text
stringlengths
8
6.05M
from panda3d.core import Point2, Vec3, Vec4, KeyboardButton, NodePath, LineSegs, MeshDrawer, BitMask32, Shader, Vec2 from panda3d.core import Geom, GeomNode, GeomVertexFormat, GeomLines, GeomVertexWriter, GeomVertexData, InternalName, Point3 from panda3d.core import TextNode from .BaseTool import BaseTool, ToolUsage from bsp.leveleditor.viewport.Viewport2D import Viewport2D from bsp.leveleditor.viewport.ViewportType import * from bsp.bspbase import BSPUtils from bsp.leveleditor import RenderModes from bsp.leveleditor.geometry.Handles import Handles, HandleType from bsp.leveleditor.geometry.Box import Box from bsp.leveleditor.geometry.Rect import Rect from bsp.leveleditor.geometry.GeomView import GeomView from bsp.leveleditor import LEGlobals from bsp.leveleditor.menu import KeyBinds from bsp.leveleditor.menu.KeyBind import KeyBind from enum import IntEnum import py_linq from PyQt5 import QtCore class BoxAction(IntEnum): ReadyToDraw = 0 DownToDraw = 1 Drawing = 2 Drawn = 3 ReadyToResize = 4 DownToResize = 5 Resizing = 6 class ResizeHandle(IntEnum): TopLeft = 0 Top = 1 TopRight = 2 Left = 3 Center = 4 Right = 5 BottomLeft = 6 Bottom = 7 BottomRight = 8 class BoxState: def __init__(self): self.activeViewport = None self.action = BoxAction.ReadyToDraw self.handle = ResizeHandle.Center self.boxStart = None self.boxEnd = None self.moveStart = None self.preTransformBoxStart = None self.preTransformBoxEnd = None self.clickStart = Point2(0, 0) def cleanup(self): self.activeViewport = None self.action = None self.handle = None self.boxStart = None self.boxEnd = None self.moveStart = None self.preTransformBoxEnd = None self.preTransformBoxStart = None self.clickStart = None def isValidAndApplicable(self, vp): return (self.action != BoxAction.DownToDraw and self.action != BoxAction.Drawing and self.action != BoxAction.DownToResize and self.action != BoxAction.Resizing or self.activeViewport == vp) def fixBoxBounds(self): if self.action != BoxAction.Drawing and self.action != BoxAction.Resizing: return if not isinstance(self.activeViewport, Viewport2D): return vp = self.activeViewport assert len(self.boxStart) == len(self.boxEnd), "This literally should not happen. (BoxTool)" for i in range(len(self.boxStart)): start = self.boxStart[i] end = self.boxEnd[i] if start > end: tmp = start self.boxStart[i] = end vec = Vec3(0, 0, 0) vec[i] = 1 flat = vp.flatten(vec) # FIXME: There has to be a better way of doing this. if flat.x == 1: self.swapHandle("Left", "Right") if flat.z == 1: self.swapHandle("Top", "Bottom") def swapHandle(self, one, two): if one in self.handle.name: self.handle = ResizeHandle[self.handle.name.replace(one, two)] elif two in self.handle.name: self.handle = ResizeHandle[self.handle.name.replace(two, one)] # We need this class for each 2D viewport since it has to render different things class BoxToolViewport: def __init__(self, tool, vp): self.vp = vp self.tool = tool # Set up the resize handles for this 2d viewport squareHandles = Handles(HandleType.Square) squareHandles.np.setHpr(vp.getViewHpr()) squareHandles.addView( GeomView.Triangles, vp.getViewportMask(), renderState = RenderModes.DoubleSidedNoZ()) squareHandles.generateGeometry() self.handlesList = { HandleType.Square: squareHandles } self.handles = squareHandles # Measurement text ttext = TextNode("boxToolTopText") ttext.setAlign(TextNode.ABoxedCenter) self.topText = NodePath(ttext) self.topText.setHpr(vp.getViewHpr()) self.topText.hide(~vp.getViewportMask()) self.topText.setBin("fixed", LEGlobals.WidgetSort) self.topText.setDepthWrite(False) self.topText.setDepthTest(False) ltext = TextNode("boxToolLeftText") ltext.setAlign(TextNode.ABoxedRight) self.leftText = NodePath(ltext) self.leftText.setHpr(vp.getViewHpr()) self.leftText.hide(~vp.getViewportMask()) self.leftText.setBin("fixed", LEGlobals.WidgetSort) self.leftText.setDepthWrite(False) self.leftText.setDepthTest(False) def cleanup(self): self.vp = None self.tool = None for handle in self.handlesList.values(): handle.cleanup() self.handles = None self.topText.removeNode() self.topText = None self.leftText.removeNode() self.leftText = None def updateHandles(self, handles): self.handles.setHandles(handles) def updateTextPosScale(self): start = self.vp.flatten(self.tool.state.boxStart) end = self.vp.flatten(self.tool.state.boxEnd) center = (start + end) / 2 offset = 4 / self.vp.zoom scale = 3.25 / self.vp.zoom self.topText.setPos(self.vp.expand(Point3(center.x, 0, end.z + offset))) self.topText.setScale(scale) self.leftText.setPos(self.vp.expand(Point3(start.x - offset, 0, center.z))) self.leftText.setScale(scale) def updateText(self): start = self.vp.flatten(self.tool.state.boxStart) end = self.vp.flatten(self.tool.state.boxEnd) width = abs(end.x - start.x) height = abs(end.z - start.z) self.topText.node().setText("%.1f" % width) self.leftText.node().setText("%.1f" % height) def showText(self): self.topText.reparentTo(self.tool.doc.render) self.leftText.reparentTo(self.tool.doc.render) def hideText(self): self.topText.reparentTo(NodePath()) self.leftText.reparentTo(NodePath()) def showHandles(self): self.handles.np.reparentTo(self.tool.doc.render) def hideHandles(self): self.handles.np.reparentTo(NodePath()) class BoxTool(BaseTool): Name = "Box Tool" ToolTip = "Box Tool" Usage = ToolUsage.Both Draw3DBox = True CursorHandles = { ResizeHandle.TopLeft: QtCore.Qt.SizeFDiagCursor, ResizeHandle.BottomRight: QtCore.Qt.SizeFDiagCursor, ResizeHandle.TopRight: QtCore.Qt.SizeBDiagCursor, ResizeHandle.BottomLeft: QtCore.Qt.SizeBDiagCursor, ResizeHandle.Top: QtCore.Qt.SizeVerCursor, ResizeHandle.Bottom: QtCore.Qt.SizeVerCursor, ResizeHandle.Left: QtCore.Qt.SizeHorCursor, ResizeHandle.Right: QtCore.Qt.SizeHorCursor, ResizeHandle.Center: QtCore.Qt.SizeAllCursor } DrawActions = [ BoxAction.Drawing, BoxAction.Drawn, BoxAction.ReadyToResize, BoxAction.DownToResize, BoxAction.Resizing ] @staticmethod def getProperBoxCoordinates(start, end): newStart = Point3(min(start[0], end[0]), min(start[1], end[1]), min(start[2], end[2])) newEnd = Point3(max(start[0], end[0]), max(start[1], end[1]), max(start[2], end[2])) return [newStart, newEnd] @staticmethod def handleHitTestPoint(hitX, hitY, testX, testY, hitbox): return (hitX >= testX - hitbox and hitX <= testX + hitbox and hitY >= testY - hitbox and hitY <= testY + hitbox) @staticmethod def getHandle(current, boxStart, boxEnd, hitbox, offset, zoom): offset /= zoom hitbox /= zoom start = Point3(min(boxStart[0], boxEnd[0]) - offset, 0, min(boxStart[2], boxEnd[2]) - offset) end = Point3(max(boxStart[0], boxEnd[0]) + offset, 0, max(boxStart[2], boxEnd[2]) + offset) center = (end + start) / 2 if BoxTool.handleHitTestPoint(current[0], current[2], start[0], start[2], hitbox): return ResizeHandle.BottomLeft if BoxTool.handleHitTestPoint(current[0], current[2], end[0], start[2], hitbox): return ResizeHandle.BottomRight if BoxTool.handleHitTestPoint(current[0], current[2], start[0], end[2], hitbox): return ResizeHandle.TopLeft if BoxTool.handleHitTestPoint(current[0], current[2], end[0], end[2], hitbox): return ResizeHandle.TopRight if BoxTool.handleHitTestPoint(current[0], current[2], center[0], start[2], hitbox): return ResizeHandle.Bottom if BoxTool.handleHitTestPoint(current[0], current[2], center[0], end[2], hitbox): return ResizeHandle.Top if BoxTool.handleHitTestPoint(current[0], current[2], start[0], center[2], hitbox): return ResizeHandle.Left if BoxTool.handleHitTestPoint(current[0], current[2], end[0], center[2], hitbox): return ResizeHandle.Right # Remove the offset padding for testing if we are inside the box itself start[0] += offset start[2] += offset end[0] -= offset end[2] -= offset if current[0] > start[0] and current[0] < end[0] \ and current[2] > start[2] and current[2] < end[2]: return ResizeHandle.Center return None def __init__(self, mgr): BaseTool.__init__(self, mgr) self.handleWidth = 0.9 self.handleOffset = 1.6 self.handleType = HandleType.Square self.state = BoxState() self.suppressBox = False self.vps = [] for vp in self.doc.viewportMgr.viewports: if vp.is2D(): self.vps.append(BoxToolViewport(self, vp)) # Representation of the box we are drawing self.box = Box() if self.Draw3DBox: # Render as solid lines in 3D viewport self.box.addView(GeomView.Lines, VIEWPORT_3D_MASK) # Render as dashed lines in 2D viewports self.box.addView(GeomView.Lines, VIEWPORT_2D_MASK, state = RenderModes.DashedLineNoZ()) self.box.generateGeometry() def cleanup(self): self.handleWidth = None self.handleOffset = None self.handleType = None self.state.cleanup() self.state = None self.suppressBox = None for vp in self.vps: vp.cleanup() self.vps = None self.box.cleanup() self.box = None BaseTool.cleanup(self) def showHandles(self): for vp in self.vps: vp.showHandles() def hideHandles(self): for vp in self.vps: vp.hideHandles() def hideText(self): for vp in self.vps: vp.hideText() def showText(self): for vp in self.vps: vp.showText() def showBox(self): self.box.np.reparentTo(self.doc.render) def hideBox(self): self.box.np.reparentTo(NodePath()) def updateHandles(self, vp): start = vp.vp.flatten(self.state.boxStart) end = vp.vp.flatten(self.state.boxEnd) handles = self.getHandles(start, end, vp.vp.zoom) vp.handles.setHandles(handles, vp.vp.zoom) def onBoxChanged(self): self.state.fixBoxBounds() if self.state.action in [BoxAction.Drawing, BoxAction.Resizing, BoxAction.Drawn]: # Fix up the text for vp in self.vps: vp.updateText() self.updateHandles(vp) self.box.setMinMax(self.state.boxStart, self.state.boxEnd) self.doc.updateAllViews() # TODO: mediator.selectionBoxChanged def activate(self): BaseTool.activate(self) self.accept('mouse1', self.mouseDown) self.accept('mouse1-up', self.mouseUp) self.accept('mouseMoved', self.mouseMove) self.accept('mouseEnter', self.mouseEnter) self.accept('mouseExit', self.mouseExit) self.accept(KeyBinds.getPandaShortcut(KeyBind.Confirm), self.enterDown) self.accept(KeyBinds.getPandaShortcut(KeyBind.Cancel), self.escapeDown) def disable(self): BaseTool.disable(self) self.maybeCancel() def mouseDown(self): if self.suppressBox: return vp = base.viewportMgr.activeViewport if not vp: return if vp.is3D(): self.mouseDown3D() return self.state.clickStart = Point2(vp.getMouse()) if self.state.action in [BoxAction.ReadyToDraw, BoxAction.Drawn]: self.leftMouseDownToDraw() elif self.state.action == BoxAction.ReadyToResize: self.leftMouseDownToResize() def mouseDown3D(self): pass def leftMouseDownToDraw(self): self.hideText() self.hideBox() self.hideHandles() vp = base.viewportMgr.activeViewport mouse = vp.getMouse() self.state.activeViewport = vp self.state.action = BoxAction.DownToDraw toWorld = vp.viewportToWorld(mouse) expanded = vp.expand(toWorld) self.state.boxStart = base.snapToGrid(expanded) self.state.boxEnd = Point3(self.state.boxStart) self.state.handle = ResizeHandle.BottomLeft self.onBoxChanged() def leftMouseDownToResize(self): self.hideHandles() vp = base.viewportMgr.activeViewport self.state.action = BoxAction.DownToResize self.state.moveStart = vp.viewportToWorld(vp.getMouse()) self.state.preTransformBoxStart = self.state.boxStart self.state.preTransformBoxEnd = self.state.boxEnd def mouseUp(self): vp = base.viewportMgr.activeViewport if not vp: return if vp.is3D(): self.mouseUp3D() return if self.state.action == BoxAction.Drawing: self.leftMouseUpDrawing() elif self.state.action == BoxAction.Resizing: self.leftMouseUpResizing() elif self.state.action == BoxAction.DownToDraw: self.leftMouseClick() elif self.state.action == BoxAction.DownToResize: self.leftMouseClickOnResizeHandle() def mouseUp3D(self): pass def resizeBoxDone(self): vp = base.viewportMgr.activeViewport coords = self.getResizedBoxCoordinates(vp) corrected = BoxTool.getProperBoxCoordinates(coords[0], coords[1]) self.state.activeViewport = None self.state.action = BoxAction.Drawn self.state.boxStart = corrected[0] self.state.boxEnd = corrected[1] self.showHandles() self.onBoxChanged() def leftMouseUpDrawing(self): self.resizeBoxDone() def leftMouseUpResizing(self): self.resizeBoxDone() def leftMouseClick(self): self.state.activeViewport = None self.state.action = BoxAction.ReadyToDraw self.state.boxStart = None self.state.boxEnd = None self.onBoxChanged() def leftMouseClickOnResizeHandle(self): self.state.action = BoxAction.ReadyToResize def mouseMove(self, vp): if vp.is3D(): self.mouseMove3D() return if not self.state.isValidAndApplicable(vp): return if self.state.action in [BoxAction.Drawing, BoxAction.DownToDraw]: self.mouseDraggingToDraw() elif self.state.action in [BoxAction.Drawn, BoxAction.ReadyToResize]: self.mouseHoverWhenDrawn() elif self.state.action in [BoxAction.DownToResize, BoxAction.Resizing]: self.mouseDraggingToResize() def mouseMove3D(self): pass def resizeBoxDrag(self): vp = base.viewportMgr.activeViewport coords = self.getResizedBoxCoordinates(vp) self.state.boxStart = coords[0] self.state.boxEnd = coords[1] self.onBoxChanged() #render.ls() def mouseDraggingToDraw(self): self.showBox() self.showText() self.state.action = BoxAction.Drawing self.resizeBoxDrag() def mouseDraggingToResize(self): self.state.action = BoxAction.Resizing self.resizeBoxDrag() def cursorForHandle(self, handle): return self.CursorHandles.get(handle, QtCore.Qt.ArrowCursor) def resetCursor(self): vp = base.viewportMgr.activeViewport def mouseHoverWhenDrawn(self): vp = base.viewportMgr.activeViewport now = vp.viewportToWorld(vp.getMouse()) start = vp.flatten(self.state.boxStart) end = vp.flatten(self.state.boxEnd) handle = BoxTool.getHandle(now, start, end, self.handleWidth, self.handleOffset, vp.zoom) if handle is not None and (handle == ResizeHandle.Center or self.filterHandle(handle)): vp.setCursor(self.cursorForHandle(handle)) self.state.handle = handle self.state.action = BoxAction.ReadyToResize self.state.activeViewport = vp else: vp.setCursor(QtCore.Qt.ArrowCursor) self.state.action = BoxAction.Drawn self.state.activeViewport = None def getResizeOrigin(self, vp): if self.state.action != BoxAction.Resizing or self.state.handle != ResizeHandle.Center: return None st = vp.flatten(self.state.preTransformBoxStart) ed = vp.flatten(self.state.preTransformBoxEnd) points = [st, ed, Point3(st.x, 0, ed.z), Point3(ed.x, 0, st.z)] points.sort(key = lambda x: (self.state.moveStart - x).lengthSquared()) return points[0] def getResizeDistance(self, vp): origin = self.getResizeOrigin(vp) if not origin: return None before = self.state.moveStart after = vp.viewportToWorld(vp.getMouse()) return base.snapToGrid(origin + after - before) - origin def getResizedBoxCoordinates(self, vp): if self.state.action != BoxAction.Resizing and self.state.action != BoxAction.Drawing: return [self.state.boxStart, self.state.boxEnd] now = base.snapToGrid(vp.viewportToWorld(vp.getMouse())) cstart = vp.flatten(self.state.boxStart) cend = vp.flatten(self.state.boxEnd) # Proportional scaling ostart = vp.flatten(self.state.preTransformBoxStart if self.state.preTransformBoxStart else Vec3.zero()) oend = vp.flatten(self.state.preTransformBoxEnd if self.state.preTransformBoxEnd else Vec3.zero()) owidth = oend.x - ostart.x oheight = oend.z - ostart.z proportional = vp.mouseWatcher.isButtonDown(KeyboardButton.control()) and \ self.state.action == BoxAction.Resizing and owidth != 0 and oheight != 0 if self.state.handle == ResizeHandle.TopLeft: cstart.x = now.x cend.z = now.z elif self.state.handle == ResizeHandle.Top: cend.z = now.z elif self.state.handle == ResizeHandle.TopRight: cend.x = now.x cend.z = now.z elif self.state.handle == ResizeHandle.Left: cstart.x = now.x elif self.state.handle == ResizeHandle.Center: cdiff = cend - cstart distance = self.getResizeDistance(vp) if not distance: cstart = vp.flatten(self.state.preTransformBoxStart) + now \ - base.snapToGrid(self.state.moveStart) else: cstart = vp.flatten(self.state.preTransformBoxStart) + distance cend = cstart + cdiff elif self.state.handle == ResizeHandle.Right: cend.x = now.x elif self.state.handle == ResizeHandle.BottomLeft: cstart.x = now.x cstart.z = now.z elif self.state.handle == ResizeHandle.Bottom: cstart.z = now.z elif self.state.handle == ResizeHandle.BottomRight: cend.x = now.x cstart.z = now.z if proportional: nwidth = cend.x - cstart.x nheight = cend.z - cstart.z mult = max(nwidth / owidth, nheight / oheight) pwidth = owidth * mult pheight = oheight * mult wdiff = pwidth - nwidth hdiff = pheight - nheight if self.state.handle == ResizeHandle.TopLeft: cstart.x -= wdiff cend.z += hdiff elif self.state.handle == ResizeHandle.TopRight: cend.x += wdiff cend.z += hdiff elif self.state.handle == ResizeHandle.BottomLeft: cstart.x -= wdiff cstart.z -= hdiff elif self.state.handle == ResizeHandle.BottomRight: cend.x += wdiff cstart.z -= hdiff cstart = vp.expand(cstart) + vp.getUnusedCoordinate(self.state.boxStart) cend = vp.expand(cend) + vp.getUnusedCoordinate(self.state.boxEnd) return [cstart, cend] def maybeCancel(self): if self.state.action in [BoxAction.ReadyToDraw, BoxAction.DownToDraw]: return False if self.state.activeViewport: self.state.activeViewport.setCursor(QtCore.Qt.ArrowCursor) self.state.activeViewport = None self.state.action = BoxAction.ReadyToDraw self.hideText() self.hideBox() self.hideHandles() return True def enterDown(self): if self.maybeCancel(): self.boxDrawnConfirm() def escapeDown(self): if self.maybeCancel(): self.boxDrawnCancel() def boxDrawnConfirm(self): pass def boxDrawnCancel(self): pass def mouseEnter(self, vp): if self.state.activeViewport: self.state.activeViewport.setCursor(QtCore.Qt.ArrowCursor) def mouseExit(self, vp): if self.state.activeViewport: self.state.activeViewport.setCursor(QtCore.Qt.ArrowCursor) def getHandles(self, start, end, zoom, offset = None): if offset is None: offset = self.handleOffset half = (end - start) / 2 dist = offset / zoom return py_linq.Enumerable([ (ResizeHandle.TopLeft, start.x - dist, end.z + dist), (ResizeHandle.TopRight, end.x + dist, end.z + dist), (ResizeHandle.BottomLeft, start.x - dist, start.z - dist), (ResizeHandle.BottomRight, end.x + dist, start.z - dist), (ResizeHandle.Top, start.x + half.x, end.z + dist), (ResizeHandle.Left, start.x - dist, start.z + half.z), (ResizeHandle.Right, end.x + dist, start.z + half.z), (ResizeHandle.Bottom, start.x + half.x, start.z - dist) ]).where(lambda x: self.filterHandle(x[0])) \ .select(lambda x: Point3(x[1], 0, x[2])) \ .to_list() def filterHandle(self, handle): return True def moveBox(self, pos): currPos = (self.state.boxStart + self.state.boxEnd) / 2.0 delta = pos - currPos self.state.boxStart += delta self.state.boxEnd += delta self.state.action = BoxAction.Drawn self.resizeBoxDone() #def scaleBox(self, scale,): # self.state.boxStart.componentwiseMult(scale) # self.state.boxEnd.componentwiseMult(scale) # self.state.action = BoxAction.Drawn # self.resizeBoxDone() def update(self): for vp in self.vps: if self.state.action != BoxAction.ReadyToDraw: vp.updateTextPosScale() if self.state.action in [BoxAction.ReadyToResize, BoxAction.Drawn]: self.updateHandles(vp) def getSelectionBox(self): # Return a min/max point for a box that can be used # for selection. # # If one of the dimensions has a depth value of 0, extend it out into # infinite space. # If two or more dimensions have depth 0, do nothing. sameX = self.state.boxStart.x == self.state.boxEnd.x sameY = self.state.boxStart.y == self.state.boxEnd.y sameZ = self.state.boxStart.z == self.state.boxEnd.z start = Vec3(self.state.boxStart) end = Vec3(self.state.boxEnd) invalid = False inf = 99999999.0 negInf = -99999999.0 if sameX: if sameY or sameZ: invalid = True start.x = negInf end.x = inf if sameY: if sameZ: invalid = True start.y = negInf end.y = inf if sameZ: start.z = negInf end.z = inf return [invalid, start, end]
import threading import time number = [] def add_num(): print("thread 1 sendo executada") for i in range(5): number.append(i) time.sleep(1) print("fim da thread") def show_num(num): print("thread 2 sendo executada") for i in num: print(i) time.sleep(1) print("fim da thread") t = threading.Thread(target=add_num(),args=("thread sendo executada")) t.start() s = threading.Thread(target=show_num(number),args=("thread sendo executada")) s.start()
#B d,g,ai=map(int,input().split()) print(int(d*g*ai//100))
import os import csv from io import StringIO from django.db.models.signals import post_save, post_delete from django.dispatch import receiver from django.contrib.auth.hashers import make_password #from corecode.models import StudentClass from .models import CustomUser, StaffBulkUpload, Staffs @receiver(post_save, sender=StaffBulkUpload) def create_bulk_staff(sender, created, instance, *args, **kwargs): if created: opened = StringIO(instance.csv_file.read().decode()) reading = csv.DictReader(opened, delimiter=',') staffs = [] users= [] for row in reading: if 'username' in row and row['username']: username = row['username'] first_name = row['first_name'] if 'first_name' in row and row['first_name'] else '' last_name = row['last_name'] if 'last_name' in row and row['last_name'] else '' email = row['email'] if 'email' in row and row['email'] else '' password = row['password'] if 'password' in row and row['password'] else '' check = CustomUser.objects.filter(username=username).exists() if not check: users.append( CustomUser( first_name=first_name, last_name=last_name, username=username, email=email, user_type=2, password=make_password(password) ) ) for row in reading: if 'staff_number' in row and row['staff_number']: staff_number = row['staff_number'] address = row['address'] if 'address' in row and row['address'] else '' dob = row['dob'] if 'dob' in row and row['dob'] else '' gender = (row['gender']).lower() if 'gender' in row and row['gender'] else '' staffs.append( Staffs( staff_number=staff_number, gender=gender, address=address, dob=dob, ) ) Staffs.objects.bulk_create(staffs) CustomUser.objects.bulk_create(users) instance.csv_file.close() instance.delete() def _delete_file(path): """ Deletes file from filesystem. """ if os.path.isfile(path): os.remove(path) @receiver(post_delete, sender=StaffBulkUpload) def delete_csv_file(sender, instance, *args, **kwargs): if instance.csv_file: _delete_file(instance.csv_file.path) @receiver(post_delete, sender=Staffs) def delete_passport_on_delete(sender, instance, *args, **kwargs): if instance.passport: _delete_file(instance.passport.path)
""" Setup file for mimic """ from __future__ import print_function from setuptools import setup, find_packages try: from py2app.build_app import py2app py2app_available = True except ImportError: py2app_available = False _NAME = "mimic" _VERSION = "2.0.0" def setup_options(name, version): """ If `py2app` is present in path, then enable to option to build the app. This also disables the options needed for normal `sdist` installs. :returns: a dictionary of setup options. """ info = dict( install_requires=[ "klein>=15.3.1", "twisted>=15.5.0", "treq>=15.1.0", "six>=1.6.0", "xmltodict>=0.9.1", "attrs>=15.1.0", "testtools>=1.7.1,<1.8.0", "iso8601>=0.1.10", ], package_dir={"mimic": "mimic"}, packages=find_packages(exclude=[]) + ["twisted.plugins"], ) if not py2app_available: return info # py2app available, proceed. script="bundle/start-app.py" test_script="bundle/run-tests.py" plist = dict( CFBundleName = _NAME, CFBundleShortVersionString = " ".join([_NAME, _VERSION]), CFBundleGetInfoString = _NAME, CFBundleExecutable = _NAME, CFBundleIdentifier = "com.%s.%s" % (_NAME, _VERSION), LSUIElement = "1", LSMultipleInstancesProhibited = "1", ) app_data = dict( script=script, plist=plist, extra_scripts=[test_script] ) class BuildWithCache(py2app, object): """ Before building the application rebuild the `dropin.cache` files. """ def collect_recipedict(self): """ Implement a special Twisted plugins recipe so that dropin.cache files are generated and included in site-packages.zip. """ result = super(BuildWithCache, self).collect_recipedict() def check(cmd, mg): from twisted.plugin import getPlugins, IPlugin from twisted import plugins as twisted_plugins from mimic import plugins as mimic_plugins for plugin_package in [twisted_plugins, mimic_plugins]: import time list(getPlugins(IPlugin, package=plugin_package)) import os def plugpath(what): path_in_zip = what + "/plugins" path_on_fs = ( os.path.abspath( os.path.join( os.path.dirname( __import__(what + ".plugins", fromlist=["nonempty"]) .__file__), "dropin.cache") )) os.utime(path_on_fs, (time.time() + 86400,) * 2) return (path_in_zip, [path_on_fs]) data_files = [plugpath("mimic"), plugpath("twisted")] return dict(loader_files=data_files) result["bonus"] = check return result return dict( info, app=[app_data], cmdclass={ "py2app": BuildWithCache }, options={ "py2app": { "includes": [ "syslog", "mimic.test.*", "mimic.plugins.*", "twisted.plugins.*", "twisted.plugin", ], } } ) setup( classifiers=[ 'Environment :: Web Environment', 'Intended Audience :: Developers', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: Implementation :: CPython', 'Programming Language :: Python :: Implementation :: PyPy', 'Topic :: Internet :: WWW/HTTP :: Dynamic Content', 'Topic :: Software Development :: Libraries :: Python Modules' ], name=_NAME, version=_VERSION, description="An API-compatible mock service", license="Apache License, Version 2.0", url="https://github.com/rackerlabs/mimic", include_package_data=True, **setup_options(_NAME, _VERSION) )
import cv2 import math import numpy as np def calculateDistance(firstPoint, centroid): return math.sqrt((centroid[0] - firstPoint[0, 0])**2 + (centroid[1] - firstPoint[0, 1])**2) def findMaximumR(points, centroid): maxDistance = 0 distanceList = [] for point in points: distance = calculateDistance(point, centroid) distanceList.append(distance) maxDistance = max(distance, maxDistance) return distanceList, maxDistance def convertToPolarImageWithInterpolation(points, centroid, filled = True, imageHeight = 500, imageWidth = 360): distanceList, maxDistance = findMaximumR(points, centroid) angleList = [] rList = [] scaleFactor = imageHeight / maxDistance outputImage = np.zeros((imageHeight, imageWidth), np.uint8) prevR = 0 prevAngle = 0 connectBottomIndex = 0 maxR = 0 for i in xrange(len(points) + 1): i = i % len(points) angle = math.atan2(points[i][0, 1] - centroid[1], points[i][0, 0] - centroid[0]) r = distanceList[i] * scaleFactor #reverse the images r = imageHeight - r angle = (angle + 3.1415) * 180 / 3.1415 rList.append(r) angleList.append(angle) if prevR > 0 and abs(angle - prevAngle) > 200: connectBottomIndex = i prevAngle = angle prevR = r prevIndex = (connectBottomIndex - 1 + len(points)) % len(points) #added_y = [imageHeight - 1, imageHeight - 1, imageHeight - 1] #added_x = [angleList[prevIndex], 180, angleList[connectBottomIndex]] added_y = [rList[prevIndex], imageHeight - 1, imageHeight - 1, imageHeight - 1, rList[connectBottomIndex]] added_x = [0, 0, 180, 359, 359] rList = rList[0 : prevIndex + 1] + added_y + rList[prevIndex + 1 : ] angleList = angleList[0 : prevIndex + 1] + added_x + angleList[prevIndex + 1 : ] points = np.zeros((len(angleList), 1, 2), np.int) for i in xrange(len(angleList)): points[i, 0, 0] = angleList[i] points[i, 0, 1] = rList[i] contours = [points] if filled: cv2.drawContours(outputImage, contours, 0, (255, 255, 255), cv2.cv.CV_FILLED) else: cv2.drawContours(outputImage, contours, 0, (255, 255, 255)) return outputImage, maxDistance def convertToPolarImage(points, centroid, imageHeight = 500, imageWidth = 360): distanceList, maxDistance = findMaximumR(points, centroid) angleList = [] scaleFactor = imageHeight / maxDistance outputImage = np.zeros((imageHeight, imageWidth), np.uint8) prevR = 0 prevAngle = 0 connectBottomIndex = 0 for i in xrange(len(points) + 1): i = i % len(points) angle = math.atan2(points[i][0, 1] - centroid[1], points[i][0, 0] - centroid[0]) r = distanceList[i] * scaleFactor #reverse the images r = imageHeight - r angle = (angle + 3.1415) * 180 / 3.1415 if prevR > 0 and abs(angle - prevAngle) < 200: cv2.line(outputImage, ((int)(prevAngle), (int)(prevR)), ((int)(angle), (int)(r)), (255, 255, 255)) else: if prevR > 0 and abs(angle - prevAngle) > 200: connectBottomIndex = i prevAngle = angle prevR = r return outputImage, maxDistance
import paho.mqtt.client as mqtt class MessageHandler: def __init__(self, qos=0): self.topics = dict() # <topic, callback> self.qos = qos self.client = mqtt.Client() self.client.on_connect = self.__on_connect__ self.client.on_message = self.__on_message__ def __on_connect__(self, client, userdata, flags, rc): print("Connected with result code "+str(rc)) for topic in self.topics: self.client.subscribe(topic, self.qos) def __on_message__(self, client, userdata, msg): print(client + " -> " + msg) def subscribe(self, topic, callback): self.topics[topic] = callback self.client.subscribe(topic, self.qos) self.client.message_callback_add(topic, callback) def unsubscribe(self, topic): self.client.message_callback_remove(topic) del self.topics[topic] def start_dispatcher(self, ip, port=1883, keepalive=60): self.client.connect(ip, port, keepalive) def loop(self): self.client.loop_forever()
from pytube import YouTube link = 'https://www.youtube.com/watch?v=Id8YjwJDQwg&t=839s' #To save the video to your location save_location = 'E:\\' try: YouTube(link).streams.first().download(save_location) print('Video saved') except: print('Connection Error') #To save the video where the python is installed try: YouTube(link).streams.first().download() print('Video saved') except: print('Connection Error')
import logging # setup logger FORMAT = '%(asctime)-15s %(message)s' logging.basicConfig(format=FORMAT) logger = logging.getLogger('piiipod')
import requests import os from bs4 import BeautifulSoup as bs baseURL = "https://www.ibiblio.org/ram/" page= requests.get(baseURL+"bcst_all.htm") soup= bs(page.text,'html.parser') songs = soup.find_all('table')[4].select('li a') folderName = 'Bhajans' if(not os.path.exists(folderName)): os.mkdir(folderName) os.chdir('./'+folderName) def dwd(song): name ="unknown" try: name = " ".join(song.contents[0].split()) print("Name: "+song.contents[0].replace('\n',' ').replace(' ','')) except: print("SONG ITEM DOES NOT HAS ANY CONTENT!") print("URL: "+ baseURL+song['href']) print("Downloading Song...") r = requests.get(baseURL+song['href']) print("Song Downloaded ./"+folderName) open(name+'.mp3','wb').write(r.content) for song in songs: dwd(song)
import time import json import csv import os import requests from bs4 import BeautifulSoup from jinja2 import Template import headers # these represent different job functions FUNCTION_FACETS = [17, 18, 14, 2, 4, 20, 5, 13, 12, 26] #FA SENIORITY_FACETS = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] #SE LOCATION_FACETS = [ #G 'us:8-2-0-1-2', 'us:97', 'us:va', 'us:dc', 'us:tx', 'us:ca', 'us:md', 'us:70', 'us:31', 'us:ny', 'us:8-8-0-8-1', 'us:8-8-0-3-1', 'us:ga', 'us:52', 'us:7', 'us:8-8-0-95-11', 'us:nj', 'us:3-2-0-31-1', ] FACETS = [ ('FA', FUNCTION_FACETS), ('SE', SENIORITY_FACETS), ('G', LOCATION_FACETS) ] def download_file(url, local_filename=None): '''Downloads a file with requests from: https://stackoverflow.com/a/16696317 ''' if local_filename is None: local_filename = url.split('/')[-1] print('saving to', local_filename) r = requests.get(url, stream=True) with open(local_filename, 'wb') as f: for chunk in r.iter_content(chunk_size=1024): if chunk: f.write(chunk) return local_filename def get_page(company_id, facet=None, facet_id=None, start=0, count=50): '''Gets a single page of results from linkedin for a particular job function at a company''' params = { 'facet': ['CC'], 'facet.CC': company_id, 'count': count, 'start': start, } if facet is not None and facet_id is not None: params['facet'] = ['CC', facet] params['facet.' + facet] = facet_id response = requests.get('https://www.linkedin.com/sales/search/results', headers=headers.headers, params=params) return response.json() def get_company(company_id, outname): '''Gets all employees from a company using particular job functions''' people = [] for facet, facet_ids in FACETS: for facet_id in facet_ids: print('getting facet', facet, facet_id, 'for company', company_id) count = 50 start = 0 results = get_page(company_id, facet, facet_id) total = results['pagination']['total'] people += results['searchResults'] start += count while start < total: print('getting', start, 'of', total) time.sleep(1) results = get_page(company_id, facet, facet_id, start) people += results['searchResults'] start += count with open(outname, 'w') as outfile: json.dump(people, outfile, indent=2) return outname def get_images(datafile): '''Downloads profile images''' with open(datafile, 'r') as infile: people = json.load(infile) people = [p['member'] for p in people] for p in people: if 'vectorImage' not in p: continue pid = p['memberId'] outname = 'images/{}.jpg'.format(pid) if os.path.exists(outname): print('skipping') continue url = p['vectorImage']['rootUrl'] url += sorted(p['vectorImage']['artifacts'], key=lambda x: x['width'])[-1]['fileIdentifyingUrlPathSegment'] print(url) download_file(url, outname) time.sleep(1) def get_profile(pid): '''Downloads individual profiles''' outname = 'profiles/{}.json'.format(pid) if os.path.exists(outname): return outname out = {} url = 'https://www.linkedin.com/sales/people/{},NAME_SEARCH'.format(pid) print(url) response = requests.get(url, headers=headers.headers) soup = BeautifulSoup(response.text, 'html.parser') codes = soup.select('code') for c in codes: try: d = json.loads(c.text) if 'contactInfo' in d: out = d break except Exception as e: continue with open(outname, 'w') as outfile: json.dump(out, outfile) time.sleep(1) return outname def get_profiles(datafile): '''Gets all profiles''' with open(datafile, 'r') as infile: data = json.load(infile) for d in data: pid = d['member']['profileId'] get_profile(pid) def clean_and_parse(datafile, outname): '''Outputs csv, json and html from employee listings''' out = [] mids = [] with open(datafile, 'r') as infile: data = json.load(infile) for d in data: mid = d['member']['memberId'] pid = d['member']['profileId'] imgpath = 'images/{}.jpg'.format(mid) if not os.path.exists(imgpath): imgpath = None item = { 'name': d['member'].get('formattedName', ''), 'title': d['member'].get('title', ''), 'img': imgpath, 'company': d['company'].get('companyName', ''), 'location': d['member'].get('location', ''), 'id': d['member']['memberId'], 'linkedin': 'https://linkedin.com/in/' + pid, } if mid not in mids: out.append(item) mids.append(mid) with open(outname + '.json', 'w') as jsonfile: json.dump(out, jsonfile, indent=2) with open(outname + '.csv', 'w') as csvfile: fieldnames = list(out[0].keys()) writer = csv.DictWriter(csvfile, fieldnames=fieldnames) writer.writeheader() for row in out: writer.writerow(row) with open('template.html', 'r') as templatefile: template = Template(templatefile.read()) html = template.render(people=out) with open('index.html', 'w') as htmlout: htmlout.write(html) if __name__ == '__main__': ICE = '533534' datafile = 'ice_raw.json' get_company(ICE, datafile) get_profiles(datafile) get_images(datafile) clean_and_parse(datafile, 'ice')
# contains the entities declaration and definition of medicine information from protorpc import messages from google.appengine.ext import ndb from google.appengine.ext.ndb import msgprop#alpha feature dangerous #contains the real entities that we are going to model in for medicine api purpose class Dossage(messages.Message): class Units(messages.Enum): MICRO_GRAM=1 MILI_GRAM=2 GRAM=3 MILI_LITRE=4 units=messages.EnumField('Dossage.Units',1, default='MILI_GRAM', required=True) quant=messages.IntegerField(2,required=True) class Cost(messages.Message): value=messages.IntegerField(1,required=True) currency=messages.StringField(2,required=True) class Composition(messages.Message): name=messages.StringField(1,required=True) dossage=messages.MessageField(Dossage,2,required=True) description=messages.StringField(3,required=True) class Medicine(messages.Message): class MedicineType(messages.Enum): TABLET=1 INJECTION=2 CAPSULES=3 OINTMENT=4 DROPS=5 LOTION=6 SACHET=7 SYRUP=8 NULLL=9 #triple L done to avoid ambiguity with NULL name=messages.StringField(1,required=True) mrp=messages.MessageField(Cost,2,repeated=True) composition=messages.MessageField(Composition,3,repeated=True) dossage=messages.MessageField(Dossage,4,required=True) medicine_type=messages.EnumField('Medicine.MedicineType',5, default='NULLL', required=True) description=messages.StringField(6) company_name=messages.StringField(7,required=True) #handles the format the request will come class MedicineMessage(messages.Message): medicine=messages.MessageField(Medicine,1) class MedicineFieldMessage(messages.Message): limit=messages.IntegerField(1,default=10,required=False) offset=messages.IntegerField(2,default=0,required=False) name=messages.StringField(3) company_name=messages.StringField(4) medicine_type=messages.EnumField('Medicine.MedicineType',5) class MedicineCompostionMessage(messages.Message): limit=messages.IntegerField(1,default=10,required=False) offset=messages.IntegerField(2,default=0,required=False) compostion_name=messages.StringField(3,repeated=True) class MedicineListMessage(messages.Message): medicine_list=messages.MessageField(Medicine,1,repeated=True) #handles the storage of data in datastore class MedicineStore(ndb.Model): medicine=msgprop.MessageProperty(Medicine,indexed_fields=['name','medicine_type', 'company_name',"composition.name"]) #warning this feature is in alpha
# Dependencies import requests # Google developer API key gkey = "AIzaSyA_Clyz3478YAUnsESNHE5dyktvvMoa-vw" # Target city target_city = "Boise, Idaho" # Build the endpoint URL target_url = "https://maps.googleapis.com/maps/api/geocode/json" \ "?address=%s&key=%s" % (target_city, gkey) # Print the assembled URL print(target_url)
import os import numpy as np import matplotlib.pyplot as plt plt.style.use('seaborn') STANDARD_COLORS = [ "Chartreuse", "Aqua", "Aquamarine", "BlueViolet", "BurlyWood", "CadetBlue", "Chocolate", "Coral", "CornflowerBlue", "Cornsilk", "Crimson", "Cyan", "DarkCyan", "DarkGoldenRod", "DarkGrey", "DarkKhaki", "DarkOrange", "DarkOrchid", "DarkSalmon", "DarkSeaGreen", "DarkTurquoise", "DarkViolet", "DeepPink", "DeepSkyBlue", "DodgerBlue", "FireBrick", "FloralWhite", "ForestGreen", "Fuchsia", "Gainsboro", "GhostWhite", "Gold", ] txtFile = open("checkpoint/Dec-16[18.19.35]-YOLOv4/log.txt") txtList = txtFile.readlines() total_loss = [] loss_ciou = [] loss_conf = [] loss_cls = [] number_map = [] T_map = [] left_map = [] right_map = [] add_map = [] minus_map = [] multi_map = [] total_map = [] # os.makedirs(xmlPath, exist_ok=True) for idx, line in enumerate(txtList): if line.find("total_loss") != -1: k = line.find("total_loss") k = k + 11 t = k while (line[k] >='0' and line[k] <= '9') or line[k] == '.': k = k + 1 total_loss.append(float(line[t:k])) if line.find("loss_ciou") != -1: k = line.find("loss_ciou") k = k + 10 t = k while (line[k] >='0' and line[k] <= '9') or line[k] == '.': k = k + 1 loss_ciou.append(float(line[t:k])) if line.find("loss_conf") != -1: k = line.find("loss_conf") k = k + 10 t = k while (line[k] >='0' and line[k] <= '9') or line[k] == '.': k = k + 1 loss_conf.append(float(line[t:k])) if line.find("loss_cls") != -1: k = line.find("loss_cls") k = k + 9 t = k while (line[k] >='0' and line[k] <= '9') or line[k] == '.': k = k + 1 loss_cls.append(float(line[t:k])) if line.find("number --> mAP : ") != -1: k = line.find("number --> mAP : ") k = k + len("number --> mAP : ") t = k while (line[k] >= '0' and line[k] <= '9') or line[k] == '.': k = k + 1 number_map.append(float(line[t:k])) if line.find("left_matrix --> mAP : ") != -1: k = line.find("left_matrix --> mAP : ") k = k + len("left_matrix --> mAP : ") t = k while (line[k] >= '0' and line[k] <= '9') or line[k] == '.': k = k + 1 left_map.append(float(line[t:k])) if line.find("right_matrix --> mAP : ") != -1: k = line.find("right_matrix --> mAP : ") k = k + len("right_matrix --> mAP : ") t = k while (line[k] >= '0' and line[k] <= '9') or line[k] == '.': k = k + 1 right_map.append(float(line[t:k])) if line.find("add --> mAP : ") != -1: k = line.find("add --> mAP : ") k = k + len("add --> mAP : ") t = k while (line[k] >= '0' and line[k] <= '9') or line[k] == '.': k = k + 1 add_map.append(float(line[t:k])) if line.find("minus --> mAP : ") != -1: k = line.find("minus --> mAP : ") k = k + len("minus --> mAP : ") t = k while (line[k] >= '0' and line[k] <= '9') or line[k] == '.': k = k + 1 minus_map.append(float(line[t:k])) if line.find("multi --> mAP : ") != -1: k = line.find("multi --> mAP : ") k = k + len("multi --> mAP : ") t = k while (line[k] >= '0' and line[k] <= '9') or line[k] == '.': k = k + 1 multi_map.append(float(line[t:k])) if line.find("T --> mAP : ") != -1: k = line.find("T --> mAP : ") k = k + len("T --> mAP : ") t = k while (line[k] >= '0' and line[k] <= '9') or line[k] == '.': k = k + 1 T_map.append(float(line[t:k])) if line.find(":mAP : ") != -1: k = line.find(":mAP : ") k = k + len(":mAP : ") t = k while (line[k] >= '0' and line[k] <= '9') or line[k] == '.': k = k + 1 total_map.append(float(line[t:k])) print(len(total_loss)) print(len(loss_ciou)) print(len(loss_conf)) print(len(loss_cls)) print(len(number_map)) print(len(T_map)) print(len(total_map))#总mAP total_loss = np.array(total_loss) loss_ciou = np.array(loss_ciou) loss_conf = np.array(loss_conf) loss_cls = np.array(loss_cls) number_map = np.array(number_map) T_map = np.array(T_map) total_map = np.array(total_map) # p1, = plt.plot(number_map, c=STANDARD_COLORS[0]) # p2, = plt.plot(T_map, c=STANDARD_COLORS[1]) # p3, = plt.plot(total_map, c=STANDARD_COLORS[2]) # p4, = plt.plot(left_map, c=STANDARD_COLORS[3]) # p5, = plt.plot(right_map, c=STANDARD_COLORS[4]) # p6, = plt.plot(add_map, c=STANDARD_COLORS[5]) # p7, = plt.plot(minus_map, c=STANDARD_COLORS[6]) # p8, = plt.plot(multi_map, c=STANDARD_COLORS[7]) # plt.xlabel("epoch") # plt.ylabel("mAP") # plt.legend([p1, p2, p4, p5, p6, p7, p8, p3], ["number", "T", "left_matrix", "right_matrix", "add", "minus", "multi", "Total"]) # plt.grid(True) # plt.show() plt.figure(figsize=(18,6)) epochs = np.linspace(0, 50, 1660) plt.subplot(141) plt.plot(epochs, total_loss, label="Total loss") plt.xlabel("epoch") plt.ylabel("loss") plt.legend() plt.grid(True) plt.subplot(142) plt.plot(epochs, loss_ciou, label="Bounding box regression loss") plt.xlabel("epoch") plt.ylabel("loss") plt.legend() plt.grid(True) plt.subplot(143) plt.plot(epochs, loss_conf, label="Confidence loss") plt.xlabel("epoch") plt.ylabel("loss") plt.legend() plt.grid(True) plt.subplot(144) plt.plot(epochs, loss_cls, label="Classification loss") plt.xlabel("epoch") plt.ylabel("loss") plt.legend() plt.grid(True) plt.tight_layout() # 调整整体空白 plt.show()
from archana import flask_demo from archana.flask_demo import jsonify from sqlalchemy import create_engine app = flask_demo.Flask(__name__) app.config["DEBUG"] = True vehicle_types = [ {'id': 1, 'type': 'aircraft'}, {'id': 2, 'type': 'spacecraft'}, {'id': 3, 'type': 'watercraft'} ] def connect_db(): db_connection_string = "postgresql://postgres:admin123@localhost:5432/maatram" return create_engine(db_connection_string) @app.route('/', methods=['GET']) def home(): return '''<h1>Welcome to GoRide</h1> <p>A ride hiring and offering app customised for your needs.</p>''' @app.route('/vehicle-types', methods=['GET']) def get_all_vehicle_types(): vehicle_types_from_db = db.execute("SELECT * FROM go_ride.vehicle_types") formatted_result = [dict(row) for row in vehicle_types_from_db] return jsonify(formatted_result) # return jsonify(vehicle_types) db = connect_db() app.run()
#!/usr/bin/python import sys import logging logging.basicConfig(stream=sys.stderr) sys.stdout = sys.stderr sys.path.insert(0,"/var/www/allure/") from allure import app as application application.secret_key = 'Add your secret key'
#Nothing needs to go here, Python just needs this file here so it can understand directory structure
# stdlib from typing import List, Dict, Any, Tuple import bson # 3rd party from pprint import pprint # local from . import usercollection, activitycollection from . import START_OF_WEEK from .util import datetime_to_secs from .algo import train_from_interactions def flatfeed(userid: bson.objectid.ObjectId) -> List[Dict[str, Any]]: """ pull out a flat feed, kinda messy """ # TODO: Fix messyness here user = usercollection.find_one({'_id': userid}) feed = [] posts = [list(activitycollection.find({'actor': friend, 'verb': 'post'})) for friend in user['friends']] for post in posts: for item in post: feed.append(item) feed.sort(key=lambda obj: obj['time']) return feed def trainedfeed(userid: bson.objectid.ObjectId) -> Tuple[List[Dict[str, Any]], Dict[str, float]]: """ Pull out a trained feed """ feed = flatfeed(userid) interactions = list(activitycollection.find({'actor': userid, 'verb': 'interact'})) interactions = [{ 'time': obj['time'], 'topic': activitycollection.find_one({'_id': obj['object']})['topic'] } for obj in interactions] # normalizing weights to 1, need max time. maxtime = datetime_to_secs(max(feed, key=lambda obj: obj['time'])['time'], reftime=START_OF_WEEK) # Adding normalized weights initially based on timestamps # neat way to add keys weighted_feed = [{**obj, **{'weight': datetime_to_secs(obj['time'], reftime=START_OF_WEEK) / maxtime}} for obj in feed] # now we can fiddle with weights based on interactions # Using algo.py for algorithm here weights = train_from_interactions(interactions) weighted_feed = order_by_theme_weights(weights, weighted_feed) return weighted_feed, weights def order_by_theme_weights(weights, feed): """ Order a feed by provided topic weights """ new_feed = [] for obj in feed: obj['weight'] = obj['weight'] * weights[obj['topic']][1] new_feed.append(obj) feed.sort(key=lambda obj: obj['weight']) return feed
# -*- coding: utf-8 -*- ''' Se conecta al router wamp y hace correr el Wamp del Digesto ''' if __name__ == '__main__': import sys, logging, inject sys.path.insert(0,'../python') logging.basicConfig(level=logging.DEBUG) from autobahn.asyncio.wamp import ApplicationRunner from model.config import Config from actions.systems.camaras.camaras import WampCamaras def config_injector(binder): binder.bind(Config,Config('server-config.cfg')) inject.configure(config_injector) config = inject.instance(Config) url = config.configs['server_url'] realm = config.configs['server_realm'] debug = config.configs['server_debug'] runner = ApplicationRunner(url=url,realm=realm,debug=debug, debug_wamp=debug, debug_app=debug) runner.run(WampCamaras)
import unittest from jousting.round.kick import Kick from jousting.round.controller import Controller from jousting.player.knight import Knight class KickTest(unittest.TestCase): def setUp(self): p1 = Knight("P1") p2 = Knight("P2") self.controller = Controller(p1, p2) self.kick = Kick(self.controller) def test_kick(self): self.kick.do_kick() self.assertNotEquals(self.kick._controller.get_p1(), self.kick._controller.get_p2()) def test_knight_move_during_kick(self): for i in range(1000): self.kick.do_kick() self.assertNotEquals(0, self.kick._controller.get_p1().get_current_position()) self.assertNotEquals(0, self.kick._controller.get_p2().get_current_position()) def test_swap_logic(self): p1 = self.controller.get_p1() p2 = self.controller.get_p2() self.controller.set_p1(p2) self.controller.set_p2(p1) self.assertEquals(self.controller.get_p1(), p2) self.assertEquals(self.controller.get_p2(), p1) self.assertNotEquals(self.controller.get_p1(), self.controller.get_p2())
#!/usr/bin/env python3 def make_ext(modname, pyxfilename): from distutils.extension import Extension return Extension( name = modname, sources=[pyxfilename], extra_compile_args=["-O3","-march=native"] )
a2=int(input()) if(a2>0): print("Positive") elif(a2<0): print("Negative") else: print("Zero")
# -*- coding: utf-8 -*- from model.validator import Validator from control.control_analise import ControlAnalise class ControlValidator(object): def __init__(self): self.validator = Validator() self.control_analise = ControlAnalise() self.resultados = [] def validate(self, X, y, regressor): # Retorna o array com os resutltadso Score do modelo específico return self.validator.validate_models(X, y, regressor, self.resultados) def compare(self, results, lst_models): # self.validation = self.control_regressor.get_validation( # self.X, self.y, test_size, validation, base, plt_text, balance, kwargs) # Invoca a função de validação StratifiedKFold # Invoca a função de comparação dos resultados de 30 testes cada modelo result_wilcox, result_fried, models_par, ranks, names, cds, average_ranks = self.validator.compare_results( results, lst_models) self.control_analise.print_conclusao( result_wilcox, result_fried, ranks, models_par, names, cds, average_ranks, lst_models) # Imprime a conclusão das comparações de validação return ranks, names
import torch import torch.nn import torchvision.models import torchvision.models.resnet from chess_recognizer.common import BOARD_DIMENSIONS class Resnet(torch.nn.Module): def __init__(self, pretrained: bool = True): super().__init__() self.resnet = torchvision.models.resnet18(pretrained=pretrained) if pretrained: for param in self.resnet.parameters(): param.requires_grad = True self.resnet.fc = torch.nn.Linear( in_features=512 * torchvision.models.resnet.BasicBlock.expansion, out_features=BOARD_DIMENSIONS[0] * BOARD_DIMENSIONS[1], ) for param in self.resnet.fc.parameters(): param.requires_grad = True def forward(self, x: torch.Tensor) -> torch.Tensor: return self.resnet.forward(x)
from django.contrib import admin from .models import Portfolio, Service, Carousel_figure, Client_words, Structure # Register your models here. admin.site.register(Portfolio) admin.site.register(Service) admin.site.register(Client_words) admin.site.register(Structure) admin.site.register(Carousel_figure)
# -*- coding: utf-8 -*- """ Created on Mon Nov 23 13:51:00 2015 @author: fbeyer """ #to activate virtuals environment #cd .. #source venvPLS/bin/activate #!/usr/bin/env python2 import itertools from multiprocessing import Pool, freeze_support, Array, Process, Queue from functools import partial import numpy as np from sklearn.utils.extmath import randomized_svd from scipy.stats.mstats_basic import zscore import pyprind from sklearn.utils import arpack from sklearn.decomposition.truncated_svd import TruncatedSVD from sklearn.preprocessing.data import scale from scipy.stats.stats import percentileofscore from functools import partial import numpy as np import scipy as sc from time import time import os import timeit def fit_pls(X, Y, n_components, scale=True, algorithm="randomized"): #scaling print "calculating SVD" if scale: X_scaled = zscore(X, axis=0, ddof=1) Y_scaled = zscore(Y, axis=0, ddof=1) covariance = np.dot(Y_scaled.T, X_scaled) else: covariance = np.dot(Y.T, X) print np.shape(covariance) sum_var=covariance svd = TruncatedSVD(n_components, algorithm) #computes only the first n_components largest singular values #produces a low-rank approximation of covariance matrix Y_saliences, singular_values, X_saliences = svd._fit(covariance) X_saliences = X_saliences.T inertia = singular_values.sum() if scale: return X_saliences, Y_saliences, singular_values, inertia, X_scaled, Y_scaled, sum_var else: return X_saliences, Y_saliences, singular_values, inertia def _procrustes_rotation(fixed, moving, moving_singular_values=None): N, _, P = np.linalg.svd(np.dot(fixed.T,moving)) rotation_matrix = np.dot(N, P) rotated = np.dot(moving, rotation_matrix) if moving_singular_values != None: rotated_scaled = np.dot(np.dot(moving, np.diag(moving_singular_values)), rotation_matrix) rotated_singular_values = np.sqrt(np.square(rotated_scaled).sum(axis=0)) return rotated, rotation_matrix, rotated_singular_values else: return rotated, rotation_matrix def _permute_and_calc_singular_values_process(X, Y, a, b, n_components, algorithm, output, x): #perm_i """ basic version for parallel implementation using processes and output queue """ #call random seed so not the same random number is used each time #pid = current_process()._identity[0] #randst = np.random.mtrand.RandomState(pid) np.random.seed( int( time() ) + x +50) #test how permutation works c=np.random.permutation(a) print a print c if len(X) < len(Y): #apply permutation to shorter list #print "randomization X<Y" X_perm = np.random.permutation(X) covariance_perm = np.dot(Y.T, X_perm) else: #print "other permutation" Y_perm = np.random.permutation(Y) covariance_perm = np.dot(Y_perm.T, X) svd = TruncatedSVD(n_components, algorithm=algorithm) #print covariance_perm Y_saliences_perm, singular_values_perm, X_saliences_perm = svd._fit(covariance_perm) output.put(singular_values_perm) def _permute_and_calc_singular_values_pool(X, Y, X_saliences, Y_saliences, n_components,procrustes, algorithm, perm_i): """ basic version for parallel implementation using pool """ #call random seed so not the same random number is used in each process np.random.seed( int( time() ) + perm_i) if len(X) < len(Y): #apply permutation to shorter list #print "randomization X<Y" X_perm = np.random.permutation(X) covariance_perm = np.dot(Y.T, X_perm) else: #print "other permutation" Y_perm = np.random.permutation(Y) covariance_perm = np.dot(Y_perm.T, X) svd = TruncatedSVD(n_components, algorithm=algorithm) Y_saliences_perm, singular_values_perm, X_saliences_perm = svd._fit(covariance_perm) if procrustes: #It does not matter which side we use to calculate the rotated singular values #let's pick the smaller one for optimization if len(X_saliences_perm) > len(Y_saliences_perm): _, _, singular_values_perm = _procrustes_rotation(Y_saliences, Y_saliences_perm, singular_values_perm) else: X_saliences_perm = X_saliences_perm.T _, _, singular_values_perm = _procrustes_rotation(X_saliences, X_saliences_perm, singular_values_perm) return singular_values_perm def permutation_test(X_scaled, Y_scaled, X_saliences, Y_saliences, singular_values,inertia, n_perm, verbose=True, algorithm="randomized"): n_components = X_saliences.shape[1] print "Starting permutations" #if verbose: # my_perc = pyprind.ProgBar(n_perm, stream=1, title='running permutations', monitor=True) #import warnings #warnings.filterwarnings("ignore") ################################################################################ #create pool to run permutations in parallel #procrustes=False iterable = np.arange(n_perm) P = Pool(processes = 20) func = partial(_permute_and_calc_singular_values_pool, X_scaled, Y_scaled,X_saliences, Y_saliences, n_components, True, algorithm) results=P.map(func, iterable) P.close() P.join() #cpu-count #multiprocessing.cpu_count() #if verbose: # my_perc.update() #if verbose: # print my_perc # print "calculating p values" ################################################################################ ################################################################################ #use a list of processes and output queue # output = Queue() # # # Setup a list of processes that we want to run # processes = [Process(target=_permute_and_calc_singular_values, args=(X_scaled, Y_scaled, a, b, n_components, algorithm, output, x)) for x in range(4)] # # # Run processes # for p in processes: # p.start() # # # Exit the completed processes # for p in processes: # p.join() # # # Get process results from the output queue # results = [output.get() for p in processes] # # print(results) ################################################################################ print "end permutations" singular_values_samples=np.array(results).reshape(n_perm,n_components) #reshape results from list to np.array singvals_p_vals = np.zeros((n_components))#initialize saliences_p_vals for component_i in range(n_components): #percentileofscore compares rank to list of ranks (here singular value of component to bootstrapped #list of singular values singvals_p_vals[component_i] = (100.0-percentileofscore(singular_values_samples[:,component_i], singular_values[component_i]))/100.0 #inertia describes explained variance inertia_p_val = (100.0-percentileofscore(singular_values_samples.sum(axis=1), inertia))/100.0 return singvals_p_vals, inertia_p_val, singular_values_samples ###------------########----------------#############------------############# #BOOTSTRAPPING USING PROCESSES (outdated because of not finishing) ###------------########----------------#############------------############# def _boostrap_process(X, Y, X_saliences, Y_saliences, n_components, algorithm, output_X, output_Y, x): """ basic version for parallel implementation using processes and output queues """ #call random seed so not the same random number is used in each process np.random.seed( int( time() ) + x) #choose indices to resample randomly with replacement for a sample of same size sample_indices = np.random.choice(range(X.shape[0]), size=X.shape[0], replace=True) X_boot = X[sample_indices,:] Y_boot = Y[sample_indices,:] X_boot_scaled = scale(X_boot) Y_boot_scaled = scale(Y_boot) print np.shape(X_boot) covariance_boot = np.dot(Y_boot_scaled.T, X_boot_scaled) svd = TruncatedSVD(n_components, algorithm=algorithm) print "finished calculating SVD" Y_saliences_boot, _, X_saliences_boot = svd._fit(covariance_boot) X_saliences_boot = X_saliences_boot.T #It does not matter which side we use to calculate the rotated singular values #let's pick the smaller one for optimization print "rotating values" if len(X_saliences_boot) > len(Y_saliences_boot): #use procrustes_rotation on smaller dataset Y_bootstraps, rotation_matrix = _procrustes_rotation(Y_saliences, Y_saliences_boot) X_bootstraps = np.dot(X_saliences_boot, rotation_matrix) else: X_bootstraps, rotation_matrix = _procrustes_rotation(X_saliences, X_saliences_boot) Y_bootstraps = np.dot(Y_saliences_boot, rotation_matrix) output_X.put(X_bootstraps) output_Y.put(Y_bootstraps) print "finished rotating" ################################################################################ def bootstrap_test(X, Y, X_saliences, Y_saliences, n_components,n_boot, verbose=True): print "starting bootstrap" ################################################################################ #use a list of processes and output queue output_X = Queue() output_Y = Queue() #Setup a list of processes that we want to run processes = [Process(target=_boostrap_process, args=(X, Y, X_saliences, Y_saliences, n_components, 'randomized', output_X, output_Y, x)) for x in range(n_boot)] #Run processes for p in processes: p.daemon = True p.start() print "adding process" #p.close() #pool.join() #Exit the completed processes #for p in processes: # p.join() # print "exiting processes" #Get process results from the output queue X_boo = [output_X.get() for p in processes] Y_boo = [output_Y.get() for p in processes] X_saliences_bootstraps=np.array(X_boo).reshape(n_boot,X_saliences.shape[0], X_saliences.shape[1]) Y_saliences_bootstraps=np.array(Y_boo).reshape(n_boot,Y_saliences.shape[0], Y_saliences.shape[1]) #sum across rows because the bootstraps are appended "under" each other X_saliences_bootstrap_ratios = X_saliences_bootstraps.mean(axis=0)/X_saliences_bootstraps.std(axis=0) Y_saliences_bootstrap_ratios = Y_saliences_bootstraps.mean(axis=0)/Y_saliences_bootstraps.std(axis=0) return X_saliences_bootstrap_ratios, Y_saliences_bootstrap_ratios ###------------########----------------#############------------############# #BOOTSTRAPPING USING POOL ###------------########----------------#############------------############# def _bootstrap_pool(X, Y, X_saliences, Y_saliences, n_components,procrustes, algorithm, boot_i): """ basic version for parallel implementation of bootstrapping using pool """ #call random seed so not the same random number is used in each process np.random.seed( int( time() ) + boot_i) #choose indices to resample randomly with replacement for a sample of same size sample_indices = np.random.choice(range(X.shape[0]), size=X.shape[0], replace=True) X_boot = X[sample_indices,:] Y_boot = Y[sample_indices,:] X_boot_scaled = scale(X_boot) Y_boot_scaled = scale(Y_boot) covariance_boot = np.dot(Y_boot_scaled.T, X_boot_scaled) svd = TruncatedSVD(n_components, algorithm=algorithm) Y_saliences_boot, _, X_saliences_boot = svd._fit(covariance_boot) X_saliences_boot = X_saliences_boot.T #It does not matter which side we use to calculate the rotated singular values #let's pick the smaller one for optimization if len(X_saliences_boot) > len(Y_saliences_boot): #use procrustes_rotation on smaller dataset Y_bootstraps, rotation_matrix = _procrustes_rotation(Y_saliences, Y_saliences_boot) X_bootstraps = np.dot(X_saliences_boot, rotation_matrix) else: X_bootstraps, rotation_matrix = _procrustes_rotation(X_saliences, X_saliences_boot) Y_bootstraps = np.dot(Y_saliences_boot, rotation_matrix) #print np.shape(X_bootstraps) #print np.shape(Y_bootstraps) return X_bootstraps, Y_bootstraps def bootstrap_pool(X, Y, X_saliences, Y_saliences, n_components,n_boot, verbose, write_dir): #bootstrap X_saliences_bootstraps = np.zeros(X_saliences.shape + (n_boot,)) Y_saliences_bootstraps = np.zeros(Y_saliences.shape + (n_boot,)) print "shape of X bootstraps: " print np.shape(X_saliences_bootstraps) print "shape of Y bootstraps: " print np.shape(Y_saliences_bootstraps) print "starting bootstraping" #create pool to run permutations in parallel iterable = np.arange(n_boot) P = Pool(processes = 6) func = partial(_bootstrap_pool, X, Y, X_saliences, Y_saliences, n_components, True, 'randomized') res=P.map(func, iterable) P.close() P.join() X_saliences_bootstraps=[row[0] for row in res] Y_saliences_bootstraps=[row[1] for row in res] print "shape of X bootstraps: " print np.shape(X_saliences_bootstraps) print "shape of Y bootstraps: " print np.shape(Y_saliences_bootstraps) print "type of bootstraps:" print type(X_saliences_bootstraps) #shape of bootstrapped X,Y is now (n_perm, vox_X/Y, n_comp) #saving subresults #saving results # os.chdir(write_dir) # np.save('Xsal_bootstrap_save_temp.npy', X_saliences_bootstraps) # np.save('Ysal_bootstrap_save_temp.npy', Y_saliences_bootstraps) # # ## ## #saving subresults ## #loading results # X_boo=np.load('Xsal_bootstrap_save_temp.npy') # Y_boo=np.load('Ysal_bootstrap_save_temp.npy') # print np.shape(X_boo) # print np.shape(Y_boo) #sum across first dimension because the bootstraps are along first dim X_saliences_bootstrap_asa = np.asarray(X_saliences_bootstraps) Y_saliences_bootstrap_asa = np.asarray(Y_saliences_bootstraps) X_saliences_bootstrap_ratios=X_saliences_bootstrap_asa.mean(axis=0)/X_saliences_bootstrap_asa.std(axis=0) Y_saliences_bootstrap_ratios=Y_saliences_bootstrap_asa.mean(axis=0)/Y_saliences_bootstrap_asa.std(axis=0) # print "done with summing across first dimensions" print np.shape(X_saliences_bootstrap_ratios) print np.shape(Y_saliences_bootstrap_ratios) return X_saliences_bootstrap_ratios, Y_saliences_bootstrap_ratios def run_pls(X, Y, n_components, n_perm, n_boot, write_dir): X_saliences, Y_saliences, singular_values, inertia, X_scaled, Y_scaled, sum_var = fit_pls(X, Y, n_components=n_components, algorithm="randomized") #testing subresults os.chdir(write_dir) print "saving inputs" np.save('Xsal.npy', X_saliences) np.save('Ysal.npy', Y_saliences) np.save('sing.npy', singular_values) np.save('inert.npy', inertia) np.save('Xscaled.npy', X_scaled) np.save('Yscaled.npy', Y_scaled) np.save('sumvar.npy', sum_var) os.chdir("/home/raid1/fbeyer/Documents/Scripts/PLS/") print "\nstart permutations" singvals_p_vals, inertia_p_val, singular_values_samples = permutation_test(X_scaled, Y_scaled, X_saliences, Y_saliences, singular_values, inertia, n_perm, verbose=True, algorithm="randomized") print "\npermutations done" X_saliences_bootstrap_ratios, Y_saliences_bootstrap_ratios = bootstrap_pool(X, Y,X_saliences, Y_saliences, n_components,n_boot,True, write_dir) print "\nbootstrapping done" return X_saliences, Y_saliences, singular_values, inertia, singvals_p_vals, inertia_p_val, singular_values_samples, X_saliences_bootstrap_ratios, Y_saliences_bootstrap_ratios if __name__ == "__main__": perm_n=2000 boot_n=2000 n_comp=9 analysis_dir='/data/pt_life/data_fbeyer/PLS_on_TBM_obesity_markers/PLS/prep/N749/VBM_input/for_analysis/' write_dir="/data/pt_life/data_fbeyer/PLS_on_TBM_obesity_markers/PLS/results/sampleN748/N748_TIV_regression/perm_boot_logtr_all_regressed_n9_wo_crp/" brain_data=np.load(analysis_dir+'regression_N748/brain_data_mask0.3_N748.npy') exclude_crp = np.array( [.00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, 1.00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, 1.00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, 1.00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, 1.00, .00, .00, 1.00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, 1.00, .00, .00, .00, .00, .00, .00, .00, .00, .00, 1.00, .00, .00, .00, .00, 1.00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, 1.00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, 1.00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, 1.00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, 1.00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, 1.00, 1.00, .00, .00, .00, .00, .00, .00, .00, .00, .00, 1.00, .00, .00, .00, .00, .00, .00, .00, .00, .00, 1.00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, 1.00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, 1.00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, 1.00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, 1.00, .00, .00, .00, .00, 1.00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, 1.00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, 1.00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, 1.00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, 1.00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00], dtype=bool) brain_data = brain_data[np.invert(exclude_crp), :] Ob = np.load(analysis_dir + 'BMI_lab_measures_N748_logtr_all_reg_wocrp.npy') print np.shape(brain_data) print np.shape(Ob) os.chdir("/home/raid1/fbeyer/Documents/Scripts/PLS/") start_time = timeit.default_timer() brain_saliences, Ob_data_saliences, singular_values, inertia, singvals_p_vals, \ inertia_p_value, singular_values_distr, brain_saliences_bootstrap_ratios, \ Ob_data_saliences_bootstrap_ratios= \ run_pls(brain_data,Ob,n_comp,perm_n, boot_n, write_dir) print "time elapsed for whole analysis of %i perm and %i bootstraps in minutes" %(perm_n, boot_n) print((timeit.default_timer() - start_time)/60) #load results from analysis_dir os.chdir(write_dir) np.save('brain_saliences.npy', brain_saliences) np.save('Ob_salience.npy', Ob_data_saliences) np.save('singvals_p.npy',singvals_p_vals) np.save('inertia.npy', inertia) np.save('inertia_p.npy', inertia_p_value) np.save('singular_values.npy', singular_values) np.save('singular_values_sampled.npy', singular_values_distr) np.save('brain_salience_bootstrap.npy',brain_saliences_bootstrap_ratios) np.save('Ob_salience_bootstrap.npy', Ob_data_saliences_bootstrap_ratios) # #
# _*_ coding: utf-8 _*_ __author__ = 'FWJ' __date__ = 2017 / 9 / 12 from flask import Flask, render_template from flask_sqlalchemy import SQLAlchemy import pymysql app = Flask(__name__) app.config['SQLALCHEMY_DATABASE_URI'] = 'mysql+pymysql://root:Qaz123456789@localhost:3306/net_news?charset=utf8' db = SQLAlchemy(app) # 被讲师坑了,发现和导入数据库不一样,这里的变量要重新修改一下 class News(db.Model): __tablename__ = 'news' id = db.Column(db.Integer, primary_key=True) title = db.Column(db.String(200), nullable=False) content = db.Column(db.String(2000), nullable=False) types = db.Column(db.String(10), nullable=False) image = db.Column(db.String(300),) author = db.Column(db.String(20),) view_count = db.Column(db.Integer) created_at = db.Column(db.DateTime) is_valid = db.Column(db.Boolean) def __repr__(self): return '<News %r>' % self.title @app.route('/') def index(): """ 新闻首页 """ news_list = News.query.all() return render_template('index.html') @app.route('/cat/<name>/') def cat(name): """ 新闻的类别 """ # 查询类别为name的新闻数据 # query官方文档:http://docs.sqlalchemy.org/en/rel_1_1/orm/tutorial.html news_list = News.query.filter(News.types == name) return render_template('cat.html') @app.route('/detail/<int:pk>/') def detail(pk): """ 新闻详情信息 """ news_obj = News.query.get(pk) return render_template('detail.html', news_obj=news_obj) if __name__ == '__main__': # 调试模式 # db.create_all() app.run(debug=True)
class Person(): def __init__(self,name,surname): self.name = name self.surname = surname @property def fullname(self): return f'{self.name} {self.surname}' @fullname.setter def fullname(self,tamad): name, surname = tamad.split(' ') self.name = name self.surname = surname p1 = Person('Togrul','Masimli') print(p1.fullname) p1.name = 'John' p1.surname = 'Doe' print(p1.fullname) p1.fullname = 'Corey Schafer' print(p1.name) print(p1.surname) print(p1.fullname)
from sdcli.config._config import Config from sdcli.config.config_obs import ConfigOBS
# -*- coding: utf-8 -*- import os import requests import tarfile import shutil from tqdm import tqdm def download(src, url): file_size = int(requests.head(url).headers['Content-Length']) header = { 'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/' '70.0.3538.67 Safari/537.36' } pbar = tqdm(total=file_size) resp = requests.get(url, headers=header, stream=True) with open(src, 'ab') as f: for chunk in resp.iter_content(chunk_size=1024): if chunk: f.write(chunk) pbar.update(1024) pbar.close() return file_size abs_path = os.path.abspath(__file__) download_url = "https://baidu-nlp.bj.bcebos.com/dmtk_data_1.0.0.tar.gz" downlaod_path = os.path.join(os.path.dirname(abs_path), "dmtk_data_1.0.0.tar.gz") target_dir = os.path.dirname(abs_path) download(downlaod_path, download_url) tar = tarfile.open(downlaod_path) tar.extractall(target_dir) os.remove(downlaod_path) shutil.rmtree(os.path.join(target_dir, 'data/dstc2/')) shutil.rmtree(os.path.join(target_dir, 'data/mrda/')) shutil.rmtree(os.path.join(target_dir, 'data/multi-woz/')) shutil.rmtree(os.path.join(target_dir, 'data/swda/')) shutil.rmtree(os.path.join(target_dir, 'data/udc/'))
import xlrd import pymysql #读取EXCEL中内容到数据库中 wb = xlrd.open_workbook('./dates.xls') sh = wb.sheet_by_index(0) dfun=[] nrows = sh.nrows #行数 ncols = sh.ncols #列数 fo=[] fo.append(sh.row_values(0)) for i in range(1,nrows): dfun.append(sh.row_values(i)) conn=pymysql.connect(host='localhost',user='root',passwd='12345678',db='wk') cursor=conn.cursor() #创建table cursor.execute("create table dates("+fo[0][0]+" varchar(100),primary key(date));") #创建table属性 for i in range(1,ncols): if i ==1: cursor.execute("alter table dates add "+fo[0][i]+" varchar(100);") else: cursor.execute("alter table dates add " + fo[0][i] + " enum('1','2','Q1','Q2','S1','S2');") val='' for i in range(0,ncols): val = val+'%s,' print (dfun) cursor.executemany("insert into dates values("+val[:-1]+");" ,dfun) conn.commit()
import json from datetime import datetime class Kestra: def __init__(self): pass @staticmethod def _send(map): print("::" + json.dumps(map) + "::") @staticmethod def _metrics(name, type, value, tags=None): Kestra._send({ "metrics": [ { "name": name, "type": type, "value": value, "tags": tags or {} } ] }) @staticmethod def outputs(map): Kestra._send({ "outputs": map }) @staticmethod def counter(name, value, tags=None): Kestra._metrics(name, "counter", value, tags) @staticmethod def timer(name, duration, tags=None): if callable(duration): start = datetime.now() duration() Kestra._metrics(name, "timer", (datetime.now().microsecond - start.microsecond) / 1000, tags) else: Kestra._metrics(name, "timer", duration, tags);
import pandas as pd df = pd.read_csv('../data/corona_virus_data.csv') df = df.groupby(['Country', 'Date']).apply(lambda x: x.sort_values('Date')) df.to_csv('corona_virus_condensed.csv')
numbers = [int(line.strip()) for line in open('day1_input.txt')] for i in numbers: for j in numbers: for k in numbers: if i + j + k == 2020: print(f"{i} * {j} * {k} = {i*j*k}")
from django.db import models from safedelete.config import SOFT_DELETE from safedelete.models import SafeDeleteModel, SOFT_DELETE_CASCADE from clients.models import Client from users.models import User from .managers import RevenueExpenditureManager import datetime class RevenueExpenditure(SafeDeleteModel): _safedelete_policy = SOFT_DELETE_CASCADE YEAR_CHOICES = [] for r in range(1980, (datetime.datetime.now().year+1)): YEAR_CHOICES.append((r,r)) MONTH_CHOICES = [] for i in range(1, 13): MONTH_CHOICES.append((i, i)) year = models.IntegerField(choices=YEAR_CHOICES, default=datetime.datetime.now().year) month = models.SmallIntegerField(choices=MONTH_CHOICES, default=datetime.datetime.now().month) revenue = models.FloatField(null=True) expenditure = models.FloatField(null=True) created_at = models.DateTimeField(auto_now_add=True) updated_at = models.DateTimeField(auto_now=True) creator = models.ForeignKey(User, related_name='rev_exp_creators', on_delete=models.SET_NULL, unique=False, null=True) organization = models.ForeignKey(Client, related_name='rev_exp_organizations', on_delete=models.SET_NULL, unique=False, null=True) objects = RevenueExpenditureManager() class Meta(): app_label = 'revenue_expenditures' db_table = 'revenue_expenditure'
#!/usr/bin/python import sys import os sys.path.append(os.getcwd()) import argparse import termcolor as T import re from collections import defaultdict import matplotlib as mp import matplotlib.pyplot as plt import glob import numpy import math import plot_defaults import sys import itertools from helper import * from output_parser import EthstatsParser, MPStatParser, SnifferParser from site_config import config parser = argparse.ArgumentParser(description="Plot comparing overhead of none,htb,etc..") parser.add_argument('--dir', required=True, help="expt output dir") parser.add_argument('--maxy', default=30, type=int, help="max y-axis") parser.add_argument('--num-runs', '-r', default=3, type=int, help="number of times the expt was run") parser.add_argument('--tolerance', '-t', default=0.1, type=float, help="tolerance of achieved rate in fraction") parser.add_argument('--num-class', '-n', default=None, type=int, help="plot for a fixed num_classes") parser.add_argument('--rates', nargs="+", type=int, default=[], help="plot for the above sweep of rate limits") parser.add_argument('--out', '-o', help="save plot to file") args = parser.parse_args() rspaces = re.compile(r'\s+') def ints(str): return map(int, str.split(' ')) SUBPLOT_HEIGHT = 4 SUBPLOT_WIDTH = 3.5 SUBPLOT_ROWS = len(args.rates) SUBPLOT_COLS = 2 # CPU and stdev plot_defaults.rcParams['figure.figsize'] = (SUBPLOT_HEIGHT * SUBPLOT_ROWS, SUBPLOT_WIDTH * SUBPLOT_COLS) rls = config['EXPT_RL'].split(' ') rls_seen = [] rl_name = dict(none="app", htb="htb",eyeq="eyeq", hwrl="hwrl") rl_name['hwrl+'] = 'hwrl+' colour_rl = dict(none="yellow", htb="green", tbf="blue", eyeq="grey", hwrl="cyan") colour_rl['hwrl+'] = "cyan" rates = ints(config["EXPT_RATES"]) num_classes = ints(config["EXPT_NCLASSES"]) runs = 1 + numpy.arange(args.num_runs) # Stores references to the matplotlib artist that draws the bars so we # can label it. rl_bar = dict() def DIR(rl, rate, num_class, run): return "rl-%s-rate-%s-ncl-%s-run-%s" % (rl, rate, num_class, run) def E(lst): return list(enumerate(lst)) def get_rl_colour(rl): return colour_rl[rl] def get_minor_colour(minor): return colour_rl[minor] def err(s): return T.colored(s, "red", attrs=["bold"]) def plot_by_qty(ax, fixed, major, minor, fn_qty, opts={}): minor_bar = {} minors_seen = [] for (i,XX), (j,YY) in itertools.product(E(minor['data']), E(major['data'])): ys = [] for run in runs: d = dict() d.update(fixed) d.update({major['name']: YY, minor['name']: XX, 'run': run}) dir = DIR(**d) fs_dir = os.path.join(args.dir, dir) if not os.path.exists(fs_dir): print dir, "does not exist; ignoring..." continue ethstats_fname = os.path.join(args.dir, dir, "net.txt") mpstat_fname = os.path.join(args.dir, dir, "mpstat.txt") sniff_fname = os.path.join(args.dir, dir, "pkt_snf.txt") estats = EthstatsParser(ethstats_fname, iface='eth1') mpstats = MPStatParser(mpstat_fname) sniff = SnifferParser(sniff_fname, max_lines=1000000) summ = estats.summary() print '-'*80 print "Parameters", d print "\tcpu ", mpstats.summary() print "\tnet ", summ print '-'*80 yvalue = fn_qty(estats, mpstats, sniff) ys.append(yvalue) if len(ys) == 0 or mean(ys) == 0: continue x = j * (len(minor['data']) + 1) + i bar = ax.bar(x, mean(ys), width=1, color=get_minor_colour(XX), yerr=stdev(ys), ecolor='red') if XX == 'hwrl' and YY > 16: bar[0].set_hatch('x') bar[0].set_facecolor('white') XX = XX + "+" minor_bar[XX] = bar[0] if XX not in minors_seen: minors_seen.append(XX) if opts.get('legend'): lg = ax.legend([minor_bar[XX] for XX in minors_seen], [rl_name[XX] for XX in minors_seen], loc="upper right") lg.draw_frame(False) width = len(minor['data']) + 1 xtickloc = width * numpy.arange(len(major['data'])) + ((width - 1.0) / 2) # This is a pain with matplotlib; the ax and plt apis are slightly # different. plt.xticks(xtickloc, xticklabels) will work, but it # has to be split as follows for axis. ax.set_xticks(xtickloc) ax.set_xticklabels(major['data']) if opts.get('yticklabels'): ax.set_yticklabels(opts.get('yticklabels')) ax.set_ylim(opts.get('ylim')) ax.set_ylabel(opts.get('ylabel')) ax.set_xlabel(major['label']) if opts.get('annotate'): ax.text(0.12, 0.9, opts.get('annotate'), horizontalalignment='center', verticalalignment='center', transform=ax.transAxes) if opts.get('show'): plt.show() if args.rates: def plot_cpu(estats, mpstats, sniff, rate): achieved = estats.summary() if abs(achieved['mean'] - rate) > args.tolerance * rate: if achieved['mean'] > rate: print T.colored("higher rate", "green", attrs=["bold"]) print err('tolerance failed: achieved %.3f, rate: %.3f' % (achieved['mean'], rate)) return 0 return mpstats.kernel() def plot_ipt(estats, mpstats, sniff, rate): achieved = estats.summary() m = sniff.mean_ipt() ideal_mean = sniff.ideal_ipt_nsec(total_rate_gbps=rate/1000.0) std_norm = sniff.stdev_ipt() if ideal_mean > 0: std_norm /= ideal_mean if abs(achieved['mean'] - rate) > args.tolerance * rate: print err('tolerance failed: achieved %.3f, rate: %.3f' % (achieved['mean'], rate)) return 0 return std_norm # plot keeping rate fixed. fig = plt.figure() plt_num = 0 for rate in args.rates: assert(rate in rates) plt_num += 1 ax = fig.add_subplot(SUBPLOT_ROWS, SUBPLOT_COLS, plt_num) plot_by_qty(ax, {'rate': rate}, minor={'name': 'rl', 'data': rls}, major={'name': 'num_class', 'data': num_classes, 'label': "number of classes"}, fn_qty=lambda e,m,s: plot_cpu(e, m, s, rate), opts={'ylim': (0, args.maxy), 'legend': False, 'annotate': "Rate: %d Gb/s" % (rate/1000), 'yticklabels': ['0', '', '10', '', '20', '', '30'], 'ylabel': "Kernel CPU Util. (%)"}) # This should be the stdev plot. plt_num += 1 ax = fig.add_subplot(SUBPLOT_ROWS, SUBPLOT_COLS, plt_num) # Set yticks explicitly otherwise matplotlib does not seem to assign # tick for such a floating point ylim ax.set_yticks([0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3]) plot_by_qty(ax, {'rate': rate}, minor={'name': 'rl', 'data': rls}, major={'name': 'num_class', 'data': num_classes, 'label': "number of classes"}, fn_qty=lambda e,m,s: plot_ipt(e, m, s, rate), opts={'ylim': (0, 0.3), 'legend': (plt_num == 2), 'annotate': "Rate: %d Gb/s" % (rate/1000), 'yticklabels': ['0', '', '0.1', '', '0.2', '', '0.3'], 'ylabel': "Normalized stddev"}) plt.tight_layout() if args.out: plt.savefig(args.out) else: plt.show()
# MSSERG | 4.11.2016 # Variable = Word # English; Russian; e_habits="habits"; r_habits="привычки"; e_bit="bit"; r_bit="немного"; e_back_to_front="back to front"; r_back_to_front="начиная с последней страницы"; e_iustance="iustance"; r_iustance="экземпляр"; e_annoying="annoying"; r_annoying="раздрожать"; e_biting="biting"; r_biting="кусаться"; e_nails="nails"; r_nails="ногти"; e_being="being"; r_being="будучи"; e_late="late"; r_late="поздно"; e_locky="locky"; r_locky="повезло"; e_healthy="healthy"; r_healthy="здоровый"; e_jogging="jogging"; r_jogging="пробежка"; e_brushir="brushir"; r_brushir="чистка"; e_teeth="teeth"; r_teeth="зубы"; e_meals="meals"; r_meals="еда"; e_unfortunately="unfortunately"; r_unfortunately="к сожалению"; e_mainly="mainly"; r_mainly="в основном"; e_cause="cause"; r_cause="причина"; e_health="health"; r_health="здоровье"; e_common="common"; r_common="общие"; e_using="using"; r_using="используя"; e_anger="anger"; r_anger="гнев"; e_boredom="boredom"; r_boredom="скука"; e_teenagers="teenagers"; r_teenagers="подростки"; e_expensive="expensive"; r_expensive="дорогие"; e_addictive="addictive"; r_addictive="привыкание"; e_hard="hard"; r_hard="жёсткий"; e_quit="quit"; r_quit="бросить однажды"; e_once="once"; r_once="один раз"; e_ruin="ruin"; r_ruin="разорение"; e_someones="someonce"; r_someones="кто-то"; e_damages="damages"; r_damages="ущерб"; e_lungs="lungs"; r_lungs="лёгкие"; e_causes="causes"; r_causes="причины"; e_concer="concer"; r_concer="рак"; e_by_the_way="by the way"; r_by_the_way="кстати"; e_disease="disease"; r_disease="болезнь"; e_chain="chain"; r_chain="цепи"; e_susceptible="susceptible"; r_susceptible="восприимчивый"; e_strokes="strokes"; r_strokes="ударов"; e_harmful="harmful"; r_harmful="вредные"; e_surrounding="surrounding"; r_surrounding="окружающие"; e_especially="especially"; r_especially="особенно"; e_prengant="pregnant"; r_pregnant="беременная"; e_liver="liver"; r_liver="печень"; e_kidney="kidney"; r_kidnay="почки"; e_besides="besides"; r_besides="кроме того"; e_drunk="drunk"; r_drunk="пряные"; e_drug="drug"; r_drug="препарат"; e_addicts="addicts"; r_addicts="наркоманы"; e_violent="violent"; r_violent="жестокие"; e_easily="easily"; r_easily="легко"; e_commit="commit"; r_commit="совершить"; e_crime="crime"; r_crime="преступление"; e_influence="influence"; r_influence="влияние"; e_driving="driving"; r_driving="вождение"; e_main="main"; r_main="главная"; e_reason="reason"; r_reason="причина"; e_car="car"; r_car="автомобиль"; e_accident="accident"; r_accident="авария"; e_deaths="deaths"; r_deaths="смерть"; e_impact="impact"; r_impact="влияние"; e_breaking="breaking"; r_breaking="ломать"; e_hardest="hardest"; r_hardest="трудная"; e_try="try"; r_try="пытаться"; e_scientists="scientists"; r_scientists="учёные"; e_state="state"; r_state="государство"; e_treat="treat"; r_treat="лечить"; e_body="body"; r_body="тело"; e_half="half"; r_half="половина"; e_wold="wold"; r_wold="будет"; e_place="place"; r_place="место"; e_affect="affect"; r_affect="влиять"; e_century="century"; r_century="век"; e_take="take"; r_take="взять"; e_granted="granted"; r_granted="предоставлять"; e_inventions="inventions"; r_inventions="изобретение"; e_ever="ever"; r_ever="когда-либо"; e_made="made"; r_made="сделать"; e_significant="significant"; r_significant="значительное"; e_howaday="howaday"; r_howaday="в наше время"; e_affordable="affordable"; r_affordable="доступный"; e_almost="almost"; r_almost="почти"; e_anyone="anyone"; r_anyone="каждый"; e_connects="connects"; r_connects="соединения"; e_arround="arround"; r_arround="вокруг"; e_in_touch="in touch"; r_in_touch="на связи"; e_relative="relative"; r_relative="родные"; e_collegies="collegies"; r_collegies="коллеги"; e_modern="modern"; r_modern="современный"; e_without="without"; r_without="без"; e_net="net"; r_net="сеть"; e_transaction="transaction"; r_transaction="сделка"; e_manage="manage"; r_manage="управлять"; e_accounts="accounts"; r_accounts="счета"; e_pay="pay"; r_pay="платить"; e_bills="bills"; r_bills="банкноты"; e_send="send"; r_send="отправить"; e_important="important"; r_important="важно"; e_largest="largest"; r_largest="крупнейший"; e_source="source"; r_source="источник"; e_storing="storing"; r_storing="хранение"; e_plenty="plenty"; r_plenty="много"; e_useful="useful"; r_useful="полезный"; e_science="science"; r_science="наука"; e_coocking="coocking"; r_coocking="готовка"; e_subject="subject"; r_subject="предмет"; e_practising="practising"; r_practising="практиковать"; e_foreigh="foreigh"; r_foreigh="иностранный"; e_learning="learning"; r_learning="обучаться"; e_possible="possible"; r_possible="возможно"; e_saves="saves"; r_saves="экономия"; e_choosing="choosing"; r_choosing="выбор"; e_decirable="decirable"; r_decirable="желательный"; e_price="price"; r_price="цена"; e_thing="thing"; r_thing="вещь"; e_personality="personality"; r_personality="характер человека"; e_jolly="jolly"; r_jolly="жизнерадостный"; e_ease_going="ease-going"; r_ease_going="спокойный"; e_friendly="friendly"; r_friendly="дружелюбный"; e_reserved="reserved"; r_reserved="скрытый"; e_distrustful="distrustful"; r_distrustful="недоверчивый"; e_sociable="sociable"; r_sociable="общительный"; e_prefer="prefer"; r_prefer="предпочитать"; e_loneliness="loneliness"; r_loneliness="одиночество"; e_silence="silence"; r_silence="тишина"; e_complicated="complicated"; r_complicated="сложный"; e_part="part"; r_part="часть"; e_events="events"; r_events="события"; e_basic="basic"; r_basic="основной"; e_sanguine="sanguine"; r_sanguine="сангвиник"; e_communicative="communicative"; r_communicative="коммуникабельный"; e_fixate="fixate"; r_fixate="зацикливаться"; e_calm="calm"; r_calm="спокойный"; e_patient="patient"; r_patient="пациент"; e_caring="caring"; r_caring="заботливый"; e_exited="exited"; r_exited="возбуждённый"; e_feithful="feithful"; r_feithful="верный"; e_careful="careful"; r_careful="осторожный"; e_quiet="quiet"; r_quiet="тихий"; e_disposed="disposed"; r_disposed="склонный"; e_sad="sad"; r_sad="грустный"; e_thoughtful="thoughtful"; r_thoughtful="задумчивый"; e_moods="moods"; r_moods="настроение"; e_restless="restless"; r_restless="непоседа"; e_strong="strong"; r_strong="сильный"; e_leader="leader"; r_leader="лидер"; e_inpossible="inpossible"; r_inpossible="невозможно"; e_divided="divided"; r_divided="разделённый"; e_into="into"; r_into="до"; e_types="types"; r_types="типы"; e_expressive="expressive"; r_expressive="выразительный"; e_outgoing="outgoing"; r_outgoing="исходящий"; e_impressions="impressions"; r_impressions="впечатление"; e_second="second"; r_second="второй"; e_comfortable="comfortable"; r_comfortable="удобный"; e_themselves="themselves"; r_themselves="сами"; e_inside="inside"; r_inside="внутри"; e_alone="alone"; r_alone="один"; e_variety="variety"; r_variety="разнообразие"; e_cheerful="cheerful"; r_cheerful="весёлый"; e_unhappy="unhappy"; r_unhappy="несчастный"; e_depending="depending"; r_depending="зависимость"; e_general="general"; r_general="общий"; e_outlook="outlook"; r_outlook="взгляд"; e_call="call"; r_call="вызов"; e_former="former"; r_former="бывший"; e_self_confident="self-confident"; r_self_confident="уверенный в себе"; e_while="while"; r_while="промежуток времени"; e_latter="latter"; r_latter="последний"; # Start | Call Of Conditions | Print test="word"; resuilt=0; print("\n # MSSERG | 4.11.2016") print(" # English -> Russian \n") print("",e_habits) test=input() if(test==r_habits): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_bit) test=input() if(test==r_bit): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_back_to_front) test=input() if(test==r_back_to_front): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_iustance) test=input() if(test==r_iustance): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_annoying) test=input() if(test==r_annoying): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_biting) test=input() if(test==r_biting): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_nails) test=input() if(test==r_nails): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_being) test=input() if(test==r_being): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_late) test=input() if(test==r_late): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_locky) test=input() if(test==r_locky): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_healthy) test=input() if(test==r_healthy): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_jogging) test=input() if(test==r_jogging): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_brushir) test=input() if(test==r_brushir): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_teeth) test=input() if(test==r_teeth): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_meals) test=input() if(test==r_meals): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_unfortunately) test=input() if(test==r_unfortunately): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_mainly) test=input() if(test==r_mainly): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_cause) test=input() if(test==r_cause): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_health) test=input() if(test==r_health): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_common) test=input() if(test==r_common): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_using) test=input() if(test==r_using): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_anger) test=input() if(test==r_anger): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_boredom) test=input() if(test==r_boredom): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_teenagers) test=input() if(test==r_teenagers): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_expensive) test=input() if(test==r_expensive): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_addictive) test=input() if(test==r_addictive): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_hard) test=input() if(test==r_hard): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_quit) test=input() if(test==r_quit): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_once) test=input() if(test==r_once): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_ruin) test=input() if(test==r_ruin): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_someones) test=input() if(test==r_someones): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_damages) test=input() if(test==r_damages): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_lungs) test=input() if(test==r_lungs): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_causes) test=input() if(test==r_causes): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_concer) test=input() if(test==r_concer): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_by_the_way) test=input() if(test==r_by_the_way): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_disease) test=input() if(test==r_disease): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_chain) test=input() if(test==r_chain): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_susceptible) test=input() if(test==r_susceptible): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_strokes) test=input() if(test==r_strokes): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_harmful) test=input() if(test==r_harmful): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_surrounding) test=input() if(test==r_surrounding): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_especially) test=input() if(test==r_especially): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_prengant) test=input() if(test==r_pregnant): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_liver) test=input() if(test==r_liver): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_kidney) test=input() if(test==r_kidnay): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_besides) test=input() if(test==r_besides): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_drunk) test=input() if(test==r_drunk): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_drug) test=input() if(test==r_drug): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_addicts) test=input() if(test==r_addicts): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_violent) test=input() if(test==r_violent): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_easily) test=input() if(test==r_easily): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_commit) test=input() if(test==r_commit): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_crime) test=input() if(test==r_crime): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_influence) test=input() if(test==r_influence): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_driving) test=input() if(test==r_driving): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_main) test=input() if(test==r_main): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_reason) test=input() if(test==r_reason): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_car) test=input() if(test==r_car): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_accident) test=input() if(test==r_accident): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_deaths) test=input() if(test==r_deaths): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_impact) test=input() if(test==r_impact): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_breaking) test=input() if(test==r_breaking): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_hardest) test=input() if(test==r_hardest): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_try) test=input() if(test==r_try): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_scientists) test=input() if(test==r_scientists): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_state) test=input() if(test==r_state): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_treat) test=input() if(test==r_treat): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_body) test=input() if(test==r_body): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_half) test=input() if(test==r_half): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_wold) test=input() if(test==r_wold): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_place) test=input() if(test==r_place): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_affect) test=input() if(test==r_affect): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_century) test=input() if(test==r_century): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_take) test=input() if(test==r_take): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_granted) test=input() if(test==r_granted): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_inventions) test=input() if(test==r_inventions): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_ever) test=input() if(test==r_ever): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_made) test=input() if(test==r_made): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_significant) test=input() if(test==r_significant): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_howaday) test=input() if(test==r_howaday): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_affordable) test=input() if(test==r_affordable): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_almost) test=input() if(test==r_almost): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_anyone) test=input() if(test==r_anyone): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_connects) test=input() if(test==r_connects): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_arround) test=input() if(test==r_arround): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_in_touch) test=input() if(test==r_in_touch): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_relative) test=input() if(test==r_relative): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_collegies) test=input() if(test==r_collegies): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_modern) test=input() if(test==r_modern): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_without) test=input() if(test==r_without): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_net) test=input() if(test==r_net): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_transaction) test=input() if(test==r_transaction): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_manage) test=input() if(test==r_manage): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_accounts) test=input() if(test==r_accounts): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_pay) test=input() if(test==r_pay): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_bills) test=input() if(test==r_bills): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_send) test=input() if(test==r_send): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_important) test=input() if(test==r_important): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_largest) test=input() if(test==r_largest): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_source) test=input() if(test==r_source): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_storing) test=input() if(test==r_storing): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_plenty) test=input() if(test==r_plenty): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_useful) test=input() if(test==r_useful): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_science) test=input() if(test==r_science): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_coocking) test=input() if(test==r_coocking): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_subject) test=input() if(test==r_subject): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_practising) test=input() if(test==r_practising): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_foreigh) test=input() if(test==r_foreigh): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_learning) test=input() if(test==r_learning): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_possible) test=input() if(test==r_possible): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_saves) test=input() if(test==r_saves): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_choosing) test=input() if(test==r_choosing): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_decirable) test=input() if(test==r_decirable): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_price) test=input() if(test==r_price): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_thing) test=input() if(test==r_thing): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_personality) test=input() if(test==r_personality): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_jolly) test=input() if(test==r_jolly): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_ease_going) test=input() if(test==r_ease_going): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_friendly) test=input() if(test==r_friendly): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_reserved) test=input() if(test==r_reserved): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_distrustful) test=input() if(test==r_distrustful): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_sociable) test=input() if(test==r_sociable): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_prefer) test=input() if(test==r_prefer): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_loneliness) test=input() if(test==r_loneliness): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_silence) test=input() if(test==r_silence): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_complicated) test=input() if(test==r_complicated): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_part) test=input() if(test==r_part): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_events) test=input() if(test==r_events): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_basic) test=input() if(test==r_basic): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_sanguine) test=input() if(test==r_sanguine): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_communicative) test=input() if(test==r_communicative): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_fixate) test=input() if(test==r_fixate): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_calm) test=input() if(test==r_calm): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_patient) test=input() if(test==r_patient): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_caring) test=input() if(test==r_caring): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_exited) test=input() if(test==r_exited): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_feithful) test=input() if(test==r_feithful): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_careful) test=input() if(test==r_careful): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_quiet) test=input() if(test==r_quiet): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_disposed) test=input() if(test==r_disposed): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_sad) test=input() if(test==r_sad): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_thoughtful) test=input() if(test==r_thoughtful): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_moods) test=input() if(test==r_moods): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_restless) test=input() if(test==r_restless): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_strong) test=input() if(test==r_strong): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_leader) test=input() if(test==r_leader): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_inpossible) test=input() if(test==r_inpossible): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_divided) test=input() if(test==r_divided): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_into) test=input() if(test==r_into): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_types) test=input() if(test==r_types): print(" Верно! \n") resuilt+=1 print("",e_expressive) test=input() if(test==r_expressive): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_outgoing) test=input() if(test==r_outgoing): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_impressions) test=input() if(test==r_impressions): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_second) test=input() if(test==r_second): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_comfortable) test=input() if(test==r_comfortable): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_inside) test=input() if(test==r_inside): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_themselves) test=input() if(test==r_themselves): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_alone) test=input() if(test==r_alone): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_variety) test=input() if(test==r_variety): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_cheerful) test=input() if(test==r_cheerful): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_unhappy) test=input() if(test==r_unhappy): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_depending) test=input() if(test==r_depending): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_general) test=input() if(test==r_general): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_outlook) test=input() if(test==r_outlook): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_call) test=input() if(test==r_call): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_former) test=input() if(test==r_former): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_self_confident) test=input() if(test==r_self_confident): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_while) test=input() if(test==r_while): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") print("",e_latter) test=input() if(test==r_latter): print(" Верно! \n") resuilt+=1 else: print(" Неверно! \n") # Finish | Resuilt | Print resuilt_low="очень плохой результат!" resuilt_medium="неплохой результат!" resuilt_normal="хороший результат!" resuilt_good="отличный результат!" resuilt_GOD="божественный результат!" print(" # Результат тестирования \n") if(resuilt<75): print(" Вы закончили тест со следующим показателем: ",resuilt," слов из 170 слов! - Это ты и не учил вовсе...") if(100>=resuilt>=75): print(" Вы закончили тест со следующим показателем: ",resuilt," слов из 170 слов! - Это ",resuilt_low) if(125>resuilt>=100): print(" Вы закончили тест со следующим показателем: ",resuilt," слов из 170 слов! - Это ",resuilt_medium) if(150>resuilt>=125): print(" Вы закончили тест со следующим показателем: ",resuilt," слов из 170 слов! - Это ",resuilt_normal) if(169>resuilt>=150): print(" Вы закончили тест со следующим показателем: ",resuilt," слов из 170 слов! - Это ",resuilt_good) if(resuilt>=169): print(" Вы закончили тест со следующим показателем: ",resuilt," слов из 170 слов! - Это ",resuilt_GOD) input() input() input()
# -*- encoding:utf-8 -*- # __author__=='Gan' # Given an array nums containing n + 1 integers where each integer is between 1 and n (inclusive), # prove that at least one duplicate number must exist. Assume that there is only one duplicate number, # find the duplicate one. # Note: # You must not modify the array (assume the array is read only). # You must use only constant, O(1) extra space. # Your runtime complexity should be less than O(n2). # There is only one duplicate number in the array, but it could be repeated more than once. # Credits: # Special thanks to @jianchao.li.fighter for adding this problem and creating all test cases. # 53 / 53 test cases passed. # Status: Accepted # Runtime: 72 ms # Your runtime beats 17.27 % of python submissions. class Solution(object): def findDuplicate(self, nums): """ :type nums: List[int] :rtype: int """ lo, hi = 0, len(nums) - 1 while lo + 1 < hi: count = 0 mid = (lo + hi) // 2 for num in nums: if mid < num <= hi: count += 1 if count > hi - mid: lo = mid else: hi = mid return hi # 53 / 53 test cases passed. # Status: Accepted # Runtime: 42 ms # Your runtime beats 72.54 % of python submissions. class Solution(object): def findDuplicate(self, nums): """ :type nums: List[int] :rtype: int """ # Ideal from: http://keithschwarz.com/interesting/code/?dir=find-duplicate # We have to see the input array from a whole different angel. # This array in fact is a map(or route function) for a route, which is # x_0 = 0 => Step 0: start from the position x_0 # f(1) => nums[x_0] = x_1 => Step 1: from x_0 go to x_1 # f(2) => nums[x_1] = x_2 => Step 2: from x_1 go to x_2 # ... ... # f(i) => nums[x_i] = x_{i+1} => Step i: from x_i go to x_{i+1}. # If there was infinite nums, the route would go along forever without any position revisited. # If the nums was finite with no repeated position, the route would be a perfect circle loop. # If the nums was finite with repeated position, the route would be rho-shaped. # The key point is to find the start of the rho-shaped circle, x_c. # x_c is the dulpicated number. # To find x_c, we have to borrow Floyd 's "tortoise and hare" algorithm to find the x_l, # where f(stepsToL) = x_l == x_2l = f(doubleStepsToL) and # stepsToL is the smallest multiple of the length of the rho-shaped circle(rhoLen) larger than stepsToC. hare, tortoise = nums[nums[0]], nums[0] while hare != tortoise: hare = nums[nums[hare]] tortoise = nums[tortoise] hare = 0 # After finding stepL, now we are able to find x_c. # Consider stepsToL is the smallest multiple of rhoLen larger than stepsToC. # Hence f(stepsToL) ends at f(stepC) plus (rhoLen - stepsToC) steps forward. # So we know we will reach f(stepsToC) again after stepC steps forward starting from f(stepsToL), # which is to find f(stepsToC) = f(stepsToL + stepsToC). while hare != tortoise: hare = nums[hare] tortoise = nums[tortoise] return tortoise if __name__ == '__main__': print(Solution().findDuplicate([1,2,1,3,4]))
# -*- coding:utf-8 -*- # author: will from aip import AipNlp from flask import request, jsonify from app import mongo_store from app.models import Article from config.lib_config import LibConfig from utils.log_service import Logging from . import api_article @api_article.route('/article_tag', methods=['POST']) def article_tag(): try: res = request.get_json() article_id = res.get('article_id') Logging.logger.info('request_args:{0}'.format(res)) if not article_id: return jsonify(errno=-1, errmsg='参数错误,请传入要查询的文章的article_id') article = Article.query.get(article_id) if not article: return jsonify(errno=-1, errmsg='参数错误,该文章不存在') docs = mongo_store.articles.find({'title': article.title}) doc = docs[0] title = doc.get('title') content_ls = doc.get('content') text = '' for content in content_ls: if content.get('text'): text += content.get('text') print(text) # text = text.encode('gbk') client = AipNlp(LibConfig.get_baidu_language_app_id(), LibConfig.get_baidu_language_api_key(), LibConfig.get_baidu_language_secret_key()) result_tag = client.keyword(title, text) print(result_tag) result_topic = client.topic(title, text) print(result_topic) return jsonify(errno=0, errmsg="OK", result_topic=result_topic, result_tag=result_tag) except Exception as e: Logging.logger.error('errmsg:{0}'.format(e)) return jsonify(errno=-1, errmsg='网络异常')
from django.shortcuts import render def index(request): print ("Index" * 10) return render(request,'r_portfolio/index.html') def projects(request): return render(request,'r_portfolio/projects.html') def about(request): return render(request,'r_portfolio/about.html') def testimonials(request): return render(request,'r_portfolio/testimonials.html') # Create your views here.
from settings import * from sprites import * class Pong: def __init__(self): pg.init() self.screen = pg.display.set_mode ((WIDTH, HEIGHT)) self.clock = pg.time.Clock() self.running = True def new(self): self.ball1 = ball(self) self.player2 = paddle2() self.player1 = paddle1() self.paddlesprites = pg.sprite.Group() self.paddlesprites.add(self.player1) self.paddlesprites.add(self.player2) self.ballsprites = pg.sprite.Group() self.ballsprites.add(self.ball1) self.run() def run(self): self.playing = True while self.playing == True: self.clock.tick(FPS) self.update() self.events() self.draw() def update(self): self.clock.tick(FPS) self.paddlesprites.update() self.ballsprites.update() def events(self): for event in pg.event.get(): if event.type == pg.QUIT: if self.playing == True: self.playing = False self.running = False def draw(self): self.screen.fill(BACKGROUND) pg.draw.line(self.screen, (255, 255, 255), (WIDTH / 2, 0), (WIDTH / 2, HEIGHT), 3) self.paddlesprites.draw(self.screen) self.ballsprites.draw(self.screen) #top left of image is (0,0) pg.display.flip() P = Pong() while P.running == True: #p.running: is same as above P.new() #pg.QUIT
import contextlib from django.test import TestCase from django.utils import timezone from elections.models import ( DEFAULT_STATUS, Election, ModerationHistory, ModerationStatuses, ) from elections.tests.factories import ElectionFactory from elections.utils import ElectionBuilder from freezegun import freeze_time from .base_tests import BaseElectionCreatorMixIn class TestElectionModel(BaseElectionCreatorMixIn, TestCase): def setUp(self): super().setUp() Election.private_objects.all().delete() self.election_group = ElectionBuilder( "local", "2017-06-08" ).build_election_group() self.org_group = ( ElectionBuilder("local", "2017-06-08") .with_organisation(self.org1) .build_organisation_group(self.election_group) ) self.ballot = ( ElectionBuilder("local", "2017-06-08") .with_organisation(self.org1) .with_division(self.org_div_1) .build_ballot(self.org_group) ) self.testshire_org_group = ( ElectionBuilder("local", "2017-06-08") .with_organisation(self.testshire_org) .build_organisation_group(self.election_group) ) self.testshire_ballot = ( ElectionBuilder("local", "2017-06-08") .with_organisation(self.testshire_org) .with_division(self.testshire_div) .build_ballot(self.testshire_org_group) ) def test_recursive_save_group(self): # table should be empty before we start self.assertEqual(0, Election.private_objects.count()) # saving the child record should implicitly save the parent record too self.org_group.save() self.assertEqual(2, Election.private_objects.count()) def test_recursive_save_ballot(self): # table should be empty before we start self.assertEqual(0, Election.private_objects.count()) # From a performance perspective, saving a ballot and 2 parent groups # is the worst-case scenario for database I/O # we should monitor this and be aware if this number increases with self.assertNumQueries(19): self.ballot.save() # saving the child record should implicitly save the parent records too self.assertEqual(3, Election.private_objects.count()) def test_transaction_rollback_parent(self): # table should be empty before we start self.assertEqual(0, Election.private_objects.count()) # doing this will cause save() to throw a exception # if we try to save parent_record self.election_group.organisation_id = "foo" with contextlib.suppress(ValueError): self.org_group.save() # the exception should have prevented both the # parent and child records from being saved self.assertEqual(0, Election.private_objects.count()) def test_transaction_rollback_child(self): # table should be empty before we start self.assertEqual(0, Election.private_objects.count()) # doing this will cause save() to throw a exception # if we try to save child_record self.org_group.organisation_id = "foo" with contextlib.suppress(ValueError): self.org_group.save() # the exception should have prevented both the # parent and child records from being saved self.assertEqual(0, Election.private_objects.count()) def test_related_object_save(self): # table should be empty before we start self.assertEqual(0, ModerationHistory.objects.count()) # the first time we save a record, we should create # a corresponding moderation status event self.election_group.save() self.assertEqual(1, ModerationHistory.objects.count()) # saving the same record again shouldn't though self.election_group.seats_contests = 7 self.election_group.source = "some bloke down the pub told me" self.election_group.save() self.assertEqual(1, ModerationHistory.objects.count()) def test_save_with_status(self): self.election_group.save() self.assertEqual(self.election_group.current_status, DEFAULT_STATUS) self.election_group.save(status=ModerationStatuses.approved.value) self.assertEqual( self.election_group.current_status, ModerationStatuses.approved.value, ) def test_get_ballots(self): for election in [ self.election_group, self.testshire_org_group, self.testshire_ballot, self.org_group, self.ballot, ]: election.save(status=ModerationStatuses.approved.value) self.assertEqual( len(self.org_group.get_ballots()), 1, ) self.assertEqual(len(self.election_group.get_ballots()), 2) def test_group_seats_contested(self): for election in [ self.election_group, self.testshire_org_group, self.org_group, ]: election.save(status=ModerationStatuses.approved.value) for ballot in [ self.testshire_ballot, self.ballot, ]: ballot.seats_contested = 3 ballot.save(status=ModerationStatuses.approved.value) self.assertEqual(self.ballot.group_seats_contested, 3) self.assertEqual(self.org_group.group_seats_contested, 3) self.assertEqual(self.election_group.group_seats_contested, 6) def test_get_admin_url(self): election = Election(pk=2021) self.assertEqual( election.get_admin_url(), f"/admin/elections/election/{election.pk}/change/", ) class TestModified(TestCase): def test_update_changes_modified(self): election = ElectionFactory() future = timezone.datetime(2022, 5, 5, 12, 0, 0, tzinfo=timezone.utc) with freeze_time("2022-5-5 12:00:00"): self.assertNotEqual(election.modified, future) Election.private_objects.update() election.refresh_from_db() self.assertEqual(election.modified, future)
import setuptools from glob import glob with open("README.md", "r", encoding="utf-8") as fh: long_description = fh.read() setuptools.setup( name="nbsimplegrader", version="1.3.4", author="Adam Blake", author_email="adamblake@g.ucla.edu", description="Author, distribute, and grade Jupyter notebook assignments, simply.", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/UCLATALL/nbsimplegrader", packages=setuptools.find_packages(), install_requires=[ 'notebook', 'lxml' ], python_requires='>=3.6', entry_points={ 'nbconvert.exporters': [ 'nbsimplegrader_html = nbsimplegrader:NBSGHTMLExporter' ] }, include_package_data=True, zip_safe=False, data_files=[ ("share/jupyter/nbextensions/nbsimplegrader", glob('nbsimplegrader/static/*.*')), ("share/jupyter/nbextensions/nbsimplegrader/authoring_tools", glob('nbsimplegrader/static/authoring_tools/*.*')), ("etc/jupyter/nbconfig/notebook.d", ["nbsimplegrader/etc/nbconfig/notebook.d/nbsimplegrader.json"]), ("etc/jupyter/nbconfig/tree.d", ["nbsimplegrader/etc/nbconfig/tree.d/nbsimplegrader.json"]) ], classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: BSD License", "Operating System :: OS Independent", 'Topic :: Software Development :: Libraries :: Python Modules', 'Framework :: Jupyter', ] )
from django.db import models from General.models import Location from General.models import User from General.models import Deliveryman from General.models import Delivery # Create your models here. STATUS_RENT_CHOICES = [ ('на', 'На рассмотрении'), ('за', 'Оформлено'), ('оп', 'Оплачено'), ('во', 'Возврат средств'), ('дз', 'На доставке заказчику'), ('ак', 'Активно'), ('дл', 'На доставке в локацию'), ('вы', 'Выполнено'), ('от', 'Отменено'), ('шт', 'Ожидание оплаты штрафа') ] STATUS_BIKE_CHOICES = [ ('ре', 'В ремонте'), ('св', 'Свободен'), ('ар', 'Арендован') ] class Bike_model(models.Model): name = models.CharField(max_length=100) type_bike = models.CharField(max_length=15) wheel_size = models.CharField(max_length=11) speeds = models.PositiveSmallIntegerField() frame = models.CharField(max_length=200) brakes = models.CharField(max_length=100) rudder = models.CharField(max_length=100) seat = models.CharField(max_length=100) footrest = models.CharField(max_length=50, blank=True) weight = models.FloatField() def __str__(self): return self.name class Bike(models.Model): brand = models.CharField(max_length=100) bike_model_id = models.ForeignKey(Bike_model, on_delete=models.CASCADE) color = models.CharField(max_length=20) price = models.PositiveSmallIntegerField() year = models.PositiveSmallIntegerField() location_id = models.ForeignKey(Location, on_delete=models.CASCADE) photo = models.CharField(max_length=100) status = models.CharField(max_length=20, choices=STATUS_BIKE_CHOICES) def __str__(self): return str(self.bike_model_id) class Bike_rent(models.Model): user_id = models.ForeignKey(User, on_delete=models.CASCADE) bike_id = models.ForeignKey(Bike, on_delete=models.CASCADE) status = models.CharField(max_length=20, choices=STATUS_RENT_CHOICES) start = models.CharField(max_length=16) end = models.CharField(max_length=16) region = models.CharField(max_length=40) delivery_to_id = models.ForeignKey(Delivery, on_delete=models.CASCADE, blank=True, null=True) delivery_from_id = models.ForeignKey(Delivery, on_delete=models.CASCADE, blank=True, null=True, related_name='deliveryfrombike') limit = models.PositiveIntegerField() price = models.PositiveIntegerField() comment = models.CharField(max_length=200, blank=True, null=True) def __str__(self): return str(self.bike_id)
from __future__ import print_function import torch import numpy as np import inspect import re import os import collections import random from PIL import Image from pdb import set_trace as st from torch.autograd import Variable def normalize(n, minN=-1, maxN=1): """ Normalize between -1 and 1 """ if type(n) == np.ndarray: min_ = np.min(n) max_ = np.max(n) elif type(n) == torch.Tensor: min_ = n.min() max_ = n.max() if min_ > max_: return None return ((maxN - minN) * ((n - min_) / (max_ - min_))) + minN # Converts a Tensor into a Numpy array # |imtype|: the desired type of the converted numpy array def tensor2im(image_tensor, imtype=np.uint8): image_numpy = image_tensor[0].cpu().float().numpy() image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0 return image_numpy.astype(imtype) def diagnose_network(net, name='network'): mean = 0.0 count = 0 for param in net.parameters(): if param.grad is not None: mean += torch.mean(torch.abs(param.grad.data)) count += 1 if count > 0: mean = mean / count print(name) print(mean) def save_image(image_numpy, image_path): image_pil = Image.fromarray(image_numpy) image_pil.save(image_path) def info(object, spacing=10, collapse=1): """Print methods and doc strings. Takes module, class, list, dictionary, or string.""" methodList = [e for e in dir(object) if isinstance( getattr(object, e), collections.Callable)] processFunc = collapse and (lambda s: " ".join(s.split())) or (lambda s: s) print("\n".join(["%s %s" % (method.ljust(spacing), processFunc(str(getattr(object, method).__doc__))) for method in methodList])) def varname(p): for line in inspect.getframeinfo(inspect.currentframe().f_back)[3]: m = re.search(r'\bvarname\s*\(\s*([A-Za-z_][A-Za-z0-9_]*)\s*\)', line) if m: return m.group(1) def print_numpy(x, val=True, shp=False): x = x.astype(np.float64) if shp: print('shape,', x.shape) if val: x = x.flatten() print('mean = %3.3f, min = %3.3f, max = %3.3f, median = %3.3f, std=%3.3f' % ( np.mean(x), np.min(x), np.max(x), np.median(x), np.std(x))) def mkdirs(paths): if isinstance(paths, list) and not isinstance(paths, str): for path in paths: mkdir(path) else: mkdir(paths) def mkdir(path): if not os.path.exists(path): os.makedirs(path) class ImagePool(): def __init__(self, pool_size): self.pool_size = pool_size if self.pool_size > 0: self.num_imgs = 0 self.images = [] def query(self, images): if self.pool_size == 0: return images return_images = [] for image in images.data: image = torch.unsqueeze(image, 0) if self.num_imgs < self.pool_size: self.num_imgs = self.num_imgs + 1 self.images.append(image) return_images.append(image) else: p = random.uniform(0, 1) if p > 0.5: random_id = random.randint(0, self.pool_size - 1) tmp = self.images[random_id].clone() self.images[random_id] = image return_images.append(tmp) else: return_images.append(image) return_images = Variable(torch.cat(return_images, 0)) return return_images
import base64 url = 'cHM6' str_url = base64.b64decode(url).decode("utf-8") print((str_url)) print(type(str_url)) url = "https://www.jianshu.com/p/9b4ab709cffb" bytes_url = url.encode("utf-8") print(bytes_url) str_url = base64.b64encode(bytes_url) # 被编码的参数必须是二进制数据 print(str_url)
from sys import stdin N = int(stdin.readline().strip()) # Odd = Alice; Even = Bob while N > 2: N += -2 if N == 2: print("Bob") else: print("Alice")
from rest_framework import serializers from .models import Company, Contact, Project, Task class CompanySerializer(serializers.ModelSerializer): class Meta: model = Company fields = ( 'id', 'name', 'email', 'phone', 'url', 'description', 'contacts', 'projects' ) class ContactSerializer(serializers.ModelSerializer): class Meta: model = Contact fields = ( 'id', 'first_name', 'last_name', 'email', 'company' ) class ProjectSerializer(serializers.ModelSerializer): company = serializers.PrimaryKeyRelatedField(queryset=Company.objects.all()) class Meta: model = Project fields = ( 'id', 'name', 'description', 'tasks', 'company' ) class TaskSerializer(serializers.ModelSerializer): child_tasks = serializers.PrimaryKeyRelatedField(queryset=Task.objects.all()) project = serializers.PrimaryKeyRelatedField(queryset=Project.objects.all()) company = serializers.PrimaryKeyRelatedField(queryset=Company.objects.all()) class Meta: model = Task fields = ( 'id', 'name', 'child_tasks', 'project', 'company' )
#!/usr/bin/python3 # Filename: list_this.py import pyperclip def list_no_quotes(mylist): # this could be one-lined but is broken up for improved readability mylist = str(mylist.split('\n')).strip('[').strip(']').replace(r'\r', r",").replace(r"'", "").rstrip(', ') pyperclip.copy(mylist) def list_quotes(mylist): # this could be one-lined but is broken a little up to improve readability split_on_lines = str(mylist.split('\n')).strip('[').strip(']').replace(r'\r', r"', '").rstrip("''").rstrip(', ') pyperclip.copy(split_on_lines)
from django.views.generic import * from django.urls import reverse_lazy from django.contrib.auth.mixins import AccessMixin, LoginRequiredMixin from django.contrib.auth.models import User, Group from django.core.exceptions import ValidationError, ObjectDoesNotExist from django.db.models import Q, Subquery, OuterRef from django import forms from django.contrib import messages from .models import * # 限定管理員才允許操作的混成類別 class SuperuserRequiredMixin(AccessMixin): def dispatch(self, request, *args, **kwargs): if not request.user.is_superuser: return self.handle_no_permission() return super().dispatch(request, *args, **kwargs) # 使用者註冊 class UserRegister(CreateView): extra_context = {'title': '使用者註冊'} model = User fields = ['username', 'first_name', 'last_name', 'email', 'password'] template_name = 'form.html' success_url = reverse_lazy('home') # 註冊完成返回首頁 # def get_form(self): form = super().get_form() form.fields['first_name'].label = '真實姓名' form.fields['first_name'].required = True form.fields['last_name'].label = '學校名稱' form.fields['last_name'].required = True form.fields['password2'] = forms.CharField(label='密碼驗證', max_length=255) return form # 表單驗證 def form_valid(self, form): user = form.save(commit=False) pw1 = form.cleaned_data['password'] pw2 = form.cleaned_data['password2'] if pw1 != pw2: form.add_error('password2', '密碼與驗證密碼不相符') return super().form_invalid(form) user.set_password(pw1) return super().form_valid(form) # 使用者列表 class UserList(SuperuserRequiredMixin, ListView): extra_context = {'title': '使用者列表'} model = User ordering = ['username'] paginate_by = 20 template_name = 'user/user_list.html' def get_queryset(self): return super().get_queryset().prefetch_related('groups') def get_context_data(self, **kwargs): ctx = super().get_context_data(**kwargs) user_list = [] for user in self.object_list: is_teacher = user.groups.filter(name='teacher').exists() user_list.append((user, is_teacher)) ctx['ulist'] = user_list return ctx class UserView(SuperuserRequiredMixin, DetailView): model = User template_name = 'user/user_detail.html' context_object_name = 'tuser' class UserEdit(SuperuserRequiredMixin, UpdateView): model = User fields = ['username', 'first_name', 'last_name', 'email'] success_url = reverse_lazy('user_list') template_name = 'form.html' def get_form(self): form = super().get_form() form.fields['first_name'].label = '真實姓名' form.fields['first_name'].required = True form.fields['last_name'].label = '學校名稱' form.fields['last_name'].required = True return form class UserPasswordUpdate(SuperuserRequiredMixin, UpdateView): model = User fields = ['password'] success_url = reverse_lazy('user_list') template_name = 'form.html' def get_form(self): form = super().get_form() form.fields['password2'] = forms.CharField(label='密碼驗證', max_length=255) return form def get_initial(self): # 指定初始值來清掉密碼輸入欄位的原始值 return {'password': ''} def form_valid(self, form): user = form.save(commit=False) pw1 = form.cleaned_data['password'] pw2 = form.cleaned_data['password2'] if pw1 != pw2: form.add_error('password2', '密碼與驗證密碼不相符') return super().form_invalid(form) user.set_password(pw1) return super().form_valid(form) class UserTeacherToggle(SuperuserRequiredMixin, RedirectView): def get_redirect_url(self, *args, **kwargs): user = User.objects.get(id=self.kwargs['uid']) try : group = Group.objects.get(name="teacher") except ObjectDoesNotExist : group = Group(name="teacher") group.save() if user.groups.filter(name='teacher').exists(): group.user_set.remove(user) else: group.user_set.add(user) return self.request.META.get('HTTP_REFERER', '/') class UserDashboard(LoginRequiredMixin, TemplateView): extra_context = {'title': '我的儀表板'} template_name = 'user/user_detail.html' def get_context_data(self, **kwargs): ctx = super().get_context_data(**kwargs) ctx['tuser'] = self.request.user return ctx class MsgList(LoginRequiredMixin, ListView): extra_context = {'title': '收件匣'} paginate_by = 20 def get_queryset(self): user = self.request.user return Message.objects.annotate( read=Subquery(user.read_list.filter( message=OuterRef('pk')).values('read')) ).filter( Q(recipient=user) | Q(course__in=user.enroll_set.values('course')) ).select_related('course', 'sender').order_by('-created') class MsgOutbox(LoginRequiredMixin, ListView): extra_context = {'title': '寄件匣'} def get_queryset(self): user = self.request.user return user.outbox.annotate( read=Subquery(user.read_list.filter( message=OuterRef('pk')).values('id')) ).select_related('course', 'recipient').order_by('-created') class MsgRead(LoginRequiredMixin, DetailView): model = Message pk_url_kwarg = 'mid' def get_queryset(self): return super().get_queryset().select_related('course', 'sender') def get_context_data(self, **kwargs): user = self.request.user msg = self.object if not msg.status.filter(user=user).exists(): MessageStatus(message=msg, user=user).save() return super().get_context_data() class MsgSend(LoginRequiredMixin, CreateView): extra_context = {'title': '傳送訊息'} fields = ['title', 'body'] model = Message def get_context_data(self, **kwargs): ctx = super().get_context_data(**kwargs) ctx['recipient'] = User.objects.get(id=self.kwargs['rid']) ctx['success_url'] = self.request.META.get('HTTP_REFERER', '/') return ctx def form_valid(self, form): form.instance.sender = self.request.user form.instance.recipient = User.objects.get(id=self.kwargs['rid']) return super().form_valid(form) def get_success_url(self): messages.add_message(self.request, messages.SUCCESS, '訊息已送出!') return self.request.POST.get('success_url') class MsgReply(LoginRequiredMixin, CreateView): extra_context = {'title': '回覆訊息'} model = Message fields = ['title', 'body'] def get_initial(self): self.msg = Message.objects.get(id=self.kwargs['mid']) return { 'title': 'Re: '+self.msg.title, 'body': "{}({}) 於 {} 寫道:\n> {}".format( self.msg.sender.username, self.msg.sender.first_name, self.msg.created, "\n> ".join(self.msg.body.split('\n')) ), } def get_context_data(self, **kwargs): ctx = super().get_context_data(**kwargs) ctx['recipient'] = self.msg.sender ctx['success_url'] = self.request.META.get('HTTP_REFERER', '/') return ctx def form_valid(self, form): form.instance.sender = self.request.user form.instance.recipient = self.msg.sender return super().form_valid(form) def get_success_url(self): messages.add_message(self.request, messages.SUCCESS, '訊息已送出!') return self.request.POST.get('success_url') class QCreate(LoginRequiredMixin, CreateView): model = Questionnaire fields = '__all__' template_name = "form.html" def get_initial(self): return { 'q1': 4, } # def get_form(self): # form = super().get_form() # form.fields['q1'].widget = forms.RadioSelect # return form class QEdit(LoginRequiredMixin, UpdateView): model = Questionnaire fields = '__all__' template_name = "form.html"
""" This code is adapted from Deep Learning tutorial introducing multilayer perceptron using Theano. Added Dropout from https://github.com/mdenil/dropout/blob/master/mlp.py """ __docformat__ = 'restructedtext en' import os import sys import timeit import numpy import theano import theano.tensor as T from logistic_sgd_beta_zeros import LogisticRegression from mlp import HiddenLayer def _dropout_from_layer(rng, layer, p): """p is the probability of droping a unit """ srng = T.shared_randomstreams.RandomStreams(rng.randint(999999)) mask = srng.binomial(n=1, p=1.-p, size=layer.shape) output = layer * T.cast(mask, theano.config.floatX) return output class DropoutHiddenLayer(HiddenLayer): def __init__(self, rng, input, n_in, n_out, activation, dropout_rate, W=None, b=None, n_slack=0, dilate_factor=1.): super(DropoutHiddenLayer, self).__init__( rng=rng, input=input, n_in=n_in, n_out=n_out, W=W, b=b, activation=activation, n_slack=n_slack, dilate_factor=dilate_factor) print >> sys.stderr, 'Slack size =', str(n_slack) self.output = _dropout_from_layer(rng, self.output, p=dropout_rate) if dropout_rate > 0 else self.output # start-snippet-2 class DropoutMLP(object): """Multi-Layer Perceptron Class A multilayer perceptron is a feedforward artificial neural network model that has one layer or more of hidden units and nonlinear activations. Intermediate layers usually have as activation function tanh or the sigmoid function (defined here by a ``HiddenLayer`` class) while the top layer is a softmax layer (defined here by a ``LogisticRegression`` class). """ def __init__(self, rng, input, n_in, n_hiddens, dropout_rates, activation=None, n_slack=0, init_ignore_out=False, init_account_dropout=False): """Initialize the parameters for the multilayer perceptron :type rng: numpy.random.RandomState :param rng: a random number generator used to initialize weights :type input: theano.tensor.TensorType :param input: symbolic variable that describes the input of the architecture (one minibatch) :type n_in: int :param n_in: number of input units, the dimension of the space in which the datapoints lie :type n_hidden: list of int :param n_hidden: number of hidden units :type n_slack: int :param n_slack: number of slack input units, which are always 0 on average :type init_ignore_out: boolean :param init_ignore_out: ignore output size when initializing, default False :type init_account_dropout: boolean :param init_account_dropout: account dropout coefficient when initializing, i.e, dilate dropout weights by inverse dropout coefficient """ self.params = [] self.W = [] self.b = [] self.W_actual = [] self.b_actual = [] # keep track of model input self.input = input # Multiple hidden layers print >> sys.stderr, dropout_rates last_layer_out = self.input last_layer_dropout = _dropout_from_layer(rng, self.input, p=dropout_rates[0]) last_layer_size = n_in slacks = numpy.append(numpy.asarray([n_slack], dtype='int32'), numpy.zeros((len(n_hiddens)-1,), dtype='int32')) if len(n_hiddens) > 0 else None for i in range(0, len(n_hiddens)): # dropped-out path: for training dropoutLayer = DropoutHiddenLayer(rng=rng, input=last_layer_dropout, activation=activation, n_in=last_layer_size, n_out=n_hiddens[i], dropout_rate=dropout_rates[i+1], n_slack=slacks[i] + (n_hiddens[i] if init_ignore_out else 0), dilate_factor = (1./(1. - dropout_rates[i]) if init_account_dropout else 1.) ) last_layer_dropout = dropoutLayer.output self.params += dropoutLayer.params self.W += [dropoutLayer.W] self.b += [dropoutLayer.b] # original (untouched) path: for testing hiddenLayer = HiddenLayer(rng=rng, input=last_layer_out, activation=activation, n_in=last_layer_size, n_out=n_hiddens[i], W=dropoutLayer.W * (1. - dropout_rates[i]), b=dropoutLayer.b, n_slack=slacks[i] ) last_layer_out = hiddenLayer.output last_layer_size = n_hiddens[i] self.W_actual += [hiddenLayer.W] self.b_actual += [hiddenLayer.b] # The logistic regression layer gets as input the hidden units # of the hidden layer # Dropped-out path: for training self.dropoutLogRegressionLayer = LogisticRegression( rng=rng, input=last_layer_dropout, n_in=(n_hiddens[-1] if len(n_hiddens) > 0 else n_in) ) self.params += self.dropoutLogRegressionLayer.params # original (untouched) path: for testing self.logRegressionLayer = LogisticRegression( rng=rng, input=last_layer_out, n_in=(n_hiddens[-1] if len(n_hiddens) > 0 else n_in), W=self.dropoutLogRegressionLayer.W * (1. - dropout_rates[-1]), b=self.dropoutLogRegressionLayer.b ) # prediction of the MLP is given by the prediction of the output of the # model, computed in the logistic regression layer self.dropout_errors = self.dropoutLogRegressionLayer.errors self.dropout_cross_entropy = self.dropoutLogRegressionLayer.cross_entropy self.y_pred = self.logRegressionLayer.y_pred self.errors = self.logRegressionLayer.errors self.cross_entropy = self.logRegressionLayer.cross_entropy self.true_positives = self.logRegressionLayer.true_positives self.true_negatives = self.logRegressionLayer.true_negatives self.false_positives = self.logRegressionLayer.false_positives self.false_negatives = self.logRegressionLayer.false_negatives
from selenium import webdriver from time import sleep # import xlrd import random import os import time import sys sys.path.append("..") # import email_imap as imap # import json import re # from urllib import request, parse from selenium.webdriver.support.ui import Select from selenium.webdriver.common.action_chains import ActionChains #导入ActionChains模块 # import base64 import Chrome_driver import email_imap as imap import name_get import db import selenium_funcs import Submit_handle import random def web_submit(submit,chrome_driver,debug=0): # test if debug == 1: site = 'https://personalloans.com/' submit['Site'] = site chrome_driver.get(submit['Site']) chrome_driver.maximize_window() chrome_driver.refresh() sleep(3) try: chrome_driver.find_element_by_class_name('bsac-container bsac-type-custom_code').click() except: pass # page1 # brightnessLine=chrome_driver.find_element_by_id('//*[@id="form"]/fieldset/div[2]/div') # 定位到进度条 # brightnessLine.get_attribute("title")#通过title属性获取当前的值 brightnessSlider=chrome_driver.find_element_by_xpath('//*[@id="form"]/fieldset/div[2]/div/div/div') #定位到滑动块 move_num = random.randint(10,150) print('Move',move_num) ActionChains(chrome_driver).click_and_hold(brightnessSlider).move_by_offset(move_num,7).release().perform()#通过move_by_offset()移动滑块,-6表示在水平方向上往左移动6个像素,7表示在垂直方向上往上移动7个像素 # email address chrome_driver.find_element_by_xpath('//*[@id="email"]').send_keys(submit['Uspd']['email']) # click chrome_driver.find_element_by_xpath('//*[@id="form-submit"]').click() sleep(10) # page2 # credit type for i in range(10): try: chrome_driver.find_element_by_xpath('//*[@id="creditType"]') break except: sleep(10) num_ = random.randint(0,1) s1 = Select(chrome_driver.find_element_by_xpath('//*[@id="creditType"]')) if num_ == 0: s1.select_by_value('good') else: s1.select_by_value('fair') sleep(1) # loan reason num_reason = random.randint(1,12) s1 = Select(chrome_driver.find_element_by_xpath('//*[@id="loanReason"]')) s1.select_by_index(num_reason) sleep(1) # firstname chrome_driver.find_element_by_xpath('//*[@id="fName"]').send_keys(submit['Uspd']['first_name']) # lastname chrome_driver.find_element_by_xpath('//*[@id="lName"]').send_keys(submit['Uspd']['last_name']) # birthday date_of_birth = Submit_handle.get_auto_birthday(submit['Uspd']['date_of_birth']) # mm chrome_driver.find_element_by_xpath('//*[@id="birthdateMonth"]').send_keys(date_of_birth[0]) # dd chrome_driver.find_element_by_xpath('//*[@id="birthdateDay"]').send_keys(date_of_birth[1]) # year chrome_driver.find_element_by_xpath('//*[@id="birthdateYear"]').send_keys(date_of_birth[2]) sleep(1) # military elements = chrome_driver.find_element_by_xpath('//*[@id="label-armedForces-no"]').click() # continue element = '//*[@id="nextButton"]' target = selenium_funcs.scroll_and_find_up(chrome_driver,element) sleep(2) target.click() sleep(5) # page3 # phone # phone = submit['Uspd']['home_phone'].split('.')[0] chrome_driver.find_element_by_xpath('//*[@id="phone"]').send_keys(submit['Uspd']['home_phone'].split('.')[0]) # address chrome_driver.find_element_by_xpath('//*[@id="address"]').send_keys(submit['Uspd']['address']) # zipcode chrome_driver.find_element_by_xpath('//*[@id="zip"]').send_keys(submit['Uspd']['zip']) # city chrome_driver.find_element_by_xpath('//*[@id="city"]').click() sleep(1) # length at address num_ = random.randint(3,10) print('value is :',num_) s1 = Select(chrome_driver.find_element_by_xpath('//*[@id="lengthAtAddress"]')) s1.select_by_value(str(num_)) sleep(1) # own home chrome_driver.find_element_by_xpath('//*[@id="label-rentOwn-rent"]').click() # employment # income source s1 = Select(chrome_driver.find_element_by_xpath('//*[@id="incomeSource"]')) s1.select_by_value('EMPLOYMENT') sleep(1) # time employed num_time = random.randint(2,4) s1 = Select(chrome_driver.find_element_by_xpath('//*[@id="timeEmployed"]')) s1.select_by_index(num_time) sleep(1) # get paid num_paid = random.randint(1,4) s1 = Select(chrome_driver.find_element_by_xpath('//*[@id="paidEvery"]')) s1.select_by_index(num_paid) sleep(1) # employer name chrome_driver.find_element_by_xpath('//*[@id="employerName"]').send_keys(submit['Uspd']['employer']) # employer's phone chrome_driver.find_element_by_xpath('//*[@id="employerPhone"]').send_keys(submit['Uspd']['work_phone'].split('.')[0]) # monthly gross income num_income = random.randint(1,12) s1 = Select(chrome_driver.find_element_by_xpath('//*[@id="monthlyNetIncome"]')) s1.select_by_index(num_income) sleep(1) # Identity and Bank Information # Driver's License or state ID chrome_driver.find_element_by_xpath('//*[@id="license"]').send_keys(submit['Uspd']['drivers_license'].split('.')[0]) # ssn chrome_driver.find_element_by_xpath('//*[@id="ssn"]').send_keys(submit['Uspd']['ssn'].split('.')[0]) # bank account type s1 = Select(chrome_driver.find_element_by_xpath('//*[@id="accountType"]')) s1.select_by_value('checking') sleep(1) # checkbox chrome_driver.find_element_by_xpath('//*[@id="privacyPolicy"]').click() sleep(3) # mobile phone phone = submit['Uspd']['home_phone'].split('.')[0] chrome_driver.find_element_by_xpath('//*[@id="smsCellphone"]').send_keys(phone) sleep(3) # submit chrome_driver.find_element_by_xpath('//*[@id="submitButton"]').click() db.update_plan_status(2,submit['ID']) sleep(100) def test(): # db.email_test() # date_of_birth = Submit_handle.get_auto_birthday('') Mission_list = ['10038'] excel = 'Uspd' Excel_name = [excel,''] Email_list = ['hotmail.com','outlook.com','yahoo.com','aol.com','gmail.com'] submit = db.read_one_excel(Mission_list,Excel_name,Email_list) [print(item,':',submit[excel][item]) for item in submit[excel] if submit[excel][item]!=None] submit['Mission_Id'] = '10038' chrome_driver = Chrome_driver.get_chrome(submit,pic=1) web_submit(submit,chrome_driver,1) if __name__=='__main__': test()
while True: try: r = input() q = int(input()) p = [int(x) - 1 for x in input().split()] for c in range(q): print(r[p[c]], end='') print() except EOFError: break
import unittest from hypothesis import given from hypothesis import strategies as st from validators import ValidationError, Required from fields import Field, FormField, ListField, DictField, ChoiceField class TestField(unittest.TestCase): def test_simple(self): field = Field() for val in (None, 0, 1, -1, 0.1, 'text', [[]], {'key': 'val'}, object()): self.assertFalse(field.validate(val)) def test_required(self): field = Field(validators=[Required()]) for empty_val in ('', {}, [], None): self.assertListEqual(field.validate(empty_val), ["Field is required"]) class FieldListTest(unittest.TestCase): def test_min(self): pass def test_max(self): pass if __name__ == '__main__': unittest.main()
class IntegerDemo: def set_value(self, v): self.value = v def add(self, p): self.value += p def subtract(self, p): self.value -= p def multiply(self, p): self.value *= p i = IntegerDemo() i.set_value(int(input("v: "))) i.add(int(input("+: "))) i.subtract(int(input("-: "))) i.multiply(int(input("*: "))) print(i.value) # 檔名: exercise0904.py # 作者: Kaiching Chang # 時間: July, 2014
# # Copyright © 2021 Uncharted Software Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import numpy as np from tqdm import tqdm import torch from torch import nn from torch.utils.data import DataLoader, Dataset from torchvision import transforms from torchvision.datasets.folder import pil_loader from torchvision.models import resnet18, resnet34, resnet50, resnet101, densenet161 from basenet import BaseNet from .base import DistilBaseModel from .forest import ForestCV from .helpers import tiebreaking_vote from .metrics import metrics, classification_metrics, regression_metrics # -- # IO helper class PathDataset(Dataset): def __init__(self, paths, transform=None, preload=True): self.paths = paths self.preload = preload if self.preload: print("PathDataset: preloading", file=sys.stderr) self._samples = [] for p in tqdm(self.paths): self._samples.append(pil_loader(p)) self.transform = transform def __getitem__(self, idx): if not self.preload: sample = pil_loader(self.paths[idx]) else: sample = self._samples[idx] if self.transform is not None: sample = self.transform(sample) return sample, -1 def __len__(self): return self.paths.shape[0] # -- # Model class FixedCNNFeatureExtractor(BaseNet): def __init__(self, base_model, drop_last=1): super().__init__() self._model = nn.Sequential(*list(base_model.children())[:-drop_last]) def forward(self, x): x = self._model(x) while len(x.shape) > 2: x = x.mean(dim=-1).squeeze() return x class FixedCNNForest(DistilBaseModel): def __init__(self, target_metric): self.target_metric = target_metric self.is_classification = target_metric in classification_metrics self._feature_extractors = [ resnet18, resnet34, resnet50, resnet101, densenet161, ] self._y_train = None self._models = None self.transform = transforms.Compose( [ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ), ] ) def extract_features(self, fe, dataloaders, mode): model = FixedCNNFeatureExtractor(fe(pretrained=True)).to("cuda") model.verbose = True _ = model.eval() feats, _ = model.predict(dataloaders, mode=mode) del model return feats def fit(self, X_train, y_train, U_train=None): self._y_train = y_train dataloaders = { "train": DataLoader( PathDataset(paths=X_train, transform=self.transform), batch_size=32, shuffle=False, ), } self._models = [] for fe in self._feature_extractors: train_feats = self.extract_features(fe, dataloaders, mode="train") model = ForestCV(target_metric=self.target_metric) model = model.fit(train_feats, y_train) self._models.append(model) return self def predict(self, X): dataloaders = { "test": DataLoader( PathDataset(paths=X, transform=self.transform), batch_size=32, shuffle=False, ), } all_preds = [] for fe, model in zip(self._feature_extractors, self._models): test_feats = self.extract_features(fe, dataloaders, mode="test") all_preds.append(model.predict(test_feats)) if self.is_classification: ens_pred = tiebreaking_vote(np.vstack(all_preds), self._y_train) else: ens_pred = np.stack(all_preds).mean(axis=0) return ens_pred
import pandas as pd data = [ {"Line Number": 11, "Report Hour": 6, "Kits Completed": 34}, {"Line Number": 11, "Report Hour": 7, "Kits Completed": 55}, {"Line Number": 12, "Report Hour": 6, "Kits Completed": 67}, {"Line Number": 12, "Report Hour": 7, "Kits Completed": 56}, {"Line Number": 14, "Report Hour": 6, "Kits Completed": 0}, {"Line Number": 14, "Report Hour": 7, "Kits Completed": 0}, {"Line Number": 15, "Report Hour": 6, "Kits Completed": 123}, {"Line Number": 15, "Report Hour": 7, "Kits Completed": 97}, ] df = pd.DataFrame.from_records(data) grouped_by_hour = ( df.groupby("Report Hour", as_index=False).sum().drop(columns="Line Number") ) chart = grouped_by_hour.plot.bar(x="Report Hour", y="Kits Completed", rot=0) chart.figure.savefig('chart.png') chart.figure.show() print(grouped_by_hour) input("Press a key to close the chart")
import os bashCommand = "sudo arp-scan --interface=enp0s25 --localnet | grep 192.168.2.* > output.txt" os.system(bashCommand) f = open('output.txt', 'r') print f.read() print f
# encoding: utf-8 # # # This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this file, # You can obtain one at http://mozilla.org/MPL/2.0/. # # Author: Kyle Lahnakoski (kyle@lahnakoski.com) # from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals import json from thread import allocate_lock as _allocate_lock import requests from mo_collections.queue import Queue from mo_logs import Log from mo_testing.fuzzytestcase import FuzzyTestCase from mo_times.timer import Timer from mo_threads import Lock, THREAD_STOP, Signal, Thread, ThreadedQueue, Till from mo_threads.busy_lock import BusyLock ACTIVEDATA_URL = "https://activedata.allizom.org/query" class TestLocks(FuzzyTestCase): @classmethod def setUpClass(cls): Log.start({"trace": True, "cprofile": False}) @classmethod def tearDownClass(cls): Log.stop() def test_lock_speed(self): SCALE = 1000*100 with Timer("create"): locks = [_allocate_lock() for _ in range(SCALE)] with Timer("acquire"): for i in range(SCALE): locks[i].acquire() with Timer("release"): for i in range(SCALE): locks[i].release() def test_queue_speed(self): SCALE = 1000*10 done = Signal("done") slow = Queue() q = ThreadedQueue("test queue", queue=slow) def empty(please_stop): while not please_stop: item = q.pop() if item is THREAD_STOP: break done.go() Thread.run("empty", empty) timer = Timer("add {{num}} to queue", param={"num": SCALE}) with timer: for i in range(SCALE): q.add(i) q.add(THREAD_STOP) Log.note("Done insert") done.wait() self.assertLess(timer.duration.seconds, 1.5, "Expecting queue to be fast") def test_lock_and_till(self): locker = Lock("prime lock") got_lock = Signal() a_is_ready = Signal("a lock") b_is_ready = Signal("b lock") def loop(is_ready, please_stop): with locker: while not got_lock: # Log.note("{{thread}} is waiting", thread=Thread.current().name) locker.wait(till=Till(seconds=0)) is_ready.go() locker.wait() Log.note("thread is expected to get here") thread_a = Thread.run("a", loop, a_is_ready) thread_b = Thread.run("b", loop, b_is_ready) a_is_ready.wait() b_is_ready.wait() with locker: got_lock.go() Till(seconds=0.1).wait() # MUST WAIT FOR a AND b TO PERFORM locker.wait() Log.note("leaving") pass with locker: Log.note("leaving again") pass Till(seconds=1).wait() self.assertTrue(bool(thread_a.stopped), "Thread should be done by now") self.assertTrue(bool(thread_b.stopped), "Thread should be done by now") def test_till_in_loop(self): def loop(please_stop): counter = 0 while not please_stop: (Till(seconds=0.001) | please_stop).wait() counter += 1 Log.note("{{count}}", count=counter) please_stop=Signal("please_stop") Thread.run("loop", loop, please_stop=please_stop) Till(seconds=1).wait() with please_stop.lock: self.assertLessEqual(len(please_stop.job_queue), 1, "Expecting only one pending job on go") please_stop.go() def test_consistency(self): counter = [0] lock = BusyLock() def adder(please_stop): for i in range(100): with lock: counter[0] += 1 threads = [Thread.run(unicode(i), adder) for i in range(50)] for t in threads: t.join() self.assertEqual(counter[0], 100*50, "Expecting lock to work") def query_activedata(suite, platforms=None): query = json.dumps({ "from": "unittest", "limit": 200000, "groupby": ["result.test"], "select": {"value": "result.duration", "aggregate": "average"}, "where": {"and": [ {"eq": {"suite": suite, "build.platform": platforms }}, {"gt": {"run.timestamp": {"date": "today-week"}}} ]}, "format": "list" }) response = requests.post( ACTIVEDATA_URL, data=query, stream=True ) response.raise_for_status() data = response.json()["data"] return data
import click from .mail import sendmail from .utils import create_new_sheet, show_sheet,\ list_sheets, delete, check_in, check_out,\ generate_attachment_txt, generate_attachment_excel @click.group() def cli(): pass @cli.command() @click.argument('id', type=int, required=False) def show(id): """Display a timesheet.Take timesheet id as parameter.If no parameter is provided,latest timesheet will be shown by default""" show_sheet(id) @cli.command() def new(): """Add a new timesheet.""" create_new_sheet() @cli.command() def ls(): """List all the timesheets.""" list_sheets() @cli.command() def checkin(): """Checking in""" check_in() @cli.command() @click.option('--message', '-m', type=str) def checkout(message): """Checking out""" check_out(message) @cli.command() @click.option('--sheet_id', '-s', type=int, help='removes a sheet. take sheet id as parameter') @click.option('--entry_id', '-e', type=int, help='removes entry. take entry id as parameter') def rm(sheet_id, entry_id): """remove sheet or entry of your choice""" delete(sheet_id, entry_id) @cli.command() @click.option('--to', prompt='To') @click.option('--subject', prompt='Subect') @click.option('--message', prompt='Message') @click.option('--id', prompt='Attachment ID') def email(to, subject, message, id): attachment = generate_attachment_excel(int(id)) sendmail(to, subject, message, attachment)
from mod_base import* class Evl(Command): """Evaluate a python expression.""" def run(self,win,user,data,caller=None): try: result = str(eval(data)) win.Send(result) return True except Exception,e: win.Send("fail:"+str(e)) return False module = { "class": Evl, "type": MOD_COMMAND, "level": 5, "zone":IRC_ZONE_BOTH }
# # This file is part of LUNA. # # Copyright (c) 2020 Great Scott Gadgets <info@greatscottgadgets.com> # SPDX-License-Identifier: BSD-3-Clause """ This module contains definitions of memory units that work well for USB applications. """ import unittest from amaranth import Elaboratable, Module, Signal, Memory from amaranth.hdl.xfrm import DomainRenamer from .test import LunaGatewareTestCase, sync_test_case class TransactionalizedFIFO(Elaboratable): """ Transactionalized, buffer first-in-first-out queue. This FIFO is "transactionalized", which means that it allows sets of reads and writes to be "undone". Effectively, this FIFO allows "rewinding" its read and write pointers to a previous point in time, which makes it ideal for USB transmission or receipt; where the protocol can require blocks of data to be retransmitted or ignored. Attributes ---------- read_data: Signal(width), output Contains the next byte in the FIFO. Valid only when :attr:``empty`` is false. read_en: Signal(), input When asserted, the current :attr:``read_data`` will move to the next value. The data is not internally consumed/dequeued until :attr:``read_commit`` is asserted. This read can be "undone" by asserting :attr:``read_discard``. Should only be asserted when :attr:``empty`` is false. read_commit: Signal(), input Strobe; when asserted, any reads performed since the last commit will be "finalized". This effectively frees the memory associated with past reads. If this value is tied to '1', the read port on this FIFO gracefully degrades to non-transactionalized port. read_discard: Signal(), input Strobe; when asserted; any reads since the last commit will be "undone", placing the read pointer back at the queue position it had after the last :attr:``read_commit`. empty: Signal(), output Asserted when no data is available in the FIFO. This signal refers to whether data is available to read. :attr:``read_commit`` will not change this value; but :attr:``read_discard`` will. write_data: Signal(width), input Holds the byte to be added to the FIFO when :attr:``write_en`` is asserted. write_en: Signal(), input When asserted, the current :attr:``write_data`` will be added to the FIFO; but will not be ready for read until :attr:``write_commit`` is asserted. This write can be "undone" by asserting :attr:``write_discard``. Should only be asserted when :attr:``full`` is false. write_commit: Signal(), input Strobe; when asserted, any writes reads performed since the last commit will be "finalized". This makes the relevant data available for read. write_discard: Signal(), input Strobe; when asserted; any writes since the last commit will be "undone", placing the write pointer back at the queue position it had after the last :attr:``write_commit`. This frees the relevant memory for new writes. full: Signal(), output Asserted when no space is available for writes in the FIFO. :attr:``write_commit`` will not change this value; but :attr:``write_discard`` will. space_available: Signal(range(0, depth + 1)), output Indicates the amount of space available in the FIFO. Useful for knowing whether we can add e.g. an entire packet to the FIFO. Attributes ---------- width: int The width of each entry in the FIFO. depth: int The number of allowed entries in the FIFO. name: str The name of the relevant FIFO; to produce nicer debug output. If not provided, Amaranth will attempt auto-detection. domain: str The name of the domain this module should exist in. """ def __init__(self, *, width, depth, name=None, domain="sync"): self.width = width self.depth = depth self.name = name self.domain = domain # # I/O port # self.read_data = Signal(width) self.read_en = Signal() self.read_commit = Signal() self.read_discard = Signal() self.empty = Signal() self.write_data = Signal(width) self.write_en = Signal() self.write_commit = Signal() self.write_discard = Signal() self.full = Signal() self.space_available = Signal(range(0, depth + 1)) def elaborate(self, platform): m = Module() # Range shortcuts for internal signals. address_range = range(0, self.depth + 1) # # Core internal "backing store". # memory = Memory(width=self.width, depth=self.depth + 1, name=self.name) m.submodules.read_port = read_port = memory.read_port() m.submodules.write_port = write_port = memory.write_port() # Always connect up our memory's data/en ports to ours. m.d.comb += [ self.read_data .eq(read_port.data), write_port.data .eq(self.write_data), write_port.en .eq(self.write_en & ~self.full) ] # # Write port. # # We'll track two pieces of data: our _committed_ write position, and our current un-committed write one. # This will allow us to rapidly backtrack to our pre-commit position. committed_write_pointer = Signal(address_range) current_write_pointer = Signal(address_range) m.d.comb += write_port.addr.eq(current_write_pointer) # Compute the location for the next write, accounting for wraparound. We'll not assume a binary-sized # buffer; so we'll compute the wraparound manually. next_write_pointer = Signal.like(current_write_pointer) with m.If(current_write_pointer == self.depth): m.d.comb += next_write_pointer.eq(0) with m.Else(): m.d.comb += next_write_pointer.eq(current_write_pointer + 1) # If we're writing to the fifo, update our current write position. with m.If(self.write_en & ~self.full): m.d.sync += current_write_pointer.eq(next_write_pointer) # If we're committing a FIFO write, update our committed position. with m.If(self.write_commit): m.d.sync += committed_write_pointer.eq(current_write_pointer) # If we're discarding our current write, reset our current position, with m.If(self.write_discard): m.d.sync += current_write_pointer.eq(committed_write_pointer) # # Read port. # # We'll track two pieces of data: our _committed_ read position, and our current un-committed read one. # This will allow us to rapidly backtrack to our pre-commit position. committed_read_pointer = Signal(address_range) current_read_pointer = Signal(address_range) # Compute the location for the next read, accounting for wraparound. We'll not assume a binary-sized # buffer; so we'll compute the wraparound manually. next_read_pointer = Signal.like(current_read_pointer) with m.If(current_read_pointer == self.depth): m.d.comb += next_read_pointer.eq(0) with m.Else(): m.d.comb += next_read_pointer.eq(current_read_pointer + 1) # Our memory always takes a single cycle to provide its read output; so we'll update its address # "one cycle in advance". Accordingly, if we're about to advance the FIFO, we'll use the next read # address as our input. If we're not, we'll use the current one. with m.If(self.read_en & ~self.empty): m.d.comb += read_port.addr.eq(next_read_pointer) with m.Else(): m.d.comb += read_port.addr.eq(current_read_pointer) # If we're reading from our the fifo, update our current read position. with m.If(self.read_en & ~self.empty): m.d.sync += current_read_pointer.eq(next_read_pointer) # If we're committing a FIFO write, update our committed position. with m.If(self.read_commit): m.d.sync += committed_read_pointer.eq(current_read_pointer) # If we're discarding our current write, reset our current position, with m.If(self.read_discard): m.d.sync += current_read_pointer.eq(committed_read_pointer) # # FIFO status. # # Our FIFO is empty if our read and write pointers are in the same. We'll use the current # read position (which leads ahead) and the committed write position (which lags behind). m.d.comb += self.empty.eq(current_read_pointer == committed_write_pointer) # For our space available, we'll use the current write position (which leads ahead) and our committed # read position (which lags behind). This yields two cases: one where the buffer isn't wrapped around, # and one where it is. with m.If(self.full): m.d.comb += self.space_available.eq(0) with m.Elif(committed_read_pointer <= current_write_pointer): m.d.comb += self.space_available.eq(self.depth - (current_write_pointer - committed_read_pointer)) with m.Else(): m.d.comb += self.space_available.eq(committed_read_pointer - current_write_pointer - 1) # Our FIFO is full if we don't have any space available. m.d.comb += self.full.eq(next_write_pointer == committed_read_pointer) # If we're not supposed to be in the sync domain, rename our sync domain to the target. if self.domain != "sync": m = DomainRenamer({"sync": self.domain})(m) return m class TransactionalizedFIFOTest(LunaGatewareTestCase): FRAGMENT_UNDER_TEST = TransactionalizedFIFO FRAGMENT_ARGUMENTS = {'width': 8, 'depth': 16} def initialize_signals(self): yield self.dut.write_en.eq(0) @sync_test_case def test_simple_fill(self): dut = self.dut # Our FIFO should start off empty; and with a full depth of free space. self.assertEqual((yield dut.empty), 1) self.assertEqual((yield dut.full), 0) self.assertEqual((yield dut.space_available), 16) # If we add a byte to the queue... yield dut.write_data.eq(0xAA) yield from self.pulse(dut.write_en) # ... we should have less space available ... self.assertEqual((yield dut.space_available), 15) # ... but we still should be "empty", as we won't have data to read until we commit. self.assertEqual((yield dut.empty), 1) # Once we _commit_ our write, we should suddenly have data to read. yield from self.pulse(dut.write_commit) self.assertEqual((yield dut.empty), 0) # If we read a byte, we should see the FIFO become empty... yield from self.pulse(dut.read_en) self.assertEqual((yield dut.empty), 1) # ... but we shouldn't see more space become available until we commit the read. self.assertEqual((yield dut.space_available), 15) yield from self.pulse(dut.read_commit) self.assertEqual((yield dut.space_available), 16) # If we write 16 more bytes of data... yield dut.write_en.eq(1) for i in range(16): yield dut.write_data.eq(i) yield yield dut.write_en.eq(0) # ... our buffer should be full, but also empty. # This paradox exists as we've filled our buffer with uncomitted data. yield self.assertEqual((yield dut.full), 1) self.assertEqual((yield dut.empty), 1) # Once we _commit_ our data, it should suddenly stop being empty. yield from self.pulse(dut.write_commit) self.assertEqual((yield dut.empty), 0) # Reading a byte _without committing_ shouldn't change anything about empty/full/space-available... yield from self.pulse(dut.read_en) self.assertEqual((yield dut.empty), 0) self.assertEqual((yield dut.full), 1) self.assertEqual((yield dut.space_available), 0) # ... but committing should increase our space available by one, and make our buffer no longer full. yield from self.pulse(dut.read_commit) self.assertEqual((yield dut.empty), 0) self.assertEqual((yield dut.full), 0) self.assertEqual((yield dut.space_available), 1) # Reading/committing another byte should increment our space available. yield from self.pulse(dut.read_en) yield from self.pulse(dut.read_commit) self.assertEqual((yield dut.space_available), 2) # Writing data into the buffer should then fill it back up again... yield dut.write_en.eq(1) for i in range(2): yield dut.write_data.eq(i) yield yield dut.write_en.eq(0) # ... meaning it will again be full, and have no space remaining. yield self.assertEqual((yield dut.full), 1) self.assertEqual((yield dut.space_available), 0) # If we _discard_ this data, we should go back to having two bytes available. yield from self.pulse(dut.write_discard) self.assertEqual((yield dut.full), 0) self.assertEqual((yield dut.space_available), 2) # If we read the data that's remaining in the fifo... yield dut.read_en.eq(1) for i in range(2, 16): yield self.assertEqual((yield dut.read_data), i) yield dut.read_en.eq(0) # ... our buffer should again be empty. yield self.assertEqual((yield dut.empty), 1) self.assertEqual((yield dut.space_available), 2) # If we _discard_ our current read, we should then see our buffer no longer empty... yield from self.pulse(dut.read_discard) self.assertEqual((yield dut.empty), 0) # and we should be able to read the same data again. yield dut.read_en.eq(1) for i in range(2, 16): yield self.assertEqual((yield dut.read_data), i) yield dut.read_en.eq(0) # On committing this, we should see a buffer that is no longer full, and is really empty. yield from self.pulse(dut.read_commit) self.assertEqual((yield dut.empty), 1) self.assertEqual((yield dut.full), 0) self.assertEqual((yield dut.space_available), 16) if __name__ == "__main__": unittest.main()
# -*- coding: utf-8 -*- class Solution: def maximum69Number(self, num: int) -> int: digits = list(str(num)) for i, digit in enumerate(digits): if digit == "6": digits[i] = "9" break return int("".join(digits)) if __name__ == "__main__": solution = Solution() assert 9969 == solution.maximum69Number(9669) assert 9999 == solution.maximum69Number(9996) assert 9999 == solution.maximum69Number(9999)
#!/usr/bin/python import BaseHTTPServer import re import urllib import sys import traceback import os def ParseArgs(uri): if not uri: return {} kvpairs = uri.split('&') result = {} for kvpair in kvpairs: k, v = kvpair.split('=') result[k] = urllib.unquote(v) return result class RequestDispatcher(BaseHTTPServer.BaseHTTPRequestHandler): # Workaround for stupidity in BaseHTTPServer: it creates new handler # for each request. # # Warning: it is NOT safe to call methods of this object in parallel. def __init__(self, self_addr): self.handlers = {} self.proxy_handler = None self.self_addr = self_addr def RegisterHandler(self, uri, handler): assert uri not in self.handlers self.handlers[uri] = handler def RegisterProxyHandler(self, handler): self.proxy_handler = handler def HandleRequest(self, path): """Returns tuple (content, mime-type). Returns None for unknown requests. """ if path.startswith(self.self_addr): path = path[len(self.self_addr):] if not path.startswith('/'): if not self.proxy_handler: raise Exception('No host-handler defined') return self.proxy_handler(path) m = re.match('(/[^?]*)\??(.*)', path) uri = m.group(1) handler = self.handlers.get(uri) if not handler: raise Exception('No handler for uri %s' % uri) args = ParseArgs(m.group(2)) return handler(args) def DoHandle(self, request, client_address, socket_server): self.request = request self.client_address = client_address self.server = socket_server self.setup() self.handle() self.finish() def do_GET(self): try: content, mimetype = self.HandleRequest(self.path) self.send_response(200) self.send_header('Content-type', mimetype) self.send_header('Content-length', len(content)) self.end_headers() self.wfile.write(content) except Exception, exc: print 'Occured exception', exc traceback.print_exc() error = str(exc) self.send_response(404) self.send_header('Content-type', 'text/html') self.end_headers() self.wfile.write(error) # FIXME duplication: def do_HEAD(self): try: content, mimetype = self.HandleRequest(self.path) self.send_response(200) self.send_header('Content-type', mimetype) self.send_header('Content-length', len(content)) self.end_headers() except Exception, exc: print 'Occured exception', exc traceback.print_exc() error = str(exc) self.send_response(404) self.send_header('Content-type', 'text/html') self.end_headers() class MoreBaseHttpServer(object): def __init__(self, port): self.dispatcher = RequestDispatcher('http://localhost:' + str(port)) self.server = BaseHTTPServer.HTTPServer(('', port), self.dispatcher.DoHandle) def Serve(self): self.server.serve_forever() def RegisterHandler(self, uri, handler): self.dispatcher.RegisterHandler(uri, handler) def RegisterProxyHandler(self, handler): self.dispatcher.RegisterProxyHandler(handler)
from django.conf.urls import url from django.urls import path, include from django.views.generic import TemplateView from post_app.views import * from post_app import views urlpatterns = [ path('', PostListViewAPI.as_view(), name='list'), path('create/', PostCreateAPIView.as_view(), name='create'), url(r'^(?P<pk>\d+)/$', PostDetailAPIView.as_view(), name='detail'), url(r'^(?P<pk>\d+)/delete$', PostDeleteAPIView.as_view(), name='delete'), url(r'^(?P<pk>\d+)/edit$', PostUpdateAPIView.as_view(), name='update'), url(r'^(?P<post>\w+)/comment$', CommentCreateAPIView.as_view(), name='create_comment'), url(r'^(?P<post>\w+)/like/', LikeCreateAPIView.as_view(), name='create_like'), ]
#!/usr/bin/env python3 # Copyright (c) 2019, the Dart project authors. Please see the AUTHORS file # for details. All rights reserved. Use of this source code is governed by a # BSD-style license that can be found in the LICENSE file. """Shared front-end analyzer specific presubmit script. See http://dev.chromium.org/developers/how-tos/depottools/presubmit-scripts for more details about the presubmit API built into gcl. """ import imp import os.path import subprocess USE_PYTHON3 = True def runSmokeTest(input_api, output_api): hasChangedFiles = False for git_file in input_api.AffectedTextFiles(): filename = git_file.AbsoluteLocalPath() if filename.endswith(".dart"): hasChangedFiles = True break if hasChangedFiles: local_root = input_api.change.RepositoryRoot() utils = imp.load_source('utils', os.path.join(local_root, 'tools', 'utils.py')) dart = os.path.join(utils.CheckedInSdkPath(), 'bin', 'dart') smoke_test = os.path.join(local_root, 'pkg', '_fe_analyzer_shared', 'tool', 'smoke_test_quick.dart') windows = utils.GuessOS() == 'win32' if windows: dart += '.exe' if not os.path.isfile(dart): print('WARNING: dart not found: %s' % dart) return [] if not os.path.isfile(smoke_test): print('WARNING: _fe_analyzer_shared smoke test not found: %s' % smoke_test) return [] args = [dart, smoke_test] process = subprocess.Popen( args, stdout=subprocess.PIPE, stdin=subprocess.PIPE) outs, _ = process.communicate() if process.returncode != 0: return [ output_api.PresubmitError( '_fe_analyzer_shared smoke test failure(s):', long_text=outs) ] return [] def CheckChangeOnCommit(input_api, output_api): return runSmokeTest(input_api, output_api) def CheckChangeOnUpload(input_api, output_api): return runSmokeTest(input_api, output_api)
import random from termcolor import colored import argparse import re import mana parser = argparse.ArgumentParser(description='Process some integers.') parser.add_argument("-l", "--library", help='The library path', required=True) parser.add_argument("-d", "--debug", action='store_true', help='Enable Debug mode') parser.add_argument("-t", "--turns", type=int, default=1000, help='Number of turns') args = parser.parse_args() if args is None: parser.print_help() else: print(args) # Vars library = [] battlefield = [] tapped = [] stormCount = 0 landCount = 0 # Parses Library def parseList(list): with open(list, "r") as ins: array = [] pattern = re.compile("^([A-Za-z ]+)x([0-9]+)$") for line in ins: if pattern.match(line.strip()): match = re.search(pattern, line) for i in range(0, int(match.group(2))): array.append(match.group(1).strip()) else: array.append(line.strip()) return array def shuffle(library): random.shuffle(library) # Draws from library def draw(library, hand): if len(library) == 0: return card = library[0] library.remove(card) hand.append(card) return card # Returns all of one card to your hand def bounceAll(item, hand): global battlefield global tapped battleFieldTemp = [] for card in battlefield: if card == item: hand.append(card) else: battleFieldTemp.append(card) battlefield = battleFieldTemp tappedTemp = [] for card in tapped: if card == item: hand.append(card) else: tappedTemp.append(card) tapped = tappedTemp return hand # Draws the starting hand def drawHand(): global library global battlefield global tapped global hand battlefield = [] tapped = [] library=parseList(args.library) if len(library) < 60: print "Library too small", len(library), library return null shuffle(library) hand = [] handSize = 7 isDrawing = True while isDrawing: hand = [] for i in range(0,handSize): draw(library, hand) if handSize == 5: isDrawing = False if "engine" in hand and mana.inHand(hand) > 0 and "cheerio" in hand: isDrawing = False handSize -= 1 return hand # The mechanics of playing a card def play(card, hand): if args.debug: print "Playing", card, " | Mana Available", mana.available(battlefield, hand), " | Storm Count", stormCount global stormCount hand.remove(card) battlefield.append(card) if card is "fetchland" or card is "land": global landCount landCount += 1 if card == "fetchland" and "land" in library: battlefield.remove("fetchland") library.remove("land") battlefield.append("land") else: stormCount += 1 if card is "wraith": battlefield.remove("wraith") drawCard = draw(library, hand) if args.debug: print "..drew ", drawCard if card == "engine": mana.tap(2, battlefield, tapped, hand) if card == "serum": drawCard = draw(library, hand) battlefield.remove(card) mana.tap(1, battlefield, tapped, hand) scry(2) if card == "retract": hand = bounceAll("cheerio", hand) hand = bounceAll("mox opal", hand) battlefield.remove(card) mana.tap(1, battlefield, tapped, hand) if card == "recall": hand = bounceAll("cheerio", hand) hand = bounceAll("mox opal", hand) battlefield.remove(card) mana.tap(2, battlefield, tapped, hand) if card == "cheerio": draws = [] for i in range(0, battlefield.count("engine")): draws.append(draw(library, hand)) if args.debug and len(draws) > 0: print ".. drew", draws return hand # Looks at the top cards on a library def scry(scryNum): for i in range(0, scryNum - 1): scryCard = library[i] if args.debug: print "..scrying", scryCard if scryCard in ["land", "fetchland", "mox opal"] and mana.available(battlefield, hand) + mana.inHand(hand) >= 1: library.remove(scryCard) library.append(scryCard) if scryCard not in ["land", "fetchland", "mox opal"] and mana.available(battlefield, hand) + mana.inHand(hand) < 2: library.remove(scryCard) library.append(scryCard) if scryCard == "erayo": library.remove(scryCard) library.append(scryCard) if battlefield.count("engine") + hand.count("engine") > 2 and scryCard == "engine": library.remove(scryCard) library.append(scryCard) # Main game loop def game(): if args.debug: print " " hand = drawHand() if len(hand) < 7: scry(1) turnNum = 0 global stormCount global landCount while "grapeshot" not in battlefield and turnNum < 20: turnNum += 1 stormCount = 0 landCount = 0 turn(turnNum, hand) return turnNum # Handles your turn logic def turn(turnNum, hand): if args.debug: print colored('Turn ' + str(turnNum), 'green') print colored(hand, 'green') # Upkeep: Untap mana.untap(tapped, battlefield) # Upkeep: draw if turnNum > 1: drawCard = draw(library, hand) if args.debug: print "Drawing", drawCard # Mainphase turnMainPhase(turnNum, hand) def isCheerio(card): return card is "cheerio" or card is "paradise mantle" # Main phase of your turn def turnMainPhase(turnNum, hand): if stormCount > 20 and "grapeshot" in hand: play("grapeshot", hand) elif landCount is 0 and "fetchland" in hand: play("fetchland", hand) turnMainPhase(turnNum, hand) elif landCount is 0 and "land" in hand: play("land", hand) turnMainPhase(turnNum, hand) elif "mox opal" in hand and "mox opal" not in battlefield: play("mox opal", hand) turnMainPhase(turnNum, hand) elif "engine" in hand and battlefield.count("engine") < 4 and mana.available(battlefield, hand) >= 2: play("engine", hand) turnMainPhase(turnNum, hand) elif "serum" in hand and mana.available(battlefield, hand) >= 1 and len(library) > 2: play("serum", hand) turnMainPhase(turnNum, hand) elif "cheerio" in hand and battlefield.count("engine") >= 2: play("cheerio", hand) turnMainPhase(turnNum, hand) elif "cheerio" in hand and "engine" in battlefield and "engine" not in hand: play("cheerio", hand) turnMainPhase(turnNum, hand) elif "mox opal" in battlefield and battlefield.count("cheerio") < 2 and hand.count("cheerio") >= 2 and "engine" in hand and mana.available(battlefield, hand) < 2: if args.debug: print ".. attempting to turn on mox" play("cheerio", hand) play("cheerio", hand) turnMainPhase(turnNum, hand) elif "retract" in hand and battlefield.count("cheerio") > 0 and mana.available(battlefield, hand) >= 1: play("retract", hand) turnMainPhase(turnNum, hand) elif "recall" in hand and battlefield.count("cheerio") > 0 and mana.available(battlefield, hand) >= 2: play("recall", hand) turnMainPhase(turnNum, hand) elif "wraith" in hand: play("wraith", hand) turnMainPhase(turnNum, hand) # Average hand sizes that contain engine handSizes = [] for i in range(0, 1000): hand = drawHand() handSizes.append(len(hand)) print "Hand size average:", sum(handSizes)/float(len(handSizes)) # Average turns until win turnCounts = [] for i in range(0, args.turns): turnCounts.append( game() ) print "Simulating", args.turns, "Average turns to win:", sum(turnCounts)/float(len(turnCounts)) for i in range(0, 20): if turnCounts.count(i) > 0: print "Turn", i, 100 * turnCounts.count(i) / float(args.turns), "%"
from django.test import TestCase from django.urls import reverse from django.contrib.auth import get_user_model from rest_framework import status from rest_framework.test import APIClient from core.models import Audience from advertising.serializers import AudienceSerializer AUDIENCE_URL = reverse("advertising:audience-list") class PublicAudienceApiTests(TestCase): """Test that publicity is available""" def setUp(self) -> None: self.client = APIClient() def test_login_required(self): """Test that login is required for retrieving audiences""" res = self.client.get(AUDIENCE_URL) self.assertEqual(res.status_code, status.HTTP_401_UNAUTHORIZED) class PrivateAudienceApiTests(TestCase): """Test the authorized user tags api""" def setUp(self) -> None: self.client = APIClient() self.user = get_user_model().objects.create( email='test.random@mail.com', password='11111' ) self.client.force_authenticate(user=self.user) def test_retrieve_audiences(self): """Test retrieving audiences""" Audience.objects.create(name='woman') Audience.objects.create(name='man') res = self.client.get(AUDIENCE_URL) audience = Audience.objects.all().order_by('-name') serializer = AudienceSerializer(audience, many=True) self.assertEqual(res.status_code, status.HTTP_200_OK) self.assertEqual(res.data, serializer.data) def create_audience_successful(self): """Test create the audience""" payload = { 'name': 'woman' } res = self.client.post(AUDIENCE_URL, payload) exists = Audience.objects.filter( name=payload['name'] ).exists() self.assertEqual(res.status_code, status.HTTP_201_CREATED) self.assertTrue(exists) def test_create_audience_invalid(self): """Test creating a new audience with invalid payload""" payload = { 'name': '' } res = self.client.post(AUDIENCE_URL, payload) self.assertEqual(res.status_code, status.HTTP_400_BAD_REQUEST)
from django.conf.urls import patterns, include, url from bees import urls as bees_urls urlpatterns = patterns('', # Examples: # url(r'^$', 'bee_farm.views.home', name='home'), # url(r'^blog/', include('blog.urls')), url(r'^bees/', include(bees_urls, namespace='bees')), )
from django.db.models.query import QuerySet from django.shortcuts import render from question.models import Question from rest_framework import generics from .serializers import QuestionSerializer # Create your views here. class QuestionsList(generics.ListAPIView): queryset=Question.objects.all() serializer_class=QuestionSerializer class QuestionDetailView(generics.RetrieveAPIView): queryset=Question.objects.all() serializer_class=QuestionSerializer
#!/usr/bin/env /data/mta/Script/Python3.8/envs/ska3-shiny/bin/python ############################################################################# # # # create_ede_plots.py: create ede plots # # # # author: t. isobe (tisobe@cfa.harvard.edu) # # # # last update: Mar 12, 2021 # # # ############################################################################# import os import sys import re import random import numpy import time import Chandra.Time import matplotlib as mpl if __name__ == '__main__': mpl.use('Agg') from pylab import * import matplotlib.pyplot as plt import matplotlib.font_manager as font_manager import matplotlib.lines as lines # #--- reading directory list # path = '/data/mta/Script/Grating/Grating_EdE/Scripts/house_keeping/dir_list' with open(path, 'r') as f: data = [line.strip() for line in f.readlines()] for ent in data: atemp = re.split(':', ent) var = atemp[1].strip() line = atemp[0].strip() exec("%s = %s" %(var, line)) # #--- append pathes to private folders to a python directory # sys.path.append(bin_dir) sys.path.append(mta_dir) import mta_common_functions as mcf import robust_linear as robust #-------------------------------------------------------------------------- #-- plot_ede_data: create letg, metg, and hetg ede plots -- #-------------------------------------------------------------------------- def plot_ede_data(): """ create letg, metg, and hetg ede plots input: none, but read from <type><side>_all.txt' output: <web_dir>/Plots/<type>_<side>_<start>_<stop>.png <web_dir>/Plots/<type>_ede_plot.html """ pfile = 'hegp1_data' mfile = 'hegm1_data' itype = 'hetg' create_plot(pfile, mfile, itype) pfile = 'megp1_data' mfile = 'megm1_data' itype = 'metg' create_plot(pfile, mfile, itype) pfile = 'legpall_data' mfile = 'legmall_data' itype = 'letg' create_plot(pfile, mfile, itype) #-------------------------------------------------------------------------- #-- create_plot: creating plots for given catgories -- #-------------------------------------------------------------------------- def create_plot(pfile, mfile, itype): """ creating plots for given catgories input: pfile --- plus side data file name mfile --- minus side data file name itype --- type of the data letg, metg, hetg output: <web_dir>/Plots/<type>_<side>_<start>_<stop>.png <web_dir>/Plots/<type>_ede_plot.html """ pdata = read_ede_data(pfile) p_p_list = plot_each_year(pdata, itype, 'p') mdata = read_ede_data(mfile) m_p_list = plot_each_year(mdata, itype, 'm') create_html_page(itype, p_p_list, m_p_list) #-------------------------------------------------------------------------- #-- plot_each_year: create plots for each year for the given categories --- #-------------------------------------------------------------------------- def plot_each_year(tdata, itype, side): """ create plots for each year for the given categories input: tdata --- a list of lists of data (see select_data below) itype --- a type of grating; letg, metg, hetg side --- plus or mius """ # #--- find the current year and group data for 5 year interval # tyear = int(float(datetime.datetime.today().strftime("%Y"))) nstep = int((tyear - 1999)/5) + 1 tarray = numpy.array(tdata[0]) energy = numpy.array(tdata[2]) denergy = numpy.array(tdata[4]) p_list = [] for k in range(0, nstep): start = 1999 + 5 * k stop = start + 5 # #--- selecting out data # selec = (tarray > start) & (tarray < stop) eng = energy[selec] ede = denergy[selec] outfile = str(itype) + '_' + str(side) + '_' + str(start) + '_' + str(stop) + '.png' p_list.append(outfile) outfile = web_dir+ 'Plots/' + outfile # #--- actually plotting data # plot_data(eng, ede, start, stop, itype, outfile) return p_list #-------------------------------------------------------------------------- #-- select_data: select out data which fit to the selection criteria -- #-------------------------------------------------------------------------- def select_data(idata, itype): """ select out data which fit to the selection criteria input: indata idata[0]: year idata[1]: obsid idata[2]: links idata[3]: energy idata[4]: fwhm idata[5]: denergy idata[6]: error idata[7]: order idata[8]: cnt idata[9]: roi_cnt idata[10]: acf idata[11]: acf_err itype --- type of the data; letg, metg, hetg output: out --- selected potion of the data """ out = [] for k in range(0, 12): out.append([]) for m in range(0, len(idata[0])): if (idata[6][m] / idata[4][m] < 0.15): # #-- letg case # if itype == 'letg': for k in range(0, 12): out[k].append(idata[k][m]) # #--- metg case # elif idata[4][m] * 1.0e3 / idata[3][m] < 5.0: if itype == 'metg': for k in range(0, 12): out[k].append(idata[k][m]) # #--- hetg case # else: if abs(idata[3][m] - 1.01) > 0.01: for k in range(0, 12): out[k].append(idata[k][m]) return out #-------------------------------------------------------------------------- #-- read_ede_data: read data file -- #-------------------------------------------------------------------------- def read_ede_data(infile): """ read ede data file input: infile --- input file name output: a list of: idata[0]: year idata[1]: obsid idata[2]: energy idata[3]: fwhm idata[4]: denergy idata[5]: error idata[6]: order idata[7]: cnt idata[8]: roi_cnt idata[9]: acf idata[10]: acf_err idata[11]: links """ dfile = data_dir + infile data = mcf.read_data_file(dfile) idata = mcf.separate_data_to_arrays(data, com_out='#') year = numpy.array(idata[0]).astype(int) obsid = [] for ent in idata[1]: try: val = str(int(float(ent))) except: val = ent obsid.append(val) energy = numpy.array(idata[2]) fwhm = idata[3] denergy = numpy.array(idata[4]) error = idata[5] order = list(numpy.array(idata[6]).astype(int)) cnt = list(numpy.array(idata[7]).astype(int)) roi_cnt = idata[8] acf = idata[9] acf_err = idata[10] links = idata[11] return [year, obsid, energy, fwhm, denergy, error, order, cnt, roi_cnt, acf, acf_err, links] #-------------------------------------------------------------------------- #-- plot_data: plot a data in log-log form -- #-------------------------------------------------------------------------- def plot_data(x, y, start, stop, itype, outfile): """ plot a data in log-log form input: x --- x data y --- y data start --- starting year stop --- stopping year itype --- type of the data, letg, metg, hetg outfile --- output png file name output; outfile """ # #--- set plotting range # if itype == 'letg': xmin = 0.05 xmax = 20.0 ymin = 0.01 ymax = 100000 xpos = 2 ypos = 15000 ypos2 = 9000 else: xmin = 0.2 xmax = 10.0 ymin = 1 ymax = 100000 xpos = 2 ypos = 30000 ypos2 =18000 plt.close('all') ax = plt.subplot(111) ax.set_autoscale_on(False) ax.set_xbound(xmin,xmax) ax.set_xlim(left=xmin, right=xmax, auto=False) ax.set_ylim(bottom=ymin, top=ymax, auto=False) ax.set_xscale('log') ax.set_yscale('log') props = font_manager.FontProperties(size=24) mpl.rcParams['font.size'] = 24 mpl.rcParams['font.weight'] = 'bold' # #--- plot data # plt.plot(x, y, color='blue', marker='o', markersize=6, lw=0) plt.xlabel('Energy (KeV)') plt.ylabel('E / dE') text = 'Years: ' + str(start) + ' - ' + str(stop) plt.text(xpos, ypos, text) # #--- compute fitting line and plot on the scattered plot # [xe, ye, a, b] = fit_line(x, y, xmin, xmax) plt.plot(xe, ye, color='red', marker='', markersize=0, lw=2) line = 'Slope(log-log): %2.3f' % (b) plt.text(xpos, ypos2, line) fig = matplotlib.pyplot.gcf() fig.set_size_inches(15.0, 10.0) plt.tight_layout() plt.savefig(outfile, format='png') plt.close('all') #-------------------------------------------------------------------------- #-- fit_line: fit robust fit line on the data on log-log plane -- #-------------------------------------------------------------------------- def fit_line(x, y, xmin, xmax): """ fit robust fit line on the data on log-log plane input: x --- x data y --- y data xmin --- min of x xmax --- max of x """ # #--- convert the data into log # xl = numpy.log10(x) yl = numpy.log10(y) # #--- fit a line on log-log plane with robust fit # if len(xl) > 4: [a, b, e] = robust.robust_fit(xl, yl) else: a = 0.0 b = 0.0 e = 0.0 # #--- compute plotting data points on non-log plane; it is used by the plotting routine # xsave = [] ysave = [] step = (xmax - xmin) /100.0 for k in range(0, 100): xe = xmin + step * k ye = 10**(a + b * math.log10(xe)) xsave.append(xe) ysave.append(ye) return [xsave, ysave, a , b] #-------------------------------------------------------------------------- #-- create_html_page: create html page for the given type -- #-------------------------------------------------------------------------- def create_html_page(itype, p_p_list, m_p_list): """ create html page for the given type input: itype --- type of data; letg, metg, hetg p_p_list --- a list of plus side png plot file names m_p_list --- a list of minus side png plot file names output: <web_dir>/<itype>_ede_plot.html """ if itype == 'letg': rest = ['metg', 'hetg'] elif itype == 'metg': rest = ['letg', 'hetg'] else: rest = ['letg', 'metg'] hfile = house_keeping + 'plot_page_header' with open(hfile, 'r') as f: line = f.read() line = line + '<h2>' + itype.upper() + '</h2>\n' line = line + '<p style="text-align:right;">\n' for ent in rest: line = line + '<a href="' + ent + '_ede_plot.html">Open: ' + ent.upper() + '</a></br>\n' line = line + '<a href="../index.html">Back to Main Page</a>' line = line + '</p>\n' line = line + '<table border = 0 >\n' line = line + '<tr><th style="width:45%;">Minus Side</th>' line = line + '<th style="width:45%;">Plus Side</th></tr>\n' for k in range(0, len(p_p_list)): line = line + '<tr>' line = line + '<th style="width:45%;">' line = line + '<a href="javascript:WindowOpener(\'Plots/' + m_p_list[k] +'\')">' line = line + '<img src="./Plots/' + m_p_list[k] + '" style="width:95%;"></a></th>\n' line = line + '<th style="width:45%;">' line = line + '<a href="javascript:WindowOpener(\'Plots/' + p_p_list[k] +'\')">' line = line + '<img src="./Plots/' + p_p_list[k] + '" style="width:95%;"></a></th>\n' line = line + '</tr>\n' line = line + '</table>\n' line = line + '</body>\n</html>\n' outname = web_dir + itype + '_ede_plot.html' with open(outname, 'w') as fo: fo.write(line) #-------------------------------------------------------------------------- if __name__ == '__main__': plot_ede_data()
from django.contrib import admin from .models import Video, Device, RemoteHistory, Lock, Record, Door, AddDevice # Register your models here. admin.site.register(Door) admin.site.register(Video) admin.site.register(Device) admin.site.register(RemoteHistory) admin.site.register(Lock) admin.site.register(Record) admin.site.register(AddDevice)
from flask import Blueprint from flask import jsonify from shutil import copyfile, move from google.cloud import storage from google.cloud import bigquery import dataflow_pipeline.unificadas.unificadas_segmentos_beam as unificadas_segmentos_beam import dataflow_pipeline.unificadas.unificadas_campanas_beam as unificadas_campanas_beam import dataflow_pipeline.unificadas.unificadas_codigos_gestion_beam as unificadas_codigos_gestion_beam import dataflow_pipeline.unificadas.unificadas_codigos_causal_beam as unificadas_codigos_causal_beam import dataflow_pipeline.unificadas.unificadas_tipificaciones_beam as unificadas_tipificaciones_beam import dataflow_pipeline.unificadas.unificadas_gestiones_beam as unificadas_gestiones_beam import dataflow_pipeline.unificadas.unificadas_usuarios_beam as unificadas_usuarios_beam import dataflow_pipeline.unificadas.unificadas_clientes_beam as unificadas_clientes_beam import dataflow_pipeline.unificadas.unificadas_seg_campanas_beam as unificadas_seg_campanas_beam import dataflow_pipeline.unificadas.unificadas_data_beam as unificadas_data_beam import dataflow_pipeline.unificadas.base_asignacion_avalcreditos as base_asignacion_avalcreditos import dataflow_pipeline.unificadas.base_asignacion_coopantex as base_asignacion_coopantex import dataflow_pipeline.unificadas.base_asignacion_diaria_avalcreditos as base_asignacion_diaria_avalcreditos import dataflow_pipeline.unificadas.base_asignacion_diaria_coopantex as base_asignacion_diaria_coopantex import dataflow_pipeline.unificadas.base_gestiones_coopantex as base_gestiones_coopantex import dataflow_pipeline.unificadas.base_gestiones_avalcredito as base_gestiones_avalcredito import dataflow_pipeline.unificadas.base_acuerdos_avalcredito as base_acuerdos_avalcredito import dataflow_pipeline.unificadas.base_acuerdos_coopantex as base_acuerdos_coopantex import dataflow_pipeline.unificadas.base_estrategia_beam as base_estrategia_beam import dataflow_pipeline.unificadas.base_asignacion_diaria_epm_beam as base_asignacion_diaria_epm_beam import dataflow_pipeline.unificadas.base_asignacion_epm_beam as base_asignacion_epm_beam import dataflow_pipeline.unificadas.base_gestiones_epm_beam as base_gestiones_epm_beam import dataflow_pipeline.unificadas.base_acuerdos_epm_beam as base_acuerdos_epm_beam import dataflow_pipeline.unificadas.base_gestiones_banco_agricola_beam as base_gestiones_banco_agricola_beam import dataflow_pipeline.unificadas.base_gestiones_virtuales_banco_agricola_beam as base_gestiones_virtuales_banco_agricola_beam import dataflow_pipeline.unificadas.pagos_beam as pagos_beam import cloud_storage_controller.cloud_storage_controller as gcscontroller import os import time import socket import _mssql import datetime import sys #coding: utf-8 unificadas_api = Blueprint('unificadas_api', __name__) fileserver_baseroute = ("//192.168.20.87", "/media")[socket.gethostname()=="contentobi"] @unificadas_api.route("/segmento") def segmento(): reload(sys) sys.setdefaultencoding('utf8') SERVER="192.168.20.63\MV" USER="DP_USER" PASSWORD="DPUSER12062020*" DATABASE="Mirror_UN1002XZCVBN" TABLE_DB = "dbo.Tb_segmentos" HOY = datetime.datetime.today().strftime('%Y-%m-%d') #Nos conectamos a la BD y obtenemos los registros conn = _mssql.connect(server=SERVER, user=USER, password=PASSWORD, database=DATABASE) conn.execute_query('SELECT Id_Segmento,Nombre_Segmento,Fecha_Creacion,Usuario_Creacion,Estado FROM ' + TABLE_DB ) # conn.execute_query('SELECT Id_Gestion,Id_Causal,Fecha_Seguimiento,Id_Usuario,Valor_Obligacion,Id_Docdeu, Nota FROM ' + TABLE_DB + ' where CAST(Fecha_Seguimiento AS date) >= CAST(' + "'2019-02-01' as DATE) ") cloud_storage_rows = "" # Debido a que los registros en esta tabla pueden tener saltos de linea y punto y comas inmersos for row in conn: text_row = "" text_row += str(row['Id_Segmento']).encode('utf-8') + "|" text_row += str(row['Nombre_Segmento']).encode('utf-8') + "|" text_row += str(row['Fecha_Creacion']).encode('utf-8') + "|" text_row += str(row['Usuario_Creacion']).encode('utf-8') + "|" text_row += str(row['Estado']).encode('utf-8') + "|" text_row += "\n" cloud_storage_rows += text_row conn.close() filename = "Segmento/Unificadas_Segmento" + ".csv" #Finalizada la carga en local creamos un Bucket con los datos gcscontroller.create_file(filename, cloud_storage_rows, "ct-unificadas") try: deleteQuery = "DELETE FROM `contento-bi.unificadas.segmentos` WHERE 1=1" client = bigquery.Client() query_job = client.query(deleteQuery) query_job.result() except: print("no se pudo eliminar") #Primero eliminamos todos los registros que contengan esa fecha # time.sleep(60) flowAnswer = unificadas_segmentos_beam.run() # time.sleep(60) # Poner la ruta en storage cloud en una variable importada para posteriormente eliminarla storage_client = storage.Client() bucket = storage_client.get_bucket('ct-unificadas') blob = bucket.blob("Segmento/Unificadas_Segmento" + ".csv") # Eliminar el archivo en la variable blob.delete() # return jsonify(flowAnswer), 200 return "Segmento cargado" + "flowAnswer" ############################################################ @unificadas_api.route("/campana") def campana(): reload(sys) sys.setdefaultencoding('utf8') SERVER="192.168.20.63\MV" USER="DP_USER" PASSWORD="DPUSER12062020*" DATABASE="Mirror_UN1002XZCVBN" TABLE_DB = "dbo.Tb_Campanas" HOY = datetime.datetime.today().strftime('%Y-%m-%d') #Nos conectamos a la BD y obtenemos los registros conn = _mssql.connect(server=SERVER, user=USER, password=PASSWORD, database=DATABASE) conn.execute_query('SELECT Id_Campana,Nombre_Campana,Codigo_Campana,Id_UEN,Fecha_Creacion,Estado FROM ' + TABLE_DB ) # conn.execute_query('SELECT Id_Gestion,Id_Causal,Fecha_Seguimiento,Id_Usuario,Valor_Obligacion,Id_Docdeu, Nota FROM ' + TABLE_DB + ' where CAST(Fecha_Seguimiento AS date) >= CAST(' + "'2019-02-01' as DATE) ") cloud_storage_rows = "" # Debido a que los registros en esta tabla pueden tener saltos de linea y punto y comas inmersos for row in conn: text_row = "" text_row += str(row['Id_Campana']).encode('utf-8') + "|" text_row += str(row['Nombre_Campana']).encode('utf-8') + "|" text_row += str(row['Codigo_Campana']).encode('utf-8') + "|" text_row += str(row['Id_UEN']).encode('utf-8') + "|" text_row += str(row['Fecha_Creacion']).encode('utf-8') + "|" text_row += str(row['Estado']).encode('utf-8') + "|" # text_row += str(row['Logo']).encode('utf-8') + "|" text_row += "\n" cloud_storage_rows += text_row conn.close() filename = "campanas/Unificadas_campanas" + ".csv" #Finalizada la carga en local creamos un Bucket con los datos gcscontroller.create_file(filename, cloud_storage_rows, "ct-unificadas") try: deleteQuery = "DELETE FROM `contento-bi.unificadas.Campanas` WHERE 1=1" client = bigquery.Client() query_job = client.query(deleteQuery) query_job.result() except: print("no se pudo eliminar") #Primero eliminamos todos los registros que contengan esa fecha # time.sleep(60) flowAnswer = unificadas_campanas_beam.run() # time.sleep(180) # Poner la ruta en storage cloud en una variable importada para posteriormente eliminarla storage_client = storage.Client() bucket = storage_client.get_bucket('ct-unificadas') blob = bucket.blob("campanas/Unificadas_campanas" + ".csv") # Eliminar el archivo en la variable blob.delete() # return jsonify(flowAnswer), 200 return "Campana cargada" + "flowAnswer" #################################################### @unificadas_api.route("/codigo_ges") def codigo_ges(): reload(sys) sys.setdefaultencoding('utf8') SERVER="192.168.20.63\MV" USER="DP_USER" PASSWORD="DPUSER12062020*" DATABASE="Mirror_UN1002XZCVBN" TABLE_DB = "dbo.Tb_Cod_Gestion" HOY = datetime.datetime.today().strftime('%Y-%m-%d') #Nos conectamos a la BD y obtenemos los registros conn = _mssql.connect(server=SERVER, user=USER, password=PASSWORD, database=DATABASE) conn.execute_query('SELECT Id_Cod_Gestion,Nombre_Codigo,Descripcion,Fecha_Creacion,Usuario_gestion,Estado FROM ' + TABLE_DB ) # conn.execute_query('SELECT Id_Gestion,Id_Causal,Fecha_Seguimiento,Id_Usuario,Valor_Obligacion,Id_Docdeu, Nota FROM ' + TABLE_DB + ' where CAST(Fecha_Seguimiento AS date) >= CAST(' + "'2019-02-01' as DATE) ") cloud_storage_rows = "" # Debido a que los registros en esta tabla pueden tener saltos de linea y punto y comas inmersos for row in conn: text_row = "" text_row += str(row['Id_Cod_Gestion']).encode('utf-8') + "|" text_row += str(row['Nombre_Codigo']).encode('utf-8') + "|" text_row += str(row['Descripcion']).encode('utf-8') + "|" text_row += str(row['Fecha_Creacion']).encode('utf-8') + "|" text_row += str(row['Usuario_gestion']).encode('utf-8') + "|" text_row += str(row['Estado']).encode('utf-8') + "|" text_row += "\n" cloud_storage_rows += text_row conn.close() filename = "codigos_gestion/Unificadas_cod_ges" + ".csv" #Finalizada la carga en local creamos un Bucket con los datos gcscontroller.create_file(filename, cloud_storage_rows, "ct-unificadas") try: deleteQuery = "DELETE FROM `contento-bi.unificadas.Codigos_Gestion` WHERE 5=5" client = bigquery.Client() query_job = client.query(deleteQuery) query_job.result() except: print("no se pudo eliminar") #Primero eliminamos todos los registros que contengan esa fecha # time.sleep(60) flowAnswer = unificadas_codigos_gestion_beam.run() # time.sleep(180) # Poner la ruta en storage cloud en una variable importada para posteriormente eliminarla storage_client = storage.Client() bucket = storage_client.get_bucket('ct-unificadas') blob = bucket.blob("codigos_gestion/Unificadas_cod_ges" + ".csv") # Eliminar el archivo en la variable blob.delete() # return jsonify(flowAnswer), 200 return "codigo_ges cargada" + "flowAnswer" ##################################################################### @unificadas_api.route("/codigos") def codigos(): reload(sys) sys.setdefaultencoding('utf8') SERVER="192.168.20.63\MV" USER="DP_USER" PASSWORD="DPUSER12062020*" DATABASE="Mirror_UN1002XZCVBN" TABLE_DB = "dbo.Tb_Cod_Causal" HOY = datetime.datetime.today().strftime('%Y-%m-%d') #Nos conectamos a la BD y obtenemos los registros conn = _mssql.connect(server=SERVER, user=USER, password=PASSWORD, database=DATABASE) conn.execute_query('SELECT Id_Cod_Causal,Nombre_Causal,Descripcion,Fecha_Creacion,Usuario_Creacion,Estado FROM ' + TABLE_DB ) # conn.execute_query('SELECT Id_Gestion,Id_Causal,Fecha_Seguimiento,Id_Usuario,Valor_Obligacion,Id_Docdeu, Nota FROM ' + TABLE_DB + ' where CAST(Fecha_Seguimiento AS date) >= CAST(' + "'2019-02-01' as DATE) ") cloud_storage_rows = "" # Debido a que los registros en esta tabla pueden tener saltos de linea y punto y comas inmersos for row in conn: text_row = "" text_row += str(row['Id_Cod_Causal']).encode('utf-8') + "|" text_row += str(row['Nombre_Causal']).encode('utf-8') + "|" text_row += str(row['Descripcion']).encode('utf-8') + "|" text_row += str(row['Fecha_Creacion']).encode('utf-8') + "|" text_row += str(row['Usuario_Creacion']).encode('utf-8') + "|" text_row += str(row['Estado']).encode('utf-8') + "|" text_row += "\n" cloud_storage_rows += text_row conn.close() filename = "codigos_causal/Unificadas_cod_causal" + ".csv" #Finalizada la carga en local creamos un Bucket con los datos gcscontroller.create_file(filename, cloud_storage_rows, "ct-unificadas") try: deleteQuery = "DELETE FROM `contento-bi.unificadas.Codigos_Causal` WHERE 1=1" client = bigquery.Client() query_job = client.query(deleteQuery) query_job.result() except: print("no se pudo eliminar") #Primero eliminamos todos los registros que contengan esa fecha # time.sleep(60) flowAnswer = unificadas_codigos_causal_beam.run() # time.sleep(180) # Poner la ruta en storage cloud en una variable importada para posteriormente eliminarla storage_client = storage.Client() bucket = storage_client.get_bucket('ct-unificadas') blob = bucket.blob("codigos_causal/Unificadas_cod_causal" + ".csv") # Eliminar el archivo en la variable blob.delete() # return jsonify(flowAnswer), 200 return "codigos cargados" + "flowAnswer" #################################################### @unificadas_api.route("/tipificaciones") def tipificaciones(): reload(sys) sys.setdefaultencoding('utf8') SERVER="192.168.20.63\MV" USER="DP_USER" PASSWORD="DPUSER12062020*" DATABASE="Mirror_UN1002XZCVBN" TABLE_DB = "dbo.Rel_Tipificaciones" HOY = datetime.datetime.today().strftime('%Y-%m-%d') #Nos conectamos a la BD y obtenemos los registros conn = _mssql.connect(server=SERVER, user=USER, password=PASSWORD, database=DATABASE) conn.execute_query('SELECT Id_Tipif,Id_Campana,Id_Cod_Gestion,Id_Cod_Causal,Id_Cod_SubCausal,Cod_Homologado,Cod_Homologado_Causal,AdicionalOne,AdicionalTwo,AdicionalTree,Fecha_Creacion,Plantilla,Plantilla1,Estado,Usuario_Gestor,HIT FROM ' + TABLE_DB ) # conn.execute_query('SELECT Id_Gestion,Id_Causal,Fecha_Seguimiento,Id_Usuario,Valor_Obligacion,Id_Docdeu, Nota FROM ' + TABLE_DB + ' where CAST(Fecha_Seguimiento AS date) >= CAST(' + "'2019-02-01' as DATE) ") cloud_storage_rows = "" # Debido a que los registros en esta tabla pueden tener saltos de linea y punto y comas inmersos for row in conn: text_row = "" text_row += str(row['Id_Tipif']).encode('utf-8') + "|" text_row += str(row['Id_Campana']).encode('utf-8') + "|" text_row += str(row['Id_Cod_Gestion']).encode('utf-8') + "|" text_row += str(row['Id_Cod_Causal']).encode('utf-8') + "|" text_row += str(row['Id_Cod_SubCausal']).encode('utf-8') + "|" text_row += str(row['Cod_Homologado']).encode('utf-8') + "|" text_row += str(row['Cod_Homologado_Causal']).encode('utf-8') + "|" text_row += str(row['AdicionalOne']).encode('utf-8') + "|" text_row += str(row['AdicionalTwo']).encode('utf-8') + "|" text_row += str(row['AdicionalTree']).encode('utf-8') + "|" text_row += str(row['Fecha_Creacion']).encode('utf-8') + "|" text_row += str(row['Plantilla']).encode('utf-8') + "|" text_row += str(row['Plantilla1']).encode('utf-8') + "|" text_row += str(row['Estado']).encode('utf-8') + "|" text_row += str(row['Usuario_Gestor']).encode('utf-8') + "|" text_row += str(row['HIT']).encode('utf-8') + "|" text_row += "\n" cloud_storage_rows += text_row conn.close() filename = "tipificaciones/Unificadas_tipificaciones" + ".csv" #Finalizada la carga en local creamos un Bucket con los datos gcscontroller.create_file(filename, cloud_storage_rows, "ct-unificadas") try: deleteQuery = "DELETE FROM `contento-bi.unificadas.Tipificaciones` WHERE 2=2" client = bigquery.Client() query_job = client.query(deleteQuery) query_job.result() except: print("no se pudo eliminar") #Primero eliminamos todos los registros que contengan esa fecha # time.sleep(60) flowAnswer = unificadas_tipificaciones_beam.run() # time.sleep(180) # Poner la ruta en storage cloud en una variable importada para posteriormente eliminarla storage_client = storage.Client() bucket = storage_client.get_bucket('ct-unificadas') blob = bucket.blob("tipificaciones/Unificadas_tipificaciones" + ".csv") # Eliminar el archivo en la variable blob.delete() # return jsonify(flowAnswer), 200 return "tipificaciones cargadas" + "flowAnswer" #################################################### @unificadas_api.route("/gestiones") def gestiones(): reload(sys) sys.setdefaultencoding('utf8') SERVER="192.168.20.63\MV" USER="DP_USER" PASSWORD="DPUSER12062020*" DATABASE="Mirror_UN1002XZCVBN" TABLE_DB = "dbo.Tb_Gestion" HOY = datetime.datetime.today().strftime('%Y-%m-%d') #Nos conectamos a la BD y obtenemos los registros conn = _mssql.connect(server=SERVER, user=USER, password=PASSWORD, database=DATABASE) # conn.execute_query('SELECT Id_Gestion,Documento,Num_Obligacion,Id_Data,Id_Cod_Gestion,Id_Cod_Causal,Id_Cod_SubCausal,Id_Bot,Vlr_Promesa,Fecha_Promesa,Usuario_Gestor,Fecha_Gestion FROM ' + TABLE_DB + ' where CAST(Fecha_Gestion AS date) = CAST(GETDATE() as DATE) ') conn.execute_query("SELECT Id_Gestion,Documento,Num_Obligacion,Id_Campana,Id_Segmento,Id_Cod_Gestion,Id_Cod_Causal,Id_Cod_SubCausal,Vlr_Promesa,Fecha_Promesa,Num_Cuotas,Telefono,Fecha_Gestion,Usuario_Gestor,Opt_1,Opt_2,Opt_3,Opt_4,Opt_5,Cuadrante,Modalidad_Pago FROM " + TABLE_DB + " WHERE CONVERT(DATE, Fecha_Gestion) = CONVERT(DATE,GETDATE())") # conn.execute_query("SELECT Id_Gestion,Documento,Num_Obligacion,Id_Campana,Id_Segmento,Id_Cod_Gestion,Id_Cod_Causal,Id_Cod_SubCausal,Vlr_Promesa,Fecha_Promesa,Num_Cuotas,Telefono,Fecha_Gestion,Usuario_Gestor,Opt_1,Opt_2,Opt_3,Opt_4,Opt_5,Cuadrante,Modalidad_Pago FROM " + TABLE_DB + " WHERE CONVERT(DATE, Fecha_Gestion) = CAST('2020-07-04' AS DATE)") # conn.execute_query('SELECT Id_Gestion,Id_Causal,Fecha_Seguimiento,Id_Usuario,Valor_Obligacion,Id_Docdeu, Nota FROM ' + TABLE_DB + ' where CAST(Fecha_Seguimiento AS date) >= CAST(' + "'2019-02-01' as DATE) ") cloud_storage_rows = "" # Debido a que los registros en esta tabla pueden tener saltos de linea y punto y comas inmersos for row in conn: text_row = "" text_row += str(row['Id_Gestion']).encode('utf-8') + "|" text_row += str(row['Documento']).encode('utf-8') + "|" text_row += str(row['Num_Obligacion']).encode('utf-8') + "|" text_row += str(row['Id_Campana']).encode('utf-8') + "|" text_row += str(row['Id_Segmento']).encode('utf-8') + "|" text_row += str(row['Id_Cod_Gestion']).encode('utf-8') + "|" text_row += str(row['Id_Cod_Causal']).encode('utf-8') + "|" text_row += str(row['Id_Cod_SubCausal']).encode('utf-8') + "|" # text_row += str(row['Observacion']).encode('utf-8') + "|" text_row += str(row['Vlr_Promesa']).encode('utf-8') + "|" text_row += str(row['Fecha_Promesa']).encode('utf-8') + "|" text_row += str(row['Num_Cuotas']).encode('utf-8') + "|" text_row += str(row['Telefono']).encode('utf-8') + "|" text_row += str(row['Fecha_Gestion']).encode('utf-8') + "|" text_row += str(row['Usuario_Gestor']).encode('utf-8') + "|" text_row += str(row['Opt_1']).encode('utf-8') + "|" text_row += str(row['Opt_2']).encode('utf-8') + "|" text_row += str(row['Opt_3']).encode('utf-8') + "|" text_row += str(row['Opt_4']).encode('utf-8') + "|" text_row += str(row['Opt_5']).encode('utf-8') + "|" text_row += str(row['Cuadrante']).encode('utf-8') + "|" text_row += str(row['Modalidad_Pago']).encode('utf-8') + "|" text_row += "\n" cloud_storage_rows += text_row conn.close() filename = "gestiones/Unificadas_gestiones" + ".csv" #Finalizada la carga en local creamos un Bucket con los datos gcscontroller.create_file(filename, cloud_storage_rows, "ct-unificadas") try: deleteQuery = "DELETE FROM `contento-bi.unificadas.Gestiones` WHERE CAST(SUBSTR(Fecha_Gestion,0,10) AS DATE) = CURRENT_DATE()" # deleteQuery = "DELETE FROM `contento-bi.unificadas.Gestiones` WHERE CAST(SUBSTR(Fecha_Gestion,0,10) AS DATE) = '2020-07-04'" client = bigquery.Client() query_job = client.query(deleteQuery) query_job.result() except: print("no se pudo eliminar") #Primero eliminamos todos los registros que contengan esa fecha # time.sleep(60) flowAnswer = unificadas_gestiones_beam.run() # time.sleep(60) # Poner la ruta en storage cloud en una variable importada para posteriormente eliminarla storage_client = storage.Client() bucket = storage_client.get_bucket('ct-unificadas') blob = bucket.blob("gestiones/Unificadas_gestiones" + ".csv") # Eliminar el archivo en la variable blob.delete() # return jsonify(flowAnswer), 200 return "gestiones cargadas" + "flowAnswer" ################################################## @unificadas_api.route("/usuarios") def usuarios(): reload(sys) sys.setdefaultencoding('utf8') SERVER="192.168.20.63\MV" USER="DP_USER" PASSWORD="DPUSER12062020*" DATABASE="Mirror_UN1002XZCVBN" TABLE_DB = "dbo.Tb_usuarios" HOY = datetime.datetime.today().strftime('%Y-%m-%d') #Nos conectamos a la BD y obtenemos los registros conn = _mssql.connect(server=SERVER, user=USER, password=PASSWORD, database=DATABASE) conn.execute_query('SELECT Id_Usuario,Documento_Usuario,Nombre_usuario,Estado,Fecha_Cargue,Usuario_Creacion,Extension,Id_Perfil FROM ' + TABLE_DB ) # conn.execute_query('SELECT Id_Gestion,Id_Causal,Fecha_Seguimiento,Id_Usuario,Valor_Obligacion,Id_Docdeu, Nota FROM ' + TABLE_DB + ' where CAST(Fecha_Seguimiento AS date) >= CAST(' + "'2019-02-01' as DATE) ") cloud_storage_rows = "" # Debido a que los registros en esta tabla pueden tener saltos de linea y punto y comas inmersos for row in conn: text_row = "" text_row += str(row['Id_Usuario']).encode('utf-8') + "|" text_row += str(row['Documento_Usuario']).encode('utf-8') + "|" text_row += str(row['Nombre_usuario']).encode('utf-8') + "|" text_row += str(row['Estado']).encode('utf-8') + "|" text_row += str(row['Fecha_Cargue']).encode('utf-8') + "|" text_row += str(row['Usuario_Creacion']).encode('utf-8') + "|" text_row += str(row['Extension']).encode('utf-8') + "|" text_row += str(row['Id_Perfil']).encode('utf-8') + "|" text_row += "\n" cloud_storage_rows += text_row conn.close() filename = "usuarios/Unificadas_usuarios" + ".csv" #Finalizada la carga en local creamos un Bucket con los datos gcscontroller.create_file(filename, cloud_storage_rows, "ct-unificadas") try: deleteQuery = "DELETE FROM `contento-bi.unificadas.Usuarios` WHERE 3=3" client = bigquery.Client() query_job = client.query(deleteQuery) query_job.result() except: print("no se pudo eliminar") #Primero eliminamos todos los registros que contengan esa fecha # time.sleep(60) flowAnswer = unificadas_usuarios_beam.run() # time.sleep(60) # Poner la ruta en storage cloud en una variable importada para posteriormente eliminarla storage_client = storage.Client() bucket = storage_client.get_bucket('ct-unificadas') blob = bucket.blob("usuarios/Unificadas_usuarios" + ".csv") # Eliminar el archivo en la variable blob.delete() # return jsonify(flowAnswer), 200 return "usuarios cargados" + "flowAnswer" ######################################### @unificadas_api.route("/clientes") def clientes(): reload(sys) sys.setdefaultencoding('utf8') SERVER="192.168.20.63\MV" USER="DP_USER" PASSWORD="DPUSER12062020*" DATABASE="Mirror_UN1002XZCVBN" TABLE_DB = "dbo.Tb_Clientes" HOY = datetime.datetime.today().strftime('%Y-%m-%d') #Nos conectamos a la BD y obtenemos los registros conn = _mssql.connect(server=SERVER, user=USER, password=PASSWORD, database=DATABASE) conn.execute_query('SELECT Id_Cliente,Documento,Nombre_Cliente,Apellidos_Cliente,Fecha_Creacion FROM ' + TABLE_DB ) # conn.execute_query('SELECT Id_Gestion,Id_Causal,Fecha_Seguimiento,Id_Usuario,Valor_Obligacion,Id_Docdeu, Nota FROM ' + TABLE_DB + ' where CAST(Fecha_Seguimiento AS date) >= CAST(' + "'2019-02-01' as DATE) ") cloud_storage_rows = "" # Debido a que los registros en esta tabla pueden tener saltos de linea y punto y comas inmersos for row in conn: text_row = "" text_row += str(row['Id_Cliente']).encode('utf-8') + "|" text_row += str(row['Documento']).encode('utf-8') + "|" text_row += str(row['Nombre_Cliente']).encode('utf-8') + "|" text_row += str(row['Apellidos_Cliente']).encode('utf-8') + "|" text_row += str(row['Fecha_Creacion']).encode('utf-8') + "|" text_row += "\n" cloud_storage_rows += text_row conn.close() filename = "clientes/Unificadas_clientes" + ".csv" #Finalizada la carga en local creamos un Bucket con los datos gcscontroller.create_file(filename, cloud_storage_rows, "ct-unificadas") try: deleteQuery = "DELETE FROM `contento-bi.unificadas.Clientes` WHERE CAST(SUBSTR(Fecha_Creacion,0,10) AS DATE) = CURRENT_DATE()" client = bigquery.Client() query_job = client.query(deleteQuery) query_job.result() except: print("no se pudo eliminar") #Primero eliminamos todos los registros que contengan esa fecha # time.sleep(60) flowAnswer = unificadas_clientes_beam.run() # time.sleep(60) # Poner la ruta en storage cloud en una variable importada para posteriormente eliminarla storage_client = storage.Client() bucket = storage_client.get_bucket('ct-unificadas') blob = bucket.blob("clientes/Unificadas_clientes" + ".csv") # Eliminar el archivo en la variable blob.delete() # return jsonify(flowAnswer), 200 return "clientes cargados " + "flowAnswer" ################################################ @unificadas_api.route("/segmento_camp") def segmento_camp(): reload(sys) sys.setdefaultencoding('utf8') SERVER="192.168.20.63\MV" USER="DP_USER" PASSWORD="DPUSER12062020*" DATABASE="Mirror_UN1002XZCVBN" TABLE_DB = "dbo.Rel_Seg_Campanas" HOY = datetime.datetime.today().strftime('%Y-%m-%d') #Nos conectamos a la BD y obtenemos los registros conn = _mssql.connect(server=SERVER, user=USER, password=PASSWORD, database=DATABASE) conn.execute_query('SELECT Id_Rel_Seg_Campana,Id_Campana,Id_Segmento,Id_Bot,Fecha_Creacion,Usuario_Creacion,Estado FROM ' + TABLE_DB ) # conn.execute_query('SELECT Id_Gestion,Id_Causal,Fecha_Seguimiento,Id_Usuario,Valor_Obligacion,Id_Docdeu, Nota FROM ' + TABLE_DB + ' where CAST(Fecha_Seguimiento AS date) >= CAST(' + "'2019-02-01' as DATE) ") cloud_storage_rows = "" # Debido a que los registros en esta tabla pueden tener saltos de linea y punto y comas inmersos for row in conn: text_row = "" text_row += str(row['Id_Rel_Seg_Campana']).encode('utf-8') + "|" text_row += str(row['Id_Campana']).encode('utf-8') + "|" text_row += str(row['Id_Segmento']).encode('utf-8') + "|" text_row += str(row['Id_Bot']).encode('utf-8') + "|" text_row += str(row['Fecha_Creacion']).encode('utf-8') + "|" text_row += str(row['Usuario_Creacion']).encode('utf-8') + "|" text_row += str(row['Estado']).encode('utf-8') + "|" # text_row += str(row['Logo']).encode('utf-8') + "|" text_row += "\n" cloud_storage_rows += text_row conn.close() filename = "seg_campanas/Unificadas_seg_campanas" + ".csv" #Finalizada la carga en local creamos un Bucket con los datos gcscontroller.create_file(filename, cloud_storage_rows, "ct-unificadas") try: deleteQuery = "DELETE FROM `contento-bi.unificadas.Seg_campanas` WHERE 4=4" client = bigquery.Client() query_job = client.query(deleteQuery) query_job.result() except: print("no se pudo eliminar") #Primero eliminamos todos los registros que contengan esa fecha # time.sleep(60) flowAnswer = unificadas_seg_campanas_beam.run() # time.sleep(180) # Poner la ruta en storage cloud en una variable importada para posteriormente eliminarla storage_client = storage.Client() bucket = storage_client.get_bucket('ct-unificadas') blob = bucket.blob("seg_campanas/Unificadas_seg_campanas" + ".csv") # Eliminar el archivo en la variable blob.delete() # return jsonify(flowAnswer), 200 return "Seg_Campana cargada" + "flowAnswer" ##################################################################### @unificadas_api.route("/data_uni") def data_uni(): reload(sys) sys.setdefaultencoding('utf8') SERVER="192.168.20.63\MV" USER="DP_USER" PASSWORD="DPUSER12062020*" DATABASE="Mirror_UN1002XZCVBN" TABLE_DB = "dbo.Tb_Data" HOY = datetime.datetime.today().strftime('%Y-%m-%d') #Nos conectamos a la BD y obtenemos los registros conn = _mssql.connect(server=SERVER, user=USER, password=PASSWORD, database=DATABASE) conn.execute_query('SELECT Id_Data,Id_Campana,Zona,Documento,Cod_Interno,Tipo_Comprador,Customer_Class,Cupo,Num_Obligacion,Vlr_Factura,Fecha_Factura,Fecha_Vencimiento,Vlr_Saldo_Cartera,Dias_vencimiento,Campana_Orig,Ult_Campana,Codigo,Abogado,Division,Pais,Fecha_Prox_Conferencia,Cod_Gestion,Fecha_Gestion,Fecha_Promesa_Pago,Actividad_Economica,Saldo_Capital,Num_Cuotas,Num_Cuotas_Pagadas,Num_Cuotas_Faltantes,Num_Cuotas_Mora,Cant_Veces_Mora,Fecha_Ult_Pago,Saldo_Total_Vencido,Cod_Consecionario,Concesionario,Cod_Gestion_Ant,Grabador,Estado,Fecha_Cargue,Usuario_Cargue,Interes_Mora,Vlr_Cuotas_Vencidas FROM ' + TABLE_DB ) # conn.execute_query('SELECT Id_Gestion,Id_Causal,Fecha_Seguimiento,Id_Usuario,Valor_Obligacion,Id_Docdeu, Nota FROM ' + TABLE_DB + ' where CAST(Fecha_Seguimiento AS date) >= CAST(' + "'2019-02-01' as DATE) ") cloud_storage_rows = "" # Debido a que los registros en esta tabla pueden tener saltos de linea y punto y comas inmersos for row in conn: text_row = "" text_row += str(row['Id_Data']).encode('utf-8') + "|" text_row += str(row['Id_Campana']).encode('utf-8') + "|" text_row += str(row['Documento']).encode('utf-8') + "|" text_row += str(row['Cod_Interno']).encode('utf-8') + "|" text_row += str(row['Tipo_Comprador']).encode('utf-8') + "|" text_row += str(row['Customer_Class']).encode('utf-8') + "|" text_row += str(row['Cupo']).encode('utf-8') + "|" text_row += str(row['Num_Obligacion']).encode('utf-8') + "|" text_row += str(row['Vlr_Factura']).encode('utf-8') + "|" text_row += str(row['Fecha_Factura']).encode('utf-8') + "|" text_row += str(row['Fecha_Vencimiento']).encode('utf-8') + "|" text_row += str(row['Vlr_Saldo_Cartera']).encode('utf-8') + "|" text_row += str(row['Dias_vencimiento']).encode('utf-8') + "|" text_row += str(row['Campana_Orig']).encode('utf-8') + "|" text_row += str(row['Ult_Campana']).encode('utf-8') + "|" text_row += str(row['Codigo']).encode('utf-8') + "|" text_row += str(row['Abogado']).encode('utf-8') + "|" text_row += str(row['Division']).encode('utf-8') + "|" text_row += str(row['Pais']).encode('utf-8') + "|" text_row += str(row['Fecha_Prox_Conferencia']).encode('utf-8') + "|" text_row += str(row['Cod_Gestion']).encode('utf-8') + "|" text_row += str(row['Fecha_Gestion']).encode('utf-8') + "|" text_row += str(row['Fecha_Promesa_Pago']).encode('utf-8') + "|" text_row += str(row['Actividad_Economica']).encode('utf-8') + "|" text_row += str(row['Saldo_Capital']).encode('utf-8') + "|" text_row += str(row['Num_Cuotas']).encode('utf-8') + "|" text_row += str(row['Num_Cuotas_Pagadas']).encode('utf-8') + "|" text_row += str(row['Num_Cuotas_Faltantes']).encode('utf-8') + "|" text_row += str(row['Num_Cuotas_Mora']).encode('utf-8') + "|" text_row += str(row['Cant_Veces_Mora']).encode('utf-8') + "|" text_row += str(row['Fecha_Ult_Pago']).encode('utf-8') + "|" text_row += str(row['Saldo_Total_Vencido']).encode('utf-8') + "|" text_row += str(row['Cod_Consecionario']).encode('utf-8') + "|" text_row += str(row['Concesionario']).encode('utf-8') + "|" text_row += str(row['Cod_Gestion_Ant']).encode('utf-8') + "|" text_row += str(row['Grabador']).encode('utf-8') + "|" text_row += str(row['Estado']).encode('utf-8') + "|" text_row += str(row['Fecha_Cargue']).encode('utf-8') + "|" text_row += str(row['Usuario_Cargue']).encode('utf-8') + "|" text_row += str(row['Interes_Mora']).encode('utf-8') + "|" text_row += str(row['Vlr_Cuotas_Vencidas']).encode('utf-8') + "|" text_row += "\n" cloud_storage_rows += text_row conn.close() filename = "data_unificadas/Unificadas_data" + ".csv" #Finalizada la carga en local creamos un Bucket con los datos gcscontroller.create_file(filename, cloud_storage_rows, "ct-unificadas") try: deleteQuery = "DELETE FROM `contento-bi.unificadas.Data` WHERE CAST(SUBSTR(Fecha_Creacion,0,10) AS DATE) = CURRENT_DATE()" client = bigquery.Client() query_job = client.query(deleteQuery) query_job.result() except: print("no se pudo eliminar") #Primero eliminamos todos los registros que contengan esa fecha # time.sleep(60) flowAnswer = unificadas_data_beam.run() # time.sleep(180) # Poner la ruta en storage cloud en una variable importada para posteriormente eliminarla storage_client = storage.Client() bucket = storage_client.get_bucket('ct-unificadas') blob = bucket.blob("data_unificadas/Unificadas_data" + ".csv") # Eliminar el archivo en la variable blob.delete() # return jsonify(flowAnswer), 200 return "data cargada " + "flowAnswer" ############################## BASE ASIGNACION AVA CREDITOS ####################### @unificadas_api.route("/asignacion_aval") def asignacion_aval(): response = {} response["code"] = 400 response["description"] = "No se encontraron ficheros" response["status"] = False local_route = fileserver_baseroute + "/BI_Archivos/GOOGLE/Unificadas/Bases asignacion/avalcreditos/" archivos = os.listdir(local_route) for archivo in archivos: if archivo.endswith(".csv"): mifecha = archivo[0:] storage_client = storage.Client() bucket = storage_client.get_bucket('ct-unificadas') # Subir fichero a Cloud Storage antes de enviarlo a procesar a Dataflow blob = bucket.blob('bases_asignacion/avalcreditos/' + archivo) blob.upload_from_filename(local_route + archivo) # Una vez subido el fichero a Cloud Storage procedemos a eliminar los registros de BigQuery # deleteQuery = "DELETE FROM `contento-bi.ucc.SMS_V2` WHERE fecha = '" + mifecha + "'" deleteQuery = "DELETE FROM `contento-bi.unificadas.base_asignacion_avalcredito` WHERE fecha = '" + mifecha + "'" #Primero eliminamos todos los registros que contengan esa fecha client = bigquery.Client() query_job = client.query(deleteQuery) result = query_job.result() query_job.result() # Corremos el job de eliminacion de datos de BigQuery # Terminada la eliminacion de BigQuery y la subida a Cloud Storage corremos el Job mensaje = base_asignacion_avalcreditos.run('gs://ct-unificadas/bases_asignacion/avalcreditos/' + archivo, mifecha) if mensaje == "Corrio Full HD": move(local_route + archivo, fileserver_baseroute + "/BI_Archivos/GOOGLE/Unificadas/Bases asignacion/avalcreditos/Procesados/"+archivo) response["code"] = 200 response["description"] = "Se realizo el cargue correctamente" response["status"] = True # # return jsonify(response), response["code"] # return "Corriendo : " return jsonify(response), response["code"] ################################## BASE ASIGNACION COOPANTEX ################################### @unificadas_api.route("/asignacion_coopantex") def asignacion_coopantex(): response = {} response["code"] = 400 response["description"] = "No se encontraron ficheros" response["status"] = False local_route = fileserver_baseroute + "/BI_Archivos/GOOGLE/Unificadas/Bases asignacion/coopantex/" archivos = os.listdir(local_route) for archivo in archivos: if archivo.endswith(".csv"): mifecha = archivo[0:] storage_client = storage.Client() bucket = storage_client.get_bucket('ct-unificadas') # Subir fichero a Cloud Storage antes de enviarlo a procesar a Dataflow blob = bucket.blob('bases_asignacion/coopantex/' + archivo) blob.upload_from_filename(local_route + archivo) # Una vez subido el fichero a Cloud Storage procedemos a eliminar los registros de BigQuery # deleteQuery = "DELETE FROM `contento-bi.ucc.SMS_V2` WHERE fecha = '" + mifecha + "'" deleteQuery = "DELETE FROM `contento-bi.unificadas.base_asignacion_coopantex` WHERE fecha = '" + mifecha + "'" #Primero eliminamos todos los registros que contengan esa fecha client = bigquery.Client() query_job = client.query(deleteQuery) result = query_job.result() query_job.result() # Corremos el job de eliminacion de datos de BigQuery # Terminada la eliminacion de BigQuery y la subida a Cloud Storage corremos el Job mensaje = base_asignacion_coopantex.run('gs://ct-unificadas/bases_asignacion/coopantex/' + archivo, mifecha) if mensaje == "Corrio Full HD": move(local_route + archivo, fileserver_baseroute + "/BI_Archivos/GOOGLE/Unificadas/Bases asignacion/coopantex/Procesados/"+archivo) response["code"] = 200 response["description"] = "Se realizo el cargue correctamente" response["status"] = True # # return jsonify(response), response["code"] # return "Corriendo : " return jsonify(response), response["code"] ############################## BASE ASIGNACION DIARIA AVAL CREDITOS ####################### @unificadas_api.route("/asignacion_aval_diaria") def asignacion_aval_diaria(): response = {} response["code"] = 400 response["description"] = "No se encontraron ficheros" response["status"] = False local_route = fileserver_baseroute + "/BI_Archivos/GOOGLE/Unificadas/Bases asignacion diaria/avalcreditos/" archivos = os.listdir(local_route) for archivo in archivos: if archivo.endswith(".csv"): mifecha = archivo[0:] storage_client = storage.Client() bucket = storage_client.get_bucket('ct-unificadas') # Subir fichero a Cloud Storage antes de enviarlo a procesar a Dataflow blob = bucket.blob('bases_asignacion_diaria/avalcreditos/' + archivo) blob.upload_from_filename(local_route + archivo) # Una vez subido el fichero a Cloud Storage procedemos a eliminar los registros de BigQuery # deleteQuery = "DELETE FROM `contento-bi.ucc.SMS_V2` WHERE fecha = '" + mifecha + "'" deleteQuery = "DELETE FROM `contento-bi.unificadas.base_asignacion_diaria_avalcredito` WHERE fecha = '" + mifecha + "'" #Primero eliminamos todos los registros que contengan esa fecha client = bigquery.Client() query_job = client.query(deleteQuery) result = query_job.result() query_job.result() # Corremos el job de eliminacion de datos de BigQuery # Terminada la eliminacion de BigQuery y la subida a Cloud Storage corremos el Job mensaje = base_asignacion_diaria_avalcreditos.run('gs://ct-unificadas/bases_asignacion_diaria/avalcreditos/' + archivo, mifecha) if mensaje == "Corrio Full HD": move(local_route + archivo, fileserver_baseroute + "/BI_Archivos/GOOGLE/Unificadas/Bases asignacion diaria/avalcreditos/Procesados/"+archivo) response["code"] = 200 response["description"] = "Se realizo el cargue correctamente" response["status"] = True # # return jsonify(response), response["code"] # return "Corriendo : " return jsonify(response), response["code"] ########################################## BASE ASIGNACION COOPANTEX ####################################### @unificadas_api.route("/asignacion_diaria_coopantex") def asignacion_diaria_coopantex(): response = {} response["code"] = 400 response["description"] = "No se encontraron ficheros" response["status"] = False local_route = fileserver_baseroute + "/BI_Archivos/GOOGLE/Unificadas/Bases asignacion diaria/coopantex/" archivos = os.listdir(local_route) for archivo in archivos: if archivo.endswith(".csv"): mifecha = archivo[0:] storage_client = storage.Client() bucket = storage_client.get_bucket('ct-unificadas') # Subir fichero a Cloud Storage antes de enviarlo a procesar a Dataflow blob = bucket.blob('bases_asignacion_diaria/coopantex/' + archivo) blob.upload_from_filename(local_route + archivo) # Una vez subido el fichero a Cloud Storage procedemos a eliminar los registros de BigQuery # deleteQuery = "DELETE FROM `contento-bi.ucc.SMS_V2` WHERE fecha = '" + mifecha + "'" deleteQuery = "DELETE FROM `contento-bi.unificadas.base_asignacion_diaria_coopantex` WHERE fecha = '" + mifecha + "'" #Primero eliminamos todos los registros que contengan esa fecha client = bigquery.Client() query_job = client.query(deleteQuery) result = query_job.result() query_job.result() # Corremos el job de eliminacion de datos de BigQuery # Terminada la eliminacion de BigQuery y la subida a Cloud Storage corremos el Job mensaje = base_asignacion_diaria_coopantex.run('gs://ct-unificadas/bases_asignacion_diaria/coopantex/' + archivo, mifecha) if mensaje == "Corrio Full HD": move(local_route + archivo, fileserver_baseroute + "/BI_Archivos/GOOGLE/Unificadas/Bases asignacion diaria/coopantex/Procesados/"+archivo) response["code"] = 200 response["description"] = "Se realizo el cargue correctamente" response["status"] = True # # return jsonify(response), response["code"] # return "Corriendo : " return jsonify(response), response["code"] ################################# BASE GESTIONES COOPANTEX ############################## @unificadas_api.route("/gestiones_coopantex") def gestiones_coopantex(): response = {} response["code"] = 400 response["description"] = "No se encontraron ficheros" response["status"] = False local_route = fileserver_baseroute + "/BI_Archivos/GOOGLE/Unificadas/Gestiones/coopantex/" archivos = os.listdir(local_route) for archivo in archivos: if archivo.endswith(".csv"): mifecha = archivo[0:] storage_client = storage.Client() bucket = storage_client.get_bucket('ct-unificadas') # Subir fichero a Cloud Storage antes de enviarlo a procesar a Dataflow blob = bucket.blob('gestiones/coopantex/' + archivo) blob.upload_from_filename(local_route + archivo) # Una vez subido el fichero a Cloud Storage procedemos a eliminar los registros de BigQuery # deleteQuery = "DELETE FROM `contento-bi.ucc.SMS_V2` WHERE fecha = '" + mifecha + "'" deleteQuery = "DELETE FROM `contento-bi.unificadas.base_gestiones_coopantex` WHERE fecha = '" + mifecha + "'" #Primero eliminamos todos los registros que contengan esa fecha client = bigquery.Client() query_job = client.query(deleteQuery) result = query_job.result() query_job.result() # Corremos el job de eliminacion de datos de BigQuery # Terminada la eliminacion de BigQuery y la subida a Cloud Storage corremos el Job mensaje = base_gestiones_coopantex.run('gs://ct-unificadas/gestiones/coopantex/' + archivo, mifecha) if mensaje == "Corrio Full HD": move(local_route + archivo, fileserver_baseroute + "/BI_Archivos/GOOGLE/Unificadas/Gestiones/coopantex/Procesados/"+archivo) response["code"] = 200 response["description"] = "Se realizo el cargue correctamente" response["status"] = True # # return jsonify(response), response["code"] # return "Corriendo : " return jsonify(response), response["code"] ############################ BASE GESTIONES AVALCREDITOS ################################### @unificadas_api.route("/gestiones_avalcredito") def gestiones_avalcredito(): response = {} response["code"] = 400 response["description"] = "No se encontraron ficheros" response["status"] = False local_route = fileserver_baseroute + "/BI_Archivos/GOOGLE/Unificadas/Gestiones/avalcredito/" archivos = os.listdir(local_route) for archivo in archivos: if archivo.endswith(".csv"): mifecha = archivo[0:] storage_client = storage.Client() bucket = storage_client.get_bucket('ct-unificadas') # Subir fichero a Cloud Storage antes de enviarlo a procesar a Dataflow blob = bucket.blob('gestiones/avalcredito/' + archivo) blob.upload_from_filename(local_route + archivo) # Una vez subido el fichero a Cloud Storage procedemos a eliminar los registros de BigQuery # deleteQuery = "DELETE FROM `contento-bi.ucc.SMS_V2` WHERE fecha = '" + mifecha + "'" deleteQuery = "DELETE FROM `contento-bi.unificadas.base_gestiones_avalcredito` WHERE fecha = '" + mifecha + "'" #Primero eliminamos todos los registros que contengan esa fecha client = bigquery.Client() query_job = client.query(deleteQuery) result = query_job.result() query_job.result() # Corremos el job de eliminacion de datos de BigQuery # Terminada la eliminacion de BigQuery y la subida a Cloud Storage corremos el Job mensaje = base_gestiones_avalcredito.run('gs://ct-unificadas/gestiones/avalcredito/' + archivo, mifecha) if mensaje == "Corrio Full HD": move(local_route + archivo, fileserver_baseroute + "/BI_Archivos/GOOGLE/Unificadas/Gestiones/avalcredito/Procesados/"+archivo) response["code"] = 200 response["description"] = "Se realizo el cargue correctamente" response["status"] = True # # return jsonify(response), response["code"] # return "Corriendo : " return jsonify(response), response["code"] ############################ ACUERDOS DE PAGO AVALCREDITOS ################################ @unificadas_api.route("/acuerdos_avalcredito") def acuerdos_avalcredito(): response = {} response["code"] = 400 response["description"] = "No se encontraron ficheros" response["status"] = False local_route = fileserver_baseroute + "/BI_Archivos/GOOGLE/Unificadas/Acuerdos/avalcredito/" archivos = os.listdir(local_route) for archivo in archivos: if archivo.endswith(".csv"): mifecha = archivo[0:] storage_client = storage.Client() bucket = storage_client.get_bucket('ct-unificadas') # Subir fichero a Cloud Storage antes de enviarlo a procesar a Dataflow blob = bucket.blob('acuerdos/avalcredito/' + archivo) blob.upload_from_filename(local_route + archivo) # Una vez subido el fichero a Cloud Storage procedemos a eliminar los registros de BigQuery # deleteQuery = "DELETE FROM `contento-bi.ucc.SMS_V2` WHERE fecha = '" + mifecha + "'" deleteQuery = "DELETE FROM `contento-bi.unificadas.base_acuerdos_avalcredito` WHERE fecha = '" + mifecha + "'" #Primero eliminamos todos los registros que contengan esa fecha client = bigquery.Client() query_job = client.query(deleteQuery) result = query_job.result() query_job.result() # Corremos el job de eliminacion de datos de BigQuery # Terminada la eliminacion de BigQuery y la subida a Cloud Storage corremos el Job mensaje = base_acuerdos_avalcredito.run('gs://ct-unificadas/acuerdos/avalcredito/' + archivo, mifecha) if mensaje == "Corrio Full HD": move(local_route + archivo, fileserver_baseroute + "/BI_Archivos/GOOGLE/Unificadas/Acuerdos/avalcredito/Procesados/"+archivo) response["code"] = 200 response["description"] = "Se realizo el cargue correctamente" response["status"] = True # # return jsonify(response), response["code"] # return "Corriendo : " return jsonify(response), response["code"] ############################ ACUERDOS DE PAGO CCOPANTEX ############################## @unificadas_api.route("/acuerdos_coopantex") def acuerdos_coopantex(): response = {} response["code"] = 400 response["description"] = "No se encontraron ficheros" response["status"] = False local_route = fileserver_baseroute + "/BI_Archivos/GOOGLE/Unificadas/Acuerdos/coopantex/" archivos = os.listdir(local_route) for archivo in archivos: if archivo.endswith(".csv"): mifecha = archivo[0:] storage_client = storage.Client() bucket = storage_client.get_bucket('ct-unificadas') # Subir fichero a Cloud Storage antes de enviarlo a procesar a Dataflow blob = bucket.blob('acuerdos/coopantex/' + archivo) blob.upload_from_filename(local_route + archivo) # Una vez subido el fichero a Cloud Storage procedemos a eliminar los registros de BigQuery # deleteQuery = "DELETE FROM `contento-bi.ucc.SMS_V2` WHERE fecha = '" + mifecha + "'" deleteQuery = "DELETE FROM `contento-bi.unificadas.base_acuerdos_coopantex` WHERE fecha = '" + mifecha + "'" #Primero eliminamos todos los registros que contengan esa fecha client = bigquery.Client() query_job = client.query(deleteQuery) result = query_job.result() query_job.result() # Corremos el job de eliminacion de datos de BigQuery # Terminada la eliminacion de BigQuery y la subida a Cloud Storage corremos el Job mensaje = base_acuerdos_coopantex.run('gs://ct-unificadas/acuerdos/coopantex/' + archivo, mifecha) if mensaje == "Corrio Full HD": move(local_route + archivo, fileserver_baseroute + "/BI_Archivos/GOOGLE/Unificadas/Acuerdos/coopantex/Procesados/"+archivo) response["code"] = 200 response["description"] = "Se realizo el cargue correctamente" response["status"] = True # # return jsonify(response), response["code"] # return "Corriendo : " return jsonify(response), response["code"] ########################## CARGUE BASE DE ESTRATEGIAS ############################## @unificadas_api.route("/estrategia") def estrategia(): response = {} response["code"] = 400 response["description"] = "No se encontraron ficheros" response["status"] = False local_route = fileserver_baseroute + "/BI_Archivos/GOOGLE/Unificadas/Estrategia/" archivos = os.listdir(local_route) for archivo in archivos: if archivo.endswith(".csv"): mifecha = archivo[0:] storage_client = storage.Client() bucket = storage_client.get_bucket('ct-unificadas') # Subir fichero a Cloud Storage antes de enviarlo a procesar a Dataflow blob = bucket.blob('estrategia/' + archivo) blob.upload_from_filename(local_route + archivo) # Una vez subido el fichero a Cloud Storage procedemos a eliminar los registros de BigQuery deleteQuery = "DELETE FROM `contento-bi.unificadas.base_estrategia` WHERE archivo = '" + mifecha + "'" #Primero eliminamos todos los registros que contengan esa fecha client = bigquery.Client() query_job = client.query(deleteQuery) result = query_job.result() query_job.result() # Corremos el job de eliminacion de datos de BigQuery # Terminada la eliminacion de BigQuery y la subida a Cloud Storage corremos el Job mensaje = base_estrategia_beam.run('gs://ct-unificadas/estrategia/' + archivo, mifecha) if mensaje == "cargo de forma exitosa": move(local_route + archivo, fileserver_baseroute + "/BI_Archivos/GOOGLE/Unificadas/Estrategia/Procesados/"+archivo) response["code"] = 200 response["description"] = "Se realizo el cargue correctamente" response["status"] = True # # return jsonify(response), response["code"] # return "Corriendo : " return jsonify(response), response["code"] ######################### AIGNACION EPM ############################### @unificadas_api.route("/asignacion_diaria_epm") def asignacion_diaria_epm(): response = {} response["code"] = 400 response["description"] = "No se encontraron ficheros" response["status"] = False local_route = fileserver_baseroute + "/BI_Archivos/GOOGLE/Unificadas/Bases asignacion diaria/epm/" archivos = os.listdir(local_route) for archivo in archivos: if archivo.endswith(".csv"): mifecha = archivo[0:] storage_client = storage.Client() bucket = storage_client.get_bucket('ct-unificadas') # Subir fichero a Cloud Storage antes de enviarlo a procesar a Dataflow blob = bucket.blob('bases_asignacion_diaria/epm/' + archivo) blob.upload_from_filename(local_route + archivo) # Una vez subido el fichero a Cloud Storage procedemos a eliminar los registros de BigQuery # deleteQuery = "DELETE FROM `contento-bi.ucc.SMS_V2` WHERE fecha = '" + mifecha + "'" deleteQuery = "DELETE FROM `contento-bi.unificadas.base_asignacion_diaria_epm` WHERE fecha = '" + mifecha + "'" #Primero eliminamos todos los registros que contengan esa fecha client = bigquery.Client() query_job = client.query(deleteQuery) result = query_job.result() query_job.result() # Corremos el job de eliminacion de datos de BigQuery # Terminada la eliminacion de BigQuery y la subida a Cloud Storage corremos el Job mensaje = base_asignacion_diaria_epm_beam.run('gs://ct-unificadas/bases_asignacion_diaria/epm/' + archivo, mifecha) if mensaje == "Corrio sin problemas": move(local_route + archivo, fileserver_baseroute + "/BI_Archivos/GOOGLE/Unificadas/Bases asignacion diaria/epm/Procesados/"+archivo) response["code"] = 200 response["description"] = "Se realizo el cargue correctamente" response["status"] = True # # return jsonify(response), response["code"] # return "Corriendo : " return jsonify(response), response["code"] ########################## BASE ASIGNACION EPM ####################################### @unificadas_api.route("/asignacion_epm") def asignacion_epm(): response = {} response["code"] = 400 response["description"] = "No se encontraron ficheros" response["status"] = False local_route = fileserver_baseroute + "/BI_Archivos/GOOGLE/Unificadas/Bases asignacion/epm/" archivos = os.listdir(local_route) for archivo in archivos: if archivo.endswith(".csv"): mifecha = archivo[0:] storage_client = storage.Client() bucket = storage_client.get_bucket('ct-unificadas') # Subir fichero a Cloud Storage antes de enviarlo a procesar a Dataflow blob = bucket.blob('bases_asignacion/epm/' + archivo) blob.upload_from_filename(local_route + archivo) # Una vez subido el fichero a Cloud Storage procedemos a eliminar los registros de BigQuery # deleteQuery = "DELETE FROM `contento-bi.ucc.SMS_V2` WHERE fecha = '" + mifecha + "'" deleteQuery = "DELETE FROM `contento-bi.unificadas.base_asignacion_epm` WHERE fecha = '" + mifecha + "'" #Primero eliminamos todos los registros que contengan esa fecha client = bigquery.Client() query_job = client.query(deleteQuery) result = query_job.result() query_job.result() # Corremos el job de eliminacion de datos de BigQuery # Terminada la eliminacion de BigQuery y la subida a Cloud Storage corremos el Job mensaje = base_asignacion_epm_beam.run('gs://ct-unificadas/bases_asignacion/epm/' + archivo, mifecha) if mensaje == "Corrio sin problemas": move(local_route + archivo, fileserver_baseroute + "/BI_Archivos/GOOGLE/Unificadas/Bases asignacion/epm/Procesados/"+archivo) response["code"] = 200 response["description"] = "Se realizo el cargue correctamente" response["status"] = True # # return jsonify(response), response["code"] # return "Corriendo : " return jsonify(response), response["code"] ############################ BASE GESTIONES EPM ############################### @unificadas_api.route("/gestiones_epm") def gestiones_epm(): response = {} response["code"] = 400 response["description"] = "No se encontraron ficheros" response["status"] = False local_route = fileserver_baseroute + "/BI_Archivos/GOOGLE/Unificadas/Gestiones/epm/" archivos = os.listdir(local_route) for archivo in archivos: if archivo.endswith(".csv"): mifecha = archivo[0:] storage_client = storage.Client() bucket = storage_client.get_bucket('ct-unificadas') # Subir fichero a Cloud Storage antes de enviarlo a procesar a Dataflow blob = bucket.blob('gestiones/epm/' + archivo) blob.upload_from_filename(local_route + archivo) # Una vez subido el fichero a Cloud Storage procedemos a eliminar los registros de BigQuery # deleteQuery = "DELETE FROM `contento-bi.ucc.SMS_V2` WHERE fecha = '" + mifecha + "'" deleteQuery = "DELETE FROM `contento-bi.unificadas.base_gestiones_epm` WHERE fecha = '" + mifecha + "'" #Primero eliminamos todos los registros que contengan esa fecha client = bigquery.Client() query_job = client.query(deleteQuery) result = query_job.result() query_job.result() # Corremos el job de eliminacion de datos de BigQuery # Terminada la eliminacion de BigQuery y la subida a Cloud Storage corremos el Job mensaje = base_gestiones_epm_beam.run('gs://ct-unificadas/gestiones/epm/' + archivo, mifecha) if mensaje == "Corrio sin problemas": move(local_route + archivo, fileserver_baseroute + "/BI_Archivos/GOOGLE/Unificadas/Gestiones/epm/Procesados/"+archivo) response["code"] = 200 response["description"] = "Se realizo el cargue correctamente" response["status"] = True # # return jsonify(response), response["code"] # return "Corriendo : " return jsonify(response), response["code"] ############################### BASE COMPROMISOS EPM ################################ @unificadas_api.route("/compromisos_epm") def compromisos_epm(): response = {} response["code"] = 400 response["description"] = "No se encontraron ficheros" response["status"] = False local_route = fileserver_baseroute + "/BI_Archivos/GOOGLE/Unificadas/Acuerdos/epm/" archivos = os.listdir(local_route) for archivo in archivos: if archivo.endswith(".csv"): mifecha = archivo[0:] storage_client = storage.Client() bucket = storage_client.get_bucket('ct-unificadas') # Subir fichero a Cloud Storage antes de enviarlo a procesar a Dataflow blob = bucket.blob('acuerdos/epm/' + archivo) blob.upload_from_filename(local_route + archivo) # Una vez subido el fichero a Cloud Storage procedemos a eliminar los registros de BigQuery # deleteQuery = "DELETE FROM `contento-bi.ucc.SMS_V2` WHERE fecha = '" + mifecha + "'" deleteQuery = "DELETE FROM `contento-bi.unificadas.base_acuerdos_epm` WHERE fecha = '" + mifecha + "'" #Primero eliminamos todos los registros que contengan esa fecha client = bigquery.Client() query_job = client.query(deleteQuery) result = query_job.result() query_job.result() # Corremos el job de eliminacion de datos de BigQuery # Terminada la eliminacion de BigQuery y la subida a Cloud Storage corremos el Job mensaje = base_acuerdos_epm_beam.run('gs://ct-unificadas/acuerdos/epm/' + archivo, mifecha) if mensaje == "Corrio sin problemas": move(local_route + archivo, fileserver_baseroute + "/BI_Archivos/GOOGLE/Unificadas/Acuerdos/epm/Procesados/"+archivo) response["code"] = 200 response["description"] = "Se realizo el cargue correctamente" response["status"] = True # # return jsonify(response), response["code"] # return "Corriendo : " return jsonify(response), response["code"] ##################################### BASE GESTIONES BANCO AGRICOLA ################################## @unificadas_api.route("/gestiones_agricola") def gestiones_agricola(): response = {} response["code"] = 400 response["description"] = "No se encontraron ficheros" response["status"] = False local_route = fileserver_baseroute + "/BI_Archivos/GOOGLE/Unificadas/Gestiones/banco_agricola/gestiones_tek/" archivos = os.listdir(local_route) for archivo in archivos: if archivo.endswith(".csv"): mifecha = archivo[0:] storage_client = storage.Client() bucket = storage_client.get_bucket('ct-unificadas') # Subir fichero a Cloud Storage antes de enviarlo a procesar a Dataflow blob = bucket.blob('gestiones/banco_agricola/gestiones_tek/' + archivo) blob.upload_from_filename(local_route + archivo) # Una vez subido el fichero a Cloud Storage procedemos a eliminar los registros de BigQuery # deleteQuery = "DELETE FROM `contento-bi.ucc.SMS_V2` WHERE fecha = '" + mifecha + "'" deleteQuery = "DELETE FROM `contento-bi.unificadas.base_gestiones_banco_agricola` WHERE fecha = '" + mifecha + "'" #Primero eliminamos todos los registros que contengan esa fecha client = bigquery.Client() query_job = client.query(deleteQuery) result = query_job.result() query_job.result() # Corremos el job de eliminacion de datos de BigQuery # Terminada la eliminacion de BigQuery y la subida a Cloud Storage corremos el Job mensaje = base_gestiones_banco_agricola_beam.run('gs://ct-unificadas/gestiones/banco_agricola/gestiones_tek/' + archivo, mifecha) if mensaje == "Corrio sin problemas": move(local_route + archivo, fileserver_baseroute + "/BI_Archivos/GOOGLE/Unificadas/Gestiones/banco_agricola/gestiones_tek/Procesados/"+archivo) response["code"] = 200 response["description"] = "Se realizo el cargue correctamente" response["status"] = True # # return jsonify(response), response["code"] # return "Corriendo : " return jsonify(response), response["code"] ################################# BASE GESTIONES VIRTUALES BANCO AGRICOLA ###################################### @unificadas_api.route("/gestiones_virtuales_agricola") def gestiones_virtuales_agricola(): response = {} response["code"] = 400 response["description"] = "No se encontraron ficheros" response["status"] = False local_route = fileserver_baseroute + "/BI_Archivos/GOOGLE/Unificadas/Gestiones/banco_agricola/gestiones_virtuales/" archivos = os.listdir(local_route) for archivo in archivos: if archivo.endswith(".csv"): mifecha = archivo[0:] storage_client = storage.Client() bucket = storage_client.get_bucket('ct-unificadas') # Subir fichero a Cloud Storage antes de enviarlo a procesar a Dataflow blob = bucket.blob('gestiones/banco_agricola/gestiones_virtuales/' + archivo) blob.upload_from_filename(local_route + archivo) # Una vez subido el fichero a Cloud Storage procedemos a eliminar los registros de BigQuery deleteQuery = "DELETE FROM `contento-bi.unificadas.base_gestiones_virtuales_banco_agricola` WHERE fecha = '" + mifecha + "'" #Primero eliminamos todos los registros que contengan esa fecha client = bigquery.Client() query_job = client.query(deleteQuery) result = query_job.result() query_job.result() # Corremos el job de eliminacion de datos de BigQuery # Terminada la eliminacion de BigQuery y la subida a Cloud Storage corremos el Job mensaje = base_gestiones_virtuales_banco_agricola_beam.run('gs://ct-unificadas/gestiones/banco_agricola/gestiones_virtuales/' + archivo, mifecha) if mensaje == "Corrio sin problemas": move(local_route + archivo, fileserver_baseroute + "/BI_Archivos/GOOGLE/Unificadas/Gestiones/banco_agricola/gestiones_virtuales/Procesados/"+archivo) response["code"] = 200 response["description"] = "Se realizo el cargue correctamente" response["status"] = True # # return jsonify(response), response["code"] # return "Corriendo : " return jsonify(response), response["code"] ############################## ETL CARGUE PAGOS ############################ @unificadas_api.route("/pagos") def pagos(): response = {} response["code"] = 400 response["description"] = "No se encontraron ficheros" response["status"] = False local_route = fileserver_baseroute + "/BI_Archivos/GOOGLE/Unificadas/Pagos/" archivos = os.listdir(local_route) for archivo in archivos: if archivo.endswith(".csv"): mifecha = archivo[0:] storage_client = storage.Client() bucket = storage_client.get_bucket('ct-unificadas') # Subir fichero a Cloud Storage antes de enviarlo a procesar a Dataflow blob = bucket.blob('pagos/' + archivo) blob.upload_from_filename(local_route + archivo) # Una vez subido el fichero a Cloud Storage procedemos a eliminar los registros de BigQuery deleteQuery = "DELETE FROM `contento-bi.unificadas.pagos_opx_unificadas` WHERE archivo = '" + mifecha + "'" #Primero eliminamos todos los registros que contengan esa fecha client = bigquery.Client() query_job = client.query(deleteQuery) result = query_job.result() query_job.result() # Corremos el job de eliminacion de datos de BigQuery # Terminada la eliminacion de BigQuery y la subida a Cloud Storage corremos el Job mensaje = pagos_beam.run('gs://ct-unificadas/pagos/' + archivo, mifecha) if mensaje == "Corrio sin problemas": move(local_route + archivo, fileserver_baseroute + "/BI_Archivos/GOOGLE/Unificadas/Pagos/Procesados/"+archivo) response["code"] = 200 response["description"] = "Se realizo el cargue correctamente" response["status"] = True # # return jsonify(response), response["code"] # return "Corriendo : " return jsonify(response), response["code"]
# coding: utf-8 # In[4]: # Naive Bayes using NLP # USe following code if it wont work in first place with UTF-8 code error # import sys # reload(sys) # sys.setdefaultencoding('utf-8') import os os.chdir("C:\\Users\\manishk.bajpai\\Desktop\\") import csv smsdata = open('SMSSpamCollection.txt','r') csv_reader = csv.reader(smsdata,delimiter='\t') smsdata_data = [] smsdata_labels = [] for line in csv_reader: smsdata_labels.append(line[0]) smsdata_data.append(line[1]) smsdata.close() # Printing top 5 lines for i in range(5): print (smsdata_data[i],smsdata_labels[i]) # In[5]: # Printing Spam & Ham count from collections import Counter c = Counter( smsdata_labels ) print(c) # In[9]: import nltk from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer import string import pandas as pd from nltk import pos_tag from nltk.stem import PorterStemmer import nltk nltk.download('popular') def preprocessing(text): text2 = " ".join("".join([" " if ch in string.punctuation else ch for ch in text]).split()) tokens = [word for sent in nltk.sent_tokenize(text2) for word in nltk.word_tokenize(sent)] tokens = [word.lower() for word in tokens] stopwds = stopwords.words('english') tokens = [token for token in tokens if token not in stopwds] tokens = [word for word in tokens if len(word)>=3] stemmer = PorterStemmer() tokens = [stemmer.stem(word) for word in tokens] tagged_corpus = pos_tag(tokens) Noun_tags = ['NN','NNP','NNPS','NNS'] Verb_tags = ['VB','VBD','VBG','VBN','VBP','VBZ'] lemmatizer = WordNetLemmatizer() def prat_lemmatize(token,tag): if tag in Noun_tags: return lemmatizer.lemmatize(token,'n') elif tag in Verb_tags: return lemmatizer.lemmatize(token,'v') else: return lemmatizer.lemmatize(token,'n') pre_proc_text = " ".join([prat_lemmatize(token,tag) for token,tag in tagged_corpus]) return pre_proc_text smsdata_data_2 = [] for i in smsdata_data: smsdata_data_2.append(preprocessing(i)) import numpy as np trainset_size = int(round(len(smsdata_data_2)*0.70)) print ('The training set size for this classifier is ' + str(trainset_size) + '\n') # In[10]: x_train = np.array([''.join(rec) for rec in smsdata_data_2[0:trainset_size]]) y_train = np.array([rec for rec in smsdata_labels[0:trainset_size]]) x_test = np.array([''.join(rec) for rec in smsdata_data_2[trainset_size+1:len(smsdata_data_2)]]) y_test = np.array([rec for rec in smsdata_labels[trainset_size+1:len(smsdata_labels)]]) # building TFIDF vectorizer from sklearn.feature_extraction.text import TfidfVectorizer vectorizer = TfidfVectorizer(min_df=2, ngram_range=(1, 2), stop_words='english', max_features= 4000,strip_accents='unicode', norm='l2') x_train_2 = vectorizer.fit_transform(x_train).todense() x_test_2 = vectorizer.transform(x_test).todense() from sklearn.naive_bayes import MultinomialNB clf = MultinomialNB().fit(x_train_2, y_train) ytrain_nb_predicted = clf.predict(x_train_2) ytest_nb_predicted = clf.predict(x_test_2) from sklearn.metrics import classification_report,accuracy_score print ("\nNaive Bayes - Train Confusion Matrix\n\n",pd.crosstab(y_train,ytrain_nb_predicted,rownames = ["Actuall"],colnames = ["Predicted"])) print ("\nNaive Bayes- Train accuracy",round(accuracy_score(y_train,ytrain_nb_predicted),3)) print ("\nNaive Bayes - Train Classification Report\n",classification_report(y_train,ytrain_nb_predicted)) print ("\nNaive Bayes - Test Confusion Matrix\n\n",pd.crosstab(y_test,ytest_nb_predicted,rownames = ["Actuall"],colnames = ["Predicted"])) print ("\nNaive Bayes- Test accuracy",round(accuracy_score(y_test,ytest_nb_predicted),3)) print ("\nNaive Bayes - Test Classification Report\n",classification_report(y_test,ytest_nb_predicted)) # In[11]: # printing top features feature_names = vectorizer.get_feature_names() coefs = clf.coef_ intercept = clf.intercept_ coefs_with_fns = sorted(zip(clf.coef_[0], feature_names)) print ("\n\nTop 10 features - both first & last\n") n=10 top_n_coefs = zip(coefs_with_fns[:n], coefs_with_fns[:-(n + 1):-1]) for (coef_1, fn_1), (coef_2, fn_2) in top_n_coefs: print('\t%.4f\t%-15s\t\t%.4f\t%-15s' % (coef_1, fn_1, coef_2, fn_2))
#coding:gb2312 #´æ´¢Êý¾Ý import json numbers = [2,3,5,6,7,8,4,9] filename = 'numbers.json' with open(filename,'w') as f: json.dump(numbers,f)
def closestsubarraysum(arr, x): closest = arr[0] + arr[1] for i in range(0, len(arr)): for j in range(1, len(arr)): if (arr[i] + arr[j]) < x and (arr[i] + arr[j] > closest): closest = arr[i] + arr[j] return closest print(closestsubarraysum([10,22,28,29,30,40],54)) 1
# coding=UTF-8 import time import signal from functools import wraps from os.path import join, getsize import os log_dir = './logs/' def initiDir(dir): # Detect whether the directory is existing, if not then create if os.path.exists(dir) == False: os.makedirs(dir) def getCurrentPath(): import os print(os.getcwd()) def format_time(t): import time format = '%Y-%m-%d %l:%M %p' value = time.localtime(int(t)) dt = time.strftime(format, value) def log(*args, **kwargs): args = " ".join(args) format = '%Y-%m-%d %H:%M:%S' # time.time() return the unix time value = time.localtime(int(time.time())) dt = time.strftime(format, value) if kwargs == {}: kwargs = '' with open(log_dir + 'log.txt', 'a+') as f: print >> f, dt, args, kwargs # Estimate the function/method running time # How to use: @fn_timer before the function def fn_timer(fn): @wraps(fn) def function_timer(*args, **kwargs): t0 = time.time() result = fn(*args, **kwargs) t1 = time.time() print("Total time running {}: {} seconds".format(fn.__name__,str(t1 - t0))) return result return function_timer def commandLineTool(command): import os re = os.system(command) return re # read the file def readFile(file): data = None path = os.path.split(file)[0] filename = os.path.split(file)[1] try: with open(file, 'rb') as f: data = f.read() except IOError: print("无法打开文件 或 无法找到当前文件 {}".format(filename)) return None return data # Get the file directory inside the directory def getDirFileLists(dir): file_paths = [] for parent, dirnames, filenames in os.walk(dir): for filename in filenames: file_paths.append(parent+filename) # print(file_paths) return file_paths # Delete the all files inside the directory def deleteAllFiles(dir): import os imgList = os.listdir(dir) for fileName in imgList: file = os.path.join(dir, fileName) os.remove(file) # Calculate the total Size inside the directory def getdirsize(dir): size = 0 for root, dirs, files in os.walk(dir): size += sum([getsize(join(root, name)) for name in files]) size = size/1024/1024 import math num = size * 1000 num = math.floor(num) / 1000 return str(num)+'MB' # Todo def time_limit(interval): def wraps(func): def handler(signum, frame): #TODO have a test, let it directly return print('tim_limit RuntimeError') # raise RuntimeError() def deco(*args, **kwargs): signal.signal(signal.SIGALRM, handler) signal.alarm(interval) res = func(*args, **kwargs) signal.alarm(0) return res return deco return wraps def _initialize_dirs_for_utils(): initiDir(log_dir) if __name__ == '__main__': # _initialize_dirs_for_utils() log('test', 'dd', 'dddd', a = 'dd') # a = ['ab'] # print("%")
from . import db class UserProfile(db.Model): first_name = db.Column(db.String(80)) last_name = db.Column(db.String(80)) gender = db.Column(db.String(1)) email = db.Column(db.String(255), unique=True) location = db.Column(db.String(80)) biography = db.Column(db.Text) image = db.Column(db.String(255)) created_on = db.Column(db.String(80)) uid = db.Column(db.Integer, primary_key=True, autoincrement=False) __tablename__ = "profiles" def __init__(self,first_name, last_name, gender,email,location,biography,image,created_on,uid): self.first_name = first_name self.last_name = last_name self.gender = gender self.email = email self.location = location self.biography = biography self.image = image self.created_on = created_on self.uid = uid def is_authenticated(self): return True def is_active(self): return True def is_anonymous(self): return False def get_id(self): try: return unicode(self.id) # python 2 support except NameError: return str(self.id) # python 3 support def __repr__(self): return "User: {0} {1}".format(self.firstname, self.lastname)
# Find the number of n-digit natural numbers A such that no three consecutive # digits of A have a sum greater than 9. # Let f(n, B) = the number of n-digit natural numbers A (leading zeros allowed) # with B is the number formed by the first two digits of A such that # no three consecutive digits of A have a sum greater than a specified # constant C (Here C = 9). # Recurrence relation: # f(n, B) = sum{f(n - 1, D)} where D = 10 * (B % 10) + H for all H such that # 0 <= H <= 9 and B % 10 + H + floor(B / 10) <= C. # Base cases: f(n, B) = 1 if n < 3 and B % 10 + floor(B / 10) <= C # f(n, B) = 0 if n < 3 and B % 10 + floor(B / 10 > C # Let g(n, B) = the number of n-digit natural numbers A (no leading zeros) # with B is the number formed by the first two digits of A such that # no three consecutive digits of A have a sum greater than a specified # constant C (Here C = 9). # # g(n, B) = sum(f(n, P)) where 10 <= P <= 99 # Methodology: Using memoization to prevent recomputation. MEMO_TABLE = [] def countSpecialNum(numDigit, upperLimit): initializeMemoTable(numDigit) count = 0 for firstTwoDigit in range(10, 100): count += f(numDigit, firstTwoDigit, upperLimit) return count def initializeMemoTable(n): global MEMO_TABLE MEMO_TABLE = [[-1] * 100 for row in range(0, n + 1)] def f(numDigit, firstTwoDigit, upperLimit): if numDigit < 3: if firstTwoDigit // 10 + firstTwoDigit % 10 <= upperLimit: return 1 else: return 0 if MEMO_TABLE[numDigit][firstTwoDigit] >= 0: return MEMO_TABLE[numDigit][firstTwoDigit] mySum = 0 firstDigit = firstTwoDigit // 10 secondDigit = firstTwoDigit % 10 thirdDigit = 0 while thirdDigit < 10 and thirdDigit + firstDigit + secondDigit <= upperLimit: mySum += f(numDigit - 1, secondDigit * 10 + thirdDigit, upperLimit) thirdDigit += 1 MEMO_TABLE[numDigit][firstTwoDigit] = mySum return mySum
import matplotlib.pyplot as plt #import matplotlib.patches as mpatches import numpy as np import datetime import os from collections import OrderedDict import LearnerProfile def Graph(data, number, name='graph', title=''): MAX_RANGE = 10 MIN_RANGE = -5 # displaces chunks for the histogram based on width of individual # bars CHUNK_DISPLACE = 3 BAR_RANGE = 100 tableau20 = [(31,119,180), (174,199,232), (255,127,14), (255,187,120), (44,160,44), (152,223,138), (214,39,40), (255,152,150), (148,103,189), (197,176,213), (140,86,75), (196,156,148), (227,119,194), (247, 182, 210), (127, 127, 127), (199,199,199), (188,189,34), (219,219,141), (23,190,207), (158,218,229)] for i in range(len(tableau20)): r, g, b = tableau20[i] tableau20[i] = (r / 255., g / 255., b/255.) plt.figure(figsize=(12,9)) start = data[0][1] end = data[-1][1] timeLength = (end - start).total_seconds() plt.ylim(MIN_RANGE,MAX_RANGE) plt.xlim(0, timeLength) plt.text(timeLength/2, MAX_RANGE+1, title, fontsize=24, color='k') profileData = [] for metric in data[0][0].average.errorTracking: x = [] y = [] for profile in data: # print(profile[0].errorTracking) x.append((profile[1] - start).total_seconds()) y.append(profile[0].average.errorTracking[metric]) profileData.append([x,y,metric]) # print('x = ', str((profile[1] - start).total_seconds()), '; y = ', str(profile[0].errorTracking[metric]) + '\n') for i, metric in enumerate(profileData): plt.plot(profileData[i][0],profileData[i][1], lw=1.0, color=tableau20[i]) plt.text(timeLength + timeLength*.05, 10 - i, metric[2], fontsize=14, color=tableau20[i]) plt.savefig(''.join(['graphs/',name,'_',str(number)]), bbox_inches = 'tight') plt.clf() # plot the problem statistics problemCount = len(data[-1][0].problems) + 0.0 metricCount = len(data[-1][0].problems[0].errorTracking) + 0.0 barWidth = BAR_RANGE / ((metricCount + CHUNK_DISPLACE) * problemCount * 1.0) groupWidth = (barWidth*metricCount + barWidth*CHUNK_DISPLACE) # print(problemCount,metricCount) plt.figure(figsize=(12,9)) plt.ylim(MIN_RANGE, MAX_RANGE) plt.xlim(0, BAR_RANGE) plt.text(timeLength/2, MAX_RANGE+1, title, fontsize=24, color='k') problemStats = [] for i, metric in enumerate(data[-1][0].problems[0].errorTracking): x = [] y = [] for j, problem in enumerate(data[-1][0].problems): x.append((j*groupWidth + i*barWidth)) y.append(problem.errorTracking[metric]) problemStats.append([x,y,problem.problemId]) for i in range(0, int(problemCount)): # print('generating text', problemCount) plt.text((groupWidth * i) + (groupWidth / 2), MIN_RANGE - 1, data[-1][0].problems[i].problemId) ax = plt.subplot(111) ax.set_xticklabels([]) col = 0 # print('creating graph') for stat in problemStats: ax.bar(stat[0], stat[1], width=barWidth, color=tableau20[col], align='center') col += 1 if col > metricCount: col = 0 # create legend for i, metric in enumerate(data[-1][0].problems[0].errorTracking): ax.text(BAR_RANGE + 2, MAX_RANGE - (i * .5), metric, color = tableau20[i], fontsize = 14) plt.savefig(''.join(['graphs/',name,'_bar'])) plt.clf() plt.close() return # graph data from all profiles: we'll need to be smart def allGraph(profiles, problemAnalysis, conditionAnalysis, totalConditionAnalysis, studentCount, rawProfiles, timeData): print('Graphing all') MAX_RANGE_OFF = 10 MIN_RANGE_OFF = -5 MAX_RANGE_OTHER = 10 MIN_RANGE_OTHER = -5 WIGGLE = .05 PRB_MIN_RANGE = 0 PRB_MAX_RANGE = 16 barWidth = 2 # displaces chunks for the histogram based on width of individual # bars CHUNK_DISPLACE = 3 BAR_RANGE = 100 tableau20 = [(31,119,180), (174,199,232), (255,127,14), (255,187,120), (44,160,44), (152,223,138), (214,39,40), (255,152,150), (148,103,189), (197,176,213), (140,86,75), (196,156,148), (227,119,194), (247, 182, 210), (127, 127, 127), (199,199,199), (188,189,34), (219,219,141), (23,190,207), (158,218,229)] PLOT_ORDER = ['offByNx', 'offByNy', 'offByNxMag', 'offByNyMag', 'offByNxChir', 'offByNyChir', 'offByCount'] OTHER_ORDER = ['attempts', 'correctProb','sumError', 'ignoreX', 'ignoreY', 'flippingError', 'noPlot', 'offByCount', 'invertX', 'invertY'] LATERAL_ANALYSIS = ['correctProb', 'sumError', 'ignoreX', 'ignoreY', 'flippingError', 'noPlot', 'offByCount', 'invertX', 'invertY','deleteMoves'] for i in range(len(tableau20)): r, g, b = tableau20[i] tableau20[i] = (r / 255., g / 255., b/255.) # create lateral problem analysis graphs if not os.path.exists('graphs'): os.makedirs('graphs') if not os.path.exists('graphs/problemAnalysis'): os.makedirs('graphs/problemAnalysis') if not os.path.exists('graphs/conditionAnalysis'): os.makedirs('graphs/conditionAnalysis') os.chdir('graphs/problemAnalysis') for problemId, problem in problemAnalysis.items(): plt.figure(figsize=(12,9)) plt.xlim(PRB_MIN_RANGE, len(problem.errorTracking)+2) problemSum = 0 for condition in studentCount: if problemId in studentCount[condition]: problemSum += studentCount[condition][problemId] # print(problemSum) ax = plt.subplot(111) ax.spines["top"].set_visible(False) ax.spines["right"].set_visible(False) ax.get_yaxis().tick_left() plt.xticks(visible=False) plt.yticks(fontsize=14) legend = OrderedDict() attempts = problem.errorTracking['attempts'] correct = problem.errorTracking['correctProb'] incorrect = attempts - correct if attempts == correct: attempts += 1 for index, error in enumerate(problem.errorTracking.items()): if error[0] == 'correctProb': legend[('incorrect', incorrect)] = ax.bar(index + 1, incorrect/problemSum, 1, color = tableau20[index]) elif error[0] in LATERAL_ANALYSIS: legend[error] = ax.bar(index + 1, error[1]/problemSum, 1, color=tableau20[index]) plt.title( problemId +' lateral Analysis', fontsize=24, color='k') # create legend # for i, metric in enumerate(problem.errorTracking): # ax.text(len(problem.errorTracking)+2, float((ymax)-(ymax-ymin)*.03*i), metric, color=tableau20[i], fontsize = 14) plt.legend(list(legend.values()), list(legend.keys())) plt.savefig(''.join(['error_analysis/',problemId,'analysis.png'])) plt.close() # create behavior graph plt.figure(figsize=(12,9)) ax = plt.subplot(111) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.get_yaxis().tick_left() plt.yticks(fontsize=14) plt.xticks(visible=False) ydata = problem.behaviors.values() bars = ax.bar(range(0,len(ydata)), ydata, color=tableau20, width=barWidth) plt.title( problemId + ' behavior Analysis', fontsize=24, color='k') x_range = plt.axis()[1] - plt.axis()[0] x_max = plt.axis()[1] plt.xlim(xmax = x_max + x_range*.3) plt.legend(bars, list(problem.behaviors.keys())) ax.set_ylabel('Count/sessions') plt.savefig(''.join(['behaviors/' ,problemId, 'behaviors.png'])) plt.clf() plt.close() print('Problem ', problemId, ' analysis completed') os.chdir('..') # create lateral condition/Problem analysis Graphs conditionStats = {} conditionStats['total'] = {} legendColor = {} for condition, problems in conditionAnalysis.items(): conditionStats[condition] = {} keys = sorted(problems.keys()) for index, error in enumerate(problems[keys[0]].errorTracking.items()): conditionStats[condition][error[0]] = [] legendColor[error[0]] = index if not error[0] in conditionStats[condition]: conditionStats[condition][error[0]] = [0.0]*len(keys) for index, key in enumerate(keys): conditionStats[condition][error[0]].append((problems[key].errorTracking[error[0]] * 1.0)/studentCount[condition][key]) for problemId, problem in problems.items(): if condition in studentCount and problemId in studentCount[condition]: userCount = studentCount[condition][problemId] else: continue plt.figure(figsize=(12,9)) ax = plt.subplot(111) legend = OrderedDict() ax.spines["top"].set_visible(False) ax.spines["right"].set_visible(False) ax.get_yaxis().tick_left() plt.xticks(visible=False) plt.yticks(fontsize=14) attempts = problem.errorTracking['attempts'] correct = problem.errorTracking['correctProb'] incorrect = attempts - correct # avoid divide by 0 if attempts == correct: attempts += 1 for index, error in enumerate(problem.errorTracking.items()): if error[0] == 'correctProb': legend[('incorrect', incorrect)] = ax.bar(index + 1, incorrect/userCount, 1, color = tableau20[index]) elif error[0] in LATERAL_ANALYSIS: legend[error] = ax.bar(index + 1, error[1]/userCount, 1, color=tableau20[index]) plt.title(condition + problemId +' condition Analysis', fontsize=24, color='k') plt.legend(list(legend.values()), list(legend.keys())) plt.ylabel('Count/User Session') plt.xlabel('Problem') if(condition is ''): condition = 'None' plt.savefig(''.join(['conditionAnalysis/all/', problemId, '_', condition, '.png'])) plt.savefig(''.join(['conditionAnalysis/', condition, '/', problemId, '_', condition, '.png'])) plt.savefig(''.join(['conditionAnalysis/Problems/', problemId, '/', problemId, '_', condition, '.png'])) print(problemId, '/', condition, 'analysis complete') plt.close() # check conditions over all sessions for condition, stats in conditionStats.items(): plt.figure(figsize=(12,9)) ax = plt.subplot(111) legend = OrderedDict() ax.spines["top"].set_visible(False) ax.spines["right"].set_visible(False) ax.get_yaxis().tick_left() plt.yticks(fontsize=14) for error, data in stats.items(): if error in LATERAL_ANALYSIS: if error == 'correctProb': incorrect = [attempts - correct for attempts, correct in zip(stats['attempts'], data)] legend['incorrect'] = plt.plot(range(1, 1+len(incorrect)), incorrect, marker='.', color=tableau20[int(legendColor[error])], label='incorrect') else: plt.plot(range(1, 1+len(data)), data, marker='.', color=tableau20[int(legendColor[error])], label=str(error)) plt.title(condition + ' Session Analysis', fontsize=24, color='k') plt.ylabel('Count/User Session') plt.legend() plt.show() # plt.legend(list(legend.values()), list(legend.keys())) if(condition is ''): condition = 'None' plt.savefig(''.join(['conditionAnalysis/Session/', condition, '_scatter', '.png'])) plt.close() print(condition, 'session analysis complete') # Create overall condition graphs - i.e. errors in all problems for all sessinos in a condition for condition, data in totalConditionAnalysis.items(): sessionCount = studentCount[condition]['541'] plt.figure(figsize=(12,9)) ax = plt.subplot(111) legend = OrderedDict() ax.spines["top"].set_visible(False) ax.spines["right"].set_visible(False) ax.get_yaxis().tick_left() print(data) plt.xticks(visible=False) plt.yticks(fontsize=14) attempts = data.errorTracking['attempts'] correct = data.errorTracking['correctProb'] incorrect = attempts - correct print(incorrect) # avoid divide by 0 if attempts == correct: attempts += 1 for index, error in enumerate(data.errorTracking.items()): if error[0] == 'correctProb': legend[('incorrect', incorrect)] = ax.bar(index + 1, incorrect/sessionCount, 1, color = tableau20[index]) elif error[0] in LATERAL_ANALYSIS: legend[error] = ax.bar(index + 1, error[1]/sessionCount, 1, color=tableau20[index]) plt.title(condition + ' Total condition Analysis', fontsize=24, color='k') plt.legend(list(legend.values()), list(legend.keys())) plt.ylabel('Count') if(condition is ''): condition = 'None' plt.savefig(''.join(['conditionAnalysis/Session/', condition, '_bar', '.png'])) plt.close() print(condition, 'error graphs created') # now create profile graphs # print(profiles[0][0].problems[-1]) print('Problem Analysis Graphs Complete.') # Profile analysis graphs for profile in profiles: if(len(profile.problems) == 0): continue profileOffByData = {} profileOtherData = {} # dictionary storage for easy access profileCorrectnessData = {} profileAttemptData = {} # get all the data into useful groups for i, metric in enumerate(profile.problems[-1].errorTracking): for problem in profile.problems: if metric in PLOT_ORDER: if metric in profileOffByData: profileOffByData[metric].append((problem.problemId, problem.errorTracking[metric])) else: profileOffByData[metric] = [(problem.problemId, problem.errorTracking[metric])] if metric in OTHER_ORDER: if metric in profileOtherData: profileOtherData[metric].append((problem.problemId, problem.errorTracking[metric])) else: profileOtherData[metric] = [(problem.problemId, problem.errorTracking[metric])] if metric == 'correct': profileCorrectnessData[problem.problemId] = problem.errorTracking[metric] elif metric == 'attempts': profileCorrectnessData[problem.problemId] = problem.errorTracking[metric] sortedOffBy = OrderedDict() sortedOther = OrderedDict() for metric in OTHER_ORDER: sortedOther[metric] = OrderedDict(sorted(profileOtherData[metric], key=lambda id: int(id[0]))) for metric in PLOT_ORDER: sortedOffBy[metric] = OrderedDict(sorted(profileOffByData[metric], key=lambda id: int(id[0]))) problemCount = len(profile.problems) # groupSize = len(PLOT_ORDER)*barWidth + CHUNK_DISPLACE # tickPlacement = np.arange(CHUNK_DISPLACE + groupSize *.5, CHUNK_DISPLACE + groupSize*.5 + groupSize*problemCount, groupSize) tickLabels = map(lambda x: str(int(x.problemId)-540), profile.problems) plt.figure(figsize=(12,9)) plt.autoscale(enable=True, axis='y', tight=False) ax = plt.subplot(211) stat_legend = OrderedDict() index = np.arange(0, len(OTHER_ORDER)*barWidth*len(profile.problems) + CHUNK_DISPLACE*len(profile.problems), len(OTHER_ORDER)*barWidth + CHUNK_DISPLACE) labelLoc = np.arange(len(OTHER_ORDER)*barWidth/2.0, len(OTHER_ORDER)*barWidth*len(profile.problems) + CHUNK_DISPLACE*len(profile.problems), len(OTHER_ORDER)*barWidth + CHUNK_DISPLACE ) for i, statTup in enumerate(sortedOther.items()): stat_legend[statTup[0]] = ax.bar(index + (barWidth * i), statTup[1].values(), barWidth, color=tableau20[i]) x_range = plt.axis()[1] - plt.axis()[0] x_max = plt.axis()[1] ax.set_xticks(labelLoc) ax.set_xticklabels(tickLabels) plt.xlim(xmax = x_max + x_range*.25) # create legend plt.legend(list(stat_legend.values()), list(stat_legend.keys())) plt.xlabel('Problem', labelpad=25) plt.ylabel('Count') plt.title(''.join(['subject ', profile.subjectID, ' ', profile.condition , ' Errors'])) plt.savefig(''.join(['profileAnalysis/other/', str(profile.subjectID), '_', profile.condition, '_other']), bbox_inches='tight') plt.clf() plt.close() # off By plot plt.figure(figsize=(12,9)) plt.autoscale(enable=True, axis='y', tight=False) ax = plt.subplot(211) stat_legend = OrderedDict() index = np.arange(0, len(PLOT_ORDER)*barWidth*len(profile.problems) + CHUNK_DISPLACE*len(profile.problems), len(PLOT_ORDER)*barWidth + CHUNK_DISPLACE) labelLoc = np.arange(len(PLOT_ORDER)*barWidth/2.0, len(PLOT_ORDER)*barWidth*len(profile.problems) + CHUNK_DISPLACE*len(profile.problems), len(OTHER_ORDER)*barWidth + CHUNK_DISPLACE) for i, statTup in enumerate(sortedOffBy.items()): stat_legend[statTup[0]] = ax.bar(index + (barWidth * i), statTup[1].values(), barWidth, color=tableau20[i]) x_range = plt.axis()[1] - plt.axis()[0] x_max = plt.axis()[1] ax.set_xticks(labelLoc) ax.set_xticklabels(tickLabels) plt.xlim(xmax = x_max + x_range*.25) # plt.xticks(index + barWidth, tickLabels) # create legend plt.legend(list(stat_legend.values()), list(stat_legend.keys())) plt.xlabel('Problem', labelpad=25) plt.ylabel('Count') plt.title(''.join(['subject', profile.subjectID, ' ', profile.condition , ' Off-By errors'])) plt.savefig(''.join(['profileAnalysis/offBy/', str(profile.subjectID), '_', profile.condition, '_offBy']), bbox_inches='tight') plt.clf() plt.close() # time analysis timeData[profile.subjectID] print('Profile ', profile.subjectID, ' completed') plt.clf() plt.close() print ('All graph complete') return
# coding: utf-8 import datetime import random import string class VotePool(object): _pool = {} @classmethod def _gen_unique_id(cls): id = ''.join([random.choice(string.digits) for i in range(4)]) if id in cls._pool: return cls._gen_unique_id() return id @classmethod def create_vote(cls, threshold, callback, success_msg, timeout=300): id = cls._gen_unique_id() cls._pool[id] = Vote(id, threshold, callback, success_msg, timeout) return cls._pool[id] @classmethod def get_valid_vote(cls, id): if id not in cls._pool: return None vote = cls._pool[id] if not vote.is_valid(): return None return vote @classmethod def has_valid_vote(cls, id): return bool(cls.get_valid_vote(id)) @classmethod def incr_vote(cls, id, member): vote = cls.get_valid_vote(id) if not vote: return False return vote.incr(member) class Vote(object): def __init__(self, id, threshold, callback, success_msg, timeout): self.id = id self.cnt = 0 self.callback = callback self.members = set() self.timeout = 300 self.threshold = threshold self.success_msg = success_msg self.created_at = datetime.datetime.now() def incr(self, member): if not self.is_valid(): return False if member in self.members: return False self.members.add(member) self.cnt += 1 if self.cnt >= self.threshold: self.callback() return True def is_valid(self): return True def is_success(self): return self.cnt >= self.threshold
#!python # # tofpgen: Do the easy things to convert the output of F* (or guiguts) # into fpgen input. Try not to do anything that will be wrong. # Output is simply stuck into a file called out # -- character set to UTF-8 # -- em-dashes # -- curly quotes # -- /##/ -> <quote>...</quote> # -- [#] -> <fn id='#'> # -- [Footnote:] -> <footnote>...</footnote> # -- [Sidenote:] -> <sidenote>...</sidenote> # -- [Illustration:] -> <illustration>...</illustration> # -- \n\n\n\nXXX -> <chap-head>XXX</chap-head> # import sys import re import os import fnmatch import chardet import datetime def fatal(line): sys.stderr.write("ERROR " + line) exit(1) if len(sys.argv) > 2: fatal("Too many args; Usage: tofpgen [xxx-src.txt]\n") if len(sys.argv) < 2: src = None for file in os.listdir('.'): if fnmatch.fnmatch(file, '*-src.txt'): if src != None: fatal("Multiple *-src.txt files in current directory\n") src = file if src == None: fatal("No *-src.txt file found in current directory\n") else: src = sys.argv[1] basename = re.sub('-src.txt$', '', src) regexFootnote = re.compile("^\[Footnote ([ABC0-9][0-9]*): (.*)$") regexIllStart = re.compile("^\[Illustration: *") regexIllOne = re.compile("^\[Illustration: (.*)\]$") regexIllNoCap = re.compile("^\[Illustration]$") regexFNRef = re.compile("\[([ABCD0-9][0-9]*)\]") sidenoteRE = re.compile("\[Sidenote: (.*)\]$") postamble = """ <l rend='center mt:3em'>THE END</l> <heading level='1'>TRANSCRIBER NOTES</heading> Mis-spelled words and printer errors have been fixed. Inconsistency in hyphenation has been retained. Inconsistency in accents has been fixed. Inconsistency in accents has been retained. Because of copyright considerations, the illustrations by X (y-z) have been omitted from this etext. Illustrations have been relocated due to using a non-page layout. Some photographs have been enhanced to be more legible. When nested quoting was encountered, nested double quotes were changed to single quotes. Space between paragraphs varied greatly. The thought-breaks which have been inserted attempt to agree with the larger paragraph spacing, but it is quite possible that this was simply the methodology used by the typesetter, and that there should be no thought-breaks. <nobreak>[End of TITLE, by AUTHOR] /* end of """ + basename + """-src */ """ date = datetime.datetime.now().strftime('%d-%b-%Y') preamble = """/* This is """ + basename + """-src as of """ + date + """ */ <property name="cover image" content="images/cover.jpg"> <option name="pstyle" content="indent"> //<option name="summary-style" content="center"> //<option name="poetry-style" content="center"> <meta name="DC.Creator" content="AUTHOR"> <meta name="DC.Title" content="TITLE"> <meta name="DC.Language" content="en"> <meta name="DC.Created" content="DATE"> <meta name="DC.date.issued" content="DATE"> <meta name="DC.Subject" content="SUBJECT"> <meta name="Tags" content="SUBJECT"> <meta name="Series" content="SERIES [15]"> <meta name="generator" content="fpgen 4.63b"> <lit section="head"> <style type="text/css"> .poetry-container { margin-top:.5em; margin-bottom:.5em } .literal-container { margin-top:.5em; margin-bottom:.5em } div.lgc { margin-top:.5em; margin-bottom:.5em } p { margin-top:0em; margin-bottom:0em; } .index1 .line0, .index2 .line0 { text-align: left; text-indent:-2em; margin:0 auto 0 2em; } </style> </lit> <if type='h'> <illustration rend="w:80%" src="images/cover.jpg"/> <pb> </if> """ def quote(line): if line == "<pn='+1'>": return line; # Leading or trailing double or single quotes on the line if line[0] == '"': line = '“' + line[1:] if line[-1] == '"': line = line[0:-1] + '”' if line[0] == "'": line = '‘' + line[1:] if line[-1] == "'": line = line[0:-1] + '’' # space quote starts sentence, opening quote line = re.sub('" ', '” ', line) # space quote, starts sentence # em-dash quote, starts sentence? # open paren, quote starts sent line = re.sub('([ —(])"', r'\1“', line) # Punctuation or lower-case letter, followed by quote, ends a sentence line = re.sub(r'([\.,!?a-z])"', r'\1”', line) # quote, open-square is probably a footnote ref at the end of a quote line = re.sub(r'"\[', '”[', line) # quote, close-square is the end of a quote line = re.sub(r'"]', '”]', line) # single between two letters is a contraction line = re.sub(r"(\w)'(\w)", r"\1’\2", line) # Match the direction if single/double line = re.sub(r"“'", r"“‘", line) line = re.sub(r"'”", r"’”", line) # End of sentence for single line = re.sub(r"' ", r"’ ", line) # Start single after dash line = re.sub("([ —])'", r"\1‘", line) # End single after letters line = re.sub(r"([\.,!?a-z])'", r"\1’", line) # Common, non-ambiguous contractions for word in [ "em", "Twas", "twas", "Tis", "tis", "Twould", "twould", "Twill", "twill", "phone", "phoned", "phoning", "cello" ]: line = re.sub(r'([ “]|^)‘' + word + r'([ !,\.?—:]|$)', r'\1’' + word + r'\2', line) # Insert narrow non-breaking space between adjacent quotes line = re.sub(r'([\'"‘’“”])([\'"‘’“”])', r'\1<nnbsp>\2', line) if "'" in line or '"' in line: sys.stderr.write("CHECK QUOTE: " + line + '\n') return line def sidenote(line): m = sidenoteRE.match(line) if m: return "<sidenote>" + m.group(1) + "</sidenote>" return line def footnote(line): global inFN # Replace [12] footnote references line = regexFNRef.sub(r"<fn id='#'>/*\1*/", line) m = regexFootnote.match(line) if not m: if inFN: if line.endswith("]"): line = line[:-1] + "</footnote>" inFN = False return line if inFN and m: fatal("ERROR already in FN at " + line) fn = m.group(1) rest = m.group(2) inFN = True if rest.endswith("]"): rest = rest[:-1] + "</footnote>" inFN = False return "<footnote id='#'>/*" + fn + "*/" + rest def illustration(line): global inIll, illStartLine if inIll and line.endswith("]"): inIll = False illStartLine = None return line[:-1] + "\n</caption>\n</illustration>" mOne = regexIllOne.match(line) mStart = regexIllStart.match(line) mNoCap = regexIllNoCap.match(line) if (mStart or mNoCap) and inIll: fatal("already in ill at " + line + ", which started at " + illStartLine) commonIll = "<illustration rend='w:WW%' alt='AAA' src='images/XXX.jpg'"; # One line illustration with caption if mOne: caption = mOne.group(1) line = commonIll + ">\n<caption>\n" + \ caption + "\n</caption>\n</illustration>\n" return line # Illustration with caption starts, but does not end on this line if mStart: captionStart = line[15:].strip() inIll = True illStartLine = line return commonIll + ">\n<caption>\n" + captionStart # Illustration without caption if mNoCap: return commonIll + "/>"; return line def emitTOC(block, output): # If there is at least one line ending in whitespace number, assume # the TOC has page numbers hasPageNumbers = False for l in block: if re.search(r" *[0-9][0-9]*$", l): hasPageNumbers = True break if hasPageNumbers: output.write("<table pattern='r h r'>\n") r = re.compile("^([^ ][^ ]*) *(.*)[ \.][ \.]*([0-9][0-9]*)$") else: output.write("<table pattern='r h'>\n") r = re.compile("^ *([^ ][^ ]*) *(.*)$") for l in block: if l == "": continue m = re.match(r"^([A-Z]*) *([A-Z]*)$", l) if m: # CHAPTER PAGE a = m.group(1) b = m.group(2) output.write("<fs:xs>"+a+"</fs>||<fs:xs>"+b+"</fs>\n") else: m = r.match(l) if m: chno = m.group(1) name = m.group(2).strip() if hasPageNumbers: pn = m.group(3) output.write(chno + "|" + name + "|#" + pn + "#\n") else: output.write(chno + "|" + name + "\n") else: output.write("???? " + l + "\n") output.write("</table>\n") inFN = False inIll = False illStartLine = None chapHead = False subHead = False inTOC = False startTOC = False rawdata = open(src, "rb").read() encoding = chardet.detect(rawdata)['encoding'] if encoding[:3] == "ISO": encoding = "ISO-8859-1" sys.stderr.write("Source file encoding: " + encoding + "\n") sys.stderr.write("converting " + src + " into file out\n") with open(src, "r", encoding=encoding) as input: with open("out", "w", encoding="UTF-8") as output: output.write(preamble) blanks = 0 for line in input: line = line.rstrip() if line == "": blanks += 1 if not inTOC: output.write("\n") continue line = line.replace("--", "—") line = quote(line) # Matched the /* after a line with CONTENTS # Accumulate the whole block, process it in one if inTOC: if line == "*/": # End of TOC, process now startTOC = False inTOC = False emitTOC(tocBlock, output) blanks = 0 elif line != "": # Accumulate line tocBlock.append(line) blanks = 0 continue if blanks == 2 and chapHead and line == "/*" and startTOC: inTOC = True tocBlock = [] continue if line == "/*" or regexIllOne.match(line) or regexIllNoCap.match(line) \ or regexIllStart.match(line): blanks = 0 chapHead = False if blanks >= 4: if re.match(r'contents', line, re.IGNORECASE) != None: startTOC = True if not ("<chap-head " in line): line = "<chap-head pn='XXX'>" + line + "</chap-head>" chapHead = True subHead = False elif blanks == 1 and chapHead and line != "/*": if subHead: line = "<heading level='3'>" + line + "</heading>" else: if not ("<sub-head>" in line): line = "<sub-head>" + line + "</sub-head>" subHead = True elif blanks >= 2: chapHead = False subHead = False startTOC = False # Or error! if line == "/#": line = "<quote>" elif line == "#/": line = "</quote>" else: line = footnote(line) line = illustration(line) line = sidenote(line) blanks = 0 output.write(line + "\n") output.write(postamble) if inFN: sys.stderr.write("END OF FILE in a footnote\n") exit(1) if inIll: sys.stderr.write("END OF FILE in an illustration\n") exit(1)
# Python Substrate Interface Library # # Copyright 2018-2023 Stichting Polkascan (Polkascan Foundation). # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from substrateinterface import SubstrateInterface def subscription_handler(storage_key, updated_obj, update_nr, subscription_id): print(f"Update for {storage_key}: {updated_obj.value}") substrate = SubstrateInterface(url="ws://127.0.0.1:9944") # Accounts to track storage_keys = [ substrate.create_storage_key( "System", "Account", ["5GrwvaEF5zXb26Fz9rcQpDWS57CtERHpNehXCPcNoHGKutQY"] ), substrate.create_storage_key( "System", "Account", ["5FHneW46xGXgs5mUiveU4sbTyGBzmstUspZC92UhjJM694ty"] ), substrate.create_storage_key( "System", "Events" ), ] result = substrate.subscribe_storage( storage_keys=storage_keys, subscription_handler=subscription_handler )
""" Data visualization functions to simplify plots in Seaborn. """ import pandas as pd import seaborn as sns import matplotlib.pyplot as plt def _get_steps(df, ax, width): """Properly spaces values in x-axis.""" steps = ( ( df[ax].max() - df[ax].min() ) / width / 10 ) steps = max(int(round(steps)), 1) return steps def get_scatterplot(df, x, y, height=5, width=5, hue=None): """Create a scatterplot using Seaborn. """ p = sns.catplot( x=x, y=y, hue=hue, kind="swarm", data=df, height=height, aspect=width/height, #palette="Set1", palette=sns.color_palette(['blue', 'grey']) ) step = _get_steps(df, x, width) p.set_xticklabels(rotation=90, step=step) p.fig.suptitle("Scatterplot: {} vs {}".format(x, y)) return p def get_historgram(df, x, height=5, width=5, bins=20): """Create a histogram plot using Seaborn Docs: https://seaborn.pydata.org/tutorial/distributions.html """ fig, ax = plt.subplots() fig.set_size_inches(width, height) p = sns.distplot( df[x], bins=bins, kde=False, #hue=None, color='blue', ) p.set(title = "Histogram: {}".format(x)) return p def get_boxplot(df, x, y, height=5, width=5): """Create a boxplot using Seaborn """ fig, ax = plt.subplots() fig.set_size_inches(width, height) p = sns.boxplot(x=x, y=y, data=df) p.set(title = "Box Chart: {} vs {}".format(x, y)) return p def get_bar_chart(df, x, y, height=5, width=5): """Create a bar chart using Seaborn """ p = sns.catplot( x=x, y=y, kind='bar', data=df, height=height, aspect=width/height, ) p.set_xticklabels(rotation=90, step=1) p.fig.suptitle("Bar Chart: {} vs {}".format(x, y)) return p
#!/usr/bin/env python # # Copyright (c) 2019 Opticks Team. All Rights Reserved. # # This file is part of Opticks # (see https://bitbucket.org/simoncblyth/opticks). # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ * http://nghiaho.com/?page_id=846 NB Opposite Sign Convention to GLM -------------------------------------- * http://planning.cs.uiuc.edu/node102.html * http://planning.cs.uiuc.edu/node103.html | r11 r12 r13 | | r21 r22 r23 | | r31 r32 r33 | Rz (yaw) conterclockwise "alpha" cosZ -sinZ 0 sinZ cosZ 0 0 0 1 Ry (pitch) counterclockwise "beta" cosY 0 sinY 0 1 0 -sinY 0 cosY Rx (roll) counterclockwise "gamma" 1 0 0 0 cosX -sinX 0 sinX cosX yawPitchRoll Rz Ry Rx Rzyx = Rz(alpha).Ry(beta).Rx(gamma) ^^^^^^ roll first First roll Rx, then pitch Ry then finally yaw Rz 11: cosZ cosY 12: cosZ sinY sinX - sinZ cosX 13: cosZ sinY cosX + sinZ sinX 21: sinZ cosY 22: sinZ sinY sinX + cosZ cosX 23: sinZ sinY cosX - cosZ sinX 31: -sinY 32: cosY sinX 33: cosY cosX r32/r33 = cosY sinX / cosY cosX = tanX r32^2 + r33^2 = cosY^2 sinX^2 + cosY^2 cosX^2 = cosY^2 -r31/sqrt(r32^2 + r33^2) = sinY / cosY = tanY r21/r11 = tanZ r11^2 + r21^2 = cosZ^2 cosY^2 + sinZ^2 cosY^2 = cosY^2 "cosb"^2 -r31/sqrt(r11^2 + r21^2) = sinY / cosY = tanY cosY->0 => sinY=>1 ... DONT FOLLOW THE LEAP TO sinZ = 0, cosZ = 1 -r23/r22 = -(sinZ sinY cosX - cosZ sinX) / (sinZ sinY sinX + cosZ cosX ) how is this meant to yield tanY ??? ... perhaps a mal-assumption made here that sinY->0 ??? cosZ sinX / cosZ cosX -> tanX (if sinY->0, BUT IT DOESNT ???) * https://d3cw3dd2w32x2b.cloudfront.net/wp-content/uploads/2012/07/euler-angles1.pdf * ~/opticks_refs/Extracting_Euler_Angles.pdf """ import numpy as np def GetAngles(m): """ 51 G4ThreeVector G4GDMLWriteDefine::GetAngles(const G4RotationMatrix& mtx) 52 { 53 G4double x,y,z; 54 G4RotationMatrix mat = mtx; 55 mat.rectify(); // Rectify matrix from possible roundoff errors 56 57 // Direction of rotation given by left-hand rule; clockwise rotation 58 59 static const G4double kMatrixPrecision = 10E-10; 60 const G4double cosb = std::sqrt(mtx.xx()*mtx.xx()+mtx.yx()*mtx.yx()); .. r11^2 + r21^2 61 62 if (cosb > kMatrixPrecision) 63 { 64 x = std::atan2(mtx.zy(),mtx.zz()); .. r32 r33 65 y = std::atan2(-mtx.zx(),cosb); .. -r31 66 z = std::atan2(mtx.yx(),mtx.xx()); .. r21 r11 67 } 68 else 69 { 70 x = std::atan2(-mtx.yz(),mtx.yy()); .. -r23 r22 71 y = std::atan2(-mtx.zx(),cosb); .. huh division by smth very small... unhealthy .. -r31 sqrt(r11^2 + r21^2) 72 z = 0.0; 73 } 74 75 return G4ThreeVector(x,y,z); 76 } """ pass def extractEulerAnglesXYZ(M, unit=np.pi/180., dtype=np.float32): """ https://github.com/jzrake/glm/commit/d3313421c664db5bd1b672d39ba3faec0d430117 https://github.com/g-truc/glm/blob/master/glm/gtx/euler_angles.inl https://gamedev.stackexchange.com/questions/50963/how-to-extract-euler-angles-from-transformation-matrix ~/opticks_refs/Extracting_Euler_Angles.pdf :: template<typename T> GLM_FUNC_DECL void extractEulerAngleXYZ(mat<4, 4, T, defaultp> const & M, T & t1, T & t2, T & t3) { float T1 = glm::atan2<T, defaultp>(M[2][1], M[2][2]); float C2 = glm::sqrt(M[0][0]*M[0][0] + M[1][0]*M[1][0]); float T2 = glm::atan2<T, defaultp>(-M[2][0], C2); float S1 = glm::sin(T1); float C1 = glm::cos(T1); float T3 = glm::atan2<T, defaultp>(S1*M[0][2] - C1*M[0][1], C1*M[1][1] - S1*M[1][2 ]); t1 = -T1; t2 = -T2; t3 = -T3; } """ T1 = np.arctan2(M[2][1], M[2][2]); C2 = np.sqrt(M[0][0]*M[0][0] + M[1][0]*M[1][0]); T2 = np.arctan2(-M[2][0], C2); S1 = np.sin(T1); C1 = np.cos(T1); T3 = np.arctan2(S1*M[0][2] - C1*M[0][1], C1*M[1][1] - S1*M[1][2 ]); t1 = -T1; t2 = -T2; t3 = -T3; return np.array([t1/unit,t2/unit,t3/unit], dtype=dtype) def yawPitchRoll(yaw, pitch, roll, dtype=np.float32): """ yaw: Z https://github.com/g-truc/glm/blob/master/glm/gtx/euler_angles.inl :: template<typename T> GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> yawPitchRoll ( T const & yaw, T const & pitch, T const & roll ) { T tmp_ch = glm::cos(yaw); T tmp_sh = glm::sin(yaw); T tmp_cp = glm::cos(pitch); T tmp_sp = glm::sin(pitch); T tmp_cb = glm::cos(roll); T tmp_sb = glm::sin(roll); mat<4, 4, T, defaultp> Result; Result[0][0] = tmp_ch * tmp_cb + tmp_sh * tmp_sp * tmp_sb; Result[0][1] = tmp_sb * tmp_cp; Result[0][2] = -tmp_sh * tmp_cb + tmp_ch * tmp_sp * tmp_sb; Result[0][3] = static_cast<T>(0); Result[1][0] = -tmp_ch * tmp_sb + tmp_sh * tmp_sp * tmp_cb; Result[1][1] = tmp_cb * tmp_cp; Result[1][2] = tmp_sb * tmp_sh + tmp_ch * tmp_sp * tmp_cb; Result[1][3] = static_cast<T>(0); Result[2][0] = tmp_sh * tmp_cp; Result[2][1] = -tmp_sp; Result[2][2] = tmp_ch * tmp_cp; Result[2][3] = static_cast<T>(0); Result[3][0] = static_cast<T>(0); Result[3][1] = static_cast<T>(0); Result[3][2] = static_cast<T>(0); Result[3][3] = static_cast<T>(1); return Result; } """ tmp_ch = np.cos(yaw); tmp_sh = np.sin(yaw); tmp_cp = np.cos(pitch); tmp_sp = np.sin(pitch); tmp_cb = np.cos(roll); tmp_sb = np.sin(roll); Result = np.eye(4, dtype=dtype) Result[0][0] = tmp_ch * tmp_cb + tmp_sh * tmp_sp * tmp_sb; Result[0][1] = tmp_sb * tmp_cp; Result[0][2] = -tmp_sh * tmp_cb + tmp_ch * tmp_sp * tmp_sb; Result[0][3] = 0; Result[1][0] = -tmp_ch * tmp_sb + tmp_sh * tmp_sp * tmp_cb; Result[1][1] = tmp_cb * tmp_cp; Result[1][2] = tmp_sb * tmp_sh + tmp_ch * tmp_sp * tmp_cb; Result[1][3] = 0; Result[2][0] = tmp_sh * tmp_cp; Result[2][1] = -tmp_sp; Result[2][2] = tmp_ch * tmp_cp; Result[2][3] = 0; Result[3][0] = 0; Result[3][1] = 0; Result[3][2] = 0; Result[3][3] = 1; return Result; def eulerAngleX(angleX, dtype=np.float32): """ * opposite sign to *roll* of http://planning.cs.uiuc.edu/node102.html /usr/local/opticks/externals/glm/glm-0.9.6.3/glm/gtx/euler_angles.inl:: 35 template <typename T> 36 GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> eulerAngleX 37 ( 38 T const & angleX 39 ) 40 { 41 T cosX = glm::cos(angleX); 42 T sinX = glm::sin(angleX); 43 44 return tmat4x4<T, defaultp>( 45 T(1), T(0), T(0), T(0), 46 T(0), cosX, sinX, T(0), 47 T(0),-sinX, cosX, T(0), 48 T(0), T(0), T(0), T(1)); 49 } 50 """ m = np.eye(4, dtype=dtype) cosX = np.cos(angleX); sinX = np.sin(angleX); m[0] = [1., 0., 0., 0.] m[1] = [0., cosX, sinX, 0.] m[2] = [0., -sinX, cosX, 0.] m[3] = [0., 0., 0., 1.] return m def eulerAngleY(angleY, dtype=np.float32): """ * opposite sign to *pitch* of http://planning.cs.uiuc.edu/node102.html /usr/local/opticks/externals/glm/glm-0.9.6.3/glm/gtx/euler_angles.inl :: 51 template <typename T> 52 GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> eulerAngleY 53 ( 54 T const & angleY 55 ) 56 { 57 T cosY = glm::cos(angleY); 58 T sinY = glm::sin(angleY); 59 60 return tmat4x4<T, defaultp>( 61 cosY, T(0), -sinY, T(0), 62 T(0), T(1), T(0), T(0), 63 sinY, T(0), cosY, T(0), 64 T(0), T(0), T(0), T(1)); 65 } """ m = np.eye(4, dtype=dtype) cosY = np.cos(angleY); sinY = np.sin(angleY); m[0] = [cosY, 0., -sinY, 0.] m[1] = [0., 1., 0., 0.] m[2] = [sinY, 0., cosY, 0.] m[3] = [0., 0., 0., 1.] return m def eulerAngleZ(angleZ, dtype=np.float32): """ * opposite sign to *yaw* of http://planning.cs.uiuc.edu/node102.html /usr/local/opticks/externals/glm/glm-0.9.6.3/glm/gtx/euler_angles.inl :: 67 template <typename T> 68 GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> eulerAngleZ 69 ( 70 T const & angleZ 71 ) 72 { 73 T cosZ = glm::cos(angleZ); 74 T sinZ = glm::sin(angleZ); 75 76 return tmat4x4<T, defaultp>( 77 cosZ, sinZ, T(0), T(0), 78 -sinZ, cosZ, T(0), T(0), 79 T(0), T(0), T(1), T(0), 80 T(0), T(0), T(0), T(1)); 81 } """ m = np.eye(4, dtype=dtype) cosZ = np.cos(angleZ); sinZ = np.sin(angleZ); m[0] = [ cosZ, sinZ, 0., 0.] m[1] = [-sinZ, cosZ, 0., 0.] m[2] = [ 0., 0., 1., 0.] m[3] = [ 0., 0., 0., 1.] return m def eulerAngleXYZ(t123, unit=np.pi/180., dtype=np.float32): """ :: In [14]: eulerAngleXYZ([45,0,0]) Out[14]: array([[ 1. , 0. , 0. , 0. ], [-0. , 0.7071, 0.7071, 0. ], [ 0. , -0.7071, 0.7071, 0. ], [ 0. , 0. , 0. , 1. ]], dtype=float32) In [15]: eulerAngleXYZ([0,45,0]) Out[15]: array([[ 0.7071, 0. , -0.7071, 0. ], [-0. , 1. , 0. , 0. ], [ 0.7071, -0. , 0.7071, 0. ], [ 0. , 0. , 0. , 1. ]], dtype=float32) In [16]: eulerAngleXYZ([0,0,45]) Out[16]: array([[ 0.7071, 0.7071, 0. , 0. ], [-0.7071, 0.7071, 0. , 0. ], [ 0. , -0. , 1. , 0. ], [ 0. , 0. , 0. , 1. ]], dtype=float32) In [11]: extractEulerAnglesXYZ(eulerAngleXYZ([45,0,0])) Out[11]: array([ 45., 0., 0.], dtype=float32) In [12]: extractEulerAnglesXYZ(eulerAngleXYZ([0,45,0])) Out[12]: array([ 0., 45., -0.], dtype=float32) In [13]: extractEulerAnglesXYZ(eulerAngleXYZ([0,0,45])) Out[13]: array([ 0., 0., 45.], dtype=float32) https://github.com/g-truc/glm/blob/master/glm/gtx/euler_angles.inl :: template<typename T> GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleXYZ ( T const & t1, T const & t2, T const & t3 ) { T c1 = glm::cos(-t1); T c2 = glm::cos(-t2); T c3 = glm::cos(-t3); T s1 = glm::sin(-t1); T s2 = glm::sin(-t2); T s3 = glm::sin(-t3); mat<4, 4, T, defaultp> Result; Result[0][0] = c2 * c3; Result[0][1] =-c1 * s3 + s1 * s2 * c3; Result[0][2] = s1 * s3 + c1 * s2 * c3; Result[0][3] = static_cast<T>(0); Result[1][0] = c2 * s3; Result[1][1] = c1 * c3 + s1 * s2 * s3; Result[1][2] =-s1 * c3 + c1 * s2 * s3; Result[1][3] = static_cast<T>(0); Result[2][0] =-s2; Result[2][1] = s1 * c2; Result[2][2] = c1 * c2; Result[2][3] = static_cast<T>(0); Result[3][0] = static_cast<T>(0); Result[3][1] = static_cast<T>(0); Result[3][2] = static_cast<T>(0); Result[3][3] = static_cast<T>(1); return Result; } """ a = np.asarray(t123, dtype=dtype) a *= unit t1 = a[0] t2 = a[1] t3 = a[2] c1 = np.cos(-t1); c2 = np.cos(-t2); c3 = np.cos(-t3); s1 = np.sin(-t1); s2 = np.sin(-t2); s3 = np.sin(-t3); Result = np.eye(4, dtype=dtype); Result[0][0] = c2 * c3; Result[0][1] =-c1 * s3 + s1 * s2 * c3; Result[0][2] = s1 * s3 + c1 * s2 * c3; Result[0][3] = 0; Result[1][0] = c2 * s3; Result[1][1] = c1 * c3 + s1 * s2 * s3; Result[1][2] =-s1 * c3 + c1 * s2 * s3; Result[1][3] = 0; Result[2][0] =-s2; Result[2][1] = s1 * c2; Result[2][2] = c1 * c2; Result[2][3] = 0; Result[3][0] = 0; Result[3][1] = 0; Result[3][2] = 0; Result[3][3] = 1; return Result; if __name__ == '__main__': pass # YXZ #m = yawPitchRoll( ) t1 = 10. t2 = 20. t3 = 30. a0 = np.array([t1,t2,t3]) m = eulerAngleXYZ(a0, unit=np.pi/180. ) a1 = extractEulerAnglesXYZ( m, unit=np.pi/180. )
from openpyxl import load_workbook def copyData(sourceFilePath,destinationFilePath): wb = load_workbook(sourceFilePath) sheet = wb.sheetnames dataSheet = ''.join(sheet) sheet = wb[dataSheet] # get max row count max_row = sheet.max_row #get max column count max_column = sheet.max_column a = '' for i in range(1, max_row + 1): for j in range(1, max_column + 1): cell_obj = sheet.cell(row=i, column=j) result = str(cell_obj.value) a = a + result + '|' a = a + '\n' with open(destinationFilePath,"a") as myfile: myfile.write(a) a = '' def main(): copyData("..//SpreadSheet//SampleData.xlsx","..//SpreadSheet//ResultData.txt") if __name__ == '__main__': main()
# Submission by Smit Rao # Email: raosmit2@gmail.com VAR = 'x' def differentiate(expr: str) -> str: '''Differentiate simple expression expr and return the result as a string. An expression is simple if its derivation only requires use of the power/exponent rule. Keep negative powers - do not convert to fractions. Preconditions: - all numbers are integers - all powers EXCEPT powers of one are prefixed with a '^' AND they can be negative AND they can be of any length ex: x to the power of negative twenty two is x^-123 - coefficients can be of any length - all input expressions are single variable: 'x' AND have only one term :param expr: the expression to differentiate :return: the derivative of the input expression >>> differentiate('44') '0' >>> differentiate('x^123') '123x^122' >>> differentiate('-12x^3') '-36x^2' >>> differentiate('x') '1' >>> differentiate('') '0' ''' global VAR # use this for the variable lst = expr.split('^') if len(lst) == 1: if VAR in lst[0]: sub = lst[0][: -1] if sub == '': return '1' return sub else: return '0' lst[0] = lst[0][: -1] if lst[0] == '': lst[0] = 1 else: lst[0] = int(lst[0]) lst[0] *= int(lst[1]) lst[0] = str(lst[0]) lst[0] += VAR lst[1] = str(int(lst[1]) - 1) return '^'.join(lst) def calculate_heat(d: dict) -> int: '''Returns the total heat generated by all of the magic orbs Gazoulee is a fortune teller that owns many magic orbs, each of which generate a constant amount of heat. He is building a house that he will move into shorty which needs to be kept at a steady temperature for the rest of his contraptions to function correctly. Gazoulee must tell his HVAC contractor how much heat will be generated by his magic orbs so that the contractor can properly design the HVAC system. Gazoulee has hired you to do the total heat calculations for him, given necessary quantities and measurements. NOTES: - all distances are in centimeters. - every 2 square centimeters of a magic orb dissipates 4 J (4 joules) of heat. - answers should be rounded down to the nearest whole joule. - each dictionary entry contains the information for that magic orb type - the value of each dictionary entry is a tuple of: (<radius>, <number of magic orbs with this dimension>) :param d: dictionary containing the details of all of the magic orbs :return: the total heat generated by all of Gazoulee's magic orbs in joules >>> calculate_heat({"Standard Wizarding Orb": \ (7.5, 12), "Alfredo the Orb": (17.5, 1)}) 24662 ''' pi = 3.141592653589793 joules = 0 for tup in d.values(): joules += tup[0] * tup[0] * pi * tup[1] * 4 * 2 return round(joules) def is_balanced(lst: list) -> bool: '''Returns whether list lst is composed entirely of only 'C', 'S' pairs. NOTES: - only lists composed of 'C's and 'S's are balanced lists - the 'C' and 'S' pairs can be interleaved HINT: - every 'C' must eventually have a corresponding 'S' further in the list :param lst: :return: whether the list lst is balanced >>> is_balanced(['C', 'S']) True >>> is_balanced(['S', 'C']) False >>> is_balanced(['C', 'S', 'S']) False >>> is_balanced(['C', 'S', 'C', 'C', 'S', 'C', 'S', 'S']) True ''' C_count = 0 S_count = 0 balanced = True if len(lst) % 2 == 1: return not balanced for index in range(len(lst)): if lst[index] != 'C' and lst[index] != 'S': return not balanced if C_count < S_count: return not balanced if lst[index] == 'C': C_count += 1 if lst[index] == 'S': S_count += 1 balanced = (C_count == S_count) return balanced if __name__ == '__main__': import doctest doctest.testmod()
# Copyright (c) 2017-2023 Digital Asset (Switzerland) GmbH and/or its affiliates. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # fmt: off # isort: skip_file # Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT! """Client and server classes corresponding to protobuf-defined services.""" import grpc from . import party_management_service_pb2 as com_dot_daml_dot_ledger_dot_api_dot_v1_dot_admin_dot_party__management__service__pb2 class PartyManagementServiceStub(object): """This service allows inspecting the party management state of the ledger known to the participant and managing the participant-local party metadata. The authorization rules for its RPCs are specified on the ``<RpcName>Request`` messages as boolean expressions over these facts: (1) ``HasRight(r)`` denoting whether the authenticated user has right ``r`` and (2) ``IsAuthenticatedIdentityProviderAdmin(idp)`` denoting whether ``idp`` is equal to the ``identity_provider_id`` of the authenticated user and the user has an IdentityProviderAdmin right. The fields of request messages (and sub-messages) are marked either as ``Optional`` or ``Required``: (1) ``Optional`` denoting the client may leave the field unset when sending a request. (2) ``Required`` denoting the client must set the field to a non-default value when sending a request. A party details resource is described by the ``PartyDetails`` message, A party details resource, once it has been created, can be modified using the ``UpdatePartyDetails`` RPC. The only fields that can be modified are those marked as ``Modifiable``. """ def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.GetParticipantId = channel.unary_unary( '/com.daml.ledger.api.v1.admin.PartyManagementService/GetParticipantId', request_serializer=com_dot_daml_dot_ledger_dot_api_dot_v1_dot_admin_dot_party__management__service__pb2.GetParticipantIdRequest.SerializeToString, response_deserializer=com_dot_daml_dot_ledger_dot_api_dot_v1_dot_admin_dot_party__management__service__pb2.GetParticipantIdResponse.FromString, ) self.GetParties = channel.unary_unary( '/com.daml.ledger.api.v1.admin.PartyManagementService/GetParties', request_serializer=com_dot_daml_dot_ledger_dot_api_dot_v1_dot_admin_dot_party__management__service__pb2.GetPartiesRequest.SerializeToString, response_deserializer=com_dot_daml_dot_ledger_dot_api_dot_v1_dot_admin_dot_party__management__service__pb2.GetPartiesResponse.FromString, ) self.ListKnownParties = channel.unary_unary( '/com.daml.ledger.api.v1.admin.PartyManagementService/ListKnownParties', request_serializer=com_dot_daml_dot_ledger_dot_api_dot_v1_dot_admin_dot_party__management__service__pb2.ListKnownPartiesRequest.SerializeToString, response_deserializer=com_dot_daml_dot_ledger_dot_api_dot_v1_dot_admin_dot_party__management__service__pb2.ListKnownPartiesResponse.FromString, ) self.AllocateParty = channel.unary_unary( '/com.daml.ledger.api.v1.admin.PartyManagementService/AllocateParty', request_serializer=com_dot_daml_dot_ledger_dot_api_dot_v1_dot_admin_dot_party__management__service__pb2.AllocatePartyRequest.SerializeToString, response_deserializer=com_dot_daml_dot_ledger_dot_api_dot_v1_dot_admin_dot_party__management__service__pb2.AllocatePartyResponse.FromString, ) self.UpdatePartyDetails = channel.unary_unary( '/com.daml.ledger.api.v1.admin.PartyManagementService/UpdatePartyDetails', request_serializer=com_dot_daml_dot_ledger_dot_api_dot_v1_dot_admin_dot_party__management__service__pb2.UpdatePartyDetailsRequest.SerializeToString, response_deserializer=com_dot_daml_dot_ledger_dot_api_dot_v1_dot_admin_dot_party__management__service__pb2.UpdatePartyDetailsResponse.FromString, ) class PartyManagementServiceServicer(object): """This service allows inspecting the party management state of the ledger known to the participant and managing the participant-local party metadata. The authorization rules for its RPCs are specified on the ``<RpcName>Request`` messages as boolean expressions over these facts: (1) ``HasRight(r)`` denoting whether the authenticated user has right ``r`` and (2) ``IsAuthenticatedIdentityProviderAdmin(idp)`` denoting whether ``idp`` is equal to the ``identity_provider_id`` of the authenticated user and the user has an IdentityProviderAdmin right. The fields of request messages (and sub-messages) are marked either as ``Optional`` or ``Required``: (1) ``Optional`` denoting the client may leave the field unset when sending a request. (2) ``Required`` denoting the client must set the field to a non-default value when sending a request. A party details resource is described by the ``PartyDetails`` message, A party details resource, once it has been created, can be modified using the ``UpdatePartyDetails`` RPC. The only fields that can be modified are those marked as ``Modifiable``. """ def GetParticipantId(self, request, context): """Return the identifier of the participant. All horizontally scaled replicas should return the same id. daml-on-kv-ledger: returns an identifier supplied on command line at launch time canton: returns globally unique identifier of the participant """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def GetParties(self, request, context): """Get the party details of the given parties. Only known parties will be returned in the list. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def ListKnownParties(self, request, context): """List the parties known by the participant. The list returned contains parties whose ledger access is facilitated by the participant and the ones maintained elsewhere. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def AllocateParty(self, request, context): """Allocates a new party on a ledger and adds it to the set managed by the participant. Caller specifies a party identifier suggestion, the actual identifier allocated might be different and is implementation specific. Caller can specify party metadata that is stored locally on the participant. This call may: - Succeed, in which case the actual allocated identifier is visible in the response. - Respond with a gRPC error daml-on-kv-ledger: suggestion's uniqueness is checked by the validators in the consensus layer and call rejected if the identifier is already present. canton: completely different globally unique identifier is allocated. Behind the scenes calls to an internal protocol are made. As that protocol is richer than the surface protocol, the arguments take implicit values The party identifier suggestion must be a valid party name. Party names are required to be non-empty US-ASCII strings built from letters, digits, space, colon, minus and underscore limited to 255 chars """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def UpdatePartyDetails(self, request, context): """Update selected modifiable participant-local attributes of a party details resource. Can update the participant's local information for local parties. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_PartyManagementServiceServicer_to_server(servicer, server): rpc_method_handlers = { 'GetParticipantId': grpc.unary_unary_rpc_method_handler( servicer.GetParticipantId, request_deserializer=com_dot_daml_dot_ledger_dot_api_dot_v1_dot_admin_dot_party__management__service__pb2.GetParticipantIdRequest.FromString, response_serializer=com_dot_daml_dot_ledger_dot_api_dot_v1_dot_admin_dot_party__management__service__pb2.GetParticipantIdResponse.SerializeToString, ), 'GetParties': grpc.unary_unary_rpc_method_handler( servicer.GetParties, request_deserializer=com_dot_daml_dot_ledger_dot_api_dot_v1_dot_admin_dot_party__management__service__pb2.GetPartiesRequest.FromString, response_serializer=com_dot_daml_dot_ledger_dot_api_dot_v1_dot_admin_dot_party__management__service__pb2.GetPartiesResponse.SerializeToString, ), 'ListKnownParties': grpc.unary_unary_rpc_method_handler( servicer.ListKnownParties, request_deserializer=com_dot_daml_dot_ledger_dot_api_dot_v1_dot_admin_dot_party__management__service__pb2.ListKnownPartiesRequest.FromString, response_serializer=com_dot_daml_dot_ledger_dot_api_dot_v1_dot_admin_dot_party__management__service__pb2.ListKnownPartiesResponse.SerializeToString, ), 'AllocateParty': grpc.unary_unary_rpc_method_handler( servicer.AllocateParty, request_deserializer=com_dot_daml_dot_ledger_dot_api_dot_v1_dot_admin_dot_party__management__service__pb2.AllocatePartyRequest.FromString, response_serializer=com_dot_daml_dot_ledger_dot_api_dot_v1_dot_admin_dot_party__management__service__pb2.AllocatePartyResponse.SerializeToString, ), 'UpdatePartyDetails': grpc.unary_unary_rpc_method_handler( servicer.UpdatePartyDetails, request_deserializer=com_dot_daml_dot_ledger_dot_api_dot_v1_dot_admin_dot_party__management__service__pb2.UpdatePartyDetailsRequest.FromString, response_serializer=com_dot_daml_dot_ledger_dot_api_dot_v1_dot_admin_dot_party__management__service__pb2.UpdatePartyDetailsResponse.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'com.daml.ledger.api.v1.admin.PartyManagementService', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,)) # This class is part of an EXPERIMENTAL API. class PartyManagementService(object): """This service allows inspecting the party management state of the ledger known to the participant and managing the participant-local party metadata. The authorization rules for its RPCs are specified on the ``<RpcName>Request`` messages as boolean expressions over these facts: (1) ``HasRight(r)`` denoting whether the authenticated user has right ``r`` and (2) ``IsAuthenticatedIdentityProviderAdmin(idp)`` denoting whether ``idp`` is equal to the ``identity_provider_id`` of the authenticated user and the user has an IdentityProviderAdmin right. The fields of request messages (and sub-messages) are marked either as ``Optional`` or ``Required``: (1) ``Optional`` denoting the client may leave the field unset when sending a request. (2) ``Required`` denoting the client must set the field to a non-default value when sending a request. A party details resource is described by the ``PartyDetails`` message, A party details resource, once it has been created, can be modified using the ``UpdatePartyDetails`` RPC. The only fields that can be modified are those marked as ``Modifiable``. """ @staticmethod def GetParticipantId(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/com.daml.ledger.api.v1.admin.PartyManagementService/GetParticipantId', com_dot_daml_dot_ledger_dot_api_dot_v1_dot_admin_dot_party__management__service__pb2.GetParticipantIdRequest.SerializeToString, com_dot_daml_dot_ledger_dot_api_dot_v1_dot_admin_dot_party__management__service__pb2.GetParticipantIdResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def GetParties(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/com.daml.ledger.api.v1.admin.PartyManagementService/GetParties', com_dot_daml_dot_ledger_dot_api_dot_v1_dot_admin_dot_party__management__service__pb2.GetPartiesRequest.SerializeToString, com_dot_daml_dot_ledger_dot_api_dot_v1_dot_admin_dot_party__management__service__pb2.GetPartiesResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def ListKnownParties(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/com.daml.ledger.api.v1.admin.PartyManagementService/ListKnownParties', com_dot_daml_dot_ledger_dot_api_dot_v1_dot_admin_dot_party__management__service__pb2.ListKnownPartiesRequest.SerializeToString, com_dot_daml_dot_ledger_dot_api_dot_v1_dot_admin_dot_party__management__service__pb2.ListKnownPartiesResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def AllocateParty(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/com.daml.ledger.api.v1.admin.PartyManagementService/AllocateParty', com_dot_daml_dot_ledger_dot_api_dot_v1_dot_admin_dot_party__management__service__pb2.AllocatePartyRequest.SerializeToString, com_dot_daml_dot_ledger_dot_api_dot_v1_dot_admin_dot_party__management__service__pb2.AllocatePartyResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def UpdatePartyDetails(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/com.daml.ledger.api.v1.admin.PartyManagementService/UpdatePartyDetails', com_dot_daml_dot_ledger_dot_api_dot_v1_dot_admin_dot_party__management__service__pb2.UpdatePartyDetailsRequest.SerializeToString, com_dot_daml_dot_ledger_dot_api_dot_v1_dot_admin_dot_party__management__service__pb2.UpdatePartyDetailsResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
# libraries import pandas as pd import numpy as np import matplotlib.pyplot as plt import math from scipy.special import factorial df = pd.read_csv('Absenteeism_at_work.csv', delimiter=';') plt.plot(df['Age'], df['Absenteeism time in hours'], 'bo') plt.xlabel('Age') plt.ylabel('Absenteeism time in hours') plt.title('Absenteeism at Work') plt.savefig('age.png', dpi=128) plt.close() plt.plot(df['Distance from Residence to Work'], df['Absenteeism time in hours'], 'r+') plt.xlabel('Distance from Residence to Work') plt.ylabel('Absenteeism time in hours') plt.title('Absenteeism at Work') plt.savefig('distance.png', dpi=128) plt.close() plt.hist(df['Age'], bins=20, density=True) plt.xlabel('Age of Employees') plt.ylabel('Probability wrt Total Employees') plt.title('Histogram of Age Factor of Employees') plt.savefig('histogram_age.png', dpi=128) plt.close() plt.hist(df['Distance from Residence to Work'], bins=20, density=True) plt.xlabel('Distance from Residence to Work') plt.ylabel('Probability wrt Total Employees') plt.title('Histogram of Distance Factor of Employees') plt.savefig('histogram_distance.png', dpi=128) plt.close() plt.hist(df['Service time'], bins=5, density=True) plt.xlabel('Service Time') plt.ylabel('Probability wrt Total Employees') plt.title('Histogram of Service Time Factor of Employees') plt.savefig('histogram_service_time.png', dpi=128) plt.close() plt.hist(df['Body mass index'], bins=5, density=True) plt.xlabel('Body mass index') plt.ylabel('Probability wrt Total Employees') plt.title('Histogram of BMI Factor of Employees') plt.savefig('histogram_bmi.png', dpi=128) plt.close() def likelihood(theta, n, x): return (factorial(n) / (factorial(x) * factorial(n - x))) * (theta ** x) * ((1 - theta) ** (n - x)) n = 10. x = 7. prior = x / n possible_theta_values = list(map(lambda x: x / 100, range(100))) likelihoods = list(map(lambda theta: likelihood(theta, n, x), possible_theta_values)) mle = possible_theta_values[np.argmax(likelihoods)] f, ax = plt.subplots(1) ax.plot(df['Age'], df['Absenteeism time in hours']) ax.axvline(mle, linestyle="--") ax.set_xlabel("Theta") ax.set_ylabel("Likelihood") ax.grid() ax.set_title('Likelihood of Age') plt.close()
class Solution: def isSymmetric(self, root: Optional[TreeNode]) -> bool: def inverse(root): if not root: return root l = inverse(root.left) r = inverse(root.right) root.left, root.right = r, l return root def same(t1, t2): if not t1 and not t2: return True if not t1 or not t2 or t1.val != t2.val: return False return same(t1.left, t2.left) and same(t1.right, t2.right) return same(inverse(root.left), root.right)
import time import random class Trade: #Simple class to represent a trade def __init__(self, timestamp, quantity, indicator, price): self.timestamp = timestamp self.quantity = quantity self.indicator = indicator self.price = price class Stock: #Simple class to represent a Stock superclass #From test data given, assume that all stocks will have these fields def __init__(self, stock_symbol, last_dividend, par_value): self.symbol = stock_symbol self.last_dividend = last_dividend self.par_value = par_value self.trades = [] def get_dividend_yield(self, market_price): raise NotImplementedError("get_dividend_yield not implemented yet") def get_PE_ratio (self, market_price): try: return market_price / self.last_dividend except ZeroDivisionError as e: print (self.symbol, "P/E ratio Err:", e) return None def record_trade(self, trade): if isinstance(trade, Trade): self.trades.append(trade) else: raise TypeError("Must pass a Trade object to Stock.record_trade()", trade) def get_volume_weighted_stock_price(self, time_margin_sec): #Ref basic arithmetic: dividend/divisor = quatient dividend = 0 divisor = 0 time_cut_off = time.time() - time_margin_sec #asuming trade data comes in real time, this list will be chronologically sorted #traversing most recent data then becomes easy for trade in reversed(self.trades): if trade.timestamp < time_cut_off: break dividend += trade.price * trade.quantity divisor += trade.quantity try: return dividend / divisor except ZeroDivisionError as e: print (self.symbol, "Volume weighted stock price Err:", e) return None class CommonStock(Stock): #Stock class extention to represent a Common Stock def __init__(self, stock_symbol, last_dividend, par_value): super().__init__(stock_symbol, last_dividend, par_value) def get_dividend_yield(self, market_price): try: return self.last_dividend / market_price except ZeroDivisionError as e: print (self.symbol, "Dividend yield Err:", e) return None class PreferredStock(Stock): #Stock class extention to represent a Preferred Stock def __init__(self, stock_symbol, last_dividend, fixed_dividend, par_value): super().__init__(stock_symbol, last_dividend, par_value) self.fixed_dividend = fixed_dividend def get_dividend_yield(self, market_price): try: return (self.fixed_dividend * self.par_value) / market_price except ZeroDivisionError as e: print (self.symbol, "Dividend yield Err:", e) return None FIFTEEN_MINUTES = 15 * 60 PRINT_FORMAT = ".3f" def generate_trade(): return Trade(time.time(), random.randint(1,20), random.choice('BS'), random.randint(60, 500)) #Even though not utilized below, a dictionary to quickly look up a specific stock seems rational stocks = { "TEA" : CommonStock("TEA", 0, 100), "POP" : CommonStock("POP", 8, 100), "ALE" : CommonStock("ALE", 23, 60), "GIN" : PreferredStock("GIN", 8, 0.02, 100), "JOE" : CommonStock("JOE", 13, 250) } #"Calculate the GBCE All Share Index using the geometric mean of prices for all stocks" #TODO: Ask - Is this geometric mean supposed to be based on Volume Weighted Stock prices, or Market prices? MP_geometric_mean = 1 VWSP_geometric_mean = 1 print("Stock, Market price, Dividend yield, P/E Ratio, Volume Weighted Stock Price") for stock in stocks.values(): #Generate and record some random trades for i in range(1, random.randint(2,20)): stock.record_trade(generate_trade()) #Generate random market price and calculate metrics rmp = random.randint(60, 500); div_yield = stock.get_dividend_yield(rmp) pe_ratio = stock.get_PE_ratio(rmp) vw_stock_price = stock.get_volume_weighted_stock_price(FIFTEEN_MINUTES) MP_geometric_mean *= rmp VWSP_geometric_mean *= vw_stock_price #printing table entries with somewhat nicer format print( stock.symbol, rmp, "None" if div_yield is None else format(div_yield, PRINT_FORMAT), "None" if pe_ratio is None else format(pe_ratio, PRINT_FORMAT), "None" if vw_stock_price is None else format(vw_stock_price, PRINT_FORMAT)) #NOTE: pow(x, 1/n) returns nth root of x. #It is inaccurate due to floating point arithmetic, but seems like a commonly used solution #EX: pow(5**6, 1/6) returned 4.999999999999999... #Could use a more sophisticated library if required print("All share Index (based on Market price):", pow(MP_geometric_mean, 1/len(stocks))) print("All share Index (based on Volume Weighted stock price):", pow(VWSP_geometric_mean, 1/len(stocks)))
from rest_framework import permissions class UpdateProfile(permissions.BasePermission): def has_object_permission(self, request, view, object): if request.method in permissions.SAFE_METHODS : return True else: return object.id == request.user.id class UpdateStatus(permissions.BasePermission): """Restrict user to update self created status messages""" def has_object_permission(self, request, view, obj): if request.method in permissions.SAFE_METHODS: return True return obj.user.id == request.user.id
# Copyright 2018 Cable Television Laboratories, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from base_model import BaseModel class ParamsConfigModel(BaseModel): def __init__(self, **params_object): super(ParamsConfigModel, self).__init__(**params_object) self.name = params_object.get('name') self.value = params_object.get('value') self.schema = params_object.get('schema') self.type = params_object.get('type') self.description = params_object.get('description') self.extension = params_object.get('extension', {})
# Generated by Django 2.1.3 on 2018-11-06 08:35 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('core', '0001_initial'), ] operations = [ migrations.AlterField( model_name='locations', name='location', field=models.CharField(choices=[('Not defined', ''), ('floor 1', 'Floor 1'), ('floor 2', 'Floor 2'), ('floor 3', 'Floor 3')], max_length=8), ), ]
# -*- coding:utf-8 -*- # Created by LuoJie at 11/22/19 from gensim.models.word2vec import LineSentence, Word2Vec import numpy as np import codecs # 引入日志配置 import logging logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO) def load_word2vec_file(save_wv_model_path): # 保存词向量模型 wv_model = Word2Vec.load(save_wv_model_path) embedding_matrix = wv_model.wv.vectors return embedding_matrix def get_vocab(save_wv_model_path): # 保存词向量模型 wv_model = Word2Vec.load(save_wv_model_path) reverse_vocab = {index: word for index, word in enumerate(wv_model.wv.index2word)} vocab = {word: index for index, word in enumerate(wv_model.wv.index2word)} return vocab, reverse_vocab def get_embedding_matrix(w2v_model): vocab_size = len(w2v_model.wv.vocab) embedding_dim = len(w2v_model.wv['<START>']) print('vocab_size, embedding_dim:', vocab_size, embedding_dim) embedding_matrix = np.zeros((vocab_size, embedding_dim)) for i in range(vocab_size): embedding_matrix[i, :] = w2v_model.wv[w2v_model.wv.index2word[i]] embedding_matrix = embedding_matrix.astype('float32') assert embedding_matrix.shape == (vocab_size, embedding_dim) np.savetxt('embedding_matrix.txt', embedding_matrix, fmt='%0.8f') print('embedding matrix extracted') return embedding_matrix def build_vocab(vocab): """ :param vocab:词表 :return: 处理后的词表 """ start_token = u"<s>" end_token = u"<e>" unk_token = u"<unk>" # 按索引排序 vocab = sorted([(vocab[i].index, i) for i in vocab]) # 排序后的词 sorted_words = [word for index, word in vocab] # 拼接标志位的词 sorted_words = [start_token, end_token, unk_token] + sorted_words # 构建索引表 vocab = {index: word for index, word in enumerate(sorted_words)} reverse_vocab = {word: index for index, word in enumerate(sorted_words)} return vocab, reverse_vocab
from datetime import datetime, timedelta from pytz import timezone import pytz def est_time(): eastern = timezone('US/Eastern') # fmt = '%Y-%m-%d %H:%M:%S %Z%z' fmt = '%Y-%m-%d' loc_dt = eastern.localize(datetime.now()) return str(loc_dt.strftime(fmt))
import pickle import torch import numpy as np import torch.nn as nn import pytorch_lightning as pl import torch.nn.functional as F from .rnn_nn import * from .base_classifier import * class RNN_Classifier(Base_Classifier): def __init__(self,classes=10, input_size=28 , hidden_size=128, activation="relu" ): super(RNN_Classifier, self).__init__() ############################################################################ # TODO: Build a RNN classifier # ############################################################################ self.hidden_size = hidden_size self.RNN = nn.RNN(input_size, hidden_size) self.fc1 = nn.Linear(hidden_size, 64) self.fc2 = nn.Linear(64, classes) ############################################################################ # END OF YOUR CODE # ############################################################################ def forward(self, x): ############################################################################ # TODO: Perform the forward pass # ############################################################################ batch_size = x.size()[1] rec, x = self.RNN(x) x = F.dropout(F.relu(self.fc1(x.reshape(batch_size, self.hidden_size)))) x = F.relu(self.fc2(x)) ############################################################################ # END OF YOUR CODE # ############################################################################ return x class LSTM_Classifier(Base_Classifier): def __init__(self, classes=10, input_size=28, hidden_size=128): super(LSTM_Classifier, self).__init__() ####################################################################### # TODO: Build a LSTM classifier # ####################################################################### self.hidden_size = hidden_size self.LSTM = nn.LSTM(input_size, hidden_size) self.fc1 = nn.Linear(hidden_size, 64) self.fc2 = nn.Linear(64, classes) ####################################################################### # END OF YOUR CODE # ####################################################################### def forward(self, x): ####################################################################### # TODO: Perform the forward pass # ####################################################################### batch_size = x.size()[1] rec, (x, _) = self.LSTM(x) x = F.dropout(F.relu(self.fc1(x.reshape(batch_size, self.hidden_size)))) x = F.relu(self.fc2(x)) ####################################################################### # END OF YOUR CODE # ####################################################################### return x
from django.test import TestCase from django.contrib.auth import get_user_model import datetime from treatment_sheets.models import TxSheet, TxItem from common.models import Prescription User = get_user_model() class TxSheetTest(TestCase): def setUp(self): self.owner = User.objects.create(username='Marfalo') def test_get_absolute_url(self): sheet = TxSheet.objects.create(owner=self.owner) self.assertEqual(sheet.get_absolute_url(), '/tx_sheet/{}/'.format(sheet.id)) def test_tx_sheet_saves_owner(self): # Should not raise TxSheet(owner=User()) def test_tx_sheet_saves_date_on_creation(self): date = datetime.date.today() sheet = TxSheet.objects.create(owner=self.owner, name='Poochy', comment='Euthanasia') self.assertEqual(date, sheet.date) class TxItemTest(TestCase): def setUp(self): self.sheet = TxSheet.objects.create(owner=User.objects.create()) self.drug = Prescription.objects.create(name='Drug') def test_item_related_to_tx_sheet(self): item = TxItem() item.med = self.drug item.sheet = self.sheet item.save() self.assertEqual(self.sheet.id, item.sheet_id) def test_get_absolute_url(self): item = TxItem.objects.create(sheet=self.sheet, med=self.drug, dose=11, unit='mL', freq='BID') self.assertEqual(item.get_absolute_url(), '/tx_sheet/{}/'.format(self.sheet.id)) def test_output_instructions(self): item = TxItem.objects.create(sheet=self.sheet, med=self.drug, dose=11, unit='mL', freq='BID') instruction = 'Take 11 mLs of Drug twice a day.' self.assertEqual(instruction, item.instruction)
# -*- coding: utf-8 -*- from collections import deque class Solution: def numIslands(self, grid): if not grid: return 0 result = 0 for i in range(len(grid)): for j in range(len(grid[0])): if grid[i][j] == "1": result += 1 self.deleteIsland(grid, i, j) return result def deleteIsland(self, grid, i, j): stack = deque([(i, j)]) while stack: x, y = stack.pop() grid[x][y] = "0" if 0 < x and grid[x - 1][y] == "1": stack.append((x - 1, y)) if 0 < y and grid[x][y - 1] == "1": stack.append((x, y - 1)) if x < len(grid) - 1 and grid[x + 1][y] == "1": stack.append((x + 1, y)) if y < len(grid[0]) - 1 and grid[x][y + 1] == "1": stack.append((x, y + 1)) if __name__ == "__main__": solution = Solution() assert 1 == solution.numIslands( [ ["1", "1", "1", "1", "0"], ["1", "1", "0", "1", "0"], ["1", "1", "0", "0", "0"], ["0", "0", "0", "0", "0"], ] ) assert 3 == solution.numIslands( [ ["1", "1", "0", "0", "0"], ["1", "1", "0", "0", "0"], ["0", "0", "1", "0", "0"], ["0", "0", "0", "1", "1"], ] )
class_names_10 = ['Right Hand', 'Left Hand', 'Rest', 'Feet', 'Face', 'Navigation', 'Music', 'Rotation', 'Subtraction', 'Words'] class_names_5 = ['Right Hand', 'Rest', 'Feet', 'Rotation', 'Words'] marker_10_class = {'01 - Right Hand': [1], '02 - Left Hand': [2], '03 - Rest': [3], '04 - Feet': [4], '05 - Face': [5], '06 - Navigation': [6], '07 - Music': [7], '08 - Rotation': [8], '09 - Subtraction': [9], '10 - Words': [10]} marker_5_class = {'1 - Right Hand': [1], '2 - Rest': [3], '3 - Feet': [4], '4 - Rotation': [8], '5 - Words': [10]}