ?count)
FROM <https://informationmodels.fellesdatakatalog.digdir.no>
WHERE {{
?informationmodel a modelldcatno:InformationModel .
?informationmodel dct:publisher ?publisher .
?publisher dct:identifier ?organizationNumber .
}}
GROUP BY ?organizationNumber
"""
|
0c8ca0a8b9be1bb8e09a92a434a1c94b44880ef0
| 69,751
|
def cvfloat(input):
""" Convert to float while ignoring None.
"""
if input is None:
return None
else:
return float(input)
|
8e71ece1e08b975289c8495f8f2584f5e806fa99
| 69,753
|
import re
def _get_unique_value(model,
proposal,
field_name="slug",
instance_pk=None,
separator="-"):
""" Returns unique string by the proposed one.
Optionally takes:
* field name which can be 'slug', 'username', 'invoice_number', etc.
* the primary key of the instance to which the string will be assigned.
* separator which can be '-', '_', ' ', '', etc.
By default, for proposal 'example' returns strings from the sequence:
'example', 'example-2', 'example-3', 'example-4', ...
"""
if instance_pk:
similar_ones = model.objects.filter(
**{field_name + "__startswith": proposal}
).exclude(pk=instance_pk).values(field_name)
else:
similar_ones = model.objects.filter(
**{field_name + "__startswith": proposal}
).values(field_name)
similar_ones = [elem[field_name] for elem in similar_ones]
if proposal not in similar_ones:
return proposal
else:
numbers = []
for value in similar_ones:
match = re.match(r'^%s%s(\d+)$' % (proposal, separator), value)
if match:
numbers.append(int(match.group(1)))
if len(numbers) == 0:
return "%s%s2" % (proposal, separator)
else:
largest = sorted(numbers)[-1]
return "%s%s%d" % (proposal, separator, largest + 1)
|
34c3743b670ee40f4d674c9964a99e91efd9a274
| 69,755
|
def line_nr(ana, entry):
"""
Return the line number of the start of a command.
ATTENTION: This is not the row of the command. If you want that
use rowcol!
ana -- The analysis, which contains the entry
entry -- The command entry to get the line number for
"""
rowcol = ana.rowcol(entry.file_name)
return rowcol(entry.region.begin())[0] + 1
|
b3887d7060fde7db89ccdff08d3c5ef9da6af52b
| 69,756
|
def colourBarMinorAxisSize(fontSize):
"""Calculates a good size for the minor axis of a colour bar.
The minor axis is the axis perpendicular to the colour bar axis.
:arg fontSize: Font size of colour bar labels, in points.
"""
# Figure out the font size in pixels
# (font points are 1/72th of an inch,
# and we're using inside knowledge
# that the colourbarbitmap module
# uses 96 dpi, and a padding of 6
# pixels).
fontSize = fontSize
fontSize = 6 + 96 * fontSize / 72.
# Fix the minor axis of the colour bar,
# according to the font size, and a
# constant size for the colour bar
return round(2 * fontSize + 40)
|
7a1e8268480809a32501c37e8aed1c3e598d8eff
| 69,758
|
def clean(string: str) -> str:
"""
Trim trailing space from the end of field names.
Some field headers have spaces appended to the end of the cells.
"""
return string.strip()
|
2f1581d81318e08e87a70397d5fa1733bbd457ee
| 69,760
|
def print_month(month: int) -> str:
"""Returns `month` in markdown format"""
return f"### {month} 월"
|
23d0d82d2532efc700965cce42e96ea749cb3465
| 69,761
|
def _join_and_preserve_sequential_indent(lines):
"""Joins lines with newlines while preserving indentation of first line"""
if not lines:
return ''
first_line = lines[0]
leading_spaces = len(first_line) - len(first_line.lstrip(' '))
return '\n'.join([first_line] + [' ' * leading_spaces + line for line in lines[1:]])
|
e686165913eb71b33d6bb0d89650258d0bd82155
| 69,763
|
def invert_dict(d):
"""Invert the given dict."""
return {v: k for k, v in d.items()}
|
5642f85bfd97f4303af43e56bbfb3730909963bf
| 69,765
|
def hex_to_rgb(value):
"""
Calculates rgb values from a hex color code.
:param (string) value: Hex color string
:rtype (tuple) (r_value, g_value, b_value): tuple of rgb values
"""
value = value.lstrip('#')
hex_total_length = len(value)
rgb_section_length = hex_total_length // 3
return tuple(int(value[i:i + rgb_section_length], 16)
for i in range(0, hex_total_length, rgb_section_length))
|
8d1216fbea366e94df6c0754af6a0946559de445
| 69,767
|
def NEST_CONFIG_STEP(image):
""" generate config step name for nesting """
return 'execute config {}'.format(image)
|
e2784bbbdcf49f8ce9640a8ec0f5843d497de1aa
| 69,771
|
def note_distance(note_pair):
"""Get the distance in semitones between two named
notes.
E.g.
(Bb1, B1) => 1
(C4, B4) => 11
(C5, Bb5) => 10
Parameters
----------
note_pair : tuple of ints
Returns
-------
note_distance : int
"""
char_map = {'C': 0, 'D': 2, 'E': 4, 'F': 5, 'G': 7, 'A': 9, 'B': 11}
def apply_modifier(val, modifier):
if modifier == "#":
return val + 1
elif modifier == 'b':
return val - 1
else:
return val
# get the chars
first_note = [x for x in note_pair[0]]
second_note = [x for x in note_pair[1]]
first_name, first_oct = first_note[0], first_note[-1]
first_mod = first_note[1] if len(first_note) == 3 else None
second_name, second_oct = second_note[0], second_note[-1]
second_mod = second_note[1] if len(second_note) == 3 else None
base_dist = apply_modifier(char_map[second_name], second_mod) - \
apply_modifier(char_map[first_name], first_mod)
oct_diff = int(second_oct) - int(first_oct)
base_dist += (oct_diff * 12)
return base_dist
|
a8a3060d0db981959684ebe8f8dde9e335f8b2e7
| 69,773
|
def get_aton(mmsi: str) -> bool:
"""
Gets the AIS Aids to Navigation (AtoN) status of a given MMSI.
AIS Aids to Navigation (AtoN):
AIS used as an aid to navigation uses the format 9192M3I4D5X6X7X8X9
where the digits 3, 4 and 5 represent the MID and X is any figure
from 0 to 9. In the United States, these MMSIs are reserved for the
federal government.
Src: https://www.navcen.uscg.gov/?pageName=mtmmsi
:param mmsi: str MMSI as decoded from AIS data.
:return: bool True if MMSI belongs to an AtoN, otherwise False.
"""
return str(mmsi)[:2] == "99"
|
e1e6e51af5cfadd3dc93a47ea09e7ddb2915317f
| 69,778
|
def dequantize(norm, sign_xi_array):
"""
Dequantize the quantization code
:param norm: Norm of code
:param sign_xi_array: Rounded vector of code
:return: Dequantized weights
"""
weights = norm * sign_xi_array
return weights
|
a7335feef29beee432af1c643bddcb6b26d7f471
| 69,779
|
def tweak_thimble_input(stitch_dict, cmd_args):
"""
:param stitch_dict: Dictionary produced by stitchr
:param cmd_args: command line arguments passed to thimble
:return: Fixed stitchr dict (species capitalised, TCR names blanked)
"""
stitch_dict['species'] = cmd_args['species'].upper()
stitch_dict['name'] = ''
for region in ['v', 'j', 'cdr3', 'c']:
stitch_dict[region] = stitch_dict[region].upper()
return stitch_dict
|
d9010317a76ed459e5fae04d7aa217cfb43449cf
| 69,780
|
def num_neighbours(lag=1):
"""
Calculate number of neigbour pixels for a given lag.
Parameters
----------
lag : int
Lag distance, defaults to 1.
Returns
-------
int
Number of neighbours
"""
win_size = 2 * lag + 1
neighbours = win_size**2 - (2 * (lag - 1) + 1)**2
return neighbours
|
608c43b1b195d21b3a748a4b90f36d2b75ac175b
| 69,783
|
def multiply_point(point: tuple[float, ...], coef: float) -> tuple[float, ...]:
"""
Multiples each value in a given tuple by a coefficient.
:param point: the point to multiply.
:type point: tuple[float, ...]
:param coef: the coefficient to multiply the points by.
:type coef: float
:return: the tuple, where each element is multiplied by the coefficient.
:rtype: tuple[float]
"""
return tuple(p * coef for p in point)
|
99076a9dcb29213f81d56a8ae4d877101b34afa2
| 69,784
|
def get_aa_percentage(sequence, aa_list=['A','I','L','M','F','W','Y','V']):
""" Calculates percentage of sequence made up of amino acids in aa list.
If no list is given, default is hydrophilic amino acids. """
# Right format
sequence = sequence.upper()
aa_list = [aa.upper() for aa in aa_list]
aa_count = 0
# Add counts of all amino acids
for aa in aa_list:
aa_count += sequence.count(aa)
# Obtain percentage and round
return round(100*aa_count/len(sequence), 2)
|
73112af1f9499312c80953405ffc5c0cd829f2c2
| 69,785
|
def count_lines(file_name: str) -> int:
"""
Counts the number of lines in a plain text file.
:param file_name: File name.
:return: The number of lines in the file.
"""
with open(file_name) as f:
i = 0
for i, l in enumerate(f):
pass
return i + 1
|
d93e3bedbcf07080da9d85e7f80dd6ad8cb72160
| 69,787
|
from datetime import datetime
def _budget_date(date):
"""Get a budget month date from the actual date."""
if isinstance(date, datetime):
if date.day > 7:
return datetime(date.year, date.month, 1)
if date.month > 1: # decrease by 1 month
return datetime(date.year, date.month - 1, 1)
return datetime(date.year - 1, 12, 1) # decrease year & month
raise TypeError("Invalid date {}".format(date))
|
fa4e7492b10e825d5009f16a1cf1b4d89b8e332a
| 69,789
|
def g_(x,a,c):
"""
Calculate vector of equations of residuals,
evaluated at x
G[i] = Sum_j (x[j] - a[i,j])^2 - C[i]**2
where:
x is the point we're trying to fit (in M dimensions),
a is the (N) already embedded points (in M dimensions),
C is the expected distance
"""
return ((x-a)**2).sum(1) - c**2
|
82ade5d74aa9d8366c1e4f4ebc955f6eb4c40f35
| 69,792
|
def rule_of_succession(kA, kB): # a.k.a. "Laplace-Bayes estimator"
"""
Posterior probability that a term belongs to A
given observations of this term on A and B.
"""
return (kA + 1) / (kA + kB + 2)
|
cb01c3ffe0dbfbeb92e96648820a741ff5f5e0e0
| 69,799
|
def _reverse(array, dim):
"""Reverse an `xarray.DataArray` along a given dimension."""
slicers = [slice(0, None)] * array.ndim
slicers[dim] = slice(-1, None, -1)
return array[tuple(slicers)]
|
100dfa17a2fdef5b378e70f0d8fbdce8edaa7cb4
| 69,808
|
def lst2tup(data):
"""Converts output of json.loads to have tuples, not lists.
"""
if isinstance(data, list):
return tuple(lst2tup(e) for e in data)
if isinstance(data, dict):
return {k: lst2tup(v) for k, v in data.items()}
return data
|
14d5b0bfab1269128a76e018283334d686368022
| 69,818
|
import six
def is_python(cell):
"""Checks if the cell consists of Python code."""
return (cell["cell_type"] == "code" # code cells only
and cell["source"] # non-empty cells
and not six.ensure_str(cell["source"][0]).startswith("%%")
) # multiline eg: %%bash
|
bf72bd0e02097ba6cff0e9b15bbe308b583e1bd3
| 69,819
|
import math
def wavy(ind, k=10.):
"""Wavy function defined as:
$$ f(x) = 1 - \frac{1}{n} \sum_{i=1}^{n} \cos(kx_i)e^{-\frac{x_i^2}{2}}$$
with a search domain of $-\pi < x_i < \pi, 1 \leq i \leq n$.
"""
return 1. - sum(( math.cos(k * ind[i]) * math.exp(-(ind[i]*ind[i])/2.) for i in range(len(ind)))) / float(len(ind)),
|
a25c99dc8cf3f9b066dd2bbc21cc8f2b41a249f2
| 69,820
|
def cantons_from_geonames_answer(answer):
"""
reads the canton abbreviations from the geonames answer
returns: the canton abbreviations for a given query answer
"""
#print(answer)
canton_abbrevs = []
for res in answer['geonames']:
canton_abbrevs.append(res['adminCode1'])
return canton_abbrevs
|
cecddff9d4472b2d7c9e561b466c08656861cfde
| 69,822
|
def bounding_box(points):
""" Return the coordinates for the box that contains all POINTS. """
min_x = min([point[0] for point in points])
min_y = min([point[1] for point in points])
max_x = max([point[0] for point in points])
max_y = max([point[1] for point in points])
return [(min_x,min_y),(max_x,max_y)]
|
dcb2e4b7db93bbafc70ef1eb97d29b5917ce0467
| 69,825
|
def delta(self):
"""
This is the omega of the adjoint form,
which is the same as the omega of the reciprocal form.
EXAMPLES::
sage: Q = DiagonalQuadraticForm(ZZ, [1,1,37])
sage: Q.delta()
148
"""
return self.adjoint().omega()
|
a835655d7ff54ef7a66338bc96f0da5062a4e286
| 69,831
|
def _sortedDictVals(unsorted_dict):
"""
Sort a dictionary into alphabetical order by keys.
"""
items = unsorted_dict.items()
items.sort()
return items
|
3f3c4440374bdd50351b0654b43cc7359615297f
| 69,846
|
def create_options(items):
"""
creates a tuple of dicts with each key and value set to an item of given list.
:param list items: items to create a tuple of dicts from them.
:rtype: tuple[dict]
"""
results = []
for item in items:
option = dict(name=item, value=item)
results.append(option)
return tuple(results)
|
d86d8c135c9e3933d9841ad01013099741300f39
| 69,848
|
def get_emmitors(G, n):
"""
Find all clusters emitting to selected cluster and
returns a dictionary of emittor weight pairs
"""
emittors = {emittor: data["weight"] for (
emittor, target, data) in G.edges(data=True) if target == n}
return emittors
|
f7fba6b1cb4b2fa2317e63ef6eaf4aedcee3d6a7
| 69,851
|
from typing import List
def split_multipart_field(field: str) -> List[str]:
"""
Splits a multi-part field into its component parts.
:param field: The multi-part field's value.
:return: The parts.
"""
return field.split("|", maxsplit=2)
|
00f85a2ef87b88f3223803ddfe3f5d5112909b0f
| 69,855
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.