content
stringlengths 39
14.9k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
|---|---|---|
def L_bot(P_mass, R, M_bot, M_dist, F_mass, M_feed, phi):
"""
Calculates the flow rate liquid at the bottom of column.
Parameters
----------
P_mass : float
The mass flow rate of distilliat, [kg/s]
F_mass : float
The mass flow rate of feed, [kg/s]
M_dist : float
The molar mass of distilliat, [kg/kmol]
M_feed : float
The molar mass of feed, [kg/kmol]
phi : float
The fraction of vapor at the feed point
R : float
The actual reflux number, [dismensionless]
M_bot : float
The molar mass at bottom of column, [kg/kmol]
Returns
-------
L_bot : float
The flow rate liquid at the bottom of column, [kg/s]
References
----------
Дытнерский, стр. 229, формула 6.5
"""
return (P_mass * R * M_bot / M_dist) + (F_mass * M_bot * (1 - phi) / M_feed)
|
811a8677f739c30a233fbbfb65767125f85c963c
| 51,905
|
def set_ignore_certificate_errors(ignore: bool) -> dict:
"""Enable/disable whether all certificate errors should be ignored.
Parameters
----------
ignore: bool
If true, all certificate errors will be ignored.
**Experimental**
"""
return {
"method": "Security.setIgnoreCertificateErrors",
"params": {"ignore": ignore},
}
|
49f0597ee4b7bdcdd620e636704e732f52871c22
| 51,906
|
def top_sentences(query, sentences, idfs, n):
"""
Given a `query` (a set of words), `sentences` (a dictionary mapping
sentences to a list of their words), and `idfs` (a dictionary mapping words
to their IDF values), return a list of the `n` top sentences that match
the query, ranked according to idf. If there are ties, preference should
be given to sentences that have a higher query term density.
"""
scores = {}
for sentence, sentwords in sentences.items():
score = 0
for word in query:
if word in sentwords:
score += idfs[word]
if score != 0:
density = sum([sentwords.count(x) for x in query]) / len(sentwords)
scores[sentence] = (score, density)
sorted_by_score = [k for k, v in sorted(scores.items(), key=lambda x: (x[1][0], x[1][1]), reverse=True)]
return sorted_by_score[:n]
|
8152d4bd7e60f3a8f4989b2c6a99986dbbaaf646
| 51,907
|
def ckpt_recency(ckpt):
"""Recency as Checkpoint importance metric.
This function can also act as an example of how to make checkpoint
importance keyfuncs. This is a named function, but as you can see
it could be easily implemented as a lambda in a pinch.
"""
return ckpt.meta["unixtime"]
|
3969e618389e20ced56e1026d2d4a011373c1bc9
| 51,909
|
import math
def stakePoolTicketFee(stakeDiff, relayFee, height, poolFee, subsidyCache, netParams):
"""
stakePoolTicketFee determines the stake pool ticket fee for a given ticket
from the passed percentage. Pool fee as a percentage is truncated from 0.01%
to 100.00%. This all must be done with integers.
Args:
stakeDiff (int): The ticket price.
relayFee (int): Transaction fees.
height (int): Current block height.
poolFee (int): The pools fee, as percent.
subsidyCache (calc.SubsidyCache): A subsidy cache.
netParams (module): The network parameters.
Returns:
int: The stake pool ticket fee.
"""
# Shift the decimal two places, e.g. 1.00%
# to 100. This assumes that the proportion
# is already multiplied by 100 to give a
# percentage, thus making the entirety
# be a multiplication by 10000.
poolFeeAbs = math.floor(poolFee * 100.0)
poolFeeInt = int(poolFeeAbs)
# Subsidy is fetched from the blockchain package, then
# pushed forward a number of adjustment periods for
# compensation in gradual subsidy decay. Recall that
# the average time to claiming 50% of the tickets as
# votes is the approximately the same as the ticket
# pool size (netParams.TicketPoolSize), so take the
# ceiling of the ticket pool size divided by the
# reduction interval.
adjs = int(math.ceil(netParams.TicketPoolSize / netParams.SubsidyReductionInterval))
subsidy = subsidyCache.calcStakeVoteSubsidy(height)
for i in range(adjs):
subsidy *= 100
subsidy = subsidy // 101
# The numerator is (p*10000*s*(v+z)) << 64.
shift = 64
s = subsidy
v = int(stakeDiff)
z = int(relayFee)
num = poolFeeInt
num *= s
vPlusZ = v + z
num *= vPlusZ
num = num << shift
# The denominator is 10000*(s+v).
# The extra 10000 above cancels out.
den = s
den += v
den *= 10000
# Divide and shift back.
num = num // den
num = num >> shift
return num
|
69d17a5cef65721901af8a6515ce434f086b2e1d
| 51,910
|
import itertools
def _solve_bruteforce(D, all_solutions, valid, spin, value):
"""_solve_bruteforce.
Helper function for solve_pubo_bruteforce, solve_puso_bruteforce,
solve_qubo_bruteforce, and solve_quso_bruteforce.
Iterate through all the possible solutions to a BO formulated problem
and find the best one (the one that gives the minimum objective value). Do
not use for large problem sizes! This is meant only for testing very small
problems.
Parameters
----------
D : dict.
all_solutions : boolean (optional, defaults to False).
If all_solutions is set to True, all the best solutions to the problem
will be returned rather than just one of the best. If the problem is
very big, then it is best if ``all_solutions`` is False, otherwise this
function will use a lot of memory.
valid : function.
``valid`` takes in a bitstring or spinstring and outputs a boolean
indicating whether that bitstring or spinstring is a valid solutions.
spin : bool.
Whether we're bruteforce solving a spin model or boolean model.
value : function.
One of ``qubo_value``, ``quso_value``, ``pubo_value``, or
``puso_value``.
Returns
-------
res : tuple (objective, solution).
if all_solutions is False:
objective : float.
The best value of the problem.
solution : dict.
Maps the binary variable label to its solution value,
{0, 1} if not spin else {-1, 1}.
if all_solutions is True:
objective : float.
The best value of the problem
solution : list of dicts.
Each dictionary maps the label to the value of each binary
variable. Ie each ``s`` in ``solution`` is a solution that
gives the best objective function value.
"""
if not D:
return 0, ({} if not all_solutions else [{}])
elif () in D:
offset = D.pop(())
if not D:
D[()] = offset
return offset, ({} if not all_solutions else [{}])
D[()] = offset
# if D is a Matrix object or QUBO, PUBO, etc, then these are defined
try:
N = D.num_binary_variables
# could do D.reverse_mapping, but that creates a copy. We just need to
# not mutate it here, then we don't have to waste time copying.
mapping = D._reverse_mapping
except AttributeError:
var = set()
for x in D:
var.update(set(x))
N = len(var)
# map qubit name to 0 through N-1
mapping = dict(enumerate(var))
best = None, {}
all_sols = {None: [{}]}
for test_sol in itertools.product((1, -1) if spin else (0, 1), repeat=N):
x = {mapping[i]: v for i, v in enumerate(test_sol)}
if not valid(x):
continue
v = value(x, D)
if all_solutions and (best[0] is None or v <= best[0]):
best = v, x
all_sols.setdefault(v, []).append(x)
elif best[0] is None or v < best[0]:
best = v, x
if all_solutions:
best = best[0], all_sols[best[0]]
return best
|
a0fe41785eb41e12bbca74e49b09679ab5e646ca
| 51,914
|
import pickle
import bz2
def zloads(pickled_data):
"""
loads pickleable object from bz2 compressed string
:param pickled_data: BZ2 compressed byte sequence
:type pickled_data: bytes
:returns: An unpickled version of the compressed byte sequence.
"""
return pickle.loads(bz2.decompress(pickled_data))
# return pickle.loads(pickled_data)
|
03a18e47a780b586b4ca606f253744ff3003febc
| 51,919
|
def atom_count(mol2_file):
"""
Get atom count from Tripos MOL2 header
:param mol2_file: mol2 file
:type mol2_file: :py:str
:return: atom count
:rtype: :py:int
"""
atomcount = 0
with open(mol2_file, 'r') as infile:
for line in infile.readlines():
if line.startswith('@<TRIPOS>ATOM'):
break
line = line.strip().split()
if len(line) and line[0].isdigit():
atomcount = int(line[0])
break
return atomcount
|
f305219f6d9ddd8ebb7fc96d34855d6c50e113b3
| 51,922
|
def parse_project_and_task_from_dag_id(dag_id):
"""Parse project and task from dag id.
Args:
dag_id (str): The id of DAG.
Returns:
(tuple of str): The first item is project. The second item is task.
If dag_id is invalid, will return empty string.
"""
if not dag_id:
return '', ''
ids = dag_id.split('__')
if len(ids) >= 3:
return ids[1], ids[2]
elif len(ids) == 2:
return ids[1], ''
else:
return '', ''
|
1a6740ce65bd82189604121a0cbfb4f9c11e3c8f
| 51,923
|
def convertValueOrNone(value, convert=int):
"""Convert a value to a type unless NoneType.
Parameters
----------
value : anything
The value to possibly convert.
convert : TYPE, optional
The type for conversion.
Returns
-------
convert type
The converted value.
"""
return value if value is None else convert(value)
|
e3c5c091d7c2ad3dfd6dc48349afac5765bd6f40
| 51,924
|
def snake_id_from_XY(x, y, converted_data):
"""
Returns snake_id from x, y integers.
Args:
x (int): x value of tile
y (int): y value of tile
converted_data (dict): python readable version of json
Returns:
snake["id"](unicode string): snake id
"""
for snake in converted_data["board"]["snakes"]:
if (x == snake["body"][0]["x"]) and (y == snake["body"][0]["y"]):
return snake["id"]
|
a1f1a4973169bfdb91aed4713ac8be36b13f09ad
| 51,926
|
def LTrim(text):
"""Strip spaces from the left of the text"""
return str(text).lstrip()
|
fa9fb09d90795a3f6e8b6e1025039eda0baca407
| 51,928
|
def sum_diagnonals_spiral(N):
"""
Problem 28, method 2 , serial: 1:1, 3:45, 5:101
spiral 5X5 has 1+4*2+4*4 25 element, max element is 25, ele size N*N
the upper right corner number must the N*N, the other 3 corners counter-clockwise by -(N-1)
"""
#
s=1 # spiral 1
for l in range(3,N+2,2):
s=s+l*l
s=s+l*l-(l-1)
s=s+l*l-2*(l-1)
s=s+l*l-3*(l-1)
print("sum of the all diag number of spriral", N, "is: ", s)
return s
|
eadae06001a8cadfc5bed28f760a3e6a3ef5f4b6
| 51,932
|
def count_values(x, labels):
"""Count how many rows have a label contained in labels."""
return x['label'].loc[x['label'].isin(labels)].count()
|
4efeb945204c711a411445a7cff7b478a62862a3
| 51,934
|
def convert_to_bagel_geom(geom_str):
"""
Converts an xyz geometry sting to a bagel formatted geometry (json format)
:param geom_str: xyz geometry to convert
"""
bagel_geom = ''
for line in geom_str.strip().splitlines():
atom, *xyz = line.split()
bagel_geom += f'{{"atom" : "{atom:s}", '
if len(atom) == 1:
bagel_geom += ' '
x, y, z = map(float, xyz)
bagel_geom = f'[{x:>15.10f},{y:>15.10f},{z:>15.10f}] }},\n'
return bagel_geom[:-2]
|
6beb0a75f19fdfebec66bc22a30cb7a6f9bbbc39
| 51,939
|
def affine_to_str(transform):
""" Return a string representatin of an affine.Affine transform
"""
return ','.join(map(str, transform[:6]))
|
844d52e77f00eb86668563c92969eca175acb1e6
| 51,942
|
def lexiconmatch(word, lexicon):
"""Return 0 if word not in lexicon; lexicon valence otherwise."""
return lexicon[word] if word in lexicon else 0
|
af2f451e67de5aebc60c1c9812ae9937a7514f5c
| 51,943
|
def is_array(obj):
"""
Return True if object is list or tuple type.
"""
return isinstance(obj,list) or isinstance(obj,tuple)
|
f3ed267dcb6f1a4bb5ce0648b1a876cfb860ecf4
| 51,945
|
from datetime import datetime
def times(fields):
"""Return a starting and ending datetime, given `fields` like:
[u'CLOCK:', u'[2013-03-08', u'Fri', u'14:24]--[2013-03-08', u'Fri',
u'15:41]', u'=>', u'1:17']
"""
return (datetime.strptime(fields[1] + fields[3][:5], u'[%Y-%m-%d%H:%M'),
datetime.strptime(fields[3][9:] + fields[5], u'%Y-%m-%d%H:%M]'))
|
8a1fb78e893e71c96dc2a04c1897bfc4b7a1d367
| 51,949
|
def identity(x, session):
"""Return the value."""
return x
|
b18cd37ccfdf7a06f4645c38fa5debd020bc432f
| 51,950
|
def calculate(first, second, operation: str):
"""
Вычисляет арифметическую операцию ``operation`` над двумя числами.
Допустимые операции:
* ``+`` - сложение,
* ``-`` - вычитание,
* ``*`` - умножение,
* ``/`` - деление.
:param first: Первое число.
:param second: Второе число.
:param operation: Арифметическая операция.
:return: Результат арифметической операции.
"""
if operation == "+":
return first + second
elif operation == "-":
return first - second
elif operation == "*":
return first * second
elif operation == "/":
if second != 0:
return first / second
else:
raise ZeroDivisionError("Деление на ноль недопустимо")
else:
raise ValueError("Неизвестная операция")
|
120ca531234c443517927dffc4754b7bb9e6977f
| 51,951
|
import torch
def reverse_padded_sequence(inputs, lengths, batch_first=False):
"""Reverses sequences according to their lengths.
Inputs should have size ``T x B x *`` if ``batch_first`` is False, or
``B x T x *`` if True. T is the length of the longest sequence (or larger),
B is the batch size, and * is any number of dimensions (including 0).
Arguments:
inputs (Variable): padded batch of variable length sequences.
lengths (list[int]): list of sequence lengths
batch_first (bool, optional): if True, inputs should be B x T x *.
Returns:
A Variable with the same size as inputs, but with each sequence
reversed according to its length.
"""
if batch_first:
inputs = inputs.transpose(0, 1)
max_length, batch_size = inputs.size(0), inputs.size(1)
if len(lengths) != batch_size:
raise ValueError('inputs is incompatible with lengths.')
ind = [list(reversed(range(0, length))) + list(range(length, max_length))
for length in lengths]
ind = torch.LongTensor(ind).transpose(0, 1)
for dim in range(2, inputs.dim()):
ind = ind.unsqueeze(dim)
ind = ind.expand_as(inputs)
if inputs.is_cuda:
ind = ind.cuda(inputs.get_device())
reversed_inputs = torch.gather(inputs, 0, ind)
if batch_first:
reversed_inputs = reversed_inputs.transpose(0, 1)
return reversed_inputs
|
2794e1effb4227e509d97aa942a87f329a61b7b8
| 51,953
|
def parser_combinator(top, lookup, combinator, tokens):
"""Parse the given tokens, combining in the given fashion.
Args:
top: The top-level parser. Separates the tokens into
sections which can be consumed by the parsers in the
lookup function.
lookup: For a given section from the top-level parser,
returns a list of possible parsers.
combinator: Combines the resultant nodes from parsing
each section from the top-level parser.
tokens: The tokens to be parsed.
Returns:
The top-level node from the combinator.
"""
sections = top(tokens)
parsed_sections = list()
for i, section in enumerate(sections):
parsed = None
for parse in lookup(section, i):
parsed = parse(section)
if parsed:
break
if not parsed:
return None
parsed_sections.append(parsed)
return combinator(*parsed_sections)
|
155def4208d6baa9f4092ba29abd1918ae4438ea
| 51,956
|
import requests
def get_image_from_url(imgurl):
"""
Loads and returns the bytes of the image from the specified url
:param imgurl: the url
"""
resp = requests.get(imgurl)
imgbytes = resp.content
return imgbytes
|
530d57ae44edd25668b3ad1bdb6aa6721ea66537
| 51,957
|
def _filter_out_duplicate_spotify_artists(spotify_artists):
"""
We should not try to add the same artist multiple times to the graph, so filter
out any duplicates.
"""
spotify_artist_dictionary = {
spotify_artist.id: spotify_artist for spotify_artist in spotify_artists
}
return list(spotify_artist_dictionary.values())
|
1dce7b9ddfcadb2baf3006d7061adabc27375097
| 51,967
|
def bernoulli_prob(var, bias=0.5):
""" Returns Sympy-expression of a Bernoulli PMF for var at specified bias.
:param var: boolean symbol to express pmf
:param bias: bias probability (float ranging from 0 to 1).
:return bias*var + (1-bias)*(1-var)
"""
# bv + (1-b)(1-v) = bv + 1 - v - b + bv = 2bv - v - b + 1 = v(2b-1) + (1-b)
return var * (2*bias - 1) + (1 - bias)
|
b7e0ae4c578ad0cbd4c8dc7127f1d7f24a083d9f
| 51,968
|
def append_line(buf, linearr):
"""Append lines
Args:
buf (obj): Nvim buffer
linearr (Array[string]): Line contents
Returns:
suc (bool): True if success
"""
for l in linearr:
buf.append(l)
return True
|
9ae3c08b119c01276a95c1adf9e8372730f08154
| 51,971
|
import torch
def convert_ax_angle_to_quat(ax, ang):
"""
Convert Euler angles to quaternion.
"""
qw = torch.cos(ang/2)
qx = ax[0] * torch.sin(ang/2)
qy = ax[1] * torch.sin(ang/2)
qz = ax[2] * torch.sin(ang/2)
quat = torch.stack([qw, qx, qy, qz], dim=1)
return quat
|
04ffcd09fd88dcef0c26c7230abdd3d3704ec2f4
| 51,975
|
def next_value(value: int) -> int:
"""
Given the current code value, return what the next value will be.
"""
return (value * 252_533) % 33_554_393
|
6b77837313abd891e95e56d191af3410f45eeb11
| 51,978
|
def read_messages(file):
"""(file open for reading) -> list of str
Read and return the contents of the file as a list of messages, in the order
in which they appear in the file.
"""
messages = []
for line in file.readlines():
messages.append(line.strip())
return messages
|
f596b2fdc7661d5f641f30a676f586494a7b41d9
| 51,979
|
def prob_page_pattern_match(q, q1, t, m, s):
"""
Probability that a page pattern of q + t pages contains another page pattern
of q1 pages, assuming that all pages are equiprobable. Parameter m
represents the total number of pages.
"""
#prob_same_page = (harmonic_approx(m, 2*s)
# / (harmonic_approx(m, s) ** 2))
prob_same_page = float(1) / m
prob_single_page_no_match = (1 - prob_same_page) ** (q + t)
return (1 - prob_single_page_no_match) ** q
|
269fe744ca6ca46e410dccc994914afca16d24f4
| 51,981
|
def tokenize_sentence(sentence):
"""
Tokenize sentence into list of words.
:param sentence: to tokenize
:return: the list of words in the sentence
"""
tokens = []
token_start = 0
for i in range(len(sentence)):
if sentence[i] == ' ':
tokens.append(sentence[token_start:i])
token_start = i + 1
if i == len(sentence) - 1:
tokens.append(sentence[token_start:i+1])
return tokens
|
c0cdd0ef770f40ee3e9723ba0663348b494cd49c
| 51,989
|
def relative_error(estimated, truth):
"""Calculate relative error.
The relative error is defined as (estimated - truth) / truth.
Args:
estimated: the estimated value.
truth: the true value.
Returns:
The relative error.
"""
return (estimated - truth) / truth
|
92be45fc09df753195abe28c8d740bddeb499a0d
| 51,993
|
def y_true(y_true, y_pred):
"""
Returns the label (y_true)
:param y_true:
:param y_pred:
:return:
"""
return y_true
|
66c68f0303f5431daa62a09ad528e51f4d30126c
| 51,998
|
def data_blobxfer_extra_options(conf):
# type: (dict) -> str
"""Retrieve input data blobxfer extra options
:param dict conf: configuration object
:rtype: str
:return: blobxfer extra options
"""
try:
eo = conf['blobxfer_extra_options']
if eo is None:
eo = ''
except KeyError:
eo = ''
return eo
|
6e6627e42ddc054571e08bce4d1a6959d0977ceb
| 51,999
|
def get_assets(db):
"""Get ALL supported assets from crypto_list.db"""
rows = db.execute("SELECT * FROM currencies")
return rows
|
2aa14922413650d0638ee62c0b5c01a4d20a4adc
| 52,000
|
import ast
def get_cue(series):
"""Extract cues using the cue indices from the sentence.
"""
# The data is a string that should be a list of integers
cues = ast.literal_eval(series["cues_idx"])
# Extract all cue words.
cue = [s for c, s in zip(cues, series["sent"].split(" ")) if c]
if len(cue) == 1:
return cue[0]
elif len(cue) == 0:
return None
else:
return cue
|
291381427ae1f53aa980f681a5a23f7d11910598
| 52,001
|
async def subscriber_recv(loop, subscriber):
"""Receive a message from a subscriber on the EII Message Bus.
:param loop: asyncio loop
:param subscriber: EII Message Bus Subscriber
"""
recv = loop.run_in_executor(None, subscriber.recv)
msg = await recv
return msg
|
a7d6d7ae9777d517af5567ca72c0b4de4666fd92
| 52,008
|
def linenr_column_line(text, offset):
"""Return line number, column and the whole line
in which text[offset] lies.
Line number and column are in one-based indexing.
Each tab is counted as one column.
"""
offset = min(max(0, offset), len(text))
textbegin = text[:offset]
if not textbegin:
return 1, 1, None
lines = textbegin.splitlines(True)
linenr, column = max(1, len(lines)), len(lines[-1]) + 1
line = lines[-1]
nlpos = text.find('\n', offset)
if nlpos >= 0:
line += text[offset:nlpos+1]
else:
line += text[offset:]
return linenr, column, line
|
1ab598ffcb9fb94d61761b9ede75f1759687350b
| 52,009
|
def parseCommandLine(parser):
"""Parse command line"""
parser.add_argument('--remove', '-r',
action='store_true',
dest='removeFlag',
default=False,
help='remove all diskimgr configuration files')
# Parse arguments
args = parser.parse_args()
return args
|
eed67549a330837bcfa952d81302a25a1b455757
| 52,012
|
import binascii
import hmac
import hashlib
def daily_signature(key, message):
"""
This function takes a key and message as input
the key is the date which changes daily and message
is the data to be hashed.
It returns a hashed object for that message
"""
byte_key = binascii.unhexlify(key)
message = message.encode()
return hmac.new(byte_key, message, hashlib.sha256).hexdigest().upper()
|
5d103f5c4eaf2701c30b4d26a7c55bad762ae477
| 52,014
|
def add_recommend(df):
"""adds general 'would recommend' variable (probably+definitly)"""
df['would_recommend'] = df['RECOMMEND_MBV'] + df['RECOMMEND_TBV']
return df
|
c994ab81acbb2d858147e96d32e82beccc4d36ee
| 52,019
|
def _cache_key(G):
"""
Return the key used to cache the result for the graph G
This is used by the decorator :func:`_cached`.
EXAMPLES::
sage: from sage.graphs.tutte_polynomial import _cache_key
sage: G = graphs.DiamondGraph()
sage: print(_cache_key(G))
((0, 2), (0, 3), (1, 2), (1, 3), (2, 3))
"""
return tuple(G.canonical_label().edges(labels=False, sort=True))
|
b9b0bdb5e48ea89c5db5c3bc9d4f93b54ae22a12
| 52,021
|
def _GetEventData(data, key, value_type=None):
"""Get value for key from data.
Args:
data: a dict contains data.
key: the key to get value.
value_type: value's type.
Returns:
value
"""
value = data.get(key)
if value and value_type:
value = value_type(value)
return value
|
1428f08e4275864b871fa923dd9bf8e380561d80
| 52,026
|
def validate_model_is_trained(model, model_type):
"""Check whether the model has been already trained.
:param model: The input model.
:param model_type: [str] The model type (e.g., RandomForestClassifier).
:return Either nothing or an AttributeError.
"""
if model_type in ['RandomForestClassifier', 'RandomForestRegressor',
'ExtraTreesClassifier', 'ExtraTreesRegressor']:
n_estimators_attr = 'n_estimators'
estimators_attr = 'estimators_'
else:
raise NotImplementedError('Don\'t know what to do with \'%s\'' % model_type)
if hasattr(model, n_estimators_attr) and not hasattr(model, estimators_attr):
raise AttributeError('The model has not been trained yet, and thus cannot be explained.')
else:
return n_estimators_attr, estimators_attr
|
c1c3cc1c164c15a9831f5776fc587a46ec04a3b8
| 52,033
|
def cropimage( img, bounds):
"""Crop a pillow image at bounds(left, top, right, bottom)
"""
return img.crop( bounds )
|
00d6b6a1de744f4d43209bb8078834dfb8a74bf7
| 52,038
|
def filter_PIBICs(lattesframe, npibics=1):
"""Returns the rows of the researchers in arg lattesframe that have
been part of the PIBIC scholarship at least once.
Args:
lattesframe: the pandas dataframe to be filtered.
npibics: the minimum quantity of PIBICs to be filtered.
"""
if npibics <= 0:
print('Invalid arg npibics. Reverting to default npibics == 1.')
npibics = 1
return lattesframe.loc[lattesframe['quantasVezesPIBIC'] >= npibics]
|
c167294cf94e37e20170c6d41b07ddc3c2161b99
| 52,039
|
def get_pos_diff(old_pos, new_pos):
"""Returns the difference in position between two rospy positions"""
pos_diff = new_pos - old_pos
return pos_diff
|
64b333c18b8c6c192541bf7980689fae2ce9cb6e
| 52,042
|
import logging
def _get_task_counts(rows):
"""Calculcate number of true/false tasks and maximum achievable score."""
count_true = count_false = 0
max_score = None
for row in rows:
if not row.id.property:
logging.info("Missing property for task %s.", row.id)
continue
expected_result = row.id.expected_result
if not expected_result:
continue
if expected_result.result is True:
count_true += 1
elif expected_result.result is False:
count_false += 1
row_max_score = row.id.property.max_score(expected_result)
if row_max_score is not None:
max_score = row_max_score + (max_score or 0)
return max_score, count_true, count_false
|
b9b6dd4f8abcbe2eee9275ae465047448e1a5ac7
| 52,043
|
from typing import List
def kadane_algorithm(array: List[int]) -> int:
"""
Use Kadane's algorithm to solve the max sum subarray problem.
:param array: the array to process
:return: the maximum value amongst all consecutive subarrays.
>>> kadane_algorithm([34, -50, 42, 14, -5, 86])
137
>>> kadane_algorithm([-5, -1, -8, -9])
0
"""
current_max_ending = 0
max_ending = 0
for v in array:
current_max_ending += v
if max_ending < current_max_ending:
max_ending = current_max_ending
if current_max_ending < 0:
current_max_ending = 0
return max_ending
|
de03b9fe5f181ae9356ccaee971366d8b5aa7159
| 52,045
|
def slurp(filename):
""" Load a file """
fp = open(filename)
try:
return fp.read()
finally:
fp.close()
|
acc2d8746b0ffb5cc971609b6576bce6fc2da1c7
| 52,047
|
import re
def filter_remove_device_sw_log_prefix(line):
"""
Remove the file/line information in log messages produced by device software
LOG() macros.
"""
# See base_log_internal_core() in lib/base/log.c for the format description.
pattern = r'^[IWEF?]\d{5} [a-zA-Z0-9\.-_]+:\d+\] '
if isinstance(line, bytes):
return re.sub(bytes(pattern, encoding='utf-8'), b'', line)
else:
return re.sub(pattern, '', line)
|
c69ce2ecc96370dd1c55ce47cb38ce59aa759a11
| 52,060
|
def build_request_body(type, id, attributes=None, relationships=None):
"""Build a request body object.
A body JSON object is used for any of the ``update`` or ``create``
methods on :class:`Resource` subclasses. In normal library use you
should not have to use this function directly.
Args:
type(string): The resource type for the attribute
id(uuid): The id of the object to update. This may be ``None``
Keyword Args:
attributes(dict): A JSON dictionary of the attributes to set
relationships(dict) A JSON dictionary of relationships to set
Returns:
A valid attribute dictionary. Often used in the ``update`` or
``create`` :class:`Resource`` methods.
"""
result = {
"data": {
"type": type
}
}
data = result['data']
if attributes is not None:
data['attributes'] = attributes
if relationships is not None:
data['relationships'] = relationships
if id is not None:
data['id'] = id
return result
|
0d6a9029446fe0cb250cb88c6fc4bbf57d24afb9
| 52,061
|
def varchar(length):
"""
Factory for a character length validator of the specified length.
"""
length = int(length)
def char_length_validator(string):
"""
Validate a string ensuring that it doesn't exceed a maximum length.
"""
if string is None:
return
string = str(string)
if len(string) > length:
raise ValueError("Value '%s' exceeds character limit "
"of %i." % (string, length))
return string
return char_length_validator
|
a0d498c26528f1f0e7156a7b2fda632db1d65682
| 52,064
|
import hashlib
def hash(v, encoding="utf-8"):
"""return hash value for string v"""
return hashlib.md5(v.encode(encoding)).hexdigest()[:6]
|
da7464f61fa59b5f92629a9de32d5e7f1c22240e
| 52,068
|
def output_dir(tmpdir):
"""Pytest fixture return `output_dir` argument as string."""
return str(tmpdir.mkdir('output'))
|
d1c74b08792d423b10bdb1e332fae65ab6ee4752
| 52,074
|
def iou(box1, box2):
"""Compute the Intersection-Over-Union of two given boxes.
Args:
box1: array of 4 elements [cx, cy, width, height].
box2: same as above
Returns:
iou: a float number in range [0, 1]. iou of the two boxes.
"""
lr = min(box1[0] + 0.5 * box1[2], box2[0] + 0.5 * box2[2]) - \
max(box1[0] - 0.5 * box1[2], box2[0] - 0.5 * box2[2])
if lr > 0:
tb = min(box1[1] + 0.5 * box1[3], box2[1] + 0.5 * box2[3]) - \
max(box1[1] - 0.5 * box1[3], box2[1] - 0.5 * box2[3])
if tb > 0:
intersection = tb * lr
union = box1[2] * box1[3] + box2[2] * box2[3] - intersection
return intersection / union
return 0
|
c515d2aa81ff12841e247a3ea925bb312a6c931d
| 52,078
|
def _MakeCounterName(key_id, tag):
"""Helper to create a sharded Counter name.
Args:
key_id: Int unique id (usually a model entity id).
tag: String tag which hints at the counter purpose.
Returns:
String to be used as a sharded Counter name.
"""
return '%s_%s' % (key_id, tag)
|
5b1ebf20f4a59fe5b2e0ed076a83355a61ce97a1
| 52,093
|
import re
def just_one_dot(text):
"""Some Zabbix metrics can end up with multiple . characters. Replace with a single one"""
rx = re.compile(r"\.+")
return rx.sub(".", text)
|
d32f2a0373a9c3c1a38599feeb247145b79bea80
| 52,095
|
import torch
def classify(preds, labels, cacu_rate=False, topk=None):
"""
用于分类的准确率
:param preds: [batch,logits]
:param labels: [labels,]
:param cacu_rate: 计算正确率而不是计数
:param topk: list(int) ,表明计算哪些topk
:return:
if cacu_rate:
[topk_rate,...]
else:
total, [topk_count,...]
"""
if topk is None:
topk = (1,5)
k = topk
_, maxk = torch.topk(preds, max(*k), dim=-1)
total = labels.size(0)
test_labels = labels.view(-1, 1) # reshape labels from [n] to [n,1] to compare [n,k]
if cacu_rate:
return [(test_labels == maxk[:, 0:i]).sum().item() / total for i in k]
else:
return total, [(test_labels == maxk[:, 0:i]).sum().item() for i in k]
|
21cb44d41cc81bdcf81e8ca60cc55a13d89fe21e
| 52,101
|
def count_all_pixels_per_block(x, y):
"""
Calculate total number of pixels in a rectangular block
Parameters
----------
x : int
block width in pixels
y : int
block height in pixels
Returns
-------
number_of_pixels : int
total number of pixels in a block
"""
return x * y
|
7389386d2259422d5fca36f70d9318d57e5fab69
| 52,103
|
def analyse_structure(structure, mode="total", diamond=False):
"""
Use either common neighbor analysis or the diamond structure detector
Args:
structure (pyiron_atomistics.structure.atoms.Atoms): The structure to analyze.
mode ("total"/"numeric"/"str"): Controls the style and level
of detail of the output.
- total : return number of atoms belonging to each structure
- numeric : return a per atom list of numbers- 0 for unknown,
1 fcc, 2 hcp, 3 bcc and 4 icosa
- str : return a per atom string of sructures
diamond (bool): Flag to either use the diamond structure detector or
the common neighbor analysis.
Returns:
(depends on `mode`)
"""
if not diamond:
return structure.analyse.pyscal_cna_adaptive(
mode=mode, ovito_compatibility=True
)
else:
return structure.analyse.pyscal_diamond_structure(
mode=mode, ovito_compatibility=True
)
|
51b06765cd058c59cc9fca877bcc3db977486e18
| 52,115
|
import six
def ensure_bytes(obj):
"""
If the input object is a string, make sure it is returned as a Byte string,
as follows:
* If the input object already is a Byte string, it is returned unchanged.
* If the input object is a Unicode string, it is converted to a Byte string
using the UTF-8 encoding.
* Otherwise, the input object was not a string and is returned unchanged.
"""
if isinstance(obj, six.text_type):
return obj.encode("utf-8")
return obj
|
e7f93927577fa1354743ec85a0b65060f25c61b2
| 52,119
|
def bounds(sizes):
"""Convert sequence of numbers into pairs of low-high pairs
>>> bounds((1, 10, 50))
[(0, 1), (1, 11), (11, 61)]
"""
low = 0
rv = []
for size in sizes:
rv.append((low, low + size))
low += size
return rv
|
8196f4cba37a23e89d475859ea6958b7081f5736
| 52,121
|
def parsecommon(parser):
"""
Parse common arguments
"""
parser.add_argument("--bufsz", help="size of buffer",
type=int, default=20)
parser.add_argument("--nch", help="Number of cells",
type=int, default=1000)
parser.add_argument("--fs", help="spike sampling rate",
type=int, default=1000)
parser.add_argument("--port", help="port to connect to",
type=int, default=29170)
return parser
|
eb1ad9e0769a7d999225ecd2d8dce1304621c53e
| 52,122
|
def DiffValueLists(new_list, old_list):
"""Give an old list and a new list, return the added and removed items."""
if not old_list:
return new_list, []
if not new_list:
return [], old_list
added = []
removed = old_list[:] # Assume everything was removed, then narrow that down
for val in new_list:
if val in removed:
removed.remove(val)
else:
added.append(val)
return added, removed
|
4c3dc471bd0e9e9aea3b5f0b8c906eb1ca27d196
| 52,124
|
def every_item_but_one(l: list, idx: int) -> list:
"""
Returns every item in the list except for the one at index idx.
:param l: a list to process.
:param idx: the index to be excluded from the list.
:return: the list l minus the item at index idx.
"""
return [item for i, item in enumerate(l) if i != idx]
|
52b8ebe4af24226745a052b5577c5c470c18f56d
| 52,125
|
import hashlib
def mktempname(salt, instance):
"""Create /tmp file name for compile output."""
m = hashlib.md5()
m.update(salt)
hd = m.hexdigest()
return "/tmp/%s.%d.err.txt" % (hd, instance)
|
a17490c0dfc9fba83c960da3c748b6da9985e725
| 52,128
|
def modify_readme(content: str) -> str:
"""Modify README.md."""
content = content.replace("myst-parser", "myst-docutils")
content = content.replace(
"# MyST-Parser",
"# MyST-Parser\n\nNote: myst-docutils is identical to myst-parser, "
"but without installation requirements on sphinx",
)
content = content.replace("myst-docutils.readthedocs", "myst-parser.readthedocs")
content = content.replace(
"readthedocs.org/projects/myst-docutils", "readthedocs.org/projects/myst-parser"
)
return content
|
9325dae3f54ec6d743249c12a5d398e18cbf9734
| 52,130
|
def create_metadata(
input_name_list,
input_type_list,
input_shape_list,
output_name_list,
output_type_list,
output_shape_list,
model_input_list=None,
model_output_list=None,
custom_meta_dict=None,
):
"""
Facilitates creation of a metadata dictionary for model packaging (MAR). The method renders user-supplied
information compliant with standard expected format for the metadata.
It has to be noted that the format of metadata is completely up the user. The only reqirement is that metadata
should be always supplied as a json-serializable dictionary.
This method makes metadata more standard by capturing information about model inputs and outputs in fields
that are conventionally used and accepted across Eisen ecosystem. That is, this method implements a convention
about the format of metadata
:param input_name_list: A list of strings representing model input names Eg. ['input'] for single-input model
:type input_name_list: list
:param input_type_list: A list of strings for input types Eg. ['ndarray'] matching exp. type for 'input'
:type input_type_list: list
:param input_shape_list: A list of shapes (list) representing expected input shape Eg. [[-1, 3, 244, 244]]
:type input_shape_list: list
:param output_name_list: List of strings representing model output names Eg. ['logits', 'prediction']
:type output_name_list: list
:param output_type_list: List of strings representing model output types Eg. ['ndarray', 'str']
:type output_type_list: list
:param output_shape_list: List of shapes (list) for output shape Eg. [[-1, 10], [-1]]
:type output_shape_list: list
:param model_input_list: List of input names that should be used as model inputs (default all input_name_list)
:type model_input_list: list
:param model_output_list: List of output names that should be obtained from the model (default all output_name_list)
:type model_output_list: list
:param custom_meta_dict: A json-serializable dictionary containing custom information (Eg. options or notes)
:type custom_meta_dict: dict
:return: Dictionary containing metadata in standardized format
"""
if model_input_list is None:
model_input_list = input_name_list
if model_output_list is None:
model_output_list = output_name_list
metadata = {
'inputs': [],
'outputs': [],
'model_input_list': model_input_list,
'model_output_list': model_output_list,
'custom': {}
}
if custom_meta_dict is None:
custom_meta_dict = {}
assert len(input_name_list) == len(input_type_list) == len(input_shape_list)
assert len(output_name_list) == len(output_type_list) == len(output_shape_list)
for name, typ, shape in zip(input_name_list, input_type_list, input_shape_list):
metadata['inputs'].append({
'name': name,
'type': typ,
'shape': shape
})
for name, typ, shape in zip(output_name_list, output_type_list, output_shape_list):
metadata['outputs'].append({
'name': name,
'type': typ,
'shape': shape
})
metadata['custom'] = custom_meta_dict
return metadata
|
410af3785b009d9f7b3a6c43d14613779bad66c4
| 52,133
|
def homogeneous_to_euclidean(xh):
"""
Transforms X to be in euclidean coordinates
Parameters
----------
x: numpy array (3,N), (4,N)
each column of the array is a point
Returns
-------
xh: numpy array,
x in homogeneous coordinates
"""
return xh[0:-1, :]/xh[-1, :]
|
53c2c47d1bd02fc46713d178323648655f93aee2
| 52,139
|
def get_j_indices(plaintext):
"""Description: for a given string input, returns a list containing the
indices in which the letter 'j' occurs.
Arguments:
plaintext (string): string used to either encode or decode.
Returns:
j_indices (list): list contains all indices in which 'j' occurs.
"""
j_indices = []
count = 0
space_removed_plaintext = [i for i in plaintext if i != ' ']
for i in space_removed_plaintext:
if i == 'j':
j_indices.append(count)
count += 1
return j_indices
|
48ee4e872df0bd8da4780369644ae29f42bc5dfa
| 52,140
|
import re
def swallow(text: str, pattern_matcher: re.Pattern) -> str:
"""
Utility function internal to this module
:param text: text to clean
:param pattern_matcher: pattern to match
:return: the text without the matched pattern; spaces are not substituted
"""
idx_to_omit = []
for item in pattern_matcher.finditer(text):
idx_to_omit.insert(0, item.span())
for start, end in idx_to_omit:
text = text[:start] + text[end:]
return text.strip()
|
65d24b96f78aa9e0f318d0b4ec5da9251843125e
| 52,144
|
def count_items(alist):
"""
Count number of items in alist.
"""
count = 0
for item in alist:
count = count + 1
return count
|
69675913ffbcc1e6021c2c1002d4fa039ecc63b4
| 52,148
|
from typing import Tuple
def euklids_algorithm(a: int, b: int) -> Tuple[int, int, int]:
"""
Euklids algorithm returning GCD = X*a + Y*b.
>>> a, b = 3, 13
>>> gcd, ax, by = euklids_algorithm(a, b)
>>> gcd == ax*a + by*b
True
"""
if a == 0:
return b, 0, 1
gcd, x1, y1 = euklids_algorithm(b % a, a)
x = y1 - (b // a) * x1
y = x1
return gcd, x, y
|
540d0db350c20ca8adb98d598ccaaa7bfddda3bb
| 52,149
|
def format_expected_adviser(adviser):
"""
Formats Adviser object into format expected to be returned by
`NestedAdviserWithEmailAndTeamField`.
"""
if not adviser:
return None
return {
'contact_email': adviser.contact_email,
'dit_team': {
'id': str(adviser.dit_team.pk),
'name': adviser.dit_team.name,
},
'id': str(adviser.pk),
'name': adviser.name,
}
|
539607b064a66beb7d688c33b4dd914199d4b04a
| 52,163
|
def split_columns(string):
"""
Splits the return-columns argument or reads it from .txt
--return-columns 'temperature c, "heat$"' -> ['temperature c', '"heat$"']
--return-columns my_vars.txt -> ['temperature c', '"heat$"']
"""
if string.endswith('.txt'):
with open(string, 'r') as file:
return [col.rstrip('\n').strip() for col in file]
return [s.strip() for s in string.split(',')]
|
0977f978a2ae5d22eb7b873901a6f4bfa6c92cc4
| 52,164
|
import math
def calculate_padding_dimensions(t):
"""
Calculate list of PyTorch padding values to extend the spatial
dimension of input tensor to multiples of 32.
Args:
t: The ``torch.Tensor`` to pad.
Return
A tuple ``(p_l_n, p_r_n, p_l_m, p_r_m)`` containing the
left and right padding for the second to last dimension
(``p_l_m, p_r_m``) and for the last dimension (``p_l_n, p_r_n``).
"""
shape = t.shape
n = shape[-1]
d_n = math.ceil(n / 32) * 32 - n
p_l_n = d_n // 2
p_r_n = d_n - p_l_n
m = shape[-2]
d_m = math.ceil(m / 32) * 32 - m
p_l_m = d_m // 2
p_r_m = d_m - p_l_m
return (p_l_n, p_r_n, p_l_m, p_r_m)
|
65a1cfb0d8ccba9fdf7992aa8d7cda173b202398
| 52,166
|
def diff_date(truth_date, computed_date):
"""Compare two dates. Returns (match?, reason for mismatch)."""
if computed_date == truth_date:
return (True, '')
if computed_date is None:
return (False, 'Missing date')
if truth_date is None:
return (False, 'Should be missing date')
return (False, 'complex')
|
3ccca3899587ab5322004e1024d6dc81a06a2066
| 52,168
|
def UrnToFlowId(urn):
"""Converts given URN string to a flow id string."""
components = urn.split("/")
return components[-1]
|
f98b777f9439dcf5c7e72445019e87d9d92f989c
| 52,169
|
def verify_object_exists(obj: dict, obj_path: list):
"""Verifies that a given object has a given sub-object defined by obj_path"""
if not obj_path:
return True
if obj_path[0] in obj:
return verify_object_exists(obj[obj_path[0]], obj_path[1:])
else:
return False
|
b782b1f8762fa6a0e61f4b4102534197a3251c45
| 52,177
|
def clean_attr(attr):
"""Append @ to attributes and resolve text -> text() for XPath."""
if attr:
if 'text' in attr:
return 'text()'
else:
attr = attr.lstrip('@')
if attr:
return '@' + attr
return None
|
a14d32504d09051d9a442048c458e43751686d45
| 52,178
|
def bh_mass_from_bulge_mass(bulge_mass):
"""
Kormendy & Ho (2013) fitting function for the Mbh--Mbulge power law relation.
Parameters
----------
bulge_mass : ndarray
Numpy array of shape (ngals, ) storing the stellar mass of the bulge
in units of solar mass assuming h=0.7
Returns
-------
bh_mass : ndarray
Numpy array of shape (ngals, ) storing black hole mass
Examples
--------
>>> ngals = int(1e4)
>>> bulge_mass = np.logspace(8, 12, ngals)
>>> bh_mass = bh_mass_from_bulge_mass(bulge_mass)
"""
prefactor = 0.49*(bulge_mass/100.)
return prefactor*(bulge_mass/1e11)**0.15
|
e578e26c9b6a6b71ca217fcc7f8579ace07f3e93
| 52,181
|
def predecessor_to_path(pred, source, target):
"""
generate a path from source to target by pred
@:param pred a dict mapping each node to its predecessor node on the
shortest path from the specified starting node:
e.g. pred == {'b': 'a', 'c': 'b', 'd': 'c'}
@:return a list of the vertices in order along the shortest path.
e.g. path = ['a', 'b', 'c', 'd']
"""
v = target
path = [v]
while v != source:
v = pred[v]
path.append(v)
path.reverse()
return path
|
16bb0aba1bbf671e88430ddcdf4aa07ab0acc5c7
| 52,184
|
def dist(x, y, S):
"""
Mahalanobis distance:
d(x,y) = \\sqrt( (x-y)^T*S^-1*(x-y) )
where S^-1 = diag(1/s_i^2 for s_i in std)
Input must be torch.Tensor((1,N)) for x,y,S
"""
d = ((x-y).pow(2)/S).sum(1).sqrt()
return d
|
676171a62ca828adbc140177c497c15124084817
| 52,190
|
def parse_params(param_str):
"""
Convert a string of the form name='value', ... into a dictionary. Leading
and trailing spaces are stripped, as are line-feed, carriage-return, tab,
single-quote and double-quote characters.
"""
params = {}
for param in param_str.split(','):
dirty = param.split('=')
key = dirty[0].strip(' \t\n\r\'\"')
value = dirty[1].strip(' \t\n\r\'\"')
params.update({key: value})
return params
|
898b5450be2ddf65cb9a20e58233b01cc5d8e079
| 52,192
|
from typing import Tuple
def split_checkpoint_filename(filename: str) -> Tuple[str, str]:
"""
Given a filename like "model.ckpt-20.index" return ("model",
"model.ckpt-20") or ("", "") if the filename is not a valid checkpoint file.
"""
parts = filename.rsplit(".", 2)
if len(parts) < 3 or not parts[1].startswith("ckpt-"):
return ("", "")
cname = parts[0]
basename = ".".join([cname, parts[1]])
return (cname, basename)
|
6512fa9d0c3e47404a553b527c4a8cc1fcb5d320
| 52,193
|
def calc_total_curvature_abc(bias, std_error, quadratic_coef):
"""
Calculate the total curvature of the level surface of the weight vector,
where the set of weights in the surface are those where the weighted MLE
equals the original (i.e. the equal-weighted) MLE.
Parameters
----------
bias : 1D ndarray.
Contains the approximate bias of the MLE estimates for use in the ABC
confidence intervals.
std_error : 1D ndarray.
Contains the standard error of the MLE estimates for use in the ABC
confidence intervals.
quadratic_coef : 1D ndarray.
Contains a measure of nonlinearity of the MLE estimation function as
one moves in the 'least favorable direction.'
Returns
-------
total_curvature : 1D ndarray of scalars.
Denotes the total curvature of the level surface of the weight vector.
References
----------
Efron, Bradley, and Robert J. Tibshirani. An Introduction to the Bootstrap.
CRC press, 1994. Section 22.6. Equation 22.39.
"""
total_curvature = (bias / std_error) - quadratic_coef
return total_curvature
|
9e3d263b0463d7842ae8a125c76241bae03984a5
| 52,195
|
def organize_columns(columns):
"""Locates data column keys and their respective mean data keys.
Args:
columns: iterable of dataframe column names
Returns:
keywords: iterable of tuples containing (data key, data mean key | '')
"""
located = []
keywords = []
for kw in sorted(columns):
if kw in located:
continue
mean_keys = [mkey for mkey in columns if mkey.startswith(kw+'_MEAN')]
if not mean_keys:
keywords.append((kw, ''))
continue
for mean_key in mean_keys:
keywords.append((kw, mean_key))
located.append(mean_key)
return keywords
|
d07d4c5aad71741e24c256e66ec3d1ca2bfa187a
| 52,196
|
def find_stem(stratified_string: str):
"""
find the stem of the compartment name as the text leading up to the first occurrence of the joining string
should run slightly faster than using find_name_components
"""
return stratified_string.split("X")[0]
|
867d01d2b8650ed6943bb507eba3977004dd31a4
| 52,209
|
def get_hms_for_seconds(seconds):
""" prints number of seconds in hours:minutes:seconds format"""
m, s = divmod(seconds, 60)
h, m = divmod(m, 60)
hms = "%d hours: %02d min: %02d sec" % (h, m, s)
return hms
|
41fe7fbe6e95a73aa973b4fb316c094e543afa76
| 52,213
|
def zmatrix(rotor_lst):
""" Get the Z-Matrix for the rotors
"""
return rotor_lst[0][0].zma
|
c0c0cf2a950d2338894121415cbaf069d7c7ff1a
| 52,215
|
from pathlib import Path
def env_devel_file(osparc_simcore_root_dir: Path) -> Path:
"""Path to osparc-simcore/.env-devel file"""
env_devel_fpath = osparc_simcore_root_dir / ".env-devel"
assert env_devel_fpath.exists()
return env_devel_fpath
|
104b0df3f67c44bd0cd5881ea199d543acc95b0c
| 52,216
|
def get_target_f0_list(f0_list: list, rapid_f0_change_indices: list, adjusted_widths: list):
"""補正に用いる基準値(平均値)を計算する。
中心となる2点からwidth分だけ前後の両端の点の平均値を、補正に用いる値とする。
その値をリストにして返す。
"""
# 念のため
assert len(rapid_f0_change_indices) == len(adjusted_widths)
# 補正の基準にするf0の値
target_f0_list = []
# 急峻な変化がある場所について、前から順に平均値を計算していく。
for f0_idx, width in zip(rapid_f0_change_indices, adjusted_widths):
f0_left = f0_list[f0_idx - width]
f0_right = f0_list[f0_idx + width + 1]
target_f0 = (f0_left + f0_right) / 2
target_f0_list.append(target_f0)
# こんな感じのリストを返す → [(f0_idx, width), ...]
return target_f0_list
|
aa6623aad4230a882fc03d6348b284da72510dec
| 52,220
|
def get_experiment(mlflow_client, exp_id_or_name):
""" Gets an experiment either by ID or name. """
exp = mlflow_client.get_experiment_by_name(exp_id_or_name)
if exp is None:
try:
exp = mlflow_client.get_experiment(exp_id_or_name)
except Exception:
raise Exception(f"Cannot find experiment ID or name '{exp_id_or_name}'. Client: {mlflow_client}'")
return exp
|
639daa3d23de767dbb0e6ca3f99b01d1b0185d85
| 52,223
|
import re
def parse_keyslots_luks2(luks_dump):
"""Lists the used keyslots in a LUKS2 device. These may or may not be
bound to clevis.
Return: <used keyslots> <error>"""
if not luks_dump:
return None, {"msg": "Empty dump provided"}
# This is the pattern we are looking for:
# 0: clevis
# Keyslot: 3
pattern = r"^\s+(\d+): luks2$"
match = re.findall(pattern, luks_dump, re.MULTILINE | re.DOTALL)
if not match:
errmsg = "parse_keyslots_luks2: no used key slots"
return None, {"msg": errmsg}
return match, None
|
ae62f3b736723aff89aa4793a1f2c04a955611bf
| 52,229
|
import pickle
def get_challenge_by_name(database, challenge_name, ctf_channel_id):
"""
Fetch a Challenge object in the database with a given name and ctf channel
ID.
Return the matching Challenge object if found, or None otherwise.
"""
ctfs = pickle.load(open(database, "rb"))
for ctf in ctfs:
if ctf.channel_id == ctf_channel_id:
for challenge in ctf.challenges:
if challenge.name == challenge_name:
return challenge
return None
|
12cba200a23f79ea604dc3a6743b1c4dab7b3b2b
| 52,244
|
def calc_arc_extent(day: int, hour: int, minutes: int) -> int:
"""
Returns the value, in degrees, to use to draw the arc representing the current minutes. It is negative to run
clockwise.
Hour and day are passed to handle the hedge cases.
:param day: current day
:param hour: current hour
:param minutes: current minute
:return: arc extent in degrees (int)
"""
extent = -1 * minutes * 6
if minutes == 0 and hour == 5 and day == 1:
return 0
if minutes == 0:
return -359
return extent
|
a05f969bfc87e7597ef3262b2a15666a0a634247
| 52,250
|
def round(x: int, divisor: int) -> int:
"""Round x to the multiplicity of divisor not greater than x"""
return int(x / divisor) * divisor
|
e598827058d5c7c37e32f8d213690875403fbe8d
| 52,251
|
def bin_dec(bin):
"""Conversion binary -> decimal. Needed to calculate
decimal variable value from binary coded genome."""
dec=0.0
bin.reverse()
for i in range(0, len(bin)):
dec+=(bin[i]*(2**i))
return dec
|
f0064c6ec248a61e4c88c56d97b1203fd73abd82
| 52,252
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.