content
stringlengths
39
9.28k
sha1
stringlengths
40
40
id
int64
8
710k
def export_python_string(earth_model, function_name="model"): """ Exports model as a string that evaluates as python code, with no numpy/scipy/sklearn dependencies. :param earth_model: Trained pyearth model :param function_name: string, optional, will be the name of the function in the returned string :return: string, when executed (either by writing to a file, or using `exec`, will define a python function that accepts an iterator over examples, and returns an iterator over transformed examples """ i = 0 accessors = [] for bf in earth_model.basis_: if not bf.is_pruned(): accessors.append(bf.func_string_factory(earth_model.coef_[0, i])) i += 1 return """def {:s}(example_iterator): accessors = [{:s}] for x in example_iterator: yield sum(accessor(x) for accessor in accessors) """.format(function_name, ",\n\t\t".join(accessors))
46a80ab1bc16dbf049dd4289509b7fca2235e7cb
282,209
import re def clean(string): """Clean string Cleans a string to be a valid Python variable name. It replaces all invalid characters with an underscore. Arguments: string {str} -- string to be formatted Returns: str -- formatted string """ string = re.sub('\W|^(?=\d)', '_', string).lower() return string
3be5fabaa774e332f618d81a9a652904061b8115
592,598
import re def parse_braces(sequence): """ Replace all occurrences of ``x{n}`` (where x is any character) with n occurrences of x. Raise ValueError if the expression cannot be parsed. >>> parse_braces('TGA{5}CT') TGAAAAACT """ # Simple DFA with four states, encoded in prev result = '' prev = None for s in re.split('(\{|\})', sequence): if s == '': continue if prev is None: if s == '{': raise ValueError('"{" must be used after a character') if s == '}': raise ValueError('"}" cannot be used here') prev = s result += s elif prev == '{': prev = int(s) if not 0 <= prev <= 10000: raise ValueError('Value {} invalid'.format(prev)) elif isinstance(prev, int): if s != '}': raise ValueError('"}" expected') result = result[:-1] + result[-1] * prev prev = None else: if s != '{': raise ValueError('Expected "{"') prev = '{' # Check if we are in a non-terminating state if isinstance(prev, int) or prev == '{': raise ValueError("Unterminated expression") return result
0d1c5de475f311f02109f92cdbb5522c29be26bd
447,254
import time def timestamp_dir(when=None): """ Returns a directory named after the specified time or the current time, if no specific time is given """ if when is None: when = time.time() return time.strftime("%Y%m%d_%H%M%S", time.localtime(when))
668d08b701ce82c1bc27d5bfe45f3224709d91de
457,991
def points_from_columns(xs): """ Takes a list of rows and converts it into a list of columns. For example, xs = [[1, 2, 3], [4, 5, 6], [1], [2, 4]] will return x = [[1, 4, 1, 2], [2, 5, 4], [3, 6]] xs: list of rows (lists). returns: list of columns (lists). """ x = [] for row in xs: while len(x) < len(row): x.append([]) for i in range(len(row)): x[i].append(row[i]) return x
190a9e7d2d7f439a4a8c918bf5e7fa43d3960b95
502,530
def l2_norm(x): """ Calculates the l2 norm of the input tensor. Args: x: tensor, any shape tensor to take the l2 norm of. Returns: float, l2 norm of the input """ return x.view(-1).dot(x.view(-1))
beba8abb86b49a95259de6bcef6286617276de6f
615,103
def test_nan(dataframe): """ Test if dataframe contains nan value Parameters ---------- dataframe: pandas dataframe Raises ------ ValueError If contains nan, raise ValueError Returns ------- is_valid: boolean True if did not contain nan, False if contain """ is_valid = True for i in range(len(dataframe.columns)): if dataframe.isnull().any()[i] == True: is_valid = False raise ValueError("values contain nan") return is_valid
1dcc96521fbbff2f95d7e4395367f50882c3b96b
648,477
import time def most_recent_planet(tree): """Returns planet node that has most recent update date. :param tree: lxml etree :returns: lxml etree """ updates = tree.findall('.//lastupdate') update_time = [time.strptime(date.text,'%y/%m/%d') for date in updates] planet = updates[update_time.index(max(update_time))].getparent() return planet
5fa5c5ae45c18b1b44231ce2b3b56b14579ae8f4
398,608
def is_zero_length(quat): """Checks if a quaternion is zero length. :param numpy.array quat: The quaternion to check. :rtype: boolean. :return: True if the quaternion is zero length, otherwise False. """ return quat[0] == quat[1] == quat[2] == quat[3] == 0.0
86f09ce7fbf5700d85fbf4db3b754026fd250ccc
236,260
def join_regexes(regexes): """ Utility function, takes in a list of regexes and outputs their OR """ result = r'' for reg in regexes: result = result + '(' result = result + reg result = result + ')|' return result[:-1]
40c6c1b1fcdbaba8fd13043244165c84aa8b0f3c
247,893
def strip_query(url): """Remove query string from a url""" return url.split('?', 1)[0]
34fe61cde242aef09495d4bbc384d68d3961e103
587,345
def point_avg(points): """ Accepts a list of points, each with the same number of dimensions. NB. points can have more dimensions than 2 Returns a new point which is the center of all the points. """ dimensions = len(points[0]) new_center = [] for dimension in range(dimensions): dim_sum = 0 # dimension sum for p in points: dim_sum += p[dimension] # average of each dimension new_center.append(dim_sum / float(len(points))) return new_center
ac82a036ce5b6fdea0e8c842fba065acd16160a4
686,480
from functools import reduce def fact2(n): """Compute the double factorial as in https://stackoverflow.com/a/4740229/3249688 """ return reduce(int.__mul__, range(n, 0, -2), 1)
b6362fcdf86748a2d666c41eaf091656b3d061d7
256,178
def slice_length(orange): """ Returns the length of the index corresponding to a slice. For example, slice(0,4,2) has a length of two. This is used by some of the methods in message.py. """ t = type(orange) if t is slice: if orange.step: return int((orange.stop-orange.start)/orange.step) # This will also work for negative steps else: # Step size is 1 by default return orange.stop - orange.start else: return len(orange)
c66fea06c712bc3b417f0dcf55883bd6f4590c2f
453,786
def __get_midi_csv(midi_strings): """split comma seperated strings into csv file Arguments: midi_strings {list} -- list of comma separated strings Returns: csv -- midi data in csv format """ midi_csv = [] for row in midi_strings: midi_data = row.split(",") midi_csv.append(midi_data) return midi_csv
c1a23dc13c566dee43d254389061159852da2be8
285,949
def _k_mer_to_index(k_mer): """Converts a k-mer to its numerical index. Args: k_mer (str): The :math:`k`-mer to convert. Returns: int: The index of the :math:`k`-mer. Examples: >>> _k_mer_to_index("A") 0 >>> _k_mer_to_index("T") 3 >>> _k_mer_to_index("TT") 15 >>> _k_mer_to_index("TTT") 63 """ result = 0 for base in k_mer: result = result * 4 + ["A", "C", "G", "T"].index(base) return result
ad5d51284c8e5382fbb856ec760ac3fc9a48380c
306,897
def update_dict(dict_, **kwargs): """Add keys to a new dictionary. Args: dict_: the dictionary to add to kwargs: the key, value pairs to add Returns: a new dictionary """ return dict(list(dict_.items()) + list(kwargs.items()))
ce0c2b5a11552e4008491398a6b862d36a295e83
342,043
def convert_byte_dict_to_str_dict(inp: dict) -> dict: """ Convert dictionaries with keys and values as bytes to strings Args: inp: Dictionary with key and values in bytes Returns: Dictionary with key and value as string """ new_dict = dict() for k, v in inp.items(): new_dict[k.decode()] = str(v.decode()) return new_dict
8f91945d108bb9cabd4ac1ba1bc109fd7b43f097
123,590
from typing import Optional def injection_file_name( science_case: str, num_injs_per_redshift_bin: int, task_id: Optional[int] = None ) -> str: """Returns the file name for the raw injection data without path. Args: science_case: Science case. num_injs_per_redshift_bin: Number of injections per redshift major bin. task_id: Task ID. """ file_name = f"injections_SCI-CASE_{science_case}_INJS-PER-ZBIN_{num_injs_per_redshift_bin}.npy" if task_id is not None: file_name = file_name.replace(".npy", f"_TASK_{task_id}.npy") return file_name
57b034b6a60c317f0c071c1313d0d99f2802db30
704,717
def collection_image_location(instance, filename): """Return the location of a stored media file for a Workflow Collection.""" collection_id = instance.id image_type = instance.type file_extension = filename.rpartition(".")[2] return f"workflow_system/collections/{collection_id}/{image_type}.{file_extension}"
32e377c7f04423e8bdf7b4e82cb40b4abc94e067
265,707
def find_nearest_power_of_two(a): """return closest power of two number smaller than a i.e. if a = 1025, return 1024 """ i = 0 while a > 1: a = a / 2 i += 1 return 2 ** (i - 1)
83f9b52cd9056c674d95f88b439ad31f376e768b
476,799
def is_simple_bool(typehint) -> bool: """Check if typehint is bool or Union[None, bool].""" if typehint is bool: return True if hasattr(typehint, "__args__") and bool in typehint.__args__: return True return False
5c65d7f08f0d34e99451ca51fda8319b7d177164
282,408
import hashlib def get_hash_values(file): """ Get MD5/SHA256/SHA512 hash :param file: Path to file :return: MD5/SHA256/SHA512 hash """ blocksize = 65536 hashval_sha256 = hashlib.sha256() hashval_md5 = hashlib.md5() hashval_sha512 = hashlib.sha512() with open(file, 'rb') as file: while True: buf = file.read(blocksize) if not buf: break hashval_md5.update(buf) hashval_sha256.update(buf) hashval_sha512.update(buf) return hashval_md5.hexdigest(), hashval_sha256.hexdigest(), hashval_sha512.hexdigest()
12b91706a6c5fefbea5ef26d0140eaf1c049ea3d
213,416
def keys_subset(base_dict, keys): """ Generate a dictionary that contains a subset of the entries of the base dictionary with the given keys """ return dict((k, base_dict[k]) for k in keys if k in base_dict)
2dd0ab1172ab16c3da0d8cbc4dd1ec9181152107
514,950
import torch def kl_forward(logu: torch.Tensor) -> torch.Tensor: """ Log-space Csiszar function for forward KL-divergence D_f(p,q) = KL(p||q). Also known as the inclusive KL-divergence, minimizing results in zero-avoiding / mass-covering behavior. Args: logu (torch.Tensor): ``p.log_prob``s evaluated at samples from q. """ return torch.exp(logu) * logu
6f6bcc6a0e58f543954320154503e71ccda6f36f
264,945
import six def rev_comp( seq, molecule='dna' ): """ DNA|RNA seq -> reverse complement """ if molecule == 'dna': nuc_dict = { "A":"T", "B":"V", "C":"G", "D":"H", "G":"C", "H":"D", "K":"M", "M":"K", "N":"N", "R":"Y", "S":"S", "T":"A", "V":"B", "W":"W", "Y":"R" } elif molecule == 'rna': nuc_dict = { "A":"U", "B":"V", "C":"G", "D":"H", "G":"C", "H":"D", "K":"M", "M":"K", "N":"N", "R":"Y", "S":"S", "U":"A", "V":"B", "W":"W", "Y":"R" } else: raise ValueError( "rev_comp requires molecule to be dna or rna" ) if not isinstance( seq, six.string_types ): raise TypeError( "seq must be a string!" ) return ''.join( [ nuc_dict[c] for c in seq.upper()[::-1] ] )
2e42ccf5f37992d0fbe3a25afd70a04e6fc0c225
12,572
def capitalised_string(s): """ Check whether the first letter of a title is uppercase :param s: String containing a title. :return: True if first letter is uppercase else False. """ try: return s[0].isupper() except IndexError: return False
66a109426b6dbc7c5f24a42d3b56c01014f32f57
538,310
def get_left_or_right(node_idx, struct): """ Return True if the node is a left child of its parent. o/w return false. """ parent_node = struct[node_idx]['parent'] return struct[parent_node]['left_child'] == node_idx
a258699d05a79ed25dd31e570d5b301cc9d0884f
538,339
def untuple(x): """Untuple a single value that was wrapped in a tuple.""" assert type(x) == type(()), 'Expected tuple.' # safety check assert len(x) == 1, 'Expected tuple singleton.' # safety check return x[0]
9c53199329c17f1d5b09ff29513e1870fb829c95
305,877
def get_max_rows(worksheet): """ Gets the number of non-empty rows of the current worksheet. :param worksheet: Current worksheet to manipulate. :return: Number of non-empty rows """ return worksheet.max_row
053ef312c84a99e343c52ec0ed0c667bf5cb5bc9
146,029
def get_rebalancing_flow(tnet): """ get rebalancing flow in a supergraph Parameters ---------- tnet: transportation network object Returns ------- float """ return sum([(tnet.G_supergraph[i][j]['flow']-tnet.G_supergraph[i][j]['flowNoRebalancing'])*tnet.G_supergraph[i][j]['length'] for i,j in tnet.G.edges()])
c66c2fd4a68d8ff948f5891b97c599c19f00099b
174,585
def first(iterable, default=None): """Return the first element of an iterable or the next element of a generator; or default.""" try: return iterable[0] except IndexError: return default except TypeError: return next(iterable, default)
10023a39bb98662c3c17fece28e28402ad56bc0a
527,212
def recursive_dichotomy(list, value, beginning, end): """ list: array of integers in ascending order value: value to return its position in the list beginning: first index of list (in this case 0) end: last index of list (in this case len(list)) return: False in value not in list, else the position of value in the list """ middle = (beginning+end)//2 if value not in list: return False if list[middle] == value: return middle elif value > list[middle]: return recursive_dichotomy(list, value, middle, end) elif value < list[middle]: return recursive_dichotomy(list, value, beginning, middle)
a677ef0f7f0e4cc843da4fa96303655776d4515d
598,875
def isrange(a, b): """ Return True if the passed tuple `(a,b)` is a valid range (that is, `a` may not be greater than `b`). """ #~ if r[0] is None or r[1] is None: return True #~ if r[0] <= r[1]: return True if a is None or b is None: return True if a <= b: return True return False
b7c7b09d586b066d8d24e7877c62612e49731ded
592,301
from pathlib import Path from typing import Dict def _get_srcset_st(sources_dir: Path, hinames: Dict[float, Path]): """ Create the srcset string for including on the md line. ie. sources_dir might be /home/sample-proj/source, hinames posix paths to 0: /home/sample-proj/source/plot_types/images/img1.png, 2.0: /home/sample-proj/source/plot_types/images/img1_2_0x.png, The result will be: '/plot_types/basic/images/mkd_glr_pie_001.png, /plot_types/basic/images/mkd_glr_pie_001_2_0x.png 2.0x' """ srcst = '' for k in hinames.keys(): path = hinames[k].relative_to(sources_dir).as_posix().lstrip('/') srcst += '../' + path if k == 0: srcst += ', ' else: srcst += f' {k:1.1f}x, ' if srcst[-2:] == ', ': srcst = srcst[:-2] srcst += '' return srcst
c7e28d24d40edd49d5b5715c3f9d4957a63af02f
210,156
import torch def l2norm(X): """L2-normalize columns of X """ norm = torch.pow(X, 2).sum(dim=-1, keepdim=True).sqrt() X = torch.div(X, norm+1e-10) return X
7517e81e97ec63be085fd2f7f6502e6b3c7541d8
661,657
def Median(data): """Returns the median of a time series""" return data.median()
a0c7474ca3ed2240320346159c891da342d6402c
413,265
import re def chop_after_title(source): """Return the source of a document after DocInfo metadata. :param source: Source of RST document :type source: string :returns: All source content after docinfo :rtype: string """ # find the last docinfo element index = re.findall(r'[=-]{3,}\n.*\n[-=]{3,}', source, re.MULTILINE)[-1] # find the character position of last docinfo element + len of it rest = source[source.rindex(index) + len(index) :] return rest.strip()
44602f53a6433073389946986bb809046616abe7
331,587
def make_matrix(rows, cols, fill=0.0): """Returns a matrix (list of list of floats) using a default value. :param rows: Number of rows :type rows: int :param cols: Number of columns :type cols: int :param fill: Default value for each element in the matrix :type fill: float """ m = [] for i in range(rows): m.append([fill] * cols) return m
c361c5d6ea1f0f3af9b29f18e127bce2af394d8c
251,899
def solution(A): # O(N) """ Identify whether four sides (given by four integers) can form a square, a rectangle, or neither. Input: You will receive an array of strings, each containing four space-separated integers, which represent the length of the sides of a polygon. The input lines will follow the 'A B C D' order as in the following representation: |-----A-----| | | | | D B | | | | |-----C-----| Output: Whether the sides will form a "square", a "rectange" or some "other polygon" Constraints: The four integers representing the sides will be such that: -2000 <=X <= 2000 (Where X represents the integer) >>> solution('36 30 36 30') 'rectangle' >>> solution('15 15 15 15') 'square' >>> solution('46 96 90 100') 'other polygon' >>> solution('86 86 86 86') 'square' >>> solution('100 200 100 200') 'rectangle' >>> solution('100 100 200 200') 'other polygon' >>> solution('-100 200 -100 200') 'other polygon' """ array = [int(value) for value in A.split(' ')] # O(N) side_A = array[0] # O(1) side_B = array[1] # O(1) unique_values = set(array) # O(N) num_unique_sides = len(unique_values) # O(1) if side_A < 0 or side_B < 0: # O(1) return 'other polygon' # O(1) if num_unique_sides == 1: # O(1) return 'square' # O(1) if num_unique_sides == 2: # O(1) if side_A == side_B: # O(1) return 'other polygon' # O(1) return 'rectangle' # O(1) return 'other polygon' # O(1)
be5f7c763d6eedb8e9740cdecbc89caa4d0773a2
348,689
import re def filter_collection(collection, include=None, exclude=None): """Filter collection based on include and exclude regexps. The regexp patterns are not implicitly anchored at the beginning of strings (i.e. `search` is used, rather than `match`). E.g. 'abc' will match '_abc_' as well as 'abcdef'. :return: set of matching collection elements """ matches = set() if include: include_pat = re.compile(include) else: include_pat = None if exclude: exclude_pat = re.compile(exclude) else: exclude_pat = None for element in collection: if include_pat and not re.search(include_pat, element): continue # Do not include this database; failed to match include if exclude_pat and re.search(exclude_pat, element): continue # Do not include this database; matched exclude matches.add(element) return matches
a79102dcec463dd58e33b724e2bae347b2cff9c6
215,610
def count_digit(value): """Count the number of digits in the number passed into this function""" digit_counter = 0 while value > 0: digit_counter = digit_counter + 1 value = value // 10 return digit_counter
f9b1738804b0a40aa72283df96d2707bcfd7e74c
13,790
import re def sanitize(phrase): """Sanitizes words by removing punctuation""" return re.sub('[!-():?.]','',phrase)
79c20b88120144cc88fcd8934b9cc1277cb95e84
86,718
import math def entropy(ps): """Calculates the entropy (log 2) of the distribution given by p """ entropy = 0.0 for p in ps: if not(p == 0): entropy -= p*math.log(p, 2) return entropy
609e0e2f03579c8ce39f274116f69ca177eabccc
31,425
def H_acceptor_count(mol): """Hydrogen bond acceptor count """ mol.require("Valence") return sum(1 for _, a in mol.atoms_iter() if a.H_acceptor)
bcbd446a1c3b729599f3d44c617f10a8ee6965b8
490,358
def check_x_lim(x_lim, max_x): """ Checks the specified x_limits are valid and sets default if None. """ if x_lim is None: x_lim = (None, None) if len(x_lim) != 2: raise ValueError("The x_lim parameter must be a list of length 2, or None") try: if x_lim[0] is not None and x_lim[0] < 0: raise ValueError("x_lim[0] cannot be negative") if x_lim[1] is not None and x_lim[1] > max_x: raise ValueError("x_lim[1] cannot be greater than the sequence length") if x_lim[0] is not None and x_lim[1] is not None and x_lim[0] >= x_lim[1]: raise ValueError("x_lim[0] must be less than x_lim[1]") except TypeError: raise TypeError("x_lim parameters must be numeric") return x_lim
6dda696f4a001d021c8074675e0905f049e88e70
678,090
def _GetReleaseTracks(release_tracks): """Returns a string representation of release tracks. Args: release_tracks: API versions to generate release tracks for. """ release_tracks_normalized = '[{}]'.format(', '.join( [track.upper() for track in sorted(release_tracks)])) return release_tracks_normalized
2d4a66996844fe27144eb22d8eb7832d4ed9dd7f
672,719
def _map_function_arg_pairs(function_list, arg): """Method that maps a list of functions to a list of arguments Args: function_list: List of functions arg: List of single arguments Returns: Map: map of of functions with injected arguments. """ return map(lambda func, arg: func(arg), function_list, arg)
681b91d8c721ed76e70feb1bae2e3a819f444f1a
212,004
def _find_in_list(key, a, start=None, force=False): """key - object you want to find a - list to search return - index in a """ if start is None: sequence = range(0, len(a)) else: sequence = range(start, len(a)) for i in sequence: if a[i] == key: return i assert not force, '%s not found' % key
945996874c528e699f091dd47154b36ce5e68302
161,455
def token_response(oauth_test_client): """ Return a successful token response. """ oauth_test_client.authorize(data={"confirm": "yes"}) return oauth_test_client.token().response
150d2ae984c5b6074a2ad55df517ab075f50d844
292,776
def url_add_trailing_slash(uri: str) -> str: """Add trailing slash to url if this is valid Parameters ---------- uri : str Web address to update Returns ------- str uri or updated uri """ if len(uri) == 0 or uri[-1] == "/": return uri split_uri = str.split(uri, "/") if len(split_uri) == 0: return f"{uri}/" if len(split_uri[-1]) > 1 and "?" not in split_uri[-1]: return f"{uri}/" return uri
cf77459af356e6d49dc073cb0865f496dcf4d386
608,235
def add_prefix ( table , prefix = '' ) : """Add certain prefix to each line of the table >>> table = ... >>> table = add_prefix ( table , '# ') """ return prefix + table.replace ( '\n' , '\n' + prefix ) if prefix else table
a0f45c9a4daab0bee758fefd9aaf143ff5ec8f9d
226,239
def next_card(prize_card, hand, max_card): """ Next-card strategy just picks the next card in the hand (effectively random). """ return hand.cards[0]
509f61b70c38b978453b8646b863f18871523e60
86,025
def cross_spectrum(spectrumA, spectrumB): """ Returns a cross-spectrum, ie. spectrum of cross-correlation of two signals. This result does not depend on the order of the arguments. Since we already have the spectra of signals A and B and and want the spectrum of their cross-correlation, we can replace convolution in time domain with multiplication in frequency domain. """ return spectrumA * spectrumB.conj()
5d604270c3a7b03994cd8c24b06c00c779224ca3
245,346
import random def train_test_split_ind(n_sample, test_size, method='random'): """ Return indices splitting n_samples into train and test index lists. :param n_sample: int: number of samples :param test_size: int: number of samples in test set :param method: str: 'first' ('last') to take first (last) t samples as test, or 'random' :return: (list, list): list of train indices, list of test indices """ if method == 'first': test_set = list(range(0, test_size)) train_set = list(range(test_size, n_sample)) elif method == 'last': test_set = list(range(n_sample - test_size, n_sample)) train_set = list(range(0, n_sample - test_size)) elif method == 'random': train_set = list(range(n_sample)) test_set = [] for j in range(test_size): i = random.choice(train_set) test_set.append(i) train_set.remove(i) test_set.sort() else: raise ValueError("'method' must be 'first', 'last', or 'random'") return train_set, test_set
e639ea73be840a3a8754666ee4762779c142d493
527,933
def filter_by_states(providers, states): """Filter providers by list of states to reduce the quantity of data we're processing.""" return [provider for provider in providers if provider['state'] in states]
cbbac9800de598b29cd8c74cb5ed2d0cb8d4cbee
377,930
def humanize_join(sequence, separator=',', spacing=' ', conjunction='or', oxford_comma=True): """ Join a list together using the English syntax of inserting a conjunction before the last item. Keyword Arguments: sequence -- The sequence to join together. Convert iterables to sequences using list() if necessary. separator -- The string to separate each item with. spacing -- A string appended to the separator to space out sequence members (such as a space in sentences). conjunction -- A string to insert between the last separator and the final item in the sequence. oxford_comma -- Boolean value that indicates whether or not to include the separator before the conjunction inserted before the last item in the sequence. Since there is no consensus on whether or not to use the Oxford comma, it is provided as an option. """ lst = list(sequence) full_sep = separator + spacing string = full_sep.join(lst) if len(lst) > 1: last = lst[-1] if not oxford_comma or len(lst) == 2: start = string[:-len(last)-len(full_sep)] # Remove the last comma else: start = string[:-len(last) - len(spacing)] return ''.join([start, spacing, conjunction, spacing, string[-len(last):]]) else: return string
29d6812d6bb4e914f6e5fc0797235ae0a06d62e9
601,825
def cat_lump(x, n=5, prop=None, other_level="Other"): """ Lump together least common categories into an "Other" category Parameters ---------- x : pd.Series series to be modified n : int number of levels to preserve prop : float optional instead of n. Choose the minimum proportion for a level. Must be between 0 and 1. Overrides n. other_level : str "other" category label Returns ------- y : pd.Series modified series (with categorical type) """ counts = x.value_counts() if prop: assert 0 <= prop <= 1 min_count = int(prop * x.size) if min_count > counts.min(): repl = counts.loc[counts < min_count].index x = x.replace(repl, other_level) elif len(counts) > n: repl = counts.iloc[n:].index x = x.replace(repl, other_level) return x
04ca7d0ff64e98c737bac8e95620f27696ecc0c0
482,820
def roi_is_full(roi, shape): """ Check if ROI covers the entire region. :returns: ``True`` if ``roi`` covers region from ``(0,..) -> shape`` :returns: ``False`` if ``roi`` actually crops an image """ def slice_full(s, n): return s.start in (0, None) and s.stop in (n, None) if isinstance(roi, slice): roi = (roi,) shape = (shape,) return all(slice_full(s, n) for s, n in zip(roi, shape))
1823f166262fc8978492a943db3583c901aae4fe
540,930
def replace_input_if_output_is_temp(df, input_column, output_column, output_is_temp): """Replaces the input column in the dataframe if the output was not set This is used with get_temp_col_if_not_set to enable the behavior where a transformer will replace its input column if an output is not specified. """ if output_is_temp: df = df.withColumn(input_column, df[output_column]) df = df.drop(output_column) return df else: return df
1216659377a10f3163838c31ee9c55167a6e2363
553,552
def get_elk_command(line): """Return the 2 character command in the message.""" if len(line) < 4: return "" return line[2:4]
550eda4e04f57ae740bfd294f9ec3b243e17d279
674
def _get_latest_raw_pdf(cls): """Given an ETL class, return the latest PDF in the data directory.""" # Get PDF paths for the raw data files dirname = cls.get_data_directory("raw") pdf_files = dirname.glob("*.pdf") # Get the latest latest = sorted(pdf_files)[-1] year, month = map(int, latest.stem.split("_")) return year, month
182ddbf9a9da3101a21ebc20fbfc71e8428d5502
181,027
import functools import random import time def random_delay(min_delay: float, max_delay: float): """ Decorator to add a random delay before executing the function. :param min_delay: Min delay in seconds. :param max_delay: Max delay in seconds. :return: Decorator. """ assert min_delay >= 0 assert min_delay <= max_delay def decorator(f): @functools.wraps(f) def wrapper(*args, **kwargs): wait = random.uniform(min_delay, max_delay) time.sleep(wait) return f(*args, **kwargs) return wrapper return decorator
59753137917612fbffe59f30c08fc2e087eb5d34
356,620
def check_member(self, user): """ Check whether a user is in the circle :param (Circle) self: The checked circle :param (User) user: checked user :return (bool): whether the user is in the circle """ return len(list(filter(lambda member: member.id == user.id, self.members))) != 0
68eed99c87793f41d87911eb0c4172ea01a5be07
77,992
def format_email_address(email: str) -> str: """ Returns a formatted email address. """ return email.lower()
2d60b689ed47d52001bc0afa74004dd686385004
359,316
def is_prime(n): """Returns True is n is prime, False if not""" for i in range(2,n-1): if n%i == 0: return False return True
81bd12b33d52283bc054b588f2133448047330a6
256,329
from typing import Counter def count_ngram( n: int, target: str) -> Counter: """Count n-gram. Args: n (int): n-gram's n. target: (str): target sentence. Return: Counter: python counter object. """ tokens = target.split(' ') N = len(tokens) counter = Counter(map(lambda x: ' '.join(x), zip(*[tokens[i:N-n+i+1] for i in range(n)]))) return counter
e969dbbceb1c025eb26dd398d3a64ee5aa401a91
539,531
def get_most_probable_words(wordlist, characters, pattern): """Get a list of most probable words >>> word_list = ["trail", "banana", "frail", "drain"] >>> get_most_probable_words(word_list, "filyar", "+rail") ['frail'] :param wordlist: wordlist to use :param characters: scrambled characters :param pattern: pattern to match against :returns: list of probable words """ characters = characters.lower() pattern = pattern.lower() results = [] len_of_pattern = len(pattern) count_of_characters = {i: characters.count(i) for i in characters} non_empty_indices_in_pattern = {i: char for i, char in enumerate(pattern) if char != "+"} for word in wordlist: if len(word) != len_of_pattern: continue for char in word: if char not in characters or word.count(char) > count_of_characters[char]: break else: for idx, char in non_empty_indices_in_pattern.items(): if word[idx] != char: break else: results.append(word) return results
837894f112b13046238b79e92a6d73b32815a18e
335,792
import torch def rand_uniform(a, b, shape=1): """ sample numbers uniformly between a and b. args: a - lower bound b - upper bound shape - shape of the output tensor returns: torch.Tensor - tensor of shape=shape """ return (b - a) * torch.rand(shape) + a
1d20523689b1be985b6918630193710694f76a3b
172,671
from typing import Iterable from typing import Any from typing import List import itertools def flatten(val: Iterable[Iterable[Any]]) -> List[Any]: """ Flatens a list of list into a list >>> flatten( [['abc','def'],[12,34,46],[3.14, 2.22]]) ['abc', 'def', 12, 34, 46, 3.14, 2.22] """ return list(itertools.chain(*val))
cd9ae9e393569ba7800735d09c8621f0d64beed3
700,535
def ChiSqStat(ydata, yerr, ymodel): """ Returns the chi-square given arrays of ydata, yerr, and ymodel values. """ chisquared = ((ydata - ymodel)/yerr)**2 stat = chisquared.sum() return stat
b601baa57cb524188f8a8110d7853b14455158dd
226,407
def flattenDict(d): """Reduces the depth of a dictionary to 1, parent keys are ignored. >>> d = {'a': 1, 'c': {'e': 5, 'd': 4}, 'b': 2, 'f': {'g': {'h': 8}}} >>> flattenDict(d) {'a': 1, 'h': 8, 'b': 2, 'e': 5, 'd': 4} """ result = {} for k, v in d.iteritems(): if isinstance(v, dict): result.update(flattenDict(v)) else: result.update({k:v}) return result
49369e32cb0b76f6783384905fc3d80e3460cac2
74,636
import requests def get_drive_time(apiKey, origin, destination): """ Returns the driving time between using the Google Maps Distance Matrix API. API: https://developers.google.com/maps/documentation/distance-matrix/start # INPUT ------------------------------------------------------------------- apiKey [str] origin [str] destination [str] # RETURN ------------------------------------------------------------------ drive_tim [float] (minutes) """ url = ('https://maps.googleapis.com/maps/api/distancematrix/json?units=imperial&origins={}&destinations={}&key={}' .format(origin.replace(' ','+'), destination.replace(' ','+'), apiKey ) ) try: response = requests.get(url) resp_json_payload = response.json() drive_time = resp_json_payload['rows'][0]['elements'][0]['duration']['value']/60 except: print('ERROR: {}, {}'.format(origin, destination)) drive_time = 0 return drive_time
ed612022cdade4d98efc15fd0c42711bdc95a2e2
621,205
def matrix_to_str(mat): """Convert a 4x4 column-major order matrix into byte string.""" barr = [mat[i%4][i//4] for i in range(16)] return bytes(barr)
516eb35a999a513962d836469dab220be9bedb04
137,912
def gcd(*numbers): """Euclid's algorithm for GCD. Arguments are cast to integer.""" def gcd2(a,b): a=abs(int(a)) b=abs(int(b)) a,b = max(a,b), min(a,b) while b>0: a,b=b,a%b return a if len(numbers)==0: return 1 res=numbers[0] for n in numbers[1:]: res=gcd2(n,res) return res
7750920c023165ae32f300c7ecbd7cbeb5f28fb1
554,629
def id_from_name(detector, name): """ Jiffy function to get the id of a panel using its name @param detector detector object @param name panel name @return index of panel in detector """ return [p.get_name() for p in detector].index(name)
941191fb65ba2f5c423bf37192c6f800562f6a1f
143,414
def ReversedDomainComponents(s): """Returns a list of domain components in reverse order. Args: s: (str) A string of the form "a.b.c" Returns: list(s) E.g. ['c', 'b', 'a'] """ if not s: return [] parts = s.split('.') parts.reverse() return parts
75e2fa484e789ec13bff6ac7994e1fe63744707f
354,958
def option6(current_person): """The number of children and grandchildren of a person can be printed using this function. Parameters: current_person: The current Person object. Returns: The original Person object for whom the function was called. """ print(f"Number of children: {len(current_person.get_children())}") grandchild = 0 temp = current_person for child in current_person.get_children(): current_person = child grandchild += len(current_person.get_children()) print(f"Number of grandchildren: {grandchild}") print() return temp
07f64a1be137551e6bc7c18a06ca04848b451b99
150,121
def get_monitors(mon_name): """ Has all the monitors with their specs and returns the one with the specified name. Parameters ---------- mon_name : str name of the requested monitor Returns ------- dict """ test_monitors = { "lab": { "size_cm": (54, 0), "size_px": (1024, 768), "dist": 100, "refresh_rate": 60 }, "RaZerBlade": { "size_cm": (38, 20), "size_px": (2560, 1440), "dist": 60, "refresh_rate": 165 }, "Ryan": { "size_cm": (0, 0), "size_px": (0, 0), "dist": 60, "refresh_rate": 60 }, "Asus": { "size_cm": (54, 30), "size_px": (1920, 1080), "dist": 57, "refresh_rate": 240 } } return test_monitors[mon_name]
cec927ae0d76c5352e461a27acc0b67d61b2b6fa
329,210
def get_html_header() -> str: """Helper to get a HTML header with some CSS styles for tables."" Returns: A HTML header as string. """ return """<head> <style> table { font-family: arial, sans-serif; border-collapse: collapse; width: 768px } td, th { border: 1px solid #999999; text-align: left; padding: 8px; } tr:nth-child(even) { background-color: #dddddd; } </style> </head>"""
fc2302ff199ef944169a4096a53f6bd48fdb06fd
675,606
import json def load_json(file_path): """ Loads json from a file :param file_path: the path to the file :return: dictionary """ try: with open(file_path, "r+") as file: return json.loads(file.read()) except (OSError, IOError): with open(file_path, "r+") as file: file.truncate(0) file.seek(0) json.dump("{}", file, indent=4) return {}
7203397948b2c227d697169f6bcd663f5f818674
107,001
def evaluate(h,x): """evaluate an instance x with an hypothesis h, that is a function X->{Yes,No}""" for i,feature in enumerate(h): if feature=="0": return "No" if feature!="?" and feature!=x[i]: return "No" return "Yes"
e5fb5235653b2dc096318be11ff5cbf9c096daeb
586,705
def has_resected_pair(unresected_idx, resected_imgs, img_adjacency): """Return true if unresected_idx image has matches to >= 1 currently resected image(s) """ for idx in resected_imgs: if img_adjacency[unresected_idx][idx] == 1 or img_adjacency[idx][unresected_idx] == 1: return True return False
e4e205b2da5842e6a8c787cccc270d80ef5c91c4
264,990
def inhg_to_mb(val): """ Converts inches of mercury to millibars; accepts numeric or string """ try: return float(val) * 33.8639 except (TypeError, ValueError): return val * 33.8639
d1f4b7187697ab84e0b2e4ff0ccaec24693cc4c4
606,709
def _populate_wf_data(wf_def, wf_data): """ Populate the workflow data in the workflow definition Args: wf_def (dict): workflow definition wf_data (dict): workflow data to be populated into workflow definition Returns: dict: workflow definition with the workflow data populated """ if not wf_data["arguments"]: return wf_def if not wf_def["spec"]["arguments"]: wf_def["spec"]["arguments"] = {} if "parameters" in wf_data["arguments"]: wf_def["spec"]["arguments"]["parameters"] = wf_data["arguments"][ "parameters"] if "artifacts" in wf_data["arguments"]: wf_def["spec"]["arguments"]["artifacts"] = wf_data["arguments"][ "artifacts"] return wf_def
a9b08117114005fa6a946e1307adbb4fd2fa8787
368,536
def search(value, node): """ Search for element in the linked list :param value: value to look for :param node: value of head node, start of list :return: bool: weather or not element is in the list """ if node is not None: # iterate through while valid nodes if node.value == value: # hey its in there return True return search(value, node.next_node) # keep looking return False
71e842d31310364cf40c1ece73b46b252cc7514b
597,448
def connect(endpoint=None): """Generate connect packet. `endpoint` Optional endpoint name """ return u'1::%s' % ( endpoint or '' )
bce21b5f7796ec26e5e238e68427decf2e34d46d
688,018
def _mk_key(srev_info): """Returns the key for a SignedRevInfo object.""" return (srev_info.rev_info().isd_as(), srev_info.rev_info().p.ifID)
780fb59859b514e0f6d4699cb1e6fef1d6e14042
40,511
def is_free(board: list, pos: int) -> bool: """checks if pos is free or filled""" return board[pos] == " "
64b75aa5d5b22887495e631e235632e080646422
2,933
def process_spatial(geo): """Process time range so it can be added to the dates metadata Parameters ---------- geo : list [minLon, maxLon, minLat, maxLat] Returns ------- polygon : dict(list(list)) Dictionary following GeoJSON polygon format """ polygon = { "type": "Polygon", "coordinates": [ [ [geo[0], geo[2]], [geo[0], geo[3]], [geo[1], geo[3]], [geo[1], geo[2]] ] ]} return polygon
4ff7dea7d7dcefd5b6bfb1605dd50345fc379527
697,938
from typing import OrderedDict def flatten_json(dictionary): """Recursively flattens a nested json. :param dictionary: dict object to flatten :return: dict object containing flat json. """ out = {} def flatten(element, name=''): if type(element) is dict: for a in element: flatten(element[a], name + a + '.') elif type(element) is list: i = 0 for a in element: flatten(a, name + str(i) + '.') i += 1 else: out[name[:-1]] = element flatten(dictionary) out_ordered = OrderedDict() for key, value in sorted(out.items()): out_ordered[key] = value return out_ordered
5552e6b10dd7a547d2082336f2045dfd9b3e58e4
88,309
def ioc_restart_pending(ioc_pv, channel_access): """Check if a particular IOC is restarting. Assumes it has suitable restart PV Args: ioc_pv: The base PV for the IOC with instrument PV prefix channel_access (ChannelAccess): The channel access object to be used for accessing PVs Return bool: True if restarting, else False """ return channel_access.caget(ioc_pv + ":RESTART", as_string=True) == "Busy"
da7e7c08e2b84c89e502fd060974b4ab9ae31ad9
390,029
def dictincr(dictionary, element): """ Increments `element` in `dictionary`, setting it to one if it doesn't exist. """ dictionary.setdefault(element, 0) dictionary[element] += 1 return dictionary[element]
51e7944e04240dc260daa6ccd4ad240b92fd3405
70,577
def mc_eta_to_m12(mc, eta): """ Convert chirp mass and symmetric mass ratio to component masses. Input: mc - chirp mass eta - symmetric mass ratio Return: m1, m2 - primary and secondary masses, m1>m2 """ m1 = mc / eta ** 0.6 * (1 + (1 - 4 * eta) ** 0.5) / 2 m2 = mc / eta ** 0.6 * (1 - (1 - 4 * eta) ** 0.5) / 2 return m1, m2
8f76491ddbaae7c3d2f9118805ccdf127287870a
328,783
def read_first_line(path: str) -> str: """Read the first line from the given file.""" with open(path, encoding='utf8') as f: return f.readline()
9e809953e620517cddf20c5510498f47ac7d2329
533,017
import logging import json def extract_initial_data(html): """Extract and parse the JSON string from the HTML of a playlist webpage. Parameters ---------- html : str HTML to extract the string from. Returns ------- Dict Parsed JSON data. """ logging.info("Extracting JSON string from playlist HTML data") for line in html.split("\n"): if line.strip().startswith('window["ytInitialData"]'): return json.loads(line.strip()[26:-1]) return None
52f66db3e341cd5f400b6e649d4ed37fed2674ff
55,577
def sign (x): """Return `-1` if `x < 0`, `0` if `x == 0` and `1` if `x > 0`.""" return 0 if x == 0 else (1 if x > 0 else -1)
abe82d47569d5d425b8f00aae9d13cc4837fda80
290,923
def list_strip_eos(list_, eos_token): """Strips EOS token from a list of lists of tokens. """ list_strip = [] for elem in list_: if eos_token in elem: elem = elem[:elem.index(eos_token)] list_strip.append(elem) return list_strip
ea6b6b2f5814150e863913f77d5b65f0fdce5966
515,617
def diff_sec(time1, time2): """Calculate the difference between two times in seconds.""" # return (as_utc(time1) - as_utc(time2)).total_seconds() return (time1 - time2).total_seconds()
f964eb8a6cbdccca32668ccc67b8d4d42471dc41
70,098
def order_by_length(*items): """Orders items by length, breaking ties alphabetically.""" sorted_items = sorted(items, key=lambda item: (len(str(item)), str(item))) return ' '.join(sorted_items)
dc0b8406c531d96e8192de5702c702fd4e533f5a
633,935