content
stringlengths
39
14.9k
sha1
stringlengths
40
40
id
int64
0
710k
def time_in_range(start, end, current): """Check if current time is between start and end time""" return start <= current <= end
0abba537e76c2ea8e56d03f85be3b139dd54e9fd
55,856
def divider_row(sizes): """ Create a one line string of '-' characters of given length in each column """ s = '' for i in range(len(sizes)): s = s + '-'.ljust(sizes[i], '-') + ' ' return s
1a054e94179f3a5484bfe28b65ffaf2b30bb5df1
55,858
def get_padding_for_kernel_size(kernel_size): """Compute padding size given kernel size.""" if kernel_size == 7: return (3, 3) elif kernel_size == 3: return (1, 1) else: raise ValueError('Padding for kernel size {} not known.'.format( kernel_size))
417f7a53caadc90207bb87ea1336e55487902abd
55,867
def delta16(v1, v2): """Return the delta (difference) between two increasing 16-bit counters, accounting for the wraparound from 65535 back to 0""" diff = v2 - v1 if diff < 0: diff += (1<<16) return diff
96b4418114189b1a1ac986ac3a544c98537684d6
55,874
def get_filename(url): """ Parses filename from given url """ if url.find('/'): return url.rsplit('/', 1)[1]
7fc1868691f512dd49db76753bad1b160108add5
55,878
def ApplySConscript(self, sconscript_file): """Applies a SConscript to the current environment. Args: self: Environment to modify. sconscript_file: Name of SConscript file to apply. Returns: The return value from the call to SConscript(). ApplySConscript() should be used when an existing SConscript which sets up an environment gets too large, or when there is common setup between multiple environments which can't be reduced into a parent environment which the multiple child environments Clone() from. The latter case is necessary because env.Clone() only enables single inheritance for environments. ApplySConscript() is NOT intended to replace the Tool() method. If you need to add methods or builders to one or more environments, do that as a tool (and write unit tests for them). ApplySConscript() is equivalent to the following SCons call: SConscript(sconscript_file, exports={'env':self}) The called SConscript should import the 'env' variable to get access to the calling environment: Import('env') Changes made to env in the called SConscript will be applied to the environment calling ApplySConscript() - that is, env in the called SConscript is a reference to the calling environment. If you need to export multiple variables to the called SConscript, or return variables from it, use the existing SConscript() function. """ return self.SConscript(sconscript_file, exports={'env': self})
cbb44a59aafe661403ec3ec5003f3dfccde51b60
55,879
import pickle def load_pickle(path): """ Load a saved pickle file Parameters ---------- path: str path of the saved file Returns ------- loaded pickle file """ with open(path, 'rb') as file: variable = pickle.load(file) return variable
a7603050d95d5d3f48659ed837ba5fa157b05b7b
55,881
def bb_image(url): """BB Code image markup for `url`.""" return '[img]{}[/img]'.format(url)
75af6e3f9555100f246f9624c1b25369e16fcf3f
55,884
def get_ratio_and_volume_list(volume_to_average_volume_ratio, volume_to_two_week_volume_ratio, returns): """ returns tupled list of (return, volume_to_average_volume_ratio, volume_to_two_week_volume_ratio) for given stock. Inputs can be calculated using functions above. """ tupled_ratio_and_return = [] for i in range(len(returns)): tupled_ratio_and_return += [(returns[i], volume_to_average_volume_ratio[i], volume_to_two_week_volume_ratio[i])] return tupled_ratio_and_return
9bc7b164ef9b92ad7750e6e88ff6d10f9cc8dac0
55,885
import math import random def expran(alpha=1): """ Returns a value greater than 0 from the exponential distribution (https://en.wikipedia.org/wiki/Exponential_distribution) with stretching factor alpha. Increasing alpha "prefers" smaller numbers. The distribution is unbounded but when alpha=1 then %99.9 of the time the value returned will be than 6.9077554, i.e. -log(.001). The distribution density is f(x)=(exp -x) with a mean of 1.0. """ return (- math.log(1.0 - random.random())) / alpha
4f6261ac384e57f09fb21b9b3af395e217643367
55,887
import random def gen_username(first_name: str, last_name: str = '') -> str: """Returns a hopefully unique username for Django.""" return first_name + last_name + str(random.random())[2:7]
a8644fa25e8b131aaf98295aecc5288313d1c901
55,889
def calculate_loan_to_value_ratio(loan_amount, home_value): """Calculates users loan to value ratio based on inputs. Args: loan_amount (int): The requested loan amount. home_value (int): The home value. Returns: The loan-to-value ratio. """ loan_to_value_ratio = int(loan_amount) / int(home_value) return loan_to_value_ratio
c5ea07d01a4898c1006e4d54f536b8e33379aa62
55,891
def diag_adjacent(p): """Return the adjacent positions to p including diagonal adjaceny""" return [ (x, y, z) for x in range(p[0] - 1, p[0] + 2) for y in range(p[1] - 1, p[1] + 2) for z in range(p[2] - 1, p[2] + 2) if (x, y, z) != p ]
49a3f29116a022c74c8f4f5316d656722819d466
55,893
def guess_filetype(parm): """Infer a filetype from the snippet parameter. If the `editorlang` key exists, try that first. Otherwise, try to guess based on the node's type. If neither match well, return an empty string. :param parm: Paramter containing the snippet :type parm: :class:`hou.Parm` :return: Suggested file extension :rtype: str """ exts = { "python": ".py", "vex": ".h", "opencl": ".cl", } editorlang = parm.parmTemplate().tags().get("editorlang") if editorlang: return exts[editorlang.lower()] # Try by node type type_map = { "wrangle": exts["vex"], "python": exts["python"], "opencl": exts["opencl"] } for searchterm, ext in type_map.items(): if searchterm in parm.node().type().nameComponents()[2]: return ext return ""
6a0723a1a654f7040cfab5cacdc7b894a3b0c700
55,896
def _binary_apply(op, leftval, rightval, cast_type, infix=True): """ Applies the binary operator 'op' to 'leftval' and 'rightval'. The operands are cast to the type 'cast_type' first. Examples -------- >>> _binary_apply("add", "a", "b", "i64", infix=False) 'add(i64(a), i64(b))' >>> _binary_apply("+", "a", "b", "i64") '(i64(a) + i64(b))' """ if infix: return "({cast_type}({leftval}) {op} {cast_type}({rightval}))".format( op=op, leftval=leftval, rightval=rightval, cast_type=cast_type) else: return "{op}({cast_type}({leftval}), {cast_type}({rightval}))".format( op=op, leftval=leftval, rightval=rightval, cast_type=cast_type)
5a01bdbdb5823bed58dbc2d31ea06b19b010bd5e
55,898
def payoff_put(underlying, strike, gearing=1.0): """payoff_put Payoff of put option. :param float underlying: :param float strike: :param float gearing: Coefficient of this option. Default value is 1. """ return gearing * max(strike - underlying, 0)
42a9932ac176226f01d5bb0fa5f58893d391a64f
55,901
def extract_basis_nwchem(data, name): """Extract atomic orbital, charge density fitting, or exchange correlation functional basis data from a text region passed in as data. The charge density fitting and exchange correlation functional basis set data are employed for density functional calculations. @param data: text region containing basis set data @type data : str @param name: name of basis type: "ao basis", "cd basis", or "xc basis" @type name : str @return: per-element basis set chunks @rtype : list """ begin_marker = """BASIS "{0}" PRINT""".format(name) end_marker = "END" # search for the basis set data begin marker # calling "upper" on data because original data has inconsistent # capitalization begin = data.upper().find(begin_marker.upper()) end = data.upper().find(end_marker, begin) # No basis data found if begin == -1: return [] trimmed = data[begin + len(begin_marker): end - len(end_marker)].strip() chunks = [] lines = [] # group lines of data delimited by #BASIS SET... into per-element chunks for line in trimmed.split("\n"): if line.upper().startswith("#BASIS SET"): if lines: chunks.append(lines) lines = [line] else: lines.append(line) # handle trailing chunk that is not followed by another #BASIS SET... if lines and (not chunks or lines != chunks[-1]): chunks.append(lines) # join lines back into solid text blocks chunks = ["\n".join(c) for c in chunks] return chunks
e63889ffc2a50322158e89e30db7fa9a3c76b818
55,909
def format_security(value): """Given a system security status as a float, return a rounded string.""" return str(round(value, 1))
365c827735872e19fda72d974c292c77f9415fef
55,910
from operator import add def addLists(lst1, lst2): """Return the elementwise sum of lst1 and lst2. >>> addLists([1, 2, 3],[4, 5, 6]) [5, 7, 9] """ assert len(lst1) == len(lst2), "The lists have to be the same length." return list(map(add, lst1, lst2))
4e9a45eb380934585637c4ddc7abdcb685f17980
55,913
def make_collectitem(item): """Return JSON-serializable collection item.""" json_item = { 'nodeid': item.nodeid, 'type': item.__class__.__name__, } try: location = item.location except AttributeError: pass else: json_item['lineno'] = location[1] return json_item
c8aa794bee07261262f82ce9ed6c6d3f2731a862
55,914
def FindApprovalDefByID(approval_id, config): """Find the specified approval, or return None.""" for approval_def in config.approval_defs: if approval_def.approval_id == approval_id: return approval_def return None
075d3135a58c6c7f9bc245220e2c9507126fabb4
55,915
def dict_match(a, b): """ Check if all attribute/value pairs in a also appears in b :param a: A dictionary :param b: A dictionary :return: True/False """ res = [] for k, v in a.items(): try: res.append(b[k] == v) except KeyError: pass return all(res)
7b775e87a61deb8414b2f950ba95845e995ccef2
55,918
import math def discrete_contour(contour, Dl): """ Takes contour points to get a number of intermediate points Args: contour: `List` contour or list of points to get intermediate points Dl: `int` distance to get a point by segment Returns: new_contour: `List` new contour with intermediate points """ # If contour has less of two points is not valid for operations if len(contour) < 2: print("Error: no valid segment") return contour # New contour variable new_contour = [] # Iterate through all contour points for idx, cordinate in enumerate(contour): # Select next contour for operation if not idx == len(contour)-1: next_cordinate = contour[idx+1] else: next_cordinate = contour[0] # Calculate length of segment segment_lenth = math.sqrt((next_cordinate[0] - cordinate[0])**2 +\ (next_cordinate[1] - cordinate[1])**2) divitions = segment_lenth/Dl # Number of new point for current segment dy = next_cordinate[1] - cordinate[1] # Segment's height dx = next_cordinate[0] - cordinate[0] # Segment's width if not divitions: ddy = 0 # Dy value to sum in Y axis ddx = 0 # Dx value to sum in X axis else: ddy = dy/divitions # Dy value to sum in Y axis ddx = dx/divitions # Dx value to sum in X axis # get new intermediate points in segments for idx in range(0, int(divitions)): new_contour.append((int(cordinate[0] + (ddx*idx)), int(cordinate[1] + (ddy*idx)))) # Return new contour with intermediate points return new_contour
5a7ba6110313add959cf5c63a0cc827acab4deab
55,919
def exp(b, c): """Returns: b**c Precondition: b a float, c ≥ 0 an int""" assert type(b) == float, repr(b) + " is not a float " assert c >= 0 and type(c) == int, repr(c) + 'is the wrong format' if c == 0: return 1 left = b right = exp(b, c-1) return left * right
f01039e4170a19f91b9c468fe8140b34d566fd9b
55,920
def get_temp_disk_for_node_agent(node_agent: str) -> str: """Get temp disk location for node agent :param node_agent: node agent :return: temp disk location """ if node_agent.startswith('batch.node.unbuntu'): return '/mnt' elif node_agent.startswith('batch.node.windows'): return 'D:\\batch' else: return '/mnt/resource'
4caaa3995363f585740e7b3f2a1c811d7a916ab2
55,921
def resdiv_r1(Vin, Vout, R2): """ Calculate the exact value of R1 with R2 given. """ return R2 * (Vin/Vout - 1)
285d989f7ae45c89c5a67be65cd73fe8a3fab232
55,925
def read_conll(path): """ Returns list of sentences. Sentence is a list of pairs (word, NE-label) """ data = open(path).read().split('\n\n')[1:] data = list(map(str.splitlines, data)) get_token_and_ne = lambda s: (s.split()[0], s.split()[-1]) data = list(map(lambda sent: list(map(get_token_and_ne, sent)), data)) return data
f44431d81b322749afe741f12a440309474eb14b
55,929
def auth_and_chan(ctx): """Message check: same author and channel""" def chk(msg): return msg.author == ctx.author and msg.channel == ctx.channel return chk
03e41e41b8924f3bc0523d20e842426b50370664
55,931
def transform_eigenspace(eigvecs, eigvals, transform_function): """Return a function that multiplies a vector by a matrix with transformed eigenvalues. Let ``eigvecs`` and ``eigvals`` be selected eigenvectors and eigenvalues. The columns of ``eigvecs`` are the eigenvectors associated with the corresponding entry of ``eigvals``. A function, ``a_mult``, is returned. This function is the identity for all directions orthogonal to ``eigvecs``, and has eigenvalues ``transform_function(eigvals)`` in the space spanned by ``eigvecs``. Parameters ------------ eigvecs: `numpy.ndarray` (N, K) The eigenvectors. eigvals: `numpy.ndarray` (K,) The eigenvalues transform_function: callable A function from ``eigvals`` to a vector of the same length. The output of ``transform_function(eigvals)`` will be the new eigenvalues. Returns ----------- a_mult: callable A linear function from a length-``K`` numpy vector to another length-``K`` vector with the above-described eigendecomposition. """ if eigvecs.ndim != 2: raise ValueError('``eigvecs`` must be 2d.') if eigvals.ndim != 1: raise ValueError('``eigvals`` must be 1d.') if eigvecs.shape[1] != len(eigvals): raise ValueError( 'The columns of ``eigvecs`` and length of ``eigvals`` must match.') new_eigvals = transform_function(eigvals) def a_mult(vec): vec_loadings = eigvecs.T @ vec # Equivalent to the more transparent: # vec_perp = vec - eigvecs @ vec_loadings # return vec_perp + eigvecs @ (new_eigvals * vec_loadings) return vec + eigvecs @ ((new_eigvals - 1) * vec_loadings) return a_mult
30c481da3d420d9a8c055bada75da4d9d9b96eda
55,934
def change_letter(token, index, letter): """ Replaces a letter in a token. token: word to be used index: index of the letter letter: letter used to replace returns STRING """ _list = list(token) _list[index] = letter return ''.join(_list)
5983be861818eafa2ce2efe05471f1a0507ab7c5
55,940
def parse_json(json, length='km'): """ parse uber api result json Args: json (json) - result requested json length (str) - type of length values to return - miles, kilometers or meters (mi/km/m) Returns: price, distance_estimation, time_estimation """ length_dict = {'mi':1, 'km':1.60934, 'm':1609.34} if json is None: return -1, -1, -1 else: if length not in length_dict.keys(): mult = 1 else: mult = length_dict[length] distance_estimation = json['trip']['distance_estimate'] * mult time_estimation = json['trip']['duration_estimate'] price = json['fare']['value'] return price, distance_estimation, time_estimation
0a19a562ce4ad9f75e5fbecd4c3bd07036ab1ab5
55,941
def compute_l(i, m, j, n): """Computes the `l` index from the composition of shift operators, Q_{i, m} Q_{j, n} = Q_{k, l} in Proposition 2 of the paper (regarding efficient multiplication of simple Jacobians).""" if i >= 0 and j >= 0: return max(m - j, n) elif i >= 0 and j <= 0: return max(m, n) + min(i, -j) elif i <= 0 and j >= 0 and i + j >= 0: return max(m - i - j, n) elif i <= 0 and j >= 0 and i + j <= 0: return max(n + i + j, m) else: return max(m, n + i)
8d0221d766d88cc22fdf93ebbf56e846129a7413
55,943
import codecs def set2file(d, path, encoding='utf-8', func=None): """ Dump a set to a file. @param d: the set to be dumpped @param path: the output file path @param encoding: the output file encoding @param func: a function applied to the value @return: always return None """ with codecs.open(path, 'wb', encoding=encoding) as fo: for value in d: if func is not None: value = func(value) outline = u'{}\n'.format(value) fo.write(outline) return None
2c8a683ee632703fff5647d98978ef4f7dd30a27
55,947
import itertools def get_deletion_effects(deletion_record, gff_db, regulatory_margin=2000): """ Figure out the effects of a deletion using a gff. Args: deletion_record (vcf.Record): a vcf Record representing the deletion gff_db (gffutils.FeatureDB): a gffutils DB of a genome's annotations regulatory_margin (int): the amount of sequence on either side of the deletion to look in for genes to be classified as having their regulatory regions affected """ affected_genes = set() intergenic = True regulatory, intronic, coding = [False] * 3 # first, go through all the features that overlap the deletion # and use them to set the above booleans and add any affected # genes to affected_genes features_in_deletion = gff_db.region( seqid=deletion_record.CHROM, start=deletion_record.POS, end=deletion_record.sv_end, ) for feature in features_in_deletion: if feature.featuretype == "gene": affected_genes.add(feature.attributes["Name"][0].upper()) intergenic = False intronic = True elif feature.featuretype == "CDS": coding = True intronic = False # next, look for any genes *near* the deletion features_near_deletion = itertools.chain( gff_db.region( seqid=deletion_record.CHROM, start=deletion_record.POS - regulatory_margin, end=deletion_record.POS, ), gff_db.region( seqid=deletion_record.CHROM, start=deletion_record.sv_end, end=deletion_record.sv_end + regulatory_margin, ), ) for feature in features_near_deletion: if feature.featuretype == "gene": gene_name = feature.attributes["Name"][0].upper() # only consider this a deletion of a regulatory region if # this gene has not been otherwise affected if gene_name not in affected_genes: regulatory = True intergenic = False affected_genes.add(gene_name) return affected_genes, intergenic, regulatory, intronic, coding
c381bb2ad62d34c850429a391c7cef8affa66fe8
55,949
def find_lcs(first_sentence_tokens: tuple, second_sentence_tokens: tuple, lcs_matrix: list) -> tuple: """ Finds the longest common subsequence itself using the Needleman–Wunsch algorithm :param first_sentence_tokens: a tuple of tokens :param second_sentence_tokens: a tuple of tokens :param lcs_matrix: a filled lcs matrix :return: the longest common subsequence """ checking_first_sentence = (not isinstance(first_sentence_tokens, tuple) or None in first_sentence_tokens) checking_second_sentence = (not isinstance(second_sentence_tokens, tuple) or None in second_sentence_tokens) checking_lcs_matrix = (not lcs_matrix or not isinstance(lcs_matrix, list)) if checking_lcs_matrix or checking_first_sentence or checking_second_sentence: return () length_1 = len(first_sentence_tokens) length_2 = len(second_sentence_tokens) if len(lcs_matrix) != length_1 or len(lcs_matrix[0]) != length_2: return () if lcs_matrix[0][0] != 0 and lcs_matrix[0][0] != 1: return () lcs_list = [] row = len(first_sentence_tokens) - 1 column = len(second_sentence_tokens) - 1 if row < 0: row = 0 elif column < 0: column = 0 while row >= 0 and column >= 0: if first_sentence_tokens[row] == second_sentence_tokens[column]: lcs_list.append(second_sentence_tokens[column]) row -= 1 column -= 1 else: if lcs_matrix[row - 1][column] > lcs_matrix[row][column - 1] or column == 0: row -= 1 else: column -= 1 return tuple(reversed(lcs_list))
0603617a31f07774956b8a8d62b72def03618405
55,950
def ord(space, w_val): """Return the integer ordinal of a character.""" return space.ord(w_val)
f73a6c22c53f4c0770e952457d7f5e4cd1411d6e
55,952
from typing import Any from typing import Optional def get_node_anchor(node: Any) -> Optional[str]: """ Returns a node's Anchor/Alias name or None wheh there isn't one. """ if ( not hasattr(node, "anchor") or node.anchor is None or node.anchor.value is None or not node.anchor.value ): return None return str(node.anchor.value)
2b68331e14176c4e947bef7667686f22a3efa01a
55,956
def clip(value, min_v, max_v): """ Clip the given value to be within a range https://stackoverflow.com/questions/9775731/clamping-floating-numbers-in-python """ return max(min(value, max_v), min_v)
cd4a5977832acbdc8522fa0637aa79743e586fe9
55,958
import gzip def is_gzip(file_path: str) -> bool: """Return whether a file is a gzip file or not :param file_path: the path to the file. :return: whether the file is a gzip file or not. """ is_gzip_ = False with gzip.open(file_path, "rb") as f: try: f.read(1) is_gzip_ = True except OSError: pass return is_gzip_
15afaaf43c4ca66f802139857c79ff578227e31f
55,963
def parse_version(version_str): """ Parse the bazel version string, returning a tuple. Derived from https://github.com/tensorflow/tensorflow/blob/master/tensorflow/version_check.bzl Args: version_str: The version string to parse. Returns: The tuple of version elements. """ # Extract just the semver part semver_str = version_str.partition(" ")[0].partition("-")[0] # Return version tuple return tuple([n for n in semver_str.split(".")])
35254f87707293ecd203d12f3eb36bb3160abe32
55,964
import json def make_control_event(control_type, timestamp): """Make a control event.""" return { 'event': 'message', 'data': json.dumps({ 'id':'TVUsxaabHs:0:0', 'clientId':'pri:MzM0ODI1MTkxMw==', 'timestamp': timestamp, 'encoding':'json', 'channel':'[?occupancy=metrics.publishers]control_pri', 'data': json.dumps({ 'type': 'CONTROL', 'controlType': control_type, }) }) }
845bf1b28a92ea37f5e3d4d1dfc25c739f1c27cf
55,970
def invert_dict(d): """ Utility for swapping keys and values in a dictionary. Parameters ---------- d : Dict[Any, Any] Returns ------- Dict[Any, Any] """ return {v: k for k, v in d.items()}
3d8b84289e8291a9539381769f0cf0f43db8807c
55,971
import struct def rgb555_to_rgb888(data): """ Converts RGB555 to (vnc-compatible) RGB888 """ out = bytearray() for b in struct.unpack('<%dH' % (len(data)/2), data): out.append(((b) & 0b11111) << 3) out.append(((b >> 5) & 0b11111) << 3) out.append(((b >> 10) & 0b11111) << 3) out.append(0) return bytes(out)
bb1cb2359472329fa781ac597bbec74c44900bce
55,978
def get_tags(f): """Breaks down a file name into its tags and returns them as a list.""" if "/" in f: f = f.split("/")[-1] if "." in f: f = f.split(".")[0] if "_" in f: f = f.split("_") if ":" in f: f = f.split(":") return f
262d4b855cf3309fe61bdbdfb97551b3ddadb1f6
55,983
def _movechars(s, src, dst): """Helper for einsum string munging, like moveaxis on identifier strings.""" chars = [c for i, c in enumerate(s) if i not in src] for i, j in sorted(zip(dst, src)): chars.insert(i, s[j]) return ''.join(chars)
54a7ddcaaaeb0795c0afdbefa2aee3b9718e60d5
55,987
def load_custom_overrides(_, __, value): """Load custom overrides from user Parameters ---------- value : list list of str (override_name=override_value) Returns ------- dict user overrides """ user_overrides = {} for override in value: override_name, override_value = override.split('=') user_overrides[override_name] = override_value return user_overrides
d22d1637c61b1588397c6de26993538554dbba34
55,988
from typing import List def from_to_by(start: float, stop: float, step: float, digits: int = 8) -> List[float]: """Sequence between start and stop (inclusive) by step, rounded to digits.""" length = round((stop - start) / step) return [round(start + step * x, digits) for x in range(length + 1)]
ada3897d18376df575e2156ad2d888045b7f5bf7
55,992
def underscore_to_camel(name): """convert a snake case string to camel case""" string_list = name.strip('_').split('_') result = string_list[0].lower() for s in string_list[1:]: result = '{0}{1}'.format(result, s.title()) return result
f649febdc1f2711bad0b60006a2d6c673a949c7a
55,993
def load_classes(filename): """ This function takes in a class_file filename and returns a dict of classes and ids (in string format) :param filename: the filename of the class_file to load and parse :returns: a dict of classes and ids in string format """ dict1 = {} f = open(filename,'r') classes = f.read().split('\n')[:-1] for value in classes: key, val = value.split(":") key = key.strip(" ") val = val.strip(" ") dict1[val] = key f.close() return dict1
871ae10e384ab7add390d0bea44f4d7d9846ee87
55,998
def is_exchange_token_protected(f): """Is the given view function exchange token protected?""" return getattr(f, 'is_exchange_token_protected', False)
78b4980b4ba8a3128fb1c8968e5d8cf1b97ebcce
56,002
def wattersons_theta_seq(seg_sites, num_seqs): """ Return Watterson's Theta (per sequence) """ a1 = sum([1.0/i for i in range(1, num_seqs)]) return float(seg_sites) / a1
7ee4729cb71be232b768e8c0359c719f0a20cdc4
56,007
import itertools def flatten_weights(weights): """Convert weight parameters to a 1 dimension array (more convenient for optimization algorithms)""" nested_list = [weights_2d_array.flatten().tolist() for weights_2d_array in weights] flat_list = list(itertools.chain(*nested_list)) return flat_list
c99e3cb415a3923bdd087aa21324f661c28895b0
56,010
def bool_flag(value): """ Handle the ability to pass a parameter that can have no value or a boolean value. No value gives True (like the switch is on). Absense of the value returns False (switch is off). You can also pass "TRUE", "True", "true", "1", "FALSE", "False", "false", "0" like: param=True """ if value is None: return False if value == '': return True if value.lower() == 'true': return True if value == "1": return True if value.lower() == 'false': return False if value == "0": return False
08e29747b35712796c38243db1f6fcc43a58a5a4
56,017
import json def parse(content): """ Get image url, description :param bs4.BeautifulSoup content: BeautifulSoup from html content :return: image and description :rtype: tuple """ img = description = None attrs = {'type': 'application/ld+json'} full_info = content.find('script', attrs=attrs).text info_dict = json.loads(full_info) if 'image' in info_dict.keys(): img = info_dict['image'] if 'description' in info_dict.keys(): description = info_dict['description'] return img, description
4a17d41e81f9335531b70a12325ace5007d11234
56,018
import re def is_valid_flc_policy_id(flc_policy_id): """ Validates a file lifecycle policy ID, also known as the policy "lc_policy_name". A valid policy ID should look like: lc-policy-00000003 - It should always start with "lc-policy-" and end with 8 hexadecimal characters in lower case. :type flc_policy_id: str :param flc_policy_id: The file lifecycle policy ID to be validated. :rtype: bool :return: True or False depending on whether flc_policy_id passes validation. """ if flc_policy_id is None: return False match = re.match(r'^lc-policy-[0-9a-f]{8}$', flc_policy_id) if not match: return False return True
bfce92bc31714228aaabf16fb54300c8dd2905af
56,022
def prime_sieve_erathosthenes(n): """Sieve of Erathosthenes Output the list of all primes less than n """ not_prime = [] prime = [] if n < 2: print("No primes less than 2") return 1 for i in range(2, n+1): if i not in not_prime: prime.append(i) for j in range(i*i,n+1, i): not_prime.append(j) return prime
65fdcc624d5691a9ef25d1874bd4a11080e25a47
56,026
def expScale(initVal, exp): """ Applies an exponent exp to a value initVal and returns value. Will work whether initVal is positive or negative or zero. """ val = initVal if val > 0: val = val ** exp if val < 0: val *= -1 val = val ** exp val *= -1 return val
5c897f394f28697c17121ebff71734b846f85bf0
56,029
import socket def _create_socket_address(ip_address, port): """Convert a given IPv6 address (string) and port number into a socket address""" # `socket.getaddrinfo()` returns a list of `(family, socktype, proto, canonname, sockaddr)` where `sockaddr` # (at index 4) can be used as input in socket methods (like `sendto()`, `bind()`, etc.). return socket.getaddrinfo(ip_address, port)[0][4]
5f79cdaa98885a97f5d119c6031c935013b3eeae
56,033
def dir_dicom_paths(directory): """Return list of paths to files within a directory at any level below, beginning with 'I'. This is the naming convention expected for the project. Args: directory (pathlib Path): A path Returns: (list of pathlib Paths) All paths to files beginning with 'I' within the given directory """ return list(directory.glob("**/I*"))
d30753fe36350a0067dc0b6fd6f6a5d4b02a56b1
56,037
def slice_size(slice_objects): """ Returns the total number of elements in the combined slices Also works if given a single slice """ num_elements = 0 try: for sl in slice_objects: num_elements += (sl.stop - (sl.start + 1)) // sl.step + 1 except TypeError: num_elements += (slice_objects.stop - (slice_objects.start + 1)) \ // slice_objects.step + 1 return num_elements
ef3ae504537390cbe2a1458298813f51a4ddb89f
56,040
def reverseByteOrder(data): """Reverses the byte order of an int (16-bit) or long (32-bit) value.""" # Courtesy Vishal Sapre byteCount = len(hex(data)[2:].replace('L','')[::2]) val = 0 for i in range(byteCount): val = (val << 8) | (data & 0xff) data >>= 8 return val
17b82e885c8fd52dab54f428a75e739a8dd60102
56,042
import random import math def allowed_value(client, field_id): """Creates and returns a value that is allowed for the given field_id.""" # Get information on the field field = client.single_field(field_id) # Get the allowed values to update if field["field_type"] == "numeric": min_val = field["field_min"] max_val = field["field_max"] if min_val is None: min_val = 0 if max_val is None: max_val = 99 # Value needs to be between min_val and max_val # If they are floats, min_val needs to be rounded up and max_val rounded down. post_value = random.randint(int(math.ceil(min_val)), int(max_val)) else: data_options = { "numeric": "1", "date": "11-11-2017", "string": "testing", "dropdown": "1", "radio": "1", "textarea": "testing", "slider": "5", "checkbox": "1", "calculation": "5", "year": "2005", } post_value = data_options[field["field_type"]] return post_value
aa151e277f14fc4b32af6cb708f6ba31082bad16
56,045
def E(G): """ Returns a set of edges on a graph Parameters ---------- G = A networkx graph. Returns ------- set of edges belonging to graph graph """ return set(G.edges())
67166de146cbb437080f123204d398bde258fb0c
56,048
def compute_dl_target(location, lpp_source, nim_lpp_sources): """ Compute suma DL target based on lpp source name. When the location is empty, set the location path to /usr/sys/inst.images Check if a lpp_source NIM resource already exist and check the path is the same When the location is not a path, check that a NIM lpp_source corresponding to the location value exists, and returns the location path of this NIM ressource. return: return code : 0 - OK 1 - if error dl_target value or msg in case of error """ if not location or not location.strip(): loc = "/usr/sys/inst.images" else: loc = location.rstrip('/') if loc[0] == '/': dl_target = "{}/{}".format(loc, lpp_source) if lpp_source in nim_lpp_sources \ and nim_lpp_sources[lpp_source] != dl_target: return 1, "SUMA Error: lpp source location mismatch. It already " \ "exists a lpp source '{}' with a location different as '{}'" \ .format(lpp_source, dl_target) else: if loc not in nim_lpp_sources: return 1, "SUMA Error: lpp_source: '{}' does not exist" \ .format(loc) dl_target = nim_lpp_sources[loc] return 0, dl_target
24ec97eb7763025b89fc87b0644228fe2411ce06
56,051
def fix_spaces_in_column_names(columns): """Returns the cleaned-up column names without spaces and in upper-case.""" new_names = [] for col in columns: new_name = col.strip() new_name = "".join(new_name.split()) new_name = new_name.replace(".", "") new_name = new_name.upper() new_names.append(new_name) return new_names
774734f4b613027daddadcac5167950484673968
56,054
def fixup_columns(cols): """Replace index location column to name with `col` prefix Args: cols (list): List of original columns Returns: list: List of column names """ out_cols = [] for col in cols: if type(col) == int: out_cols.append('col{:d}'.format(col)) else: out_cols.append(col) return out_cols
74851613a72c9e9052b495509b6d40faf6d094df
56,058
def represent_option(options, default="-"): """ Representation function for option dicts Args: options: the options dict default: the default value for unknown options Returns: function: the representation function """ def represent(value, row=None): return options.get(value, default) return represent
de8eb888c54c7245f812117bcf6a38b107b323b2
56,064
def find_index_of(string, character, occurrence=1): """Find the n-th index of a character in a string.""" count = 0 for char_index in range(len(string)): if string[char_index] == character: count += 1 if count == occurrence: return char_index return -1
2993a82345f0ea337f31a5009904201df2692b4e
56,065
def snapshot_factory(request): """ Snapshot factory. Calling this fixture creates a volume snapshot from the specified PVC """ instances = [] def factory( pvc_obj, wait=True, snapshot_name=None ): """ Args: pvc_obj (PVC): PVC object from which snapshot has to be created wait (bool): True to wait for snapshot to be ready, False otherwise snapshot_name (str): Name to be provided for snapshot Returns: OCS: OCS instance of kind VolumeSnapshot """ snap_obj = pvc_obj.create_snapshot(snapshot_name=snapshot_name, wait=wait) return snap_obj def finalizer(): """ Delete the snapshots """ for instance in instances: if not instance.is_deleted: instance.delete() instance.ocp.wait_for_delete(instance.name) request.addfinalizer(finalizer) return factory
302ebb5f611813faa843836d80a0f05da2848d8d
56,067
def get_creator_node_id(local_node_id, response): """Returns the node ID of the node that submitted the given create request""" if response.directionality_flag == 1: return response.remote_node_id else: return local_node_id
0466b37c11162583fa0034ccc4247eacd8a4e59d
56,075
def calc_dg_frac_load_method(dg_profile, dg_requirement, regional_load, settings): """Calculate the hourly distributed generation in a single region where generation required to be a fraction of total sales. Parameters ---------- dg_profile : Series Hourly normalized generation profile dg_requirement : float The fraction of total sales that DG must constitute regional_load : Series Hourly load for a given region settings : dict User-defined parameters from a settings file Returns ------- Series 8760 hourly generation """ annual_load = regional_load.sum() dg_capacity_factor = dg_profile.mean() distribution_loss = settings["avg_distribution_loss"] required_dg_gen = annual_load * dg_requirement * (1 - distribution_loss) dg_capacity = required_dg_gen / 8760 / dg_capacity_factor hourly_gen = dg_profile * dg_capacity return hourly_gen
d9d9b28f6b68f8040fd960e8b04cdbf74b9bd20d
56,077
import torch import warnings def check_min_max_valid(min_val: torch.Tensor, max_val: torch.Tensor) -> bool: """ Checks if the given minimum and maximum values are valid, meaning that they exist and the min value is less than the max value. """ if min_val.numel() == 0 or max_val.numel() == 0: warnings.warn( "must run observer before calling calculate_qparams. " + "Returning default values." ) return False if min_val.dim() == 0 or max_val.dim() == 0: if min_val == float("inf") and max_val == float("-inf"): warnings.warn( "must run observer before calling calculate_qparams. " + "Returning default values." ) return False assert min_val <= max_val, "min {} should be less than max {}".format( min_val, max_val ) else: assert torch.all( min_val <= max_val ), "min {} should be less than max {}".format(min_val, max_val) return True
3659bb7e18b4846fbeaf43d8302037e59024c058
56,080
from typing import Callable def callable_name(func: Callable) -> str: """Return the qualified name (e.g. package.module.func) for the given callable.""" if func.__module__ == 'builtins': return func.__name__ else: return '{}.{}'.format(func.__module__, func.__qualname__)
6eeeb86d333ee1090957d656c2545a4a609ff918
56,081
def remove_cations(SMILES): """ Removes periodic table group 1 and 7 counterions from the SMILES strings. Args: ----- SMILES (str) -- the SMILES string representation of the molecule. Returns: -------- SMILES (str) -- the string representation of the molecule with the counterions omitted. """ # Assertions assert isinstance(SMILES, str), 'the SMILES must be a string' # Functionality split_SMILES = SMILES.split(".") ion_list = ['[Li+]', '[Na+]', '[K+]', '[Rb+]', '[Cs+]', '[Fr+]', '[F-]', '[Cl-]', '[Br-]', '[I-]', '[At-]'] SMILES = [i for i in split_SMILES if i not in ion_list] SMILES = '.'.join(SMILES) return SMILES
49ad3cfda1fa2be267bf9bf070774079db4b0370
56,083
def find_first_month_and_year(num_months, end_month, end_year): """Find the month and year that is num_months prior to end_month, end_year. Num_months includes the end_month and the first_month.""" excess = num_months - end_month full_years_prior = excess / 12 months_in_partial_years_prior = excess % 12 if months_in_partial_years_prior > 0: first_year = end_year - full_years_prior - 1 first_month = 13 - months_in_partial_years_prior else: first_year = end_year - full_years_prior first_month = 1 return first_month, first_year
e1985aa198a3f2ab2625bd699bb1621586172037
56,085
def is_timedef(keyword): """Check if time definition keyword Args: Profiles keyword Returns: True if time definition keyword """ vtime = ('TIME ', 'DAY ', 'MONTH ', 'YEAR ', 'YEARS ') return bool(keyword in vtime)
77e7db6d4ea3ea2a520ef8c79b18eea207131ddc
56,086
import random def choose_true_edges(edges, K): """ Randomly choose a fixed number of existing edges :param edges: The graph's edges :param K: Fixed number of edges to choose :return: A list of K true edges """ indexes = random.sample(range(1, len(edges)), K) true_edges = [] for i in indexes: true_edges.append(edges[i]) return true_edges
9ed573e5e5a2b45ec2327a63c5383e2006dbd496
56,087
import binascii def hb(b): """ Example: hb(b'\x12\xde\x11\x22\x33\x44') == '12de11223344' """ return binascii.hexlify(b).decode()
ff3787d611cbfb073fc6a92a74a89736ce7c8fed
56,088
def operating_roa(operating_income, average_assets): """Computes operating return on assets. Parameters ---------- operating_income : int or float Operating income average_assets : int or float Average total assets Returns ------- out : int or float Operating return on assets """ return operating_income / average_assets
544955f388d67139122a86153b3336b69f3124b3
56,090
def process_style(line, style_re): """Process the line for the specified style compiled regular expression, returning the line and style (if any) values""" matched = style_re.search(line) if matched: return (style_re.sub('', line), matched.group(1)) else: return (line, '')
f3660b099a6b8ba4b266761da3fb724425e06afe
56,095
def define_orderers(orderer_names, orderer_hosts, domain=None): """Define orderers as connection objects. Args: orderer_names (Iterable): List of orderer names. orderer_hosts (Iterable): List of orderer hosts. domain (str): Domain used. Defaults to none. Returns: dict: A dictionary of Orderer Connections """ orderer_connections = {} for name, host in zip(orderer_names, orderer_hosts): if domain: key = "{name}.{domain}".format(name=name, domain=domain) else: key = name orderer_connections[key] = {"url": ("grpc://" + host + ":7050")} return orderer_connections
32ea2ed7b89afdf64356674e9a1fa0aea85792e3
56,096
def Eq(state, command, *column_values): """Equals filter Accepts one or more column-value pairs. Keep only rows where value in the column equals specified value. Example: Eq~column1~1 """ df = state.df() for c,v in state.expand_column_values(column_values): state.log_info(f"Equals: {c} == {v}") index = df[c] == v try: index = index | (df[c] == int(v)) except: pass try: index = index | (df[c] == float(v)) except: pass df = df.loc[index,:] return state.with_df(df)
df3297444d3c91d1b88a118593f429583e9b4e94
56,101
def overall_coverage(coverage): """Overall proof coverage.""" cov = coverage.overall_coverage return { 'percentage': cov['percentage'], 'hit': cov['hit'], 'total': cov['total'] }
690d4d9f5b7bf5bed0c4ebaffc6b6793b04bdcfa
56,111
def get_node_information(data_node): """ It parses nodes in GPML xml file. :param data_node: XML node of the type "data" :return: node id and structured information of the form: { "database_name": database_name, "database_id": database_id, "text": text, "type": type, "groupref": groupref } """ # get database and its corresponding unique identifier. xref = data_node.find("xref") database_name = xref.attrs["database"] database_id = xref.attrs["id"] # get the graph id. id = data_node.attrs.get("graphid", None) text = data_node.attrs["textlabel"] type = data_node.attrs.get("type", "unknown") groupref = data_node.attrs.get("groupref", None) # form a document. return (id, { "database_name": database_name, "database_id": database_id, "text": text, "type": type, "groupref": groupref })
4798f9fc440082b4b9e82ffce05b4a63150dd94d
56,118
def validate_engine(engine): """ Validate database Engine for DBInstance Property: DBInstance.Engine Property: DBCluster.Engine """ VALID_DB_ENGINES = ( "MySQL", "mysql", "oracle-se1", "oracle-se2", "oracle-se", "oracle-ee", "sqlserver-ee", "sqlserver-se", "sqlserver-ex", "sqlserver-web", "postgres", "aurora", "aurora-mysql", "aurora-postgresql", "mariadb", ) if engine not in VALID_DB_ENGINES: raise ValueError( "DBInstance Engine must be one of: %s" % ", ".join(VALID_DB_ENGINES) ) return engine
d008010c369eca2cd2d01b9928b388c062db6647
56,119
def insert_nulls(df, fill_val=-99999999.99): """replaces fill_val with null in all columns of df. :df: Dataframe :fill_val: fill value to be replaced with nulls. default=-99999999.99 :returns: Dataframe with fill_val replaced with nulls """ for col in df.columns.tolist(): df.ix[df[col] == fill_val, col] = None return df
71fdf29a16916ee1f119b5267043960c9a6d5227
56,120
def download_reads_from_pangea(sample, module_name, field_name): """Return the local filepath for reads from the sample after downloading.""" filename = f'{sample.name}_reads.fq.gz' ar = sample.analysis_result(module_name).get() field = ar.field(field_name).get() field.download_file(filename=filename) return filename
03de7be0e42b3ad0fac5df0377978d6ca262a393
56,127
def format_for_output(metric_dict): """ Coverts a dictionary into a list of strings of key,value pairs for output logging # Parameters matric_dict: `Dict[str, Dict[str, str or float]] # Returns `List[str]` """ return ["{}: {}\n".format(k, v) for k, v in metric_dict.items()] + ["\n"]
b3c5493bda17dc32c522d991010b0d6e7164517d
56,128
def _encode_text(text: str) -> list[int]: """ Converts the text from literal values to numerical values. Uses the table conversion A -> 1, B -> 2, ... Args: text (str): Text to be encoded. Returns: list[int]: Encoded text as a list of ints. Each position corresponds to a character from input text. """ return [ord(c) for c in text]
4a39aa74e7f289376c35e0214bf9736496182cfc
56,130
def convert_iterable_to_string_of_types(iterable_var): """Convert an iterable of values to a string of their types. Parameters ---------- iterable_var : iterable An iterable of variables, e.g. a list of integers. Returns ------- str String representation of the types in `iterable_var`. One per item in `iterable_var`. Separated by commas. """ types = [str(type(var_i)) for var_i in iterable_var] return ", ".join(types)
f67d6ff4e96e272ecdd48b51a219054b6578ebc5
56,131
def shorten(name): """ Return a shortened version of a name so it can be used in a file path. """ return name.split(" ")[0].lower()
ce350319b1db23131a901ec7ba580fb62cfcaed6
56,132
def numberOfPhotosInDB(dbCursor): """Returns the number of all photos in database pointed to by dbCursor""" dbCursor.execute('''SELECT * FROM eyesInPhotos''') allDBPhotos = dbCursor.fetchall() return len(allDBPhotos)
95e2c5d8763d516bc833107ff61e8c1b499ee6ad
56,133
def coverage(reference: str, target: str) -> int: """ The number of substitutions in an alignment. >>> coverage("---ATGGC", "GTTA-GGG") 4 """ return sum([ref != "-" and tgt != "-" for ref, tgt in zip(reference, target)])
dddf35feaa5c05ef5d571d216df412c8302e94a9
56,136
def get_ffmpeg_dimens(input_size: tuple[int, int], max_res: int) -> str: """ :param input_size: Tuple of (width, height) :param max_res: Maximum resolution (as in 1080p, 720p, 360p, etc) :return: String that can be used in ffmpeg -vf """ w, h = input_size return f"scale={min(max_res, w)}:-2" if w < h else f"scale=-2:{min(max_res, h)}"
01d38ec7f60e0ff20844fca60e709da05291eab6
56,137
def calculate_ranks(true_entity_score, all_scores): """ Calculates the rank of the true entity. Parameter --------- :param true_entity_scores: torch.Tensor - shape(batch, 1) The score of the true entity :param all_scores: torch.Tensor - shape(batch, num_entities) The scores of all entities :return: float The rank of the true entity """ assert len(true_entity_score.shape) == 2 assert len(all_scores.shape) == 2 all_scores = all_scores > true_entity_score true_rank = all_scores.sum(dim=1) + 1 return true_rank
ed0d25524557f0e103d5697fc3c5060a17829251
56,139
def addRoundKey(state, roundKey): """Adds (XORs) the round key to the state.""" for i in range(16): state[i] ^= roundKey[i] return state
b2ad011511cf131f8c1b72ff504b66e9958080e4
56,144
def ntToPosixSlashes(filepath): """ Replaces all occurrences of NT slashes (\) in provided filepath with Posix ones (/) >>> ntToPosixSlashes('C:\\Windows') 'C:/Windows' """ return filepath.replace('\\', '/') if filepath else filepath
528caf6ee8e1514fd73cd9b65006d797331eadd9
56,145
def listsplit(sourcelist, delimiter): """ Splits a list at a given delimiter. Returns a list of lists. Example: >>> l = ['a', '', 'b', 'c', '', '', 'd'] >>> listsplit(l, '') [['a'], ['b', 'c'], ['d']] """ result = [] start = 0 while True: try: position = sourcelist.index(delimiter, start) if start == position: start += 1 continue result.append(sourcelist[start:position]) start = position + 1 except ValueError: tail = sourcelist[start:] if tail: result.append(tail) break return result
6642122e93fed44603f9c5977766546b8fa5699e
56,149
def parse_phonemes(phonemes): """Parse mimic phoneme string into a list of phone, duration pairs. Arguments phonemes (bytes): phoneme output from mimic Returns: (list) list of phoneme duration pairs """ phon_str = phonemes.decode() pairs = phon_str.split(' ') return [pair.split(':') for pair in pairs if ':' in pair]
0d78d31fe369e193b18478119707e8b9de6159fd
56,151
def get_environment_variable_name(register_name: str) -> str: """ Convert the name of the register to the name of the environment variable that assigns it. >>> get_environment_variable_name("m.motor.inductance_dq") 'M__MOTOR__INDUCTANCE_DQ' """ return register_name.upper().replace(".", "__")
c19d5d3abea6f338acea7107bbfed7fca8ee6213
56,152