content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
|---|---|---|
def color_to_rgb(c):
"""Convert a 24 bit color to RGB triplets."""
return ((c >> 16) & 0xFF, (c >> 8) & 0xFF, c & 0xFF)
|
57f30d4d346f6cfbeff67d714579f649524e9873
| 506,331
|
def square(row, col):
"""
Squares are represented as tuples of (row, col).
Rows are numbered 1 thru 3, cols 'A' thru 'C'.
"""
return (row, col)
|
e75db55fb0a51839af3da003e2b706e3ce95a04a
| 156,280
|
def dependency(func, **config):
"""Declare a setter method to be called just after initializing a yaz.Plugin
This decorator allows one or more plugin dependencies
to be injected. For example:
class Helper(yaz.Plugin):
pass
class HelloWorld(yaz.Plugin):
def __init__(self):
self.helper = None
@yaz.dependency
def set_helper(self, helper: Helper):
self.helper = helper
In the above example, when the HelloWorld plugin is initialized,
the set_helper method will be called immediately after the constructor
finishes.
Multiple dependencies may be injected in a single @yaz.dependency method.
"""
func.yaz_dependency_config = config
return func
|
42e064416d260561b37463577ca90ed333678064
| 216,359
|
import re
def parseVersionFromLine(version_str):
"""Given a string containing a dotted integer version, parse out integers and return as tuple."""
version = re.search(r'(\d+\.\d+\.\d+)', version_str)
if not version:
return (0,0,0)
return tuple(map(int, version.group(1).split(".")))
|
89917953ccd05219542ce75a90e70b92fbe2d2ab
| 572,445
|
def record_payin_transfer_reversal(
db, pt_id, remote_id, amount, payin_refund_id=None, ctime=None
):
"""Record a transfer reversal.
Args:
pt_id (int): the ID of the reversed transfer in our database
remote_id (int): the ID of the reversal in the payment processor's database
amount (Money): the reversal amount, must be less or equal to the transfer amount
payin_refund_id (int): the ID of the associated payin refund in our database
ctime (datetime): when the refund was initiated
Returns:
Record: the row inserted in the `payin_transfer_reversals` table
"""
return db.one("""
INSERT INTO payin_transfer_reversals
(payin_transfer, remote_id, amount, payin_refund,
ctime)
VALUES (%(pt_id)s, %(remote_id)s, %(amount)s, %(payin_refund_id)s,
coalesce(%(ctime)s, current_timestamp))
ON CONFLICT (payin_transfer, remote_id) DO UPDATE
SET amount = excluded.amount
, payin_refund = excluded.payin_refund
RETURNING *
""", locals())
|
eaa5b8fc8593a9182e36911e9908108818bc16f7
| 561,493
|
def _find_longest_key_length(dictionary: dict) -> int:
"""Returns the longest string length of a key in the given dictionary."""
length: int = 0
for key in dictionary.keys():
if len(key) > length: length = len(str(key))
return length
|
96a6d8d2354133ea216313f175bde62f691f9a4c
| 274,358
|
def determine_table_subset_by_start_and_column(conn, tbl_start, cols):
"""
:param conn:
:param tbl_start: str
:param cols: list of column names
:return: list of table names
Determine which tables that start with a particular string have a
particular column.
"""
all_tables = conn.execute("SELECT name FROM sqlite_master WHERE type='table';")
table_subset = []
c = conn.cursor()
for tbl_tuple in all_tables:
table = tbl_tuple[0]
if table.startswith(tbl_start):
table_data_query = c.execute(
"""SELECT * FROM {};""".format(table)
)
column_names = [s[0] for s in table_data_query.description]
if all(col in column_names for col in cols):
table_subset.append(table)
return table_subset
|
c430d11e7f7a484be1feeae1b7e9df5e297fbfb4
| 437,257
|
import re
def _extract_current_step(current_status_string):
"""
Attempts to extract the current step numeric identifier from the given status string.
Returns the step number or None if none.
"""
# Older format: `Step 12 :`
# Newer format: `Step 4/13 :`
step_increment = re.search(r"Step ([0-9]+)/([0-9]+) :", current_status_string)
if step_increment:
return int(step_increment.group(1))
step_increment = re.search(r"Step ([0-9]+) :", current_status_string)
if step_increment:
return int(step_increment.group(1))
|
2d1ee544c1d719ddbef1c175233d8304296ea33c
| 38,834
|
import math
def get_direct_radiation(normal_surface_direct_radiation: float, solar_altitude: float, solar_azimuth: float,
surface_tilt_angle: float, surface_azimuth: float) -> float:
"""
傾斜面の直達日射量を求める関数
:param normal_surface_direct_radiation: 法線面直達日射量, W/m2
:param solar_altitude: 太陽高度角, degree
:param solar_azimuth: 太陽方位角, degree
:param surface_tilt_angle: 傾斜面傾斜角, degree
:param surface_azimuth: 傾斜面方位角, degree
:return: 傾斜面直達日射量, W/m2
"""
# 傾斜面に対する太陽光線の入射角, degree
sunlight_incidence_angle\
= math.sin(math.radians(solar_altitude)) * math.cos(math.radians(surface_tilt_angle))\
+ math.cos(math.radians(solar_altitude)) * math.sin(math.radians(surface_tilt_angle))\
* math.cos(math.radians(solar_azimuth - surface_azimuth))
return normal_surface_direct_radiation * sunlight_incidence_angle
|
105e7d92035ebf82bcfdada3c9269cbbd98e3565
| 126,734
|
def enlarge(a, x=2, y=None):
"""Enlarges 2D image array a using simple pixel repetition in both dimensions.
Enlarges by factor x horizontally and factor y vertically.
If y is left as None, uses factor x for both dimensions."""
assert a.ndim == 2
if y == None:
y = x
for factor in (x, y):
assert factor.__class__ == int
assert factor > 0
return a.repeat(y, axis=0).repeat(x, axis=1)
|
e9daff8e474bc1db799f48eb45315737b994b728
| 312,554
|
def mc_pow(data):
"""
Modulus calculation (square of)
Calculated as: real^2+imag^2
"""
return data.real**2+data.imag**2
|
1308aa08ab26bb25fd9f6f0e8ac5762a45c63c99
| 224,095
|
def list_to_dict(list_to_convert: dict, key_name: str):
"""
USed to convert a list of dictionaries to a dictionary using some common properties (i.e. name)
Careful as data will be lost for duplicate entries, this assumes the list is a "set".
:param list_to_convert: A list of dictionaries
:param key_name: A value from each dict to use as the key.
:return: A dictionary.
"""
converted_dict = dict()
if list_to_convert:
for item in list_to_convert:
converted_dict[item[key_name]] = item
return converted_dict
|
edd998a0aac0a989e296694546c63781b03ea392
| 561,288
|
from typing import Callable
from typing import List
def get_shingles(
doc: str,
normalization_func: Callable,
split_method: str,
ngram_size: int,
ngram_stride: int,
) -> List[str]:
"""Extracts the shingles from a document.
Args:
doc (str):
The document to extract the shingles from.
normalization_func (Callable):
The function to normalize the document with.
split_method (str):
The method to split the document into shingles.
Can be 'word_ngram', 'paragraph', 'none' or None.
ngram_size (int):
The size of the ngrams to use.
ngram_stride (int):
The stride of the ngrams to use.
Returns:
list of str:
The shingles extracted from the document.
Raises:
ValueError:
If `split_method` is not 'word_ngram', 'paragraph', 'none'
or None.
"""
# Normalise document
doc = normalization_func(doc)
# Extract shingles from the document, depending on the `split_method`
if split_method == "word_ngram":
words = [word for word in doc.split(" ") if len(word) > 0]
max_word_idx = 1 + len(words) - ngram_size
shingles = [
" ".join(words[i : i + ngram_size]).strip()
for i in range(0, max_word_idx, ngram_stride)
] or [doc]
elif split_method == "paragraph":
shingles = [p for p in doc.split("\n") if len(p) > 0]
elif split_method == "none" or split_method is None:
shingles = [doc]
else:
raise ValueError(f"Invalid split method: {split_method}")
return shingles
|
98189a9562a1b45b8cbe98e52167c7b60ff1771c
| 616,545
|
def reflection_constant(ground_reflections: bool) -> float:
"""Utility function to calculate a factor that describes how much RF is increased by ground reflection.
:param ground_reflections: Whether ground reflections are present
:return: Coefficient (dimensionless) that other functions use to multiply EIRP
:raises ValueError: if ground_reflections is not bool
"""
if type(ground_reflections) != bool:
raise ValueError("ground_reflections must be boolean: %s" % str(ground_reflections))
if not ground_reflections:
return 1
else:
return 1.6 * 1.6
|
e0fac736e56712fff76db4c68632a94a65acd5bd
| 332,024
|
def emc_cal(load, discharge):
"""
Calculate EMC with \sum{l_t}/ \sum{discharge_t}
load: numpy.ndarry, load time series
discharge: numpy.ndarry, discharge time series
"""
return load.sum() / discharge.sum()
# End emc_cal()
|
aa3493fc5d810f9cbc8572c09c550a1b80e4d64d
| 203,373
|
import dateutil.parser
def get_entry_end_date(e):
"""Returns end date for entry"""
return dateutil.parser.parse(e['time_end'])
|
a9b8bdae873de0ef97de49e342cd4f3bbd8117f6
| 702,191
|
import pathlib
def this_module_name(short_name: bool = False) -> str:
"""
By default, module.name includes the package name, like "toolbox.file_util.ez_ftp"
To include only the last component, e.g "ez_ftp", set short_name = True.
:param short_name: By default, module.name includes the package name, like
"toolbox.file_util.ez_ftp". To include only the last
component, e.g "ez_ftp", set short_name = True.
:return: the name of this module (str)
"""
try:
mod_name = __loader__.name
except:
mod_name = pathlib.Path(__file__).stem
short = __loader__.name.split('.')[-1]
if __name__ == '__main__':
result = __loader__.name
elif __name__ == 'builtins':
# Do I want to do something special in this case?
result = __name__
else:
result = __name__
if short_name:
result = result.split('.')[-1]
return result
|
323b072c51505bcd6f37398252416c36be110ada
| 365,271
|
import math
import random
def UniformExpoInteger(low, high, base=2):
"""Returns base to a power uniformly distributed between low and high.
This is useful for exploring large ranges of integers while ensuring that
values of all different sizes are represented.
"""
return int(math.floor(math.pow(base, random.uniform(low, high))))
|
bf841068e72dcc1b6af71d626a164ed757b6520f
| 415,285
|
def format_title(title: str) -> str:
"""format titles to be usable as filenames and foldernames"""
return "".join(list(filter(lambda x: x not in (".", ":", '"', "?", "/", '<', '>'), title)))
|
08b3333a12539fcf14f01814214dc71695cdd5f4
| 392,137
|
def im2mat(I):
"""Converts and image to matrix (one pixel per line)"""
return I.reshape((I.shape[0] * I.shape[1], I.shape[2]))
|
2d12c487ddcffd3d629c88a9f6f9ed4e7dd9bc2c
| 508,700
|
import torch
def compute_iou(pred, gt):
""" Calculates IoU (Jaccard index) of two sets of bboxes:
IOU = pred ∩ gt / (area(pred) + area(gt) - pred ∩ gt)
Parameters:
Coordinates of bboxes are supposed to be in the following form: [x1, y1, x2, y2]
pred (torch.tensor): predicted bboxes
gt (torch.tensor): ground truth bboxes
Return value:
iou (torch.tensor): intersection over union
"""
def get_box_area(box):
return (box[:, 2] - box[:, 0] + 1.) * (box[:, 3] - box[:, 1] + 1.)
#_gt = torch.tile(gt, (pred.shape[0], 1))
_gt = gt.repeat(pred.shape[0], 1)
_pred = torch.repeat_interleave(pred, gt.shape[0], dim=0)
ixmin = torch.maximum(_gt[:, 0], _pred[:, 0])
iymin = torch.maximum(_gt[:, 1], _pred[:, 1])
ixmax = torch.minimum(_gt[:, 2], _pred[:, 2])
iymax = torch.minimum(_gt[:, 3], _pred[:, 3])
width = torch.maximum(ixmax - ixmin + 1., torch.tensor(0))
height = torch.maximum(iymax - iymin + 1., torch.tensor(0))
intersection_area = width * height
union_area = get_box_area(_gt) + get_box_area(_pred) - intersection_area
iou = (intersection_area / union_area).reshape(pred.shape[0], gt.shape[0])
return iou
|
90d34acedddfbec1850a627cd21a03c92f7cf727
| 265,869
|
def eV(E):
"""
Returns photon energy in eV if specified in eV or KeV. Assumes that any
value that is less than 100 is in KeV.
Parameters
----------
E : float
The input energy to convert to eV
Returns
-------
E : float
Energy converted to eV from KeV
"""
if E < 100:
E *= 1000.0
return float(E)
|
bb1811163c223670822e28ac7be6f34bfcbae837
| 638,898
|
def get_beta_variance(a, b):
"""Compute variance of beta distribution based on shape parameters `a` and `b`."""
return a*b/(a+b)**2/(a+b+1)
|
527067dd0b0dbb4e331eab9030a252ecb0be835d
| 580,037
|
import string
def clean_punctuation(texts):
"""Remove punctuation from strings"""
cleaned_tokens = [[word.strip(string.punctuation) for word in sentence] for sentence in texts]
return cleaned_tokens
|
06f76dd62ae047b5379b9047f737673bc52c63e8
| 632,216
|
def any(iterable):
"""
any()
Purpose: Returns true if any element in the iterable evaluates to true otherwise, return false
Parameters: iterable [type=list,tuple]
Any item that can be iterated over
Returns: A boolean specifying whether any elements of the iterable evaluate to true
"""
for element in iterable:
if element: return True
return False
|
5fbc793bd90055ea12156a54d551623dc20754d5
| 104,931
|
import uuid
def uuid_naming_strategy(original_name):
"""File naming strategy that ignores original name and returns an UUID"""
return str(uuid.uuid4())
|
76dd4751fd9b7a832d18aa508076f6934975d39c
| 323,309
|
def parse_version(revision):
"""Convert semver string `revision` to a tuple of integers"""
return tuple(map(int, revision.split(".")))
|
30765dc8e71bab009336d1b3dce92d27b0da99db
| 567,408
|
import torch
def get_inverse_softplus_offset(offset):
"""Get inverse offsetted softplus."""
def inverse_softplus_offset(x):
return torch.log(x.exp() - 1) + offset
return inverse_softplus_offset
|
0ddf8efd49a839a9ad09e3818c93473580ff7024
| 601,432
|
def frate2hsize(sr, frate):
"""Translate frame rate in Hz to hop size in integer."""
return int(sr*1.0/frate)
|
e470590b6184e222beb6673755e612a6250b9a43
| 245,595
|
def riKey(pre, ri):
"""
Returns bytes DB key from concatenation with '.' of qualified Base64 prefix
bytes pre and int ri (rotation index) of key rotation.
Inception has ri == 0
"""
if hasattr(pre, "encode"):
pre = pre.encode("utf-8") # convert str to bytes
return (b'%s.%032x' % (pre, ri))
|
033a56f16143ec2c8b75847204bc244ade352ae8
| 487,911
|
def compare_locations(bq_dataset_location,gcs_bucket_location):
"""Compares the locations of BQ dataset and GCS bucket
Arguments:
bq_dataset_location {str} -- BQ dataset location
gcs_bucket_location {str} -- GCS Bucket location
Returns:
bool -- True if matches else False
"""
if bq_dataset_location==gcs_bucket_location:
return True
else:
return False
|
b9f3e2dfa4ad14f6d86260ebb032eb85d04eb777
| 206,877
|
import pickle
def from_pickle(input_path):
"""Read from pickle file."""
with open(input_path, 'rb') as f:
unpickler = pickle.Unpickler(f)
return unpickler.load()
|
4e537fcde38e612e22004007122130c545246afb
| 4,229
|
def exact_match(p,l):
"""
Computes per-response accuracy between predictions (p) and ground-truth responses (l)
"""
c=0
for i1,i in enumerate(l):
if p[i1]==l[i1]:
c+=1
return c/len(l)
|
6312a88753ca5d4324ad388458dcb983150e6bea
| 274,135
|
def stats(d_raw_materials, f_secret_points, f_total_money_collected):
"""
Show machine statistics
Params:
d_raw_materials: dict
f_secret_points: int
f_total_money_collected: float
Returns:
str
"""
cm_stats = 'sugar {0} tablespoons remaining\n'.format(d_raw_materials['sugar'])
cm_stats += 'butter {0} teaspoons remaining\n'.format(d_raw_materials['butter'])
cm_stats += 'dark chocolate {0} tablespoons remaining\n'.format(d_raw_materials['dark chocolate'])
cm_stats += 'caramel {0} tablespoons remaining\n'.format(d_raw_materials['caramel'])
cm_stats += 'light corn syrup {0} teaspoons remaining\n'.format(d_raw_materials['light corn syrup'])
cm_stats += 'sweetened condensed milk {0} teaspoons remaining\n'.format(d_raw_materials[
'sweetened condensed milk'])
cm_stats += 'vanilla extract {0} teaspoons remaining\n'.format(d_raw_materials['vanilla extract'])
cm_stats += 'sprinkles {0} tablespoons remaining\n'.format(d_raw_materials['sprinkles'])
cm_stats += 'bing cherries {0} tablespoons remaining\n'.format(d_raw_materials['bing cherries'])
cm_stats += 'candied bacon {0} tablespoons remaining\n'.format(d_raw_materials['candied bacon'])
cm_stats += 'bacon infused bourbon {0} tablespoons remaining\n'.format(d_raw_materials['bacon infused bourbon'])
cm_stats += 'sea salt {0} tablespoons remaining\n'.format(d_raw_materials['sea salt'])
cm_stats += 'Total Money Collected: ${0:.2f}\n'.format(f_total_money_collected)
cm_stats += 'Total secret points earned: {0}'.format(f_secret_points)
return cm_stats
|
76e5d0938ae1c2895a2ad3f4777ceefbfaecfe1d
| 79,785
|
def getIdHexChars(id):
""" get the hex chars of the given id """
if id[0] == 'c':
# don't include chunk index
index = id.index('_')
parts = id[0:index].split('-')
else:
parts = id.split('-')
if len(parts) != 6:
raise ValueError(f"Unexpected id format for uuid: {id}")
return "".join(parts[1:])
|
21be133e05fd8b510b65e1c653c97a1360c22158
| 125,904
|
import shutil
def check_in_path(app):
"""
Checks to see if the given app exists on the path
:param app: app name to look for
:return: true if the app exists, false otherwise
"""
return shutil.which(app) is not None
|
bbd9eb8f8645f649dcc5fcf7ff2e960df2110b22
| 269,797
|
def check_shell_sig(command_tuple):
"""
Check whether the command uses shell features
like pipe, wildcard
:param command_tuple: tuple or list
:return: bool
"""
redirect_tags = ('>', '<', '|', ';', '*', '&&', '>>')
true_shell = 0
try:
for rt in redirect_tags:
if rt in command_tuple:
true_shell = 1
break
# special care for R scripts
if command_tuple[0] == "R":
true_shell = 1
except Exception as e:
print(e)
return true_shell
|
ab2f0f02c396354e71e3163f1e78fc5b72cd6b93
| 304,268
|
import requests
import time
def request_url_json(url: str) -> dict:
"""Get JSON object version of reponse to GET request to given URL.
Args:
url: URL to make the GET request.
Returns:
JSON decoded response from the GET call.
Empty dict is returned in case the call fails.
"""
print(url)
try:
req = requests.get(url)
# print(req.url)
except requests.exceptions.ReadTimeout:
print('Timeout occoured, retrying after 10s.')
time.sleep(10)
try:
req = requests.get(url)
except requests.exceptions.ReadTimeout:
print('Timeout occoured, request failed.')
return {}
if req.status_code == requests.codes.ok:
response_data = req.json()
else:
response_data = {'http_err_code': req.status_code}
print('HTTP status code: ' + str(req.status_code))
return response_data
|
98c0ed775c58a99984c09d2c545a8b03f6492f0c
| 633,769
|
def canonicalize_tensor_name(name):
"""Canonicalizes tensor names.
For an op that produces only one output, we may be refer to its output tensor
as either "op_name:0" or simply "op_name". This standardizes all internal
names as "op_name:0" to simplify the logic.
Args:
name: Input name to canonicalize.
Returns:
The canonicalized input name.
"""
if ":" not in name:
return f"{name}:0"
return name
|
5f32572372d9ad6a69f7f9991d2cd8beae3f3d07
| 679,295
|
import ast
def nodeFunctions(node):
"""
Get info about functions at the top level of node
Args:
node: the ast node to search
Returns:
{<function name>: ast node of function}
"""
functionDict = {}
for item in node.body:
if isinstance(item, ast.FunctionDef):
functionDict[item.name] = item
return functionDict
|
ccc21bf7438e41d38a7f35a9274a03463365e557
| 253,640
|
def get_union_set(group):
""" Task 1: gets union set of all questions in a group.
Just add every letter to a set to get the union.
:param group: list of strings
"""
question_set = set()
for declaration in group:
for letter in declaration:
question_set.add(letter)
return question_set
|
acfa8e0eef8a84efd5623a6b6497ae6d8a3f3872
| 333,600
|
import yaml
def load_from_yaml(path, verbose=False):
"""
Load python object stored in yaml file.
:param path: file path to load
:param verbose:
:return: loaded object
"""
with open(path, 'r') as f:
if verbose:
print("Loading data from '" + path + "'")
return yaml.load(f, Loader=yaml.CLoader)
|
375c9db684bdc6abf120b2a119a2a7a2f248df73
| 618,189
|
import itertools
def n_leading_spaces(s):
"""Return number of leading spaces of s"""
return sum(1 for _ in itertools.takewhile(lambda x : x.isspace(), s))
#6789012345678901234567890123456789012345678901234567890123456789012345
|
cfec3045ea4df5bac1d3ee5a54b3021e39137239
| 452,135
|
def sub_account_universal_transfer_history(self, **kwargs):
"""Query Universal Transfer History (For Master Account)
GET /sapi/v1/sub-account/universalTransfer
https://binance-docs.github.io/apidocs/spot/en/#query-universal-transfer-history-for-master-account
fromEmail and toEmail cannot be sent at the same time.
Return fromEmail equal master account email by default.
Only get the latest history of past 30 days.
Keyword Args:
fromEmail (str, optional)
toEmail (str, optional)
startTime (int, optional)
endTime (int, optional)
page (int, optional)
limit (int, optional): Default 10, max 20
recvWindow (int, optional): The value cannot be greater than 60000
"""
return self.limited_encoded_sign_request(
"GET", "/sapi/v1/sub-account/universalTransfer", kwargs
)
|
c552c4eeea8be9eeb0a662cbaa546085d7c5999a
| 696,457
|
def zero_fill(value: bytearray) -> bytearray:
"""
Zeroing byte objects.
Args:
value: The byte object that you want to reset.
Returns:
Reset value.
"""
result = b''
if isinstance(value, (bytes, bytearray)):
result = b'/x00' * len(value)
result = bytearray(result)
return result
|
e5ce1b6162071e3aed7d5adb3aa5b0a20fc526a7
| 675,252
|
import torch
def gridsample(source, field, padding_mode, mode='bilinear'):
"""
A version of the PyTorch grid sampler that uses size-agnostic conventions.
Vectors with values -1 or +1 point to the actual edges of the images
(as opposed to the centers of the border pixels as in PyTorch 4.1).
`source` and `field` should be PyTorch tensors on the same GPU, with
`source` arranged as a PyTorch image, and `field` as a PyTorch vector
field.
`padding_mode` is required because it is a significant consideration.
It determines the value sampled when a vector is outside the range [-1,1]
Options are:
- "zero" : produce the value zero (okay for sampling images with zero as
background, but potentially problematic for sampling masks and
terrible for sampling from other vector fields)
- "border" : produces the value at the nearest inbounds pixel (great for
masks and residual fields)
If sampling a field (ie. `source` is a vector field), best practice is to
subtract out the identity field from `source` first (if present) to get a
residual field.
Then sample it with `padding_mode = "border"`.
This should behave as if source was extended as a uniform vector field
beyond each of its boundaries.
Note that to sample from a field, the source field must be rearranged to
fit the conventions for image dimensions in PyTorch. This can be done by
calling `source.permute(0,3,1,2)` before passing to `gridsample()` and
`result.permute(0,2,3,1)` to restore the result.
"""
if source.shape[2] != source.shape[3]:
raise NotImplementedError('Grid sampling from non-square tensors '
'not yet implementd here.')
scaled_field = field * source.shape[2] / (source.shape[2] - 1)
return torch.nn.functional.grid_sample(source, scaled_field, mode=mode,
padding_mode=padding_mode)
|
6c3f8012e7c6d5d0000a8bd497294e368c9e85a5
| 217,831
|
def calcBounds(array):
"""Calculate the bounding rectangle of a 2D points array.
Args:
array: A sequence of 2D tuples.
Returns:
A four-item tuple representing the bounding rectangle ``(xMin, yMin, xMax, yMax)``.
"""
if len(array) == 0:
return 0, 0, 0, 0
xs = [x for x, y in array]
ys = [y for x, y in array]
return min(xs), min(ys), max(xs), max(ys)
|
b25f75a793c8cc2667b17c76bc0339a1da11af49
| 664,731
|
def validate_config(config, required_fields):
""" Check that the config contains all the required fields.
:param config: A config dictionary to check.
:type config: dict(str: str)
:param required_fields: A list of required fields.
:type required_fields: list(str)
:return: Whether the config is valid.
:rtype: bool
"""
for field in required_fields:
if not field in config:
return False
return True
|
d2499528698034a665917db3aa28efd702592d39
| 478,838
|
import hashlib
def get_file_hash(path, block_size=8192):
"""Calculates the content hash for the file at the given path."""
md5 = hashlib.md5()
with open(path, 'rb') as f:
while True:
block = f.read(block_size)
if not block:
break
md5.update(block)
return md5.hexdigest()
|
429258dc30bb5a6ab10e5c5c5f98000a0c1f324d
| 630,409
|
import torch
def extract_subtensor(tensor: torch.Tensor, ids_time, ids_feature):
"""This method extracts a subtensor specified with the indices.
Args:
tensor: The (T, N_features) tensor from which the data should be extracted.
ids_time: List of the times that should be extracted.
ids_feature: List of the features that should be extracted.
Returns:
torch.Tensor: Submask extracted based on the indices.
"""
T, N_features = tensor.shape
# If no identifiers have been specified, we use the whole data
if ids_time is None:
ids_time = [k for k in range(T)]
if ids_feature is None:
ids_feature = [k for k in range(N_features)]
# Extract the relevant data in the mask
subtensor = tensor.clone().detach()
subtensor = subtensor[ids_time, :]
subtensor = subtensor[:, ids_feature]
return subtensor
|
dd340643c5840319691e45037ad1f4b49b155011
| 521,888
|
from typing import Dict
from typing import Any
from typing import List
def get_key_mapping(inverse_mapping: Dict[Any, List[str]]) -> Dict[str, Any]:
"""Returns the key mapping from the inverse mapping.
Args:
inverse_mapping: A mapping from the mapped input to the list of keys.
Returns:
a mapping from the keys to their mapped input.
"""
mapped_keys = {}
for mapped_key, keys in inverse_mapping.items():
for key in keys:
mapped_keys[key] = mapped_key
return mapped_keys
|
213e5373953bab72682a41981d287c1b1bbb6e35
| 680,183
|
def check_b4_adding(word, gpat, ypat, unused):
"""
Return True if:
gpat indicates that a letter is green and a letter does not match
ypat indicates that a letter is yellow and this letter matches or
this letter is not found in the word
the letter matches a letter known to be unused
@param word String word to check
@param gpat String Green pattern
@param ypat String yellow pattern
@param unused String unused letters
@return True/False
"""
bad = False
for indx, letter in enumerate(gpat):
if letter != '':
if letter != word[indx]:
return True
for indx, ylets in enumerate(ypat):
if ylets != '':
for ltr in ylets:
if ltr == word[indx]:
return True
if ltr not in word:
return True
for letter in word:
if letter in unused:
bad = True
break
return bad
|
5a146ceb9bdc2b9712945ca98d93339d7e6fee4f
| 64,054
|
def pyver() -> str:
""" Returns string with python version number in major.minor.micro format.
(e.g. 3.7.3 or 2.7.12)
"""
return '.'.join(str(i) for i in __import__('sys').version_info[:3])
|
d84ca1fc251acbafb454565ad925b847e158f03d
| 615,357
|
def is_callable(attribute, instance=None):
"""Check if value or attribute of instance are callable."""
try:
if instance:
return callable(getattr(instance, attribute))
else:
return callable(attribute)
except AttributeError:
return False
|
852198540a9889a23fb33e8fb00fec499a5104ea
| 110,713
|
import re
def _get_global_step_for_checkpoint(checkpoint_path):
"""Returns the global step for the checkpoint path, or -1 if not found."""
re_match = re.search(r"ckpt-(\d+)$", checkpoint_path)
return -1 if re_match is None else int(re_match.group(1))
|
d212996f811640c53c2f97f98150dd04ea5d9200
| 607,639
|
def last_char(text: str, begin: int, end: int, chars: str) -> int:
"""Returns the index of the last non-whitespace character in string
`text` within the bounds [begin, end].
"""
while end > begin and text[end - 1] in chars:
end -= 1
return end
|
5d59cd50fb99593d5261513327b9799fc175cd6c
| 705,017
|
from typing import List
import collections
def unique(list_: List) -> List:
"""Remove duplicate entries from list, keeping it in its original order
>>> unique([1, 2, 2, 3, 4, 6, 2, 5])
[1, 2, 3, 4, 6, 5]
>>> unique(['bb', 'aa', 'aa', 'aa', 'aa', 'aa', 'bb'])
['bb', 'aa']
"""
return list(collections.OrderedDict.fromkeys(list_))
|
8707e2d2dbf6b77f8818ad39282b113da9d22707
| 26,339
|
import io
def _is_raw_file(fileobj):
"""Check if fileobj is a raw file object, e.g created with open."""
fileobj = getattr(fileobj, 'raw', fileobj)
return isinstance(fileobj, io.FileIO)
|
57ba494b535b494db30e853d09c8a29af44afc09
| 332,835
|
from typing import List
def list_to_string(a: List[int]) -> str:
""" Returns string of all elements in list a """
rv = ''
for elm in a: rv = rv + ' ' + str(elm)
return rv[1:]
|
30d1cd5e37538bd289bdace6df70910898d66c55
| 191,227
|
def get_items(i, l):
"""
Get a sublist of list elements by their indices
:param list[int] i: a list of elements indices
:param list l: list
:return list: a list of the desired elements
"""
return map(l.__getitem__, i)
|
873863ccdad03729c04c1c22b59dff337b618faf
| 435,420
|
import torch
def to_one_hot(indexes, output_dim):
"""
:param indexes: list of numbers in the range [0, output_dim)
:param output_dim: size of a single one-hot tensor
:return: tensor containing one_hot representation of indexes
"""
assert output_dim >= 2
assert output_dim > max(indexes)
assert min(indexes) >= 0
return torch.eye(output_dim)[indexes]
|
bebf3a084459a95d7b7bf693691a6b0daf9c466d
| 592,499
|
import re
def replace(string, substitutions):
""" Perform many string replacements
all at once.
Parameters
----------
string : str
The string to modify.
substitutions : dict of str to str
The string replacements to perform.
Returns
-------
str
The modified string.
Examples
--------
>>> qosy.tools.replace('ABC', {'A':'AB', 'B':'D', 'C':'AC'}) # 'ABDAC'
"""
# From https://gist.github.com/carlsmith/b2e6ba538ca6f58689b4c18f46fef11c
substrings = sorted(substitutions, key=len, reverse=True)
regex = re.compile('|'.join(map(re.escape, substrings)))
return regex.sub(lambda match: substitutions[match.group(0)], string)
|
b1b1111f01dbe10a3b59ad949ccb126b7d066062
| 64,867
|
import re
def split_keyword(keyword):
"""Split a keyword in multiple ones on any non-alphanumeric character
:param string keyword: keyword
:return: keywords
:rtype: set
"""
split = set(re.findall(r'\w+', keyword))
return split
|
015eb669f8ca309c3abe139d6dbb20d0b9022ae8
| 42,951
|
from random import randint
def deal_community(deck, cardCount):
"""choose cards randomly from deck"""
deckCopy = deck[:]
dealt = []
for i in range(cardCount):
val = randint(0, len(deckCopy)-1)
dealt.append(deckCopy[val])
del deckCopy[val]
return dealt
|
93286355fe3d78fdb1c5eb4ec9f3dd6f4f47ba1f
| 576,561
|
import importlib
def object_from_name(full_object_name):
"""Return an object from its PEP3155 fully qualified name in the form "module:qualname".
Inspired to how pkg_resources:EntryPoint.parse and pkg_resources:EntryPoint.load work."""
module_name, _, object_name = full_object_name.partition(':')
object_ = importlib.import_module(module_name)
for attr_name in object_name.split('.'):
object_ = getattr(object_, attr_name)
return object_
|
6727e2079c64715fb3542bd0500e29958ef534d4
| 191,050
|
def cargar_atletas(nombre_archivo: str) -> list:
"""
Función que carga el archivo con los atletas a una lista.
Parámetro:
nombre_archivo: str.
Retorna:
atletas: list de diccionarios de cada atleta.
diccionario de cada atleta: {'nombre': Nombre del atleta, 'genero': "m" o "f", 'edad': XX,
'pais': país, 'anio': año de los juegos, 'evento': evento concursado,
'medalla': "gold", "silver", "bronze", o "na"}.
"""
# Inicializar lista y apertura de archivo.
atletas = list()
archivo = open(nombre_archivo, "r")
# Omitir línea de títulos.
archivo.readline()
# Agregar datos a la lista.
linea = archivo.readline()
while len(linea) > 0:
datos = linea.split(",")
# Creación de diccionario de atleta individual
atleta = {'nombre': datos[0], 'genero': datos[1], 'edad': int(datos[2]),
'pais': datos[3], 'anio': int(datos[4]), 'evento': datos[5],
'medalla': datos[6].replace("\n", '')}
# Se añade el diccionario del atleta a la lista global de atletas.
atletas.append(atleta)
# Siguiente línea del archivo
linea = archivo.readline()
# Cierre de archivo.
archivo.close()
return atletas
|
35d86defd833fa4cd7a5695164e9fef1d3989651
| 461,327
|
def _format_jid(local=None, domain=None, resource=None):
"""Format the given JID components into a full or bare JID.
:param string local: Optional. The local portion of the JID.
:param string domain: Required. The domain name portion of the JID.
:param strin resource: Optional. The resource portion of the JID.
:return: A full or bare JID string.
"""
result = []
if local:
result.append(local)
result.append('@')
if domain:
result.append(domain)
if resource:
result.append('/')
result.append(resource)
return ''.join(result)
|
0f72520e15ed86636574c231137174636bf9e91f
| 165,226
|
def read_txt(file_path, comment_str="#"):
"""Txt file reader that ignores comments and
empty lines
"""
out = []
with open(file_path, "r", encoding="utf-8") as f:
for line in f:
line = line.partition(comment_str)[0]
line = line.strip()
if len(line) > 0:
out.append(line)
return out
|
5a03ed90474c3cec7beb2065e5c380ae97e24439
| 659,411
|
def suck_out_formats(reporters):
"""Builds a dictionary mapping edition keys to their cite_format if any.
The dictionary takes the form of:
{
'T.C. Summary Opinion': '{reporter} {volume}-{page}',
'T.C. Memo.': '{reporter} {volume}-{page}'
...
}
In other words, this lets you go from an edition match to its parent key.
"""
formats_out = {}
for reporter_key, data_list in reporters.items():
# For each reporter key...
for data in data_list:
# Map the cite_format if it exists
for edition_key, edition_value in data["editions"].items():
try:
formats_out[edition_key] = data["cite_format"]
except KeyError:
# The item wasn't there; add it.
pass
return formats_out
|
a0db907839573ca53f7c96c326afe1eac5491c63
| 701,457
|
def HMS(secs):
"""Return tuple of hours, minutes, and seconds given value in seconds."""
minutes, seconds = divmod(secs, 60.0)
hours, minutes = divmod(minutes, 60.0)
return hours, minutes, seconds
|
9f0a099392d554a789c5d13483a266ac414807bf
| 111,447
|
def _DoesTargetTypeRequireBuild(target_dict):
"""Returns true if the target type is such that it needs to be built."""
# If a 'none' target has rules or actions we assume it requires a build.
return bool(target_dict['type'] != 'none' or
target_dict.get('actions') or target_dict.get('rules'))
|
03f6ab2e5eb1f1e31e70e007231c5495d1ef18eb
| 157,805
|
import hashlib
def find_integer(key, hash_start='0'*5):
"""
Find the smallest integer such that the md5 hash of the
given secret key plus the integer yields a hash that
begins with a certain number of zeroes (default 5).
"""
hashed = ''
i = 0
while not hashed.startswith(hash_start):
i += 1
to_hash = (key + str(i)).encode('ascii')
hashed = hashlib.md5(to_hash).hexdigest()
return i
|
3864ebe49bd2cc9ebab6cc056e015005beacd531
| 244,243
|
def make_dict(list1, list2):
"""
Makes a dictionary using the provided lists.
Input:
list1 (list): List to be used for keys.
list2 (list): list to be used for values.
Output:
out_dict (dict): Dictionary using the input lists
"""
out_dict = {}
i = 0
for item in list1:
out_dict[item] = list2[i] if i < len(list2) else None
i += 1
return out_dict
|
c2731540b3a957a08b4a204ade9a54f91339ab0b
| 684,817
|
def rreplace(s, old, new, occurrence = 1):
"""
Replaces the last occurence(s) of an expression in a string.
"""
return new.join(s.rsplit(old, occurrence))
|
92a3fdb0e5a2014debd6e3530c7c6c754ed45953
| 700,466
|
import ctypes
def load_dll(path):
"""Loads and returns a dynamic library file."""
return ctypes.cdll.LoadLibrary(path)
|
1ff79a237c74172d5cc225ab0076f8cb297771be
| 430,021
|
def raw_table_data(*args, **kwargs):
"""Returns table formatted data for display in the TableField component."""
# pylint: disable=unused-argument
return {
"columns": [
{"title": "id"},
{"title": "name"},
{"title": "type"},
],
"data": [
[18371164, "All", "CUSTOM"],
[18371166, "None", "CUSTOM"],
[18371168, "Localhost", "CUSTOM"],
[18371170, "Localnetworks", "CUSTOM"],
],
}
|
194f5a64ec410d1759e5c9b64edbba284449bb9c
| 460,793
|
import glob
def get_cppn_file_list(training_run, cppn_genome_folder=None):
"""
Get a list containing all files with cppn parameters in the run
:param training_run: String, the name of the training run during which the cppns were saved
:param cppn_genome_folder: String, full path of the folder containing the cppn genomes.
When None, a default location is used
"""
if cppn_genome_folder is None:
cppn_genome_folder = '/uio/hume/student-u31/eirikolb/tmp/niche_encodings/poet_{}/'.format(training_run)
cppn_genome_file_name = 'genome_*.pickle'
cppn_genome_file = cppn_genome_folder + cppn_genome_file_name
return glob.glob(cppn_genome_file)
|
14de3ee2886804fb951434d32e04863cbc320cc0
| 575,065
|
def _flatten(vertices):
""" Convert a nested list of coordinates into a flat list. """
out = []
for item in vertices:
if hasattr(item[0], "__iter__"):
verts = _flatten(item)
out.extend(verts)
else:
out.append(item)
return out
|
9b33f6f1add39ca1667009693403abdee30bbe96
| 380,366
|
def get_systems_to_run_bare_and_oh(df_jobs_anal):
"""
Takes df_jobs_anal and filter to:
* only *O slabs
* slabs that have 'NaN' in the active site (not *O that are run from *OH, which have an active site value)
* Only completed slabs
* Only the first att_num, so that you don't start new sets of *OH and bare jobs from rerun *O jobs
"""
#| - get_systems_to_run_bare_and_oh
# df_jobs_anal = get_df_jobs_anal()
df_jobs_anal_i = df_jobs_anal
var = "o"
df_jobs_anal_i = df_jobs_anal_i.query('ads == @var')
var = "NaN"
df_jobs_anal_i = df_jobs_anal_i.query('active_site == @var')
df_jobs_anal_i = df_jobs_anal_i[df_jobs_anal_i.job_completely_done == True]
# #########################################################
indices_to_remove = []
# #########################################################
group_cols = ["compenv", "slab_id", "ads", ]
grouped = df_jobs_anal_i.groupby(group_cols)
for name, group in grouped:
num_rows = group.shape[0]
if num_rows > 1:
# print(name)
# print("")
# # print(num_rows)
# print("COMBAK CHECK THIS")
# print("This was made when there was only 1 *O calc, make sure it's not creating new *OH jobs after running more *O calcs")
group_index = group.index.to_frame()
group_index_i = group_index[group_index.att_num != 1]
indices_to_remove.extend(
group_index_i.index.tolist()
)
df_jobs_anal_i = df_jobs_anal_i.drop(index=indices_to_remove)
indices_out = df_jobs_anal_i.index.tolist()
return(indices_out)
#__|
|
b5b712907955d570b488719e6b0a55c00cf7bb43
| 330,245
|
def hash_file(hash_object, filepath, blk_size = 8192):
"""
Run a the contents of a file though a hash generator.
:param hash_object: hash object (from :py:mod:`hashlib`)
:param filepath: path to the file to feed
:type filepath: str
:param blk_size: read the file in chunks of that size (in bytes)
:type blk_size: integer
"""
assert hasattr(hash_object, "update")
with open(filepath, 'rb') as f:
for chunk in iter(lambda: f.read(blk_size), b''):
hash_object.update(chunk)
return hash_object
|
d07fe7db3be24c2a37cda0d5de7919f01cdd37bd
| 610,828
|
import re
def SplitWords(input_string):
"""Split by '_' if found, otherwise split at uppercase/numeric chars.
Will split "some_TEXT" into ["some", "TEXT"], "CamelCase" into ["Camel",
"Case"], and "Vector3" into ["Vector", "3"].
"""
if input_string.find('_') > -1:
# 'some_TEXT_' -> 'some TEXT'
return input_string.replace('_', ' ').strip().split()
else:
input_string = input_string.replace('::', ' ')
if re.search('[A-Z]', input_string) and re.search('[a-z]', input_string):
# mixed case.
# look for capitalization to cut input_strings
# 'SomeText' -> 'Some Text'
input_string = re.sub('([A-Z])', r' \1', input_string).strip()
# 'Vector3' -> 'Vector 3'
input_string = re.sub('([^0-9])([0-9])', r'\1 \2', input_string)
return input_string.split()
|
6fd45c9c2cfcc08d0fe1bc2485a2efacd3014406
| 597,978
|
def reverse_dict_lookup(dictionary, value_to_find):
"""
Looks up the key for the supplied value in dictionary dict.
Args:
dictionary: dictionary, the dictionary to do the reverse lookup
value_to_find: the value to find in the dictionary
Raises:
KeyError if value does not exist in the dictionary
"""
for key, value in dictionary.items():
if value == value_to_find:
return key
else:
raise KeyError("Could not find {} in map".format(value_to_find))
|
a9a2c8b6a690e19d006896a88f5022feb3fe42cc
| 408,958
|
import itertools
def pairs(a):
"""creates pairs of elements of a single list (no redundancies)"""
return [X for X in list(itertools.product(a, a)) if X[0] != X[1]]
|
f2b9885663247ff81b023c79a53a1197a11177fa
| 99,249
|
import pytz
def convert_utc_to_localtime(utc_datetime, timezone_str):
"""
轉換 utc 時間為指定的 local 時間,如果輸入的時區有錯,則保持原來的 UTC
Args:
utc_datetime(datetime): utc 時間
timezone(str): 指定轉換的時區,採用 tz database 列表
Returns
timezone_dt(datetime): 回傳轉換好的時區時間
"""
# 取得 tzinfo 的時區
if timezone_str in pytz.common_timezones:
tz = pytz.timezone(timezone_str)
# 取得時區資訊的 dateime
dateime_include_tzinfo = pytz.utc.localize(utc_datetime, is_dst=None)
timezone_dt = dateime_include_tzinfo.astimezone(tz)
return timezone_dt
return utc_datetime
|
3185746161ddfd812f023bdfa74bb58bd2be9113
| 31,840
|
def inc(n):
"""Increment an integer."""
return -~n
|
694ba6320b842985f87a36e452eb0f30e39442b4
| 8,775
|
import json
def read_data(config_path):
"""Read in log configuration data from config_path."""
with open(config_path) as infile:
return json.load(infile)
|
c032e8d3a2eae24e89947aa62b72b4b94807b44a
| 437,282
|
def elide_text(text: str, max_length: int) -> str:
"""Shorten a string to a max length and end it with an ellipsis."""
return text if len(text) < max_length else f"{text[:max_length]}..."
|
0fc2072c53eb70e7e2ed3fb1d132a9a608c4a400
| 642,511
|
def is_true(v) -> bool:
"""
Check if a given bool/str/int value is some form of ``True``:
* **bool**: ``True``
* **str**: ``'true'``, ``'yes'``, ``'y'``, ``'1'``
* **int**: ``1``
(note: strings are automatically .lower()'d)
Usage:
>>> is_true('true')
True
>>> is_true('no')
False
:param Any v: The value to check for truthfulness
:return bool is_true: ``True`` if the value appears to be truthy, otherwise ``False``.
"""
v = v.lower() if type(v) is str else v
return v in [True, 'true', 'yes', 'y', '1', 1]
|
52b86d4dcc9d48787ed4490125d20b044f6a981b
| 300,590
|
def trim_tokens_predtags(tokens, tags):
"""Remove the '[CLS]' token and corresponding tag as well as the everything starting from
the first '[SEP]' token and corresponding tags.
"""
sep_idx = tokens.index("[SEP]")
return tokens[1:sep_idx], tags[1:sep_idx]
|
99272754ca55fc853ab2e5e0c5391af4f3d039b6
| 389,987
|
def extended_gcd(n_1, n_2):
""" Returns (bezout_a, bezout_b, gcd) using the extended euclidean algorithm.
Params
n1: int
n2: int
Returns
bezout_a: int
bezout_b: int
gcd: int """
x = 0
x_old = 1
y = 1
y_old = 0
while n_2 != 0:
q = n_1 // n_2 #quotient
n_1, n_2 = n_2, n_1%n_2
x, x_old = x_old - q*x, x
y, y_old = y_old - q*y, y
bezout_a = x_old
bezout_b = y_old
gcd = n_1
return (bezout_a, bezout_b, gcd)
|
43f0c25f23d3717a0655bd640bc9fec31bb948a8
| 535,622
|
def str_parse_as_utf8(content) -> str:
"""Returns the provided content decoded as utf-8."""
return content.decode('utf-8')
|
75b8d5f1f8867c50b08146cc3edc1d0ab630280a
| 707,464
|
def atmDensPoly6th(ht, dens_co):
""" Compute the atmosphere density using a 6th order polynomial. This is used in the ablation simulation
for faster execution.
Arguments:
ht: [float] Height above sea level (m).
dens_co: [list] Coeffs of the 6th order polynomial.
Return:
atm_dens: [float] Atmosphere neutral mass density in kg/m^3.
"""
# Compute the density
rho_a = 1000*(10**(dens_co[0]
+ dens_co[1]*(ht/1000)
+ dens_co[2]*(ht/1000)**2
+ dens_co[3]*(ht/1000)**3
+ dens_co[4]*(ht/1000)**4
+ dens_co[5]*(ht/1000)**5))
return rho_a
|
653b134d513c3fd9b55e72ee37a4c7116aadf8cf
| 700,634
|
def _split_predictions(X, y_true, y_pred, Y_prob):
"""Splits the data based on whether the prediction was correct."""
t_mask = y_true == y_pred
f_mask = ~t_mask
split_arrays = [(A[t_mask], A[f_mask]) for A in [X, y_true, y_pred, Y_prob]]
return list(zip(*split_arrays))
|
7287db972f5714fb7fac1e3d5ac8b50b831c1a91
| 491,926
|
def write_dot(tree, fn, binary=False):
"""
Given a tree (which may or may not contain frequencies), write
a graphviz '.dot' file with a visual representation of the tree.
"""
special_ascii = {' ': 'SPACE', '\n': 'LF', '\r': 'CR', '\t': 'TAB',
'\\': r'\\', '"': r'\"'}
def disp_sym(i):
if binary:
return '0x%02x' % i
else:
c = chr(i)
res = special_ascii.get(c, c)
assert res.strip(), repr(c)
return res
def disp_freq(f):
if f is None:
return ''
return '%d' % f
with open(fn, 'w') as fo: # dot -Tpng tree.dot -O
def write_nd(fo, nd):
if nd.symbol is not None: # leaf node
a, b = disp_freq(nd.freq), disp_sym(nd.symbol)
fo.write(' %d [label="%s%s%s"];\n' %
(id(nd), a, ': ' if a and b else '', b))
else: # parent node
fo.write(' %d [shape=circle, style=filled, '
'fillcolor=grey, label="%s"];\n' %
(id(nd), disp_freq(nd.freq)))
for k in range(2):
if nd.child[k]:
fo.write(' %d->%d;\n' % (id(nd), id(nd.child[k])))
for k in range(2):
if nd.child[k]:
write_nd(fo, nd.child[k])
fo.write('digraph BT {\n')
fo.write(' node [shape=box, fontsize=20, fontname="Arial"];\n')
write_nd(fo, tree)
fo.write('}\n')
|
4a3d029c8beebd697fc66f771543f04fb1636efa
| 226,339
|
def add_whitespace(bounding_box: list, border: int = 5) -> list:
"""
Add white space to an existing bounding box.
Parameters
----------
bounding_box : list
Four corner coordinates of the cropped image without whitespace.
border : int
The amount of whitespace you want to add on all sides.
Returns
-------
Bounding box with increased whitespace.
"""
assert len(bounding_box) == 4, "Bounding box can only have 4 corners"
larger_box = []
for i, corner in enumerate(bounding_box):
if i < 2:
larger_box.append(corner - border)
else:
larger_box.append(corner + border)
return larger_box
|
54d94b9b858e8ebf41275c7ab0a91c8520b06b68
| 56,362
|
def nf_input_to_cl(inp):
"""Convert an input description into command line argument.
"""
sep = " " if inp.get("separate") else ""
val = "'%s'" % inp.get("default") if inp.get("default") else "$%s" % inp["name"]
return "%s%s%s" % (inp["prefix"], sep, val)
|
54943a85ffd0b8c7f5e8b5e5b6d5223b767e6b91
| 59,228
|
def pass_floats(output_string):
"""Parse AFNI command STDOUT output strings and return the output values
as a list of floats.
:type output_string: str
:param output_string: An AFNI command standard output.
:rtype: list
:return: A list of float values.
"""
lines = output_string.splitlines()
values_list = []
for l in lines:
try:
val = float(l)
values_list.append(val)
except:
pass
return values_list
|
1f482069decfac59314a4864de395ffb6c4ea074
| 185,045
|
def averageGuessesFromGuessMap(guessMap: dict[int, int]) -> float:
"""Return average guesses from map using weighed sum in form <guesses: words>,
e.g <1:20, 3:5> returns 1.75"""
weighedSum = 0
wordsCount = 0
for key,item in guessMap.items():
weighedSum = weighedSum + key*item
wordsCount = wordsCount + item
return weighedSum/wordsCount
|
58d494133386915f7c7c7bc3a75becc129c7ff41
| 34,670
|
def color_rgb(r,g,b):
"""r,g,b are intensities of red, green, and blue in range(256)
Returns color specifier string for the resulting color"""
return "#%02x%02x%02x" % (r,g,b)
|
46a592f92ddbb9c6378805f4a36ac0ee09799948
| 227,840
|
def SlashEscapePackageName(pkg_ref, unused_args, request):
"""Escapes slashes in package name for ListVersionsRequest."""
request.parent = "{}/packages/{}".format(
pkg_ref.Parent().RelativeName(),
pkg_ref.packagesId.replace("/", "%2F"))
return request
|
46d4a20f119ca4655cf6e4f693d9c4b9eb524b1c
| 694,337
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.