content
stringlengths
39
14.9k
sha1
stringlengths
40
40
id
int64
0
710k
from pathlib import Path def join_legacy_read_path(sample_path: Path, suffix: int) -> Path: """ Create a path string for a sample read file using the old file naming convention (eg. reads_1.fastq). :param sample_path: the path to the sample directory :param suffix: the read file suffix :return: the read path """ return sample_path / f"reads_{suffix}.fastq"
c5efb0da5ace242b916ea0515062190fb55346f5
47,164
def remove_hidden(names): """Remove (in-place) all strings starting with a '.' in the given list.""" i = 0 while i < len(names): if names[i].startswith('.'): names.pop(i) else: i += 1 return names
19ed2fc093f96038612c6eb5b943f89f9b91f452
47,166
import re import operator def is_valid(policy: str, password: str) -> bool: """ Given a policy (e.g. `1-3 a`) and a password (e.g. `abcde`), determine if the password complies with the policy """ char = policy[-1:] pos_1 = int(re.findall("[0-9]+", policy)[0]) pos_2 = int(re.findall("[0-9]+", policy)[1]) return operator.xor((password[pos_1 - 1] == char), (password[pos_2 - 1] == char))
aa513b29d7575e80ee962055e0933e173c18441c
47,168
def _convert2dict(file_content_lines): """ Convert the corosync configuration file to a dictionary """ corodict = {} index = 0 for i, line in enumerate(file_content_lines): stripped_line = line.strip() if not stripped_line or stripped_line[0] == '#': continue if index > i: continue line_items = stripped_line.split() if '{' in stripped_line: corodict[line_items[0]], new_index = _convert2dict(file_content_lines[i+1:]) index = i + new_index elif line_items[0][-1] == ':': corodict[line_items[0][:-1]] = line_items[-1] elif '}' in stripped_line: return corodict, i+2 return corodict, index
31ffb2449e8f4b52478fa79197b10dfc96b76f4a
47,170
import requests def get_seed(pulse_url): """ Given a pulse url does a GET request to the Random UChile API to get the seed given by that pulse. :param pulse_url: String representing the URL of the pulse. :return: A 512-bit random string that can be used as seed by a pseudo random generator. """ response = requests.get(pulse_url) return response.json()['pulse']['outputValue']
411746e0768599ea6d3e4fc23a5efc7482a18373
47,171
def map_zero_one(A): """ Maps a given array to the interval [0,1] """ # return A # print("MI max and min ",A.max(),A.min()) A_std = (A - A.min())/(A.max()-A.min()) retval = A_std * (A.max() - A.min()) + A.min() return A_std # return softmax(A) # return torch.sigmoid(torch.Tensor(A)).numpy()
222e43212e1e6c1eab04f74db16cee2cd3b203b0
47,172
import re def _is_pattern_match(re_pattern, s): """Check if a re pattern expression matches an entire string.""" match = re.match(re_pattern, s, re.I) return match.group() == s if match else False
30b65a696c27b2141e50672775333642a1fb2b57
47,175
import torch def double_features(f: torch.Tensor) -> torch.Tensor: """Double feature vector as (A, B, C, D) --> (A, A, B, B, C, C, D, D) Args: f: Feature vectors (n_batch, n_features) Returns: f: Feature vectors (2*n_btach. n_features) """ return torch.repeat_interleave(f, 2, dim=0)
d7f1dca83d1933a7a550d3fadfbf2ff96fe79ad8
47,176
def flatten_dictionary(dictionary): """ Input: a request's JSON dictionary output with nested dictionary Output: a flattened dictionary (format: key1.key2 = value2) """ flattenedDictionary = dict() for key, value in dictionary.items(): if isinstance(value, dict): for subkey, subvalue in value.items(): flattenedDictionary[key + '.' + subkey] = subvalue else: flattenedDictionary[key] = value return flattenedDictionary
1ca7c9021360bc6c39fb1f3ba07794ac74831272
47,177
import torch def _to_real(x: torch.Tensor) -> torch.Tensor: """View complex tensor as real.""" x = torch.view_as_real(x) return x.view(*x.shape[:-2], -1)
8bb7b8db208bcfd433976236fa56ce42560b8adf
47,181
def compute_path_cost(nxobject, path): """ Compute cost of a path """ cost = 0 for index_station in range(len(path) - 1): cost += nxobject[path[index_station]][path[index_station + 1]]["weight"] return cost
01652396938f2431a0b8e077723e615680856e32
47,182
def parse_request(event): """ Parses the input api gateway event and returns the product id Expects the input event to contain the pathPatameters dict with the productId key/value pair :param event: api gateway event :return: a dict containing the productId key/value """ if 'pathParameters' not in event: raise Exception("Invalid event. Missing 'pathParameters'") path_parameters = event["pathParameters"] if 'productId' not in path_parameters: raise Exception("Invalid event. Missing 'productId' in 'pathParameters'") return { "product_id": path_parameters['productId'] }
1f56867c5a15ea602f92d2c08c3410cc690b392b
47,184
def listify(l): """Encapsulate l with list[] if not.""" return [l] if not isinstance(l, list) else l
f029b8df4f4442ec8e3f16f7c92ec59fe6338cce
47,185
def getContainerName(ctx, containerFlavor): """ Get name of the container for a specific flavor """ return getattr(ctx.cf.ocp.containers, containerFlavor).name
66baf4ab95b8a6a8a43fb70568140d46158b2e41
47,188
def check_image_in_supercell(site1, site2, supercell_size): """ Checks whether site1 and site2 are periodic images of each other in the super cell structure given the size of the super cell :param site1: (Site) site in super cell :param site2: (Site) site in super cell :param supercell_size: (integer) side length of super cell (in unit cells) :return: (boolean) whether site1 and site2 are periodic images of each other in the super cell """ is_image = False x1 = site1.frac_coords[0] x2 = site2.frac_coords[0] y1 = site1.frac_coords[1] y2 = site2.frac_coords[1] z1 = site1.frac_coords[2] z2 = site2.frac_coords[2] if round((x1 - x2) * supercell_size, 5).is_integer() and \ round((y1 - y2) * supercell_size, 5).is_integer() and \ round((z1 - z2) * supercell_size, 5).is_integer(): is_image = True return is_image
905ab373287586c34a6b19f23c5acdb91bc821d7
47,191
def formatAbn(abn): """Formats a string of numbers (no spaces) into an ABN.""" if len(abn)!=11: return abn return u'{0} {1} {2} {3}'.format(abn[0:2],abn[2:5],abn[5:8],abn[8:11])
2746c206ee5156fa7939ed11f04af1865824ef8c
47,193
def disjoint_bounds(bounds1, bounds2): """Returns True if bounds do not overlap Parameters ---------- bounds1: rasterio bounds tuple (xmin, ymin, xmax, ymax) bounds2: rasterio bounds tuple """ return (bounds1[0] > bounds2[2] or bounds1[2] < bounds2[0] or bounds1[1] > bounds2[3] or bounds1[3] < bounds2[1])
866162f11f293609a07179b1b688ddc10157e72a
47,196
import codecs def encoding(argument): """ Verfies the encoding argument by lookup. (Directive option conversion function.) Raises ValueError for unknown encodings. """ try: codecs.lookup(argument) except LookupError: raise ValueError('unknown encoding: "%s"' % argument) return argument
4563ab18821d22f8613c82227a9b6192080e95bb
47,202
def has_linear_regression(args): """Returns whether some kind of linear regression """ return args.linear_regression or args.linear_regressions or \ args.linear_regression_tag
459679a4489f30ee96496c1086e413441119f686
47,208
def _is_spark_step_type(step_type): """Does the given step type indicate that it uses Spark?""" return step_type.split('_')[0] == 'spark'
31d367c44f1a856e21c25f03e78a4eab48fc3af8
47,211
def is_message(line, msg_number): """Return 'True' if 'line' contains the message identified by 'msg_number'. Parameters ---------- line: A single line from the NEST CI build log file. msg_number: Message number string. Returns ------- True or False """ if msg_number in line: return True return False
d1290a8b2e13955f2dcb6d59576d032c8f499165
47,212
def _clean_header_str(value: bytes) -> str: """Null-terminates, strips, and removes trailing underscores.""" return value.split(b'\x00')[0].decode().strip().rstrip('_')
e5776a36eeb36320aec8085f094d6d00f3c3a718
47,213
def binData(data, new_shape): """bin time-series. Parameters ----------- data : nd array time-series (numTrials * time-points). new_shape : 1d array [numTrials, numBin] Returns ------- binned_data : nd array binned time-series (numTrials * numBin). """ shape = (new_shape[0], data.shape[0] // new_shape[0], new_shape[1], data.shape[1] // new_shape[1]) binned_data = data.reshape(shape).sum(-1).sum(1) return binned_data
1f27c77a695404c516aa19dc94d0d60ca6d455cd
47,216
def compose_batch_command_of_script( source, destination, script, particle, wait_jobs, suffix ): """ Creates the slurm command of the 'cmd' script Parameters ---------- source: str Source directory destination: str Destination directory script: str Script to be used in the slurm command. Either 'lstmcpipe_utils_move_dir' or 'lstmcpipe_utils_cp_config' particle: str Particle type for slurm job-naming suffix: str Suffix to indicate the kind of job wait_jobs: str Job-id to be used as dependency in the batched slurm command Returns ------- batch_cmd: str Full slurm batch command ready to batched the script argument """ cmd = f"{script} -s {source} -d {destination}" jobe = f"slurm-{particle}_{suffix}.e" jobo = f"slurm-{particle}_{suffix}.o" batch_cmd = ( f"sbatch --parsable -p short -J {particle}_{suffix} -e {jobe} -o {jobo} " f'--dependency=afterok:{wait_jobs} --wrap="{cmd}"' ) return batch_cmd
aa5ed37eeb0a75da60ea2c2100ba5bc3f02503f5
47,219
def check_greenlist_positions(curword: str, grn: list) -> bool: """ Checks the greenlist positions to ensure every word has a green letter in the correct positions :param curword: The current word from the word pool :param grn: Array representing the correct letters :return: Bool -false if the word does not contain green letters, true otherwise """ for i in range(5): # Checks if a letter has been guessed and then if the word matches the correct guess if grn[i] != "0" and curword[i] != grn[i]: return False return True
aad1e8267fd77134c9408c28724f6077f58ae984
47,221
def find_klt_for_frame(klt, klt_frames, i): """ Finds all KLT tracks appearing in a given frame """ if not i in klt_frames: return [] ids = klt_frames[i] klt_this = [klt[x] for x in ids] return klt_this
108e0dc926ed175d8e5bde1bdceb7c7ed038571b
47,222
import math def translate_point(point, angle, distance): """Translate a point a distance in a direction (angle).""" x, y = point return (x + math.cos(angle) * distance, y + math.sin(angle) * distance)
a32c4209cad97fc670c18acb47c27ec7fbc8bc5c
47,228
import collections def decode_attribute_idx_data(submissions): """Return a list of dicts representing the decoded data. Some of the form data returned from MTurk is encoded as ``"attribute-idx": value`` mappings, where attribute represents the attribute encoded and idx is the index of the problem instance. This function takes a list of dictionaries in the attribute-idx style and decodes them into the individual problem instances. Parameters ---------- submissions : List[Dist[str, str]] The data to decode. Each submission must be formatted in the attribute-idx style. Returns ------- List[Dist[str, str]] A list of dictionaries with each instance separated out individually. """ rows = [] for submission in submissions: idx_to_row = collections.defaultdict(dict) for k, v in submission.items(): attribute, idx = k.rsplit('-', 1) idx_to_row[idx][attribute] = v rows.extend(idx_to_row.values()) return rows
3a1853e18e1038e9c0891ad684b39c916e26fade
47,232
def get_index_with_default(header, column_name, default_value=None): """Helper function to extract the index of a column.""" return header.index(column_name) if column_name in header else default_value
0a2fefc8def6e6d91c4852d42da0db5ca4813a8c
47,233
import torch def get_optimal_reference_mic( bf_mat: torch.Tensor, target_scm: torch.Tensor, noise_scm: torch.Tensor, eps: float = 1e-6, ): """Compute the optimal reference mic given the a posteriori SNR, see [1]. Args: bf_mat: (batch, freq, mics, mics) target_scm (torch.ComplexTensor): (batch, freqs, mics, mics) noise_scm (torch.ComplexTensor): (batch, freqs, mics, mics) eps: value to clip the denominator. Returns: torch. References Erdogan et al. 2016: "Improved MVDR beamforming using single-channel maskprediction networks" https://www.merl.com/publications/docs/TR2016-072.pdf """ den = torch.clamp( torch.einsum("...flm,...fln,...fnm->...m", bf_mat.conj(), noise_scm, bf_mat).real, min=eps ) snr_post = ( torch.einsum("...flm,...fln,...fnm->...m", bf_mat.conj(), target_scm, bf_mat).real / den ) assert torch.all(torch.isfinite(snr_post)), snr_post return torch.argmax(snr_post, dim=-1)
16f2c7b5b91987e487c8643b61628c2e8ea5f9d4
47,237
import torch def _get_model_analysis_input(cfg, use_train_input): """ Return a dummy input for model analysis with batch size 1. The input is used for analyzing the model (counting flops and activations etc.). Args: cfg (Config): the global config object. use_train_input (bool): if True, return the input for training. Otherwise, return the input for testing. Returns: Args: the input for model analysis. """ rgb_dimension = 3 if use_train_input: input_tensors = torch.rand( rgb_dimension, cfg.DATA.NUM_INPUT_FRAMES, cfg.DATA.TRAIN_CROP_SIZE, cfg.DATA.TRAIN_CROP_SIZE, ) else: input_tensors = torch.rand( rgb_dimension, cfg.DATA.NUM_INPUT_FRAMES, cfg.DATA.TEST_CROP_SIZE, cfg.DATA.TEST_CROP_SIZE, ) model_inputs = input_tensors.unsqueeze(0) if cfg.NUM_GPUS: model_inputs = model_inputs.cuda(non_blocking=True) inputs = {"video": model_inputs} return inputs
6a6b85e11182001a2596acda9bfbdbf3616311b8
47,242
import difflib def diff(s1, s2): """Compute the difference betweeen two strings normalized by the length of the longest of the two strings""" longest = max((s1, s2), key=len) return sum(d[0] != ' ' for d in difflib.ndiff(s1, s2)) / len(longest)
6ce40f4b470f3a1062037ff31269ffd699dd4251
47,246
from typing import List from typing import Tuple def parse_data(file_name: str) -> List[List[Tuple[int, int]]]: """ Read data from a file and save it into a nested list. Nested lists consists of two coordinates - 2 tuples, each with 2 digits. Eg. line 0,9 -> 5,9 will produce [ [ (0, 9), (5, 9) ] ] Args: file_name (str): name of file in folder / or absolute path Returns: List[List[Tuple[int, int]]]: a nested list of coordinates """ list_of_coordinates: list = [] with open(file_name, encoding="utf-8") as f: for line in f: el1, el2 = line.rstrip().split("->") el1 = tuple(map(int, el1.split(","))) el2 = tuple(map(int, el2.split(","))) list_of_coordinates.append([el1, el2]) return list_of_coordinates
a0dfafe9ab0081a85005db7caf31fd460fb0b221
47,247
import time def blockingCalculation(a, b): """ Returns a*b, slowly. This is an example of a function that blocks. Note that it has no special decorations -- this could just as easily be a standard python disk or network function. But time.sleep is enough. """ time.sleep(2.) # thinking... return a*b
b385880016583e3a022de48f1bbb0ae32bd5dd76
47,250
from pathlib import Path from textwrap import dedent def _default_config(config_dir=None): """Default configuration Python file, with a plugin placeholder.""" if not config_dir: # pragma: no cover config_dir = Path.home() / '.phy' path = config_dir / 'plugins' return dedent(""" # You can also put your plugins in ~/.phy/plugins/. from phy import IPlugin # Plugin example: # # class MyPlugin(IPlugin): # def attach_to_cli(self, cli): # # you can create phy subcommands here with click # pass c = get_config() c.Plugins.dirs = [r'{}'] """.format(path))
bfce2eda98682734d9295e5a491c2946062d5f0e
47,255
import re def find_failing_lines(exception_message): """ Parse which line is failing and return the line numbers """ failing_lines = [] key = re.compile(br'\d+\:\d+', re.IGNORECASE) for line in exception_message.splitlines(): numbers = key.findall(line) if numbers: idxs = re.findall(br'\d+', numbers[0]) failing_lines.append(int(idxs[1])) return failing_lines
eb865d50ebbbf85a7ab8dd8bf0ff362574842741
47,256
def _totalWords(dataset, index): """ Given a dataset, compute the total number of words at the given index. GIVEN: dataset (list) list of lists, where each sublist is a document index (int) index in dataset to count words RETURN: total_words (int) total number of words in the dataset """ total_words = 0 for d in dataset: words = d[index].split(" ") total_words += len(words) return total_words
10ad7f04da68310a5c0321c62203e6fc1a6e8cc7
47,258
def GetDeferGroups(env): """Returns the dict of defer groups from the root defer environment. Args: env: Environment context. Returns: The dict of defer groups from the root defer environment. """ return env.GetDeferRoot()['_DEFER_GROUPS']
d623ada67c1e49e00a678ce26f97b53f579c4379
47,260
import functools def gen_to_list(func): """ Transforms a function that would return a generator into a function that returns a list of the generated values, ergo, do not use this decorator with infinite generators. """ @functools.wraps(func) def inner(*args, **kwargs): return list(func(*args, **kwargs)) return inner
20c606bf73d97ff6a3d9e8a6b139cdca9c2bb8fa
47,262
def objects_init_params(fake_request): """Init parameters for Icinga2Objects.""" return { "results": ({"name": "objectname", "type": "Objecttype", "attrs": {"state": 1, "host_name": "Hostname"}}, ), "request": fake_request }
5087f66e1041b1f3dee28dcd09532db58240a484
47,268
def calcUserMeanRating(userRatingGroup): """ Calculate the average rating of a user """ userID = userRatingGroup[0] ratingSum = 0.0 ratingCnt = len(userRatingGroup[1]) if ratingCnt == 0: return (userID, 0.0) for item in userRatingGroup[1]: ratingSum += item[1] return (userID, 1.0 * ratingSum / ratingCnt)
9a8a292b5a464d23aabfa4a73e631049546f2ff2
47,271
def subset(ds, X=None, Y=None): """Subset model output horizontally using isel, properly accounting for horizontal grids. Inputs ------ ds: xarray Dataset Dataset of ROMS model output. Assumes that full regular grid setup is available and has been read in using xroms so that dimension names have been updated. X: slice, optional Slice in X dimension using form `X=slice(start, stop, step)`. For example, >>> X=slice(20,40,2) Indices are used for rho grid, and psi grid is reduced accordingly. Y: slice, optional Slice in Y dimension using form `Y=slice(start, stop, step)`. For example, >>> Y=slice(20,40,2) Indices are used for rho grid, and psi grid is reduced accordingly. Returns ------- Dataset with form as if model had been run at the subsetted size. That is, the outermost cells of the rho grid are like ghost cells and the psi grid is one inward from this size in each direction. Notes ----- X and Y must be slices, not single numbers. Example usage ------------- Subset only in Y direction: >>> xroms.subset(ds, Y=slice(50,100)) Subset in X and Y: >>> xroms.subset(ds, X=slice(20,40), Y=slice(50,100)) """ if X is not None: assert isinstance(X, slice), "X must be a slice, e.g., slice(50,100)" ds = ds.isel(xi_rho=X, xi_u=slice(X.start, X.stop - 1)) if Y is not None: assert isinstance(Y, slice), "Y must be a slice, e.g., slice(50,100)" ds = ds.isel(eta_rho=Y, eta_v=slice(Y.start, Y.stop - 1)) return ds
eb454aad6a344ac76defd1a7314e52c1d948422f
47,276
def contains_sep(name): """ Test if name contains a mode name, e.g. TEM, ITG, ETG""" return any(sub in name for sub in ["TEM", "ITG", "ETG"])
414497454191394783dec87e772fd5f7f0e3b717
47,280
def get_smallest_divs(soup): """Return the smallest (i.e. innermost, un-nested) `div` HTML tags.""" return [ div for div in soup.find_all("div") if not div.find("div") and div.text.strip() ]
f3181c7f3cd5b4c82f060780e23dcf34028316e8
47,281
def get_dict_values(dicts, keys, return_dict=False): """Get values from `dicts` specified by `keys`. When `return_dict` is True, return values are in dictionary format. Parameters ---------- dicts : dict keys : list return_dict : bool Returns ------- dict or list Examples -------- >>> get_dict_values({"a":1,"b":2,"c":3}, ["b"]) [2] >>> get_dict_values({"a":1,"b":2,"c":3}, ["b", "d"], True) {'b': 2} """ new_dicts = dict((key, dicts[key]) for key in keys if key in list(dicts.keys())) if return_dict is False: return list(new_dicts.values()) return new_dicts
f965fc1593381f771ba0a2bebc525bc8b11c3815
47,282
import json def load_metadata(metadata_path: str='/autograder/submission_metadata.json'): """Load JSON data from metadata file.""" return json.load(open(metadata_path))
f0f55c530bff130c95c5d119a659339795682e13
47,288
from datetime import datetime def datetimefstr(dtime_list, dtformat): """ converts a datetime (as one or several string elements of a list) to a datetimeobject removes "used" elements of list :returns: a datetime :rtype: datetime.datetime """ parts = dtformat.count(' ') + 1 dtstring = ' '.join(dtime_list[0:parts]) dtstart = datetime.strptime(dtstring, dtformat) for _ in range(parts): dtime_list.pop(0) return dtstart
d13ec79fa279a90b31b3a5679c8e2b6854a5c56c
47,289
def first_non_null(*args): """return the first non null value in the arguments supplied""" for x in args: if x != '': return x return ''
1169be1c179b7e4b0c753e4202045aa7b9a0d5c4
47,292
def limit_vector(vector, bottom_limit, upper_limit): """ This function cut the a vector to keep only the values between the bottom_limit and the upper_limit. Parameters ---------- vector : list The vector that will be cut upper_limit : float The maximum value of the vector. bottom_limit : float The minimum value of the vector Returns ------- vector : iterable The limited vector """ temp = [] for x in vector: if bottom_limit <= x <= upper_limit: temp.append(x) return temp
5c520f09e6caac08461cd6add911ea69a12afa72
47,293
import json def xml_to_json(element, tag, prefix=''): """Converts a layer of xml to a json string. Handles multiple instances of the specified tag and any schema prefix which they may have. Args: element (:obj:`xml.etree.ElementTree.Element`): xml element containing the data tag (str): target tag prefix (str): schema prefix on the name of the tag Returns: (str): json of the original object with the supplied tag as the key and a list of all instances of this tag as the value. """ tag = ''.join([prefix, tag]) all_data = [{field.tag[len(prefix):]: field.text for field in fields.getiterator() if field.tag != tag} for fields in element.getiterator(tag)] return json.dumps(all_data)
ef28c257d2b2f974569b431ab10c8aa7a2e6ab7a
47,294
def _to_http_uri(s: str) -> str: """Prefix the string with 'http://' if there is no schema.""" if not s.startswith(('http://', 'https://')): return 'http://' + s return s
5ad67d12bbfbca13143dfbacd4ea96f53b9919e9
47,297
def _is_iterable(val): """ Checks if the input if an iterable. This function will return False if a string is passed due to its use in pmutt. Parameters ---------- val : iterable or non-iterable Value to check if iterable Returns ------- is_iterable : bool True if iterable. False if not iterable or string. """ if isinstance(val, str): return False else: # If it's not a string, check if it's iterable try: iter(val) except TypeError: return False else: return True
34f140c9bc6fce9f06f05c8b3a5aa1aabe3df840
47,300
def clean_locals(params): """ Clean up locals dict, remove empty and self params. :param params: locals dicts from a function. :type params: dict :returns: cleaned locals dict to use as params for functions :rtype: dict """ return dict((k, v) for k, v in params.items() if v is not None and k != 'self')
89ecf3376958bb191250397cc285a33028433fad
47,301
import random import pathlib def _random_name() -> str: """ Pick (hopefully unique) random name for a machine credit for the words_alpha.txt file https://github.com/dwyl/english-words """ name = random.choice( [word for word in open(pathlib.Path(__file__).parent / "words_alpha.txt")] )[:-1] return name
49af36e5443496ce1c017709e38016d9de78a4ae
47,309
def dict_drop(my_dict, keys): """ You've guessed it right - returns a new dictionary with `keys` removed from `my_dict` """ if not isinstance(keys, (list, tuple)): # works for a few cases - a single string is wrapped into a list keys = [keys] return { k: v for k, v in my_dict.items() if k not in keys }
b51137581b826cf9042e432907d95ff2523742e5
47,310
def iterate_array(client, url, http_method='GET', limit=100, offset=0, params=None): """ Get a list of objects from the Podio API and provide a generator to iterate over these items. Use this for e.g. to read all the items of one app use: url = 'https://api.podio.com/comment/item/{}/'.format(item_id) for item in iterate_array(client, url, 'GET'): print(item) """ all_elements = [] if params is None: params = dict(limit=limit, offset=offset) else: params['limit'] = limit params['offset'] = offset do_requests = True while do_requests == True: if http_method == 'POST': api_resp = client.post(url, data=params) elif http_method == 'GET': api_resp = client.get(url, params=params) else: raise Exception("Method not supported.") if api_resp.status_code != 200: raise Exception('Podio API response was bad: {}'.format(api_resp.content)) resp = api_resp.json() num_entries = len(resp) if num_entries < limit or num_entries <= 0: do_requests = False params['offset'] += limit all_elements.extend(resp) # print(f"array of {len(all_elements)}") return all_elements
745e3209e5add0b0a8a64aea1878ac5b2897afb9
47,311
def get_appliance_info(tintri): """ Get Tintri Appliance details Args: tintri (obj): Tintri object Returns: appliance: Dict of apliance details """ appliance = {} info = tintri.get_appliance_info() product = None if tintri.is_vmstore(): product = 'Tintri VMstore' elif tintri.is_tgc(): product = 'Tintri Global Center' appliance['product'] = product appliance['model'] = info.get('modelName') return appliance
fd774fa1052ea1c24fbdc5ec86db498fd6d02a10
47,313
def lowest_pending_jobs(backends): """Returns the backend with lowest pending jobs.""" backends = filter(lambda x: x.status.get('available', False), backends) by_pending_jobs = sorted(backends, key=lambda x: x.status['pending_jobs']) return by_pending_jobs[0]
7c0d6fa2234247edde3657f08ca8dc95d4ebd1a7
47,316
def key_type(secret): """Return string value for keytype depending on passed secret bool. Possible values returned are: `secret`, `public`. .. Usage:: >>> key_type(secret=True) 'secret' >>> key_type(secret=False) 'public' """ return "secret" if secret else "public"
3f401b0f5ef3c95f6ee2ee6f1f81b9ee6ea0108d
47,319
def get_pad(shape, *, to): """Pad the shape to target size. Details ------- Tries to pad symmetrically, but leans towards the origin if odd padding is required. """ excess = [t - s for s, t in zip(shape, to)] assert all(e >= 0 for e in excess) # safegurad pad = [] # start from the last dimension and move forward (see `F.pad`) for exc in reversed(excess): div, mod = divmod(exc, 2) pad.extend((div, div + mod)) # divmod guarantees that div + (div + mod) == exc, so no safeguard here return pad
f019903d69e2a37ad0949f6eb1c06c3c1b6f0dbb
47,326
def get_auth_token(cloud, account, username, password, expected_status_code=None): """ Get auth token from user login :param cloud: Cloud API object :param account: Account id :param username: User id :param password: Password :param expected_status_code: Asserts the result in the function :return: Auth token """ r = cloud.iam.authenticate_user(account=account, username=username, password=password, expected_status_code=expected_status_code).json()['token'] return r
a39044b68c8f0d70fc93c17ac2d57023994a4b51
47,329
import re def format_text(text, max_len, prefix="", min_indent=None): """ Format a text in the biggest lines possible with the constraint of a maximum length and an indentation. Args: text (`str`): The text to format max_len (`int`): The maximum length per line to use prefix (`str`, *optional*, defaults to `""`): A prefix that will be added to the text. The prefix doesn't count toward the indent (like a - introducing a list). min_indent (`int`, *optional*): The minimum indent of the text. If not set, will default to the length of the `prefix`. Returns: `str`: The formatted text. """ text = re.sub(r"\s+", " ", text).strip() if min_indent is not None: if len(prefix) < min_indent: prefix = " " * (min_indent - len(prefix)) + prefix indent = " " * len(prefix) new_lines = [] words = text.split(" ") current_line = f"{prefix}{words[0]}" for word in words[1:]: try_line = f"{current_line} {word}" if len(try_line) > max_len: new_lines.append(current_line) current_line = f"{indent}{word}" else: current_line = try_line new_lines.append(current_line) return "\n".join(new_lines)
925f1075e5039dd876105c0a2e8e9b20e72af41d
47,331
import hashlib import json import base64 def hash_dict(obj): """ Hashes the json representation of obj using sha-256 to have almost certain uniqueness. @param obj: dict to be hashed @return: sha256 b64 encoded hash of the dict """ m = hashlib.sha256() s = json.dumps(obj, sort_keys=True) m.update(bytes(s, 'utf-8')) return base64.b64encode(m.digest()).decode('utf-8')
45628ec94d01e0aac6696b8d65627968754f7f4b
47,332
def determinant(tup): """Calculates the determinant of a tuple (m11, m12, m13, m21, m22, m23, m31, m32, m33) Args: tup (tuple of ints) Returns: det (int) """ m11, m12, m13, m21, m22, m23, m31, m32, m33 = tup det = m11 * m22 * m33 + m12 * m23 * m31 \ + m13 * m21 * m32 - m11 * m23 * m32 \ - m12 * m21 * m33 - m13 * m22 * m31 return det
4aadb49d7f9e10ad8d7134535aed29fb6864bcb7
47,338
def string_strip(lst): """ apply strip to each string in an iterable container of strings ARGS: lst (list): an iterable containing strings """ return([x.strip() for x in lst])
68b84f5fed2f903a0019042304da9b34b5e73aaf
47,339
def execute(opts, data, func, args, kwargs): """ Directly calls the given function with arguments """ return func(*args, **kwargs)
460d735b0259bf5dfd4b9ea5229b2495540cf2bf
47,343
def get_region_total_dispatch(m, region_id, trade_type): """ Compute total dispatch in a given region rounded to two decimal places """ total = sum(m.V_TRADER_TOTAL_OFFER[i, j].value for i, j in m.S_TRADER_OFFERS if (j == trade_type) and (m.P_TRADER_REGION[i] == region_id)) return total
7f98e830eb3a413be82cfd8d1410ceabcfd3b9f8
47,345
def fib(n): """ Returns the nth Fibonacci number. """ if n < 2: return n else: return fib(n-2) + fib(n-1)
ccbbab202e771d3344cd36b05cbb9a3565f43f78
47,346
import struct def _pack(keyparts): """ Pack parts into a SSH key blob. """ parts = [] for part in keyparts: parts.append(struct.pack('>I', len(part))) parts.append(part) return b''.join(parts)
3f9cb19a3ed46dd9204a2b88eeefccfb1eecb7f3
47,348
def clean_id(id): """ Return id with initial and final whitespace removed, and with any internal whitespace sequences replaced by a single blank. Also, all nonprintable characters are removed. """ id = id.strip() new_id = "" for c in id: if c.isspace(): c = " " if (c != " " or (len(new_id)>0 and new_id[-1] != " ")) \ and c.isprintable(): new_id += c return new_id
0c9f455033de258879bff5ad305539ff636e5389
47,349
def actions_side_effect(state): """ Side effect for actions, returns the actions available for a given state :param state: the current state :return: actions available for the given state """ match state: case "a": val = ["a1", "a2", "a3"] case "b": val = ["b1", "b2", "b3"] case "c": val = ["c1", "c2", "c3"] case "d": val = ["d1", "d2", "d3"] case _: val = [] # Cases e-m are leaves, so should have no possible actions return val
9361f4ac0be1d29f640387f03546fdc401bc1acc
47,356
import torch def gpu_device(gpu): """ Returns a device based on the passed parameters. Parameters ---------- gpu: bool or int If int, the returned device is the GPU with the specified ID. If False, the returned device is the CPU, if True, the returned device is given as the GPU with the highest amount of free memory. Returns ------- torch.device A PyTorch device. """ if isinstance(gpu, bool) and gpu: assert torch.cuda.is_available() return torch.device('cuda', 0) if isinstance(gpu, bool): return torch.device('cpu') assert gpu < torch.cuda.device_count() return torch.device('cuda', gpu)
bb17d30af82f1d90fbc7bad7d9486947d76468a1
47,359
import torch def torch_image_to_numpy(image_torch, inplace=False): """Convert PyTorch tensor to Numpy array. :param image_torch: PyTorch float CHW Tensor in range [0..1]. :param inplace: modify the tensor in-place. :returns: Numpy uint8 HWC array in range [0..255].""" if not inplace: image_torch = image_torch.clone() return image_torch.mul_(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to('cpu', torch.uint8).numpy()
1eb788a01c0052315f8f9adaa688502080470a38
47,361
def _strip_tweet_hashtags(status_text: str) -> str: """Strip out words from tweet that are hashtags (ie. begin with a #).""" text_split = [word for word in status_text.split() if not word.startswith("#")] text = " ".join(text_split) return text
f359071115b12b1d8ad54aba39a838d3ee207ae7
47,363
def apply_to_feature(feature_df,groupby_func_name=None,function=None): """ Apply a function to the entries for each feature. feature_df ... dataframe with index (chrom, feature_name, pos) (Such as the output of data_per_feature()) groupby_func_name ... name of the function of the groupby object to apply to the data This is faster than applying a function object. function ... alternatively: function object to apply """ groups = feature_df.groupby(lambda idx: idx[1]) if groupby_func_name is not None: return getattr(groups,groupby_func_name)() elif function is not None: return groups.apply(function) else: raise ValueError("Either groupby_func_name or function have to be given.")
4457641597303e2b422f84840c6e6fd2446b9c74
47,366
def getPrecedence(operator): """ Returns the precedence for operators for use in toReversePolish(), where high numbers represent greater precedence :param operator: operator token data :return: number representing the precedence of the given operator """ if operator == "^": return 3 elif operator in ["*","/"]: return 2 elif operator in ["+","-"]: return 1
44532c6bec002aea1596219b78ec029955db0694
47,367
def import_from_string(path): """ Utility function to dynamically load a class specified by a string, e.g. 'path.to.my.Class'. """ module_name, klass = path.rsplit('.', 1) module = __import__(module_name, fromlist=[klass]) return getattr(module, klass)
234799abfcaebf7cceb679168d436ae7596a2d30
47,371
import time def _format_time(epoch_time, format_string="%Y-%m-%d %H:%M:%S"): """Return a formatted representation of an epoch timestmap""" return time.strftime(format_string, time.localtime(epoch_time))
e04fa89ac516633282416e14e2327f8fae2c7b36
47,376
def if_none(value, default): """ Returns value or default if value is None. """ if (value is None): return default return value
7c7e83c2c633ae809a2b1a75a6e16fc7fee3eb21
47,377
def rtimport(name): """Imports a module, even within a package (via the 'package.module' naming convention, and returns a reference to the module (or object within a module!). Can raise the ImportError exception.""" # This can raise ImportError obj = __import__(name) components = name.split('.') for comp in components[1:]: try: obj = getattr(obj, comp) except AttributeError: raise ImportError return obj
a447af189af00d2bcdb8340fab3a0d6cb6e22aa0
47,383
import typing import importlib def import_object(path: str, default=None) -> typing.Any: """Import object from path. Paths have the format ``module_path:object_path``. The ``default`` value is returned when ``path`` is ``None``. This is a convenience for passing in settings that may be ``None``. Examples:: >>> import_object('dijkstar.graph:Graph') <class 'dijkstar.graph.Graph'> >>> import_object('dijkstar.graph:Graph.load') <bound method Graph.load of <class 'dijkstar.graph.Graph'>> """ if path is None: return default module_path, object_path = path.split(":") module = importlib.import_module(module_path) names = object_path.split(".") obj = module for name in names: obj = getattr(obj, name) return obj
9c53a0616581a5958bad4b94d42cfe363e413cf8
47,385
from typing import Iterable def get_entropy(prob_list: Iterable[float], info_list: Iterable[float]): """get entropy from list of probability of events and their information""" return sum(p * i for p, i in zip(prob_list, info_list))
6b3feb37d944e6fc3e971a38e4d91cf13c4f6e5d
47,390
def make_zero_based_midi(defs): """ The official MIDI spec is 1 based (why???), but clearly most things are 0 based. So this function shifts all of the program numbers down by one and keeps 0 as piano. :param defs: :return: """ for k, v in defs.items(): pgms = [max(i - 1, 0) for i in v['program_numbers']] defs[k]['program_numbers'] = pgms return defs
305b6e6b48b116a8d86ec02036a1218d8a88070d
47,392
def get_distribution_names(namespace_pairs, rv_base_class): """ Collect names of statistical distributions and their generators. Parameters ---------- namespace_pairs : sequence A snapshot of (name, value) pairs in the namespace of a module. rv_base_class : class The base class of random variable generator classes in a module. Returns ------- distn_names : list of strings Names of the statistical distributions. distn_gen_names : list of strings Names of the generators of the statistical distributions. Note that these are not simply the names of the statistical distributions, with a _gen suffix added. """ distn_names = [] distn_gen_names = [] for name, value in namespace_pairs: if name.startswith('_'): continue if name.endswith('_gen') and issubclass(value, rv_base_class): distn_gen_names.append(name) if isinstance(value, rv_base_class): distn_names.append(name) return distn_names, distn_gen_names
a4b4f09c4629417951a90eb2737121eefeaa44fb
47,393
def clamp(n, vmin, vmax): """Computes the value of the first specified argument clamped to a range defined by the second and third specified arguments :param n: input Value :param vmin: MiniMum Value :param vmax: Maximum Value :returns: The clamped value of n """ return max(min(n, vmax), vmin)
e46ba82598b5f5cb8bad1233edee576ead0c3fd8
47,394
def walsh_iob_curve(t, insulin_action_duration): """Returns the fraction of a single insulin dosage remaining at the specified number of minutes after delivery; also known as Insulin On Board (IOB). This is a Walsh IOB curve, and is based on an algorithm that first appeared in GlucoDyn See: https://github.com/kenstack/GlucoDyn :param t: time in minutes since the dose began :type t: float :param insulin_action_duration: The duration of insulin action (DIA) of the patient, in minutes :type insulin_action_duration: int :return: The fraction of a insulin dosage remaining at the specified time :rtype: float """ # assert insulin_action_duration in (3 * 60, 4 * 60, 5 * 60, 6 * 60) iob = 0 if t >= insulin_action_duration: iob = 0.0 elif t <= 0: iob = 1.0 elif insulin_action_duration == 180: iob = -3.2030e-9 * (t**4) + 1.354e-6 * (t**3) - 1.759e-4 * (t**2) + 9.255e-4 * t + 0.99951 elif insulin_action_duration == 240: iob = -3.310e-10 * (t**4) + 2.530e-7 * (t**3) - 5.510e-5 * (t**2) - 9.086e-4 * t + 0.99950 elif insulin_action_duration == 300: iob = -2.950e-10 * (t**4) + 2.320e-7 * (t**3) - 5.550e-5 * (t**2) + 4.490e-4 * t + 0.99300 elif insulin_action_duration == 360: iob = -1.493e-10 * (t**4) + 1.413e-7 * (t**3) - 4.095e-5 * (t**2) + 6.365e-4 * t + 0.99700 return iob
8879243950d60805445518e4caa89edb5954d7d0
47,396
def estimate_mean(sample, values, weights=None): """ estimate_mean(sample, values, weights=None) Based on a sample, estimate and return the average value over all existing items. Parameters ---------- sample: - a sample of items (iterable) values: - function: item -> value weights: - function: item -> sampling_weight of this item """ if weights==None: # uniform sample weights = lambda x: 1 up = down = 0. for v in sample: up += 1.*values(v)/weights(v) down += 1./weights(v) return up/down
ca6a18d58b5c4d96cf67364244cdf84a54e96236
47,397
import base64 def base64_decode(content): """ base64解码 :param content: base64文本 :return: 解码后的字符串 """ return base64.b64decode(content).decode('utf8')
5712d69af1ac0c18a13135de7c765abde711b6a1
47,400
def _sortByCreated(a, b): """Sort function for object by created date""" if a.created < b.created: return 1 elif a.created > b.created: return -1 else: return 0
e1a33ffaacc51ea3936f2b0824b11b8639718f85
47,401
def get_iterable(in_dict, in_key): """ Similar to <dict>.get(), but if value is None, False, ..., An empty tuple is returned instead :param in_dict: a dictionary :param in_key: the key to look for at in_dict :return: in_dict[in_var] or () if it is None or not present """ if not in_dict.get(in_key): return () return in_dict[in_key]
95f9dde329ea301e8bd68105d543f0d00e563bcd
47,403
def get_package_version(package): """ Return the version number of a Python package as a list of integers e.g., 1.7.2 will return [1, 7, 2] """ return [int(num) for num in package.__version__.split('.')]
682eb4ffdba67d189997ceb629b06cb1ccb2a437
47,404
def getItemNames(fullname): """Split a fullname in the 3 parts that compose it Args: fullname(str): Fullname Returns: tuple with the names of each item in the hierarchy or None for the items that are not present """ n = fullname.split(':') if len(n) == 1: return n[0], None, None if len(n) == 2: return n[0], n[1], None if len(n) == 3: return n[0], n[1], n[2] return None, None, None
949701e821eb4659e53131b0b61fa2ea248738a2
47,406
def train_test_split(windows, labels, size=.2): """ Splits windows and labels into train and test splits. """ split_size = int(len(windows) * (1-size)) window_train = windows[:split_size] window_test = windows[split_size:] label_train = windows[:split_size] label_test = windows[split_size:] return window_train, window_test, label_train, label_test
0ec24566e09db53860afd1e628ec66385e7ce4a3
47,408
def options(cdiv=False, inline=False): """Set behavioural options which affect the generated code. :param cdiv: Set ``True`` to match C behaviour when performing integer division. :param inline: Set ``True`` to always inline the function. """ def wrapper(decl): decl.options.update(cdiv=cdiv, inline=inline) return decl return wrapper
c5647b3b83d04cea8f41bb9cdba0e3faf34e99dc
47,416
def is_fits(string): """ Boolean function to test if the extension of the filename provided is either .fits or .fit (upper- or lowercase). Parameters ---------- string: str (path to) filename to test Returns ------- bool """ string = string.upper() return string.endswith(".FITS") or string.endswith(".FIT")
2c31363998a7cde559f6702af03bfea68213edca
47,417
def image_check(name: str): """ A function that checks the string end for image file suffix. Args: name (str): the string to test the suffix for Returns: True: if the suffix suffix contains image extension False; if the string suffix does not contain image extension """ name = name.lower() checks = [".jpg", ".png", ".jpeg", ".gif", ".webp"] for i in checks: if name.endswith(i): return True return False
378ab09b17a69dd729b9076d8a3b4882fe86381e
47,422
def format_version(v): """ Return a PEP 440-compliant version number from VERSION. Using "major.minor.micro" versioning. """ version = f'{v[0]}.{v[1]}.{v[2]}' return version
27d0d266f1b109ebfffc86d80b78095757030542
47,428
import colorsys def class_specific_color(class_id, bright=True): """ Generate class specific color. """ brightness = 1.0 if bright else 0.7 hsv = (class_id / 20, 1, brightness) color = colorsys.hsv_to_rgb(*hsv) return color
eb7f3c0b9aef6e9256fa08a87b46ec3b762752bf
47,430
def get_fp_color(n, col_set=1): """ Get the color of a fixed point given the number of unstable modes Arguments: n (int): number of unstable modes col_set (int): which colors set to use Returns: color (str) """ if n == 0: color = "seagreen" if col_set == 1 else "lightseagreen" elif n == 1: color = "salmon" if col_set == 1 else "lightsalmon" elif n == 2: color = "skyblue" if col_set == 1 else "deepskyblue" else: color = "magenta" if col_set == 1 else "purple" return color
5f32d2a04edaa7a4534da654eb223132d2fec3fb
47,432
from typing import Any def is_sdense(x: Any) -> bool: """check if an object is an `SDense` (a SAX dense S-matrix representation)""" return isinstance(x, (tuple, list)) and len(x) == 2
05069ee65d1485fabf246f0bf1c3fc276d6a4d07
47,438