content
stringlengths
39
9.28k
sha1
stringlengths
40
40
id
int64
8
710k
def _get_QActionGroup(self): """ Get checked state of QAction """ if self.checkedAction(): return self.actions().index(self.checkedAction()) return None
0581a9176c6291714f81b5f6570fac1504153ddb
675,103
def update_parameters(parameters, grads, learning_rate): """ Using gradient descent to update parameters Arguments: parameters is python dictionary containing the parameters grads is python dictionary containing gradients and the output of L_model_backward Returns: parameters that are updated """ L = len(parameters)//2 #number of layers in the neural network for l in range(L): parameters["W"+str(l+1)] = parameters["W"+str(l+1)] - learning_rate* grads["dW" + str(l + 1)] parameters["b"+str(l+1)] = parameters["b"+str(l+1)] - learning_rate* grads["db" + str(l + 1)] return(parameters)
897a0cd90bcafe146d6ced332bf6d77261d286e3
412,214
def host_and_page(url): """ Splits a `url` into the hostname and the rest of the url. """ url = url.split('//')[1] parts = url.split('/') host = parts[0] page = "/".join(parts[1:]) return host, '/' + page
db035aeeaf2c1ae7b9eb00f00daf5673a9551edf
100,865
import torch def construct_optimizer(model, cfg): """ Construct a stochastic gradient descent or ADAM optimizer with momentum. Details can be found in: Herbert Robbins, and Sutton Monro. "A stochastic approximation method." and Diederik P.Kingma, and Jimmy Ba. "Adam: A Method for Stochastic Optimization." Args: model (model): model to perform stochastic gradient descent optimization or ADAM optimization. cfg (config): configs of hyper-parameters of SGD or ADAM, includes base learning rate, momentum, weight_decay, dampening, and etc. """ optim_params = model.parameters() if cfg.SOLVER.OPTIMIZING_METHOD == "sgd": return torch.optim.SGD( optim_params, lr=cfg.SOLVER.BASE_LR, momentum=cfg.SOLVER.MOMENTUM, weight_decay=cfg.SOLVER.WEIGHT_DECAY, dampening=cfg.SOLVER.DAMPENING, nesterov=cfg.SOLVER.NESTEROV, ) elif cfg.SOLVER.OPTIMIZING_METHOD == "adam": return torch.optim.Adam( optim_params, lr=cfg.SOLVER.BASE_LR, betas=(0.9, 0.999), weight_decay=cfg.SOLVER.WEIGHT_DECAY, ) elif cfg.SOLVER.OPTIMIZING_METHOD == "adamw": return torch.optim.AdamW( optim_params, lr=cfg.SOLVER.BASE_LR, betas=(0.9, 0.999), weight_decay=cfg.SOLVER.WEIGHT_DECAY, ) else: raise NotImplementedError( "Does not support {} optimizer".format(cfg.SOLVER.OPTIMIZING_METHOD) )
63569f73c1d0e5aba9bdd6785d745ddc542c345e
494,792
def strip_type(caller): """ strip the -indel or -snp from the end of a caller name """ vartype = '' if caller.endswith('-snp'): caller = caller[:-len('-snp')] vartype = 'snp' elif caller.endswith('-indel'): caller = caller[:-len('-indel')] vartype = 'indel' # if there is still a dash, get everything after it i = caller.rfind('-') if i != -1: caller = caller[i+1:] return caller, vartype
146a972c9110ce6f39f7cc68cee6d8da889816f0
163,814
from typing import List def get_records(project) -> List[dict]: """ Obtain all data from a project :param project: :return: """ all_data = project.export_records() return all_data
eb8b8c04d86dc536f4aef38b8f10f2c73f3597b5
349,490
def _tagged2tuples(tagged_dicts): """ >>> _tagged2tuples(get_tagged_from_server("who has starred in the movie die hard?")) [('who', 'O', 'WP'), ('has', 'O', 'VBZ'), ('starred', 'O', 'VBN'), ('in', 'O', 'IN'), ('the', 'O', 'DT'), ('movie', 'O', 'NN'), ('die', 'O', 'VB'), ('hard', 'O', 'RB'), ('?', 'O', '.')] >>> _tagged2tuples(get_tagged_from_server("What was the last queen album?")) [('What', 'O', 'WP'), ('was', 'O', 'VBD'), ('the', 'O', 'DT'), ('last', 'O', 'JJ'), ('queen', 'O', 'NN'), ('album', 'O', 'NN'), ('?', 'O', '.')] >>> _tagged2tuples(get_tagged_from_server("What was the first queen album?")) [('What', 'O', 'WP'), ('was', 'O', 'VBD'), ('the', 'O', 'DT'), ('first', 'ORDINAL', 'JJ'), ('queen', 'O', 'NN'), ('album', 'O', 'NN'), ('?', 'O', '.')] >>> _tagged2tuples(get_tagged_from_server("What actors star in the Big Bang Theory?")) [('What', 'O', 'WDT'), ('actors', 'O', 'NNS'), ('star', 'O', 'NN'), ('in', 'O', 'IN'), ('the', 'O', 'DT'), ('Big', 'O', 'NNP'), ('Bang', 'O', 'NNP'), ('Theory', 'O', 'NNP'), ('?', 'O', '.')] >>> _tagged2tuples(get_tagged_from_server("what actors star in the big bang theory?", caseless=True)) [('what', 'O', 'WDT'), ('actors', 'O', 'NNS'), ('star', 'O', 'NN'), ('in', 'O', 'IN'), ('the', 'O', 'DT'), ('big', 'O', 'JJ'), ('bang', 'O', 'NN'), ('theory', 'O', 'NN'), ('?', 'O', '.')] >>> _tagged2tuples(get_tagged_from_server("who wrote the song hotel california?", caseless=True)) [('who', 'O', 'WP'), ('wrote', 'O', 'VBD'), ('the', 'O', 'DT'), ('song', 'O', 'NN'), ('hotel', 'O', 'NN'), ('california', 'LOCATION', 'NNP'), ('?', 'O', '.')] >>> _tagged2tuples(get_tagged_from_server("who was the president of the united states in 2012?", caseless=True)) [('who', 'O', 'WP'), ('was', 'O', 'VBD'), ('the', 'O', 'DT'), ('president', 'O', 'NN'), ('of', 'O', 'IN'), ('the', 'O', 'DT'), ('united', 'LOCATION', 'NNP'), ('states', 'LOCATION', 'NNPS'), ('in', 'O', 'IN'), ('2012', 'DATE', 'CD'), ('?', 'O', '.')] >>> _tagged2tuples(get_tagged_from_server("who plays megan in the movie taken?", caseless=True)) [('who', 'O', 'WP'), ('plays', 'O', 'VBZ'), ('megan', 'O', 'NNP'), ('in', 'O', 'IN'), ('the', 'O', 'DT'), ('movie', 'O', 'NN'), ('taken', 'O', 'VBN'), ('?', 'O', '.')] >>> _tagged2tuples(get_tagged_from_server("what language do canadians speak?", caseless=True)) [('what', 'O', 'WDT'), ('language', 'O', 'NN'), ('do', 'O', 'VBP'), ('canadians', 'O', 'NNPS'), ('speak', 'O', 'VB'), ('?', 'O', '.')] >>> _tagged2tuples(get_tagged_from_server("Light explodes over Pep Guardiola's head in Bernabeu press room. Will Mourinho stop at nothing?! Heh heh")) [('Light', 'O', 'JJ'), ('explodes', 'O', 'VBZ'), ('over', 'O', 'IN'), ('Pep', 'PERSON', 'NNP'), ('Guardiola', 'PERSON', 'NNP'), ("'s", 'O', 'POS'), ('head', 'O', 'NN'), ('in', 'O', 'IN'), ('Bernabeu', 'LOCATION', 'NNP'), ('press', 'O', 'NN'), ('room', 'O', 'NN'), ('.', 'O', '.'), ('Will', 'O', 'MD'), ('Mourinho', 'PERSON', 'NNP'), ('stop', 'O', 'VB'), ('at', 'O', 'IN'), ('nothing', 'O', 'NN'), ('?!', 'NUMBER', 'CD'), ('Heh', 'O', 'NNP'), ('heh', 'O', 'RB')] """ tagged = [(t['originalText'], t['ner'], t['pos']) for t in tagged_dicts] return tagged
183c9f48af51d8c5ea82bc47e599acd703ab4672
523,077
from typing import SupportsFloat def _format_float(value: SupportsFloat, *, decimals: int = 6) -> str: """Format a node position into a string. This uses the format requested by 2DM: up to nine significant digits followed by an exponent, e.g. ``0.5 -> 5.0e-01``. :param value: A object that supports casting to :class:`float`. :type value: :obj:`typing.SupportsFloat` :param decimals: The number of decimal places to include, defaults to ``6``. :type decimals: :class:`int`, optional :return: The formatted string with no extra whitespace. :rtype: :class:`str` """ string = f'{" " if float(value) >= 0.0 else ""}{float(value):.{decimals}e}' return string
c1e5f52c1529652a2130c195300d257f66854101
166,506
import functools import operator def product_of_list(iterable): """ Returns the product of an iterable If the list is empty, returns 1 """ product_ = functools.reduce(operator.mul, iterable, 1) return product_
10d873ab86667f5eab3d2d4957c1218259a0f674
558,697
def autocrop_array_shapes(input_shapes, cropping): """Computes the shapes of the given arrays after auto-cropping is applied. For more information on cropping, see the :func:`autocrop` function documentation. # Arguments input_shapes: the shapes of input arrays prior to cropping in the form of a list of tuples cropping: a list of cropping modes, one for each axis. If length of `cropping` is less than the number of axes in the inputs, it is padded with `None`. If `cropping` is None, `input_shapes` is returned as is. For more information on their values and operation, see the :func:`autocrop` documentation. # Returns shapes of the given arrays after auto-cropping is applied. """ if cropping is None: return input_shapes else: # Check for consistent number of dimensions ndim = len(input_shapes[0]) if not all(len(sh) == ndim for sh in input_shapes): raise ValueError("Not all inputs are of the same " "dimensionality. Got {0} inputs of " "dimensionalities {1}.".format(len(input_shapes), [len(sh) for sh in input_shapes])) result = [] # If there are more dimensions than cropping entries, pad # the cropping cropping = list(cropping) if ndim > len(cropping): cropping = list(cropping) + [None] * (ndim - len(cropping)) for sh, cr in zip(zip(*input_shapes), cropping): if cr is None: result.append(sh) elif cr in {'lower', 'center', 'upper'}: min_sh = None if any(inputs is None for inputs in sh) else min(sh) result.append([min_sh] * len(sh)) else: raise ValueError('Unknown crop mode \'{0}\''.format(cr)) return [tuple(sh) for sh in zip(*result)]
acf407935814ae9ffb77a8b7ff3dd747be04bb03
663,013
def rem3(lst): """Remove all 3's from lst""" i = 0 while i < len(lst): if lst[i] == 3: del lst[i] else: i = i + 1 return lst
0ae008555d53c48b5eeaecb49ad526d501327af3
311,751
def alphadump(d, indent=2, depth=0): """Dump a dict to a str, with keys in alphabetical order. """ sep = "\n" + " " * depth * indent return "".join( ( "{}: {}{}".format( k, alphadump(d[k], depth=depth + 1) if isinstance(d[k], dict) else str(d[k]), sep, ) for k in sorted(d.keys()) ) )
0511fec7a61454f93fbe7b55244b7349c9175baf
479,944
def problem_9_6(matrix, key): """ Given a matrix in which each row and each column is sorted, write a method to find an element in it. Matrix is size M*N such that each row is sorted left to right and each column is sorted top to bottom. Solution: divide and conquer. Start in the top-right and go down and left as you narrow down to the searched key. """ m = len(matrix) n = len(matrix[0]) i = 0 # traversed rows. j = n - 1 # traverses columns. while i < m and j >= 0: if key == matrix[i][j]: return True elif key < matrix[i][j]: # key will be smaller then matrix[..][j] j -= 1 else: # key will larger than matrix[i][...] i += 1 return False
f9f379aca6650764525b34252802786024a11fb7
429,541
def _list_at_index_or_none(ls, idx): """Return the element of a list at the given index if it exists, return None otherwise. Args: ls (list[object]): The target list idx (int): The target index Returns: Union[object,NoneType]: The element at the target index or None """ if len(ls) > idx: return ls[idx] return None
46651d93140b63bcb85b3794848921f8ea42d7bf
682,002
def compute_precision(golden_standard, mappings): """ Computes the precision between the mappings and the gold standard. If the mappings is an empty list, the precision is 0 :param golden_standard: The list of tuples containing the correct mappings :param mappings: The list of tuples generated by the algorithm :return: One float corresponding to precision """ if len(mappings) == 0: return 0 matches = [item for item in golden_standard if item in mappings] return len(matches) / len(mappings)
acd76fd9a5442d77273efb1d294b122e57bb9556
231,394
def rem_var(var, subs): """Deletes any substitutions of var in subs.""" newsubs = subs.copy() try: del newsubs[var.constant()] except KeyError: pass try: del newsubs[var.variable()] except KeyError: pass return newsubs
161c62470ad648e2d062d021b528ece4e1555509
65,962
def get_ident_string(module_class): """Returns a string which can be used to identify a module class. Normal comparison marks the same class as different after reloading it so this string has to be used to compare modules after reloading instead of a direct comparison of a type. """ return module_class.__module__ + '.' + module_class.__name__
95d231be9d895340b7e9bc8c325cd284b17f00a6
425,790
def _exists(index, nx, ny): """ Checks whether an index exists an array :param index: 2D index tuple :return: true if lower than tuple, false otherwise """ return (0 <= index[0] < nx) and (0 <= index[1] < ny)
6f7283beec9cbe370648e5b07997ec77b57be9f5
423,965
def _sum_frts(results:dict): """ Get total number of FRTs Arguments: results {dict} -- Result set from `get_total_frts` Returns: int -- Total number of FRTs in the nation """ if results == None: return 0 total_frts = 0 for result in results: if result['state_total']: total_frts += result['state_total'] return total_frts
44d56d9e35c2b910ea10e25bb3de7ba9ae0c6294
107,152
def image_data(image): """Get components and bytes for an image""" # NOTE: We might want to check the actual image.mode # and convert to an acceptable format. # At the moment we load the data as is. data = image.tobytes() components = len(data) // (image.size[0] * image.size[1]) return components, data
f2298efba3ac49ef15c4afa56beb37ed9774af72
165,127
def divide_list_into_equal_chunks(alist, chunks): """ Divide a list into equal chunks :param alist: list :param chunks: int :return: list """ return [alist[i:i + chunks] for i in range(0, len(alist), chunks)]
543e42256e46fbd1ff56feb4b684b5c18eae7acc
224,773
def getCasing(word): """Returns the casing for a word""" casing = 'other' numDigits = 0 for char in word: if char.isdigit(): numDigits += 1 digitFraction = numDigits / float(len(word)) if word.isdigit(): #Is a digit casing = 'numeric' elif digitFraction > 0.5: casing = 'mainly_numeric' elif word.islower(): #All lower case casing = 'allLower' elif word.isupper(): #All upper case casing = 'allUpper' elif word[0].isupper(): #is a title, initial char upper, then all lower casing = 'initialUpper' elif numDigits > 0: casing = 'contains_digit' return casing
69c48dd1f6943257570ac98a794909d01fd1db0e
588,418
def _make_sro(object_generator, source_id, rel_type, target_id): """ Make an SRO. :param source_id: The ID of the source object (string) :param rel_type: The relationship type (string) :param target_id: The ID of the target object (string) :return: The SRO, as a dict """ rel = object_generator.generate("relationship") rel["source_ref"] = source_id rel["target_ref"] = target_id rel["relationship_type"] = rel_type return rel
a258c0bd17e05a9e8cc979a2061b8c328882e199
318,973
def length(listed): """ return length of list """ count = 0 for item in listed: count += 1 return count
6052d82388a16896c74ee3287064095cfc84f787
456,765
def _calculate_development_risk(module): """ Function to calculate Software risk due to the development environment. This function uses the results of RL-TR-92-52, Worksheet 1B to determine the relative risk level. The percentage of development environment characteristics (Dc) applicable to the system under development determine the risk level. Baseline (medium) development risk (D) is assigned a 1. Low development risk (Dc > 0.9) is assigned a 0.5. High development risk (Dc < 0.5) is assigned a 2. :param module: the :py:class:`rtk.software.CSCI.Model` or :py:class:`rtk.software.Unit.Model` data model to calculate. :return: False if successful or True if an error is encountered. :rtype: bool """ module.dc = sum(module.lst_development) / 43.0 if module.dc < 0.5: # High risk module.d_risk = 2.0 elif module.dc > 0.9: # Low risk module.d_risk = 0.5 else: module.d_risk = 1.0 return False
f27193929eccd96090944b5c69fb71b5afc3d477
190,884
def split_data(dataframe): """ Split the dataset into features and labels Parameters ---------- dataframe : the full dataset Returns ------- features : the features of the dataset labels : the attack flag label of the dataset """ label = dataframe[['ATT_FLAG']].values.ravel() features = dataframe.drop(['ATT_FLAG'], axis = 1).values return features, label
99f982def66318f3ab40de5cb868cce6548f19f8
665,585
def rotated_array_search(input_list, number): """ Find the index by searching in a rotated sorted array Args: input_list(array), number(int): Input array to search and the target Returns: int: Index or -1 """ if len(input_list) == 0: return -1 list_len = len(input_list) left_index = 0 right_index = list_len - 1 while not left_index > right_index: mid = (left_index + right_index) // 2 if input_list[mid] == number: return mid # left -> mid is sorted i can continue as a binary search if input_list[left_index] <= input_list[mid]: # As this subarray is sorted, we can quickly # check if key lies in half or other half if input_list[left_index] <= number <= input_list[mid]: right_index = mid - 1 else: left_index = mid + 1 # If arr[l..mid] is not sorted, then arr[mid... r] # must be sorted elif input_list[mid] <= number <= input_list[right_index]: left_index = mid + 1 else: right_index = mid - 1 return -1
347c6ed30b580746f7df96e8155a245f5c35c68a
146,719
def slice_repr(slice_obj): """ Get the best guess of a minimal representation of a slice, as it would be created by indexing. """ slice_items = [slice_obj.start, slice_obj.stop, slice_obj.step] if slice_items[-1] is None: slice_items.pop() if slice_items[-1] is None: if slice_items[0] is None: return "all" else: return repr(slice_items[0]) + ":" else: return ":".join("" if x is None else repr(x) for x in slice_items)
c894f66478ec830a4968d0cfc5d9e146457012b6
705,237
def time_minutes(dt): """Format a datetime as time only with precision to minutes.""" return dt.strftime('%H:%M')
93288a8f0204dd56c59b18b75c62a5c1e059e159
670,469
def _invoke_codegen_rule_name(plugin, target_name, thrift_src): """Returns the name of the rule that invokes the plugin codegen binary.""" return "{}-cpp2-{}-{}".format(target_name, plugin.name, thrift_src)
04fe614abbce2049720b7636074dee6cc7b3184b
190,641
def _get_types(prop): """ Returns a property's `type` as a list. """ if 'type' not in prop: return [] if isinstance(prop['type'], str): return [prop['type']] return prop['type']
b6fbb21a7e1faf6f97d24ccb185e4f6e0229d6a5
151,378
def hamming(str1, str2): """Hamming distance between two strings""" return sum(a!=b and not( a=='N' or b=='N' ) for a,b in zip(str1, str2))
247bde164b51708a504c9aabbf429daeed62a07e
314,005
def wrap(x, low=0, high=360): """ Extended modulo function. Converts a number outside of a range between two numbers by continually adding or substracting the span between these numbers. Parameters ---------- x : int or float number to be wrapped low : int or float, optional lowest value of the wrap (default: 0) high : int or float, optional lowest value of the wrap (default: 360) Returns ------- x : float wrapped number """ angle_range = high - low x = ((x - low) % angle_range) + low return x
9cc2cd48cee745c8330da06462d00630271818f0
356,030
def map_value(in_v, in_min, in_max, out_min, out_max): """Helper method to map an input value (v_in) between alternative max/min ranges.""" v = (in_v - in_min) * (out_max - out_min) / (in_max - in_min) + out_min return max(min(out_max, v), out_min)
f6ccb04d4c5e49e6e228fb4498555204b35b91c6
322,791
def find_midpoint(low, high): """ Find the midpoint between two numbers. Expects low <= high. Args: low (int): Low number high (int): High number Returns: (int): midpoint between low and high """ if high < low: raise ValueError("Expected arg \"low\" to be less than arg \"high\"") return low + (high - low) / 2
d9cf25f6888eabd7d629e60f04b59c5880814589
317,219
def extractDigits(key): """Split a string which may contain a number into a tuple of the string without the digits, and the integer value of the digits. We can then use that as a good thing to sort on, so that we get "a5" and "a15" right. """ text = "" digits = "" for c in key: if c in "0123456789": digits += c else: text += c return (text, 0 if not digits else int(digits))
e2c5acad9dbff04019f2197c1f5c42f5b9a36512
177,910
def _present_config_results(config_records, resource_ids): """ If resource_id is in config_records add to dictionary and return dictionary :param config_records: config compliance records :param resource_ids: list of resource ids :returns: dictionary of resource_id: compliance_type """ found_records = {} for config_records in config_records: config_record_id = config_records['EvaluationResultIdentifier'][ 'EvaluationResultQualifier']['ResourceId'] if config_record_id in resource_ids: found_records[config_record_id] = config_records["ComplianceType"] return found_records
4e72bd97bc8bbca3e00dd1aa095cee9b5744b0ca
241,299
import binascii def to_utf8_unicode_point_string(arg): """Given a string, encode it as UTF-8 and return a human-readable unicode point representation. Example:: >> to_utf8_unicode_point_string('A') U+41 >> to_utf8_unicode_point_string('hi ルーカスǃ') U+686920e383abe383bce382abe382b9c783 """ return 'U+' + binascii.hexlify(arg.encode('utf8')).decode('ascii')
6b98ccaf4ee4f85a2f54f86f50b1130d4d8a7304
239,108
def doc_flat_to_nested(key_list, val): """ Convert a flat keys and value into a nested document. e.g.: { a.b.c: 1 } => { a: { b: { c: 1 } } } """ res = {} if len(key_list) > 1: res[key_list[0]] = doc_flat_to_nested(key_list[1:], val) elif len(key_list) == 1: res[key_list[0]] = val else: raise Exception('invalid key_list @%s' % doc_flat_to_nested.__name__) return res
6959a9027b4e901557d6ce3f37e864b3892bb710
252,825
def normalize_url(url): """If passed url doesn't include schema return it with default one - http.""" if not url.lower().startswith('http'): return 'http://%s' % url return url
b957056e8ca32f6294c85466b6e52c56bb1dba84
693,995
import re from typing import OrderedDict def get_example_sections(example): """Parses a multipart example and returns them in a dictionary by type. Types will be by language to highlight, except the special "__doc__" section. The default section is "html". """ parts = re.split(r'<!-- (.*) -->', example) del parts[0] i = iter(parts) sections = OrderedDict() for lang, code in zip(i, i): sections[lang] = code.strip() # assert lang != 'TEMPLATE', example return sections
a28ede469e82755528013a3b1cc08a56ed024577
663,834
from typing import Callable def has_non(function: Callable) -> Callable: """ A convenient operator that takes a function (presumed to have the same signature as all of the other functions in this section), and returns the logical "converse" - that is, a function which returns True if any part of the input string fails to return True on the given function. For example, if we had a function `is_greek` which returns True is a string consists entirely of Greek cheracters - then `has_non(is_greek)` would return a callable which returns True if the given string contains any non-Greek characters. Note the function thus produced may be quite inefficient. But in a pinch it can be useful to whip out "converse" forms of validating functions in this way. """ def wrapped(string: str) -> bool: if isinstance(string, str): return any(not function(_) for _ in string) raise ValueError("invalid input - not a string") return wrapped
f95c140bb7d295b8557dc9d7ddb3e42b1bf74ebf
71,190
import json def _get_metadata(dataset): """Get the layer metadata if exist""" metadata = [k for k in dataset['keywords'] if k.startswith('layer_info:')] if not metadata: return "" else: return json.loads(metadata[0].split("layer_info:")[1])
9c8a0269e9c841caeb299b4b489e8531ee9c5d0a
489,354
def pop_required_arg(arglist, previousArg) : """ Pop the first element off the list and return it. If the list is empty, raise an exception about a missing argument after the $previousArgument """ if not len(arglist) : raise Exception, "Missing required parameter after %s" % previousArg head = arglist[0] del arglist[0] return head
ed35be7859326979dceb5843a07769e5a022a30b
56,157
import math def get_grid_size(k: int) -> int: """ returns the grid size (total number of elements for a cgr of k length kmers :param: k int -- the value of k to be used :return: int -- the total number of elements in the grid """ return int(math.sqrt(4 ** k))
2a770d0be8093a16f7c795fb6b8dfeccd8c8e140
568,752
from typing import List def hello_world(cities: List[str] = ["Berlin", "Paris"]) -> bool: """ Hello world function. Arguments: - cities: List of cities in which 'hello world' is posted. Return: - success: Whether or not function completed successfully. """ try: [print("Hello {}!".format(c)) for c in cities] # for loop one-liner return True except KeyboardInterrupt: return False finally: pass
a24f0f47c9b44c97f46524d354fff0ed9a735fe3
706,644
def get_section_from_chunk(chunk, sectionname): """Extract a named section of a chunk""" section = [] in_section = False for line in chunk: if line == sectionname: in_section = True continue if in_section: if line == "": # We've reached the end of the section break else: section.append(line) return section
d2e40c599545f5c770a50f260ce0ac858814a80e
72,187
import importlib def import_modules(*modules): """This function imports and returns one or more modules to utilize in a unit test. .. versionadded:: 2.7.4 :param modules: One or more module paths (absolute) in string format :returns: The imported module(s) as an individual object or a tuple of objects """ imported_modules = [] for module in modules: imported_modules.append(importlib.import_module(module)) tuple(imported_modules) return imported_modules if len(imported_modules) > 1 else imported_modules[0]
9b347215b95aa20dbb21b20fcfc926abac705558
213,142
import torch import math def nanmean(values: torch.Tensor) -> torch.Tensor: """ Computes the average of all values in the tensor, skipping those entries that are NaN (not a number). If all values are NaN, the result is also NaN. :param values: The values to average. :return: A scalar tensor containing the average. """ valid = values[~torch.isnan(values.view((-1,)))] if valid.numel() == 0: return torch.tensor([math.nan]).type_as(values) return valid.mean()
424ffbb9a13d71c76d982f951c7691e700ccdd18
388,262
def pedir_entero(msj): """ Ejecuta input(msj) hasta que se ingrese un entero. """ while True: try: entero = int(input(msj)) except ValueError: print('El valor ingresado no es válido.') else: return entero
ee892b3b129916bb917d825c22975630b37cb414
493,979
import posixpath def _join_posixpaths_and_append_absolute_suffixes(prefix_path, suffix_path): """ Joins the POSIX path `prefix_path` with the POSIX path `suffix_path`. Unlike posixpath.join(), if `suffix_path` is an absolute path, it is appended to prefix_path. >>> result1 = _join_posixpaths_and_append_absolute_suffixes("relpath1", "relpath2") >>> assert result1 == "relpath1/relpath2" >>> result2 = _join_posixpaths_and_append_absolute_suffixes("relpath", "/absolutepath") >>> assert result2 == "relpath/absolutepath" >>> result3 = _join_posixpaths_and_append_absolute_suffixes("/absolutepath", "relpath") >>> assert result3 == "/absolutepath/relpath" >>> result4 = _join_posixpaths_and_append_absolute_suffixes("/absolutepath1", "/absolutepath2") >>> assert result4 == "/absolutepath1/absolutepath2" """ if len(prefix_path) == 0: return suffix_path # If the specified prefix path is non-empty, we must relativize the suffix path by removing # the leading slash, if present. Otherwise, posixpath.join() would omit the prefix from the # joined path suffix_path = suffix_path.lstrip(posixpath.sep) return posixpath.join(prefix_path, suffix_path)
5ed573c7707f0a8e64a3f606597aafc7489e0edb
250,401
from string import ascii_lowercase def decimalToAlphabetical(index): """ Converts int to an alphabetical index. e.g.: 0 -> 'a', 1 -> 'b', 2 -> 'c', 'yama' -> 440414 :param index: int :return: str """ assert isinstance(index, int) and index >= 0 alphanum = '' index += 1 # because alphabet hase no 0 and starts with 'a' while index: index -= 1 # 'a' needs to be used as next 'decimal' unit when reaching 'z': ..., 'y', 'z', 'aa', 'ab', ... reste = index % 26 index = index // 26 alphanum = ascii_lowercase[reste] + alphanum return alphanum
c10d5e281cbc29ea6d835d9223cfacaa7d4ee9d6
418,699
import re def parse_show_snmp_community(raw_result): """ Parse the 'show snmp community' command raw output. :param str raw_result: vtysh raw result string. :rtype: list :return: The parsed result of the show snmp community\ command in a list of strings :: [ 'public', 'private', 'community1', 'community2' ] """ pattern_found = 0 result = [] res = 0 for line in raw_result.splitlines(): if pattern_found == 2: result.append(line.strip()) else: res = re.match(r'\s*-+\s*', line) if res: pattern_found = pattern_found + 1 if result == {}: return None else: return result
ce962b9030135153fd458440b2232a5546a9345f
192,712
import yaml def generate_rke_yaml(ips, user, ssh_private_key): """ Make the YAML file that RKE is going to use to create the kubernetes cluster :param ips: What IP addresses are we working with? Array of strings :param user: What user should we create? :param ssh_private_key: Private key text (utf-8) to include in yaml :return: string with the formatted yaml in it """ nodes = [] for ip in ips: nodes.append( { 'address': ip, 'user': user, 'ssh_key': ssh_private_key, 'role': [], }, ) for i, role in enumerate(['controlplane', 'etcd']): node_idx = i % len(nodes) nodes[node_idx]['role'].append(role) for node in nodes: if len(node['role']) == 0: node['role'].append('worker') worker_count = 0 for node in nodes: if 'worker' in node['role']: worker_count += 1 if worker_count == 0: for node in nodes: if 'controlplane' not in node['role']: node['role'].append('worker') worker_count += 1 if worker_count == 0: nodes[0]['role'].append('worker') etcd_count = 0 for node in nodes: if 'etcd' in node['role']: etcd_count += 1 if etcd_count < 3: for node in nodes: if 'etcd' not in node['role'] and 'controlplane' not in node['role']: node['role'].append('etcd') etcd_count += 1 if etcd_count >= 3: break services = { 'etcd': {'image': 'quay.io/coreos/etcd:latest'}, 'kube-api': {'image': 'rancher/k8s:v1.11.6-rancher2'}, 'kube-controller': {'image': 'rancher/k8s:v1.11.6-rancher2'}, 'scheduler': {'image': 'rancher/k8s:v1.11.6-rancher2'}, 'kubelet': {'image': 'rancher/k8s:v1.11.6-rancher2'}, 'kubeproxy': {'image': 'rancher/k8s:v1.11.6-rancher2'}, } addons = [ { "apiVersion": "v1", "kind": "ServiceAccount", "metadata": { "name": "cloudbolt-admin", "namespace": "kube-system" } }, { "apiVersion": "rbac.authorization.k8s.io/v1", "kind": "ClusterRoleBinding", "metadata": { "name": "cloudbolt-admin" }, "roleRef": { "apiGroup": "rbac.authorization.k8s.io", "kind": "ClusterRole", "name": "cluster-admin" }, "subjects": [ { "kind": "ServiceAccount", "name": "cloudbolt-admin", "namespace": "kube-system" } ] }, ] document = { 'nodes': nodes, 'services': services, 'addons': '---\n' + yaml.dump_all(addons), } return yaml.dump(document)
889e3d73420ee4eb0c5d7c84531e37127c454368
366,456
import csv def parse_ngram_file(csv_file): """Parse a single ngram wordlist into a hashtable.""" ngrams = {} with open(csv_file, newline='') as f: for row in csv.reader(f): ngram = tuple(row[0].split()) ngrams[ngram] = True return ngrams
eec50a6a88104cec27809bf938a12c862d7deba2
383,077
def _process_init_command(args, _model): """Handle the init command: create an empty password database.""" assert args.command == 'init' # Keep the model empty and let the main() function write out the database. return 0
684d6f8c68bceb79dd1c18a934a4009762bd238d
162,911
from typing import List from typing import Dict from typing import Any def format_sents_for_output(sents: List[str], doc_id: str) -> Dict[str, Dict[str, Any]]: """ Transform a list of sentences into a dict of format: { "sent_id": {"text": "sentence text", "label": []} } """ formatted_sents = {} for i, sent in enumerate(sents): formatted_sents.update({f"{doc_id}_sent_{i}": {"text": sent, "label": []}}) return formatted_sents
d6178ac48da4d95e8d3727ca9220168e06ba223e
8,177
def _get_fuzzer_module_name(fuzzer: str) -> str: """Returns the name of the fuzzer.py module of |fuzzer|. Assumes |fuzzer| is an underlying fuzzer.""" return 'fuzzers.{}.fuzzer'.format(fuzzer)
7fcebf65168d6dc4e4f70a941fe6b0e30cb5790c
218,469
def filter_matching_taxon_ids(query_set, taxon_id=None): """Filters out all instances with a taxonomy id that does not match `taxon_id` if taxon_id is not None. Taxonomy id must be one supported by `UniProt`. Parameters ---------- query_set : :class:`Query` A query instance from `sqlalchemy` taxon_id : int, optional An integer taxonomy id supported by `UniProt` Returns ------- :class:`Query` Filtered query instance. """ if taxon_id is not None: return query_set.filter_by(taxon_id=taxon_id) else: return query_set
55cae9addfe1db488a1cbb26c9c9408dfd86780e
132,941
def Top1Accuracy(predictions, recognition_solution): """Computes top-1 accuracy for recognition prediction. Note that test images without ground-truth are ignored. Args: predictions: Dict mapping test image ID to a dict with keys 'class' (integer) and 'score' (float). recognition_solution: Dict mapping test image ID to list of ground-truth landmark IDs. Returns: accuracy: Top-1 accuracy (float). """ # Loop over test images in solution. If it has at least one class label, we # check if the predicion is correct. num_correct_predictions = 0 num_test_images_with_ground_truth = 0 for key, ground_truth in recognition_solution.items(): if ground_truth: num_test_images_with_ground_truth += 1 if key in predictions: if predictions[key]['class'] in ground_truth: num_correct_predictions += 1 return num_correct_predictions / num_test_images_with_ground_truth
456344b5fcf12e1523cb7dc2f4f5d0064e596db4
498,801
def loop_noise_coupling_functions(olg, clp, chp, lock='active'): """Control loop coupling functions for a opto-mechanical cavity. Inputs: ------- olg: array of complex floats Open loop gain clp: array of complex floats Cavity low pass chp: array of complex floats Cavity high pass lock: string Either "active", representing locking the laser to the cavity, or "passive", representing locking the cavity to the laser. Outputs: -------- a_in: array of complex floats Input frequency noise coupling to transmitted frequency noise a_sense: array of complex floats Sensing frequency noise coupling to transmitted frequency noise a_disp: array of complex floats Displacement frequency noise coupling to transmitted frequency noise """ if lock == 'active': a_in = clp / (1 + clp * olg) a_sense = clp * olg / (1 + clp * olg) a_disp = clp**2 * olg / (1 + clp * olg) + chp else: a_in = clp * (1 + olg) / (1 + clp * olg) a_sense = chp * olg / (1 + clp * olg) a_disp = chp / (1 + clp * olg) return a_in, a_sense, a_disp
1ff646772254fe07435493f98c76570d303fc670
122,564
def size_table_name(model_selector): """ Returns canonical name of injected destination desired_size table Parameters ---------- model_selector : str e.g. school or workplace Returns ------- table_name : str """ return "%s_destination_size" % model_selector
5309738dd0b59c745c88e30e64f301d0b2cbf949
563,932
import re def strings(filename, minChars=4): """Search printable strings in binary file :param filename: The file to be read :type filename: str :param minChars: Min-len of characters to return string *(default 4)* :type minChars: int :returns: List of printable strings :rtype: list """ regex_string = '[ -~]{' + str(minChars) + ',}' try: with open(filename, errors='ignore') as f: return '\n'.join(re.findall(regex_string, f.read())) except FileNotFoundError: return ''
caacb1385fa2676b24d38b9b749cdd6a5a497599
597,725
from random import gauss def random_mbh(type='agn'): """randomizes a black hole mass (in solar masses). one can choose between ``agn`` and ``xrb``.""" if type == 'agn': # log M_bh = N(7.83, 0.63) (jin12) return 10**gauss(7.83, 0.63) elif type == 'xrb': return 10**gauss(1.1, 0.15) else: raise Exception('type must be agn or xrb')
58a1b638fc1acf1a0bf90a25bc3f929f92f338b7
112,279
def second_valid_range_str(second_valid_range): """ Fixture that yields a string representation of a range within the bounds of the "second" field. """ start, stop = second_valid_range[0], second_valid_range[-1] return '{0}-{1}'.format(start, stop)
fc58fd7191289986d50a5302565a3c000f9154b6
331,974
def set_time_resolution(datetime_obj, resolution): """Set the resolution of a python datetime object. Args: datetime_obj: A python datetime object. resolution: A string indicating the required resolution. Returns: A datetime object truncated to *resolution*. Examples: .. code-block:: python from typhon.utils.time import set_time_resolution, to_datetime dt = to_datetime("2017-12-04 12:00:00") # datetime.datetime(2017, 12, 4, 12, 0) new_dt = set_time_resolution(dt, "day") # datetime.datetime(2017, 12, 4, 0, 0) new_dt = set_time_resolution(dt, "month") # datetime.datetime(2017, 12, 1, 0, 0) """ if resolution == "year": return set_time_resolution(datetime_obj, "day").replace(month=1, day=1) elif resolution == "month": return set_time_resolution(datetime_obj, "day").replace(day=1) elif resolution == "day": return datetime_obj.replace(hour=0, minute=0, second=0, microsecond=0) elif resolution == "hour": return datetime_obj.replace(minute=0, second=0, microsecond=0) elif resolution == "minute": return datetime_obj.replace(second=0, microsecond=0) elif resolution == "second": return datetime_obj.replace(microsecond=0) elif resolution == "millisecond": return datetime_obj.replace( microsecond=int(datetime_obj.microsecond / 1000) * 1000 ) else: raise ValueError("Cannot set resolution to '%s'!" % resolution)
449d5ac691ea04ce2a19fb825743d081add5990c
101,120
def handle_title(block): """ Extracts information from a title block (from a README doctree). Args: block: A title doctree block Returns: A dictionary with the extracted information """ ret = { 'type': 'title', 'text': '\n'.join((block.astext(), '~' * 20)), } return ret
671a76fbd6757d6036c16d94dd40e1729ecb6025
469,182
def generate_test_description(local_symbols, *variable_names): """ Generate test description. :param local_symbols: local symbol table from where the function was called :param variable_names: variable names :return: test description """ variables_text = ', '.join('{} = {}'.format(variable_name, eval(variable_name, local_symbols)) for variable_name in variable_names) return 'when testing \'{}\''.format(variables_text)
4eddea7075994cc8e3d9e5da4bdb4bf8c85c8aad
64,897
def two_pts_to_line(pt1, pt2): """ Create a line from two points in form of a1(x) + a2(y) = b """ pt1 = [float(p) for p in pt1] pt2 = [float(p) for p in pt2] try: slp = (pt2[1] - pt1[1]) / (pt2[0] - pt1[0]) except ZeroDivisionError: slp = 1e5 * (pt2[1] - pt1[1]) a1 = -slp a2 = 1. b = -slp * pt1[0] + pt1[1] return a1, a2, b
d607008c41eaa052c0988a7ac66588b464aab8e0
701,271
def getKeyByValue(dictOfElements, valueToFind): """Get the first key that contains the specified value.""" for key, value in dictOfElements.items(): if value == valueToFind: return key
b568ab7d6e901d548a1295ef8885c67e698a2cf0
308,639
def get_resultant(X,Y,Z): """This function gets the resultant magnitudes of three arrays of vector quantities: X, Y, and Z.""" resultant = [] for i in range(len(X)): resultant.append((X[i]**2 + Y[i]**2 + Z[i] **2)**0.5) return resultant
494f819008a86a1a60e52f2f1bb9b5ac011b0508
598,773
def gillespie (r, *args, **kwargs): """ Run a Gillespie stochastic simulation. Examples: rr = te.loada ('S1 -> S2; k1*S1; k1 = 0.1; S1 = 40') # Simulate from time zero to 40 time units result = rr.gillespie (0, 40) # Simulate on a grid with 10 points from start 0 to end time 40 result = rr.gillespie (0, 40, 10) # Simulate from time zero to 40 time units using the given selection list # This means that the first column will be time and the second column species S1 result = rr.gillespie (0, 40, ['time', 'S1']) # Simulate from time zero to 40 time units, on a grid with 20 points # using the give selection list result = rr.gillespie (0, 40, 20, ['time', 'S1']) """ if r.integrator is None: raise ValueError("model is not loaded") prev = r.integrator.getName() if kwargs is not None: kwargs['integrator'] = 'gillespie' else: kwargs = {'integrator' : 'gillespie'} result = r.simulate(*args, **kwargs) r.setIntegrator(prev) return result
420c1c5b2d97ded73dc077cad30f6fa94a4e5c79
110,257
def substract(v1, v2): """ Returns the difference of a two 2-D vectors. """ return (v2[0] - v1[0], v2[1] - v1[1])
39a99b79dbe6e9ee638ed7c001ec84119e70160b
177,852
import torch def get_loss_cumu(loss_dict, cumu_mode): """Combine different losses to obtain a single scalar loss. Args: loss_dict: A dictionary or list of loss values, each of which is a torch scalar. cumu_mode: a 2-tuple. Choose from: ("generalized-mean"/"gm", {order}): generalized mean with order "harmonic": harmonic mean "geometric": geometric mean "mean": arithmetic mean "sum": summation "min": minimum "original": returns the original loss_dict. Returns: loss: the combined loss scalar computed according to cumu_mode. """ if cumu_mode == "original": return loss_dict if isinstance(loss_dict, dict): loss_list = torch.stack([loss for loss in loss_dict.values()]) elif isinstance(loss_dict, list): loss_list = torch.stack(loss_dict) elif isinstance(loss_dict, torch.Tensor): loss_list = loss_dict else: raise N = len(loss_list) if N == 1: return loss_list[0] epsilon = 1e-20 # to prevent NaN if cumu_mode.startswith("gm"): cumu_mode_str, num = cumu_mode.split("-") cumu_mode = (cumu_mode_str, eval(num)) if isinstance(cumu_mode, tuple) and cumu_mode[0] in ["generalized-mean", "gm"]: if cumu_mode[1] == -1: cumu_mode = "harmonic" elif cumu_mode[1] == 0: cumu_mode = "geometric" elif cumu_mode[1] == 1: cumu_mode = "mean" if cumu_mode == "harmonic": loss = N / (1 / (loss_list + epsilon)).sum() elif cumu_mode == "geometric": loss = (loss_list + epsilon).prod() ** (1 / float(N)) elif cumu_mode == "mean": loss = loss_list.mean() elif cumu_mode == "sum": loss = loss_list.sum() elif cumu_mode == "min": loss = loss_list.min() elif cumu_mode[0] in ["generalized-mean", "gm"]: order = cumu_mode[1] loss = (((loss_list + epsilon) ** order).mean()) ** (1 / float(order)) else: raise return loss
27fe5ac266cde59333c5c7f0c40da7ae9f483abe
359,166
def make_progress_bar_text(percentage: float, bar_length: int = 2) -> str: """ Get the progress bar used by seasonal challenges and catalysts and more Translations: "A" -> Empty Emoji "B" -> Empty Emoji with edge "C" -> 1 Quarter Full Emoji "D" -> 2 Quarter Full Emoji "E" -> 3 Quarter Full Emoji "F" -> 4 Quarter Full Emoji """ to_beat = 1 / bar_length / 4 bar_text = "" for i in range(bar_length): # 100% if percentage >= (x := (to_beat * 4)): bar_text += "F" percentage -= x # 75% elif percentage >= (x := (to_beat * 3)): bar_text += "E" percentage -= x # 50% elif percentage >= (x := (to_beat * 2)): bar_text += "D" percentage -= x # 25% elif percentage >= (x := (to_beat * 1)): bar_text += "C" percentage -= x # 0% else: # if it's the first one or the last one was empty too, set it to completely empty if bar_text == "" or bar_text[-1:] != "F": bar_text += "A" # else keep the tiny edge else: bar_text += "B" return bar_text
6422dfbb7f4bb9b875491398fab57e9f8af5a380
677,345
def _is_kind(cell, kinds:str) -> bool: """Internal function: Check if cell is of one of the given kinds.""" if kinds == 'all' or cell.cell_type in kinds: return True if 'jollity' in cell.metadata: return f'md:{cell.metadata.jollity.kind}' in kinds return False
aa0c41fba6c8bf4f847dfc229e31808fd9482b14
262,760
import re def clean_license_name(license_name): """Remove the word ``license`` from the license :param str license_name: Receives the license name :return str: Return a string without the word ``license`` """ return re.subn(r'(.*)\s+license', r'\1', license_name, flags=re.IGNORECASE)[0]
970d933911b69ba9a1f33a768bc68032334d41c3
15,213
def short_time(time): """ Better readable time - remove subseconds """ return str(time)[:-4]
43cda011a592b49a525c2ddfa2786a391871331a
160,094
import torch def load_model(model, model_path, optimizer_path=None): """ Loads model and optimizer (if given) from state_dict """ model.load_state_dict( torch.load(model_path)) if optimizer_path: optim = torch.load(optimizer_path) return model, optim return model
f91da26579309114a459be9d9c93d84f25b88432
140,121
import errno def read_file(path): """Returns contents of a file or None if missing.""" try: with open(path, 'r') as f: return f.read() except IOError as e: if e.errno == errno.ENOENT: return None raise
9e8f8727eb453169045c7259f690fa3b0504266d
458,208
def clean_game_date(season_year: int, date: str) -> str: """Creates a date string from a season year and date string. Args: season_year (int): The season year. date (str): The date string. Returns: str: The date string if the date is part of the regular season, otherwise returns 'non-regular-season'. """ if len(date) == 3 and date[0] == "9": return f"{season_year}-09-{date[1:]}" elif len(date) == 4 and int(date[:2]) > 9: return f"{season_year}-{date[:2]}-{date[2:]}" elif len(date) == 3 and date[0] in ["1", "2"]: season_year += 1 return f"{season_year}-0{date[0]}-{date[1:]}" else: return "non-regular-season"
361f4516332f3f4eb9dc8fcfcd831f7acd4da709
455,213
def getusername(cursor, displayname): """Retrieve internal username from display name.""" cursor.execute("select username from profile where displayname = ?;", (displayname,)) username = cursor.fetchone() if username is None: return None return username[0]
48caeb3de8101788280a9eca069e6be5dc51e6ee
523,503
def rgb_tuple_to_hex_str(rgb, a=None): """ Return a hex string representation of the supplied RGB tuple (as used in SVG etc.) with alpha, rescaling all values from [0,1] into [0,255] (ie hex x00 to xff). Parameters: rgb - (r,g,b) tuple (each of r,g,b is in [0,1]) a - (default None) alpha channel (transparancy) value or None Return value: string 'rrggbb' where rr, gg, bb are hex representations of r,g,b resp. or 'rrggbbaa' if a!=None where aa is hex repr. of alpha value a. """ xrgb = tuple([int(round(x*255)) for x in rgb]) if a == None: return '%02x%02x%02x' % xrgb else: a = int(round(a*255)) return '%02x%02x%02x%02x' % (xrgb[0],xrgb[1],xrgb[2],a)
fb009639fab6f1e6779397a91b5875820632e713
497,288
def freq_id_to_stream_id(f_id): """ Convert a frequency ID to a stream ID. """ pre_encode = (0, (f_id % 16), (f_id // 16), (f_id // 256)) stream_id = ( (pre_encode[0] & 0xF) + ((pre_encode[1] & 0xF) << 4) + ((pre_encode[2] & 0xF) << 8) + ((pre_encode[3] & 0xF) << 12) ) return stream_id
f89d52adf4390f665e069c2b5f4f5accc22709b8
702,189
def best_evaluation(history): """Return the best-ever loss and accuracy. Not necessarily from the same epoch.""" best_loss = min(history.history['val_loss']) best_accuracy = max(history.history['val_acc']) return best_loss, best_accuracy
49a5087819acd7d69760d4cf3c60d976dc360262
198,571
def one_or_none(values): """Fetch the first value from values, or None if values is empty. Raises ValueError if values has more than one thing in it.""" if not values: return None if len(values) > 1: raise ValueError('Got more than one value.') return values[0]
e3d1517d6dd32a8f1f04a0eee56d49d844028ca2
284,243
def make_batch_indexes(size, data_len): """ Creates a list of start and stop indexes where start is <size> away from end. The start and stop indexes represent the start and stop index of each batch ranging for the entire data set. Parameters ---------- size: int The size of the batches. data_len: int The number of rows in the data. Returns ------- list: A list of list that where the first item in the sublist is the start index and the second is the end index of that batch. """ start_i = 0 end_i = size index_couples = [] while end_i <= data_len: couplet = [start_i, end_i] index_couples.append(couplet) start_i = end_i end_i += size final_couplet = [end_i - size, data_len] index_couples.append(final_couplet) return index_couples
20c0ad14f8460f155342b0d443062c201dcbc891
210,678
def getBoundingBox(veclist): """Calculate bounding box (pair of vectors with minimum and maximum coordinates). >>> getBoundingBox([(0,0,0), (1,1,2), (0.5,0.5,0.5)]) ((0, 0, 0), (1, 1, 2))""" if not veclist: # assume 3 dimensions if veclist is empty return (0,0,0), (0,0,0) # find bounding box dim = len(veclist[0]) return ( tuple((min(vec[i] for vec in veclist) for i in range(dim))), tuple((max(vec[i] for vec in veclist) for i in range(dim))))
a2c035f85071e5a9f8dfee2c98cc46e86439a0cc
22,033
def is_child_class(target, base): """ Check if the target type is a subclass of the base type and not base type itself """ return issubclass(target, base) and target is not base
731c551149f94401a358b510aa124ee0cba6d0bd
41,567
def pretty_print_dict(dtmp): """Pretty prints an un-nested dictionary Parameters ---------- dtmp : dict Returns ------- str pretty-printed dictionary """ ltmp = [] keys = dtmp.keys() maxlen = 2 + max([len(K) for K in keys]) for k, v in sorted(dtmp.items(), key=lambda x: x[0]): if type(v) == type(""): v = "'%s'" % v new_k = "'%s'" % k stmp = (" {0:<%s} : {1}," % maxlen).format(new_k, v) ltmp.append(stmp) sout = "\n".join(ltmp) return "{\n%s\n}\n" % sout
1033777a6a79e4a86bc0b2f4edbaa3a3124e161f
248,998
import hashlib def string_hash(obj): """Returns a SHA-1 hash of the object. Not used for security purposes.""" return hashlib.sha1(str(obj).encode('utf-8')).hexdigest()
957958b1e2623c28cdb4b12ee0163fab43199ded
123,797
def depth(root): """ root is a tree node pointer that has access to left and right, returns the height of the tree + 1 """ if root is None: return 0 return 1 + max(depth(root.l), depth(root.r))
1c9fcd578189a7b4200644fb1bfb80d818bf5a46
325,595
def _get_end(posn, alt, info): """Get record end position.""" if "END" in info: # Structural variant return info['END'] return posn + len(alt)
f26e6bd9049fb32d5a5fcf305014b81c16bd799d
221,527
def floatToStr(number: float, showNumOfDigits: int = 2) -> str: """ Convert float number with any number of decimal digits and return string with ``showNumbOfDigits`` places after ``.``. Args: number: float number to convert to string. showNumOfDigits: number of decimal places (characters) that are added/stripped after ``.``. """ number = round(number, showNumOfDigits) if showNumOfDigits == 0: numberStr = str(int(number)) else: numberStr = "{:.{}f}".format(number, showNumOfDigits) return numberStr
71099609ea05211d8f3a35401685f355e8ddaa21
554,494
def get_potential_compressed_names(path): """ Get a list of all possible variants of @path with supported compressions (including the uncompressed path). """ return [path + x for x in ('', '.gz', '.bz2', '.lzma', '.xz')]
2f5f3cf26f9324805de8db7858bfe31e2f5d466e
200,196
import re def clean_name(name: str) -> str: """ Clean a name so it can be used as a python identifier. """ if not re.match("[a-zA-Z_]", name[0]): name = "_" + name name = re.sub("[^0-9a-zA-Z_]+", "_", name) if all(c == "_" for c in name): name = "v" return name
e37bc249104c03b25da6e39e59d7084c6ae9b95d
439,231
def spherical_index_k(degree: int, order: int = 0) -> int: """returns the mode `k` from the degree `degree` and order `order` Args: degree (int): Degree of the spherical harmonics order (int): Order of the spherical harmonics Raises: ValueError: if `order < -degree` or `order > degree` Returns: int: a combined index k """ if not -degree <= order <= degree: raise ValueError("order must lie between -degree and degree") return degree * (degree + 1) + order
592b0dd5550fe28ce79568b74ab4a071b57bf99b
220,147
def produce_tel_list(tel_config): """Convert the list of telescopes into a string for FITS header""" tel_list = "".join("T" + str(tel) + "," for tel in tel_config["TelType"]) return tel_list[:-1]
46a69c9c2b1f006376dc1fe730023c6d8a7db859
156,172
def GetListOfFeatureNames(feature_names): """Extract the list of feature names from string of comma separated values. Args: feature_names: string containing comma separated list of feature names Returns: List of the feature names Elements in the list are strings. """ list_of_feature_names = [ feature_names.strip() for feature_names in feature_names.split(',')] return list_of_feature_names
1e922c49afd978cb31d0883cf361f298b2c0aa25
470,726
def segments_from_time_to_frame_idx(segments, hop_length_seconds): """ Converts a sequence of segments (start, end) in time to their values in frame indexes. Parameters ---------- segements : list of tuple The list of segments, as tuple (start, end), to convert. hop_length_seconds : float hop_length (time between two consecutive frames), in seconds. Returns ------- list of integers The sequence, as a list, in frame indexes. """ to_return = [] for segment in segments: bar_in_frames = [int(round(segment[0]/hop_length_seconds)), int(round(segment[1]/hop_length_seconds))] if bar_in_frames[0] != bar_in_frames[1]: to_return.append(bar_in_frames) return to_return
029b0dedc5fbedbf590e89f976f23b555c5a60bf
416,668