content
stringlengths
39
9.28k
sha1
stringlengths
40
40
id
int64
8
710k
def lineset_assign(lineset1, lineset2): """ Assign the attributes of lineset2 to lineset1. Parameters ---------- lineset1 : open3d.LineSet lineset2 : open3d.LineSet Returns ------- The lineset1 object with 2's attributes. """ lineset1.points = lineset2.points lineset1.lines = lineset2.lines lineset1.colors = lineset2.colors return lineset1
7ffdec7582dc3624a1bde4579191835ffef567b0
542,856
def weighing_function(orig_length, cur_length): """ Function to generate the weight value given the predicted text-length and the expected text-length The intuition is that if the predicted text-length is far from the expected text-length then weight should be small to that word-bbox. :param orig_length: Length of the expected word bounding box :param cur_length: Length of the predicted word bounding box :return: """ if orig_length == 0: if cur_length == 0: return 1 return 0 return (orig_length - min(orig_length, abs(orig_length - cur_length)))/orig_length
09afb649952039e0d7f7b776d43cc0b0307329ee
34,054
import re def is_ipython_notebook(file_name): """ Return True if file_name matches a regexp for an ipython notebook. False otherwise. :param file_name: file to test """ if (not re.match("^.*checkpoint\.ipynb$", file_name)) and re.match("^.*\.ipynb$", file_name): return True return False
228df2ba027c814d748139dba20da9e4c46b7db1
196,036
import json def serialize_json(obj, **kwargs): """Encode python object into a JSON string. Args: obj (:obj:`object`): Python object to encode into a string. **kwargs: indent (:obj:`int`): Indent spacing for prettifying. Defaults to: 2. rest of kwargs: Passed to :func:`json.dumps`. Returns: :obj:`str` """ kwargs.setdefault("indent", 2) return json.dumps(obj, **kwargs)
e418827f871f34743d3ed7b030ce35f370b5e2d6
378,573
def find_beat(v): """ find the beat of a vector format midi using the autocorrelation function """ # binary vector for testing autocorrelation v2 = [0 if x[0] == -1 else 1 for x in v] result = [] # no need to check more than 24*4 = 96 # i.e. 4 quarter notes of standard midi for lag in range(96): s = 0 for i in range(len(v2)): if v2[i] > 0 and v2[(i + lag) % len(v2)] > 0: s += 1 result.append((lag, s)) k = 1 srt = sorted(result, key=lambda x: x[1]) while srt[-k][0] == 0: k += 1 return srt[-k][0]
b408afced09779eb69b40ae54d1fd2c2cfcf1906
700,830
import struct def int_2_bytes(int_value, is_little_endian=False): """ 将int转换成4字节的bytes串。 :param int_value: :param is_little_endian: :return: """ # 小端数据返回 if is_little_endian: return struct.pack('<i', int_value) # 大端数据返回 return struct.pack('>i', int_value)
dd4dceb7f500d68db3a5621845475397c75817f6
64,099
def discovery_status_to_text(status): """ Convert a Discovery Status code into meaningful text. Args: status: Staus code from Orion. Returns: String: Human text for status code. """ discovery_statuses = {"0": 'Unknown', "1": 'InProgress', "2": 'Finished', "3": 'Error', "4": "NotScheduled", "5": "Scheduled", "6": "NotCompleted", "7": "Canceling", "8": "ReadyForImport"} return discovery_statuses[status]
acddb0b1d6472523950eaa6b9cc00f8e54508b19
91,480
import re def filter_lines(output, filter_string): """Output filter from build_utils.check_output. Args: output: Executable output as from build_utils.check_output. filter_string: An RE string that will filter (remove) matching lines from |output|. Returns: The filtered output, as a single string. """ re_filter = re.compile(filter_string) return '\n'.join( line for line in output.splitlines() if not re_filter.search(line))
037281b7f1b1c9b87abbcc8572e198a1f36b6165
654,263
def non_qualified_code(code): """ Some codes, e.g. ISO 3166-2 subdivision codes, are compound and are formatted as "{country_code}-{subdivision_code}". For validation cases we often care about extracting the non-qualified subdivision code in such cases. """ return code.split("-", 2)[1]
aa5f6363349e11e1a3307be7bb6ed724d636883a
572,108
def choose_x(x, x_new): """Choice the x array with the smallest number of elements.""" if x.shape[0] == 0: # for initial empty array return x_new else: return x if x.shape[0] < x_new.shape[0] else x_new
4c4a4e37fe619c1a48997dcb13ae43f0a52c1d84
167,198
import uuid def is_uuid_like(input_id: str) -> bool: """ Check, if input string has uuid3 string representation format. **Example:** "886313e1-3b8a-5372-9b90-0c9aee199e5d" :param input_id: An input string :return: A boolean output """ try: uuid.UUID(str(input_id)) return True except ValueError: return False
af2a840135945908b3903a2b54d1e81a87d6691a
168,933
import re def fixFlagsQuoting(text): """Replaces e.g. /DFOO with /D "FOO" and /DFOO=X with /D FOO=X.""" return re.sub(r'\/([DIid]) ([^ \"=]+)([ $])', r'/\1 "\2"\3', re.sub(r'\/([DIid]) ([^ \"=]+)=([^ \"]*)([ $])', r'/\1 \2=\3\4', text))
ab60d5cf539d7a3753e457838989ab3be520d6b3
669,422
def gcd(x, y): """ Calculate greatest common divisor """ while y != 0: t = x % y x, y = y, t return x
b7a57497047ca3df429eb3ed4e3941edbd0890a4
203,118
def get_valid_post_response(data): """ Returns success message correct processing of post/get request :param str data: message :return: response :rtype: object """ response = {"status": 201, "message": "Created", "data": data} return response
0cb2c7e7011e2baf45a1cc5202d3476fd7a49e01
514,483
import math def safeArgs(args): """Iterate over valid, finite values in an iterable. Skip any items that are None, NaN, or infinite. """ return (arg for arg in args if arg is not None and not math.isnan(arg) and not math.isinf(arg))
d455bcd0cef7e6a47d1e967f17ba0e2dd08c25f4
46,793
async def websocket_lovelace_config(hass, connection, msg, config): """Send Lovelace UI config over WebSocket configuration.""" return await config.async_load(msg["force"])
a09b92334c93d7c4603a566939a643dcffcaba57
580,327
import random import string def get_tmp_suffix(length=None): """ Returns random filename extension as a string of specified length """ length = 10 if length is None else length return "." + "".join(random.choices(string.ascii_uppercase + string.digits, k=length))
cd3c67ccadc375b34dbc97ed299182dfadc98328
80,854
def _calc_splits(df, num_buckets=100): """Calculate the right edge of num_session buckets Utilizes approxQuantile to bucketize the source. Due to the available implementation this has to be done per-wiki, so is perhaps slower than necessary. For current dataset sizes that isn't an issue. We need to bucketize the number of sessions so we can split the per-wiki input into strata and sample from each bucket. This helps ensure we keep a consistent distribution of popular and unpopular queries from the input to the output. Parameters ---------- df : pyspark.sql.DataFrame Input dataframe to have bucketing fractions calculated for. num_buckets : int Number of buckets to create per-wiki Returns ------- list of ints List of right-edges of buckets that will have an approximately equal number of queries per bucket. """ percentiles = [x/float(num_buckets) for x in range(1, num_buckets)] # With 100 buckets, there will be buckets at .01, .02, etc. This specifies # percentils .01 must be the value between .009 and .011 relative_error = 1. / (num_buckets * 10) splits = df.approxQuantile('num_sessions', percentiles, relative_error) # range(1, num_buckets) returned num_buckets-1 values. This final inf captures # everything from the last bucket to the end. return splits + [float('inf')]
c7e80335ce625fd5ee6b75be4e9a6b771863f46f
420,675
def _dict_all_nones(bbox_dict): """Returns True if all dict values are None""" return bbox_dict and all(v is None for v in bbox_dict.values())
79ad1b3405ca0680fc15a5427a1cbb409abe4245
386,746
import torch def stack_subsample_frames_no_sync(x, x_lens, stacking=1, subsampling=1): """ Stacks frames together across feature dim, and then subsamples input is batch_size, feature_dim, num_frames output is batch_size, feature_dim * stacking, num_frames / subsampling """ assert stacking == subsampling # x is [B, H, T] x = x.transpose(1, 2) T = x.size(1) padded = torch.nn.functional.pad(x, (0, 0, 0, (stacking - (T % stacking)) % stacking)) B, T, H = padded.size() x = padded.reshape(B, T // stacking, -1) x = x.transpose(1, 2) x_lens = (x_lens.int() + stacking - 1) // stacking return x, x_lens
a6d77a9e1710f3ec156f35660b2d5b76f1ec07b5
104,142
from pathlib import Path def existing_git_submodule(path: Path) -> bool: """Check if a git submodule exists :param Path path: Submodule path :return: True, if .git file exists inside path """ return Path(path / '.git').is_file()
a0fb29aad65373f49d5306daa3ac13475f328a72
633,725
import functools import operator def product (nums): """ get the product of numbers in an array. """ return functools.reduce(operator.mul, nums, 1)
801b3e9c3fe9229eaf8ad58fe73a9a1e63506b41
701,234
import types import typing def temp_fn_argument_extractor( mod: types.ModuleType, mod_attr: str, ) -> typing.Iterator[typing.List[typing.Tuple[list, dict]]]: """ Temporarily intercept a function, so it's arguments can be extracted. The context manager gives us a list where each item is a tuple of arguments & keywords, stored each time the function was called. """ args_collected = [] real_fn = getattr(mod, mod_attr) def wrap_fn(*args, **kw): args_collected.append((args, kw)) return real_fn(*args, **kw) setattr(mod, mod_attr, wrap_fn) try: yield args_collected finally: setattr(mod, mod_attr, real_fn)
75864f5147ee8c7adfda6ac6286ae5b1ac91ac27
176,328
def register_event(event_type, include_subclasses=False): """ Register a method to handle a specific `opsdroid.events.Event` object. Args: event_type (Event): The event class this method can handle. include_subclasses (bool): Allow the function to trigger on subclasses of the registered event. Defaults to False. """ def decorator(func): if hasattr(func, "__opsdroid_events__"): func.__opsdroid_events__.append(event_type) else: func.__opsdroid_events__ = [event_type] func.__opsdroid_match_subclasses__ = include_subclasses return func return decorator
ab47a895471ae1911e6da30264677a596231de49
653,792
def parse_message(data): """Return a tuple containing the command, the key, and (optionally) the value cast to the appropriate type.""" command, key, value, value_type = data.strip().split(';') if value_type: if value_type == 'LIST': value = value.split(',') elif value_type == 'INT': value = int(value) else: value = str(value) else: value = None return command, key, value
029705f2100b050cd1261f96079e9cf332a0e8e1
125,132
def is_written_by(author_first_name, author_last_name, paper): """ Judge whether the scraped paper belongs to the given author or not. :param author_first_name: string. First name of the author. :param author_last_name: string. Last name of the author. :param paper: string. arXiv papers scraped online. """ if (paper.find(author_first_name) >= 0 and paper.find(author_last_name) >= 0) and len(paper) > 0: return True else: return False
2bd17a88ecc6f435f5e9922ca6803f328258f690
272,969
def convert_to_base(num, base): """ Converts integer num into base b format ie number to configuration Args: num - intger to be converted base - base to be converted into Returns: base b representation of num """ convStr = "0123" if num < base: return str(num) else: return convert_to_base(num // base, base) + convStr[num % base]
a4026955d1f644e49ccfd43b6ab0e3c8e81d8d14
603,092
def _get_help_command_preface(command_name='scenedetect'): """Preface/intro help message shown at the beginning of the help command.""" return """ The PySceneDetect command-line interface is grouped into commands which can be combined together, each containing its own set of arguments: > {command_name} ([options]) [command] ([options]) ([...other command(s)...]) Where [command] is the name of the command, and ([options]) are the arguments/options associated with the command, if any. Options associated with the {command_name} command below (e.g. --input, --framerate) must be specified before any commands. The order of commands is not strict, but each command should only be specified once. Commands can also be combined, for example, running the 'detect-content' and 'list-scenes' (specifying options for the latter): > {command_name} -i vid0001.mp4 detect-content list-scenes -n A list of all commands is printed below. Help for a particular command can be printed by specifying 'help [command]', or 'help all' to print the help information for every command. Lastly, there are several commands used for displaying application version and copyright information (e.g. {command_name} about): help: Display help information (e.g. `help [command]`). version: Display version of PySceneDetect being used. about: Display license and copyright information. """.format(command_name=command_name)
bfd836f9046615f4f92364d96f32c82dd6125127
468,278
import math def calculate_crop_for_angle(image, angle): """ Calculates the pixels in vertical and horizontal direction which become invalid, i.e., not completely filled with image. :param image: input image :param angle: rotation angle :type image: numpy.ndarray :type angle: float :return: (vertical_crop, horizontal_crop) :rtype: tuple(int, int) >>> calculate_crop_for_angle(np.zeros((32, 32,)), 45.0) (15, 15) """ wd = (image.shape[0] * 0.5) * math.tan(angle / (180.0 / math.pi)) hd = (image.shape[1] * 0.5) * math.tan(angle / (180.0 / math.pi)) hd, wd = int(abs(hd)), int(abs(wd)) return hd, wd
39bbc1200daddfda0a77c5b0d989f5fff9157435
605,812
def lib1_cons2_neutral3(x): """Rearrange questions where 3 is neutral.""" return -3 + x if x != 1 else x
32894ff4b22e86d3788f8456e8f743ab12f84cab
436,565
def get_ratio(numerator, denominator): """Get ratio from numerator and denominator.""" return ( 0 if not denominator else round(float(numerator or 0) / float(denominator), 2) )
e51a860292d54d2e44909ad878d0b1d8e66c37c2
709,228
def local_solar_time(local_time, tc): """ Corrects the local time to give the local solar time. Parameters ---------- local_time : float The local time in hours tc : the time correction factor Returns ------- lst : float The local solar time in hours. """ lst = local_time + tc / 60 return lst
a3282a5ba728ee6a40e4b627fc464dc99e29ae36
505,489
import random import string def device_name_list(min_devices=0, max_devices=10, unique=False): """ Return a function that returns a random list of device names based on parameters. :param int min_devices: the minimum number of device names to generate :param int max_devices: the maximum number of device names to generate :param bool unique: ensure that all device names are unique """ def the_func(): return [ "/dev/%s" % "".join( random.choice(string.ascii_uppercase + string.digits) for _ in range(4) ) for _ in range(random.randrange(min_devices, max_devices + 1)) ] if unique: def the_unique_func(): devices = set() while len(devices) < min_devices: for device in the_func(): devices.add(device) return list(devices) return the_unique_func return the_func
b23b7a38e9af95ebfa813f5e8bad51b29e2c44e3
579,054
def default_shear_conf() -> dict: """ Default shear configuration. """ shear_conf = { 'twinmode': '10-12', 'grids': 5, 'expansion_ratios': [1., 1., 1.], } return shear_conf
ad1523df07e335cd12411144dcad243ddfd143a8
566,956
import requests import logging def test_upload(url): """ Check if a presigned URL is valid """ try: response = requests.put(url, data='aa', timeout=120) except: return None if response.status_code == 403: return False logging.info('Successfully tested upload url') return True
42e0d1411871a397ded567b4f9f28a4861e7e1c1
543,925
def common_prefix_len(a: str, b: str) -> int: """ Find the common prefix of two strings. """ min_len = min(len(a), len(b)) for i in range(min(len(a), len(b))): if a[i] != b[i]: return i return min_len
a6bcdc15305e6dbb59ac9682ed5b79f711a5f454
275,757
def common_replacements(setting, item): """Maps keys to values from setting and item for replacing string templates. """ return {"$name": setting.lower(), "$setting": setting, "$prettyname": item.py_name, "$doc_str": item.doc_str}
618e0f9f90822455cebdf48c5cfafd913f193214
677,483
def edentity(im): """ Identity function for Image objects. """ return im
885500e9ed8e8fc5fbadb55182d35f132350d16b
375,386
def surprisetopN(algo, trainSet, raw_uid, N): """Derive the topN recommendations for user uid algo: scikit-surprise trained algorithm trainSet (surprise.dataset.Trainset) raw_uid (int or float): raw uid e.g. surprisetopN(algo, trainSet, 196, 3) Returns: list: (raw_iid, prediction) for the N recommended item_ids """ inner_uid = trainSet.to_inner_uid(raw_uid) recom = [] profile = set(map(lambda x: x[0], trainSet.ur[inner_uid])) for iid in trainSet.all_items(): if iid not in profile: # item is unseen raw_iid = trainSet.to_raw_iid(iid) pred = algo.predict(raw_uid, raw_iid, r_ui=-1, verbose=False) recom.append((raw_iid, pred.est)) recom = sorted(recom, key=lambda x: x[1], reverse=True) return recom[:N]
26cb346192a5591f39f2b5de738d072dd934b2fc
91,252
def _favorite_authors(soup): """ .. versionadded:: 0.3.0 Find the favorite authors for a user and return them as a list. :param soup: Soup containing a page from FanFiction.Net :type soup: bs4.BeautifulSoup class :returns: A list of user-ids corresponding to the authors liked by a user. :rtype: list Example: .. code-block:: python import ffscraper as ffs # Get an example user (details are changed here) soup = ffs.utils.soupify('https://www.fanfiction.net/u/12') # Get their favorite authors via this function. fav_authors = ffs.author.profile._favorite_authors(soup) # We'll print to see the results print(fav_authors) .. code-block:: bash ['124', '125', '126'] """ # Favorite Authors for a user is stored under a div with id='fa' authors_table = soup.find('div', {'id': 'fa'}) if authors_table: author_links = authors_table.find_all('a') return [a['href'].split('/')[2] for a in author_links] else: return []
35ec899d02d6a4ca12db1509eab864b606e8bce7
370,632
from typing import List def find_first_in_list(txt: str, str_list: List[str]) -> int: """Returns the index of the earliest occurrence of an item from a list in a string Ex: find_first_in_list('foobar', ['bar', 'fin']) -> 3 """ start = len(txt) + 1 for item in str_list: if start > txt.find(item) > -1: start = txt.find(item) return start if len(txt) + 1 > start > -1 else -1
c979db94ae1e81e3e7cbfc6118b371ab2338192f
690,137
from typing import Tuple def tokenize_version(version_string: str) -> Tuple[int, int, int]: """Tokenize a version string to a tuple. Truncates qualifiers like ``-dev``. :param version_string: A version string :return: A tuple representing the version string >>> tokenize_version('0.1.2-dev') (0, 1, 2) """ before_dash = version_string.split('-')[0] major, minor, patch = before_dash.split('.')[:3] # take only the first 3 in case there's an extension like -dev.0 return int(major), int(minor), int(patch)
2dbca80d7fbd0e504adbdd6901f42a87452116ac
692,447
from functools import reduce import operator def getFromDict(dict_, keys): """ Get value from nested dict """ return reduce(operator.getitem, keys, dict_)
a7cb53601cec1cf4f2459f5eb6829a0413410d03
501,911
def intersect(range_1, range_2): """Return intersection size.""" return min(range_1[2], range_2[2]) - max(range_1[1], range_2[1])
7121d175e46d0686d2eb816bb4943f101dd5d101
242,516
def deg2day(year_length, degrees): """Convert degrees that the planet has orbited into a calendar day.""" return degrees * (year_length/360.0)
31eee82b7940722592ef80266e1def856bb49b20
207,869
from typing import List def _unique(collection: List[str]) -> bool: """ Determine if all elements of a collection are unique. :param collection: The collection :type collection: Iterable :return: `True` if all elements are unique, `False` otherwise :rtype: bool """ return len(set(collection)) == len(collection)
fe727e13852ea9baf7696a3eda7e5f2ab57d4b5d
72,575
import re def slugify(u): """Convert Unicode string into blog slug.""" # From https://leancrew.com/all-this/2014/10/asciifying/ u = re.sub(u'[–—/:;,.]', '-', u) # replace separating punctuation a = u.lower() # best ASCII substitutions, lowercased a = re.sub(r'[^a-z0-9 -]', '', a) # delete any other characters a = a.replace(' ', '-') # spaces to hyphens a = re.sub(r'-+', '-', a) # condense repeated hyphens return a
7e4c18280459021a574456f1ac7f88f45c450a48
238,799
def create_dict_of_adjacent_tile_indices(width: int, height: int) -> dict: """ there is a grid of size width*height. Each location in the grid has an integer index, 1 to width*height the "transition dict" contains key: integer index of each tile in the grid value: list of adjacent tile indices. """ transition_dic={} num_tiles=width*height # print("width= "+str(width)) # print("height= "+str(height)) for n in range(1,num_tiles+1): # print("\nn = "+str(n)) adjacent_edges_list=[] # print("if (n-1)%width !=0, then left exists; value is "+str((n-1)%width)) if ((n-1)%width != 0): # print("left = "+str(n-1)) adjacent_edges_list.append(n-1) # left # print("if n%width !=0, then right exists; value is "+str(n%width)) if (n%width != 0): # print("right = "+str(n+1)) adjacent_edges_list.append(n+1) # right # print("if n > width, then top exists") if (n > width): # print("top = "+str(n-width)) adjacent_edges_list.append(n-width) # top # print("if n<=((width*height)-width), then bottom exists; value is "+str( ((width*height)-width))) if (n<=((width*height)-width)): # print("bottom = "+str(n+width)) adjacent_edges_list.append(n+width) # bottom transition_dic[n]=adjacent_edges_list return transition_dic
28db079753515512cb785ada4c5927c96cbaa6de
397,732
def cc(key): """ Changes python key into Camel case equivalent. For example, 'compute_environment_name' becomes 'computeEnvironmentName'. :param key: :return: """ components = key.split('_') return components[0] + "".join([token.capitalize() for token in components[1:]])
311d253842638f581dd1dd051270f3d6098e2955
629,247
from datetime import datetime def is_valid_article(date : datetime, state : str, date_start : datetime, date_end : datetime) -> bool: """ Determines if the metadata retrived from the article is valid. Params ------ date: datetime.datetime Published datetime of the article state: str detected state of the incident in the article date_start: datetime.datetime article search beginning timeframe date_end: datetime.datetime article search ending timeframe Returns ------- bool: boolean value determining whether the article is valid or not """ return isinstance(state, str) and date >= date_start and date <= date_end
db6ba5a40ca453ecda0e5872dd9b7c8318db452d
99,646
def ek_R56Q(cell): """ Returns the R56Q reversal potential (in mV) for the given integer index ``cell``. """ reversal_potentials = { 1: -96.0, 2: -95.0, 3: -90.5, 4: -94.5, 5: -94.5, 6: -101.0 } return reversal_potentials[cell]
a61d33426e4c14147677c29b8e37381981f0d1db
701,803
def _flatten_dict(input_dict: dict) -> dict: """ Flattens a nested dictionary, keeping only keys with non-dict values. Note that keys will be the underscore-delimited concatenation of the nested path of keys from the original dict. """ res = {} for k, v in input_dict.items(): if type(v) is not dict: res[k] = v else: nest = _flatten_dict(v) for key, value in nest.items(): new_key = "{}_{}".format(k, key) res[new_key] = value return res
9273b1b7b08d54b3b7e69a2710285abbac8d22e4
334,372
from typing import Tuple def extended_euclidean(x: int, y: int) -> Tuple[int, int, int]: """ See: shainer.github.io/crypto/math/2017/10/22/chinese-remainder-theorem.html Given two integers, returns their greatest common denominator and the two coefficients in the Bézout identity. """ x0, x1, y0, y1 = 1, 0, 0, 1 while y > 0: q, x, y = x // y, y, x % y x0, x1 = x1, x0 - (q * x1) y0, y1 = y1, y0 - (q * y1) return x, x0, y0
918835a7ed559af16cb67ef37d0d8abededc67cd
443,868
def linux_notify(title: str, message: str) -> str: """Display notification for Linux systems""" command = f'''notify-send "{title}" "{message}"''' return command
ae702eed884e35fccaf974898de9cc0c12b686c2
50,453
import pickle def unpickle(filename: str) -> object: """ Unpickles a file and returns the object """ pickleIn = open(filename, "rb") pickledObject = pickle.load(pickleIn) pickleIn.close() return pickledObject
891347cfc1f491a40d797332c2967f7b293630af
43,240
def maximum_severity(*alarms): """ Get the alarm with maximum severity (or first if items have equal severity) Args: *alarms (Tuple[AlarmSeverity, AlarmStatus]): alarms to choose from Returns: (Optional[Tuple[AlarmSeverity, AlarmStatus]]) alarm with maximum severity; none for no arguments """ maximum_severity_alarm = None for alarm in alarms: if maximum_severity_alarm is None or alarm[0] > maximum_severity_alarm[0]: maximum_severity_alarm = alarm return maximum_severity_alarm
d78a221b56e891103e8387d077d8f14dd2d1ce93
682,455
def _cmp_bystrlen_reverse(a, b): """A private "cmp" function to be used by the "sort" function of a list when ordering the titles found in a knowledge base by string- length - LONGEST -> SHORTEST. @param a: (string) @param b: (string) @return: (integer) - 0 if len(a) == len(b); 1 if len(a) < len(b); -1 if len(a) > len(b); """ if len(a) > len(b): return -1 elif len(a) < len(b): return 1 else: return 0
f1306bef50367c3762133868682f7879fa9d311f
565,072
def scale_vector(vector, scale): """Scale a 3D vector's components by scale.""" return vector[0] * scale, vector[1] * scale, vector[2] * scale
292269d2e54db362b823c547b0415f53d93e3e4c
22,661
def kalkulasi_kecepatan_akhir( kecepatan_awal: float, percepatan: float, waktu: float ) -> float: """ Menghitung kecepatan akhir dari suatu pergerakan dengan percepatan yang berbeda >>> kalkulasi_kecepatan_akhir(10, 2.4, 5) 22.0 >>> kalkulasi_kecepatan_akhir(10, 7.2, 1) 17.2 """ # jika waktu 0 diisi dengan 1 detik return kecepatan_awal + percepatan * waktu
1db3150cab6991de8063bbf546f475ce982db2bb
80,329
import torch from typing import Callable def encode_and_aggregate(input_tensor: torch.Tensor, encoder: torch.nn.Module, num_encoder_input_channels: int, num_image_channels: int, encode_channels_jointly: bool, aggregation_layer: Callable) -> torch.Tensor: """ Function that encodes a given input tensor either jointly using the encoder or separately for each channel in a sequential manner. Features obtained at the output encoder are then aggregated with the pooling function defined by `aggregation layer`. """ if encode_channels_jointly: input_tensor = encoder(input_tensor) input_tensor = aggregation_layer(input_tensor) else: shape = input_tensor.shape channel_shape = (shape[0], num_encoder_input_channels, shape[2], shape[3], shape[4]) encode_and_aggregate = [] # When using multiple encoders, it is more memory efficient to aggregate the individual # encoder outputs and then stack those smaller results, rather than stack huge outputs and aggregate. for i in range(num_image_channels): start_index = i * num_encoder_input_channels end_index = start_index + num_encoder_input_channels encoder_output = encoder(input_tensor[:, start_index:end_index].view(channel_shape)) aggregated = aggregation_layer(encoder_output) encode_and_aggregate.append(aggregated) input_tensor = torch.cat(encode_and_aggregate, dim=1) return input_tensor
f2d65e1c2c214cfddae40dd235fba86a61866277
697,661
def proc_fill_nan(df): """ replaces NaN with zeros """ return df.fillna(0)
20ef3d5b260805319e0a5c6d195d05adc2988e84
190,149
def create_channel(slack_client, name): """ Create a channel with a given name. """ response = slack_client.api_call("channels.create", name=name, validate=False) return response
62b9d02ae833a491ae7e0c8d4c764b72635af6de
274,916
def invalid_iso(entity): """Generate invalid iso template.""" base = "is an invalid %s iso code" % entity return "%(value)s " + base
846396b62f15bb4fc315a48e5575340bf0ddfcc2
544,136
def get_operation_size(ops): """ Returns the number of characters added by an operation (can be negative) """ count = 0 for op in ops: if isinstance(op, str): count += len(op) elif isinstance(op, int) and op < 0: count += op return count
1670ee281642722a705d329d82a8ada42cc4bb22
322,557
from typing import Container def is_container_type(typ): """ Check if the given type is a container. """ return isinstance(typ, type) and issubclass(typ, Container)
0a2a4c564c451fdfce817af9170fb5d21931611b
505,569
def parse_Bytes(bytes, msg_class): """Parses the String of bytes into msg_class. Returns the input bytes if msg_class is None.""" if msg_class is None: return bytes msg = msg_class() msg.ParseFromString(bytes) return msg
8cc586dd8d8c9c7575a2101b773224274c91ff4a
249,645
import re def extract_youtube_id(youtube_url): """ Extract the youtube ID from the url""" youtube_id_match = re.search(r'(?<=v=)[^&#]+', youtube_url) youtube_id_match = youtube_id_match or re.search( r'(?<=be/)[^&#]+', youtube_url) return (youtube_id_match.group(0) if youtube_id_match else None)
b2cdb5f9040b2423d4b1669ae51319c678c8a712
370,834
import json def read_json(fp: str) -> dict: """Helper. Reads a JSON file and returns content. :param fp: The filepath to the JSON file. :dtype fp: str """ with open(fp) as f: f_data = json.load(f) return f_data
12a5587dfdae0f36a923e68a020f504e7b955a5c
510,215
def read_nonclust_frap_data(df_list, file_names, exclude=()): """Extract singe traces from Manual_FRAP_ROI.ijm data. Args: df_list (list of pandas dataframes): List of parsed data from the output file of the "Manual_FRAP_ROI.ijm" ImageJ macro. file_names (list of str): List of file names that the traces are coming from exclude (list of tuples): Traces to exclude. Each item in the list is a tuple containing file name and track ID of the trace to be excluded. Defaults to an empty tuple. Returns: result_df (list of pandas dataframes): One dataframe per trace. Contains two columns, "ROI_intensity" and "Bkgnd_intensity". corr_int (list of numpy arrays): list of one array per trace, containing just the background-corrected intensity values. trace_IDs (list of tuples): list of filenames corresponding to each trace and trace ID. Same length as result_df. """ result_df = [] result_np = [] trace_IDs = [] for df, file_name in zip(df_list, file_names): # Find the number of FRAP/background trace pairs in file num_roi_pairs = int((len(df.columns) - 1) / 4) # break up data into smaller data frames, one per trace for i in range(num_roi_pairs): # there are four columns per trace curr_df = df.iloc[:, i*4+1:i*4+5] bkgnd_corr_int = curr_df.iloc[:,1] - curr_df.iloc[:,3] curr_np = bkgnd_corr_int.values - min(bkgnd_corr_int.values) # save the trace if it's not excluded trace_ID = (file_name, i) if trace_ID not in exclude: result_df.append(curr_df) result_np.append(curr_np) trace_IDs.append(trace_ID) return result_df, result_np, trace_IDs
ca6e472e19fe8f9209c34ccd995bfd8984693261
470,853
def get_event_description(e): """Return the description field for the event.""" return e.get('description')
96fde5fe77964e364907e6321cbd8352ee2c6bc1
39,474
def _compose2(b, a): """Compose 2 functions""" def composed(x): """Composed function""" return b(a(x)) return composed
87dcd18d9e4938eb59796fe0bb4edb5f1ced8c6e
435,890
def parse_valid_bb_file(valid_bb_path): """ Parse a file which contains valid basic block addresses. The file is expected to contain a hexadecimal address per line. """ with open(valid_bb_path, "r") as f: return set(int(l, 16) for l in f.readlines() if l.strip())
b04a2fcfd8ef3338e57927526073047b306d727a
545,694
import pkg_resources async def version(): """Get dependency versions """ versions = {} for name in ('instagrapi', ): item = pkg_resources.require(name) if item: versions[name] = item[0].version return versions
b89ce1ae5472b7e6df3d3151b2781ed872c2c0f4
616,298
def populate_cells(worksheet, bc_cells=[]): """ Populate a worksheet with bc_cell object data. """ for item in bc_cells: if item.cellref: worksheet[item.cellref].value = item.value else: worksheet.cell( row=item.row_num, column=item.col_num, value=item.value) return worksheet
4b5529ebbb63ebb3d0904d218807166af4bbff38
659,883
def HasValue(entity, property_name): """Returns whether `entity` has a property value with the provided name.""" return property_name in entity._values # pylint: disable=protected-access
7397b0342a051f7c96eb4f606bb02ea2ff4d523c
622,539
def nl(x, gamma): """ Nonlinearity of the form .. math:: f_{\\gamma}(x) = \\frac{1}{1-\\gamma x} Args: x (:class:`numpy.array`): signal gamma (float): Nonlinearity parameter Note: The integral of ``gamma * nl(x, gamma)`` is .. math:: \\int \\frac{\\gamma}{1 - \\gamma x} = -\\log (1 - \\gamma x) """ return 1.0/(1.0-gamma*x)
3aad00ebc0768e7008d4991f7fe159926364e49c
374,918
def fin_de_partie(cls_grille,couleur): """ Cette fonction permet de vérifier la potentielle fin de partie match nul ou un gagnant (en appelant les méthodes coup_gagnant et est_pleine de la classe Grille). Paramètre : cls_grille : instance de la classe Grille Cette fonction renvoie un entier. 2 si un coup gagnant est joué, 1 si la grille est pleine sinon 0. """ if cls_grille.coup_gagnant(couleur) == True: return 2 if cls_grille.est_pleine() == True: return 1 return 0
ca1ad4b7456b5a799667b6100a7f83c46bea626a
554,295
def calc_actual_vapor_pressure(es_tmin, es_tmax, hmin, hmax): """ Calculate actual vapor pressure from saturation vapor pressure and relative humidity. Equation 17 of Allen (1998). Parameters ---------- es_tmin : numpy ndarray Saturation vapor pressure at minimum air temperature. es_tmax : numpy ndarray Saturation vapor pressure at maximum air temperature. hmin : numpy ndarray Minimum relative humidity, in percent hmax : numpy ndarray Maximum relative humidity, in percent """ return ((es_tmax * hmin / 100.) + (es_tmin * hmax / 100.)) / 2.
7f03569d53539fce542b334ae2cade72d6c6513c
104,515
import time def proj2time(t): """Convert MSProject time to Python time""" return time.mktime(time.strptime(t.Format('%m/%d/%y %H:%M:%S'), '%m/%d/%y %H:%M:%S'))
461b3a108c7787c35ef83afefea3e2be9acebb6b
330,396
def scale_qtys(x, n): """ Will create a list of qtys on both long and short side that scale additively i.e. [5, 4, 3, 2, 1, -1, -2, -3, -4, -5]. x: How much of your balance to use. n: Number of orders. """ n_ = x / ((n + n ** 2) / 2) long_qtys = [int(n_ * i) for i in reversed(range(1, n + 1))] short_qtys = [-i for i in long_qtys] return long_qtys + short_qtys[::-1]
26de0234f4250f18b20ec1d5fe08f07562efcfd3
198,813
def aicc(log_likelihood, df, n_samples): """Calculate AICc given log-liikelihoood, degrees of freedom, and number of samples.""" return -2 * log_likelihood + 2 * df * n_samples / (n_samples - df - 1)
a623f079f95b5bc0a2f1a33d30bd7ac39edb946c
420,521
import torch def optimizer_creator(models, config): """Returns optimizer.""" return torch.optim.SGD(models.parameters(), lr=0.1)
af15cd568f77d6220dbc58b7f1ad7c635bb30002
233,999
def is_master_manifest(manifest_content): """ Parse the m3u8 manifest to see if this is the master manifest that points to other manifests. :param manifest_content: :return: True if it's the master manifest """ manifest_lines = manifest_content.split('\n') for line in manifest_lines: if ".m3u" in line: return True return False
e36f29dfb44cfd705233893866ddce36aad43929
182,531
def trail_vector_out(tvec_in, q_vec, rd_vec, ri_vec): """ Calculate an outgoing trail vector. Parameters ---------- tvec_in : ``list`` An incoming trail vector. q_vec : ``list`` A load vector. rd_vec : ``list`` The direct deviation edges resultant force vector. ri_vec : ``list`` The indirect deviation edges resultant force vector. Returns ------- tvec_out : ``list`` An outgoing trail vector. """ return -1.0 * (tvec_in + q_vec + rd_vec + ri_vec)
ac6c82c83fba84f036aa204156ebf09d8fb7b408
536,358
import inspect import re def get_functions_from_module(mod, pattern=None): """Get all the function in a module. Parameters ---------- mod : module An instance of a module. pattern : str, optional Only get functions whose name match a regular expression. Returns ------- dict Dictionary of functions contained in the module. Keys are the function names, values are the functions themselves. """ funcs = {} for name, func in inspect.getmembers(mod, inspect.isroutine): if pattern is None or re.match(pattern, name): funcs[name] = func return funcs
ac143f3dd22f1564736c0ef1bd90a3f87f1de31d
564,683
def rowMatch(df, col,rex,addedSpec="(?i)"): """ Select rows in a DataFrame using a regular expression as mask. The difficulty is that we may need to work with NA/NaN which are not allowed in masks """ msk = df[col].str.contains(rex+addedSpec) try: ret = df[msk] except Exception as err: # print(f"got into exception {err}, type(msk) ={type(msk)}") # display(msk) msk[msk.isna()]=False ret = df[msk] return ret
7c964c42c8af36b0659603a753afb2b0530e99ec
130,881
def has_key(dictionary, key) -> bool: """Dictionary contain the key.""" return key in dictionary.keys()
a71063972d88d533a6aa16349ef0522a615fa443
621,506
def find_namespaced_pods(namespace, job_name, api_client): """find pod by namespace and job name Args: namespace (str) - job_name (str) - api_client (CoreV1Api) - Returns: str - Name of the pod if found """ api_response = api_client.list_namespaced_pod(namespace) ret_val = [] for i in api_response.items: if i.metadata.labels.get("job_instance_id", "") == job_name: ret_val.append(i.metadata.name) return ret_val
54c090d243aafb9b0c1c75477ca2b1cabe38a3f2
601,061
def get_cache_key(key): """ Generates a prefixed cache-key for ultimatethumb. """ return 'ultimatethumb:{0}'.format(key)
43d82dced6371742a58d18b1cbc1f3a9a48aae5c
93,706
from typing import Dict from typing import Optional from typing import Any def __group_member_contribution(res_act: Dict[str, Dict[str, int]], act_res: Dict[str, Dict[str, int]], groups: Dict[str, Dict[str, int]], parameters: Optional[Dict[Any, str]] = None) -> Dict[ str, Dict[str, Dict[str, int]]]: """ Calculates the member contribution metric GROUP MEMBER CONTRIBUTION of a member of a resource group with respect to the given type of work specifies how much of this type of work by the group was performed by the member. It can be used to measure how the workload of the entire group devoted to a certain type of work is distributed over the group members. The approach implemented is the one described in: Yang, Jing, et al. "OrgMining 2.0: A Novel Framework for Organizational Model Mining from Event Logs." arXiv preprint arXiv:2011.12445 (2020). Parameters ---------------- res_act Dictionary resources-activities-occurrences act_res Dictionary activities-resources-occurrences groups Dictionary groups-resources-occurrences parameters Parameters of the algorithm Returns ----------------- metric Metric value """ ret = {} for g in groups: ret[g] = {} for r in groups[g]: ret[g][r] = res_act[r] return ret
ff969ce9d91adad9fc16bfb8a49c18a70481f9e4
285,065
def _mklist(values): """Convert tuple to list, and anything else to a list with just that thing. This is a helper to fix an inconsistency with the group keys in a pandas.groupby object. When grouping by multiple columns, the keys are tuples of values. When grouping by a single column, even if specified as a single-element list, the keys are single values. We always want a list, which is what this function accomplishes.""" if isinstance(values, tuple): return list(values) else: return [values]
d713ee076d2de182bebb30ef94ebab8c8ba71a40
204,907
def parse_stop_num(stop_name, stop_id): """ The 2021 Dublin Bus data uses Stop IDs instead of the actual stop numbers presented to the public. This method tries to extract the stop number from the stop name and if this fails it tries to extract it from the ID instead. Args --- stop_name: str The stop name as a string stop_id: str The stop ID as a string Returns --- An int for the extracted stop number """ try: stop_num = int(stop_name.split(" ")[-1]) except ValueError: # stop number isn't in the name # try parse out of ID instead stop_num = int(stop_id.split("DB")[-1]) return stop_num
f62290c2e1164b4df86a8c5c922b15ae321da711
557,786
def input_tensor(interpreter): """Returns the input tensor view as numpy array.""" tensor_index = interpreter.get_input_details()[0]['index'] return interpreter.tensor(tensor_index)()[0]
101a4ed2f9815c768ac481313602bd8608afc2fa
538,186
def detailed_knowledge(maze, population): """ Analyze the population of classifiers to determine what classifiers cover all possible condition-action tuples in the maze. For every condition-action tuple (i.e., every situation together with all allowed actions), print the classifiers that match it. :param maze: The maze to analyze :param population: The classifier population to analyze :return: String describing the population's knowledge as in the original C++ implementation """ result = "" transitions = maze.env.get_all_possible_transitions() # For all possible destinations from each path cell for start, action, end in transitions: p0 = maze.env.maze.perception(*start) p1 = maze.env.maze.perception(*end) result += "\n{}-{}-\n{}".format("".join(p0), action, "".join(p1)) result += "\n" result += str(population.form_match_set(p0).form_action_set(action)) result += "\n" return result
a5955b5adcb524bd35ed3e4b8dba0d30f4091f68
261,220
from typing import Tuple def _validate_added_file(file: str) -> Tuple[bool, str]: """ Checks whether an added file detected by container-diff is located under /opt/pht_train. :param file: line of output generated by container diff containing info on the added file :return: whether the file is correctly located or not """ path = file.split(" ")[0] valid = False print(f"Validate called with file: {file}") if not file: return True, path if len(path) > 1: path_dir = path.split("/")[1:] if path_dir[0] == "opt": if path_dir[1] == "pht_results": valid = True if path_dir[1] == "pht_train": valid = True if path_dir[1] == "train_config.json": valid = True if path_dir[1] == "user_sym_key.key": valid = True if not valid: print(f"Invalid file detected: {path}") return valid, path
3574b76dea0dba10579d375aed4d1e24c1f8c945
499,431
def serialize_numpy_array(nda): """ Returns dict for numpy array data and metadata. nda.dtype is like (str) 'uint32' """ return {'type' : 'nd', 'shape': str(nda.shape), 'size' : str(nda.size), 'dtype': str(nda.dtype), 'data' : nda.tobytes() # (bytes) }
300fabc9321666320b8de8993e2394d566412044
483,825
def program_entry(program): """ Template tag {% program_entry program %} is used to display a single program. Arguments --------- program: Program object Returns ------- A context which maps the program object to program. """ return {'program': program}
e43075dfbe3bde21e2b5f90d317ff09f4d7cdc76
622,585
def _convert_to_boolean(value): """ Converts string input to boolean assuming "Yes/No" inputs Parameters: value: (string) Input value """ return value == "Yes"
aecb151e057a2c26a5d5ebbd11cfda686f9c1733
178,760
def _fixed_threshold(errors, k=4): """Calculate the threshold. The fixed threshold is defined as k standard deviations away from the mean. Args: errors (ndarray): Array of errors. Returns: float: Calculated threshold value. """ mean = errors.mean() std = errors.std() return mean + k * std
386386699e2429350d5b8af5bc51d01f8778460e
340,825
def _adj_column_names(ts): """ ta-lib expects columns to be lower case; to be consistent, change date index """ ts.columns = [col.lower().replace(' ','_') for col in ts.columns] ts.index.names = ['date'] return ts
a3c27b48884b35af3171ba9f5699238c57d9d890
205,342