content
stringlengths
39
14.9k
sha1
stringlengths
40
40
id
int64
0
710k
def recipe_is_complete(r): """Return True if recipe is complete and False otherwise. Completeness is defined as the recipe containing a title and instructions. """ if ('title' not in r) or ('instructions' not in r): return False if (r['title'] is None) or (r['instructions'] is None): return False return True
78242642b97dbb8e051f74c64b9ef742eff196a1
64,948
def geom(xs, p): """Geometric probability mass function. x=number of desired Bernoulli trials, p=Success probability of a single Bernoulli trial. Returns: Probability that the x's trial is the first success""" if any(xs<1) or p<0 or p>1: raise ValueError('function not defined') return ((1-p)**(xs-1)) * p
a71057337b6e62042ab67d6bcd166a16d51ce0b9
64,955
from pathlib import Path import gzip def untar(source: Path, verbose=False) -> Path: """ Desc: creates a file with the same extension as the file contained within the zipped archive and then writes the contents from the zipped file into the new file created Args: source - Path object for the source from where the files needs to be fetched verbose - Let the method know if you want to see progress messages Returns: Path object for the uncompressed file """ if verbose: print(f'source:{source}') dest_file = source.parent/source.stem if dest_file.exists(): dest_file.unlink() if not dest_file.exists(): if verbose: print("extracting..") dest_file.touch() with gzip.open(source, "rb") as file: for line in file: dest_file.write_bytes(line) #dest_file.close() if verbose: print('File extracted successfully.') return dest_file
221c7119456630222e408407540428c7de2507e7
64,959
import random def generate_list(list_size, element_min, element_max): """Generates a list contianing list_size elements. Each element is a random int between or equal element_min and element_max""" sequence = [random.randint(element_min, element_max) for num in range(list_size + 1)] return sequence
37cd37625ba102082d0b366a9a661295d518af68
64,960
def is_gzip_file(filename): """Returns ``True`` if :obj:`filename` is a GZIP file.""" return filename.endswith(".gz")
0a485dc25ebe28d23f8293815940dcddef35c417
64,961
def get_icd9_descript_path(data_dir): """Get path of icd9 description file.""" return '{}/{}'.format(data_dir, 'phewas_codes.txt')
2a32f66af3c57b7c93a9e281371c0c74a8f75465
64,964
def createHeader(ordinal): """Creates the header text for each seperate subexcercise""" print("") print("---", ordinal, " program---") print("") return 0
f1c49d7252c52651824ce590fbdfd09601b132ec
64,965
import requests def fetch_gutenberg_book(id: str) -> str: """Fetch a book from Gutenberg, given its ebook id.""" url = "https://www.gutenberg.org/ebooks/{}.txt.utf-8".format(id) response = requests.get(url) response.raise_for_status() return response.text
f0c6d8d3099e08f05b00940c85c4872894406e41
64,969
import torch def smooth(x, span): """ Moving average smoothing with a filter of size `span`. """ x = torch.nn.functional.pad(x, (span//2, span//2)) x = torch.stack([torch.roll(x, k, -1) for k in range(-span//2, span//2+1)]).sum(dim=0) / span return x
494590de72e78fcbeb11bacf9214bee4ba6efcf3
64,972
import random from typing import List def generate_seeds(rng: random.Random, size: int) -> List[int]: """Generates list of random seeds :param random.Random rng: random number generator :param int size: length of the returned list :return: list of random seeds :rtype: List[int] """ seeds = [rng.randint(0, 2**32 - 1) for _ in range(size)] return seeds
2e8a66745086c55c142877de2d3422b9eab9f160
64,976
from typing import List from typing import Dict def finalise_squad_data_list(squad_data_list: List, version: str='') -> Dict: """Convert a SQuAD data list to SQuAD final format""" return { 'data': squad_data_list, 'version': version }
72caf6d8f0c3c6d17c88767d4cceea28534bd4a8
64,977
def true_filter(test): # pylint: disable=unused-argument """Simply return True regardless of the input. Designed to be used with `get_best_filter` where no filtering is desired; intended to have same effect as `IsParticle` function defined in dataclasses/private/dataclasses/physics/I3MCTreePhysicsLibrary.cxx Parameters ---------- test Returns ------- True : bool """ return True
a7e3e983f133f946c2232e84e29435bd43d12dca
64,982
from typing import List from typing import Dict def _mock_translate_response( target_language: str, source_language: str, model: str, values: List[str], ) -> List[Dict[str, str]]: """ A simulated response for the Google Translate Client get_languages() call https://github.com/googleapis/python-translate/blob/master/google/cloud/translate_v2/client.py Args: target_language: The language to translate to (ignored in mock response) source_language: The language to translate from model: The model used by the google client for language detection values: The values to detect the language for Returns: A list of JSON responses per input value """ if sum(len(value) for value in values) > 100000: raise RuntimeError("User Rate Limit Exceeded") translated_values = { "cheddar cheese": "fromage cheddar", "ground beef": "boeuf haché", "skim milk": "lait écrémé", "whole chicken": "poulet entier", "bacon": "Bacon", "american cheese": "Fromage Américain", "roast beef": "rôti de bœuf", "boneless chicken breasts": "poitrines de poulet désossées", "swiss cheese": "fromage suisse", } mock_response = [] for value in values: if source_language is None: mock_response.append( { "translatedText": translated_values[value], "detectedSourceLanguage": "en", "model": model, "input": value, } ) else: mock_response.append( {"translatedText": translated_values[value], "model": model, "input": value} ) return mock_response
7b47fb6cc7ca5dafce444072bbedc29f641a2a05
64,991
def get_first_data_row(sheet): """ Find first row in the excel with data (company numbers) Args: sheet: worksheet object Returns: first row with data """ for row in range(1, sheet.max_row): if str(sheet['A' + str(row)].value).isnumeric(): return row return 1
49135b47b1aadfc6bcfbd302dfe14bdb7d1f2cfd
64,996
def get_elements(filename): """ get elements from file, each line is an element """ elements = list() with open(filename, 'r') as f: lines = f.readlines() return [e.rstrip() for e in lines]
9482655c3dba061160fc2cea135e7492d6465dba
64,998
def _get_end_nodes(graph): """Return list of nodes with just one neighbor node.""" return [i for i in graph.nodes() if len(list(graph.neighbors(i))) == 1]
5cfb4abcf9323255aa18183e0fb06d668e8131dd
64,999
def pyname_to_xmlname(name): """ Convert a Python identifier name to XML style. By replacing underscores with hyphens: >>> pyname_to_xmlname('some_name') 'some-name' """ return name.replace('_', '-')
4b950faea8577bfde818afa561dd22aded2f18f4
65,003
def armstrongNumber(num): """assumes num is an int returns a boolean, True if num is an armstrong number, else False. An armstrong number = sum of digits ** number of digits e.g. 371 = 3**3 + 7**3 + 1**3 """ digit_sum = 0 for digit in str(num): digit_sum += int(digit) ** 3 return num == digit_sum
519812a5dd4612c1127225c66be0790e4576eb45
65,009
def is_windows(repository_ctx): """Returns true if the execution platform is Windows. Args: repository_ctx: the repository_ctx Returns: If the execution platform is Windows. """ os_name = "" if hasattr(repository_ctx.attr, "exec_properties") and "OSFamily" in repository_ctx.attr.exec_properties: os_name = repository_ctx.attr.exec_properties["OSFamily"] else: os_name = repository_ctx.os.name return os_name.lower().find("windows") != -1
a5bb926198d3aac3f1a81591785e11327dd3e97f
65,015
def init_enemy_size(data): """ Initializes enemy size dictionary :param data: :return: Enemy size dictionary """ snakes = data['board']['snakes'] size_dict = {snake['id']: len(snake['body']) for snake in snakes} #print('Initialized size_dict') return size_dict
caa9df938ed61cbede5bdf0f76c1058fd2a56c6a
65,030
def calculate_predicted_value(independent_variable, coefficient): """Returns the predicted value for a given input and coefficient""" return independent_variable * coefficient
3012eb88264462df58d5c32d00f5f877207e7c48
65,031
import string import random def gen_random_str(length: int, chars: str='uld', *, prefix: str='', suffix: str='') -> str: """生成随机字符串 Args: length: 字符串总长度 chars: 使用的字符种类:'u' - 大写字母,'l' - 小写字母,'d' - 数字 prefix: 字符串前缀 suffix: 字符串后缀 """ random_part_len = length - len(prefix + suffix) if random_part_len < 0: raise ValueError('Invalid length') if random_part_len == 0: return prefix + suffix population = '' if 'u' in chars: population += string.ascii_uppercase if 'l' in chars: population += string.ascii_lowercase if 'd' in chars: population += string.digits if not population: raise ValueError('Invalid chars') elements = random.choices(population, k=random_part_len) return prefix + ''.join(elements) + suffix
a09e4b3df1df4b8e390e0ceafa198a3d11f8be2e
65,047
import math def get_sd(mean, grade_list): """Calculate the standard deviation of the grades""" stan_dev = 0 # standard deviation sum_of_sqrs = 0 for grade in grade_list: sum_of_sqrs += (grade - mean) ** 2 stan_dev = math.sqrt(sum_of_sqrs / len(grade_list)) return stan_dev
216c7704152c7f0cb79109730805740578d648d0
65,050
def file_path_to_chars(file_path): """Return the characters in a file at the given path.""" with open(file_path, 'rb') as f: return [chr(b) for b in f.read()]
d0352ec9451d93338214a09a9904ef373135f147
65,051
import re def get_mfc_requirements(msg): """ Get set of revisions required to be merged with commit """ requirements = set() lines = msg.split('\n') for line in lines: if re.match('^\s*(x-)?mfc(-|\s+)with\s*:', line, flags=re.IGNORECASE): pos = line.find(':') line = line[pos+1:] revisions = re.split('[, ]+', line.strip()) for rev in revisions: if rev.startswith('r'): rev = rev[1:] requirements.add(rev) return requirements
1fd9ca26e4bec401908c639d18e2ad61acda2c41
65,053
import logging def filter_keys(d, fn, log_warn=False): """Return a copy of a dict-like input containing the subset of keys where fn(k) is truthy""" r = type(d)() for k, v in d.items(): if fn(k): r[k] = v elif log_warn: logging.warning(f"filtered bad key: {k}") return r
9880ee040673f2c7c0ba44875d72ce3e45fc9bfd
65,061
from typing import Optional from typing import Any from typing import OrderedDict def collection_gen(resources: list, topic_uri: str, uri: str, members: bool=False) -> Optional[Any]: """ Generate an OrderedDict for a IIIF Presentation API collection from a list of manifest Ordered Dicts (with @type, @id, and label), setting the @id of the Collection based on the annotation 'creator'. :param resources: List of IIIF Presentation API Ordered Dicts :param topic_uri: id of the topic :param uri: base URI where the collection can be retrieved :param members: Boolean to set whether to use members or manifests. Members would allow Collections to be part of the Collection. :return: OrderedDict for IIIF Collection """ if resources and topic_uri and uri: at_id = uri # + 'topic/?topic=' + topic_uri coll = OrderedDict() coll['@context'] = 'http://iiif.io/api/presentation/2/context.json' coll['@id'] = at_id coll['@type'] = 'sc:Collection' coll['label'] = ' '.join(['IDA Topic Collection for', topic_uri.split('/')[-1]]) if members: coll['members'] = [r for r in resources] else: coll['manifests'] = [r for r in resources] return coll else: return None
0123fd946efd4b67da13402fdad1a370ade07377
65,063
def count_linear(model,output_size): """count FLOPs of linear layer :param model: model object :param output_size: integer output size of the model :returns: FLOPs of linear layer """ input_size=model.rnn.hidden_layer_sizes[-1] return input_size*output_size*2
4f6729df546cb29afbbd5f610fbbe59095794597
65,064
def ask_correct_or_jump(folder_path_project: str, list_file_path_long: list) -> bool: """ask to test again or skip project Args: folder_path_project (str): project folder_path list_file_path_long (list): list of file_path who has path_lenght above max_path Returns: bool: True if choose skip """ msg_project_header = f'\nProject: {folder_path_project}\n' question = \ '\nThis files are with MAX_PATH above the limit allowed.\n' + \ 'Edit the name of folders and files to reduce its lenght.\n\n' + \ '1 - Test again (default)\n' + \ '2 - Skip project\n\n' print(msg_project_header) for file_path_long in list_file_path_long: print('- ' + file_path_long) print(question) answer = input('Choose an option: ') if answer == '' or answer == '1': choose_jump = False return choose_jump else: choose_jump = True return choose_jump
0419cbb536435b811fca520121ef25e73b96b91b
65,066
import torch def matern12(r): """Matern 1/2 function""" return torch.exp(-r)
015efb840b4ef249561b359703195677bc4d1390
65,070
import csv def read_in_data_from_file (environment, pathname): """ Open file and read data into list of lists Parameters ---------- environment : list of lists the datastructure into which the content of the input file is read. pathname : string represents the file name including the path if its not in the current working directory. Returns ------- environment : list of list each element in environment contains one complete row of input file. """ f = open(pathname, newline='') reader = csv.reader(f, quoting=csv.QUOTE_NONNUMERIC) for row in reader: rowlist = [] for value in row: # A list of value rowlist.append(value) environment.append(rowlist) f.close() return environment
2bbd16c638f3f2100143a653831f09371b6827cf
65,072
import itertools def padIterable(iterable, padding, count): """ Pad C{iterable}, with C{padding}, to C{count} elements. Iterables containing more than C{count} elements are clipped to C{count} elements. @param iterable: The iterable to iterate. @param padding: Padding object. @param count: The padded length. @return: An iterable. """ return itertools.islice( itertools.chain(iterable, itertools.repeat(padding)), count)
793cf523f5f29c4e1ca0b37cb10f314f1cd903fa
65,073
def union_overlapping(intervals): """Union any overlapping intervals in the given set.""" disjoint_intervals = [] for interval in intervals: if disjoint_intervals and disjoint_intervals[-1].overlaps(interval): disjoint_intervals[-1] = disjoint_intervals[-1].union(interval) else: disjoint_intervals.append(interval) return disjoint_intervals
946e095d219282c4091cf037a78a7d238cc566a8
65,077
import math def dist(*args): """Calculates the Euclidean distance between two points. Arguments are of the form dist(x1,y1,x2,y2) dist(x1,y1,z1,x2,y2,z2)""" if len(args) == 4: return math.sqrt( sum([(a - b) ** 2 for a, b in zip(args[:2], args[2:])])) else: assert (len(args) == 6) return math.sqrt( sum([(a - b) ** 2 for a, b in zip(args[:3], args[3:])]))
dfa0e5bf0ae002c682d14804260347f0626af68e
65,079
def assign_subtasks(total_num, num_tasks=2): """ Split the task into sub-tasks. Parameters: ----------- total_num: int Total number of the task to be split. num_tasks: int The number of sub-tasks. Returns: -------- subtask_ids: list of list List of the list of ids. Eg. [[0, 1], [2, 3, 4]] """ subtasks = [] num_per_task = total_num // num_tasks for i in range(num_tasks): if i < num_tasks-1: ids = list(range(i*num_per_task, (i+1)*num_per_task, 1)) else: ids = list(range(i*num_per_task, total_num)) subtasks.append(ids) return subtasks
ec6246f3b47e99d55e0502fe1165dcb232d8acef
65,080
def horner( x, *poly_coeffs ): """ Use Horner's Scheme to evaluate a polynomial of coefficients *poly_coeffs at location x. """ p = 0 for c in poly_coeffs[::-1]: p = p*x + c return p
236352cb4ae6de13cf8fe6ddfad782af4aba1c6b
65,083
def get_submatrix(matrices, index, size, end_index=None): """Returns a submatrix of a concatenation of 2 or 3 dimensional matrices. :type matrices: Variable :param matrices: symbolic 2 or 3 dimensional matrix formed by concatenating matrices of length size :type index: int :param index: index of the matrix to be returned :type size: Variable :param size: size of the last dimension of one submatrix :type end_index: int :param end_index: if set to other than None, returns a concatenation of all the submatrices from ``index`` to ``end_index`` """ if end_index is None: end_index = index start = index * size end = (end_index + 1) * size if matrices.ndim == 3: return matrices[:, :, start:end] elif matrices.ndim == 2: return matrices[:, start:end] else: raise ValueError("get_submatrix() requires a 2 or 3 dimensional matrix.")
2331456bf2418a02f69edf330207ce9faf3ee2b7
65,086
def stringtodigit(string: str): """ attempts to convert a unicode string to float or integer :param str string: String to attempt conversion on :return: """ try: value = float(string) # try converting to float except ValueError: try: value = int(string) # try converting to int except ValueError: value = string # otherwise keep as unicode return value
acf53b4f799eb202e0d4d6f664c842d61b6afc26
65,091
def pad(region, margins): """ Pad region according to a margin :param region: The region to pad :type region: list of four floats :param margins: Margin to add :type margins: list of four floats :returns: padded region :rtype: list of four float """ out = region[:] out[0] -= margins[0] out[1] -= margins[1] out[2] += margins[2] out[3] += margins[3] return out
a56085f5e42122307cd4236d051447c66aaa68f9
65,093
import string def get_available_letters(letters_guessed): """ letters_guessed: list (of letters), which letters have been guessed so far Returns: string (of letters), comprised of letters that represents which letters have not yet been guessed. """ lo, g = string.ascii_lowercase, letters_guessed return lo if g == '' else ''.join([c for c in lo if c not in g])
e7eb61eeab6be37286e6ab39ff07bc3bfa3041ea
65,094
def to_seconds(time_obj): """ Convert a RationalTime into float seconds """ return time_obj.value_rescaled_to(1)
80c19f24870d5f3b95f263906ec9e106330015a4
65,101
def selection_sort(some_list): """ https://en.wikipedia.org/wiki/Selection_sort Split the list into a sorted/unsorted portion. Go through the list from left to right, starting with position 0 in the unsorted portion. When we find the minimum element of the unsorted portion, swap it to the end of the sorted list portion. O(N^2) """ iters = 0 for i in range(0, len(some_list) - 1): iters += 1 min_index = i # Always reset min for each loop for j in range(i + 1, len(some_list)): iters += 1 if some_list[j] < some_list[min_index]: min_index = j if min_index != i: some_list[i], some_list[min_index] = some_list[min_index], some_list[i] return iters, some_list
47bb82584e87cd3f00d3a276d0d64682b00e46cb
65,107
def pretty_exception(err: Exception, message: str): """Return a pretty error message with the full path of the Exception.""" return "{} ({}.{}: {})".format(message, err.__module__, err.__class__.__name__, str(err))
0dfabae14bdf1df4073248e25b1e3d74573c1aed
65,109
from pathlib import Path def home_directory() -> str: """ Return home directory path Returns: str: home path """ return str(Path.home())
8c9c1ccccfc547a26794e5494975e27cde4e73ef
65,110
def _get_image_type_from_array(arr): """Find image type based on array dimensions. Raises error on invalid image dimensions. Args: arr: numpy array. Input array. Returns: str. "RGB" or "L", meant for PIL.Image.fromarray. """ if len(arr.shape) == 3 and arr.shape[2] == 3: # 8-bit x 3 colors return 'RGB' elif len(arr.shape) == 2: # 8-bit, gray-scale return 'L' else: raise ValueError( 'Input array must have either 2 dimensions or 3 dimensions where the ' 'third dimension has 3 channels. i.e. arr.shape is (x,y) or (x,y,3). ' 'Found shape {}.'.format(arr.shape))
cf3b8aa43a8dc35c000c7a6f5d68eae6ae96a418
65,118
def get_label_instances(response, target): """Get the number of instances of a target label.""" for label in response['Labels']: if label['Name'] == target: return len(label['Instances'])
ec0b24fac803148ea8e9b0e07d854d0ec953c63f
65,123
def is_remote(path): """Determine if a uri is located on a remote server First figures out if there is a ':' in the path (e.g user@host:/path) Then looks if there is a single @ in part preceding the first ':' :param path: uri/path :type path: str :return: True if path points to remote server, False otherwise :rtype: bool """ dot = path.split(":")[0] at = dot.split("@") if len(at) == 1: return False return True
979acfc548f5d550d249fceadad6f9ece4f40035
65,124
import logging def log_data_summary(X, Y): """Sanity check that logs the number of each class. Args: X (np.ndarray): Data set Y (np.ndarray): Labels Returns: None """ N_total = Y.size N_1 = Y.sum() N_0 = N_total - N_1 logging.info("{:d} total examples. {:.1f} % of training set is 1.".format( N_total, 100 * float(N_1) / float(N_total) )) return None
3c706b1609791882a1e54a46c38dc1fa7c5678d9
65,126
def get_xml_attributes(node): """Return the xml attributes of a node as a dictionary object""" attr = {} for k, v in node._get_attributes().items(): attr[k] = v return attr
8bb013818ed9bba5c4b73d662c4ad11c6dae05e6
65,132
def max_returns(prices): """ Calculate maxiumum possible return in O(n) time complexity Args: prices(array): array of prices Returns: int: The maximum profit possible """ if len(prices) < 2: return 0 min_price_index = 0 max_price_index = 0 current_min_price_index = 0 for i in range(1, len(prices)): # current minimum price if prices[i] < prices[current_min_price_index]: current_min_price_index = i # current max profit if prices[i] - prices[current_min_price_index] > prices[max_price_index] - prices[min_price_index]: max_price_index = i min_price_index = current_min_price_index max_profit = prices[max_price_index] - prices[min_price_index] return max_profit
08bc3e900818f0f93927c2e70fa8a38d83a91393
65,133
def RemoveSlash( dirName ): """Remove a slash from the end of dir name if present""" return dirName[:-1] if dirName.endswith('/') else dirName
0eabb5d82c3419caccde674fbae150d852e94fb0
65,134
def to_bool(val): """ Copied from https://github.com/python-attrs/attrs/blob/e84b57ea687942e5344badfe41a2728e24037431/src/attr/converters.py#L114 Please remove after updating attrs to 21.3.0. Convert "boolean" strings (e.g., from env. vars.) to real booleans. Values mapping to :code:`True`: - :code:`True` - :code:`"true"` / :code:`"t"` - :code:`"yes"` / :code:`"y"` - :code:`"on"` - :code:`"1"` - :code:`1` Values mapping to :code:`False`: - :code:`False` - :code:`"false"` / :code:`"f"` - :code:`"no"` / :code:`"n"` - :code:`"off"` - :code:`"0"` - :code:`0` :raises ValueError: for any other value. .. versionadded:: 21.3.0 """ if isinstance(val, str): val = val.lower() truthy = {True, "true", "t", "yes", "y", "on", "1", 1} falsy = {False, "false", "f", "no", "n", "off", "0", 0} try: if val in truthy: return True if val in falsy: return False except TypeError: # Raised when "val" is not hashable (e.g., lists) pass raise ValueError("Cannot convert value to bool: {}".format(val))
24c1ea4fa76b6ac6752d1255c0dc8203b406ca45
65,136
import requests def generic_request(method, url, **kwargs): """An alias for requests.request with handling of keystone authentication tokens. :param method: The HTTP method of the request :param url: The url to request :param **kwargs: The keyword arguments defined below as well as any additional arguments to be passed to the requests.request call :return: A request for the given url :Keyword Arguments: * token: A token to be put into the X-Auth-Token header of the request """ auth_token = kwargs.pop('token', None) if auth_token: headers = kwargs.pop('headers', {}) headers['X-Auth-Token'] = auth_token kwargs['headers'] = headers return requests.request(method, url, **kwargs)
e7e2493fee6a76430984492880283f1e0dbbcd19
65,139
def backoff_constant(n): """ backoff_constant(n) -> float Constant backoff implementation. This returns the constant 1. See ReconnectingWebSocket for details. """ return 1
345ab3c2c0147a4f102e9518cb4022b55ef9cb7c
65,140
import re def find_num_inquiries(Aop, parameters_size): """ Find the number of parameter inquiries. Parameter inquiries may not be the same as the length of parameters array. The "parameter size" is the product of the "number of the parameter inquiries" and the "number of the parameters of the operator". """ # Get number of parameters that the linear operator Aop defined with num_operator_parameters = Aop.get_num_parameters() # Find the number of inquiries based on the number of parameters # and the length (size) of the parameters array (or scalar) if num_operator_parameters == 0: # No parameters given. There is only one inquiry to be computed num_inquiries = 1 elif parameters_size < num_operator_parameters: message = """Not enough parameters are provided. The given parameter size is %d, which should be larger than %d, the number of parameters of the linear operator.""" % ( parameters_size, num_operator_parameters) raise ValueError(re.sub(' +', ' ', message.replace('\n', ''))) elif parameters_size % num_operator_parameters != 0: message = """Parameters size (given %d) is not an integer-multiple of %d, the number of the parameters of the linear operator. """ % (parameters_size, num_operator_parameters) raise ValueError(re.sub(' +', ' ', message.replace('\n', ''))) else: # parameters size should be an integer multiple of num parameters num_inquiries = int(parameters_size / num_operator_parameters) return num_inquiries
6699cc72fdddcedeb923368db62a31c869d371d5
65,142
import time def collect_host_processes(processes, done_functs=()): """Returns a summary of return codes for each process after they are all finished. done_functs: iter of functs Each function in done_functs will be executed with the args (processes, p) where p is the process that has just completed and processes is the list of remaining processes still (possibly) running. """ summary = {} processes = processes[:] while len(processes) > 0: time.sleep(10) for p in processes: if p.exitcode is not None: summary[p.name] = p.exitcode processes.remove(p) for f in done_functs: f(processes, p) break return summary
4e600079750357851a0675e742dfc9ba14efc7b9
65,145
def format_number(number, num_decimals=2): """ Format a number as a string including thousands separators. :param number: The number to format (a number like an :class:`int`, :class:`long` or :class:`float`). :param num_decimals: The number of decimals to render (2 by default). If no decimal places are required to represent the number they will be omitted regardless of this argument. :returns: The formatted number (a string). This function is intended to make it easier to recognize the order of size of the number being formatted. Here's an example: >>> from humanfriendly import format_number >>> print(format_number(6000000)) 6,000,000 > print(format_number(6000000000.42)) 6,000,000,000.42 > print(format_number(6000000000.42, num_decimals=0)) 6,000,000,000 """ integer_part, _, decimal_part = str(float(number)).partition('.') negative_sign = integer_part.startswith('-') reversed_digits = ''.join(reversed(integer_part.lstrip('-'))) parts = [] while reversed_digits: parts.append(reversed_digits[:3]) reversed_digits = reversed_digits[3:] formatted_number = ''.join(reversed(','.join(parts))) decimals_to_add = decimal_part[:num_decimals].rstrip('0') if decimals_to_add: formatted_number += '.' + decimals_to_add if negative_sign: formatted_number = '-' + formatted_number return formatted_number
9048a53c239072f1b21b2eb4e6446ae631ea4ace
65,150
from typing import Iterable from typing import List from typing import Any def unique(iterable: Iterable) -> List[Any]: """Return a list of all unique elements in iterable. This function preserves order of elements. Example: .. code-block:: python3 unique([3, 2, 1, 1, 2]) -> [3, 2, 1] """ seen = set() f = seen.add return list(x for x in iterable if not (x in seen or f(x)))
ca982d339e99caf6f04ac8d89ba9ac09313e18b5
65,153
import collections def dict_to_class(dobj): """Convert keys of a dict into attributes of a class. """ Dclass = collections.namedtuple('Dclass', dobj.keys()) return Dclass(**dobj)
ede87edf15a11036679eaf066acbadcc1423f3ef
65,164
def getDistance(x1, y1, x2, y2): """ Using the standard distance Formula **2 is to perform square operation **5 is to perform square root operation """ return ((x2 - x1) ** 2 + (y2 - y1) ** 2) ** 0.5
783196001758dc8b052547459b56b33cc3773c10
65,166
from typing import Tuple def decode_fault(tup: Tuple[int, ...]) -> str: """Decode faults.""" faults = { 13: "Working mode change", 18: "AC over current", 20: "DC over current", 23: "F23 AC leak current or transient over current", 24: "F24 DC insulation impedance", 26: "F26 DC busbar imbalanced", 29: "Parallel comms cable", 35: "No AC grid", 42: "AC line low voltage", 47: "AC freq high/low", 56: "DC busbar voltage low", 63: "ARC fault", 64: "Heat sink tempfailure", } err = [] off = 0 for b16 in tup: for bit in range(16): msk = 1 << bit if msk & b16: msg = f"F{bit+off+1:02} " + faults.get(off + msk, "") err.append(msg.strip()) off += 16 if not err: return "" return ", ".join(err)
66399148fef9706db7b51a1d1ea8eecebccdbb88
65,168
def normalize_job_id(job_id): """Convert the job id into job_id, array_id.""" return str(int(job_id)), None
1573a8db5fa0ea84bf6ef8062bcfaf92d6a504ac
65,169
def to_bool(s: str) -> bool: """ Converts the given string to a boolean. """ return s.lower() in ('1', 'true', 'yes', 'on')
3d694f37927caf25d5af579d6d78168b21e99ea7
65,170
def calculateIoU(startX_, startY_, endX_, endY_, x1, y1, x2, y2): """ Calculate the intersection over union (IoU) score for two bounding boxes. :param startX_: Upper left x coordinate of the first object detection. :param startY_: Upper left y coordinate of the first object detection. :param endX_: Lower right x coordinate of the first object detection. :param endY_: Lower right y coordinate of the first object detection. :param x1: Upper left x coordinate of the second object detection. :param y1: Upper left y coordinate of the second object detection. :param x2: Lower right x coordinate of the second object detection. :param y2: Lower right y coordinate of the second object detection. """ x_left = max(startX_, x1); y_top = max(startY_, y1); x_right = min(endX_, x2); y_bottom = min(endY_, y2); if x_right < x_left or y_bottom < y_top: return 0.0 intersection_area = (x_right - x_left) * (y_bottom - y_top); bb1_area = (endX_ - startX_) * (endY_ - startY_); bb2_area = (x2 - x1) * (y2 - y1); iou = intersection_area / (bb1_area + bb2_area - intersection_area); return iou
d682b16593daef33d841f5dc84f16cd2bddc35a0
65,172
import torch def accuracy_fn(y_true, y_pred): """Calculates accuracy between truth labels and predictions. Args: y_true (torch.Tensor): Truth labels for predictions. y_pred (torch.Tensor): Predictions to be compared to predictions. Returns: [torch.float]: Accuracy value between y_true and y_pred, e.g. 78.45 """ correct = torch.eq(y_true, y_pred).sum().item() acc = (correct / len(y_pred)) * 100 return acc
6ca674aac03b153a2608e8a2e5d3abfce1bbc6d2
65,177
def compute_p_r_f1(gold_tuples, pred_tuples): """ Compute Precision/Recall/F1 score for the predicted tuples. Parameters ---------- gold_tuples : set Set of gold-standard 4-tuples. pred_tuples : set Set of predicted 4-tuples. Returns ------- scores : tuple A 3-tuple containing (precision, recall, f1). """ precision = float(len(gold_tuples & pred_tuples)) / len(pred_tuples) recall = float(len(gold_tuples & pred_tuples)) / len(gold_tuples) f1 = 2.0 * precision * recall / (precision + recall) return precision, recall, f1
6ebfee38ed3532c4657fefe8d4499dd28b595593
65,180
def twos_complement(val: int, bits: int) -> int: """ returns the two's complement of the integer passed in. bits arg needed to determine the first bit """ if (val & (1 << (bits - 1))) != 0: val = val - (1 << bits) return val
072a453cb25ffa49679ac3895337a1b0dfa773c8
65,183
def query(db, query_statement): """ 执行查询语句,并返回结果 :param db: 数据库实例 :param query_statement: 查询语句 :return: 查询结果 """ cursor = db.cursor() # 获得游标 cursor.execute(query_statement) result = cursor.fetchall() return result
4950ecf3b15c6d1b0a46b2310bd003b3b4bce01d
65,184
def _remove_atom_numbers_from_distance(feat_str): """ Remove atom numbers from a distance feature string. Parameters ---------- feat_str : str The string describing a single feature. Returns ------- new_feat : str The feature string without atom numbers. """ # Split the feature string in its parts parts = feat_str.split(' ') # Glue the desired parts back together new_feat = parts[0] for nr in [1,2,3,5,6,7,8]: new_feat += ' '+parts[nr] return new_feat
95daddf73364d3fb619c7fbba0ac2d57a3680952
65,190
def table_delta(first_summary, second_summary): """ A listing of changes between two TableSummarySet objects. :param first_summary: First TableSummarySet object :param second_summary: Second TableSummarySet object :return: Change in number of rows """ differences = [] for first, second in zip(first_summary, second_summary): diff = first.number_of_rows - second.number_of_rows differences.append(diff) return differences
96c3931e4891c14a3d0f84a87abbec2ab85bf48d
65,192
def cdata_section(content): """ Returns a CDATA section for the given ``content``. CDATA sections are used to escape blocks of text containing characters which would otherwise be recognized as markup. CDATA sections begin with the string ``<![CDATA[`` and end with (and may not contain) the string ``]]>``. """ if content is None: content = '' return "<![CDATA[%s]]>" % content
f3cd615deb5b558d1318ef7174612d2f5a67e95e
65,196
def combine_options(options=None): """ Returns the ``copy_options`` or ``format_options`` attribute with spaces in between and as a string. If options is ``None`` then return an empty string. Parameters ---------- options : list, optional list of strings which is to be converted into a single string with spaces inbetween. Defaults to ``None`` Returns ------- str: ``options`` attribute with spaces in between """ return " ".join(options) if options is not None else ""
86f508aa2dba4f0db1b2824ff525f987cff3db24
65,197
def _dd_id_to_b3_id(dd_id): # type: (int) -> str """Helper to convert Datadog trace/span int ids into B3 compatible hex ids""" # DEV: `hex(dd_id)` will give us `0xDEADBEEF` # DEV: this gives us lowercase hex, which is what we want return "{:x}".format(dd_id)
fffa8b2e46796cf154197c9f311e0aeba62d0d0a
65,199
def noneOrValueFromStr(s): """Return `None` if `s` is '' and the string value otherwise Parameters ---------- s : str The string value to evaluate Return ------ `None` or the string value """ r = None if not s or not s.strip() or s.upper() == 'NONE' else s return r
ad50b520249f42c9567e02514c7760af881e1bcc
65,202
def calcular_moles(presion: float, volumen: float, temp_celsius: float) -> float: """ Ley de los gases ideales Parámetros: presion (float): Presión del gas, en Pascales volumen (float): Volumen del gas, en litros temp_celsius (float): Temperatura del gas, en grados centígrados o Celsius Retorno: float: Número de moles del gas con dos cifras decimales. """ temp_kelvin = temp_celsius + 273.15 volumen = volumen / 1000 n = (presion * volumen) / (8.314 * temp_kelvin) return round(n, 2)
a81edeeed6dc771f852c76fd2c967258bb751afe
65,205
def test_create_dataframe(df, column_names): """ Test if the DataFrame contains only the columns that you specified as the second argument. Test if the values in each column have the same python type Test if there are at least 10 rows in the DataFrame. :param df: :param column_names: :return: true of false """ # The DataFrame contains only the columns that you specified as the second argument. df_column_names = df.columns.tolist() set_df_column = set(df_column_names) set_column = set(column_names) if set_df_column != set_column: return False # The values in each column have the same python type for i in range(len(list(df.dtypes))): for j in range(list(df.count())[i]): if type(df.iloc[j, i]) != type(df.iloc[0, i]): return False # There are at least 10 rows in the DataFrame. if df.shape[0] < 10: return False return True
cacd0b1a6766f0440edec5ac6198337c56e7d365
65,206
import click def good(text: str) -> str: """Styles text to green.""" return click.style(f"INFO: {text}", fg="green", bold=True)
08e3da017d944fdb5b86c2e92b79ac9dc798b6a6
65,219
def get_jaccard_score(a, s): """ Function that computes the jaccard score between two sequences Input: two tuples; (start index of answer, length of answer). Guaranteed to overlap Output: jaccard score computed for the two sequences """ a_start = a[0] a_end = a[0]+a[1]-1 start = s[0] end = s[0]+s[1]-1 pred_ids = set(range(start, end+1)) label_ids = set(range(a_start, a_end+1)) jacc = len(pred_ids.intersection(label_ids)) / len(pred_ids.union(label_ids)) return jacc
c395ff7ab685e19ee893bc90ea2b6baf85efa21d
65,221
import re def _words_matcher(words): """Construct a regexp that matches any of `words`""" reg_exp = "|".join("{}".format(word) for word in words) return re.compile(reg_exp, re.I)
efdf898e3ab1c648e3c86edaac524d21dfb3d7cf
65,223
import math def phi(x): """Cumulative distribution function for the standard normal distribution Taken from python math module documentation""" return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0
5c2b65dfa33c1f7c4cacabba98b3abaede26a059
65,227
from typing import List def output_lines_to_code_block(output_lines: List[str]) -> List[str]: """Translate the output of a help command to a RST code block.""" result = ( [".. code-block::", ""] + [" " + output_line for output_line in output_lines] + [""] ) result = [line.rstrip() for line in result] return result
b1660049717fc3d52c418f4154bb8e8f3336e239
65,228
def cal_anomaly_Y(df, df_ref): """ Calculates yearly averaged temperature anomaly (departure) from the reference period. Parameters: - df: DataFrame from which anomaly is calculated - df_ref: DataFrame of the reference period Returns: - df_Y: yearly averaged anomaly - df_ref_Y: yearly averaged reference temperatures """ # reference frame (just a number now) df_ref_Y = df_ref['value'].mean() # plotting frame: df_Y = df.resample('AS').mean() # this will fill incomplete years into complete ones and place the mean into the first day of the year # calculate anomaly: df_Y['value'] -= df_ref_Y return df_Y, df_ref_Y
f05b01cc33f7d9bb1fb702bf3cfce56dbe403000
65,229
def formatted_bytes(bytes_number): """ Given a number of bytes, return a string with a nice format """ if bytes_number >= 1024 ** 4: return f"{bytes_number / 1024 ** 4:.1f} TB" if bytes_number >= 1024 ** 3: return f"{bytes_number / 1024 ** 3:.1f} GB" if bytes_number >= 1024 ** 2: return f"{bytes_number / 1024 ** 2:.1f} MB" if bytes_number >= 1024: return f"{bytes_number / 1024:.1f} kB" else: return f"{bytes_number:.0f} bytes"
2da92ca3ac6c0f91655d4843c9cb532ed78a5ab1
65,230
def format_dword(i): """Format an integer to 32-bit hex.""" return '{0:#010x}'.format(i)
c3cab18aa7dc3ac4b8cbcc6282b06839aab0bb7b
65,233
def is_derived_node(node): """ Returns true if this node is derived (i.e. built). """ return node.has_builder() or node.side_effect
619000446328a693eec4bb0f027eb183bccd42c6
65,236
import itertools import re def remove_control_chars(s): """Remove control characters Control characters shouldn't be in some strings, like channel names. This will remove them Parameters ---------- s : str String to check Returns ------- control_char_removed : str `s` with control characters removed. """ control_chars = ''.join(map(chr, itertools.chain(range(0x00,0x20), range(0x7f,0xa0)))) control_char_re = re.compile('[%s]' % re.escape(control_chars)) control_char_removed = control_char_re.sub('', s) return control_char_removed
f4d35822d4dc9e9a32bdcfe797a4133d9695fb3e
65,237
def good_box(sudoku_board, row_num, col_num, num): """ Checks to make sure that a given "box" in a sudoku board is possible if an int num is placed into that "box" """ boxes = [sudoku_board[3 * i: 3 * (i + 1), 3 * j: 3 * (j + 1)] for i in range(3) for j in range(3)] if num not in boxes[(row_num // 3) * 3 + (col_num // 3)]: return True return False
4a49adeeb60f9581b973d10740b1040d17ad293e
65,240
def get_documents(cls, ids): """Returns a list of ES documents with specified ids and doctype :arg cls: the class with a ``.search()`` to use :arg ids: the list of ids to retrieve documents for """ ret = cls.search().filter(id__in=ids).values_dict()[:len(ids)] return list(ret)
85d84315d70c70b029d1de83862b71611b05d4f6
65,241
import torch def to_ca_mode(logits: torch.Tensor, ca_mode: str = "1/2/3") -> torch.Tensor: """ Converts the logits to the ca_mode. Args: logits (torch.Tensor): The logits. ca_mode (str): The cornu ammoni division mode. Returns: torch.Tensor: The corrected logits. """ # 0: bg, 1: dg, 2: ca1, 3: ca2, 4: ca3, 5: sub if not ca_mode: # Whole hippocampus _pre = logits[:, :1, :, :, :] _in = torch.sum(logits[:, 1:, :, :, :], dim=1, keepdim=True) return torch.cat([_pre, _in], dim=1) elif ca_mode == "1/2/3": # identity return logits elif ca_mode == "1/23": # ca1; ca2+ca3 _pre = logits[:, :3, :, :, :] _in = logits[:, 3:4, :, :, :] + logits[:, 4:5, :, :, :] _post = logits[:, 5:, :, :, :] return torch.cat([_pre, _in, _post], dim=1) elif ca_mode == "123": # ca1+ca2+ca3 _pre = logits[:, :2, :, :, :] _in = logits[:, 2:3, :, :, :] + logits[:, 3:4, :, :, :] + logits[:, 4:5, :, :, :] _post = logits[:, 5:, :, :, :] return torch.cat([_pre, _in, _post], dim=1) else: raise ValueError( f"Unknown `ca_mode` ({ca_mode}). `ca_mode` must be 1/2/3, 1/23 or 123" )
151a420764d37a7b4b50acfeb86979c9d03a6f83
65,243
def round_half(x): """Rounds a floating point number to exclusively the nearest 0.5 mark, rather than the nearest whole integer.""" x += 0.5 x = round(x) return x-0.5
26fa072decf8b66a8a8ab54821d8cc297e311051
65,250
from typing import Dict from typing import Optional from typing import Iterable def get_attrib_value(attribs: Dict[str, str], name: str, ns: str, value_prefixes: Optional[Iterable[str]] = None) -> Optional[str]: """ Retrieves the value of an attribute from a dict of `etree.Element` attributes based on its name and namespace. The value could be prefixed by any string so it has to be provided in order to not be considered in the returned value. :param attribs: :param name: :param ns: namespace :param value_prefixes: :return: """ value_prefixes = value_prefixes or [] result = attribs.get(f'{{{ns}}}{name}') if result is None: return for value_prefix in value_prefixes: if result.startswith(value_prefix): result = result[len(value_prefix):] break return result
97aa9d0fabdd66732fe3be033add2009e4be32ab
65,253
def tokens_ready(setcookies, tokens): """check if all required tokens are present in set-cookies headers""" if setcookies == None or tokens == None: return False _tokens = tokens[:] for tk in setcookies: if tk in _tokens: _tokens.remove(tk) if len(_tokens) == 0: return True return False
b290bc15223d878891aea14dea1d448d25fe0061
65,257
def convert_16bit_pcm_to_byte(old_value: int) -> int: """Converts PCM value into a byte.""" old_min = -32768 # original 16-bit PCM wave audio minimum. old_max = 32768 # original 16-bit PCM wave audio max. new_min = 0 # new 8-bit PCM wave audio min. new_max = 255 # new 8-bit PCM wave audio max. byte_value = int((((old_value - old_min) * (new_max - new_min)) / (old_max - old_min)) + new_min) return byte_value
29af84a0e86b23ec66558faeebb091432feef02a
65,259
def _files_header_size_calc(files, farc_type): """Sums the size of the files header section for the given files and farc_type data.""" size = 0 for fname, info in files.items(): size += len(fname) + 1 size += farc_type['files_header_fields_size'] return size
683edc524a2f353cae8c974f5c72616bddafa27a
65,263
def _feet_to_meters(length): """Convert length from feet to meters""" return length * 2.54 * 12.0 / 100.0
bde2dc9201d8b50b831334fee2f44ea7310057ca
65,265
def flatten(list_a: list): """Problem 7: Flatten a Nested List Structure, Parameters ---------- list_a : list The input list Returns ------- flat : list The flattened input list Raises ------ TypeError If the given argument is not of `list` type """ if not isinstance(list_a, list): raise TypeError('The argument given is not of `list` type.') flat = [] for x in list_a: if isinstance(x, list): # If element x is a list then the initial list should be # extended by the elements of list x flat.extend(flatten(x)) else: # Otherwise a single element is appended flat.append(x) return flat
ec229c1dcfd575b7dd0fd50f45bc6faa1f52af08
65,269
def sigmoid_derivative(x): """Derivative to the Sigmoid function""" return x * (1 - x)
58d9f70d54d64b72a22834ffae61b8722e3f343b
65,272
def split_df_into_chunks(df, n_chunks): """ Split passed DataFrame into `n_chunks` along row axis. Parameters ---------- df : DataFrame DataFrame to split into chunks. n_chunks : int Number of chunks to split `df` into. Returns ------- list of DataFrames """ chunks = [] for i in range(n_chunks): start = i * len(df) // n_chunks end = (i + 1) * len(df) // n_chunks chunks.append(df.iloc[start:end]) return chunks
314fc463100e739d3c20a1edb9e9f5699591ae98
65,273
def replace_at(string,old,new,indices): """Replace the substring "old" by "new" in a string at specific locations only. indices: starting indices of the occurences of "old" where to perform the replacement return value: string with replacements done""" if len(indices) == 0: return string indices = sorted(indices) s = string[0:indices[0]] for i in range(0,len(indices)-1): s += string[indices[i]:indices[i+1]].replace(old,new,1) s += string[indices[-1]:].replace(old,new,1) return s
a136b498a627aba3ebdf6ed3c339a272c88dd3e3
65,277
def get_sort_params(input_params, default_key='created_at', default_dir='desc'): """Retrieves sort keys/directions parameters. Processes the parameters to create a list of sort keys and sort directions that correspond to the 'sort_key' and 'sort_dir' parameter values. These sorting parameters can be specified multiple times in order to generate the list of sort keys and directions. The input parameters are not modified. :param input_params: webob.multidict of request parameters (from masakari.wsgi.Request.params) :param default_key: default sort key value, added to the list if no 'sort_key' parameters are supplied :param default_dir: default sort dir value, added to the list if no 'sort_dir' parameters are supplied :returns: list of sort keys, list of sort dirs """ params = input_params.copy() sort_keys = [] sort_dirs = [] while 'sort_key' in params: sort_keys.append(params.pop('sort_key').strip()) while 'sort_dir' in params: sort_dirs.append(params.pop('sort_dir').strip()) if len(sort_keys) == 0 and default_key: sort_keys.append(default_key) if len(sort_dirs) == 0 and default_dir: sort_dirs.append(default_dir) return sort_keys, sort_dirs
6e79ea2c03eb3fa12086e6740b4860069be22fe5
65,278