content
stringlengths
39
9.28k
sha1
stringlengths
40
40
id
int64
8
710k
def get_table_item(table, pk_value, sk_value): """ Return item read by primary key. """ response = table.get_item(Key={"pk": pk_value, "sk": sk_value}) if "Item" not in response: response["Item"] = [] return response["Item"]
e06656011041fba8bdf95e9f11ab285fae7429a3
514,809
def _query_for_log(query: bytes) -> str: """ Takes a query that ran returned by psycopg2 and converts it into nicely loggable format with no newlines, extra spaces, and converted to string :param query: Query ran by psycopg2 :return: Cleaned up string representing the query """ return ' '.join(query.decode().replace('\n', ' ').split())
047480bb6ad41621fb7f92ffa6fedfb03cfa4f6b
32,962
def centeroidOfTriangle(pa, pb, pc): """ when given 3 points that are corners of a triangle this code calculates and returns the center of the triangle. the exact type of center is called "centeroid". it is the intersection point of the connection of each angle to the middle of its opposed edge. two of these connections are enough to get the intersection point. https://en.wikipedia.org/wiki/Centroid https://en.wikipedia.org/wiki/Line%E2%80%93line_intersection#Given_the_equations_of_the_lines """ # get the middle of the opposing line (point pa to point pb has middle cm) am = [(pb[0] + pc[0]) / 2, (pb[1] + pc[1]) / 2] bm = [(pa[0] + pc[0]) / 2, (pa[1] + pc[1]) / 2] denominator = (pa[0] - am[0]) * (pb[1] - bm[1]) - \ (pa[1] - am[1]) * (pb[0] - bm[0]) if denominator != 0: x = ((pa[0] * am[1] - pa[1] * am[0]) * (pb[0] - bm[0]) - (pa[0] - am[0]) * (pb[0] * bm[1] - pb[1] * bm[0])) / denominator y = ((pa[0] * am[1] - pa[1] * am[0]) * (pb[1] - bm[1]) - (pa[1] - am[1]) * (pb[0] * bm[1] - pb[1] * bm[0])) / denominator else: print(f"cant find center for {pa}, {pb}, {pc}") x = pa[0] y = pa[1] return [x, y]
ab21975df0b87dfdbaa459c80fb7d01fdc319e2e
183,552
from functools import reduce from operator import or_ def variables(formula): """ set of variables in formula >>> variables([1,(1,-2),(3,4),(-3,-1)]) {1, 2, 3, 4} """ return reduce(or_,map(lambda x:set(map(abs,x)), formula[1:]))
9d2a8328264a658c3dabc3b7cd79e4937bb09053
347,705
def trash_file(drive_service, file_id): """ Move file to bin on google drive """ body = {"trashed": True} try: updated_file = drive_service.files().update(fileId=file_id, body=body).execute() print(f"Moved old backup file to bin.") return updated_file except Exception: print(f"!!! did not find old bkp file with id {file_id}")
f9a2a331a74cdb4050dc6bb788fc398d7db90ec1
672,214
def generate_hand(deck): """Generate a random hand from the available cards""" return [deck.pop() for x in range(7)]
56750b380c7c69c78298224d2b9c44ad26ed6a47
179,168
def gc_content(dna_seq): """Returns GC content of a DNA strand as a percentage""" return round((dna_seq.count("C") + dna_seq.count("G")) / len(dna_seq) * 100)
99bbb34cc5793447d848751b242c6a00bb3e8dd2
193,073
def dist_mapper(dist, package): """ Add download_url from source tag, if present. Typically only present in composer.lock """ url = dist.get('url') if not url: return package package.download_url = url return package
d204104c379c482fae5c5fac5a3c27df9b44dbd5
427,658
import torch def get_knn_inds(pdist, k=20, remove=False): """Get k nearest neighbour index based on the pairwise_distance. Args: pdist (torch.Tensor): tensor (batch_size, num_nodes, num_nodes) k (int): the number of nearest neighbour remove (bool): whether to remove itself Returns: knn_inds (torch.Tensor): (batch_size, num_nodes, k) """ if remove: _, knn_inds = torch.topk(pdist, k + 1, largest=False, sorted=False) return knn_inds[..., 1:] else: _, knn_inds = torch.topk(pdist, k, largest=False, sorted=False) return knn_inds
d6c70a3a4e4f7959fa2f11c02eb23a27422b616b
163,245
import typing def get_args(t: type) -> typing.Tuple[type, ...]: """ Get the arguments from a collection type (e.g. ``typing.List[int]``) as a ``tuple``. :param t: the collection type. :return: a ``tuple`` containing types. """ args_ = getattr(t, '__args__', tuple()) or tuple() args = tuple([attr for attr in args_ if type(attr) != typing.TypeVar]) return args
35262366558d27fe1fb8b8d07fb6ff0069501bc9
518,649
from typing import List def matrix_reshape(mat: List[List[int]], r: int, c: int) -> List[List[int]]: """ Reshapes a given matrix into a new one with a different size r x c keeping its original data @param mat: input matrix @param r: new row @param c: new column @return: reshaped matrix """ if len(mat) * len(mat[0]) != r * c: return mat values = (val for row in mat for val in row) return [[next(values) for _ in range(c)] for _ in range(r)]
f4a760aa37601a3a7cf7010fbf17dd1a5969df44
381,309
import six def byte(integer): """ Convert integer to a one-character byte-string Similar to chr(), except in Python 3 produce bytes() not str() Same as pack_integer(integer, num_bytes=1) """ return six.binary_type(bytearray((integer,)))
15ed5b914c93536f2d1c15cb00a5f8ed83fa496f
493,909
import re def replaceTags(value, data_record): """ As efficiently as possible, replace tags in input string with corresponding values in data_record dictionary. The idea is to iterate through all of the elements of the data_record, and replace each instance of a bracketed key in the input string with the associated value indicated by the data record. This function will be used a lot, so it's important to make it as efficient as possible. Args: value (str): The string with tags to replace data_record (dict): A dict containing the tags to replace, and what to replace them with Returns: str: `value` with the tags replaced Examples: >>> data_record = {"a": "AAA", "b": "BBB"} >>> input_value = "aye [a] and bee [b]" >>> replaceTags(input_value, data_record) 'aye AAA and bee BBB' """ prog = re.compile(r"\[([a-zA-Z_][a-zA-Z0-9_\(\)]*)\]") matches = prog.finditer(value) for match in matches: if match.group(1) in data_record: value = value.replace(match.group(0), data_record[match.group(1)]) return value
88e1e2d6c279eb50a615e9a6648fa5d08f525f18
676,977
def d2_parse_output(predictor_output): """ Returns valuable information from Detectron2 predictor output. Args: coco_output (dictionary) : Output from Detectron2 COCO Predictor. Returns: pred_masks (np.array) : Each predicted binary mask. mask_scores (np.array) : Score of each mask. pred_class (int) : Integer representing predicted class. pred_bboxed (np.array) : Predicted Boxes. """ instances = predictor_output["instances"] pred_bboxes = instances.pred_boxes.tensor.cpu().numpy() pred_classes = instances.pred_classes.cpu().numpy() pred_masks = instances.pred_masks.cpu().numpy() mask_scores = instances.scores.cpu().numpy() return pred_masks, mask_scores, pred_classes, pred_bboxes
7941eb6b63312524a63d49624ac024a9d3faa0d2
298,286
import csv def precip_table_etl_cnrccep( ws_precip, rainfall_adjustment=1 ): """ Extract, Transform, and Load data from a Cornell Northeast Regional Climate Center Extreme Precipitation estimates csv into an array Output: 1D array containing 24-hour duration estimate for frequencies 1,2,5,10,25,50,100,200 years. Example: [5.207, 6.096, 7.5438, 8.8646, 10.9982, 12.9286, 15.2146, 17.907, 22.1996] """ precips = [] # Open the precipitation data csv and read all the precipitations out. with open(ws_precip) as g: input_precip= csv.reader(g) # Skip the first 10 rows of the csv, which are assorted header information. for j in range (1, 11): next(g) k=1 for row in input_precip: # Grab data from column containing 24-hour estimate P=float(row[10]) # convert to cm and adjust for future rainfall conditions (if rainfall_adjustment is > 1) precips.append(P*2.54*rainfall_adjustment) if k>8: break else: k=k+1 return precips
ed1fef33ad36b0a5c1405242ef491b327e5d5911
674,437
def _print(*args): """Print an object in the stdout.""" return print(*args)
c1b25a1bb6c75fbff7c23b826b48918af95351bf
223,074
def get_next_dev_version(current_version, version_increment_strategy, incremental_release=False): """ Returns the next development version to use. The development version always ends with "-SNAPSHOT". If incremental_release is False: Increments and returns current_version using the specified version_increment_strategy. If incremental_release is True: Returns the current version (because it hasn't been released yet) """ if current_version is None: return None if incremental_release: next_version = current_version else: next_version = version_increment_strategy(current_version) if not next_version.endswith("-SNAPSHOT"): next_version += "-SNAPSHOT" return next_version
9742efce3ba62ec5beb733bc9f3d33aece8326dd
467,950
def format_in_columns(lst, max_columns): """ Format a list containing strings to a string containing the items in columns. """ lst = [str(_m) for _m in lst] col_len = max([len(_m) for _m in lst]) + 2 ncols = 80//col_len if ncols > max_columns: ncols = max_columns if ncols <= 0: ncols = 1 if len(lst) % ncols == 0: nrows = len(lst)//ncols else: nrows = 1 + len(lst)//ncols fmt = ' %%-%ds ' % (col_len-2) lines = [] for n in range(nrows): lines.append("".join([fmt % x for x in lst[n::nrows]])) return "\n".join(lines)
015c05caf2d4f8540adbdc530e178dd86d208133
348,141
def paths_to_edges(paths, repeat=False): """Chops a list of paths into its edges. Parameters ---------- paths: list of tuples list of the paths. repeat: bool (False) include edges repeats? Returns ------- edges: list List of edges """ edges = [] for path in paths: edges += [(path[i], path[i+1]) for i in range(len(path)-1)] # Return a list of edges with repeats if repeat: return edges # Else remove repeats else: return list(set(edges))
c3c9e0d5874acdf3a1b648a4009d05213469ce11
155,582
def get_dict_diff(d1, d2): """Get added/removed/changed keys between two dicts. Each key in the return value is a list, which is the namespaced key that was affected. Returns: 3-tuple: - list of added keys; - list of removed key; - list of changed keys. """ def _diff(d1_, d2_, namespace): added = [] removed = [] changed = [] for k1, v1 in d1_.items(): if k1 not in d2_: removed.append(namespace + [k1]) else: v2 = d2_[k1] if v2 != v1: if isinstance(v1, dict) and isinstance(v2, dict): namespace_ = namespace + [k1] added_, removed_, changed_ = _diff(v1, v2, namespace_) added.extend(added_) removed.extend(removed_) changed.extend(changed_) else: changed.append(namespace + [k1]) for k2 in d2_.keys(): if k2 not in d1_: added.append(namespace + [k2]) return added, removed, changed return _diff(d1, d2, [])
f111be20eda2271d43272fd9958edfcc43e15546
457,762
def long_repeat(line: str) -> int: """ length the longest substring that consists of the same char """ if len(line) == 0: return 0 if len(set(list(line))) == 1: return len(line) ans = 1 count = 1 for i in range(len(line)-1): if line[i] == line[i+1]: count += 1 else: if count > ans: ans = count count = 1 return ans
a7a3bcf3025fc1aa01832b2c441332a915239c87
265,858
import re def _get_metadata_from_filename_by_regex(filename, metadata_regexp): """ Tries to ried the metadata from the filename based on the given re. This requires to use symbolic group names in the pattern. The part to read the metadata from the filename based on a regular expression is taken from Pelican - pelican/readers.py """ match = re.match(metadata_regexp, filename) meta = {} if match: # .items() for py3k compat. for key, value in match.groupdict().items(): meta[key.lower()] = value # metadata must be lowercase return meta
5189f9adcee3f58d890356b7afce22098e28813a
183,607
def create_search_group(recordset = None, field = None, values = None, criteria_operator = "EqualTo"): """ Create a Coalesce search group/filter object (the value of "group" in a `Coalesce search request object <https://github.com/InCadence/coalesce/wiki/REST-API#search-query-data-format>`_) that combines all entered values for a given field, either including or excluding (depending on the value of "criteria_operator") all records matching any of the supplied values. :param recordset: the (:class:`str`) recordset of the field to be search on :param field: the (:class:`str`) field to be searched on :param values: a :class:`list` or list-like of values to search for. The values themselves should be of simple, JSON-serializable types (e.g., strings, numbers, Boolean). :param criteria_operator: "EqualTo", if the search is to *include* a record matching *any* element of "values", or "NotEqualTo", if the search is to *exclude all* records matching *any* element of "values". :returns: a Coalesce search group as a :class:`dict`, or ``None`` if "values" is empty """ # Check for valid input for "recordset" and "field". if not isinstance(recordset, str): raise TypeError("Please supply a recordset as a string.") if not isinstance(field, str): raise TypeError("Please supply a field to search on, as a string.") # Check for valid input for "values". This includes a check to make sure # we got an iterable of values, not just a single one. values_error_msg = "Please supply a list or list-like of values to " + \ "search for." if not values: raise TypeError(values_error_msg) elif isinstance(values, str): raise TypeError(values_error_msg) else: try: values[0] except: raise TypeError(values_error_msg) # Check for valid inpurt for "criteria_operator". if criteria_operator == "EqualTo": group_operator = "OR" elif criteria_operator == "NotEqualTo": group_operator = "AND" else: raise ValueError('The value of "criteria_operator" must be either ' + '"EqualTo" or "NotEqualTo".') # Create the criteria list. criteria = [] for value in values: criteria_set = {"recordset": recordset, "field": field, "operator": criteria_operator, "value": value, "matchCase": False} criteria.append(criteria_set) # Create the search group and return it, or return None if no values # were supplied. if len(criteria) > 0: group = {"operator": group_operator, "criteria": criteria} else: group = None return group
b55e37f2df255b19e8e12566031cf7f784ff094b
629,414
def interpolate_line(x1, y1, x2, y2): """ This functions accepts two points (passed in as four arguments) and returns the function of the line which passes through the points. Args: x1 (float): x-value of point 1 y1 (float): y-value of point 1 x2 (float): x-value of point 2 y2 (float): y-value of point 2 Returns: callable: the function of the line """ if x1 == x2: raise ValueError("x1 and x2 must be different values") def f(x): slope = (y2 - y1) / (x2 - x1) return slope * (x - x1) + y1 return f
71b26e50fb21f22333df7b20ddacf7bc376789cc
33,222
def _get_date_middle(date_a, date_b, position=0.5): """Linearly interpolates two given timestamps.""" return date_a + (date_b - date_a) * position
08d2d3958b38357446d8dd456f34bd5a795fffe1
527,274
def _models_delete_all_function_name(model): """Returns the name of the function to delete all models from the database""" return '{}_delete_all'.format(model.get_table_name())
cae69394299f7dd79e95253740481c0455b4facd
193,820
import re def format_docstring(docstring): """ Strips whitespace from docstrings (both on the ends, and in the middle, replacing all sequential occurrences of whitespace with a single space). """ if not docstring: return '' return re.sub(r'\s+', ' ', docstring).strip()
0dfb6e144ce543805344788a733d413f50363ca6
180,468
def prettyprint_file_size(size_b: int) -> str: """ Format a filesize in terms of bytes, KB, MB, GB, whatever is most appropriate. :param size_b: int size in bytes :return: string """ if size_b < 1024: # bytes ret = "%d B" % size_b elif size_b < 1024*1024: # kilobytes s = size_b / 1024 ret = "{:.2f} KB".format(s) elif size_b < 1024*1024*1024: # megabytes s = size_b / (1024*1024) ret = "{:.2f} MB".format(s) else: # gigabytes s = size_b / (1024*1024*1024) ret = "{:.2f} GB".format(s) return ret
0b1fb5760dc260a2deda6b79eb21ed72af20bcee
398,754
def quick_deepcopy(obj): """Deep copy an object consisting of dicts, lists, and primitives. This is faster than Python's `copy.deepcopy` because it doesn't do bookkeeping to avoid duplicating objects in a cyclic graph. This is intended to work fine for data deserialized from JSON, but won't work for everything. """ if isinstance(obj, dict): obj = {k: quick_deepcopy(v) for k, v in obj.items()} elif isinstance(obj, list): obj = [quick_deepcopy(v) for v in obj] return obj
1a18f9b6ee1e25b2ccab718685b31ab0fbbc6682
343,140
import torch def D_power_bias_X(graph, X, power, coeff, bias): """Y = (coeff*D + bias*I)^{power} X""" degs = graph.ndata["deg"] degs = coeff * degs + bias norm = torch.pow(degs, power) Y = X * norm.view(X.size(0), 1) return Y
bf1df377d672c7010be012fe126f033c31d63b67
286,410
from datetime import datetime def diff_datewise(left, right, left_parse=None, right_parse=None): """ Parameters left : a list of datetime strings or objects right : a list of datetime strings or objects left_parse : if left contains datetimes, None; else a strptime format right_parse : if right contains datetimes, None; else a strptime format Returns A tuple of two sets: [0] : the datetime objects in left but not right [1] : the datetime objects in right but not left """ if left_parse: left_set = set([ datetime.strptime(l.strip(), left_parse) for l in left if len(l.strip()) ]) else: left_set = set(left) if right_parse: right_set = set([ datetime.strptime(r.strip(), right_parse) for r in right if len(r.strip()) ]) else: right_set = set(right) return (left_set - right_set, right_set - left_set)
fc9f4e07be98969729c87cfe649dee8f0a621485
387,888
def getTitlePerks() -> list: """ Get the list of perks to look for in the job description :return: list - list of perks """ perkList = ["Why you'll like working here", 'Benefits', "The top five reasons our team members joined us (according to them)", "What’s in it for you?", "Some benefits", "Here’s what you’ll get if you join", "What you get", "What We Offer", "benefits and perks", "Why should I choose", "What we offer", "We offer", "Our Perks", "What You’ll Get", "Perks", "What we offe"] return perkList
6dae31ce2ed55fab41ad495067ff0cdca4372bb0
628,237
from typing import List def count_failed_students(student_scores: List[int]) -> int: """ :param student_scores: list of integer student scores. :return: integer count of student scores at or below 40. """ return len(list(filter(lambda x: x <= 40, student_scores)))
c3fb0cc4fecb946a1850465f342e3530012826c1
629,675
from typing import Union import json def load_json_from_file(path: str) -> Union[dict, list, str, int]: """Load JSON from specified path""" with open(path, 'r', encoding='utf-8') as infile: return json.load(infile)
c8ba755c62ea4ab6fe74b4571034967ce610afdf
30,626
import glob def find_file(filename): """ This helper function checks whether the file exists or not """ file_list = list(glob.glob("*.txt")) if filename in file_list: return True else: return False
42895e66e258ba960c890f871be8c261aec02852
705,802
import copy def rescale_with_ratios(info, width_ratio, height_ratio): """ Rescale heatmaps sides given its info and ratios. :param info: dict, heatmaps info :param width_ratio: float, ratio by which width will be multiplied :param height_ratio: float, ratio by which height will be multiplied :return: dict, heatmaps info rescaled (copy) """ info = copy.deepcopy(info) if width_ratio == 1 and height_ratio == 1: return info info['img_width'] = round(width_ratio * info['img_width']) info['img_height'] = round(height_ratio * info['img_height']) for cwh in info['cwh_list']: cwh['width'] = round(width_ratio * cwh['width']) cwh['height'] = round(height_ratio * cwh['height']) cwh['center'] = (cwh['center'][0] * width_ratio, cwh['center'][1] * height_ratio) return info
f9b00f7cdadf1fc819d85d593a5edb8aa16ec40e
473,025
def denormalize(data, norm_params, method='zscore'): """ Reverse normalization time series :param data: normalized time series :param norm_params: tuple with params mean, std, max, min :param method: zscore or minmax :return: time series in original scale """ assert method in ['zscore', 'minmax', None] if method == 'zscore': return (data * norm_params['std']) + norm_params['mean'] elif method == 'minmax': return (data * (norm_params['max']) - (norm_params['min']) + norm_params['max']) elif method is None: return data
6ade12499b2f89639b128585290d676dfef8dee7
550,894
import random def random_tuple(t1_max, t2_max): """Return a random tuple between (0, 0) and (t1_max, t2_max).""" return (int(random.random()*t1_max), int(random.random()*t2_max))
526a00850e2b3c0e91b28f08b30eb1ec908e8b4f
347,249
def mafIsEmpty(maf, headers): """ take a path to a maf file and a list of possible header strings. an "empty" maf in this context will contain only a header line. """ f = open(maf) s = f.read() for h in headers: if s == h: return True return False
c793c9f167013ae6876a514108ce51f7047c3231
245,613
async def unlock(command, fps): """Unlocks the FPS.""" result = await fps.unlock() if result: command.info(locked=False) return command.finish(text="FPS unlocked") else: return command.fail(error="failed to unlock FPS")
5021268813eae46afc19eb5632b24e6cbff71479
268,997
def get_ta(tr, n_slices): """ Get slice timing. """ return tr - tr/float(n_slices)
c1cba31153cd44ac6b72235b876da352c37eb7e2
687,175
def get_expected_number_of_faces(off_file): """ Finds the expected number of faces in an OFF file. Used to check this matches the number of items in a pixel mapping list. :param off_file: The OFF file. :return: The number of faces in the OFF file. """ for line in off_file.split("\n")[1:]: if line[0] != "#": return int(line.split()[1])
8486fa165f43d924c6dd17b2670d75f8091256d1
49,323
def length_of_last_word(s): """ Returns the length of last word in the given string :param s: given string :type s: str :return: the length of last word :rtype: int """ return len(s.strip().split(' ')[-1])
d9c0a998a7f12f5e0bfa7aef207e822010e46061
158,148
import yaml def _read_yaml(fpath, loader=yaml.Loader): """ Returns contents of YAML file as parsed by `yaml.load`. :param fpath: file path :param loader: Loader class. :return: contents of YAML file """ with open(fpath, 'r') as reader: contents = yaml.load(reader, Loader=loader) return contents
dbd4417272e8d57613772d52da890c5f9e7b666b
281,484
def find_empty_cells(gr): """ Collects all the (i,j) free couples of the grid :param gr: 2D list :return: list """ l = list() for i in range(0,9): for j in range(0,9): if(gr[i][j] == 0): l.append([i, j]) return l
32a20594785223f981774eef26a259e131e1f7ce
207,009
def middle(a): """Returns a (list) without the first and last element""" return a[1:-1]
112854e009afaf6080363f3f1b3df944b4739ede
20,922
import inspect def get_fields_and_properties(cls): """ Return all fields and @property methods for a model. """ fields = [field.name for field in cls._meta.get_fields(include_parents=False)] properties = [] try: properties = [ method[0] for method in inspect.getmembers(cls, lambda o: isinstance(o, property)) ] except BaseException: properties = [] return fields + properties
d7f4bdb52194181a97bdb28805b4ab73403b618d
487,787
def split_verses_refs(ref, total=0): """ If there are references to multiple verses, split them "Romans 8:1-3" -> ["Romans 8:1", "Romans 8:2", "Romans 8:3"] >>> split_verses_refs("Romans 8:1-3") ["Romans 8:1", "Romans 8:2", "Romans 8:3"] >>> split_verses_refs("Book 2:4-7") ["Book 2:4", "Book 2:5", "Book 2:6", "Book 2:7"] >>> split_verses_refs("Book 3", 5) ["Book 3:1", "Book 3:2", "Book 3:3", "Book 3:4", "Book 3:5"] """ start_verse = 1 if ":" in ref: split_refs = ref.split(":") book_and_chapter = split_refs[0] verse_refs = split_refs[1].split("–") start_verse = int(verse_refs[0]) end_verse = int(verse_refs[1]) else: book_and_chapter = ref end_verse = total full_refs = [] for i in range(start_verse, end_verse + 1): full_refs.append(f"{book_and_chapter}:{i}") return full_refs
a6a64662fc8d2a46f37ab7e42c2c9ec77fbda162
424,177
def get_syntax(command, fn, command_prefix): """ Read back the syntax argument provided in a command's wrapper. Return it in a printable format. :param command: Command being called. :param fn: Function which the command is wrapped around. :param command_prefix: Prefix used for commands in chat. :return: String. Syntax details of the target command. """ return "Syntax: {}{} {!s}".format( command_prefix, command, fn.syntax)
2780b883bc067805744baa9163ba3ad7786490c3
72,534
def list_range(x): """ Returns the range of a list. """ return max(x) - min(x)
43afbd92537f6d1e044c6ecafabcb82b0a823056
120,713
def dict_factory(cursor, row): """Convert database row objects to a dictionary. This is useful for building dictionaries which are then used to render a template. Note that this would be inefficient for large queries. """ output = {} for idx, col in enumerate(cursor.description): output[col[0]] = row[idx] return output
6cbacf38db778f3aeb559c84860354dfa3296344
580,907
def get_seq_diff(seq_tuple): """Returns the difference between two TCP sequence numbers.""" (seq_min, seq_max) = seq_tuple if None in (seq_min, seq_max) or 0 in (seq_min, seq_max): return None # Seq wrap-around diff = seq_max - seq_min if diff < 0: diff += 2 ** 32 return diff
cdb18eedcf563e245a1f42cdd4cfb7131b073acf
606,478
import hashlib def valid_proof(block_string, new_proof): """ Validates the Proof: Does hash(block_string, proof) contain 6 leading zeroes? Return true if the proof is valid :param block_string: <string> The stringified block to use to check in combination with `proof` :param proof: <int?> The value that when combined with the stringified previous block results in a hash that has the correct number of leading zeroes. :return: True if the resulting hash is a valid proof, False otherwise """ guess = f'{block_string}{new_proof}'.encode() guess_hash = hashlib.sha256(guess).hexdigest() return guess_hash[:3] == "000"
6c1f2c79d114ebca1da75324be2db0f7d330b253
491,708
from pathlib import Path def package_path(package): """Returns the location of the passed package. Arguments: package: A package object. Returns: An absolute Path object pointing to the package's location. """ return Path(package.__path__[0])
81df072ce85f9f39b39fe5c15dc28ca267c1f892
155,913
def unpack_question_dimid(dimension_id): """Decompose the dimension id into unit, lesson and question id. Returns: A tuple unit_id, lesson_id, question_id. unit_id and question_id are strings. lesson_id can be a string or None. """ unit_id, lesson_id, question_id = dimension_id.split(':') if lesson_id == 'None': lesson_id = None return unit_id, lesson_id, question_id
4133ec1ce5cd986b64c9af096931b9f2bf8cb123
18,046
def time_diff_in_ms(start, end): """ Returns the time difference end-start in ms. """ return (end-start)*1000
fa1ebb92da81eafb117d357866bafbbb70f18f0f
474,574
from pathlib import Path def fixture_fixtures_dir() -> Path: """Return the path to the fixtures directory""" return Path("tests/fixtures/")
509dab97a066fb286bdd8311fadf3b7f0d62b7f2
124,610
def rstrip_lines(text: str) -> str: """Remove trailing whitespace from each line in the text.""" return '\n'.join(line.rstrip() for line in text.split('\n'))
ddd3bb5fca65c921f33e67d4c3d7e03b26227cc7
369,727
import re def validate_maintenance_window(window): """Validate PreferredMaintenanceWindow for DBInstance""" days = ("Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun") day_re = r'[A-Z]{1}[a-z]{2}' hour = r'[01]?[0-9]|2[0-3]' minute = r'[0-5][0-9]' r = ("(?P<start_day>%s):(?P<start_hour>%s):(?P<start_minute>%s)-" "(?P<end_day>%s):(?P<end_hour>%s):(?P<end_minute>%s)") % (day_re, hour, minute, day_re, hour, minute) range_regex = re.compile(r) m = range_regex.match(window) if not m: raise ValueError("DBInstance PreferredMaintenanceWindow must be in " "the format: ddd:hh24:mi-ddd:hh24:mi") if m.group('start_day') not in days or m.group('end_day') not in days: raise ValueError("DBInstance PreferredMaintenanceWindow day part of " "ranges must be one of: %s" % ", ".join(days)) start_ts = (days.index(m.group('start_day')) * 24 * 60) + \ (int(m.group('start_hour')) * 60) + int(m.group('start_minute')) end_ts = (days.index(m.group('end_day')) * 24 * 60) + \ (int(m.group('end_hour')) * 60) + int(m.group('end_minute')) if abs(end_ts - start_ts) < 30: raise ValueError("DBInstance PreferredMaintenanceWindow must be at " "least 30 minutes long.") return window
ced6140fa250e157aaa532f7c531abf64e41768e
637,860
def load_tag_dict(filename): """ Load a tag dictionary from a file containing one tag per line. """ tag_dict = {} with open(filename, 'rb') as f: code = 0 for tag in f: tag = tag.decode('utf-8').strip() if tag: tag_dict[tag] = code code += 1 return tag_dict
d80ebe3eb904f0d86a6661626d91da6f6cce3ae2
201,759
def flatten_response(response): """Helper function to extract only the filenames from the list directory command""" return [item['filename'] for item in response]
2b1463064efd12d635cd6e7ba80374a4d2f36ff4
481,102
def extractParams(param_str): """ Extracts parameters into a dict from string. Input: 1. param_str (str) string of parameters in format “k1:10;k2:20” Returns: 2. mydict (dict) with format {k1: 10, k2:20} """ #default parameters? if ',' in param_str: raise NameError(' , is an invalid character for parameter string.') if ':' not in param_str: raise NameError('No parameters found.') mydict = {} mystr = param_str.split(';') for s in mystr: k,v = s.split(':') mydict[k.strip()] = v.strip() return mydict
0af01c6b89f1da1428a327ad02c628e916e6074c
512,377
import base64 def _uri_to_bytes(uri, resolver): """ Take a URI string and load it as a a filename or as base64. Parameters -------------- uri : string Usually a filename or something like: "data:object/stuff,base64,AABA112A..." resolver : trimesh.visual.Resolver A resolver to load referenced assets Returns --------------- data : bytes Loaded data from URI """ # see if the URI has base64 data index = uri.find('base64,') if index < 0: # string didn't contain the base64 header # so return the result from the resolver return resolver[uri] # we have a base64 header so strip off # leading index and then decode into bytes return base64.b64decode(uri[index + 7:])
ec7308430bc5c072709a07e5ca894217db651d11
183,019
def _get_chunk_info(tsuid, index, md_list, chunk_size): """ Get the chunk <index> information for a TSUID split into chunks of <chunk_size> points each :param tsuid: tsuid to get points from :type tsuid: str :param index: the index of the chunk to get :type index: int :param md_list: List of metadata :type md_list: dict :param chunk_size: the size of the chunk :type chunk_size: int :return: information about the chunk (chunk_index, chunk_start_window, chunk_end_window) :rtype: list """ # Number of points nb_points = int(md_list[tsuid]["qual_nb_points"]) # Timeseries start date start_date = int(md_list[tsuid]["ikats_start_date"]) # Timeseries end date end_date = int(md_list[tsuid]["ikats_end_date"]) # Extrapolation of the number of points delta = int((end_date - start_date) * chunk_size / nb_points) # Chunk start date chunk_start = start_date + index * delta # Chunk end date chunk_end = min(end_date, chunk_start + delta) return [index, chunk_start, chunk_end]
8c3673a0f90bd137872e8fb36e3344dd0ae09600
165,751
def padded_list(candidate, reference_list): """ Method creates a `list` where the first element is `candidate` and the rest `len(reference_list) - 1` elements are empty strings (''s). This is operation is useful when trying to construct tables where empty strings can represent empty cells. :param candidate: a list of strings :param reference_list: another list such that `candidate` should match it in terms of number of elements :return: [text] + [''] * (len(reference_list) - 1)] """ if not reference_list: raise AttributeError('The reference_list argument must be non-empty.'.format(reference_list)) pad_length = len(reference_list) - len(candidate) return candidate + [''] * pad_length
ca4a244be02d6ce981c4f97ae87dbb897c6d89fa
533,390
def flatten(l): """Flatten list of lists.""" if all(isinstance(x, list) for x in l): return [item for sublist in l for item in sublist] else: return l
c340ec1db11bd07a0de71556d384131d694b602f
411,019
def get_requirements(req): """Load list of dependencies.""" install_requires = [] with open(req) as f: for line in f: if not line.startswith("#"): install_requires.append(line.strip()) return install_requires
c3b97188cb0808018f301820f9a66d8e283668c7
453,683
def modify_idx(*args, idx, dim): """ Make an index that slices a specified dimension while keeping the slices for other dimensions the same. Parameters ---------- *args : tuple of int or None constructor arguments for the slice object at target axis idx : tuple of slice tuple of slices in the original region of interest dim : int target axis Returns ------- new_idx : tuple of slice New tuple of slices with dimension dim substituted by slice(*args) Can be used to index np.ndarray and torch.Tensor """ new_idx = list(idx) new_idx[dim] = slice(*args) return tuple(new_idx)
09d0553b6281d1c7e5103b14dfde78003f92a554
42,523
from pathlib import Path import zipfile import gzip import shutil def unzip_file(element_path): """Checking if the path points to an existing folder or to its .zip format; if only the .zip format exists, it unzips the folder. Parameters ---------- element_path: PosixPath Absolute path of the folder or file of interest. Returns ------- Absolute path of the (unzipped) folder of interest. """ if element_path.exists(): return element_path elif Path(str(element_path) + ".zip").exists(): zip_folder = zipfile.ZipFile(str(element_path) + ".zip", 'r') zip_folder.extractall(element_path.resolve().parent) zip_folder.close() return element_path elif Path(str(element_path) + ".gz").exists(): with gzip.open(str(element_path) + ".gz", 'rb') as f_in: with open(str(element_path), 'wb') as f_out: shutil.copyfileobj(f_in, f_out) return element_path else: raise FileNotFoundError(f"{element_path} does not exist")
646133d74f84fb496c3eae51b5516d2d50535b48
598,762
def global_pct_id( segments ): """ Calculated like this: 10bp @ 50% id = 5 matching residues, 10 total residues 10bp @ 80% id = 8 matching residues, 10 total residues 13 matching residues, 20 total residues --------------------------------------- 13 / 20 * 100 = 65% """ match_length = 0 identical_residues = 0 for segment in segments: segment_length = abs(segment['qry_start'] - segment['qry_end']) + 1 match_length += segment_length matched_residues = segment_length * (segment['pct_id'] / 100) identical_residues += matched_residues return (identical_residues / match_length) * 100
29dfaea0faa21fbf29d58d5ce7dc67590010a56f
493,323
def unpack_quaternion_msg(msg, stamped=False): """ Get coordinates from a Quaternion(Stamped) message. """ if stamped: q = msg.quaternion else: q = msg return q.w, q.x, q.y, q.z
8252c24cbabbf32ab096811b4ef93d647d885ad5
209,484
def make_list(obj): """ Turn an object into a list if it isn't already """ if isinstance(obj, list): return obj else: return list(obj)
3819e1a789ff7d52beda0508cf25d1468c0d83a0
235,994
import torch def compensate_masking(X, mask): """ Compensate feature vectors after masking values, in a way that the matrix product W @ X would not be affected on average. If p is the proportion of unmasked (active) elements, X' = X / p = X * feat_dim/num_active Args: X: (batch_size, seq_length, feat_dim) torch tensor mask: (batch_size, seq_length, feat_dim) torch tensor: 0s means mask and predict, 1s: unaffected (active) input Returns: (batch_size, seq_length, feat_dim) compensated features """ # number of unmasked elements of feature vector for each time step num_active = torch.sum(mask, dim=-1).unsqueeze(-1) # (batch_size, seq_length, 1) # to avoid division by 0, set the minimum to 1 num_active = torch.max(num_active, torch.ones(num_active.shape, dtype=torch.int16)) # (batch_size, seq_length, 1) return X.shape[-1] * X / num_active
b5e0c4c6908acaac516d2595ba233e6d69b48f03
164,599
def estimate_infectious_rate_constant(events, t_start, t_end, kernel_integral, count_events=None): """ Returns estimation of infectious rate for given events on defined interval. The infectious is expected to be constant on given interval. :param events: array of event tuples containing (event_time, follower_cnt) :param t_start: time interval start :param t_end: time interval end :param kernel_integral: integral function of kernel function :param count_events: count of observed events in interval (used for time window approach) :return: estimated value for infectious rate """ kernel_int = [ fol_cnt * kernel_integral(t_start - event_time, t_end - event_time) for event_time, fol_cnt in events ] if count_events is not None: return count_events / sum(kernel_int) else: return (len(events)) / sum(kernel_int)
d1a83bd79988de9467dbc6c952aec35e3d496cd2
683,855
def proper(s): """Strips then capitalizes each word in a string.""" s = s.replace("-", " ").title() s = s.replace("_", " ").title() return s
78fa0f28bfdb77fdc572eb851f4021daabdc1a2b
627,906
def crop(img, w, h): """ Extract part of size w x h from center of the given image """ w_, h_ = img.shape[0:2] w_off, h_off = (w_ - w) // 2, (h_ - h) // 2 assert w_ >= w and h_ >= h, "cannot crop from {}x{} to {}x{}".format(w_, h_, w, h) return img[w_off:w_off + w, h_off:h_off + h]
8b3eb2c4057eaec7904e58e092bd9d0a7a736552
116,682
from typing import List from typing import Callable def make_random_function(returns: List[float]) -> Callable[[], float]: """ Return a function that returns the input values in sequence. Used to simulate a random function for tests. Parameters ---------- returns : list The values to return in sequence. """ returns_copy = returns.copy() def next_random() -> float: nonlocal returns_copy if len(returns_copy) == 0: raise IndexError("Needed more random numbers than were provided") value_to_return = returns_copy[0] returns_copy = returns_copy[1:] return value_to_return return next_random
c10757033815d50b66b2136b35198e389e84236e
139,716
def unsubscribe(dest): """STOMP unsubscribe command. dest: This is the channel we wish to subscribe to Tell the server we no longer wish to receive any further messages for the given subscription. """ return "UNSUBSCRIBE\ndestination:%s\n\n\x00\n" % dest
b148ac089a635c82ec702971c5a0da5dfaa09541
525,038
def agg_var_num(dataframe, group_var, dict_agg, prefix): """ Aggregates the numeric values in a dataframe. This can be used to create features for each instance of the grouping variable. Parameters -------- dataframe (dataframe): the dataframe to calculate the statistics on group_var (string): the variable by which to group df df_name (string): the variable used to rename the columns Return -------- agg (dataframe): a dataframe with the statistics aggregated for all numeric columns. Each instance of the grouping variable will have some statistics (mean, min, max, sum ...) calculated. The columns are also renamed to keep track of features created. """ # Remove id variables other than grouping variable for col in dataframe: if col != group_var and 'SK_ID' in col: dataframe = dataframe.drop(columns=col) group_ids = dataframe[group_var] numeric_df = dataframe.select_dtypes('number') numeric_df[group_var] = group_ids # Group by the specified variable and calculate the statistics agg = numeric_df.groupby(group_var).agg(dict_agg) # Ajout suffix mean, sum... agg.columns = ['_'.join(tup).strip().upper() for tup in agg.columns.values] # Ajout du prefix bureau_balance pour avoir une idée du fichier agg.columns = [prefix + '_' + col if col != group_var else col for col in agg.columns] agg.reset_index(inplace=True) return agg
9f5d92d932ce966160825a5c9a9dfd678a162645
82,972
def splitdate(yyyymmddhh): """ yyyy,mm,dd,hh = splitdate(yyyymmddhh) give an date string (yyyymmddhh) return integers yyyy,mm,dd,hh. """ yyyy = int(yyyymmddhh[0:4]) mm = int(yyyymmddhh[4:6]) dd = int(yyyymmddhh[6:8]) hh = int(yyyymmddhh[8:10]) return yyyy,mm,dd,hh
30b6394bf679d22a6ee33dab94f5943ba8f38d77
600,670
def normalize_comment(comment: str) -> str: """ Normalize a comment. It does the following: * uncheck checked boxes """ fixed = comment.replace("[x]", "[ ]") return fixed
f55601b4b72ebc979490943cd388f225837710c8
378,516
def result(score): """ Returns a string indicating the result of a game https://www.gokgs.com/json/dataTypes.html#score """ if type(score) == float: if score > 0: out = "Black + " + str(score) else: out = "White + " + str(-score) else: out = score return out
d3e06bbfddd342a0a26dadf88447e5dbf345de30
268,831
def PredicateSplit(func, iterable): """Splits an iterable into two groups based on a predicate return value. Arguments: func: A functor that takes an item as its argument and returns a boolean value indicating which group the item belongs. iterable: The collection to split. Returns: A tuple containing two lists, the first containing items that func() returned True for, and the second containing items that func() returned False for. """ trues, falses = [], [] for x in iterable: (trues if func(x) else falses).append(x) return trues, falses
a2d631baa4b0ba140d74d0b1ba59d010e663ae45
579,386
def str_fmt_width(string,pad,width): """ util function for breaking a string on spaces while trying to keep lines less than width. pad, when non zero inserts that number of spaces on the left side of the formated string. """ base = "\n" if pad > 1: base = "\n" +" "*pad +":" words = string.split() out = "" temp = base for word in words: test = temp + " " + word if len(test)>width-pad: out += test temp = base else: temp = test if temp != base: out += temp return out
b1eef845ba58bfee8a75e4a685428dbaf9edd2cd
329,165
import _asyncio async def timer(seconds=1.0): """ Wait a number of seconds. Used with the await keyword like this: @play.repeat_forever async def do(): await play.timer(seconds=2) print('hi') """ await _asyncio.sleep(seconds) return True
e6155d7f026d34e4142c4e50f5224b5a3956cb91
431,090
def _collect_cluster_stats(lane): """Retrieve total counts on cluster statistics. """ stats = {"Clusters" : 0, "Clusters passed": 0} for tile in lane.find("Read").findall("Tile"): stats["Clusters"] += int(tile.find("clusterCountRaw").text) stats["Clusters passed"] += int(tile.find("clusterCountPF").text) return stats
b3d6906ede391341e291d46f5c168155db2234d2
516,241
def miniAOD_customizeIsolatedTracksFastSim(process): """Switch off dE/dx hit info on fast sim, as it's not available""" process.isolatedTracks.saveDeDxHitInfo = False return process
b552f353ef2068c0d5d076ae288865382580cf34
83,175
def get_alignment_pdb_chain(alignment): """ Returns a string of the chain id, e.g. 'A', 'B', etc. :param alignment: :return: """ pdb_chain_id = alignment.hit_def.encode('ascii').split()[0] chain = pdb_chain_id.split('_')[1].upper() return chain
d322ea53606e8d8e5dd61bd50bf0ad44fbb24182
661,156
import torch def erase(img, i, j, h, w, v, inplace=False): """ Erase the input Tensor Image with given value. Args: img (Tensor Image): Tensor image of size (C, H, W) to be erased i (int): i in (i,j) i.e coordinates of the upper left corner. j (int): j in (i,j) i.e coordinates of the upper left corner. h (int): Height of the erased region. w (int): Width of the erased region. v: Erasing value. inplace(bool, optional): For in-place operations. By default is set False. Returns: Tensor Image: Erased image. """ if not isinstance(img, torch.Tensor): raise TypeError('img should be Tensor Image. Got {}'.format(type(img))) if not inplace: img = img.clone() img[:, i:i + h, j:j + w] = v return img
63a15369db5e1c4186293a64f408105cbb445127
471,938
def GetLapicSpuriousVectorFields(reg_val): """ Helper function for DoLapicDump that prints the fields of the spurious vector register. Params: reg_val: int - the value of the spurious vector registre to print Returns: string showing the fields """ vector = reg_val & 0xff enabled = (reg_val & 0x100) >> 8 return "[VEC={:3d} ENABLED={:d}]".format(vector, enabled)
ae6cfe89a2d0363129d667b478ecab8bb337b9c5
339,786
def _doktocsr(dok): """Converts a sparse matrix to Compressed Sparse Row (CSR) format. Parameters ========== A : contains non-zero elements sorted by key (row, column) JA : JA[i] is the column corresponding to A[i] IA : IA[i] contains the index in A for the first non-zero element of row[i]. Thus IA[i+1] - IA[i] gives number of non-zero elements row[i]. The length of IA is always 1 more than the number of rows in the matrix. Examples ======== >>> from sympy.matrices.sparsetools import _doktocsr >>> from sympy import SparseMatrix, diag >>> m = SparseMatrix(diag(1, 2, 3)) >>> m[2, 0] = -1 >>> _doktocsr(m) [[1, 2, -1, 3], [0, 1, 0, 2], [0, 1, 2, 4], [3, 3]] """ row, JA, A = [list(i) for i in zip(*dok.row_list())] IA = [0]*((row[0] if row else 0) + 1) for i, r in enumerate(row): IA.extend([i]*(r - row[i - 1])) # if i = 0 nothing is extended IA.extend([len(A)]*(dok.rows - len(IA) + 1)) shape = [dok.rows, dok.cols] return [A, JA, IA, shape]
82733143a51cb9dcb65d0994f8551953d687aff9
430,294
def _prime_powers(N): """ Find the prime powers dividing ``N``. In other words, if `N = q_1^(e_1)q_2^(e_2)...q_n^(e_n)`, it returns `[q_1^(e_1),q_2^(e_2),...,q_n^(e_n)]`. INPUT: - ``N`` -- an integer OUTPUT: - A list of the prime powers dividing N. EXAMPLES:: sage: sage.combinat.binary_recurrence_sequences._prime_powers(124656) [3, 16, 49, 53] sage: sage.combinat.binary_recurrence_sequences._prime_powers(65537) [65537] """ output = sorted([i ** j for i, j in N.factor()]) return output
06b840091571e6201b2063b25f40719e9db8747d
462,210
def d_binary_crossentropy_loss ( y, y_hat, eps=1e-10 ): """ Gradient of the cross-entropy loss for predictions, given the true values. # Arguments: y: a numpy array of true binary labels. y_hat: a numpy array of predicted labels, as numbers in open interval (0, 1). must have the same number of entries as y, but not necessarily identical shape eps: a small offset to avoid numerical problems when predictions are very close to 0 or 1 # Returns: grad: a numpy array of individual cross-entropy gradient values for each prediction. will be the same shape as y_hat irrespective of the shape of y """ y = y.reshape(y_hat.shape) return (y_hat - y)/(y_hat * (1 - y_hat) + eps)
b4460a1ff73c8e48d1570de3990182552ea639f8
331,310
def index_of_closest_element(ascending_list, datum): """Return index of the list element whose value is closest to datum.""" old_delta = abs(ascending_list[0] - datum) for index, element in enumerate(ascending_list[1:]): delta = abs(element - datum) if delta > old_delta: return index old_delta = delta return len(ascending_list) - 1
d5afed6d2be18475910d773857bc5742f89f913c
340,427
def discover_device(module, device): """ Discover AIX devices.""" cfgmgr_cmd = module.get_bin_path('cfgmgr', True) if device is not None: device = "-l %s" % device else: device = '' changed = True msg = '' if not module.check_mode: rc, cfgmgr_out, err = module.run_command(["%s" % cfgmgr_cmd, "%s" % device]) changed = True msg = cfgmgr_out return changed, msg
c0e55e49c32ceb7380be92a242bf1a122e13ffa0
140,192
def read_file(filepath: str) -> str: """ Opens the given file to read all the contents into a single value, replacing unicode errors with a '?'. """ file = open(filepath, errors="replace") content = file.read() file.close() return content
8f1eab13058db0c8840a394978de80400edeb95b
166,536
def GCreadlines(fobject, comment='#'): """Strip files from comments. fobject: file object to be read comment: string indicating comment. """ lines = [] for l in fobject.readlines(): # ignore comments and empty lines l = l.strip() pos = l.find(comment) if pos>-1: l = l[:pos] if len(l)==0: continue lines.append(l) return lines
0947a79273bc4731e86c5711a1c792d91c7531ea
611,844
import json def get_rule(arg: str): """Fetches `arg` in `./cogs/rules.json`.""" with open("./cogs/rules.json") as f: config = json.load(f) ret = config[arg] return ret
9caad76bd3555201d31918e95db023da66992828
206,836
from typing import List def parse_input(input_text: str) -> List[int]: """Given the contents of an input file, return the list of numbers in it""" return list(int(word) for word in input_text.split())
4b16f4f8d1a3ff087f88f709b8865180d6174d67
309,141
def update_parser(parser): """Parse the arguments from the CLI and update the parser.""" parser.add_argument( '--prepro_step', type=str, default='preprocessing', #'slicing', 'preprocessing' help='To execute a preprocessing method') #this is for allfeatures_preprocessing: parser.add_argument( '--train_period', type=int, nargs='*', default=[121,323], #[156, 180], [121,143], # 279], help='Training Period') parser.add_argument( '--valid_period', type=int, nargs='*', default=[324,329], #[181,185], [144,147], help='Validation Period') parser.add_argument( '--test_period', type=int, nargs='*', default= [330, 342], # [186,191], [148, 155], help='Testing Period') parser.add_argument( '--prepro_dir', type=str, default='chuncks_random_c1mill', help='Directory with raw data inside data/raw/ and it will be the output directory inside data/processed/') parser.add_argument( '--prepro_chunksize', type=int, default=500000, help='Chunk size to put into the h5 file...') parser.add_argument( '--prepro_with_index', type=bool, default=True, help='To keep indexes for each record') parser.add_argument( '--ref_norm', type=bool, default=True, help='To execute the normalization over the raw inputs') #to execute slice_table_sets: parser.add_argument( '--slice_input_dir', type=str, default='chuncks_random_c1mill', help='Input data directory') parser.add_argument( '--slice_output_dir', type=str, nargs='*', default=['chuncks_random_c1mill_train', 'chuncks_random_c1mill_valid', 'chuncks_random_c1mill_test'], help='Output data directory. Input and output could be the same per group, it is recommendable different directories...') parser.add_argument( '--slice_tag', type=str, nargs='*', default=['train', 'valid', 'test'], help='features group to be extracted') parser.add_argument( '--slice_target_name', type=str, nargs='*', default=['c1mill99-01_train', 'c1mill99-01_valid', 'c1mill99-01_test'], help='file name root inside output directory') parser.add_argument( '--slice_chunksize', type=int, default=1000, help='Chunk size to put into the h5 output files...') parser.add_argument( '--slice_target_size', type=int, default=36000000, help='Output file size') parser.add_argument( '--slice_with_index', type=bool, default=False, help='To keep indexes for each record') parser.add_argument( '--slice_index', type=int, default=0, help='index to label each output file') return parser.parse_known_args()
5cd74d2e50801db7ea7d27a37bca3c224a2b039a
647,268