text
stringlengths
8
6.05M
''' Created on Jan 24, 2016 @author: Andrei Padnevici @note: This is an exercise: 11.1 ''' import re try: fName = input("Enter file name: ") if fName == "": fName = "mbox-short.txt" file = open(fName) except: print("Invalid file") exit() txt = file.read() revisons = re.findall("New Revision: ([\d]+)", txt) print(sum([(float(n)) for n in revisons]) / len(revisons))
#! /usr/bin/python import sys import time def test01 (): k = 0 try: buff = '' while True: buff += sys.stdin.read(1) if buff.endswith('\n'): print "XXXX: " + buff[:-1] buff = '' k = k + 1 except KeyboardInterrupt: sys.stdout.flush() pass print k def test02 (): for line in sys.stdin: line = line.replace ('\n', ''); print "XXXX: " + line # test01 (); test02 ();
# 文件复制 '''with open('test.txt','r') as read_f,open('test1.txt','w+') as write_f: data=read_f.read() data=write_f.write(data)''' # 图片复制 with open('176817195_49.jpg','rb') as img_f,open('123.jpg','wb') as write_img: data=img_f.read() data=write_img.write(data)
from django.conf.urls import patterns, include, url from django.contrib import admin from django.conf.urls.static import static from django.contrib.staticfiles.urls import staticfiles_urlpatterns urlpatterns = patterns('', url(r'^messages/', include('privatemessages.urls')), url(r'^admin/', include(admin.site.urls)), ) urlpatterns += patterns('tornado_chat.views', url(r'^$','log_in_chat' ), url(r'^registration/$', 'reg'), ) urlpatterns+=staticfiles_urlpatterns()
#! python3 import pymysql import csv db = pymysql.connect(host='localhost', user='mat', password='1980mk**', port=3306, db='spiders') db.set_charset('utf8mb4') cursor = db.cursor() #sql = 'CREATE TABLE IF NOT EXISTS # maoyan (排名 INT(4), 片名 VARCHAR(100), 演员 VARCHAR(255), 上映时间 VARCHAR(100), 评分 FLOAT(1,1))' #cursor.execute(sql) sql = 'ALTER TABLE maoyan DROP 排名' cursor.execute(sql) sql = 'ALTER TABLE maoyan ADD 排名 INT(4) PRIMARY KEY AUTO_INCREMENT FIRST' cursor.execute(sql) csvfile = open('data.csv', 'r') reader = csv.reader(csvfile) for row in reader: if row[0] == '排名': continue data = { '排名': int(row[0]), '片名': row[1], '演员': row[2], '上映时间': row[3], '评分': float(row[4]) } table = 'maoyan' keys = ', '.join(data.keys()) values = ', '.join(['%s'] * len(data)) sql = 'INSERT INTO {table}({keys}) VALUES ({values}) ON DUPLICATE KEY UPDATE '.format(table=table, keys=keys, values=values) update = ', '.join(['{key}=%s'.format(key=key) for key in data.keys()]) sql += update try: cursor.execute(sql, tuple(data.values())*2) db.commit() except Exception as exc: print(exc) db.rollback() sql = 'SELECT * FROM maoyan' #sql2 = 'SELECT * FROM maoyan WHERE 排名 <= 10' try: cursor.execute(sql) row = cursor.fetchone() while row: print(row) row = cursor.fetchone() except: print('error') db.close()
from flask import Flask from flask.ext.babel import Babel, get_translations from flask.ext.openid import OpenID from flask.ext.sqlalchemy import SQLAlchemy from flask.ext.redis import Redis from flask.ext.compass import Compass from . import filters, context_processors, utils, ext import __builtin__ import pytz import logging.handlers redis = Redis() db = SQLAlchemy() auth = ext.Auth() postmark = ext.Postmark() compass = Compass() oid = OpenID() babel = Babel() def create_app(envar="FLASK_SETTINGS", config_object=None): app = Flask(__name__) if config_object is None: app.config.from_envvar("FLASK_SETTINGS") else: app.config.from_object(config_object) if 'local_timezone' not in app.config: app.config['local_timezone'] = pytz.timezone('Europe/Vienna') if 'type2module' not in app.config: app.config['type2view'] = { 'meetup': 'meetups.view_doc', 'company': 'companies.view_doc', } if 'LOG_FILE' in app.config: handler = logging.handlers.RotatingFileHandler(app.config['LOG_FILE'], backupCount=5, maxBytes=1000000) if 'LOG_LEVEL' in app.config: handler.setLevel(app.config['LOG_LEVEL']) else: handler.setLevel(logging.INFO) app.logger.addHandler(handler) app.jinja_env.filters['time'] = filters.timefilter app.jinja_env.filters['date'] = filters.datefilter app.jinja_env.filters['datecode'] = filters.datecode app.jinja_env.filters['datetime'] = filters.datetimefilter app.jinja_env.filters['rst'] = filters.rst app.jinja_env.filters['urlencode'] = filters.urlencode app.jinja_env.filters['urlize'] = filters.urlize app.jinja_env.filters['in_future'] = filters.in_future app.secret_key = app.config['SECRET_KEY'] db.init_app(app) postmark.init_app(app) auth.init_app(app) compass.init_app(app) from . import models # Register modules from .views.account import module as account_module from .views.admin import module as admin_module from .views.core import module as core_module from .views.meetups import module as meetups_module app.register_blueprint(core_module, url_prefix='') app.register_blueprint(account_module, url_prefix='/account') app.register_blueprint(admin_module, url_prefix='/admin') app.register_blueprint(meetups_module, url_prefix='/meetups') #Register context and request processors app.context_processor(context_processors.add_form_generator) # Register babel's i18n functions globally in order for Flatland to see # them. babel.init_app(app) oid.init_app(app) __builtin__.ugettext = lambda x: get_translations().ugettext(x) __builtin__.ungettext = lambda x,s,p: get_translations().ungettext(x,s,p) app.error_handlers[409] = utils.handle_conflict redis.init_app(app) return app
import numpy as np import pandas as pd from math import exp import copy from sklearn import preprocessing # Feed Forward helper methods def sigmoid(value): if value < 0: return 1 - 1 / (1 + exp(value)) else: return 1.0/(1+exp(value * (-1))) def sigma(matrix_weight, matrix_input, bias=0): # Prereq: len(arr_weight) = len(arr_input) return matrix_weight.dot(matrix_input.transpose()) + bias # hidden_layer = int (number of hidden layers) # nb_nodes = arr[int] (number of nodes per hidden layer) # len_input_matrix = int (number of features) # Output: List of Matrixes # Method: He initialization # Link: https://towardsdatascience.com/weight-initialization-techniques-in-neural-networks-26c649eb3b78 def initialize_weights(hidden_layer, nb_nodes, len_input_matrix): arr_weight_this_batch = list() for i in range(hidden_layer): if i==0: nb_nodes_prev = len_input_matrix else: nb_nodes_prev = nb_nodes[i-1] weight_matrix = np.random.randn(nb_nodes[i], nb_nodes_prev) * np.sqrt(2/(nb_nodes_prev+nb_nodes[i])) arr_weight_this_batch.append(weight_matrix) return arr_weight_this_batch def error(feed_forward_output, target_output): return ((target_output-feed_forward_output)**2) def err_yes(value): return (value > 0.15) # 15% fault tolerance # See function: initialize_errors def initialize_sigma(hidden_layer, nb_nodes): list_sigma = list() for i in range(hidden_layer): arr_sigma = np.zeros(nb_nodes[i]) list_sigma.append(arr_sigma) return list_sigma # Backpropagation and Update Weight helper methods # hidden_layer = int (number of hidden layers) # nb_nodes = arr[int] (number of nodes per hidden layer) # Output: List of Matrixes def initialize_errors(hidden_layer, nb_nodes): arr_neuron_errors = list() for i in range(hidden_layer): arr_error = np.empty(nb_nodes[i]) arr_neuron_errors.append(arr_error) return arr_neuron_errors def propagate_error_output_layer(feed_forward_output, target_output): return feed_forward_output*(1-feed_forward_output)*(target_output-feed_forward_output) def propagate_error_hidden_layer_neuron(sigma_output, error_contribution): return sigmoid(sigma_output) * (1 - sigmoid(sigma_output)) * error_contribution # error = neuron's error def update_weight_neuron(weight_prev_prev, weight_prev, learning_rate, momentum, error, input_neuron): # weight_prev_prev = previous of weight_prev return weight_prev + weight_prev_prev * learning_rate + momentum*error*input_neuron # input_matrix = matrix[float] (data) (asumsi, kolom terakhir adalah hasil klasifikasi) # hidden_layers = int (number of hidden layers) # nb_nodes = arr[int] (number of nodes per hidden layer) # nu = float (momentum) # alfa = float (learning rate) # epoch = int (number of training loops) # batch_size = int (mini-batch) # output = FFNN prediction model (list of matrix) def mini_batch_gradient_descent(input_matrix, hidden_layer, nb_nodes, nu, alfa, epoch, batch_size=1): #transpose-slicing, memisah input dan label col_width = input_matrix.shape[1] input_col_width = col_width - 1 input_data = (input_matrix.transpose()[0:input_col_width]).transpose() label_data = (input_matrix.transpose()[input_col_width:col_width]).transpose() hidden_layer += 1 nb_nodes = np.append(nb_nodes, [1]) arr_neuron_errors = initialize_errors(hidden_layer, nb_nodes) all_sigma_values = initialize_sigma(hidden_layer, nb_nodes) arr_weight_this_batch = initialize_weights(hidden_layer, nb_nodes, input_col_width) for no_epoch in range(epoch): arr_weight_prev_batch = copy.deepcopy(arr_weight_this_batch) # tracking previous state of weights batch_count = 0 error_value = 0 for no_input_data in range(len(input_data)): # Feed Forward one_sigma_values = list() for no_hidden_layer in range(hidden_layer): if no_hidden_layer == 0: one_sigma_values.append(sigma(arr_weight_this_batch[no_hidden_layer], input_data[no_input_data])) else: one_sigma_values.append(sigma(arr_weight_this_batch[no_hidden_layer], one_sigma_values[no_hidden_layer-1])) for no_rows in range(len(one_sigma_values[no_hidden_layer])): output_i = sigmoid(one_sigma_values[no_hidden_layer][no_rows]) one_sigma_values[no_hidden_layer][no_rows] = output_i all_sigma_values[no_hidden_layer][no_rows] += output_i #Result of sigma will be array with 1 element only, so it's safe to select like this error_value += error(one_sigma_values[hidden_layer - 1][0], label_data[no_input_data])[0] batch_count += 1 if (batch_count == batch_size): error_value /= batch_size for no_hidden_layer in range(hidden_layer): for no_neuron in range(len(all_sigma_values[no_hidden_layer])): all_sigma_values[no_hidden_layer][no_neuron] /= batch_size if (err_yes(error_value)): # Back Propagation output_error = propagate_error_output_layer(all_sigma_values[hidden_layer-1][0], label_data[no_input_data]) arr_neuron_errors[hidden_layer - 1][0] = output_error for no_hidden_layer in range(hidden_layer-2, -1, -1): for neuron in range(nb_nodes[no_hidden_layer]): # pencarian error_contribution error_contribution = 0 for output_neuron in range(nb_nodes[no_hidden_layer+1]): error_contribution += arr_weight_this_batch[no_hidden_layer + 1][output_neuron][neuron] * arr_neuron_errors[no_hidden_layer + 1][output_neuron] arr_neuron_errors[no_hidden_layer][neuron] = propagate_error_hidden_layer_neuron(all_sigma_values[no_hidden_layer][neuron], error_contribution) # Update Weights for no_hidden_layer in range(1, hidden_layer): for neuron in range(nb_nodes[no_hidden_layer]): for weight in range(len(arr_weight_this_batch[no_hidden_layer][neuron])): arr_weight_this_batch[no_hidden_layer][neuron][weight] = update_weight_neuron(arr_weight_prev_batch[no_hidden_layer][neuron][weight], arr_weight_this_batch[no_hidden_layer][neuron][weight], nu, alfa, arr_neuron_errors[no_hidden_layer][neuron], all_sigma_values[no_hidden_layer-1][weight]) #khusus hidden layer pertama, masukan dari input data for neuron in range(nb_nodes[0]): for weight in range(input_col_width): arr_weight_this_batch[0][neuron][weight] = update_weight_neuron(arr_weight_prev_batch[0][neuron][weight], arr_weight_this_batch[0][neuron][weight], nu, alfa, arr_neuron_errors[0][neuron], input_data[no_input_data][weight]) all_sigma_values = initialize_sigma(hidden_layer, nb_nodes) error_value = 0 batch_count = 0 return arr_weight_this_batch # predictor specifically for dataset that is classified into only 2 classes def predict_2classes(model, arr_features, label): all_sigma_values = list() for no_hidden_layer in range(len(model)): if (no_hidden_layer == 0): all_sigma_values.append(sigma(model[no_hidden_layer], arr_features)) else: all_sigma_values.append(sigma(model[no_hidden_layer], all_sigma_values[no_hidden_layer-1])) for no_rows in range(len(all_sigma_values[no_hidden_layer])): all_sigma_values[no_hidden_layer][no_rows] = sigmoid(all_sigma_values[no_hidden_layer][no_rows]) error_value = error(all_sigma_values[len(model) - 1][0], label)[0] return (error_value < 0.5) #scaling : (0, 1) def accuracy(model, input_matrix): #transpose-slicing, memisah input dan label col_width = input_matrix.shape[1] input_col_width = col_width - 1 input_data = (input_matrix.transpose()[0:input_col_width]).transpose() label_data = (input_matrix.transpose()[input_col_width:col_width]).transpose() true_count = 0 false_count = 0 for no_input_data in range(len(input_data)): if (predict_2classes(model, input_data[no_input_data], label_data[no_input_data])): true_count += 1 else: false_count += 1 return true_count / (true_count + false_count) * 100 # dataset load csv_string = input("Input .csv filename: ") try: df = pd.read_csv(csv_string) except: print("File not found.") ###quit() print("File loaded successfuly.") # dataset preprocess def preprocess_dataframe(df): # transform non-numeric data to numeric data types = df.dtypes labels = df.columns.values # because pandas select columns using column names def transform_to_numeric(matrix_data): for i in range(matrix_data.shape[1]): type_i = types[i] if (type_i == object): values = matrix_data[labels[i]].unique() dict_i = dict(zip(values, range(len(values)))) # transform every unique object/string into numbers matrix_data = matrix_data.replace({labels[i]:dict_i}) elif (type_i == bool): matrix_data[labels[i]] = matrix_data[labels[i]].astype(int) return matrix_data newdf = transform_to_numeric(df) # scaling def scale_data(matrix_data, min_val, max_val): def scaling(value): return (value - minValue)*(max_val - min_val)/(maxValue - minValue) + min_val for x in range(matrix_data.shape[1]): minValue = matrix_data[labels[x]].min() maxValue = matrix_data[labels[x]].max() matrix_data[labels[x]] = matrix_data[labels[x]].apply(scaling) return matrix_data data_matrix = scale_data(newdf, 0, 1) data_matrix = data_matrix.to_numpy() #convert pandas dataframe to numpy array return data_matrix def split_train_test(matrix_data, test_portion): total_data = len(matrix_data) total_data_for_test = int(round(test_portion * total_data, 0)) total_data_for_train = total_data - total_data_for_test return(matrix_data[0:total_data_for_train], matrix_data[total_data_for_train:total_data]) # input and main program while True: hidden_layers = int(input("Input number of hidden layers: ")) if (hidden_layers <= 10 and hidden_layers >= 0): break else: print("# of hidden layers must be a positive integer and no more than 10.") nb_nodes = np.empty(hidden_layers) for i in range(hidden_layers): while True: nb_nodes[i] = int(input("Input number of nodes for hidden layer %d : " % i)) if (nb_nodes[i] > 0): break else: print("# of nodes must be a positive integer.") while True: momentum = float(input("Input momentum: ")) if (momentum <= 1 and momentum >= 0): break else: print("Momentum must be between 0 and 1.") while True: learning_rate = float(input("Input learning rate: ")) if (learning_rate <= 1 and learning_rate >= 0): break else: print("Learning rate must be between 0 and 1.") while True: epoch = int(input("Input epoch: ")) if (epoch > 0): break else: print("Epoch must be a positive integer.") while True: batch_size = int(input("Input the batch size: ")) if (batch_size > 0): break else: print("Batch size must be a positive integer.") while True: test_size = float(input("Input the test size: ")) if (test_size > 0 and test_size < 1): break else: print("Test size must be between 0 and 1.") data_matrix = preprocess_dataframe(df) train_matrix, test_matrix = split_train_test(data_matrix, test_size) nb_nodes = nb_nodes.astype(int) #diperlukan karena dianggap float dalam fungsi randn jika tak diubah custom_model = mini_batch_gradient_descent(train_matrix, hidden_layers, nb_nodes, momentum, learning_rate, epoch, batch_size) print("Accuracy: ", accuracy(custom_model, test_matrix))
#!/usr/bin/python # dedup.py - Sat, 23 Apr 2011 00:03:30 -0400 # As command line arguments are files of md5sum's. The md5sums are read one # by one in their order and all duplicated files are removed, only the # files of their first appearance are kept in their old path. import sys; import os.path; f = {} # File hashes for file in sys.argv: md5file = open(file) for line in md5file.read().splitlines(): if f.has_key(line[0:32]): print "Remove "+line[34:] os.remove(line[34:]) else: print "Keep "+line[34:] f[line[0:32]] = line[34:] md5file.close()
import sys import os project = u'Ceph' copyright = u'2018, SUSE, and contributors. Licensed under Creative Commons BY-SA' version = 'dev' release = 'dev' templates_path = ['_templates'] source_suffix = '.rst' master_doc = 'index' exclude_patterns = ['**/.#*', '**/*~', 'start/quick-common.rst'] if tags.has('man'): exclude_patterns += ['architecture.rst', 'glossary.rst', 'release*.rst', 'api/*', 'cephfs/*', 'dev/*', 'install/*', 'mon/*', 'rados/*', 'radosgw/*', 'rbd/*', 'start/*'] pygments_style = 'sphinx' html_theme = 'ceph' html_theme_path = ['_themes'] html_title = "Ceph Documentation" html_logo = 'logo.png' html_favicon = 'favicon.ico' html_use_smartypants = True html_show_sphinx = False html_sidebars = { '**': ['smarttoc.html', 'searchbox.html'], } extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.graphviz', 'sphinx.ext.todo', 'sphinx_ditaa', 'breathe', ] todo_include_todos = True top_level = os.path.dirname( os.path.dirname( os.path.abspath(__file__) ) ) breathe_default_project = "Ceph" # see $(top_srcdir)/Doxyfile breathe_build_directory = os.path.join(top_level, "build-doc") breathe_projects = {"Ceph": os.path.join(top_level, breathe_build_directory)} breathe_projects_source = { "Ceph": (os.path.join(top_level, "src/include/rados"), ["rados_types.h", "librados.h"]) } breathe_domain_by_extension = {'py': 'py', 'c': 'c', 'h': 'c', 'cc': 'cxx', 'hpp': 'cxx'} pybind = os.path.join(top_level, 'src/pybind') if pybind not in sys.path: sys.path.insert(0, pybind)
import sqlite3 conn = sqlite3.connect("factbook.db") query = "SELECT * FROM facts;" facts = read_sql_
from django.contrib.auth.decorators import login_required from django.contrib.auth.forms import UserCreationForm from django.contrib.auth.models import User from django.http import HttpResponse, HttpResponseRedirect from django.shortcuts import render # Create your views here. from django.urls import reverse, reverse_lazy from django.utils.decorators import method_decorator from django.views.generic import CreateView, DetailView, UpdateView, DeleteView from django.views.generic.list import MultipleObjectMixin from accountapp.decorators import account_ownership_required from accountapp.models import HelloWorld #원래는 4줄짜리로 길게 메서드 데코레이터 했다면 이렇게 리스트로 만들어준후 변수만 넣으면 깔끔하게가능 from articleapp.models import Article has_ownership = [login_required,account_ownership_required ] #장고에서 제공해주는 로그인 인증기능으로 밑에 if, else로 로그인 인증하던걸 대체해줌 @login_required def base(requset): #로그인 인증이 되어있다면 밑에껄 수행 #if requset.user.is_authenticated: # get, post method 설정 if requset.method == "POST": # POST라는 메서드에서 괄호안에 있는 이름을 가진애를 가져와라. temp = requset.POST.get('hello_world_input') # HelloWorld는 우리가 만든 모델을 변수 # 그리고 form에 text를 적어 불러오는 temp라는 애를 모델안에 설정한 변수 text에 넣어줌 # 바로 데이터 베이스에 저장 new_hello_world = HelloWorld() new_hello_world.text = temp new_hello_world.save() # 저장된 데이터객체를 내보내주는역할 #return render(requset, 'accountapp/middle.html', context={'hello_world_list': hello_world_list}) #위의 방법으로 는 올때마다 post에서 수행 즉 새로고침 할때마다 그행동(쳤던내용저장)을 반복하기때문에 계속 추가되서 보임 그렇기떄문에 post가 한번 #수행하게되면 get으로 되돌아가게해서 해결 #HttpResposnseRedirect('account/base/')로 해도되지만 추후 편의를 위해 reverse함수를 사용 #accountapp:base 는 account의 urls에 이름을 accountapp이라 하였고 거기에 경로의 이름을 base라 해두어서 이방법 가능 #HttpResponseRedirect는 현재있는곳에서 다른곳으로 이동연결 return HttpResponseRedirect(reverse('accountapp:base')) else: #get에서도 post처럼 보이기위해 설정 #HelloWorld의 모델안에 객체들을 모두 꺼내어 변수로 할당(즉 여태form에 text친 내용들을 전부다 변수로 할당) hello_world_list = HelloWorld.objects.all() return render(requset, 'accountapp/middle.html', context={'hello_world_list': hello_world_list}) #로그인 인증이 안되있다면 로그인페이지로 보내기 #else: #return HttpResponseRedirect(reverse('accountapp:login')) class AccountCreateView(CreateView): # User를 장고에서 받아와 모델로 설정 model = User # UserCreationForm을 장고에서 받아와서 form form_class = UserCreationForm # class형 view에서는 reverse_lazy를 사용 함수형에서는 reverse를 사용 success_url = reverse_lazy('articleapp:list') # 이 템플릿을 보여주기 template_name = 'accountapp/create.html' # account detail에도 내가 만든 project가 보이도록 multipleobjectmixin하기 class AccountDetailView(DetailView, MultipleObjectMixin): model = User #인스타로 따지면 다른사람이 나한테왔을때 내게시물들을 볼수있게 설정(detail.html에서 확인) context_object_name = 'target_user' template_name = 'accountapp/detail.html' paginate_by = 20 def get_context_data(self, **kwargs): article_list = Article.objects.filter(writer=self.object) return super().get_context_data(object_list=article_list,**kwargs) #@method_decorator(login_required, 'get') #@method_decorator(login_required, 'post') # 우리가 만들어준 해당 유저일때 수행하도록하는 인증 (위에는 로그인만, 두개합쳐서 인증진행하면 로그인한 자기자신만이 접근할수있음) # 리스트로 만들어서 적용 @method_decorator(has_ownership, 'get') @method_decorator(has_ownership, 'post') class AccountUpdateView(UpdateView): model = User form_class = UserCreationForm context_object_name = 'target_user' success_url = reverse_lazy('accountapp:base') template_name = 'accountapp/update.html' # method_decorator는 클래스에서 적용할때 login_required를 사용하기 위해 사용 @method_decorator(has_ownership, 'get') @method_decorator(has_ownership, 'post') class AccountDeleteView(DeleteView): model = User context_object_name = 'target_user' success_url = reverse_lazy('articleapp:list') template_name = 'accountapp/delete.html'
# Copyright 2022 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import annotations from dataclasses import dataclass from enum import IntEnum from typing import Any from pants.bsp.spec.base import BSPData, BuildTarget, BuildTargetIdentifier, Uri # ----------------------------------------------------------------------------------------------- # Workspace Build Targets Request # See https://build-server-protocol.github.io/docs/specification.html#workspace-build-targets-request # ----------------------------------------------------------------------------------------------- @dataclass(frozen=True) class WorkspaceBuildTargetsParams: @classmethod def from_json_dict(cls, _d): return cls() def to_json_dict(self): return {} @dataclass(frozen=True) class WorkspaceBuildTargetsResult: targets: tuple[BuildTarget, ...] @classmethod def from_json_dict(cls, d): return cls(targets=tuple(BuildTarget.from_json_dict(tgt) for tgt in d["targets"])) def to_json_dict(self): return {"targets": [tgt.to_json_dict() for tgt in self.targets]} # ----------------------------------------------------------------------------------------------- # Build Target Sources Request # See https://build-server-protocol.github.io/docs/specification.html#build-target-sources-request # ----------------------------------------------------------------------------------------------- @dataclass(frozen=True) class SourcesParams: targets: tuple[BuildTargetIdentifier, ...] @classmethod def from_json_dict(cls, d): return cls( targets=tuple(BuildTargetIdentifier.from_json_dict(x) for x in d["targets"]), ) def to_json_dict(self): return { "targets": [tgt.to_json_dict() for tgt in self.targets], } class SourceItemKind(IntEnum): FILE = 1 DIRECTORY = 2 @dataclass(frozen=True) class SourceItem: uri: Uri kind: SourceItemKind generated: bool = False @classmethod def from_json_dict(cls, d: Any): return cls( uri=d["uri"], kind=SourceItemKind(d["kind"]), generated=d["generated"], ) def to_json_dict(self): return { "uri": self.uri, "kind": self.kind.value, "generated": self.generated, } @dataclass(frozen=True) class SourcesItem: target: BuildTargetIdentifier sources: tuple[SourceItem, ...] roots: tuple[Uri, ...] | None @classmethod def from_json_dict(cls, d: Any): return cls( target=BuildTargetIdentifier.from_json_dict(d["target"]), sources=tuple(SourceItem.from_json_dict(i) for i in d["sources"]), roots=tuple(d.get("sources", ())), ) def to_json_dict(self): result = { "target": self.target.to_json_dict(), "sources": [src.to_json_dict() for src in self.sources], } if self.roots is not None: result["roots"] = list(self.roots) return result @dataclass(frozen=True) class SourcesResult: items: tuple[SourcesItem, ...] @classmethod def from_json_dict(cls, d: Any): return cls( items=tuple(SourcesItem.from_json_dict(i) for i in d["items"]), ) def to_json_dict(self): return {"items": [item.to_json_dict() for item in self.items]} # ----------------------------------------------------------------------------------------------- # Dependency Sources Request # See https://build-server-protocol.github.io/docs/specification.html#dependency-sources-request # ----------------------------------------------------------------------------------------------- @dataclass(frozen=True) class DependencySourcesParams: targets: tuple[BuildTargetIdentifier, ...] @classmethod def from_json_dict(cls, d): return cls( targets=tuple(BuildTargetIdentifier.from_json_dict(x) for x in d["targets"]), ) def to_json_dict(self): return { "targets": [tgt.to_json_dict() for tgt in self.targets], } @dataclass(frozen=True) class DependencySourcesItem: target: BuildTargetIdentifier # List of resources containing source files of the # target's dependencies. # Can be source files, jar files, zip files, or directories. sources: tuple[Uri, ...] def to_json_dict(self) -> dict[str, Any]: return { "target": self.target.to_json_dict(), "sources": self.sources, } @dataclass(frozen=True) class DependencySourcesResult: items: tuple[DependencySourcesItem, ...] def to_json_dict(self): return {"items": [item.to_json_dict() for item in self.items]} # ----------------------------------------------------------------------------------------------- # Dependency Modules Request # See https://build-server-protocol.github.io/docs/specification.html#dependency-modules-request # ----------------------------------------------------------------------------------------------- @dataclass(frozen=True) class DependencyModulesParams: targets: tuple[BuildTargetIdentifier, ...] @classmethod def from_json_dict(cls, d): return cls( targets=tuple(BuildTargetIdentifier.from_json_dict(x) for x in d["targets"]), ) def to_json_dict(self): return { "targets": [tgt.to_json_dict() for tgt in self.targets], } @dataclass(frozen=True) class DependencyModule: # Module name name: str # Module version version: str # Language-specific metadata about this module. # See MavenDependencyModule as an example. data: BSPData | None def to_json_dict(self) -> dict[str, Any]: result: dict[str, Any] = { "name": self.name, "version": self.version, } if self.data is not None: result["dataKind"] = self.data.DATA_KIND result["data"] = self.data.to_json_dict() return result @dataclass(frozen=True) class DependencyModulesItem: target: BuildTargetIdentifier modules: tuple[DependencyModule, ...] def to_json_dict(self) -> dict[str, Any]: return { "target": self.target.to_json_dict(), "modules": [m.to_json_dict() for m in self.modules], } @dataclass(frozen=True) class DependencyModulesResult: items: tuple[DependencyModulesItem, ...] def to_json_dict(self): return {"items": [item.to_json_dict() for item in self.items]}
import unittest from katas.beta.print_that_calendar import show_calendar class ShowCalendarTestCase(unittest.TestCase): def test_equal_1(self): self.assertEqual( show_calendar(2001, 10), ' October 2001\n' 'Mo Tu We Th Fr Sa Su\n' ' 1 2 3 4 5 6 7\n' ' 8 9 10 11 12 13 14\n' '15 16 17 18 19 20 21\n' '22 23 24 25 26 27 28\n' '29 30 31\n' ) def test_equal_2(self): self.assertEqual( show_calendar(2016, 5), ' May 2016\n' 'Mo Tu We Th Fr Sa Su\n' ' 1\n' ' 2 3 4 5 6 7 8\n' ' 9 10 11 12 13 14 15\n' '16 17 18 19 20 21 22\n' '23 24 25 26 27 28 29\n' '30 31\n' ) def test_equal_3(self): self.assertEqual( show_calendar(2015, 12), ' December 2015\n' 'Mo Tu We Th Fr Sa Su\n' ' 1 2 3 4 5 6\n' ' 7 8 9 10 11 12 13\n' '14 15 16 17 18 19 20\n' '21 22 23 24 25 26 27\n' '28 29 30 31\n' )
# Generated by Django 1.10.7 on 2017-11-23 15:53 from django.db import migrations def move_relaydomain_to_transport(apps, schema_editor): """Transform relaydomains to transports.""" RelayDomain = apps.get_model("relaydomains", "RelayDomain") RecipientAccess = apps.get_model("relaydomains", "RecipientAccess") Transport = apps.get_model("transport", "Transport") ra_to_create = [] for rd in RelayDomain.objects.select_related("domain", "service"): next_hop = "[{}]:{}".format(rd.target_host, rd.target_port) tr = Transport.objects.create( pattern=rd.domain.name, service="relay", next_hop=next_hop, _settings={ "relay_target_host": rd.target_host, "relay_target_port": rd.target_port, "relay_verify_recipients": rd.verify_recipients } ) rd.domain.transport = tr rd.domain.save(update_fields=["transport"]) if not rd.verify_recipients: continue ra_to_create.append( RecipientAccess( pattern=rd.domain.name, action="reject_unverified_recipient")) RecipientAccess.objects.bulk_create(ra_to_create) def forward(apps, schema_editor): """Empty.""" pass class Migration(migrations.Migration): dependencies = [ ('relaydomains', '0007_recipientaccess'), ('transport', '0001_initial'), ('admin', '0011_domain_transport'), ] operations = [ migrations.RunPython(move_relaydomain_to_transport, forward) ]
import tkinter as tk from tkinter import messagebox from tkinter.constants import LEFT import tkinter.font as tkFont import GetImage as GM from tkinter.messagebox import askokcancel, showinfo, WARNING def main(root,user,token,id,Room_ID): root.title("Room Preview") width=750 height=600 screenwidth = root.winfo_screenwidth() screenheight = root.winfo_screenheight() alignstr = '%dx%d+%d+%d' % (width, height, (screenwidth - width) / 2, (screenheight - height) / 2) root.geometry(alignstr) root.resizable(width=False, height=False) BgImg = GM.getImage("D:\Programming\Python\Room_Rental\Images\BG.jpg", 744, 592) BGLabel=tk.Label(root,image=BgImg) BGLabel.image=BgImg; BGLabel["bg"] = "#393d49" BGLabel.place(x=3,y=2,width=744,height=594) Divider1=tk.Label(root) Divider1["bg"] = "#90ee90" Divider1["fg"] = "#333333" Divider1["justify"] = "center" Divider1.place(x=0,y=170,width=744,height=3) img = GM.getImage("D:\Programming\Python\Room_Rental\Images\Logo.png",172,100) Logo=tk.Button(root,image=img) Logo.image=img Logo["bg"] = "#f6f5f4" Logo["justify"] = "center" Logo.place(x=20,y=60,width=172,height=100) img = GM.getImage("D:\Programming\Python\Room_Rental\Images\preview1.jpg",150,150) Title=tk.Button(root,image=img,compound=LEFT) Title.image=img Title["bg"] = "#34d8eb" ft = tkFont.Font(family='Times',size=25) Title["font"] = ft Title["fg"] = "#000000" Title["justify"] = "center" Title["text"] = "Aspires Room Rental\n\nRoom Preview" Title.place(x=210,y=10,width=523,height=150) Back=tk.Button(root) Back["bg"] = "#eb8c34" ft = tkFont.Font(family='Times',size=16) Back["font"] = ft Back["fg"] = "#000000" Back["justify"] = "center" Back["text"] = "Back" Back.place(x=20,y=10,width=172,height=43) Back["command"] = lambda : Back_command(root,user,token,id) Name=tk.Label(root,highlightbackground = "yellow", highlightcolor= "yellow", highlightthickness=2) Name["bg"] = "#393d49" Name["borderwidth"] = "1px" ft = tkFont.Font(family='Times',size=16) Name["font"] = ft Name["fg"] = "#ffffff" Name["justify"] = "center" Name["text"] = "Name" Name.place(x=320,y=180,width=410,height=45) Location=tk.Text(root) Location["bg"] = "#ffffff" Location["borderwidth"] = "1px" ft = tkFont.Font(family='Times',size=14) Location["font"] = ft Location["fg"] = "#000000" Location.place(x=320,y=280,width=410,height=90) City=tk.Label(root,highlightbackground = "yellow", highlightcolor= "yellow", highlightthickness=2) City["bg"] = "#393d49" City["borderwidth"] = "1px" ft = tkFont.Font(family='Times',size=16) City["font"] = ft City["fg"] = "#ffffff" City["justify"] = "center" City["text"] = "" City.place(x=320,y=232,width=410,height=40) Amenities=tk.Text(root) Amenities["bg"] = "#ffffff" Amenities["borderwidth"] = "1px" ft = tkFont.Font(family='Times',size=14) Amenities["font"] = ft Amenities["fg"] = "#000000"; Amenities.place(x=320,y=490,width=410,height=90) Type=tk.Label(root) Type["bg"] = "#ffffff" Type["borderwidth"] = "1px" ft = tkFont.Font(family='Times',size=14) Type["font"] = ft Type["fg"] = "#000000" Type["justify"] = "center" Type["text"] = "Rent" Type.place(x=370,y=380,width=190,height=45) Rent=tk.Label(root) Rent["bg"] = "#ffffff" Rent["borderwidth"] = "1px" ft = tkFont.Font(family='Times',size=14) Rent["font"] = ft Rent["fg"] = "#000000" Rent["justify"] = "center" Rent["text"] = "Rent" Rent.place(x=635,y=380,width=95,height=45) RentLabel=tk.Label(root) RentLabel["bg"] = "#393d49" ft = tkFont.Font(family='Times',size=13) RentLabel["font"] = ft RentLabel["fg"] = "#ffffff" RentLabel["justify"] = "center" RentLabel["text"] = "Rent" RentLabel.place(x=575,y=380,width=60,height=45) TypeLabel=tk.Label(root) TypeLabel["bg"] = "#393d49" ft = tkFont.Font(family='Times',size=13) TypeLabel["font"] = ft TypeLabel["fg"] = "#ffffff" TypeLabel["justify"] = "center" TypeLabel["text"] = "Type" TypeLabel.place(x=320,y=380,width=50,height=45) if token == 'S' : Book=tk.Button(root) Book["bg"] = "#46eb43" Book["borderwidth"] = "4px" ft = tkFont.Font(family='Times',size=16) Book["font"] = ft Book["fg"] = "#2e3436" Book["justify"] = "center" Book["text"] = "Proceed to Book" Book.place(x=10,y=500,width=295,height=52) Book["command"] = lambda : Book_command(root,user,token,id,Room_ID,Rent["text"]) img = GM.getImage("D:\Programming\Python\Room_Rental\Images\search.jpg",297,300) Photo=tk.Button(root,image=img) Photo.image = img Photo["bg"] = "#f6f5f4" ft = tkFont.Font(family='Times',size=10) Photo["font"] = ft Photo["fg"] = "#2e3436" Photo["justify"] = "center" Photo["text"] = "Image of room" Photo.place(x=10,y=180,width=300,height=300) Owner=tk.Label(root) Owner["bg"] = "#393d49" Owner["borderwidth"] = "1px" ft = tkFont.Font(family='Times',size=14) Owner["font"] = ft Owner["fg"] = "#ffffff" Owner["justify"] = "center" Owner["text"] = "" Owner.place(x=320,y=440,width=240,height=37) Contact=tk.Label(root) Contact["bg"] = "#393d49" Contact["borderwidth"] = "1px" ft = tkFont.Font(family='Times',size=14) Contact["font"] = ft Contact["fg"] = "#ffffff" Contact["justify"] = "center" Contact["text"] = "" Contact.place(x=575,y=440,width=155,height=36) FillPage(Room_ID,Name,Location,City,Amenities,Type,Rent,Owner,Contact,Photo) def Back_command(root,user,token,id): if token == 'S' : import StudentHome as SH; SH.main(root,user,id) else : import OwnerHome as OH; OH.main(root,user,id) def Book_command(root,user,token,id,Room_ID,p): answer = askokcancel( title='Booking Confirmation', message='Are you sure about Booking the Room ? (you cannot cancel once booked)', icon=WARNING) if answer : import DatabaseConnection as DB room_name = DB.runQuery2("select name from Room where r_id = "+str(Room_ID))[0] from datetime import datetime; now = datetime.now(); formatted_date = now.strftime('%Y-%m-%d %H:%M:%S') bid = 1 try : bid = int(DB.runQuery("select max(b_id) from Booking")[0][0]) + 1 except : bid = 1 owner_id = DB.runQuery2("select owner_id from Room where r_id = "+str(Room_ID))[0] DB.insertBooking(int(bid),formatted_date,int(p),int(owner_id),int(id),int(Room_ID)) DB.runQuery2("update Booking set b_date = now() where room_id = "+str(Room_ID)) messagebox.showinfo("Success !", "Room named {} booked for {}".format(room_name,user)) import StudentHome as Home; Home.main(root,user,id) def FillPage(Room_ID,Name,Location,City,Amenities,Type,Rent,Owner,Contact,Photo) : import DatabaseConnection as DB Tup = DB.runQuery2("select name, location, city, Amenities, type, price, owner_name from Room where r_id = %s" % (Room_ID)) #contact = str(DB.runQuery2("select mobile from Owner where o_id = (select owner_id from Room where r_id = "+str(Room_ID)+")"))[1:11] contact = str(DB.runQuery2("select mobile from Owner where o_id = (select owner_id from Room where r_id = %s)" % (Room_ID)))[1:11] #cloud Name["text"] = Tup[0]; City["text"] = Tup[2]; Type["text"] = Tup[4]; Rent["text"] = Tup[5] Owner["text"] = "Owner : "+Tup[6]; Contact["text"] = "(+91) "+contact Location.insert(tk.END,Tup[1]) Amenities.insert(tk.END,Tup[3]) Location.config(state="disabled") Amenities.config(state="disabled") import mysql.connector from PIL import Image, ImageTk from io import BytesIO import PIL.Image #cnx = mysql.connector.connect(host="localhost", user="root",password="", database="RoomRental") #cnx = mysql.connector.connect(user="ugqiri0xcve8arnj", password="W05Xj0GMrQfciurwXyku", host="b1d548joznqwkwny7elp-mysql.services.clever-cloud.com",database="b1d548joznqwkwny7elp") cnx = mysql.connector.connect(host = "remotemysql.com", user="o67DNqMxP5",password="JHs8dXYWg4", database="o67DNqMxP5") cursor = cnx.cursor(buffered=True) cursor.execute("select images from Room where r_id = %s" %(Room_ID)) data = cursor.fetchall() img = data[0][0] img1 = Image.open(BytesIO(img)) render = ImageTk.PhotoImage(img1.resize((297,300),Image.ANTIALIAS)) Photo.config(image=render) Photo.image=render;
"""index file manager.""" import hashlib import os import json from cryptarchive import constants from cryptarchive.errors import FileNotFound # ============ INDEX FORMAT ================= # as json: # { # "dirs": { # name: { # name: { # "name": childname, # "isdir": isdir, # "id": id, # } # } # ... # }, # } class Index(object): """An Index file manager""" def __init__(self, indexdata): self._index = indexdata @classmethod def new(cls): """create a new index.""" indexdata = { "dirs": { "/": { }, }, } return cls(indexdata) @classmethod def loads(cls, data): """ Load the Index from data. :param data: data to load from :type data: str :return: cls loaded from data :rtype: instance of cls """ content = json.loads(data) return cls(content) def dumps(self): """ Serializes this index. :return: serialized data of this Index :rtype: str """ return json.dumps(self._index) def mkdir(self, path): """ Create a directory. :param path: virtual path to create :type path: str """ path = self.normalize_dir_path(path) if self.dir_exists(path): return parent = self.normalize_dir_path(os.path.dirname(os.path.dirname(path))) if parent in ("/", "\\", ""): parent = "/" if (not self.dir_exists(parent)) and (parent is not None): self.mkdir(parent) self._index["dirs"][path] = {} if parent is not None: self._index["dirs"][parent][path] = { "name": os.path.basename(os.path.dirname(path)), "isdir": True, "id": path, } def dir_exists(self, path): """ check if the directory exists. :param path: path to check :type path: str :return: wether the path exists or not :rtype: boolean """ path = self.normalize_dir_path(path) if path in ("/", "", "\\"): return True return (path in self._index["dirs"]) def file_exists(self, path): """ Check if the file exists. :param path: path to check :type path: str :return: wether the path exists or not :rtype: boolean """ parent = self.normalize_dir_path(os.path.dirname(path)) path = self.normalize_file_path(path) fn = path # os.path.basename(path) if parent not in self._index["dirs"]: return False if fn in self._index["dirs"][parent]: return True else: return False def listdir(self, path): """ Returns the content of the given path. :param path: path to list :type path: str :return: [(name, isdir) of each file] :rtype: list of tuples of (str, bool) """ path = self.normalize_dir_path(path) if path not in self._index["dirs"]: return [] ret = [] for name in self._index["dirs"][path]: data = self._index["dirs"][path][name] ret.append((data["name"], data["isdir"])) return ret def create_file(self, path): """ Create a new file. Return the file id. :param path: virtual path of the new file :type path: str :return: the new file id :rtype: str """ path = self.normalize_file_path(path) if self.file_exists(path): return self.get_file_id(path) parent = self.normalize_dir_path(os.path.dirname(path)) if not self.dir_exists(parent): self.mkdir(parent) fid = self.new_file_id(parent, path) self._index["dirs"][parent][path] = { "name": os.path.basename(path), "isdir": False, "id": fid, } return fid def remove_from_index(self, path): """ Remove path from the index. :param path: virtual path to remove from the index. :type path: str :return: list of removed fileids :rtype: list of str """ removed = [] normalized = self.normalize_dir_path(path) # if path is a directory, remove all children if normalized in list(self._index["dirs"]): for child in list(self._index["dirs"][normalized]): removed += self.remove_from_index(child) # remove all references to path for dn in self._index["dirs"]: dircontent = self._index["dirs"][dn] for sp in dircontent.keys(): fid = self._index["dirs"][dn][sp]["id"] isdir = self._index["dirs"][dn][sp]["isdir"] if (sp == path) or (fid == path): if not isdir: removed.append(fid) del self._index["dirs"][dn][sp] return [self._encode(e) for e in removed] def new_file_id(self, parentdir, name): """ Generate a new file id. :param parentdir: the parent directory :type parentdir: str :param name: the filename :type name: str :return: the generated file id :rtype: str """ parentdir = self.normalize_dir_path(parentdir) fid = hashlib.sha256(parentdir + name).hexdigest() return fid def get_file_id(self, path): """ Return the file id for the file at path. :param path: path to get fileid for :type path: str :return: the fileid of path :rtype: str """ parent = self.normalize_dir_path(os.path.dirname(path)) path = self.normalize_file_path(path) if parent not in self._index["dirs"]: raise FileNotFound("No such directory: '{p}'!".format(p=parent)) if path not in self._index["dirs"][parent]: raise FileNotFound("No such File: '{p}'!".format(p=path)) else: return self._encode(self._index["dirs"][parent][path]["id"]) def _encode(self, s): """ Encode s into the index encoding. :param s: string to encode :type s: str or unicode :return: encoded string :rtype: str """ if isinstance(s, str): return s elif isinstance(s, unicode): return s.encode(constants.INDEX_ENCODING) else: raise TypeError("Expected string or unicode, got {t}".format(t=type(s))) def normalize_dir_path(self, path): """ Return a normalized directory path. Example: /test/ -> /test/ /test -> /test/ /test// -> /test/ test/ -> /test/ \\test\\ -> /test/ :param path: path to normalize :type path: str :return: the normalized path :rtype: str """ # 1. ensure final slash path = os.path.join(*os.path.split(path)) if not path.endswith(os.sep): # sep will be converted later path += os.sep # 2. always use '/' as seperator path = path.replace(os.path.sep, "/") # 3. remove multi slashes while "//" in path: path = path.replace("//", "/") # 4.ensure root is "/": if len(path) == 0: path = "/" # 5. ensure start slash if not path.startswith("/"): path = "/" + path return path def normalize_file_path(self, path): """ Return a normalized file path. Example: /test/file.txt -> /test/file.txt /test//file.txt -> /test/file.txt test/file.txt -> /test/file.txt \\test\\file.txt -> /test/file.txt :param path: path to normalize :type path: str :return: the normalized path :rtype: str """ # 1. always use '/' as seperator path = path.replace(os.path.sep, "/") # 2. remove multi slashes while "//" in path: path = path.replace("//", "/") # 3. ensure start slash if not path.startswith("/"): path = "/" + path return path def move(self, src, dest): """ Move src to dest. :param src: the source path :type src: str :param dest: the destination path :type dest: str """ src = self.normalize_file_path(src) if not (self.dir_exists(src) or self.file_exists(src)): raise FileNotFound("No such file or directory: '{p}'!".format(p=src)) dest = self.normalize_file_path(dest) srcparent = self.normalize_dir_path(os.path.dirname(src)) destparent = self.normalize_dir_path(os.path.dirname(dest)) if not self.dir_exists(destparent): self.mkdir(destparent) olddata = self._index["dirs"][srcparent][src] self._index["dirs"][destparent][dest] = { "name": os.path.basename(dest), "isdir": olddata["isdir"], "id": olddata["id"], } self.remove_from_index(src)
""" Placeholder plugin to test the plugin system. """ __help__ = 'Hello world. A throwaway module.' def seed_parser(parser): """ Seed the parser. """ parser.add_argument('--awesome',dest='awesome',default='completely') def seed_commands(commands): """ Seeds the commands. """ def awesome(args): print 'I am',args.awesome,'awesome.' commands['yo'] = {'__default__':awesome}
from urllib.request import urlopen from bs4 import BeautifulSoup # CSS/Tag html = urlopen("https://morvanzhou.github.io/static/scraping/list.html").read().decode("UTF-8") print('here is the html structure: \n') print(html) soup = BeautifulSoup(html, features='lxml') #month = soup.find_all('li', {'class': 'month'}) #for m in month: # print(m.get_text()) # if not us get_text method 'print(m)', the tags will be printed jan = soup.find_all('ul', {"class": 'jan'}) print('--'*20) print(jan) d_jan = jan.find_all('li') for d in d_jan: print(d.get_text())
import functools import numpy as np import pandas as pd def handle_na(func): """Decorator for scalar function so it returns nan when nan is input""" @functools.wraps(func) def func_wrapper(arg, *args, **kwargs): if pd.isna(arg): return arg return func(arg, *args, **kwargs) func_wrapper.__doc__ = func.__doc__ if func.__doc__ else "" func_wrapper.__doc__ += "\n@about: return numpy.nan if arg is nan\n" return func_wrapper def notna(obj): """Detect none missing values for an array-like or scalar object.""" return np.logical_not(pd.isna(obj))
import logging import networkx as nx import os import time class mp_network: id = None logger = None cfg = {} node_types = [] edge_types = [] graph = None def __init__(self, config = None): # initialize id self.id = int(time.time() * 100) # initialize logger self.logger = logging.getLogger('metapath') self.node_types = ['e', 'tf', 's'] self.edge_types = [('e', 'tf'), ('s', 'tf')] # create empty network instance if no configuration is given if config == None: return self.cfg = config self.update() # # create NetworkX graph object # def update(self, nodelist = {'type': None, 'list': []}, edgelist = {'type': (None, None), 'list': []}): # update node list from function parameter if nodelist['type'] in self.node_types: self.cfg['nodes'][nodelist['type']] = nodelist['list'] # update edge list from function parameter if edgelist['type'] in self.edge_types: edge_type = edgelist['type'][0] + '-' + edgelist['type'][1] self.cfg['edges'][edge_type] = edgelist['list'] # filter edges to valid nodes for src_type, tgt_type in self.edge_types: edge_type = src_type + '-' + tgt_type filtered_edges = [] for src, tgt in self.cfg['edges'][edge_type]: if not src in self.cfg['nodes'][src_type]: continue if not tgt in self.cfg['nodes'][tgt_type]: continue filtered_edges.append((src, tgt)) self.cfg['edges'][edge_type] = filtered_edges # reset nodes, edges and name of graph try: self.graph.clear() self.graph['name'] = self.cfg['name'] except: self.graph = nx.Graph(name = self.cfg['name']) # add nodes sort_id = 0 for type_id, type in enumerate(self.node_types): for type_node_id, node in enumerate(self.cfg['nodes'][type]): id = type + ':' + node if id in self.graph.nodes(): continue self.graph.add_node( id, label = node, sort_id = sort_id, params = { 'type': type, 'type_id': type_id, 'type_node_id': type_node_id}) sort_id += 1 # add edges sort_id = 0 for type_id, (src_type, tgt_type) in enumerate(self.edge_types): edge_type = src_type + '-' + tgt_type if not edge_type in self.cfg['edges']: self.cfg['edges'][edge_type] = [] continue for (src, tgt) in self.cfg['edges'][edge_type]: src_node_id = src_type + ':' + src tgt_node_id = tgt_type + ':' + tgt self.graph.add_edge( src_node_id, tgt_node_id, weight = 0, sort_id = sort_id, params = {'type': edge_type, 'type_id': type_id}) sort_id += 1 # # accessing nodes # def nodes(self, **params): # filter search criteria and order entries sorted_list = [None] * self.graph.number_of_nodes() for node, attr in self.graph.nodes(data = True): if not params == {}: passed = True for key in params: if not key in attr['params'] \ or not params[key] == attr['params'][key]: passed = False break if not passed: continue sorted_list[attr['sort_id']] = node # filter empty nodes filtered_list = [] for node in sorted_list: if node: filtered_list.append(node) return filtered_list def node_labels(self, **params): list = [] for node in self.nodes(**params): list.append(self.graph.node[node]['label']) return list def node(self, node): return self.graph.node[node] # # accessing edges # def edges(self, **params): # filter search criteria and order entries sorted_list = [None] * self.graph.number_of_edges() for src, tgt, attr in self.graph.edges(data = True): if not params == {}: passed = True for key in params: if not key in attr['params'] \ or not params[key] == attr['params'][key]: passed = False break if not passed: continue sorted_list[attr['sort_id']] = (src, tgt) # filter empty nodes filtered_list = [] for edge in sorted_list: if edge: filtered_list.append(edge) return filtered_list def edge_labels(self, **params): list = [] for src, tgt in self.edges(**params): src_label = self.graph.node[src]['label'] tgt_label = self.graph.node[tgt]['label'] list.append((src_label, tgt_label)) return list # # get / set # def get(self): return { 'id': self.id, 'cfg': self.cfg, 'node_types': self.node_types, 'edge_types': self.edge_types, 'graph': self.graph } def set(self, **params): if 'id' in params: self.id = params['id'] if 'cfg' in params: self.cfg = params['cfg'] if 'node_types' in params: self.node_types = params['node_types'] if 'edge_types' in params: self.edge_types = params['edge_types'] if 'graph' in params: self.graph = params['graph'] return True ## def get_node_labels(self, params = {}, type = None, type_id = None): ## ## nodes = self.get_nodes(type = type, type_id = type_id, params} ## self.update( ## e = config['e'], s = config['s'], tf = config['tf'], ## edges = config['s-tf'] + config['e-tf']) ## def update(self, e = [], tf = [], s = [], edges = []): ## ## # update nodes ## if e and tf and s: ## self.node = {} ## ## nodeindex = 0 ## if e: ## for node in e: ## id = 'e:' + node ## ## if id in self.node: ## continue ## ## self.node[id] = { ## 'name': node, ## 'class': 'e', ## 'index': nodeindex} ## ## nodeindex += 1 ## else: ## pass ## #e = self.node['e'] ## ## ## quit() ## ## if tf: ## self.node['tf'] = list(set(tf)) ## else: ## tf = self.node['tf'] ## ## if s: ## self.node['s'] = list(set(s)) ## else: ## s = self.node['s'] ## ## self.nodes = list(set(s + e + tf)) ## ## # update edges ## if edges: ## self.edges = list(set(edges)) ## ## edges = [] ## for (val1, val2) in self.edges: ## if (val1 in self.nodes) and (val2 in self.nodes): ## edges.append((val1, val2)) ## ## self.edges = edges ## ## ## update matrices ## #self.update_matrices() ## ## ## update graph ## #self.update_graph() def save_graph(self, file = None, format = 'gml'): if file == None: self.logger.error("no save path was given") quit() # create path if not available if not os.path.exists(os.path.dirname(file)): os.makedirs(os.path.dirname(file)) # everythink seems to be fine # self.logger.info("saving graph to %s" % (file)) if format == 'gml': G = self.graph.copy() nx.write_gml(G, file) def plot(self, file = None, edges = 'weights', draw_edge_labels = True, edge_threshold = 0.0, nodes = 'labels', draw_node_captions = False, caption = None, title = None, colors = None, dpi = 300): # create path if not available if not os.path.exists(os.path.dirname(file)): os.makedirs(os.path.dirname(file)) # check if python module 'pyplot' is available try: import matplotlib.pyplot as plt except: self.logger.critical("could not import python module 'pyplot'") quit() import numpy as np # everything seems to be fine ## self.logger.info("saving graph plot to %s" % (file)) # calculate sizes zoom = 1 scale = min(250.0 / max( len(self.node['e']), len(self.node['tf']), len(self.node['s'])), 30.0) graph_node_size = scale ** 2 graph_font_size = 0.4 * scale graph_caption_factor = 0.5 + 0.003 * scale graph_line_width = 0.5 # calculate node positions for 'stack layout' pos = {} for node, attr in self.graph.nodes(data = True): i = 1.0 / len(self.node[attr['type']]) x = (self.node[attr['type']].index(attr['label']) + 0.5) * i y = ['e', 'tf', 's'].index(attr['type']) * 0.5 pos[node] = (x, y) # calculate node caption positions for 'stack layout' pos_caption = {} for node, attr in self.graph.nodes(data = True): i = 1.0 / len(self.node[attr['type']]) x = (self.node[attr['type']].index(attr['label']) + 0.5) * i y = (['e', 'tf', 's'].index(attr['type']) - 1) * graph_caption_factor + 0.5 pos_caption[node] = (x, y) # create figure object fig = plt.figure() # draw labeled nodes for node, attr in self.graph.nodes(data = True): # calculate weight sum of node if edges == 'weights': weight_sum = 0 for (n1, n1, edge_attr) in self.graph.edges(nbunch = [node], data = True): weight_sum += edge_attr['weight'] weight_sum = min(0.01 + 0.3 * weight_sum, 1) elif edges == 'adjacency': weight_sum = 1 # calculate rgba-color of node c = 1 - weight_sum if colors == None or colors == 'colors': color = { 's': (1, c, c, 1), 'tf': (c, 1, c, 1), 'e': (1, 1, c, 1) }[attr['type']] elif colors == 'grey': color = (0.3 + 2 * c / 3, 0.3 + 2 * c / 3, 0.3 + 2 * c / 3, 1) # draw node nx.draw_networkx_nodes( self.graph, pos, node_size = graph_node_size, linewidths = graph_line_width, nodelist = [node], node_shape = 'o', #alpha = weight_sum, node_color = color) # draw node label node_font_size = 1.5 * graph_font_size / np.sqrt(max(len(node) - 1, 1)) nx.draw_networkx_labels( self.graph, pos, font_size = node_font_size, labels = {node: attr['label']}, font_weight = 'normal') # draw node caption if draw_node_captions and not attr['type'] == 'tf': approx = ' $' + '%d' % (100 * attr['approx']) + '\%$' nx.draw_networkx_labels( self.graph, pos_caption, font_size = 0.65 * graph_font_size, labels = {node: approx}, font_weight = 'normal') # draw labeled edges if edges == 'weights': for (v, h) in self.graph.edges(): if colors == None or colors == 'colors': if self.graph.edge[v][h]['value'] < 0: color = 'red' else: color = 'green' elif colors == 'grey': color = 'black' if self.graph.edge[v][h]['weight'] > edge_threshold: nx.draw_networkx_edges( self.graph, pos, width = self.graph.edge[v][h]['weight'] * graph_line_width, edgelist = [(v, h)], edge_color = color, alpha = 1) if draw_edge_labels: size = graph_font_size / 1.5 label = ' $' + ('%.2g' % (np.abs(self.graph.edge[v][h]['value']) * 100)) + '$' nx.draw_networkx_edge_labels( self.graph, pos, edge_labels = {(v, h): label}, font_color = color, clip_on = False, font_size = size, font_weight = 'normal') elif edges == 'adjacency': for (v, h) in self.graph.edges(): nx.draw_networkx_edges( self.graph, pos, width = 1 * graph_line_width, edgelist = [(v, h)], alpha = 1) # draw title if title == None: title = self.name plt.figtext(.5, .92, title, fontsize = 10, ha = 'center') # draw caption if caption == None: if edges == 'weights': label_text = r'$\mathbf{Network:}\,\mathrm{%s}$' % (self.graph) elif edges == 'adjacency': label_text = r'$\mathbf{Network:}\,\mathrm{%s}$' % (self.graph) plt.figtext(.5, .06, label_text, fontsize = 10, ha = 'center') else: plt.figtext(.5, .06, caption, fontsize = 10, ha = 'center') plt.axis('off') # save plot or show if file == None: plt.show() else: plt.savefig(file, dpi = dpi) # clear current figure object and release memory plt.clf() plt.close(fig)
# works in Python 2 & 3 class _Singleton(type): _instances = {} def __call__(self, *args, **kwargs): if self not in self._instances: self._instances[self] = \ super(_Singleton, self).__call__(*args, **kwargs) return self._instances[self] class Singleton(_Singleton("SingletonMeta", (object,), {})): pass
def testit(s): return ' '.join(a.lower()[:-1] + a[-1].upper() for a in s.split())
class Solution: # @param digits, a list of integer digits # @return a list of integer digits def plusOne(self, digits): if len(digits) == 0: return [1] digits[len(digits)-1] += 1 carry = 0 for x in xrange(len(digits)-1,-1,-1): if digits[x] == 10: digits[x] = 0 if x != 0: digits[x-1] += 1 else: carry = 1 if carry == 1: digits = [1] + digits return digits s = Solution() print s.plusOne([9,9,9,9,9,9,9])
import os import platform if platform.system() == 'Windows': texconv_path = f'{os.path.dirname(__file__)}/../resources/texconv.exe' else: raise Exception('Unknown Architecture') def convert_texture(arg: str): os.system(f'{texconv_path} {arg}')
import csv import re import sys import pandas as pd import numpy as np import collections """ family id """ if __name__ == '__main__': data = pd.read_csv('data/all_data_1.csv') data['Family'] = pd.Series(str(np.nan), index=data.index) for index,row in data.iterrows(): sirname = row['Name'].split(",") family_id = sirname[0]+"_"+str(1 + row['Parch'] + row['SibSp']) data.ix[index,'Family'] = str(family_id) data.to_csv('data/all_data_2.csv',mode = 'w',index = False)
""" 2021年5月24日 矫正踢腿磁铁设计 现在的情况是这样的: 前偏转段优化后,不同动量分散下的相椭圆形状、Δx、Δy、Δxp都可以,唯独 Δxp 会变动,大约是 4mr/% 现在打算加入矫正踢腿磁铁 先看看没有动量分散下,全段情况 """ # 因为要使用父目录的 cctpy 所以加入 from os import error, path import sys sys.path.append(path.dirname(path.abspath(path.dirname(__file__)))) from work.A01run import * from cctpy import * def beamline_phase_ellipse_multi_delta(bl: Beamline, particle_number: int, dps: List[float], describles: str = ['r-', 'y-', 'b-', 'k-', 'g-', 'c-', 'm-'], foot_step: float = 20*MM, report: bool = True): if len(dps) > len(describles): print( f'describles(size={len(describles)}) 长度应大于等于 dps(size={len(dps)})') xs = [] ys = [] for dp in dps: x, y = bl.track_phase_ellipse( x_sigma_mm=3.5, xp_sigma_mrad=7.5, y_sigma_mm=3.5, yp_sigma_mrad=7.5, delta=dp, particle_number=particle_number, kinetic_MeV=215, concurrency_level=16, footstep=foot_step, report=report ) xs.append(x + [x[0]]) ys.append(y + [y[0]]) plt.subplot(121) for i in range(len(dps)): plt.plot(*P2.extract(xs[i]), describles[i]) plt.xlabel(xlabel='x/mm') plt.ylabel(ylabel='xp/mr') plt.title(label='x-plane') plt.legend(['dp'+str(int(dp*1000)/10) for dp in dps]) plt.axis("equal") plt.subplot(122) for i in range(len(dps)): plt.plot(*P2.extract(ys[i]), describles[i]) plt.xlabel(xlabel='y/mm') plt.ylabel(ylabel='yp/mr') plt.title(label='y-plane') plt.legend(['dp'+str(int(dp*1000)/10) for dp in dps]) plt.axis("equal") plt.show() if __name__ == "__main__": BaseUtils.i_am_sure_my_code_closed_in_if_name_equal_main() param = [5.498, -3.124, 30.539, 0.383, 84.148, 94.725, 82.377, 100.672, 72.283 , 99.973, -9807.602, 9999.989 , 25.000, 24.000 ] qs1_g = param[0] qs2_g = param[1] qs1_s = param[2] qs2_s = param[3] dicct_tilt_1 = param[4] dicct_tilt_2 = param[5] dicct_tilt_3 = param[6] agcct_tilt_0 = param[7] agcct_tilt_2 = param[8] agcct_tilt_3 = param[9] dicct_current = param[10] agcct_current = param[11] agcct1_wn = int(param[12]) agcct2_wn = int(param[13]) qs1_gradient=qs1_g qs2_gradient=qs2_g qs1_second_gradient=qs1_s qs2_second_gradient=qs2_s qs1_aperture_radius=60*MM qs2_aperture_radius=60*MM dicct12_tilt_angles=[30, dicct_tilt_1, dicct_tilt_2, dicct_tilt_3] agcct12_tilt_angles=[agcct_tilt_0, 30, agcct_tilt_2, agcct_tilt_3] dicct12_current=dicct_current agcct12_current=agcct_current agcct1_winding_number=agcct1_wn agcct2_winding_number=agcct2_wn dicct12_winding_number=42 agcct1_bending_angle=22.5 * (agcct1_wn / (agcct1_wn + agcct2_wn)) agcct2_bending_angle=22.5 * (agcct2_wn / (agcct1_wn + agcct2_wn)) DL1=0.9007765 GAP1=0.4301517 GAP2=0.370816 qs1_length=0.2340128 qs2_length=0.200139 DL2=2.35011 GAP3=0.43188 qs3_length=0.24379 qs3_aperture_radius=60 * MM qs3_gradient=-7.3733 qs3_second_gradient=-45.31 * 2 agcct12_inner_small_r=92.5 * MM - 20 * MM # 92.5 agcct12_outer_small_r=108.5 * MM - 20 * MM # 83+15 dicct12_inner_small_r=124.5 * MM - 20 * MM # 83+30+1 dicct12_outer_small_r=140.5 * MM - 20 * MM # 83+45 +2 dicct345_tilt_angles=[30, 88.773, 98.139, 91.748] agcct345_tilt_angles=[101.792, 30, 62.677, 89.705] dicct345_current=9409.261 agcct345_current=-7107.359 agcct3_winding_number=25 agcct4_winding_number=40 agcct5_winding_number=34 agcct3_bending_angle=-67.5 * (25 / (25 + 40 + 34)) agcct4_bending_angle=-67.5 * (40 / (25 + 40 + 34)) agcct5_bending_angle=-67.5 * (34 / (25 + 40 + 34)) agcct345_inner_small_r=92.5 * MM + 0.1*MM # 92.5 agcct345_outer_small_r=108.5 * MM + 0.1*MM # 83+15 dicct345_inner_small_r=124.5 * MM + 0.1*MM # 83+30+1 dicct345_outer_small_r=140.5 * MM + 0.1*MM # 83+45 +2 dicct345_winding_number=128 part_per_winding=120 deltas = BaseUtils.list_multiply([-4,-2,0,2,4],0.01) fields = [0,-0.05,-0.05,-0.1,-0.07] cs = ['r-', 'y-', 'b-', 'k-', 'g-', 'c-', 'm-'] for i in range(len(fields)): straight_dipole_magnet_filed = fields[i] bl = Beamline = ( Beamline.set_start_point(P2.origin()) # 设置束线的起点 # 设置束线中第一个漂移段(束线必须以漂移段开始) .first_drift(direct=P2.x_direct(), length=DL1) .append_agcct( # 尾接 acgcct big_r=0.95, # 偏转半径 # 二极 CCT 和四极 CCT 孔径 small_rs=[dicct12_outer_small_r, dicct12_inner_small_r, agcct12_outer_small_r, agcct12_inner_small_r], bending_angles=[agcct1_bending_angle, agcct2_bending_angle], # agcct 每段偏转角度 tilt_angles=[dicct12_tilt_angles, agcct12_tilt_angles], # 二极 CCT 和四极 CCT 倾斜角 winding_numbers=[[dicct12_winding_number], [ agcct1_winding_number, agcct2_winding_number]], # 二极 CCT 和四极 CCT 匝数 # 二极 CCT 和四极 CCT 电流 currents=[dicct12_current, agcct12_current], disperse_number_per_winding=part_per_winding # 每匝分段数目 ) .append_drift(GAP1) # 尾接漂移段 .append_qs( # 尾接 QS 磁铁 length=qs1_length, gradient=qs1_gradient, second_gradient=qs1_second_gradient, aperture_radius=qs1_aperture_radius ) .append_drift(GAP2) .append_qs( length=qs2_length, gradient=qs2_gradient, second_gradient=qs2_second_gradient, aperture_radius=qs2_aperture_radius ) .append_drift(GAP2) .append_qs( length=qs1_length, gradient=qs1_gradient, second_gradient=qs1_second_gradient, aperture_radius=qs1_aperture_radius ) .append_drift(GAP1) .append_agcct( big_r=0.95, small_rs=[dicct12_outer_small_r, dicct12_inner_small_r, agcct12_outer_small_r, agcct12_inner_small_r], bending_angles=[agcct2_bending_angle, agcct1_bending_angle], tilt_angles=[dicct12_tilt_angles, agcct12_tilt_angles], winding_numbers=[[dicct12_winding_number], [ agcct2_winding_number, agcct1_winding_number]], currents=[dicct12_current, agcct12_current], disperse_number_per_winding=part_per_winding ) .append_drift(DL1-0.1) .append_straight_dipole_magnet( magnetic_field=straight_dipole_magnet_filed, length=0.2, aperture_radius=60*MM ) # 第二段 .append_drift(DL2-0.1) .append_agcct( big_r=0.95, small_rs=[dicct345_outer_small_r, dicct345_inner_small_r, agcct345_outer_small_r, agcct345_inner_small_r], bending_angles=[agcct3_bending_angle, agcct4_bending_angle, agcct5_bending_angle], tilt_angles=[dicct345_tilt_angles, agcct345_tilt_angles], winding_numbers=[[dicct345_winding_number], [ agcct3_winding_number, agcct4_winding_number, agcct5_winding_number]], currents=[dicct345_current, agcct345_current], disperse_number_per_winding=part_per_winding ) .append_drift(GAP3) .append_qs( length=qs3_length, gradient=qs3_gradient, second_gradient=qs3_second_gradient, aperture_radius=qs3_aperture_radius ) .append_drift(GAP3) .append_agcct( big_r=0.95, small_rs=[dicct345_outer_small_r, dicct345_inner_small_r, agcct345_outer_small_r, agcct345_inner_small_r], bending_angles=[agcct5_bending_angle, agcct4_bending_angle, agcct3_bending_angle], tilt_angles=[dicct345_tilt_angles, agcct345_tilt_angles], winding_numbers=[[dicct345_winding_number], [ agcct5_winding_number, agcct4_winding_number, agcct3_winding_number]], currents=[dicct345_current, agcct345_current], disperse_number_per_winding=part_per_winding ) .append_drift(DL2) ) xs,ys = bl.track_phase_ellipse( x_sigma_mm=3.5,xp_sigma_mrad=7.5, y_sigma_mm=3.5,yp_sigma_mrad=7.5, delta=deltas[i], particle_number=8, kinetic_MeV=215, concurrency_level=16, footstep=20*MM ) Plot2.plot_p2s(xs,describe=cs[i],circle=True) Plot2.equal() Plot2.legend(*[str(int(deltas[i]*100))+"%:"+str(fields[i])+"T" for i in range(len(fields))]) Plot2.info("x/mm","y/mm","") Plot2.show()
from common.run_method import RunMethod import allure @allure.step("极运营/前台业务/批量转班/查询转班学生") def classChange_student_get(params=None, header=None, return_json=True, **kwargs): ''' :param: url地址后面的参数 :body: 请求体 :return_json: 是否返回json格式的响应(默认是) :header: 请求的header :host: 请求的环境 :return: 默认json格式的响应, return_json=False返回原始响应 ''' name = "极运营/前台业务/批量转班/查询转班学生" url = f"/service-profile/classChange/student" res = RunMethod.run_request("GET", url, params=params, header=header, return_json=return_json, name=name, **kwargs) return res @allure.step("极运营/前台业务/批量转班/查询转班费用课时") def classChange_detail_post(params=None, body=None, header=None, return_json=True, **kwargs): ''' :param: url地址后面的参数 :body: 请求体 :return_json: 是否返回json格式的响应(默认是) :header: 请求的header :host: 请求的环境 :return: 默认json格式的响应, return_json=False返回原始响应 ''' name = "极运营/前台业务/批量转班/查询转班费用课时" url = f"/service-profile/classChange/detail" res = RunMethod.run_request("POST", url, params=params, body=body, header=header, return_json=return_json, name=name, **kwargs) return res @allure.step("极运营/前台业务/批量转班/查询转班记录") def classChange_query_post(params=None, body=None, header=None, return_json=True, **kwargs): ''' :param: url地址后面的参数 :body: 请求体 :return_json: 是否返回json格式的响应(默认是) :header: 请求的header :host: 请求的环境 :return: 默认json格式的响应, return_json=False返回原始响应 ''' name = "极运营/前台业务/批量转班/查询转班记录" url = f"/service-profile/classChange/query" res = RunMethod.run_request("POST", url, params=params, body=body, header=header, return_json=return_json, name=name, **kwargs) return res @allure.step("极运营/前台业务/批量转班/批量转班") def classChange_change_post(params=None, body=None, header=None, return_json=True, **kwargs): ''' :param: url地址后面的参数 :body: 请求体 :return_json: 是否返回json格式的响应(默认是) :header: 请求的header :host: 请求的环境 :return: 默认json格式的响应, return_json=False返回原始响应 ''' name = "极运营/前台业务/批量转班/批量转班" url = f"/service-profile/classChange/change" res = RunMethod.run_request("POST", url, params=params, body=body, header=header, return_json=return_json, name=name, **kwargs) return res @allure.step("极运营/前台业务/转班/个人转班") def classChange_query_class_post(params=None, body=None, header=None, return_json=True, **kwargs): ''' :param: url地址后面的参数 :body: 请求体 :return_json: 是否返回json格式的响应(默认是) :header: 请求的header :host: 请求的环境 :return: 默认json格式的响应, return_json=False返回原始响应 ''' name = "极运营/前台业务/转班/个人转班" url = f"/service-profile/classChange/query/class" res = RunMethod.run_request("POST", url, params=params, body=body, header=header, return_json=return_json, name=name, **kwargs) return res @allure.step("极运营/前台业务/批量转班/转班校验") def classChange_validateChangeClassOrder_post(params=None, body=None, header=None, return_json=True, **kwargs): ''' :param: url地址后面的参数 :body: 请求体 :return_json: 是否返回json格式的响应(默认是) :header: 请求的header :host: 请求的环境 :return: 默认json格式的响应, return_json=False返回原始响应 ''' name = "极运营/前台业务/批量转班/转班校验" url = f"/service-profile/classChange/validateChangeClassOrder" res = RunMethod.run_request("POST", url, params=params, body=body, header=header, return_json=return_json, name=name, **kwargs) return res
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Mar 27 13:24:09 2018 @author: Markus Meister @instute: University Oldenburg (Olb) @devision: Machine Learning @faculty:FVI Math.&Nat.Sci. """ #%% imports import torch from torch.autograd import Variable import torch.nn as nn import torch.nn.functional as F from torch import autograd, optim import numpy as np #from OneHotEncoder import one_hot_encode #%% prefix if 'xrange' not in locals(): def xrange(mx,mn=0): return range(mn,mx) globals()['xrange'] = xrange #%% MLP class class Net(nn.Sequential): def __init__(self, n_features=2, n_h=[], n_Classes=2,mu=0,std=.25, early_stopping=True, tol=.5e-08, loss_fun='CrossEntropy', validation_frac=.1,lafcns=None,ltypes=None,max_iter=250, opt='Adam',learning_rate=0.001,batch_size='auto',fc_init=0, layers=None, warm_start=True): super(Net,self).__init__() #Net, self #std loss #self.loss_fun = torch.nn.CrossEntropyLoss() if type(n_h).__name__ == 'str': n_h = eval(n_h) n_h = np.array(n_h) n_units = np.append(np.append(np.array(n_features), n_h), n_Classes).tolist() if ltypes == None and not fc_init: fc_init = 0 self.n_layers = len(n_h) + 1 elif ltypes != None and fc_init == 1: fc_init = True self.n_layers = np.min(\ len(ltypes['type']),\ len(ltypes['args'])\ ) if layers != None: fc_init = 3 self.n_layers = len(layers) if fc_init != 3: if lafcns == None and fc_init != 3: lafcns = np.repeat('relu',len(n_h)+1).tolist() elif fc_init and layers != None and fc_init != 3: if len(lafcns) < len(layers): dl = np.abs(len(lafcns) - len(layers)) lafcns = np.array(lafcns) lafcns = np.append(lafcns, np.repeat(lafcns[-1],dl)) if ltypes == None and fc_init != 3: ltypes = {} ltypes['type'] = np.repeat('Linear',len(n_h)+1).tolist() ltypes['args'] = {} if not hasattr(ltypes,'args',) and fc_init != 3: ltypes['args'] = {} if ltypes != None and len(ltypes['args']) < len(ltypes['type']) and fc_init != 3: for j in range(1,len(n_h)+2): ltypes['args'][j-1] = "%d,%d" \ %(int(n_units[j-1]),int(n_units[j])) #self.lafcns = lafcns #self.ltypes = ltypes['name'] #parse loss function # if loss_fun != 'default' and loss_fun != None: # if type(loss_fun) == str: # self.loss_fun = loss_fun.strip('Loss') # #exec('self.loss_fun = torch.nn.%sLoss()' %(loss_fun)) # elif type(loss_fun).__name__.strip('function') !=\ # type(loss_fun).__name__\ # or type(loss_fun).__name__.strip('method') !=\ # type(loss_fun).__name__: # self.loss_fun = loss_fun # else: # self.loss_fun = torch.nn.MSELoss() if tol != None: self.tol = tol else: self.tol = 1e-8 n_hl = len(n_h) if fc_init <= 2: # for each layer with given data for l in range(len(ltypes['type'])): # exec('self.%s = nn.%s(%s)' \ # %(\ # ltypes['type'][l],\ # ltypes['args'][l]\ # )\ # ) ################################################################################################################################################################################### self.add_module(\ "(%d)" %(l),\ eval(\ 'nn.%s(%s)' \ %(ltypes['type'],\ ltypes['args'][l])\ )\ ) # exec('torch.nn.init.normal(self.%s.weight, mean=mu, std=std)' \ # %ltypes['name'][l]\ # ) else: # for each given layer from dict for l in layers: self.add_module(l,layers[l]) #exec('torch.nn.init.normal(self.%s.weight, mean=mu, std=std)' \ # %l\ # ) # if fc_init and fc_init < 2: # #self.ltypes = ltypes # #self.lafcns = lafcns # self.ini_fwd_types() # if fc_init > 1: # self.ini_fwd_layer() self.n_hl = n_hl self.n_h = n_h self.n_features = n_features self.n_Classes = n_Classes self.validation_frac = early_stopping*validation_frac self.ealy_stopping = early_stopping self.max_iter = max_iter self.learning_rate = learning_rate self.batch_size = batch_size self.warm_start = warm_start self.c_losses = np.array([ 'CrossEntropy', 'NLL', ],dtype=str) if type(opt).__name__ == 'str': exec(\ 'self.opt=optim.%s(%s,lr=%f)' \ %(\ opt,\ 'params=self.parameters()',\ learning_rate\ )\ ) else: self.opt = opt def fit(self,x,l,loss_fun=None,opt=None, batch_size=None, epochs=None, verb=False): l = l.squeeze() if batch_size == None: batch_size = self.batch_size n_total = x.shape[0] D = x.shape[1] N = n_total assert D == self.n_features if batch_size == 'auto' or type(batch_size).__name__ == 'str': batch_size = N if loss_fun == None: try: losses = eval('torch.nn.%sLoss()' %(self.loss_fun)) loss_fun = self.loss_fun except: losses = torch.nn.MSELoss() loss_fun = 'MSE' if np.sum(self.c_losses == loss_fun) == 0 \ and len(l.shape) <= 1: l = self.binarize(l,self.n_Classes) if epochs == None: epochs = self.max_iter if opt == None: opt = self.opt #optim.SGD(params=self.parameters(),lr=0.01) i_shuffle = np.arange(n_total) num_batches = int(n_total/batch_size) this_loss = np.ones((epochs,1)) loss_valid = np.ones((epochs,1)) valid_size = int(batch_size*self.validation_frac) bdata_size = batch_size - valid_size e_tol = 0 v_tol = 0 for e in range(epochs): # verbous print if verb: print('Epoch %s out of %s'%((e+1),epochs)) # data shuffle np.random.shuffle(i_shuffle) x=x[i_shuffle] l=l[i_shuffle] # data torchify torch_data = autograd.Variable(torch.from_numpy(x).float()) if np.sum(self.c_losses == loss_fun) != 0: torch_labels = autograd.Variable(torch.from_numpy(l)).long() else: torch_labels = autograd.Variable(torch.from_numpy(l)).float() # batch train for n in range(num_batches): dat = torch_data[(batch_size*n):(batch_size*(n+1)),:] lab = torch_labels[(batch_size*n):(batch_size*(n+1))] if self.validation_frac > 0.0: val = self(dat[-valid_size:]) out = self(dat[:bdata_size]) loss = losses(out,lab[:bdata_size]) self.zero_grad() loss.backward() opt.step() #print(loss.data.mean()) this_loss[e] += loss.data.mean().numpy() #print(loss) if valid_size > 0: loss_valid[e] = losses(val,lab[-valid_size:]).data.mean().numpy() this_loss[e] = this_loss[e] /num_batches if valid_size > 0: loss_valid[e] = loss_valid[e] /num_batches # verbos print if verb: print('current loss',this_loss[e]) if e > 0: if np.abs((this_loss[e-1] - this_loss[e]))\ < self.tol: e_tol += 1 else: e_tol = 0 if valid_size > 0: if loss_valid[e] - loss_valid[e-1] \ > self.tol: v_tol += 1 else: v_tol = 0 elif hasattr(self,'loss_valid_'): if valid_size > 0: if loss_valid[e] - self.loss_valid_ \ > self.tol: v_tol += 1 # tolerance for 'convergence' reached if e_tol >= 2 or v_tol >= 2: break if hasattr(self,'loss_valid_'): self.loss_valid_ = min(np.mean(loss_valid[e]), self.loss_valid_) else: self.loss_valid_ = np.mean(loss_valid[e]) if hasattr(self,'loss_curve_'): self.loss_curve_ = np.append(self.loss_curve_,this_loss) else: self.loss_curve_ = this_loss if hasattr(self,'Iters_'): self.Iters_ += e+1 else: self.Iters_ = e+1 # def forward(self, V): # return super().forward(V).squeeze() def predict_proba(self,x): x = self.tensor_check(x) return self.forward(x) def predict(self,x): x = self.tensor_check(x) return F.softmax(self.predict_proba(x),dim=-1) def binarize(self,target,n_Classes=None): if n_Classes == None: n_Classes = np.unique(target).shape[0] labels = np.zeros([target.shape[0],n_Classes],dtype=int) for j in range(n_Classes): labels[:,j] = target == j return labels.astype(int) def tensor_check(self,x): if type(x).__name__ == 'ndarray': x = autograd.Variable(torch.from_numpy(x).float()) return x #%% example code if __name__ == "__main__": #%% load data import matplotlib.pyplot as plt # import os # import tables # import sys # # sys.path.append("../../Data/simple_clusters/") #params=np.loadtxt('../../Data/simple_clusters/param_save.txt') #storage=np.loadtxt('../../Data/simple_clusters/data_half_moon.txt') params=np.loadtxt('param_save.txt') storage=np.loadtxt('data_half_moon.txt') data=storage[:,:2] labels=storage[:,2] n_features = data.shape[1] n_Classes = np.unique(labels).shape[0] #n_Classes=int(params[0]) #n_Cluster=int(params[1]) #n_per_Cluster=int(params[2]) #n_total=n_per_Cluster*n_Cluster n_total = data.shape[0] #n_h1=2*n_Cluster n_h1 = 32 #%% define parameters learning_rate = .001 opt_fun = 'Adam'#'SGD' #%% instanciate MLP and optimizer epochs = 50 batch_size = 10 # device = torch.device('cpu') # if torch.cuda.is_available(): # device = torch.device('cuda') nt_mods = { '0':nn.Linear(n_features,n_h1), '1':nn.Softsign(), '2':nn.Linear(n_h1,n_h1), '3':nn.Tanh(), '4':nn.Linear(n_h1,n_h1*2), '5':nn.LeakyReLU(), '6':nn.Linear(n_h1*2,n_Classes), '7':nn.ReLU(), } net = Net(n_features,[n_h1*2,n_h1*(1+n_Classes),n_h1*2],n_Classes,\ early_stopping=True,validation_frac=.1, batch_size=batch_size,max_iter=epochs,\ layers=nt_mods,fc_init=0,tol=1e-10,opt='Adam'\ , loss_fun='CrossEntropy') print(net) # net = nn.Sequential() # for ty in nt_mods: # net.add_module(ty,nt_mods[ty]) # print(net) # # loss_fun='CrossEntropy' # if type(loss_fun) == str: # loss_fun = loss_fun.strip('Loss') # exec('net.loss_fun = torch.nn.%sLoss()' %(loss_fun)) # opt = 'Adam' # if type(opt).__name__ == 'str': # exec(\ # 'opt=optim.%s(%s,lr=%f)' \ # %(\ # opt,\ # 'params=net.parameters()',\ # learning_rate\ # )\ # ) # net.opt = opt # # opt=None # if opt == None: # exec('opt=optim.%s(%s,lr=%f)' %(opt_fun,'params=net.parameters()',\ # learning_rate)\ # ) # # net.batch_size=batch_size # net.max_iter=epochs # net.validation_frac=.25 # net.early_stopping=True # net.tol=.5e-08 # net.n_features=n_features # net.n_hidden = (n_h1*2,) # net.n_Clases = n_Classes # # net.fit = Net.fit #net.forward = Net.forward #net.opt = opt #%% convert data point=autograd.Variable(\ torch.from_numpy(\ np.matrix(\ [[1.0,2.0],\ [2.0,3.0],\ [3.0,4.0]])\ ).float()\ ) lab = labels labels = np.repeat(np.zeros_like(lab)[:,np.newaxis],3,axis=1) for j in range(n_Classes): labels[:,j] = lab == j labels = lab.astype(int) torch_data = autograd.Variable( torch.from_numpy( data ) ).float() torch_labels = autograd.Variable( torch.from_numpy( labels) ).double() #%% start training net.fit(data,labels,verb=True) #%% accuracy test # accuracy on test set pred_labels = net(torch_data) pred_labels = np.argmax(pred_labels.data.numpy(),axis=1) print(pred_labels) print(lab) count_right = np.sum((pred_labels==lab.astype(int))).astype(float) # verbose output print('accuracy on train-set: %.4f' %(count_right/n_total)) #%% plots: pre-allocation x_grid_min=np.amin(data[:,0]) x_grid_max=np.amax(data[:,0]) y_grid_min=np.amin(data[:,1]) y_grid_max=np.amax(data[:,1]) x_grid=200 y_grid=200 xx_em=np.linspace(x_grid_min,x_grid_max,x_grid) yy_em=np.linspace(y_grid_min,y_grid_max,y_grid) m=np.zeros((x_grid,y_grid)) col_count=1 for i in range(0,x_grid): for j in range(0,y_grid): point=autograd.Variable(\ torch.from_numpy(np.array([[xx_em[i]],\ [yy_em[j]]]).T).float()\ ) f=(net(point)).data.numpy() for c in range(0,n_Classes): if(np.amax(f)==f[0,c]): m[y_grid-(j+1),i]=c if(col_count*0.2<=i/x_grid): print('Column %s of %s'%(i,x_grid)) col_count=col_count+1 #%% plots: images plt.figure() plt.imshow(m,interpolation='none',extent=[x_grid_min,x_grid_max,y_grid_min,y_grid_max]) plt.scatter(data[:,0],data[:,1],s=1,c=labels,cmap='Spectral') #x_loss=np.arange(net.Iters_+1) plt.figure() plt.plot(np.arange(net.Iters_)+1,net.loss_curve_[:net.Iters_])
def binarySearch(arr, l, r, x): #base case if r >= l: mid = int(l + (r-l)/2) if arr[mid] == x: return mid elif arr[mid] > x: ''' if element is smaller than element at mid it can only be present in the left subarray ''' return binarySearch(arr,l, mid - 1, x) else: #if element is bigger look in the right subarray return binarySearch(arr, mid + 1, r, x) else: #element not present in the array return -1 if __name__ == "__main__": arr = [ 2, 3, 4, 10, 40 ] x = 2 print(binarySearch(arr, 0, len(arr) -1, x))
#!/usr/bin/env python # -*- coding: utf-8 -*- import sys from PyQt4 import QtGui, QtCore from main_widget import * class MyMainWindow(QtGui.QMainWindow): def __init__(self, parent=None): super(MyMainWindow, self).__init__(parent) # self.form_widget = FormWidget(self) # self.setCentralWidget(self.form_widget) self.init() def init(self): textEdit = QtGui.QTextEdit() self.setCentralWidget(textEdit) exitAction = QtGui.QAction(QtGui.QIcon('img/menus/exit.png'), '&Exit', self) exitAction.setShortcut('Ctrl+Q') exitAction.setStatusTip('Exit application') exitAction.triggered.connect(QtGui.qApp.quit) menubar = self.menuBar() fileMenu = menubar.addMenu('&File') fileMenu.addAction(exitAction) self.toolbar = self.addToolBar('exit1') self.toolbar.addAction(exitAction) self.toolbar = self.addToolBar('exit2') self.toolbar.addAction(exitAction) self.statusbar = self.statusBar() self.statusbar.showMessage('Ready') self.setGeometry(300, 300, 500, 300) # self.setg self.setWindowTitle('Mushroom') self.form_widget = FormWidget(self) self.setCentralWidget(self.form_widget) self.show() if __name__ == '__main__': app = QtGui.QApplication([]) foo = MyMainWindow() foo.show() sys.exit(app.exec_())
def read_access_point(interface): '''Read the MAC address of the access point associated with the network that @interface is on. ARGS: @interface -- The interface inquired about. RETURNS: @ap -- The MAC address of the interface's network access point. ''' from parse_iwconfig import parse_iwconfig interfaces = parse_iwconfig() for intrfc in interfaces: if intrfc['interface'] == interface: return interface['ap']
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Ed Mountjoy # import sys import os import argparse import pandas as pd from pprint import pprint from collections import OrderedDict from parquet_writer import write_parquet def main(): # Parse args args = parse_args() # Load df = pd.read_csv(args.inf, sep='\t', header=0) # Decompose variant IDs df[['A_chrom', 'A_pos', 'A_ref', 'A_alt']] = \ df.index_variantid_b37_A.str.split('_', expand=True) df[['B_chrom', 'B_pos', 'B_ref', 'B_alt']] = \ df.index_variantid_b37_B.str.split('_', expand=True) df['A_pos'] = df['A_pos'].astype(int) df['B_pos'] = df['B_pos'].astype(int) # Rename and select columns cols = OrderedDict([ ('study_id_A', 'A_study_id'), ('A_chrom', 'A_chrom'), ('A_pos', 'A_pos'), ('A_ref', 'A_ref'), ('A_alt', 'A_alt'), ('study_id_B', 'B_study_id'), ('B_chrom', 'B_chrom'), ('B_pos', 'B_pos'), ('B_ref', 'B_ref'), ('B_alt', 'B_alt'), ('set_type', 'set_type'), ('distinct_A', 'A_distinct'), ('overlap_AB', 'AB_overlap'), ('distinct_B', 'B_distinct') ]) df = ( df.loc[:, list(cols.keys())] .rename(columns=cols) ) # Coerce data types dtypes = OrderedDict([ ('A_study_id', 'object'), ('A_chrom', 'object'), ('A_pos', 'Int64'), ('A_ref', 'object'), ('A_alt', 'object'), ('B_study_id', 'object'), ('B_chrom', 'object'), ('B_pos', 'Int64'), ('B_ref', 'object'), ('B_alt', 'object'), ('set_type', 'object'), ('A_distinct', 'Int64'), ('AB_overlap', 'Int64'), ('B_distinct', 'Int64') ]) assert(set(dtypes.keys()) == set(df.columns)) df = ( df.loc[:, dtypes.keys()] .astype(dtype=dtypes) ) # Sort df = df.sort_values( ['A_study_id', 'A_chrom', 'A_pos', 'A_ref', 'A_alt', 'B_study_id', 'B_chrom', 'B_pos', 'B_ref', 'B_alt'] ) # Save as parquet write_parquet(df, args.outf, compression='snappy', flavor='spark') def parse_args(): """ Load command line args """ parser = argparse.ArgumentParser() parser.add_argument('--inf', metavar="<str>", help=('input'), type=str, required=True) parser.add_argument('--outf', metavar="<str>", help=("Output"), type=str, required=True) args = parser.parse_args() return args if __name__ == '__main__': main()
import os from flask import (Flask, flash, render_template, redirect, request, session, url_for) from flask_pymongo import PyMongo from bson.objectid import ObjectId if os.path.exists("env.py"): import env app = Flask(__name__) app.config["MONGO_DBNAME"] = os.environ.get("MONGO_DBNAME") app.config["MONGO_URI"] = os.environ.get("MONGO_URI") app.secret_key=os.environ.get("SECRET_KEY") mongo = PyMongo(app) @app.route('/') @app.route('/index') def index(): return render_template("home.html") @app.route('/sendmail') def sendmail(): return render_template("sendMail.html") @app.route('/get_reviews') def get_reviews(): return render_template("drones_review.html", reviews=mongo.db.reviews.find()) @app.route('/add_review') def add_review(): return render_template('add_drones_review.html' , categories=mongo.db.categories.find()) @app.route('/insert_review', methods=['POST']) def insert_review(): reviews = mongo.db.reviews reviews.insert_one(request.form.to_dict()) return redirect(url_for('get_reviews')) @app.route('/edit_review/<review_id>') def edit_review(review_id): the_review = mongo.db.reviews.find_one({"_id": ObjectId(review_id)}) all_categories = mongo.db.categories.find() return render_template('edit_review.html', review=the_review, categories=all_categories) @app.route('/update_review/<review_id>', methods=["POST"]) def update_review(review_id): reviews = mongo.db.reviews reviews.update( {'_id': ObjectId(review_id)}, { 'category_name': request.form.get('category_name'), 'name': request.form.get('name'), 'review': request.form.get('review') }) return redirect(url_for('get_reviews')) @app.route('/delete_review/<review_id>') def delete_review(review_id): mongo.db.reviews.remove({'_id': ObjectId(review_id)}) return redirect(url_for('get_reviews')) if __name__ == '__main__': app.run(host=os.environ.get('IP'), port=int(os.environ.get('PORT')), debug=True)
from typing import Optional, Sequence from waitlist.storage.database import Waitlist, Character, Shipfit, WaitlistGroup, SolarSystem, Constellation, Station,\ Account Optionalcharids = Optional[Sequence[int]] def make_json_wl_entry(entry, exclude_fits: bool = False, include_fits_from: Optionalcharids = None, scramble_names: bool = False, include_names_from: Optionalcharids = None): response = { 'id': entry.id, 'character': make_json_character(entry.user_data, scramble_names=scramble_names, include_names_from=include_names_from), 'time': entry.creation, 'missedInvites': entry.inviteCount } if not (exclude_fits and ((include_fits_from is None or entry.user is None) or entry.user not in include_fits_from)): response['fittings'] = list(map(make_json_fitting, entry.fittings)) return response def make_json_wl(dbwl: Waitlist, exclude_fits: bool = False, include_fits_from: Optionalcharids = None, scramble_names: bool = False, include_names_from: Optionalcharids = None): return { 'id': dbwl.id, 'name': dbwl.name, 'entries': make_entries(dbwl.entries, exclude_fits, include_fits_from, scramble_names=scramble_names, include_names_from=include_names_from) } def make_json_character(dbcharacter: Character, scramble_names: bool = False, include_names_from: Optionalcharids = None): return { 'id': dbcharacter.get_eve_id() if not scramble_names or ( include_names_from is not None and dbcharacter.get_eve_id() in include_names_from) else None, 'name': dbcharacter.get_eve_name() if not scramble_names or ( include_names_from is not None and dbcharacter.get_eve_id() in include_names_from) else 'Name Hidden', 'newbro': dbcharacter.is_new } def make_json_fitting(dbfitting: Shipfit): return { 'id': dbfitting.id, 'shipType': dbfitting.ship_type, 'shipName': dbfitting.ship.typeName, 'modules': dbfitting.modules, 'comment': dbfitting.comment, # 'dna': dbfitting.get_dna(), 'wl_type': dbfitting.wl_type } def make_entries(dbentries, exclude_fits: bool = False, include_fits_from: Optionalcharids = None, scramble_names: bool = False, include_names_from: Optionalcharids = None): entries = [] for entry in dbentries: entries.append(make_json_wl_entry(entry, exclude_fits, include_fits_from, scramble_names, include_names_from=include_names_from)) return entries def make_json_groups(groups: Sequence[WaitlistGroup]): return [make_json_group(grp) for grp in groups] def make_json_group(group: WaitlistGroup): return { 'groupID': group.groupID, 'groupName': group.groupName, 'groupDisplayName': group.displayName, # 'influence': group.influence, 'status': group.status, 'enabled': group.enabled, 'fcs': make_json_fcs(group.fcs), 'managers': make_json_managers(group), 'station': make_json_station(group.dockup), 'solarSystem': make_json_solar_system(group.system), 'constellation': make_json_constellation(group.constellation), 'logiwlID': None if group.logilist is None else group.logilist.id, 'dpswlID': None if group.dpslist is None else group.dpslist.id, 'sniperwlID': None if group.sniperlist is None else group.sniperlist.id, 'otherwlID': None if group.otherlist is None else group.otherlist.id, 'xupwlID': None if group.xuplist is None else group.xuplist.id } def make_json_fcs(fcs: Sequence[Account]): return [make_json_fc(fc) for fc in fcs if fc.current_char_obj is not None] def make_json_fc(fc: Account): return make_json_character(fc.current_char_obj) def make_json_managers(group: WaitlistGroup): if len(group.fleets) > 0: return [make_json_character(fleet.comp.current_char_obj) for fleet in group.fleets if fleet.comp is not None and fleet.comp.current_char_obj is not None] else: return [make_json_character(manager.current_char_obj) for manager in group.manager if manager.current_char_obj is not None] def make_json_solar_system(system: SolarSystem): if system is None: return None return { 'solarSystemID': system.solarSystemID, 'solarSystemName': system.solarSystemName } def make_json_constellation(constellation: Constellation): if constellation is None: return None return { 'constellationID': constellation.constellationID, 'constellationName': constellation.constellationName } def make_json_station(station: Station): if station is None: return None return { 'stationID': station.stationID, 'stationName': station.stationName } def make_json_waitlists_base_data(waitlists: Sequence[Waitlist]): return [make_json_waitlist_base_data(l) for l in waitlists] def make_json_waitlist_base_data(waitlist: Waitlist): return { 'id': waitlist.id, 'name': waitlist.name, 'groupID': waitlist.group.groupID, 'entryCount': len(waitlist.entries) }
import pyaudio import threading import wave from interface.lights import Lights Thread = threading.Thread FORMAT = pyaudio.paInt16 # CHANNELS = 2 CHANNELS = 1 # RATE = 44100 RATE = 16000 CHUNK = 1024 class Record(Thread): def __init__(self, audio_interface): Thread.__init__(self) self.audio_interface = audio_interface self.filedir = "soundfiles/" self.filename = "new.wav" self.stream = None self.frames = [] self.tooShort = False self.stopped = False def run(self): print('thread started') self.stream = self.audio_interface.open(format=FORMAT, channels=CHANNELS, rate=RATE, input=True, frames_per_buffer=CHUNK) lights = Lights("change", {"r": 255, "g": 255, "b": 255, "intensity": 100, "duration": 0}) lights.start() lights.join() print("recording...") self.frames = [] while not self.stopped: data = self.stream.read(CHUNK) self.frames.append(data) # stop Recording self.stream.stop_stream() self.stream.close() self.audio_interface.terminate() wave_file = wave.open(self.filedir + self.filename, 'wb') wave_file.setnchannels(CHANNELS) wave_file.setsampwidth(self.audio_interface.get_sample_size(FORMAT)) wave_file.setframerate(RATE) wave_file.writeframes(b''.join(self.frames)) # check duration frames = wave_file.getnframes() rate = wave_file.getframerate() duration = frames / float(rate) wave_file.close() print("finished recording") if duration < 1: self.tooShort = True print("wave too short") def stop(self): self.stopped = True def join(self): Thread.join(self) if not self.tooShort: return self.filename else: return False
import unittest class TestStringMethods(unittest.TestCase): def test_upper(self): self.assertEqual('foodev'.upper(), 'FOODEV')
# -*- coding: utf-8 -*- from collections import defaultdict from typing import List class Solution: def countPairs(self, nums: List[int], k: int) -> int: occurrences, result = defaultdict(list), 0 for i, num in enumerate(nums): if num in occurrences: result += sum(i * j % k == 0 for j in occurrences[num]) occurrences[num].append(i) return result if __name__ == "__main__": solution = Solution() assert 4 == solution.countPairs([3, 1, 2, 2, 2, 1, 3], 2) assert 0 == solution.countPairs([1, 2, 3, 4], 1)
''' 41. First Missing Positive Given an unsorted integer array nums, find the smallest missing positive integer. You must implement an algorithm that runs in O(n) time and uses constant extra space. Example 1: Input: nums = [1,2,0] Output: 3 Example 2: Input: nums = [3,4,-1,1] Output: 2 Example 3: Input: nums = [7,8,9,11,12] Output: 1 Constraints: 0 <= nums.length <= 300 -231 <= nums[i] <= 231 - 1 ''' class Solution: def firstMissingPositive(self, nums): """ Basic idea: 1. for any array whose length is l, the first missing positive must be in range [1,...,l+1], so we only have to care about those elements in this range and remove the rest. 2. we can use the array index as the hash to restore the frequency of each number within the range [1,...,l+1] 3. after removing all the numbers greater than or equal to n, all the numbers remaining are smaller than n. If any number i appears, we add n to nums[i] which makes nums[i]>=n. Therefore, if nums[i]<n, it means i never appears in the array and we should return i. """ nums.append(0) n = len(nums) for i in range(len(nums)): # delete those useless elements if nums[i] < 0 or nums[i] >= n: nums[i] = 0 for i in range(len(nums)): # use the index as the hash to record the frequency of each number nums[nums[i] % n] += n for i in range(1, len(nums)): if nums[i] / n == 0: return i return n def firstMissingPositiveV2(self, nums): """ instead of += n to index i, we can * -1 to indicates that number i appears in the list """ for i in range(len(nums)): # remove all negative elements if nums[i] < 0: nums[i] = 0 for i in range(len(nums)): val = abs(nums[i]) if 1 <= val <= len(nums): if nums[val - 1] > 0: nums[val - 1] *= -1 # nums[i] < 0 means number i+1 appears in the list elif nums[val - 1] == 0: nums[val - 1] = -1 * (len(nums) + 1) # any number > len(nums) works # ignore those numbers that are larger than len(nums) for i in range(1, len(nums) + 1): if nums[i - 1] >= 0: # nums[i] >= 0 means number i+1 is missing return i # default case return len(nums) + 1
import os file_path = os.path.dirname(__file__) # model_dir = os.path.join(file_path, 'chinese_L-12_H-768_A-12/') model_dir = os.path.join('../chinese_L-12_H-768_A-12/') config_name = os.path.join(model_dir, 'bert_config.json') ckpt_name = os.path.join(model_dir, 'bert_model.ckpt') output_dir = os.path.join(file_path, 'tmp/result/') vocab_file = os.path.join(model_dir, 'vocab.txt') data_dir = os.path.join(model_dir, '../data/') DATA_COLUMN = "review" LABEL_COLUMN = "label" MAX_SEQ_LENGTH = 128 # 标签list label_list = ["happy", "angry", "disgust", "sad"] # Compute train and warmup steps from batch size # These hyperparameters are copied from this colab notebook (https://colab.sandbox.google.com/github/tensorflow/tpu/blob/master/tools/colab/bert_finetuning_with_cloud_tpus.ipynb) BATCH_SIZE = 32 LEARNING_RATE = 2e-5 NUM_TRAIN_EPOCHS = 3.0 # Warmup is a period of time where hte learning rate # is small and gradually increases--usually helps training. WARMUP_PROPORTION = 0.1 # Model configs SAVE_CHECKPOINTS_STEPS = 500 SAVE_SUMMARY_STEPS = 100
import z import datetime import collections tmonth = datetime.date.today().month tday = datetime.date.today().day dates = z.getp("dates") spy = z.getCsv("SPY") dlist = (spy["Date"].tolist()) avgdict = collections.defaultdict(list) for ayear in range(2, 18): year = "200{}".format(ayear) if ayear >= 10: year = "20{}".format(ayear) date = "{}-0{}-{}".format(year,tmonth, tday) # print("date : {}".format( date )) tomorrow = "{}-0{}-{}".format(year,tmonth, tday+1) # print("tomorrow : {}".format( tomorrow )) try: idx = dlist.index(date) except: continue opend = spy.at[idx,"High"] close = spy.at[idx,"Low"] avgdict["today"].append(close/opend) opend = spy.at[idx+1,"High"] close = spy.at[idx+1,"Low"] avgdict["tomorrow"].append(close/opend) opend = spy.at[idx+2,"High"] close = spy.at[idx+2,"Low"] avgdict["nextday"].append(close/opend) for key,something in avgdict.items(): maxv = round(max(something),4) avg = round(sum(something)/len(something) ,4) print("maxv : {}".format( maxv )) print("avg : {}".format( avg )) print("score : {}".format( round(avg + maxv,4)))
# Generated by Django 3.0.8 on 2020-08-03 11:38 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('prezola', '0006_orderlineitem_status'), ] operations = [ migrations.AddField( model_name='orderlineitem', name='quantity_purchased', field=models.IntegerField(blank=True, default=0, null=True), ), ]
# functions which simplify the choosing of stimulation frequencies # this is based on an a set of valid frequencies determined externally to this # code and is based on the experimental data # format [[UpTime, DownTime, SendFreq, closet = 128, closest = 256, closest = 384, closest = 512, closest =640, closest = 768],..] FreqLookUp = [[ 18, 25, 23.26, 23, 23.5, 23.33, 23.25, 23.2, 23.33], [ 17, 25, 23.81, 24, 24 , 23.66, 23.75, 23.8, 23.83], [ 17, 24, 24.39, 24, 24.5, 24.33, 24.5, 24.4, 24.33], [ 16, 24, 25.00, 25, 25 , 25 , 25 , 25 , 25], [ 16, 23, 25.64, 26, 25.5, 25.66, 25.75, 25.6, 25.66], [ 16, 22, 26.36, 26, 26.5, 26.33, 26.25, 26.4, 26.33], [ 15, 22, 27.03, 27, 27 , 27 , 27 , 27 , 27], [ 15, 21, 27.78, 28, 28 , 27.66, 27.75, 27.8, 27.83], [ 14, 21, 28.57, 29, 28.5, 28.66, 28.5, 28.6, 28.5], [ 14, 20, 29.41, 29, 29.5, 29.33, 29.5, 29.4, 29.33], [ 14, 19, 30.30, 30, 30.5, 30.33, 30.25, 30.4, 30.33], [ 13, 19, 31.25, 31, 31.5, 31.33, 31.25, 31.2, 31.33], [ 13, 18, 32.26, 32, 32.5, 32.33, 32.25, 32.2, 32.33], [ 13, 17, 33.33, 33, 33.5, 33.33, 33.25, 33.4, 33.33], [ 13, 16, 34.48, 34, 34.5, 34.33, 34.5, 34.4, 34.5], [ 13, 15, 35.71, 36, 35.5, 35.66, 35.75, 35.8, 35.66], [ 13, 14, 37.04, 37, 37 , 37 , 37 , 37 , 37], [ 13, 13, 38.46, 38, 38.5, 38.33, 38.5, 38.4, 38.5 ]] def SenderGetUpAndDown(frequency): for i in range(len(FreqLookUp)): if FreqLookUp[i][2] == frequency: return ([FreqLookUp[i][0], FreqLookUp[i][1]]) print(frequency) raise NameError ('Frequency Not Valid') def getIndex(SS): if SS == 128: return(3) elif SS == 256: return(4) elif SS == 384: return(5) elif SS == 512: return(6) elif SS == 640: return(7) elif SS == 768: return(8) else: raise NameError('Block Size Not Implemented') def mapToClosestFrequencies(frequency_set, sample_size): # function which converts a set a set of Send Frequencies to recieve frequencies based on the resolution of the FFT given a certain window size index = getIndex(sample_size) newSet = [] badFrequencyFlag = True for i in range(len(frequency_set)): for j in range(len(FreqLookUp)): if FreqLookUp[j][2] == frequency_set[i]: newSet = newSet + [FreqLookUp[j][index]] badFrequencyFlag = False if badFrequencyFlag == True: raise NameError('invalid frequency input') return(newSet)
import mysql.connector import random import datetime from flask import Flask, render_template, request, flash, redirect, url_for, make_response def ValidateNewUserLogIn(PossibleUser,PasswordProvided): if PossibleUser == "admin" and PasswordProvided == "password": return PossibleUser Results = SQLExecute("""Select Password FROM NEADatabase2.tblusers Where UserName = %s""", (PossibleUser, ),'r') print('Results from SQL', end = " ") for item in Results: print(item) if item == (PasswordProvided, ): return PossibleUser return "# " + PossibleUser + " unknown." def InvalidCredential(PossibleUser,Code): Results = SQLExecute("""Select SessionID FROM NEADatabase2.tblusers Where UserName = %s""", (PossibleUser, ),'r') print('Results from SQL [SessionID]', end = " ") for x in Results: print(x) if x == (Code, ): return False return True def Authenticated(PossibleUser,PasswordProvided): Results = SQLExecute("""Select Password FROM NEADatabase2.tblusers Where UserName = %s""", (PossibleUser, ),'r') print('Results from SQL') for x in Results: print(x) if x == (PasswordProvided, ): return PossibleUser return "# " + PossibleUser + " unknown." def AuthenticatedRenderTemplate(Webpage, Username): # Generate SessionTokenCode SessionTokenCode = SecureString(8, 65, 91) # Modify SQL Database with Session and Expiry Date/Time SQLExecute("UPDATE NEADatabase2.tblusers SET SessionID = %s, SessionExpire = %s Where UserName = %s", (SessionTokenCode, datetime.datetime.now() + datetime.timedelta(0, 60 * 10), Username),'u') # Set up Webpage to reply to User with including Cookies for future authenticated use res = make_response(render_template(Webpage, title=Username)) res.set_cookie('ID', SessionTokenCode, max_age=60 * 10) res.set_cookie('User', Username, max_age=60 * 10) return res def SecureString(Number, Low, High, Omit=[]): #Omit is a list of Ascii codes to be omitted from the String like ' or " if Number > 1 : #Use Recursion to generate the previous character list then concatenate a new one return SecureString(Number - 1, Low, High, Omit) + chr(RandomNumber(Low,High,Omit)) else : # At the bottom of the Recursion so return a single character return chr(RandomNumber(Low,High,Omit)) def RandomNumber(Low, High, Omit=[]) : #Set PossibleNumberValid Flag to False to force loop to execute PossibleNumberValid = False while not PossibleNumberValid : #Select an integer number that is >= Low, but < High SelectNumber = random.randrange(Low, High) #Assume the number is valid and adjust flag PossibleNumberValid = True #Loop through the Omit Array, should the SelectNumber be in the list set the flag to False for EachNumber in Omit: if EachNumber == SelectNumber: PossibleNumberValid = False return SelectNumber print("Test") for x in range(1, 6): print(SecureString(50,33,127,(34,67))) def SQLExecute(SQLCommand, SQLAddress, type): db = mysql.connector.connect( host="localhost", user="root", passwd="PenygelliSQL2!", ) print('SQL Execute start', end = " ") print(SQLCommand, end = " ") print(SQLAddress) # TheCursor is linked to the Database TheCursor = db.cursor() #TheDatabase.commit() if type == 'r': Results = TheCursor.fetchall() TheCursor.execute(SQLCommand, SQLAddress) print('Done') return Results else: if SQLAddress == "": TheCursor.execute(SQLCommand) else: TheCursor.execute(SQLCommand, SQLAddress) print(TheCursor.rowcount, "record(s) affected") db.commit() db.close() ''' def SQLUpdate(SQLCommand, SQLAddress): TheDatabase = mysql.connector.connect( host="localhost", user="root", passwd="Apple", database="testdatabase", ) TheCursor = TheDatabase.cursor() print(SQLAddress, end = " ") print(SQLCommand, end = " ") if SQLAddress == "" : TheCursor.execute(SQLCommand) else: TheCursor.execute(SQLCommand, SQLAddress) TheDatabase.commit() print(TheCursor.rowcount, "record(s) affected") return TheCursor.rowcount'''
dict1= { "<action>":[], "<attr_name>":[], "<table_name>":[], "<condition_name>":[], "<condition>":[], "<value>":[], "<logic>":[] } dictionary11= { "ssc": ["10th"], "hsc": ["12th"], "OR": ["or","OR"], "DESC": ["descending","decreasing"], "ASC": ["ascending","increasing"], "SELECT":["Fetch",'fetch',"find","show","give","tell","can","get",'select',"pick","extract","discover","uncover","gave","display","SELECT","print"], "aggregate":['average',"average","mean"], "name":['names',"name's"], "*":["all","detail","every","completely","fully","thoroughly","entir","altogether","whole"], "WHERE":["whose",'with','who','where','having','have','haved'], "AND":["and","well","also","but","AND"], "FROM student":["student","students","student's"], "ORDER BY":"order", "word":['one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight', 'nine', 'ten', 'eleven', 'twelve', 'thirteen', 'fourteen', 'fifteen', 'sixteen', 'seventeen', 'eighteen', 'nineteen', 'twenty', 'thirty','fourty', 'fifty', 'sixty','seventy','eighty','ninety','hundred'], "<number>":['1', '2', '3', '4', '5', '6', '7', '8','9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '30', '31', '32', '33', '34', '35', '36', '37', '38', '39', '40', '41', '42', '43', '44', '45', '46', '47', '48', '49', '50', '51', '52', '53', '54', '55', '56', '57', '58', '59', '60', '61', '62', '63','64', '65', '66', '67',' 68', '69', '70', '71', '72', '73', '74', '75', '76', '77','78', '79', '80', '81', '82', '83', '84', '85', '86', '87', '88', '89', '90', '91', '92', '93', '94', '95', '96', '97', '98','99', '100'], } dictionary3={ "<":['less than','not more than','lower than','less','lower','le','below'], ">":['greater','more','above'], "=":['equal'], "* FROM":['*<keyword>'] }
# 导入sqlite驱动 import sqlite3 def createConn(dbName): # 连接到sqlite数据库 # 数据库文件是test.db # 如果文件不存在, 会自动在当前目录创建 conn = sqlite3.connect(dbName) return conn def createCursor(conn): # 创建一个Cursor cursor = conn.cursor() return cursor def close(cursor, conn): # 关闭cursor cursor.close() # 提交事务 conn.commit() # 关闭connection conn.close() def selectEle(cursor, tableName): # 查询 cursor = cursor.execute('select * from user where id=?', ('1',)) values = cursor.fetchall() print(values) conn = createConn('test.db') cursor = createCursor(conn) # cursor.execute('create table user (id varchar(20) primary key, name varchar(20))') cursor.execute('insert into user (id, name) values (\'1\',\'Micheal\')') selectEle(cursor, conn) close(cursor, conn)
--- setup.py.orig 2021-01-14 10:34:05 UTC +++ setup.py @@ -39,7 +39,7 @@ setup( 'isodate>=0.5.0', 'lxml>=3.3.5', 'xmlsec>=1.0.5', - 'defusedxml==0.6.0' + 'defusedxml>=0.6.0' ], dependency_links=['http://github.com/mehcode/python-xmlsec/tarball/master'], extras_require={
#!/usr/bin/env python """Load COMTRADE data, aggregate and calculate steel contents. Usage: aggregate_trade_flows.py --allocation ALLOCATION-FILE --steel-contents CONTENTS-FILE COMTRADE-FILE... Options: --allocation ALLOCATION-FILE CSV file with mappings from SITC v2 codes to product categories --steel-contents CONTENTS-FILE CSV file with steel contents for each category """ import os import os.path import json import pandas as pd from logzero import logger from docopt import docopt logger.info('Starting %s', os.path.basename(__file__)) def load_file(filename): """Load one JSON file from UN COMTRADE.""" with open(filename, 'rt') as f: d = json.load(f) return pd.DataFrame.from_records(d['dataset']) def load_all_data(files): """Load all the given JSON files.""" return pd.concat([load_file(file) for file in files], ignore_index=True) def overwrite_data(trade, code, flow, years): ii = ((trade['cmdCode'] == code) & (trade['period'].isin(years)) & (trade['rgDesc'] == flow)) assert sum(ii) > 0, 'No matches!' new_value = trade['NetWeight'][ii & (trade['period'] == years[0])].iloc[0] logger.debug('overwriting %s %s for %s to %s', code, flow, years, new_value) trade.loc[ii, 'NetWeight'] = new_value def check_values(df, column, value): msg = 'Expected "%s" column to be %r' % (column, value) assert all(df[column] == value), msg def main(files, alloc_filename, contents_filename): # Load the trade data trade = load_all_data(files) # Apply "corrections" overwrite_data(trade, '69402', 'Import', [2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007]) overwrite_data(trade, '874', 'Import', [1999, 2000]) # Check that it has the expected data check_values(trade, 'rt3ISO', 'GBR') check_values(trade, 'pt3ISO', 'WLD') # Load the allocation table and category iron contents alloc = pd.read_csv(alloc_filename, index_col='SITC_code') cats = pd.read_csv(contents_filename, index_col=0) # Validate allocations mult_sums = alloc['multiplier'].groupby('SITC_code').sum() assert all((mult_sums == 0) | (mult_sums == 1)), 'Multipliers must sum to 0 or 1' split_allocs = alloc[(alloc['multiplier'] != 0) & (alloc['multiplier'] != 1) & ~pd.isnull(alloc['multiplier'])] logger.debug('Split allocations:\n' + str(split_allocs[['sector_code', 'stage', 'multiplier']])) # Join the table and aggregate table = trade \ .join(alloc, on='cmdCode', how='outer') \ .join(cats, on='sector_code') \ .dropna(subset=['sector_code']) \ .rename(columns={'period': 'year', 'rgDesc': 'direction'}) # Convert kg to kt and add in the category iron contents. `multiplier` is for # sharing an HS4-flow between multiple sector-flows table['mass'] = table['NetWeight'] * table['multiplier'] / 1e6 table['mass_iron'] = table['mass'] * table['iron_content'] os.makedirs('build', exist_ok=True) table.to_csv('build/checking_table.csv', index=False) agg = table \ .groupby(['direction', 'sector_code', 'stage', 'year'], as_index=False) \ .agg({ 'mass': 'sum', 'mass_iron': 'sum', 'sector_group': 'first', # same in each group of sector_codes 'sector_name': 'first', 'iron_content': 'first', }) # Save df = agg[['sector_code', 'sector_group', 'sector_name', 'direction', 'stage', 'year', 'iron_content', 'mass', 'mass_iron']] df['year'] = df['year'].astype(int) df['iron_content'] = df['iron_content'].round(2) df['mass'] = df['mass'].round(1) df['mass_iron'] = df['mass_iron'].round(1) df['direction'] = df['direction'].str.lower() df.to_csv('data/trade.csv', index=False) if __name__ == '__main__': args = docopt(__doc__) print(args) main(files=args['COMTRADE-FILE'], alloc_filename=args['--allocation'], contents_filename=args['--steel-contents'])
import click import random def beta_convert(b, n): """Returns given n in b number system""" if b is 2: return bin(n) elif b is 8: return oct(n) elif b is 16: return hex(n) return n @click.command() def from_to(): """Generates a random number in two different number systems and quizzes the user about the conversion between those two. """ betas = [2, 8, 10, 16] beta = random.choice(betas) beta_2 = random.choice(betas) rand = random.randint(1, 500) while beta == beta_2: beta_2 = random.choice(betas) a = beta_convert(beta, rand) b = beta_convert(beta_2, rand) print (f"Convert {a} base {beta} to base {beta_2}") answer = click.prompt("Answer") if answer == b: print("Correct!") else: print(f"You answered {answer}, the correct answer is {b}") if __name__ == '__main__': from_to()
import maya.cmds as cmds import os calabash_menu = None def calabash_menu(): global calabash_menu if cmds.menu('calabash_m', exists=True): cmds.deleteUI('calabash_m') ############################################################################### calabash_menu = cmds.menu('calabash_m', p='MayaWindow', label='Calabash', tearOff=True) ############################################################################### this_path = os.path.normpath(os.path.dirname(__file__)) up_path = (os.path.dirname(this_path)) version_file = open(os.path.join(up_path, "version.md"), "r") ver = version_file.read() general_submenu = cmds.menuItem('general_sub', p=calabash_menu, subMenu=True, label='General', tearOff=True) ani_submenu = cmds.menuItem('ani_sub', p=calabash_menu, subMenu=True, label='Animation', tearOff=True) model_submenu = cmds.menuItem('model_sub', p=calabash_menu, subMenu=True, label='Modeling', tearOff=True) rendering_submenu = cmds.menuItem('rendering_sub', p=calabash_menu, subMenu=True, label='Render', tearOff=True) rigging_submenu = cmds.menuItem('rigging_sub', p=calabash_menu, subMenu=True, label='Rigging', tearOff=True) shading_submenu = cmds.menuItem('shading_sub', p=calabash_menu, subMenu=True, label='Shading', tearOff=True, version="2017") xgen_submenu = cmds.menuItem('xgen_sub', p=calabash_menu, subMenu=True, label='XGen', tearOff=True) fx_submenu = cmds.menuItem('fx_sub', p=calabash_menu, subMenu=True, label='FX', tearOff=True) publish_submenu = cmds.menuItem('pub_sub', p=calabash_menu, subMenu=True, label='Publish', tearOff=True) pipeman_submenu = cmds.menuItem(p=calabash_menu, label='Pipeline Manager', c='from pipeman import pipeman;reload(pipeman),pipeman.run()') #cmds.menuItem(p=rigging_submenu, divider=True, itl=True) #hatch_submenu = cmds.menuItem('hatch_sub', p=calabash_menu, subMenu=True, label='Hatchimals', tearOff=True) ############################################################################### # General Submenu cmds.menuItem(p=general_submenu, label='Increase File Version', c='from calabash import increaseVersion;reload(increaseVersion);increaseVersion.versionUp()') cmds.menuItem(p=general_submenu, label='Check For Updates...', c='from calabash import update;reload(update);update.check()') cmds.menuItem(p=general_submenu, divider=True, dividerLabel='v%s' % ver, itl=True) ############################################################################### # Animation Submenu cmds.menuItem(p=ani_submenu, label='Good Playblast', c='from goodPlayblast_c import playblast_utils as gu; reload(gu); pb = gu.Playblaster(); pb.playblast()', image="goodplayblast.png") cmds.menuItem(p=ani_submenu, optionBox=True, c='import goodPlayblast_c.playblast_view as gp; reload(gp); gp.launch()') ############################################################################### # Modeling Submenu cmds.menuItem(p=model_submenu, label='Delete Intermediate Shapes', c='from calabash import model_utils;reload(model_utils);model_utils.del_int_shapes()') cmds.menuItem(p=model_submenu, label='Basic Mesh Cleanup', c='from calabash import model_utils;reload(model_utils);model_utils.cleanup_mesh()', version="2017") cmds.menuItem(p=model_submenu, label='abSymMesh', c='from maya import mel; mel.eval("abSymMesh")', version="2017") ############################################################################### # Rendering Submenu cmds.menuItem(p=rendering_submenu, label='Submit to Smedge', c='from maya import mel; mel.eval("smedgeRender");') cmds.menuItem(p=rendering_submenu, label='Set Overscan', c='from calabash import overscan; reload(overscan); overscan.run()') cmds.menuItem(p=rendering_submenu, divider=True, dividerLabel='Vray Attributes', itl=True) cmds.menuItem(p=rendering_submenu, label='Vray Toolbox', c='from calabash import vray_toolbox;reload(vray_toolbox);vray_toolbox.launch()') cmds.menuItem(p=rendering_submenu, label='Add Material ID Attributes (Beta)', c='from calabash import vrayUtils;reload(vrayUtils);vrayUtils.makeVrayMatId()') cmds.menuItem(p=rendering_submenu, divider=True, dividerLabel='Vray Object Properties', itl=True) cmds.menuItem(p=rendering_submenu, label='Apply single object properties node to selection', c='from calabash import vrayUtils;reload(vrayUtils);vrayUtils.single_vop()') cmds.menuItem(p=rendering_submenu, label='Primary Vis Off', c='from calabash import vrayUtils;reload(vrayUtils);vrayUtils.primVis()') cmds.menuItem(p=rendering_submenu, label='Matte Surface', c='from calabash import vrayUtils;reload(vrayUtils);vrayUtils.matteSurface()') cmds.menuItem(p=rendering_submenu, divider=True, dividerLabel='Render Settings', itl=True) cmds.menuItem(p=rendering_submenu, label='Apply Final Render Settings', c='from calabash import vrayUtils;reload(vrayUtils);vrayUtils.renderSettings()') cmds.menuItem(p=rendering_submenu, label='Apply Final Render GI Settings', c='from calabash import vrayUtils;reload(vrayUtils);vrayUtils.giSettings()') cmds.menuItem(p=rendering_submenu, label='Render Elements for Selected Lights', c='from maya import mel;mel.eval("vrLightPass;")') ############################################################################### # Publish Submenu cmds.menuItem(p=publish_submenu, label='Publish Selected Asset', c='from calabash import fileUtils;reload(fileUtils);fileUtils.publishCurrentFile()') cmds.menuItem(p=publish_submenu, label='Publish Animation', c='from calabash import animUtils;reload(animUtils);animUtils.publishAnim()') cmds.menuItem(p=publish_submenu, label='Create AutoCache', c='from calabash import animUtils; reload(animUtils); animUtils.autocache_gui.run()') cmds.menuItem(p=publish_submenu, label='Publish Camera from animation', c='from calabash import animUtils; reload(animUtils); animUtils.ouroboros()') #cmds.menuItem(p=rigging_submenu, label='Publish Vray Shading', c='from calabash import fileUtils;reload(fileUtils);fileUtils.publish_vray_rig()') cmds.menuItem(p=publish_submenu, label='Publish Groom', c='from calabash import fileUtils;reload(fileUtils);fileUtils.publish_groom_rig()') cmds.menuItem(p=rigging_submenu, divider=True, itl=True) cmds.menuItem(p=rigging_submenu, label='Hide Joints', c='from calabash import rigUtils;reload(rigUtils);rigUtils.jointDisplay()') cmds.menuItem(p=rigging_submenu, label='Show Joints', c='from calabash import rigUtils ;reload(rigUtils);rigUtils.jointDisplay(show=True)') cmds.menuItem(p=rigging_submenu, divider=True, itl=True) cmds.menuItem(p=rigging_submenu, label='MoveCtrl', c='from calabash import moveControl;reload(moveControl);moveControl.moveCtrlUI()') cmds.menuItem(p=rigging_submenu, label='Jamm Joint Orient', c='import jammOrientJoint as oj;oj.orientJointsWindow()',version="2017") ############################################################################### # Shading Submenu cmds.menuItem(p=shading_submenu, label='Rename Shading Groups', c='from calabash import shading_utils;reload(shading_utils);shading_utils.rename_shading_groups()', version="2017") cmds.menuItem(p=shading_submenu, label='Apply Materials to Asset', c='from calabash import shading_utils;reload(shading_utils);shading_utils.apply_look()') ############################################################################### # XGen Submenu cmds.menuItem(p=xgen_submenu, label='Cache Descriptions', c='from calabash import xgen_utils;reload(xgen_utils);xgen_utils.cache_groomableSplines()') cmds.menuItem(p=xgen_submenu, label='Repath Caches', c='from calabash import xgen_utils;reload(xgen_utils);xgen_utils.repath_caches()') ############################################################################### # FX Submenu cmds.menuItem(p=fx_submenu, label='RGB TBS', c='from calabash import rgb_tbs;reload(rgb_tbs);rgb_tbs.tbs()') cmds.menuItem(p=fx_submenu, label='Classic TBS', c='mel.eval("TBS")') ############################################################################### # Hatchimal Submenu # cmds.menuItem(p=hatch_submenu, label='Publish Season2 Rig', c='from calabash import oldHatchUtils;reload(oldHatchUtils);oldHatchUtils.ohPublishCurrentFile()') # cmds.menuItem(p=hatch_submenu, label='Publish Season2 No Vray Rig', c='from calabash import oldHatchUtils;reload(oldHatchUtils);oldHatchUtils.ohPublish_mayaMat_rig()') # cmds.menuItem(p=hatch_submenu, label='Rename New Hatch Rigs', c='from calabash import fileUtils;reload(fileUtils);fileUtils.rename_hatch_rigs()') calabash_menu()
# list 模拟栈 class Solution: def maxDepth(self, s: str) -> int: maxn = 0 l = [] for t in s: if t == '(': l.append(1) maxn = max(maxn, len(l)) elif t == ')': l.pop() return maxn
import tensorflow as tf import numpy as np from dps.register import RegisterBank from dps.env import TensorFlowEnv from dps.utils import Param, Config def build_env(): return GridBandit() config = Config( build_env=build_env, curriculum=[dict()], env_name='grid_bandit', threshold=-5, T=5, shape=(2, 2), n_arms=10, ) class GridBandit(TensorFlowEnv): """ Agent starts off in random location. Agent can move around the grid, and can perform a `look` action to reveal an integer stored at its current location in the grid. It can also pull a number of arms determined by `n_arms` (these arms can be pulled anywhere, they have no spatial location). Also, one arm is pulled at all times; taking an action to pull one of the arms persistently changes the arm the agent is taken to be pulling. The integer stored in the top left location gives the identity of the correct arm. The optimal strategy for an episode is to move to the top-left corner, perform the `look` action, and then pull the correct arm thereafter. The agent receives a reward of 1 for every step that it pulls the correct arm, and 0 otherwise. """ T = Param() shape = Param() n_val = Param() n_arms = Param(2) def __init__(self, **kwargs): self.action_names = '^ > v < look'.split() + ["arm_{}".format(i) for i in range(self.n_arms)] self.action_shape = (len(self.action_names),) self.rb = RegisterBank( 'GridBanditRB', 'x y vision action arm', None, [0.0, 0.0, -1.0, 0.0, 0.0], 'x y', ) self.val_input = self._make_input(self.n_val) self.test_input = self._make_input(self.n_val) super(GridBandit, self).__init__() def _make_input(self, batch_size): start_x = np.random.randint(self.shape[0], size=(batch_size, 1)) start_y = np.random.randint(self.shape[1], size=(batch_size, 1)) grid = np.random.randint(self.n_arms, size=(batch_size, np.product(self.shape))) return np.concatenate([start_x, start_y, grid], axis=1).astype('f') def _build_placeholders(self): self.input = tf.placeholder(tf.float32, (None, 2+np.product(self.shape)), name="input") def _make_feed_dict(self, n_rollouts, T, mode): if mode == 'train': inp = self._make_input(n_rollouts) elif mode == 'val': inp = self.val_input elif mode == 'test': inp = self.test_input else: raise Exception("Unknown mode: {}.".format(mode)) if n_rollouts is not None: inp = inp[:n_rollouts, :] return {self.input: inp} def build_init(self, r): return self.rb.wrap( x=self.input[:, 0:1], y=self.input[:, 1:2], vision=r[:, 2:3], action=r[:, 3:4], arm=r[:, 4:5]) def build_step(self, t, r, actions): x, y, vision, action, current_arm = self.rb.as_tuple(r) up, right, down, left, look, *arms = tf.split(actions, 5+self.n_arms, axis=1) new_y = (1 - down - up) * y + down * (y+1) + up * (y-1) new_x = (1 - right - left) * x + right * (x+1) + left * (x-1) new_y = tf.clip_by_value(new_y, 0.0, self.shape[0]-1) new_x = tf.clip_by_value(new_x, 0.0, self.shape[1]-1) idx = tf.cast(y * self.shape[1] + x, tf.int32) new_vision = tf.reduce_sum( tf.one_hot(tf.reshape(idx, (-1,)), np.product(self.shape)) * self.input[:, 2:], axis=1, keepdims=True) vision = (1 - look) * vision + look * new_vision action = tf.cast(tf.reshape(tf.argmax(actions, axis=1), (-1, 1)), tf.float32) arm_chosen = tf.reduce_sum(tf.concat(arms, axis=1), axis=1, keepdims=True) > 0.5 chosen_arm = tf.reshape(tf.argmax(arms), (-1, 1)) current_arm = tf.cast(current_arm, tf.int64) new_current_arm = tf.where(arm_chosen, chosen_arm, current_arm) new_registers = self.rb.wrap( x=new_x, y=new_y, vision=vision, action=action, arm=tf.cast(new_current_arm, tf.float32)) correct_arm = tf.equal(new_current_arm, tf.cast(self.input[:, 2:3], tf.int64)) reward = tf.cast(correct_arm, tf.float32) return tf.fill((tf.shape(r)[0], 1), 0.0), reward, new_registers
import pandas as pd # 导入pandas库 data = pd.read_csv("F:\\数据采集\\数据采集课设\\淘宝空调数据.csv",encoding='utf-8-sig') print(data.describe()) # 将工资低于1000或者高于10万的异常值清空 data[u'views_price'][(data[u'views_price'] < 900) | (data[u'views_price']> 30000)] = None data.dropna()#删除空缺值 print(data.describe()) print(data.shape) data.to_csv('F:\\数据采集\\数据采集课设\\淘宝空调数据.csv',index = False,encoding='utf-8-sig')
import time import threading inicio = time.perf_counter() def aDormir(): print("Iniciando función, voy a dormir 1 s") time.sleep(1) print("Paso un segundo, he despertado") #Vamos a comparar ahora creando dos hilos #Para luego poder iterar sobre todos los hilos crearemos una lista vacia llamada hilos hilos=[] #En un bucle fos crearemos 10 hilos for _ in range(10): hilo = threading.Thread(target= aDormir) hilo.start() #Y guardaremos todos los hilos creados en nuestra lista hilos hilos.append(hilo) #Ahora iterando en hilos vamos a unirlos para que esperen a la ejecución de todos antes #de continuar con el código siguiente, en este caso la impresión del tiempo de ejecución for h in hilos: h.join() aDormir() final = time.perf_counter() print(f"Código ejecutado en {final- inicio, 2} segundos")
import numpy as np import os, sys import argparse import csv parser = argparse.ArgumentParser('Character-based Model for LAS') parser.add_argument('--data-path', default='all', type=str, help='Path to data') parser.add_argument('--write-file', default='', type=str, help='csv file to write vocabulary') parser.add_argument('--trans-file', default='', type=str, help='new transcript (npy) file to write to') parser.add_argument('--first', default=1, type=int, help='if vocab.csv needs to be generated') args = parser.parse_args() orig_transcripts = np.load(args.data_path) vocab = {'SOS': 0, 'EOS':1, ' ':2} count = 3 new_word = [] new_transcript = [] index = 0 for example in orig_transcripts: new_transcript.append([]) new_transcript[index].append(int(vocab['SOS'])) for word in example: decoded_word = word.decode('utf-8') for l in range(len(decoded_word)): if decoded_word[l] not in vocab.keys(): vocab[decoded_word[l]] = count count += 1 new_transcript[index].append(int(vocab[decoded_word[l]])) new_transcript[index].append(int(vocab[' '])) new_transcript[index].append(int(vocab['EOS'])) new_transcript[index] = np.array(new_transcript[index]) index += 1 np.save(os.path.join('', args.trans_file), np.array(new_transcript)) if args.first: with open(os.path.join('', args.write_file), 'w') as csvfile: writer = csv.writer(csvfile) for key, value in vocab.items(): writer.writerow([key, value])
#!/usr/bin/env python # Copyright 2017 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This is a demo for V3 features. The script will launch all the processes necessary to bring up the demo. It will bring up an HTTP server on port 8000 by default, which you can override. Once done, hitting <Enter> will terminate all processes. Vitess will always be started on port 12345. """ import json import optparse import os import subprocess import thread from CGIHTTPServer import CGIHTTPRequestHandler from BaseHTTPServer import HTTPServer from google.protobuf import text_format from vtproto import vttest_pb2 def start_http_server(port): httpd = HTTPServer(('', port), CGIHTTPRequestHandler) thread.start_new_thread(httpd.serve_forever, ()) def start_vitess(): """This is the main start function.""" topology = vttest_pb2.VTTestTopology() keyspace = topology.keyspaces.add(name='user') keyspace.shards.add(name='-80') keyspace.shards.add(name='80-') keyspace = topology.keyspaces.add(name='lookup') keyspace.shards.add(name='0') vttop = os.environ['VTTOP'] args = [os.path.join(vttop, 'py/vttest/run_local_database.py'), '--port', '12345', '--proto_topo', text_format.MessageToString(topology, as_one_line=True), '--web_dir', os.path.join(vttop, 'web/vtctld'), '--schema_dir', os.path.join(vttop, 'examples/demo/schema')] sp = subprocess.Popen(args, stdin=subprocess.PIPE, stdout=subprocess.PIPE) # This load will make us wait for vitess to come up. print json.loads(sp.stdout.readline()) return sp def stop_vitess(sp): sp.stdin.write('\n') sp.wait() def main(): parser = optparse.OptionParser() parser.add_option('-p', '--port', default=8000, help='http server port') (options, unused_args) = parser.parse_args() sp = start_vitess() try: start_http_server(options.port) raw_input('\n' 'Demo is running at: http://localhost:%d/\n' '\n' 'Press enter to exit.\n' % options.port) finally: stop_vitess(sp) if __name__ == '__main__': main()
class Solution: def findKthLargest(self, nums: List[int], k: int) -> int: temp = [0]*20001 for num in nums: temp[num+10000] += 1 for i in range(len(temp)-1, 0, -1): k -= temp[i] if k <= 0: return i-10000 return 0
import json data = {'a': 'A', 'c': 3.0, 'b': (2, 4), 'd': [1, 2.0, "3", True]} with open("data.json", mode="w") as f: json.dump(data, f) with open("data.json") as f: data = json.load(f) print data['b'] print data['d'] """ [2, 4] [1, 2.0, u'3', True] """
from nab import config from nab import register from nab import log _log = log.log.getChild("database") class Database(register.Entry): _register = register.Register() _type = "database" def get_show_titles(self, show): return [] def get_show_absolute_numbering(self, show): return False def get_show_ids(self, show): return {} def get_banner(self, show): return None def get_seasons(self, show): return [] def get_episodes(self, season): return [] def databases(): return Database.get_all(config.config["databases"]) def get_data(show): _log.debug("Searching for %s" % show) # get all titles for show _log.debug("Getting titles") for db in databases(): show.titles.update(db.get_show_titles(show)) # get if should use absolute numbering _log.debug("Getting absolute numbering") for db in databases(): if db.get_show_absolute_numbering(show): show.absolute = True break # get ids of show _log.debug("Getting ids") for db in databases(): show.ids = dict(show.ids.items() + db.get_show_ids(show).items()) # get banner for show _log.debug("Getting banner") for db in databases(): show.banner = db.get_banner(show) if show.banner: break # get seasons for show _log.debug("Getting seasons and episodes") for db in databases(): for season in db.get_seasons(show): # get episodes for season for episode in db.get_episodes(season): if episode.num in season: season[episode.num].merge(episode) else: season[episode.num] = episode if season.num in show: show[season.num].merge(season) else: show[season.num] = season show.format()
str1='Hello' str2='there' bob=str1+str2 print(bob) str3='123' x=int(str3)+1 # convert into integer number print(x)
from __future__ import division import argparse import torch import os import cv2 import numpy as np from models import * parser = argparse.ArgumentParser(description='PyTorch face landmark') # Datasets parser.add_argument('-img', '--image', default='spine', type=str) parser.add_argument('-j', '--workers', default=4, type=int, metavar='N', help='number of data loading workers (default: 4)') parser.add_argument('--gpu_id', default='0', type=str, help='id(s) for CUDA_VISIBLE_DEVICES') parser.add_argument('-c', '--checkpoint', default='checkpoint/00/model_best.pth.tar', type=str, metavar='PATH', help='path to save checkpoint (default: checkpoint)') args = parser.parse_args() def load_model(): model = resnet(136) model = torch.nn.DataParallel(model).cuda() checkpoint = torch.load(args.checkpoint) model.load_state_dict(checkpoint['state_dict']) return model if __name__ == '__main__': out_size = 256 model = load_model() model = model.eval() import glob,random path1 = '/home/felix/data/AASCE/boostnet_labeldata/data/training/*.jpg' path2 = '/home/felix/data/AASCE/boostnet_labeldata/data/test/*.jpg' path3 = '/home/felix/data/AASCE/boostnet_labeldata/data/test2/*.jpg' sam = random.sample(glob.glob(path3),5) for filename in sam: name = os.path.basename(filename) img = cv2.imread(filename) img = cv2.resize(img,(128,256)) raw_img = img img = img/255.0 img = (img-np.mean(img))/np.std(img) img = img.transpose((2, 0, 1)) img = img.reshape((1,) + img.shape) input = torch.from_numpy(img).float() input= torch.autograd.Variable(input) out = model(input).cpu().data.numpy() out = out.reshape(-1,2) raw_img = cv2.resize(raw_img,(128,256)) for i in range(68): cv2.circle(raw_img,(int(out[i][1]*128),int(out[i][0]*256)),2,(255,0,0),-1) cv2.imwrite('result_{a}.png'.format(a=name),raw_img) print(name) print('done!')
import sys import os import xml.dom.ext from xml.dom import XML_NAMESPACE, XMLNS_NAMESPACE, DOMException from xml.dom.ext import Printer from xml.dom.minidom import parseString, parse, Node uiSetStub=""" <set description='Automaticaly generated structure. Please do not change it !! All changes will be overwritten !!!' name=''/> """ voSetStub='<ui.VirtualOrganisation name=""/>' class GliteUIsetParams: def __init__(self, domVO): # if domVO==string create dom from a stub self.doc = parseString(uiSetStub) self.root = self.doc.documentElement self.root.setAttribute("name", domVO) self.vo = parseString(voSetStub).documentElement self.vo.setAttribute("name", domVO) self.nsNode = parseString("<ui.NSAddresses/>").documentElement self.vo.appendChild(self.nsNode) self.root.appendChild(self.vo) # if domVO==XMLnode import dom structure def addNS(self, nsName, lbNames): lbNode = parseString("<ui.LBAddresses/>").documentElement for lb in lbNames: lbNode.appendChild(self.__addLB(lb)) itemNode = parseString("<item/>").documentElement itemNode.setAttribute("value", nsName) itemNode.appendChild(lbNode) self.nsNode.appendChild(itemNode) def __addLB(self, lbName): valueDoc = parseString("<value/>") valueNode = valueDoc.documentElement valueNode.appendChild(valueDoc.createTextNode( lbName )) return valueNode def addParameter(self,name,value): param = self.doc.createElement(name) param.setAttribute("value",value) self.vo.appendChild(param) def addArrayParameter(self, name, values): param = self.doc.createElement(name) if values == []: values = [''] for value in values: valueNode = self.doc.createElement("value") if value.strip() != '': valueNode.appendChild(self.doc.createTextNode( value )) param.appendChild(valueNode) self.vo.appendChild(param) def getNode(self): return self.root ## # Following class/function extends the functionality of PrettyPrint # # As an output it produces text representation of DOM tree with similar # formatting as in the gLite configuration files # # Usage # from UltraPrint import UltraPrettyPrint # from xml.dom.minidom import parse # dom = parse('test.xml') # UltraPrettyPrint(dom) class UltraPrintVisitor(Printer.PrintVisitor): import xml.dom.ext length = 80 def visitAttr(self, node): if node.namespaceURI == XMLNS_NAMESPACE: # Skip namespace declarations return self._write('\n' + self._indent * (self._depth + 1) + node.name) value = node.value if value or not self._html: text = Printer.TranslateCdata(value, self.encoding) text, delimiter = Printer.TranslateCdataAttr(text) while text.find(' ') > -1: text = text.replace(' ',' ') n_text = '' while len(text) > self.length: s_pos = text.rfind(' ', 0, self.length + 1) if s_pos == -1: s_pos = text.find(' ') if s_pos == -1: s_pos = len(text) n_text = n_text + text[0:s_pos] + '\n' + self._indent * (self._depth + 2) text = text[s_pos + 1:len(text)] text = n_text + text self.stream.write("=%s%s%s" % (delimiter, text, delimiter)) return ## # Class implementing the XML output in the form used in the gLite # configuration files class gliteXMLWriter: def __init__(self): self.stream = sys.stdout def setOutputStream(self, stream): self.stream = stream def writeFile(self, name, root, encoding='UTF-8', indent=' ', preserveElements=None): file = open(name,'w') self.write(root, file, encoding, indent, preserveElements) file.close() def write(self, root, stream=None, encoding='UTF-8', indent=' ', preserveElements=None): stream = stream or self.stream if not hasattr(root, "nodeType"): return nss_hints = '' #SeekNss(root) preserveElements = preserveElements or [] owner_doc = root.ownerDocument or root if hasattr(owner_doc, 'getElementsByName'): #We don't want to insert any whitespace into HTML inline elements preserveElements = preserveElements + HTML_4_TRANSITIONAL_INLINE visitor = UltraPrintVisitor(stream, encoding, indent, preserveElements, nss_hints) Printer.PrintWalker(visitor, root).run() stream.write('\n') return ## # Improved PrettyPrint functionality # # @param root root element of the XML tree to print # @param stream stream to output to (should implement the Writer interface # @param encoding XML encoding # @param indent PrettyPrint indent # @param preserveElements PrettyPrint preserveElements def UltraPrettyPrint(root, stream=sys.stdout, encoding='UTF-8', indent=' ', preserveElements=None): if not hasattr(root, "nodeType"): return from xml.dom.ext import Printer nss_hints = '' #SeekNss(root) preserveElements = preserveElements or [] owner_doc = root.ownerDocument or root if hasattr(owner_doc, 'getElementsByName'): #We don't want to insert any whitespace into HTML inline elements preserveElements = preserveElements + HTML_4_TRANSITIONAL_INLINE visitor = UltraPrintVisitor(stream, encoding, indent, preserveElements, nss_hints) Printer.PrintWalker(visitor, root).run() stream.write('\n') return ######################################################################### # End Ultra Pretty Print ######################################################################### ## # method to list the tag names in the NodeList # @param nodeList NodeList to work on # # @return list of the tag names def getNodeNameList(nodeList): list = [] for node in nodeList: list.append(node.nodeName) return list def getContainerTemplate(containerName): containerXml = parse(os.environ['FUNCTIONS_DIR'] + '/../libexec/gLiteContainers.xml') containerParentNode = containerXml.getElementsByTagName(containerName)[0] for node in containerParentNode.childNodes: if node.nodeType == Node.ELEMENT_NODE: containerNode = node break return containerNode
from itertools import izip_longest class Vector(object): def __init__(self, nums): self.nums = nums def __str__(self): return '({})'.format(','.join(str(a) for a in self.nums)) def add(self, v2): return Vector([b + c for b, c in izip_longest(self.nums, v2.nums)]) def dot(self, v2): return sum(d * e for d, e in izip_longest(self.nums, v2.nums)) def equals(self, v2): return self.nums == v2.nums def norm(self): return sum(f ** 2 for f in self.nums) ** 0.5 def subtract(self, v2): return Vector([g - h for g, h in izip_longest(self.nums, v2.nums)])
Nentr = int(input()) for i in range(0, Nentr): N = int(input()) if 2015 - N < 0: print('%d A.C.'%(N-2014)) elif 2015 - N == 0: print('1 A.C.') else: print('%d D.C.'%(2015-N))
import hashlib from urllib.parse import urlencode from django import template from django.conf import settings register = template.Library() @register.filter def gravatar(user): email = user.email.lower().encode('utf-8') default = 'mm' size = 256 url = 'https://lh3.googleusercontent.com/RtzFFVB7fqOvXW9w7OHziR_xq4muZW_UGhHJoDAgx1ghcgw9KBXbDycZrSeQilU8b51lxmH7LVT7psvHSqEAKddQkBz_DGgItxLZKiU5AP4gf7uGPb7cmDerq9-soqdASpLBzE5x8A5Z5gJC3CtypZiyBoQg7gNvc-YTsnrDOyWereQ50cEdxh-n7Hq_yPe3awOblYdYX-m-J7ZmZ12aND8gDnT16jwsHZZhRZ8Oz5_Hntf16JGwA3qgjQKZGxBK4-szMTERv-ynO3qcqmaVUD2YW5zxj279aLoLxNkF8y_VnNfuXoIEORLs-zuN6GC1RFVIZgfUvXXhAWblxBrUqhWdZT3DXSvJHpzs1rSjTv-2WFD8TdEzdzMdVt7NG-4j05YvrLBsjVYn05uNK3FihNQi638rIk670zNfH5VYz5tvTce8g7tBeBqI-Y85qv0f1irJj5vCCkMgQ-Yp7aXRsjx8da5tw9vVEzi15-ZsSKu7yuxx0TzH9Jl57y_92SKTd2lxEAq1WPVUMzdP9LYaG4J57boA5juaJVd1Gujh0oyHIZ_Am6WO3nkyKx8SadTOzzfgmpoGZf3bKneWOSJeOloDIIRYKo1tyE8TqmIVjTyVqOp9cwSDxFpQDBBcsQbhoJHKHrPvXXTUoZOzMtHjAmVJBKcL86meHNkYuI7m61AodjlPlELx3hs9DxwJhw=w655-h873-no?authuser=0' return url
from typing import List from Position import Position def read_city_positions(file_path: str, skip_lines: int) -> List[Position]: city_positions: List[Position] = [] with open(file_path, 'r') as reader: lines_list: List[str] = reader.readlines() for idx in range(skip_lines, len(lines_list)): coords: List[str] = lines_list[idx].split() city_positions.append(Position(int(coords[0]), int(coords[1]))) return city_positions def read_best_roundtrip(file_path: str, skip_lines: int) -> List[int]: city_idxs: List[int] = [] with open(file_path, 'r') as reader: lines_list: List[str] = reader.readlines() for idx in range(skip_lines, len(lines_list)): city_idxs.append(int(lines_list[idx].split()[0])-1) return city_idxs
from leetcode import test, TreeNode, new_tree def rob(root: TreeNode) -> int: def helper(node: TreeNode) -> (int, int): if not node: return 0, 0 left_max, left_no_rob = helper(node.left) right_max, right_no_rob = helper(node.right) return ( max(left_no_rob + right_no_rob + node.val, left_max + right_max), left_max + right_max, ) return helper(root)[0] test(rob, [(new_tree(3, 4, 5, 1, 3, None, 1), 9)])
# -*- coding: utf-8 -*- """ Created on Sat May 2 16:19:14 2020 @author: Anuj """ # making the imports import numpy as np import matplotlib.pyplot as plt from tensorflow.keras.layers import Input,Conv2D,MaxPooling2D,Dropout,Flatten,Dense,Activation,BatchNormalization,add from tensorflow.keras.models import Model,Sequential from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.utils import plot_model from tensorflow.keras.applications.vgg16 import VGG16,preprocess_input import os #Code for loading training and validation data at the time of training base_dir = os.getcwd() #getting current directory target_shape = (224,224) #defining the input shape train_dir = base_dir+"\\chest_xray\\train" # val_dir = base_dir+"\\chest_xray\\val" # -- Directories for data test_dir = base_dir+"\\chest_xray\\test" # # loading the VGG16 model with imagenet weights without the FC layers vgg = VGG16(weights='imagenet',include_top=False,input_shape=(224,224,3)) for layer in vgg.layers: layer.trainable = False #making all the layers non-trainable x = Flatten()(vgg.output) #flattening out the last layer predictions = Dense(2,activation='softmax')(x) #Dense layer to predict wether their is pneumonia or not model = Model(inputs=vgg.input, outputs=predictions) model.summary() train_gen = ImageDataGenerator(rescale=1/255.0, horizontal_flip=True, zoom_range=0.2, shear_range=0.2) # making the data loader for training data test_gen = ImageDataGenerator(rescale=1/255.0) # making the data loader for validation data train_data_gen = train_gen.flow_from_directory(train_dir, target_shape, batch_size=16, class_mode='categorical') # function to make iterable object for training test_data_gen = train_gen.flow_from_directory(test_dir, target_shape, batch_size=16, class_mode='categorical') # function to make iterable object for training plot_model(model, to_file='model.png') model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy']) hist = model.fit_generator(train_data_gen, steps_per_epoch=20, epochs=20, validation_data=test_data_gen, validation_steps=10) plt.style.use("ggplot") plt.figure() plt.plot(hist.history["loss"], label="train_loss") plt.plot(hist.history["val_loss"], label="val_loss") plt.plot(hist.history["accuracy"], label="train_acc") plt.plot(hist.history["val_accuracy"], label="val_acc") plt.title("Model Training") plt.xlabel("Epoch #") plt.ylabel("Loss/Accuracy") plt.legend() plt.savefig("epochs.png") model.save('model.h5')
from flask import Blueprint from flask import jsonify from shutil import copyfile, move from google.cloud import storage from google.cloud import bigquery import pandas as pd from pandas import DataFrame import dataflow_pipeline.sensus.sensus_seguimiento_beam as sensus_seguimiento_beam import dataflow_pipeline.sensus.sensus_metas_beam as sensus_metas_beam import dataflow_pipeline.sensus.sensus_adh_beam as sensus_adh_beam import dataflow_pipeline.sensus.sensus_dmobility_beam as sensus_dmobility_beam import dataflow_pipeline.sensus.sensus_dchat_beam as sensus_dchat_beam import dataflow_pipeline.sensus.sensus_dcorreo_beam as sensus_dcorreo_beam import dataflow_pipeline.sensus.sensus_banco_beam as sensus_banco_beam import dataflow_pipeline.sensus.sensus_metalal_beam as sensus_metalal_beam import dataflow_pipeline.sensus.sensus_poc_beam as sensus_poc_beam import dataflow_pipeline.sensus.sensus_tecnicos_beam as sensus_tecnicos_beam import dataflow_pipeline.sensus.sensus_agricolaadmin_beam as sensus_agricolaadmin_beam import dataflow_pipeline.sensus.sensus_agricolacast_beam as sensus_agricolacast_beam import dataflow_pipeline.sensus.sensus_estrategy_beam as sensus_estrategy_beam import dataflow_pipeline.sensus.sensus_alter_beam as sensus_alter_beam import procesos.descargas as descargas import os import socket import requests from flask import request import csv sensus_api = Blueprint('sensus_api', __name__) fileserver_baseroute = ("//192.168.20.87", "/media")[socket.gethostname()=="contentobi"] ###################################################################################################### @sensus_api.route("/archivos_seguimiento") def archivos_Seguimiento(): response = {} response["code"] = 400 response["description"] = "No se encontraron ficheros" response["status"] = False local_route = fileserver_baseroute + "/BI_Archivos/GOOGLE/Sensus/Aseguramiento/" archivos = os.listdir(local_route) for archivo in archivos: if archivo.endswith(".csv"): mifecha = archivo[18:26] storage_client = storage.Client() bucket = storage_client.get_bucket('ct-sensus') # Subir fichero a Cloud Storage antes de enviarlo a procesar a Dataflow blob = bucket.blob('info-aseguramiento/' + archivo) blob.upload_from_filename(local_route + archivo) # Una vez subido el fichero a Cloud Storage procedemos a eliminar los registros de BigQuery deleteQuery = "DELETE FROM `contento-bi.sensus.seguimiento` WHERE fecha = '" + mifecha + "'" #Primero eliminamos todos los registros que contengan esa fecha client = bigquery.Client() query_job = client.query(deleteQuery) #result = query_job.result() query_job.result() # Corremos el job de eliminacion de datos de BigQuery # Terminada la eliminacion de BigQuery y la subida a Cloud Storage corremos el Job mensaje = sensus_seguimiento_beam.run('gs://ct-sensus/info-aseguramiento/' + archivo, mifecha) if mensaje == "Corrio Full HD": move(local_route + archivo, fileserver_baseroute + "/BI_Archivos/GOOGLE/Sensus/Aseguramiento/Procesados/"+archivo) response["code"] = 200 response["description"] = "Se realizo la peticion Full HD" response["status"] = True return jsonify(response), response["code"] # return "Corriendo : " + mensaje ##################################################################################################### @sensus_api.route("/metas") def metas(): response = {} response["code"] = 400 response["description"] = "No se encontraron ficheros" response["status"] = False local_route = fileserver_baseroute + "/BI_Archivos/GOOGLE/Sensus/Aseguramiento/Metas/" archivos = os.listdir(local_route) for archivo in archivos: if archivo.endswith(".csv"): mifecha = archivo[34:] storage_client = storage.Client() bucket = storage_client.get_bucket('ct-sensus') # Subir fichero a Cloud Storage antes de enviarlo a procesar a Dataflow blob = bucket.blob('metas/' + archivo) blob.upload_from_filename(local_route + archivo) # Una vez subido el fichero a Cloud Storage procedemos a eliminar los registros de BigQuery deleteQuery = "DELETE FROM `contento-bi.sensus.metas` WHERE fecha = '" + mifecha + "'" #Primero eliminamos todos los registros que contengan esa fecha client = bigquery.Client() query_job = client.query(deleteQuery) #result = query_job.result() query_job.result() # Corremos el job de eliminacion de datos de BigQuery # Terminada la eliminacion de BigQuery y la subida a Cloud Storage corremos el Job mensaje = sensus_metas_beam.run('gs://ct-sensus/metas/' + archivo, mifecha) if mensaje == "Corrio Full HD": move(local_route + archivo, fileserver_baseroute + "/BI_Archivos/GOOGLE/Sensus/Aseguramiento/Metas/Procesados/"+archivo) response["code"] = 200 response["description"] = "Se realizo la peticion Full HD" response["status"] = True return jsonify(response), response["code"] # return "Corriendo : " + mensaje @sensus_api.route("/adh") def adh(): response = {} response["code"] = 400 response["description"] = "No se encontraron ficheros" response["status"] = False local_route = fileserver_baseroute + "/BI_Archivos/GOOGLE/Sensus/Aseguramiento/ADH/" archivos = os.listdir(local_route) for archivo in archivos: if archivo.endswith(".csv"): mifecha = archivo[9:17] storage_client = storage.Client() bucket = storage_client.get_bucket('ct-sensus') # Subir fichero a Cloud Storage antes de enviarlo a procesar a Dataflow blob = bucket.blob('adh/' + archivo) blob.upload_from_filename(local_route + archivo) # Una vez subido el fichero a Cloud Storage procedemos a eliminar los registros de BigQuery deleteQuery = "DELETE FROM `contento-bi.sensus.adh` WHERE fecha = '" + mifecha + "'" #Primero eliminamos todos los registros que contengan esa fecha client = bigquery.Client() query_job = client.query(deleteQuery) #result = query_job.result() query_job.result() # Corremos el job de eliminacion de datos de BigQuery # Terminada la eliminacion de BigQuery y la subida a Cloud Storage corremos el Job mensaje = sensus_adh_beam.run('gs://ct-sensus/adh/' + archivo, mifecha) if mensaje == "Corrio Full HD": move(local_route + archivo, fileserver_baseroute + "/BI_Archivos/GOOGLE/Sensus/Aseguramiento/ADH/Procesados/"+archivo) response["code"] = 200 response["description"] = "Se realizo la peticion Full HD" response["status"] = True return jsonify(response), response["code"] ##################################################################################################### @sensus_api.route("/dmobility") def dmobility(): response = {} response["code"] = 400 response["description"] = "No se encontraron ficheros" response["status"] = False local_route = fileserver_baseroute + "/BI_Archivos/GOOGLE/Sensus/Aseguramiento/Detallado/" archivos = os.listdir(local_route) for archivo in archivos: if archivo.endswith(".csv"): mifecha = archivo[0:8] storage_client = storage.Client() bucket = storage_client.get_bucket('ct-sensus') # Subir fichero a Cloud Storage antes de enviarlo a procesar a Dataflow blob = bucket.blob('adh/' + archivo) blob.upload_from_filename(local_route + archivo) # Una vez subido el fichero a Cloud Storage procedemos a eliminar los registros de BigQuery deleteQuery = "DELETE FROM `contento-bi.sensus.dmobility` WHERE fecha = '" + mifecha + "'" #Primero eliminamos todos los registros que contengan esa fecha client = bigquery.Client() query_job = client.query(deleteQuery) #result = query_job.result() query_job.result() # Corremos el job de eliminacion de datos de BigQuery # Terminada la eliminacion de BigQuery y la subida a Cloud Storage corremos el Job mensaje = sensus_dmobility_beam.run('gs://ct-sensus/adh/' + archivo, mifecha) if mensaje == "Corrio Full HD": move(local_route + archivo, fileserver_baseroute + "/BI_Archivos/GOOGLE/Sensus/Aseguramiento/Detallado/Procesados/"+archivo) response["code"] = 200 response["description"] = "Se realizo la peticion Full HD" response["status"] = True return jsonify(response), response["code"] ##################################################################################################### @sensus_api.route("/dchat") def dchat(): response = {} response["code"] = 400 response["description"] = "No se encontraron ficheros" response["status"] = False local_route = fileserver_baseroute + "/BI_Archivos/GOOGLE/Sensus/Aseguramiento/Chat/" archivos = os.listdir(local_route) for archivo in archivos: if archivo.endswith(".csv"): mifecha = archivo[0:8] storage_client = storage.Client() bucket = storage_client.get_bucket('ct-sensus') # Subir fichero a Cloud Storage antes de enviarlo a procesar a Dataflow blob = bucket.blob('adh/' + archivo) blob.upload_from_filename(local_route + archivo) # Una vez subido el fichero a Cloud Storage procedemos a eliminar los registros de BigQuery deleteQuery = "DELETE FROM `contento-bi.sensus.dchat` WHERE fecha = '" + mifecha + "'" #Primero eliminamos todos los registros que contengan esa fecha client = bigquery.Client() query_job = client.query(deleteQuery) #result = query_job.result() query_job.result() # Corremos el job de eliminacion de datos de BigQuery # Terminada la eliminacion de BigQuery y la subida a Cloud Storage corremos el Job mensaje = sensus_dchat_beam.run('gs://ct-sensus/adh/' + archivo, mifecha) if mensaje == "Corrio Full HD": move(local_route + archivo, fileserver_baseroute + "/BI_Archivos/GOOGLE/Sensus/Aseguramiento/Chat/Procesados/"+archivo) response["code"] = 200 response["description"] = "Se realizo la peticion Full HD" response["status"] = True return jsonify(response), response["code"] ##################################################################################################### @sensus_api.route("/dcorreo") def dcorreo(): response = {} response["code"] = 400 response["description"] = "No se encontraron ficheros" response["status"] = False local_route = fileserver_baseroute + "/BI_Archivos/GOOGLE/Sensus/Aseguramiento/Correo/" archivos = os.listdir(local_route) for archivo in archivos: if archivo.endswith(".csv"): mifecha = archivo[0:8] storage_client = storage.Client() bucket = storage_client.get_bucket('ct-sensus') # Subir fichero a Cloud Storage antes de enviarlo a procesar a Dataflow blob = bucket.blob('adh/' + archivo) blob.upload_from_filename(local_route + archivo) # Una vez subido el fichero a Cloud Storage procedemos a eliminar los registros de BigQuery deleteQuery = "DELETE FROM `contento-bi.sensus.dcorreo` WHERE fecha = '" + mifecha + "'" #Primero eliminamos todos los registros que contengan esa fecha client = bigquery.Client() query_job = client.query(deleteQuery) #result = query_job.result() query_job.result() # Corremos el job de eliminacion de datos de BigQuery # Terminada la eliminacion de BigQuery y la subida a Cloud Storage corremos el Job mensaje = sensus_dcorreo_beam.run('gs://ct-sensus/adh/' + archivo, mifecha) if mensaje == "Corrio Full HD": move(local_route + archivo, fileserver_baseroute + "/BI_Archivos/GOOGLE/Sensus/Aseguramiento/Correo/Procesados/"+archivo) response["code"] = 200 response["description"] = "Se realizo la peticion Full HD" response["status"] = True return jsonify(response), response["code"] ##################################################################################################### @sensus_api.route("/banco") def banco(): response = {} response["code"] = 400 response["description"] = "No se encontraron ficheros" response["status"] = False local_route = fileserver_baseroute + "/BI_Archivos/GOOGLE/Sensus/Aseguramiento/Banco/" archivos = os.listdir(local_route) for archivo in archivos: if archivo.endswith(".csv"): mifecha = archivo[0:8] storage_client = storage.Client() bucket = storage_client.get_bucket('ct-sensus') # Subir fichero a Cloud Storage antes de enviarlo a procesar a Dataflow blob = bucket.blob('adh/' + archivo) blob.upload_from_filename(local_route + archivo) # Una vez subido el fichero a Cloud Storage procedemos a eliminar los registros de BigQuery deleteQuery = "DELETE FROM `contento-bi.sensus.banco` WHERE fecha = '" + mifecha + "'" #Primero eliminamos todos los registros que contengan esa fecha client = bigquery.Client() query_job = client.query(deleteQuery) #result = query_job.result() query_job.result() # Corremos el job de eliminacion de datos de BigQuery # Terminada la eliminacion de BigQuery y la subida a Cloud Storage corremos el Job mensaje = sensus_banco_beam.run('gs://ct-sensus/adh/' + archivo, mifecha) if mensaje == "Corrio Full HD": move(local_route + archivo, fileserver_baseroute + "/BI_Archivos/GOOGLE/Sensus/Aseguramiento/Banco/Procesados/"+archivo) response["code"] = 200 response["description"] = "Se realizo la peticion Full HD" response["status"] = True return jsonify(response), response["code"] ##################################################################################################### @sensus_api.route("/metalal") def metalal(): response = {} response["code"] = 400 response["description"] = "No se encontraron ficheros" response["status"] = False local_route = fileserver_baseroute + "/BI_Archivos/GOOGLE/Sensus/Aseguramiento/Metalal/" archivos = os.listdir(local_route) for archivo in archivos: if archivo.endswith(".csv"): mifecha = archivo[0:8] storage_client = storage.Client() bucket = storage_client.get_bucket('ct-sensus') # Subir fichero a Cloud Storage antes de enviarlo a procesar a Dataflow blob = bucket.blob('adh/' + archivo) blob.upload_from_filename(local_route + archivo) # Una vez subido el fichero a Cloud Storage procedemos a eliminar los registros de BigQuery deleteQuery = "DELETE FROM `contento-bi.sensus.banco` WHERE fecha = '" + mifecha + "'" #Primero eliminamos todos los registros que contengan esa fecha client = bigquery.Client() query_job = client.query(deleteQuery) #result = query_job.result() query_job.result() # Corremos el job de eliminacion de datos de BigQuery # Terminada la eliminacion de BigQuery y la subida a Cloud Storage corremos el Job mensaje = sensus_metalal_beam.run('gs://ct-sensus/adh/' + archivo, mifecha) if mensaje == "Corrio Full HD": move(local_route + archivo, fileserver_baseroute + "/BI_Archivos/GOOGLE/Sensus/Aseguramiento/Metalal/Procesados/"+archivo) response["code"] = 200 response["description"] = "Se realizo la peticion Full HD" response["status"] = True return jsonify(response), response["code"] ##################################################################################################### @sensus_api.route("/poc") def poc(): response = {} response["code"] = 400 response["description"] = "No se encontraron ficheros" response["status"] = False local_route = fileserver_baseroute + "/BI_Archivos/GOOGLE/Sensus/Aseguramiento/Poc/" archivos = os.listdir(local_route) for archivo in archivos: if archivo.endswith(".csv"): mifecha = archivo[0:8] storage_client = storage.Client() bucket = storage_client.get_bucket('ct-sensus') # Subir fichero a Cloud Storage antes de enviarlo a procesar a Dataflow blob = bucket.blob('poc/' + archivo) blob.upload_from_filename(local_route + archivo) # Una vez subido el fichero a Cloud Storage procedemos a eliminar los registros de BigQuery deleteQuery = "DELETE FROM `contento-bi.sensus.poc` WHERE fecha = '" + mifecha + "'" #Primero eliminamos todos los registros que contengan esa fecha client = bigquery.Client() query_job = client.query(deleteQuery) #result = query_job.result() query_job.result() # Corremos el job de eliminacion de datos de BigQuery # Terminada la eliminacion de BigQuery y la subida a Cloud Storage corremos el Job mensaje = sensus_poc_beam.run('gs://ct-sensus/poc/' + archivo, mifecha) if mensaje == "Corrio Full HD": move(local_route + archivo, fileserver_baseroute + "/BI_Archivos/GOOGLE/Sensus/Aseguramiento/Poc/Procesados/"+archivo) response["code"] = 200 response["description"] = "Se cargaron los ficheros exitosamente" response["status"] = True return jsonify(response), response["code"] ##################################################################################################### @sensus_api.route("/tecnicos") def tecnicos(): response = {} response["code"] = 400 response["description"] = "No se encontraron ficheros" response["status"] = False local_route = fileserver_baseroute + "/BI_Archivos/GOOGLE/Sensus/Aseguramiento/tecnicos/" archivos = os.listdir(local_route) for archivo in archivos: if archivo.endswith(".csv"): mifecha = archivo[0:8] storage_client = storage.Client() bucket = storage_client.get_bucket('ct-sensus') # Subir fichero a Cloud Storage antes de enviarlo a procesar a Dataflow blob = bucket.blob('tecnicos/' + archivo) blob.upload_from_filename(local_route + archivo) # Una vez subido el fichero a Cloud Storage procedemos a eliminar los registros de BigQuery deleteQuery = "DELETE FROM `contento-bi.sensus.tecnicos` WHERE fecha = '" + mifecha + "'" #Primero eliminamos todos los registros que contengan esa fecha client = bigquery.Client() query_job = client.query(deleteQuery) #result = query_job.result() query_job.result() # Corremos el job de eliminacion de datos de BigQuery # Terminada la eliminacion de BigQuery y la subida a Cloud Storage corremos el Job mensaje = sensus_tecnicos_beam.run('gs://ct-sensus/tecnicos/' + archivo, mifecha) if mensaje == "Corrio Full HD": move(local_route + archivo, fileserver_baseroute + "/BI_Archivos/GOOGLE/Sensus/Aseguramiento/tecnicos/Procesados/"+archivo) response["code"] = 200 response["description"] = "Se cargaron los ficheros exitosamente" response["status"] = True return jsonify(response), response["code"] ##################################################################################################### @sensus_api.route("/agricolaa") def agricolaa(): response = {} response["code"] = 400 response["description"] = "No se encontraron ficheros" response["status"] = False local_route = fileserver_baseroute + "/BI_Archivos/GOOGLE/Sensus/Aseguramiento/Dagricola/Administrativa/" archivos = os.listdir(local_route) for archivo in archivos: if archivo.endswith(".csv"): mifecha = archivo[0:8] storage_client = storage.Client() bucket = storage_client.get_bucket('ct-sensus') # Subir fichero a Cloud Storage antes de enviarlo a procesar a Dataflow blob = bucket.blob('agricolaadmin/' + archivo) blob.upload_from_filename(local_route + archivo) # Una vez subido el fichero a Cloud Storage procedemos a eliminar los registros de BigQuery deleteQuery = "DELETE FROM `contento-bi.sensus.agricolaadm` WHERE fecha = '" + mifecha + "'" #Primero eliminamos todos los registros que contengan esa fecha client = bigquery.Client() query_job = client.query(deleteQuery) #result = query_job.result() query_job.result() # Corremos el job de eliminacion de datos de BigQuery # Terminada la eliminacion de BigQuery y la subida a Cloud Storage corremos el Job mensaje = sensus_agricolaadmin_beam.run('gs://ct-sensus/agricolaadmin/' + archivo, mifecha) if mensaje == "Corrio Full HD": move(local_route + archivo, fileserver_baseroute + "/BI_Archivos/GOOGLE/Sensus/Aseguramiento/Dagricola/Administrativa/Procesados/"+archivo) response["code"] = 200 response["description"] = "Se cargaron los ficheros exitosamente" response["status"] = True return jsonify(response), response["code"] ##################################################################################################### @sensus_api.route("/agricolac") def agricolac(): response = {} response["code"] = 400 response["description"] = "No se encontraron ficheros" response["status"] = False local_route = fileserver_baseroute + "/BI_Archivos/GOOGLE/Sensus/Aseguramiento/Dagricola/Castigada/" archivos = os.listdir(local_route) for archivo in archivos: if archivo.endswith(".csv"): mifecha = archivo[0:8] storage_client = storage.Client() bucket = storage_client.get_bucket('ct-sensus') # Subir fichero a Cloud Storage antes de enviarlo a procesar a Dataflow blob = bucket.blob('agricolacast/' + archivo) blob.upload_from_filename(local_route + archivo) # Una vez subido el fichero a Cloud Storage procedemos a eliminar los registros de BigQuery deleteQuery = "DELETE FROM `contento-bi.sensus.agricolacast` WHERE fecha = '" + mifecha + "'" #Primero eliminamos todos los registros que contengan esa fecha client = bigquery.Client() query_job = client.query(deleteQuery) #result = query_job.result() query_job.result() # Corremos el job de eliminacion de datos de BigQuery # Terminada la eliminacion de BigQuery y la subida a Cloud Storage corremos el Job mensaje = sensus_agricolacast_beam.run('gs://ct-sensus/agricolacast/' + archivo, mifecha) if mensaje == "Corrio Full HD": move(local_route + archivo, fileserver_baseroute + "/BI_Archivos/GOOGLE/Sensus/Aseguramiento/Dagricola/Castigada/Procesados/"+archivo) response["code"] = 200 response["description"] = "Se cargaron los ficheros exitosamente" response["status"] = True return jsonify(response), response["code"] ###################################################################################################### @sensus_api.route("/descargar", methods=['POST','GET']) def Descarga_Encuesta(): dateini= request.args.get('desde') dateend= request.args.get('hasta') myRoute = '/BI_Archivos/GOOGLE/Sensus/Aseguramiento/Dagricola/Descargas/'+dateini+'_'+dateend+'.csv' myQuery ='SELECT * FROM `contento-bi.sensus.Dagrciola_admin` where fecha between'+'"'+dateini+'"'+'AND'+'"'+dateend+'"' myHeader = ["Unico","Nombre","Fecha","Nombre_gestor","Cartera","Nombre_evaluador","PEC","Telefono_cliente","Cierre_de_la_llamada","Evaluacion_del_Saludo","Evaluacion_negociacion","Aspectos_mejora","Aspectos_positivos","Observaciones" ] return descargas.descargar_csv(myRoute, myQuery, myHeader) ###################################################################################################### @sensus_api.route("/estrategy") def estrategy(): response = {} response["code"] = 400 response["description"] = "No se encontraron ficheros" response["status"] = False local_route = fileserver_baseroute + "/BI_Archivos/GOOGLE/Sensus/Aseguramiento/Estrategia/Estrategy/" archivos = os.listdir(local_route) for archivo in archivos: if archivo.endswith(".csv"): mifecha = archivo[0:] storage_client = storage.Client() bucket = storage_client.get_bucket('ct-sensus') # Subir fichero a Cloud Storage antes de enviarlo a procesar a Dataflow blob = bucket.blob('agricolacast/' + archivo) blob.upload_from_filename(local_route + archivo) # Una vez subido el fichero a Cloud Storage procedemos a eliminar los registros de BigQuery deleteQuery = "DELETE FROM `contento-bi.sensus.estrategy` WHERE fecha = '" + mifecha + "'" #Primero eliminamos todos los registros que contengan esa fecha client = bigquery.Client() query_job = client.query(deleteQuery) #result = query_job.result() query_job.result() # Corremos el job de eliminacion de datos de BigQuery # Terminada la eliminacion de BigQuery y la subida a Cloud Storage corremos el Job mensaje = sensus_estrategy_beam.run('gs://ct-sensus/agricolacast/' + archivo, mifecha) if mensaje == "Corrio Full HD": move(local_route + archivo, fileserver_baseroute + "/BI_Archivos/GOOGLE/Sensus/Aseguramiento/Estrategia/Estrategy/Procesados/"+archivo) response["code"] = 200 response["description"] = "Se cargaron los ficheros exitosamente" response["status"] = True return jsonify(response), response["code"] ###################################################################################################### @sensus_api.route("/alter") def alter(): response = {} response["code"] = 400 response["description"] = "No se encontraron ficheros" response["status"] = False local_route = fileserver_baseroute + "/BI_Archivos/GOOGLE/Sensus/Aseguramiento/Estrategia/Sinalternativas/" archivos = os.listdir(local_route) for archivo in archivos: if archivo.endswith(".csv"): mifecha = archivo[0:] storage_client = storage.Client() bucket = storage_client.get_bucket('ct-sensus') # Subir fichero a Cloud Storage antes de enviarlo a procesar a Dataflow blob = bucket.blob('agricolacast/' + archivo) blob.upload_from_filename(local_route + archivo) # Una vez subido el fichero a Cloud Storage procedemos a eliminar los registros de BigQuery deleteQuery = "DELETE FROM `contento-bi.sensus.alter` WHERE fecha = '" + mifecha + "'" #Primero eliminamos todos los registros que contengan esa fecha client = bigquery.Client() query_job = client.query(deleteQuery) #result = query_job.result() query_job.result() # Corremos el job de eliminacion de datos de BigQuery # Terminada la eliminacion de BigQuery y la subida a Cloud Storage corremos el Job mensaje = sensus_alter_beam.run('gs://ct-sensus/agricolacast/' + archivo, mifecha) if mensaje == "Corrio Full HD": move(local_route + archivo, fileserver_baseroute + "/BI_Archivos/GOOGLE/Sensus/Aseguramiento/Estrategia/Sinalternativas/Procesados/"+archivo) response["code"] = 200 response["description"] = "Se cargaron los ficheros exitosamente" response["status"] = True return jsonify(response), response["code"] ######################################################################################################
#!/usr/bin/env python # coding: utf-8 # Copyright (c) Qotto, 2019 """ KafkaKeySerializer Serialize string key to bytes & deserialize key in string """ from tonga.services.serializer.base import BaseSerializer from tonga.services.serializer.errors import KeySerializerDecodeError, KeySerializerEncodeError class KafkaKeySerializer(BaseSerializer): """ Serialize kafka key to bytes """ @classmethod def encode(cls, obj: str) -> bytes: """ Encode key to bytes for kafka Args: obj (str): Key in string or bytes format Raises: KeySerializerEncodeError: this error was raised when KafkaKeySerializer can't serialize key Returns: bytes: Kafka key as bytes """ if isinstance(obj, str) and obj is not None: return obj.encode('utf-8') if isinstance(obj, bytes): return obj raise KeySerializerEncodeError @classmethod def decode(cls, encoded_obj: bytes) -> str: """ Decode kafka key to str Args: encoded_obj (bytes): Kafka key in bytes Raises: KeySerializerDecodeError: this error was raised when KafkaKeySerializer can't deserialize key Returns: str: Key as string """ if isinstance(encoded_obj, bytes) and encoded_obj is not None: return encoded_obj.decode('utf-8') if isinstance(encoded_obj, str): return encoded_obj raise KeySerializerDecodeError
from leetcode.tree import printtree class TreeNode(object): def __init__(self, x): self.val = x self.left = None self.right = None class Queue(object): def __init__(self): self.stacka = [] self.stackb = [] self.queue = [] def inqueue(self, node): if node: self.queue.append(node.val) if self.stacka is None: self.stacka.append(node) else: while self.stacka: x = self.stacka.pop() self.stackb.append(x) self.stacka.append(node) while self.stackb: y = self.stackb.pop() self.stacka.append(y) def outqueue(self): if self.stacka: x = self.stacka.pop() self.queue.pop() return x else: return None class Solution(object): # 递归版本 def scanRight(self, root): ans = Queue() if root is None: return ans if root.left is None and root.right is None: ans.inqueue(root) return ans leftans = self.scanRight(self, root.left) rightans = self.scanRight(self, root.right) print("---") print("当前节点:", root.val) print("左:", leftans.queue) print("右:", rightans.queue) if root.left is None: nqueue = Queue() nqueue.inqueue(root) x = rightans.outqueue() while x: nqueue.inqueue(x) x = rightans.outqueue() return nqueue if root.right is None: nqueue = Queue() nqueue.inqueue(root) x = leftans.outqueue() while x: nqueue.inqueue(x) x = leftans.outqueue() return nqueue ans.inqueue(root) while rightans.queue: x = rightans.outqueue() ans.inqueue(x) leftans.outqueue() while leftans.queue: y = leftans.outqueue() ans.inqueue(y) print("合并:", ans.queue) return ans # 非递归版本 def rightSideView(self, root): # 广度遍历 queue = Queue() ret = [] count = 1 queue.inqueue(root) while queue.stacka: # 先遍历当前层次,并将下层入队,从左往右入队,最后一个作为输出 while count > 0: node = queue.outqueue() count -= 1 if node.left: queue.inqueue(node.left) if node.right: queue.inqueue(node.right) ret.append(node.val) count = queue.queue.__len__() return ret # # 5 # / \ # / \ # / \ # / \ # / \ # / \ # / \ # / \ # 4 8 # / \ / \ # / \ / \ # / \ / \ # / \ / \ # 11 N 13 4 # / \ / \ / \ / \ # / \ / \ / \ / \ # 7 2 N N N 9 15 N if __name__ == "__main__": solu = Solution root = TreeNode(5) n1 = TreeNode(4) n2 = TreeNode(8) root.left = n1 root.right = n2 n3 = TreeNode(11) n4 = TreeNode(7) n5 = TreeNode(2) n1.left = n3 n3.left = n4 n3.right = n5 n6 = TreeNode(13) n6.right = TreeNode(9) n7 = TreeNode(4) n7.left = TreeNode(15) n2.left = n6 n2.right = n7 # n7.right = TreeNode(1) printtree.Pretty_print(root) # ans = solu.scanRight(solu, root) ans = solu.rightSideView(solu, root) print("_______") print(ans)
from django.test import TestCase from portfolio.models import Project class ProjectModelTest(TestCase): def test_creating_and_retrieving_projects(self): first_project = Project() first_project.title = '1st project' first_project.description = '1st desc' first_project.save() second_project = Project() second_project.title = '2nd project' second_project.description = '2nd desc' second_project.save() projects = Project.objects.all() self.assertEqual(projects.count(), 2) first_saved_project = projects[0] self.assertEqual(first_saved_project.title, '1st project') self.assertEqual(first_saved_project.description, '1st desc') second_saved_project = projects[1] self.assertEqual(second_saved_project.title, '2nd project') self.assertEqual(second_saved_project.description, '2nd desc') class ImageModelTest(TestCase): def test_adding_image(self): pass
from logging import info, warning from api import gitlab from utilities import validate, types gitlab = gitlab.GitLab(types.Arguments().url) def get_all_project_members(project): members = {} info("[*] Fetching all members for project %s", project) details = gitlab.get_project_members(project) if validate.api_result(details): warning("[*] Found %s members for project %s", len(details), project) for item in details: members.update({item['username']: item['web_url']}) return members def get_all_group_members(group): members = {} info("[*] Fetching all members for group %s", group) details = gitlab.get_group_members(group) if validate.api_result(details): warning("[*] Found %s members for group %s", len(details), group) for item in details: members.update({item['username']: item['web_url']}) return members
import re email_file = "C:\\Users\\gk\\Documents\\myPython\\Day4\\contacts_regex.txt" pattern = re.compile(r'@\w[\w\.\-]+\w') with open(email_file,"r",encoding='utf8') as file : dict_domain = dict() for line in file.readlines() : for domain in re.findall(pattern,line) : if domain in dict_domain.keys() : dict_domain[domain] += 1 else: dict_domain[domain] = 1 print("len:", len(dict_domain)) print(dict_domain) nameList = list(len(l.split(":")[0]) for l in dict_domain.keys() ) maxString = max(nameList) shiftMaxStringFormat = '{:' + str(maxString) + '}' print("\nshiftMaxStringFormat:") print(shiftMaxStringFormat) for d in sorted(dict_domain.keys()) : print(shiftMaxStringFormat.format(d), "\t:\t", dict_domain[d])
from random import randint from card import Card from deck import Deck from noble import Noble from token import Token from player import Player from prettytable import PrettyTable class Environment: def __init__(self, playerCount): self.__players = Player.initialize(playerCount) self.__nobles = Noble.initalize(playerCount) self.__decks = Deck.initialize() self.__gemTokens = Token.initalize(playerCount) self.__table = [] self.initializeTable() self.initializeGame() def getPlayers(self): return self.__players def getNobles(self): return self.__nobles def getDecks(self): return self.__decks def getGemTokens(self): return self.__gemTokens def getTable(self): return self.__table def initializeTable(self): cardsToBeDrawn = 4 for deck in self.__decks: drawnCards = [] for _ in range(cardsToBeDrawn): drawnCards.append(deck.draw()) self.__table.append(drawnCards) def displayNobles(self): print("─────────────────────────────────────────────────────────────────────") print("Nobles:") header = ["Cost"] nobleCosts = [["Diamond"], ["Sapphire"], ["Emerald"], ["Ruby"], ["Onyx"]] for i, noble in enumerate(self.__nobles): header.append("Noble #" + str(i + 1)) cardCost = noble.getCardCost() for i, cost in enumerate(cardCost): nobleCosts[i].append(str(cardCost[cost])) t = PrettyTable(header) for cost in nobleCosts: t.add_row(cost) print(t.get_string(title="Nobles")) def displayTable(self): print("─────────────────────────────────────────────────────────────────────") decks = [self.__table[2], self.__table[1], self.__table[0]] for i, deck in enumerate(decks): header = ["Fields"] cardDetails = [["Token"], ["Prestige"], ["Diamond"], ["Sapphire"], ["Emerald"], ["Ruby"], ["Onyx"]] for cardNum, card in enumerate(deck): header.append("Card #" + str(cardNum + 1)) cardCost = card.getCost() cardDetails[0].append(card.getTokenType().title()) cardDetails[1].append(card.getPrestige()) cardDetails[2].append(cardCost["diamond"]) cardDetails[3].append(cardCost["sapphire"]) cardDetails[4].append(cardCost["emerald"]) cardDetails[5].append(cardCost["ruby"]) cardDetails[6].append(cardCost["onyx"]) t = PrettyTable(header) for detail in cardDetails: t.add_row(detail) print("Tier " + str(len(decks) - i) + " Cards:") print(t) def displayGemTokens(self): print("─────────────────────────────────────────────────────────────────────") print("Available Gem Tokens:") t = PrettyTable(["Gems", "Quantity"]) for gem in self.__gemTokens: t.add_row([gem.title(), self.__gemTokens[gem]]) print(t) def checkVisitingNobles(self, player): visitingNobles = [] for noble in self.__nobles: cardCost = noble.getCardCost() playerCardTokens = player.getCardTokens() isVisting = True for cost in cardCost: if playerCardTokens[cost] < cardCost[cost]: isVisiting = False if isVisting: visitingNobles.append(noble) # if len(visitingNobles) == 1: # print("Noble has visited!") # elif len(visitingNobles) > 1: # print("Please select visiting noble") def takeGemToken(self, amount, gem): self.__gemTokens[gem] -= amount def takeTableCard(self, deckTier, cardNum): devCard = self.__table[deckTier - 1][cardNum - 1] self.__table[deckTier - 1][cardNum - 1] = "" return devCard def drawTableCard(self): # Replace Table Card if enough cards in same tier deck for tier, deck in enumerate(self.__table): for cardNum, card in enumerate(deck): if card == "": newCard = self.__decks[tier - 1].draw() self.__table[tier][cardNum] = newCard def initializeGame(self): prestigeWinCondition = 15 run = True while run: for player in self.__players: self.displayNobles() self.displayTable() self.displayGemTokens() player.displayGemTokens() player.actions(self) self.drawTableCard() self.checkVisitingNobles(player) player.incrementTurns() if player.getPrestige() >= prestigeWinCondition: print("Player #" + player.getNumber() + " has won!") run = False
#! /usr/bin/env python import sys import os from numpy import * from scipy import * import scikits.audiolab as audiolab import matplotlib.pylab as plt project_path = sys.argv[1] # where the audio files are recording_number = int(sys.argv[2]) # e.g. 9, for #09 pixclock_prefix = "PixClock " velocity_threshold = 0.025 positive_transitions = [] negative_transitions = [] def reduce_runs(l): last = -2 out = [] for i in l: if i != last + 1: out.append(i) last = i return out for c in range(0,4): filepath = os.path.join(project_path, "%s%d#%.2d.wav" % (pixclock_prefix, c+1, recording_number)) print(filepath) (wav_data, rate, format) = audiolab.wavread(filepath) wav_velocity = diff(wav_data) smooth_wav_velocity = convolve(wav_velocity, ones((100))) plt.plot(smooth_wav_velocity[0:-1:100]) plt.show() print max(smooth_wav_velocity) print min(smooth_wav_velocity) positive_transitions.append(reduce_runs(where(smooth_wav_velocity > velocity_threshold)[0])) negative_transitions.append(reduce_runs(where(smooth_wav_velocity < -velocity_threshold)[0])) print("n items = %d" % (len(positive_transitions[-1]))) plt.figure() plt.hold(True) print(positive_transitions) for c in range(0,len(positive_transitions)): for t in positive_transitions[c]: print("%d,%d +" % (c,t)) plt.plot(c, t, '+') for t in negative_transitions[c]: plt.plot(c, t, 'o') print positive_transitions plt.show()
def calcWei(Ns,Nf,Dur): # calculate the weight matrix of the nodes in the directed graph using the # information extracted from the file n = 28 # define the number of nodes in the graph wei = np.zeros((n,n),dtype=float) # initialise the weight matrix for i in range(len(Dur)): # allocate the weights to their corresponding position in the weight matrix wei[int(Ns[i]),int(Nf[i])] = Dur[i] return wei
import torch import csv from Data_Loader import * from model import ModelManager if __name__ == '__main__': model = ModelManager() model.load_state_dict(torch.load("model_param/parameter_1.pkl",map_location='cpu')) test_loader = DataProcess() model.eval() f = open('predict_1.csv', 'w', encoding='utf-8') csv_writer = csv.writer(f) num = 1 for i, data in enumerate(test_loader): x, _, mask = data x = x.long() if torch.cuda.is_available(): x = x.cuda() mask = mask.cuda() output = model(x, mask) # output [bs, 3] values, index = output.max(dim=1) predict = index.view(-1, 1) for t in predict: csv_writer.writerow([num, t.item()]) num += 1 print("读取第"+str(num)+"条数据")
#!/usr/bin/env python # -*- coding: utf-8 -*- ''' STEL Sistemas de Telecomunicações 2016/17 2S Simulation of a Poisson call arrival process Grupo: ''' import csv import numpy as np import matplotlib.mlab as mlab import matplotlib.pyplot as plt import itertools # Data time_scale = [] value = [] poissonX = [] poissonY = [] # Time Scale - 1/(10*LAMBDA) = 0.0125 LAMBDA = 8 calls = None # Open file and append values with open('simulation_out.csv', 'r') as csvfile: data = csv.reader(csvfile, delimiter = ',') data_filter = itertools.ifilter(lambda row: not row[0].startswith('#'), data) for row in data_filter: time_scale.append(float(row[0])) value.append(int(row[1])) with open('simulation_out.csv', 'r') as csvfile: data = csv.reader(csvfile, delimiter = ',') data_filter = itertools.ifilter(lambda row: row[0].startswith('# Totalcalls'), data) for row in data_filter: calls = (''.join(filter(str.isdigit, row[0]))) # Printing values to be ploted for reference print "Total number of calls: ", calls print "Time scale array: ", time_scale print "Total calls per interval: ", value poissonX = ([k*0.0125+0.0125/2 for k in range(0,80)]) poissonY = (0.0125*LAMBDA*np.exp(-LAMBDA*np.asarray(poissonX))) #print len(poissonX) #print len(poissonY) value_norm = (np.array(value))/float(calls) #print (value_norm) print "Normalized values: ", value_norm # Plotting histogram fig = plt.figure(num='Simulation of a Poisson call arrival process', figsize=(12, 10), dpi=80, facecolor='w', edgecolor='k') # Plotting 1 subplot ax1 = plt.subplot(2,1,1) ax1.title.set_text('Histogram of the interval between the arrival of consecutive calls') ax1.set_xlabel('Interval between the arrival of consecutive ccalls') ax1.set_ylabel('Total number of calls') plt.xticks(time_scale) plt.setp(plt.xticks()[1], rotation=30, ha='right') plt.ticklabel_format(style='sci', axis='y', scilimits=(0,0)) plt.bar(time_scale, value, width=0.0125, color='red', alpha=0.80, align='edge', edgecolor='k', label='Histogram of the interval between the arrival of consecutive calls') plt.plot(np.array(time_scale)+(0.0125/2), value, 'b--', linewidth = 2, alpha=0.50, label='Histogram exponencial plot values') plt.xlim([0,0.5]) plt.legend() plt.tight_layout() # Plotting 2 subplot ax2 = plt.subplot(2,1,2) ax2.title.set_text('Histogram of the interval between the arrival of consecutive calls normalized') ax2.set_xlabel('Interval between the arrival of consecutive calls') ax2.set_ylabel('Number of calls normalized') plt.xticks(time_scale) plt.setp(plt.xticks()[1], rotation=30, ha='right') plt.bar(time_scale, value_norm, width=0.0125, color='red', alpha=0.80, align='edge', edgecolor='k' , label='Histogram of the interval between the arrival of consecutive calls normalized') plt.plot(np.array(time_scale)+(0.0125/2), value_norm, 'b--', linewidth = 2, alpha=0.50, label='Histogram exponencial plot values') plt.plot(poissonX, poissonY, 'g-' , linewidth = 2, alpha=0.50, label='Poisson exponencial theoretically predicted values') plt.xlim([0,0.5]) plt.legend() plt.tight_layout() plt.show() csvfile.close()
import datetime from region import Region from track import Track from log import log class ObjectTracker: ttl = datetime.timedelta(seconds=2) def __init__(self): self.tracks = [] def process(self, region_proposals): birthed, promoted, reaped = [], [], [] region_proposals = Region.merge_regions(region_proposals) for region in region_proposals: if not region.is_car(): continue # associate with existing track for track in self.tracks: if track.matches(region): track.update(region) continue birthed.append(Track(region)) # existing tracks are either promoted or reaped for track in self.tracks: if track.age() > ObjectTracker.ttl: reaped.append(track) else: promoted.append(track.promote()) log.debug(f'birthed={len(birthed)} promoted={len(promoted)} reaped={len(reaped)}') self.tracks = birthed + promoted # return the reaped tracks so they can be saved return reaped
from flask import request from flask_restplus import Namespace, Resource, fields api_operator = Namespace('operator', description='Requests to operator model.') operator_fields = api_operator.model('CReate operator payload.', { "username": fields.String, "email": fields.String, "password": fields.String, }) @api_operator.route("/") class Operator(Resource): @api_operator.doc(body=operator_fields) def post(self): """Create operator user. """ from app.controllers.operator_controller import OperatorController post_data = request.get_json() return OperatorController.create_operator_user(post_data) @api_operator.route("/<operator_id>") class OperatorId(Resource): @api_operator.doc(params={ 'operator_id': 'An operator id.',}) def get(self, operator_id): """Get operator by id. """ from app.controllers.operator_controller import OperatorController return OperatorController.get_operator_by_id(operator_id)
import glob sensor_list = [] excluded_files = [ "__init__", "example", "cansat_sensor" ] # Get all sensors in the Sensors directory and import them for sensorFile in glob.glob("*.py"): # Remove the .py from the sensorFile sensorFile = sensorFile[:sensorFile.find(".py")] # Check if it is in the list of excluded files if sensorFile in excluded_files: continue # If not, import it sensor_list.append(__import__(sensorFile))
import chainer import onnx import pytest import onnx_chainer def pytest_addoption(parser): parser.addoption( '--value-check-runtime', dest='value-check-runtime', default='onnxruntime', choices=['skip', 'onnxruntime', 'mxnet'], help='select test runtime') parser.addoption( '--opset-versions', dest='opset-versions', default=None, help='select opset versions, select from "min", "latest", ' 'or a list of numbers like "9,10"') @pytest.fixture(scope='function') def disable_experimental_warning(): org_config = chainer.disable_experimental_feature_warning chainer.disable_experimental_feature_warning = True try: yield finally: chainer.disable_experimental_feature_warning = org_config @pytest.fixture(scope='function') def check_model_expect(request): selected_runtime = request.config.getoption('value-check-runtime') if selected_runtime == 'onnxruntime': from onnx_chainer.testing.test_onnxruntime import check_model_expect # NOQA _checker = check_model_expect elif selected_runtime == 'mxnet': from onnx_chainer.testing.test_mxnet import check_model_expect _checker = check_model_expect else: def empty_func(*args, **kwargs): pass _checker = empty_func return _checker @pytest.fixture(scope='function') def target_opsets(request): opsets = request.config.getoption('opset-versions') min_version = onnx_chainer.MINIMUM_OPSET_VERSION max_version = min( onnx.defs.onnx_opset_version(), onnx_chainer.MAXIMUM_OPSET_VERSION) if opsets is None: return list(range(min_version, max_version + 1)) elif opsets == 'min': return [min_version] elif opsets == 'latest': return [max_version] else: try: versions = [int(i) for i in opsets.split(',')] except ValueError: raise ValueError('cannot convert {} to versions list'.format( opsets)) return versions
month = int(input()) if month == 12 or month < 3: print('winter') elif month < 6: print('spring') elif month < 9: print('summer') else: print('fall')
import torch import os import json import random import numpy as np import argparse from datetime import datetime from tqdm import tqdm from torch.nn import DataParallel from itertools import islice, takewhile, repeat from transformers import EncoderDecoderModel, BertTokenizerFast, BertModel from dataset import TextDataset def main(): parser = argparse.ArgumentParser() parser.add_argument('--device', default='0,1,2,3', type=str, required=False, help='设置使用哪些显卡') parser.add_argument('--model_path', default='model/epoch_0/model.pth', type=str, required=False, help='模型位置') args = parser.parse_args() print('args:\n' + args.__repr__()) device = args.device model_path = args.model_path # device os.environ["CUDA_VISIBLE_DEVICES"] = args.device # 此处设置程序使用哪些显卡 device = 'cuda' if torch.cuda.is_available() else 'cpu' print('using device:', device) # model model = EncoderDecoderModel.from_encoder_decoder_pretrained("bert-base-multilingual-cased", "bert-base-multilingual-cased") model.load_state_dict(torch.load(model_path)) model.eval() # dataset tokenizer = BertTokenizerFast.from_pretrained("bert-base-multilingual-cased") # 打印参数量 num_parameters = 0 parameters = model.parameters() for parameter in parameters: num_parameters += parameter.numel() print('number of parameters: {}'.format(num_parameters)) while True: question = input('请输入问题:') ids = tokenizer.encode(question) input_ids = torch.tensor([ids], dtype=torch.long) generated = model.generate(input_ids, decoder_start_token_id=model.config.decoder.pad_token_id) answer = tokenizer.decode(generated[0,:]) print(answer) if __name__ == "__main__": main()
# -*- coding: utf-8 -*- ''' Obtener justificaciones de un usuario @author Ivan @example python3 getJustificationsStockByUser.py userId justificationId date @example python3 getJustificationsStockByUser.py e43e5ded-e271-4422-8e85-9f1bc0a61235 fa64fdbd-31b0-42ab-af83-818b3cbecf46 01/05/2015 ''' import sys sys.path.insert(0, '../../../python') import inject import logging import asyncio import datetime from asyncio import coroutine from autobahn.asyncio.wamp import ApplicationSession from model.config import Config ###### configuracion ##### logging.getLogger().setLevel(logging.DEBUG) def config_injector(binder): binder.bind(Config, Config('server-config.cfg')) inject.configure(config_injector) config = inject.instance(Config) ###### parametros ##### userId = sys.argv[1] justificationId = sys.argv[2] dateParam = sys.argv[3] class WampMain(ApplicationSession): def __init__(self, config=None): logging.debug('instanciando') ApplicationSession.__init__(self, config) self.serverConfig = inject.instance(Config) @coroutine def onJoin(self, details): logging.debug('********** getJustificationsStockByUser **********') date = datetime.datetime.strptime(dateParam, "%d/%m/%Y %H:%M:%S") justificationsStock = yield from self.call('assistance.justifications.getJustificationsStockByUser', 1, userId, justificationId, date, None) print(justificationsStock) sys.exit() if __name__ == '__main__': from autobahn.asyncio.wamp import ApplicationRunner from autobahn.wamp.serializer import JsonSerializer url = config.configs['server_url'] realm = config.configs['server_realm'] debug = config.configs['server_debug'] json = JsonSerializer() runner = ApplicationRunner(url=url, realm=realm, debug=debug, debug_wamp=debug, debug_app=debug, serializers=[json]) runner.run(WampMain)
# Author: ambiguoustexture # Date: 2020-03-11 import pickle import numpy as np from scipy import io from similarity_cosine import sim_cos file_context_matrix_X_PC = './context_matrix_X_PC' file_t_index_dict = './t_index_dict' with open(file_t_index_dict, 'rb') as t_index_dict: t_index_dict = pickle.load(t_index_dict) context_matrix_X_PC = io.loadmat(file_context_matrix_X_PC)['context_matrix_X_PC'] word_England = context_matrix_X_PC[t_index_dict['England']] words_similarities = [sim_cos(word_England, context_matrix_X_PC[i]) for i in range(len(t_index_dict))] words_similarities_sorted = np.argsort(words_similarities) words = list(t_index_dict.keys()) for index in words_similarities_sorted[-2:-12:-1]: print(words[index].ljust(12, ' '), words_similarities[index])
import requests import logging import binascii headers = { 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/43.0.2357.81 Safari/537.36', } def download(url, binary=False): logging.debug('download: %s', url) response = requests.get(url, headers=headers) if response.status_code == requests.codes.ok: if binary: # data = binascii.unhexlify(data) data = response.content else: response.encoding = 'utf8' data = response.text logging.debug('content: %s', data) logging.debug('length: %.2f KB', len(data) / 1000.0) else: raise Exception() return data
num_of_list = int(input("Enter the length of list-:")) number_perm = [] for num in range(num_of_list): list_num = int(input("Enter the number in the list-:")) number_perm.append(list_num) def permutation(number_perm): if len(number_perm) == 0: return [] if len(number_perm) == 1: return [number_perm] next_list = [] for i in range(len(number_perm)): m = number_perm[i] remlist = number_perm[:i] + number_perm[i+1:] for p in permutation(remlist): next_list.append([m] + p) return next_list data = number_perm for p in permutation(data): print(p)
import os import sys import zipfile def unzip(filename: str): try: file = zipfile.ZipFile(filename) dirname = filename.replace('.zip', '') # 如果存在与压缩包同名文件夹 提示信息并跳过 if os.path.exists(dirname): print(f'{filename} dir has already existed') return else: # 创建文件夹,并解压 os.mkdir(dirname) file.extractall(dirname) file.close() # 递归修复编码 rename(dirname) except: print(f'{filename} unzip fail') def rename(pwd: str, filename=''): """压缩包内部文件有中文名, 解压后出现乱码,进行恢复""" path = f'{pwd}/{filename}' if os.path.isdir(path): for i in os.scandir(path): rename(path, i.name) newname = filename.encode('cp437').decode('gbk') os.rename(path, f'{pwd}/{newname}') def main(): """如果指定文件,则解压目标文件,否则解压当前目录下所有文件""" if len(sys.argv) != 1: i: str for i in sys.argv: if i.endswith('.zip') and os.path.isfile(i): unzip(i) else: for file in os.scandir(os.getcwd()): if file.name.endswith('.zip') and file.is_file(): unzip(file.name) def get_filelist(dir): Filelist = [] for home, dirs, files in os.walk(dir): for filename in files: # 文件名列表,包含完整路径 Filelist.append(os.path.join(home, filename)) # # 文件名列表,只包含文件名 # Filelist.append( filename) return Filelist if __name__ == '__main__': Filelist = get_filelist('D:\\chengxu\\SoftwareEngineering\\probabilityTheory2\\simpleFirstCode') print(len(Filelist)) for file in Filelist: print(file) unzip(file)
# coding:utf-8 # From 180103 # add function check_lighten() import sys from datetime import datetime import socket import json sys.path.append('Users/better/PycharmProjects/GUI_Qt5/Intersection_Ex_2') import rec_funcs import copy import new_Rect class IM(): def __init__(self): # preparation as a server self.server_address = ('localhost', 6792) self.max_size = 4096 self.server = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) self.server.bind(self.server_address) self.STOP_CHAT = True # load vehicle info self.f = open('IM_00.json', 'r') self.sendData = json.load(self.f) self.f.close() # Initiate intersection grid self.grid = {} self.intersec_grid = [] self.t_ahead = 35 for i in range(600, 660, 10): for j in range(600, 660, 10): self.grid[(i, j)] = True # whole time step that IM will predict in current time_step for i in range(self.t_ahead + 1): self.intersec_grid.append(copy.deepcopy(self.grid)) # Initiate veh rotating angle self.veh_num = 76 self.r = [] for i in range(self.veh_num): self.r.append(0) # Initiate bezier curve parameter self.beze_t = [] self.up_left_x = [] self.up_left_y = [] self.down_left_x = [] self.down_left_y = [] self.up_right_x = [] self.up_right_y = [] self.down_right_x = [] self.down_right_y = [] for i in range(self.veh_num): self.beze_t.append(2) self.up_left_x.append(0) self.up_left_y.append(0) self.down_left_x.append(0) self.down_left_y.append(0) self.up_right_x.append(0) self.up_right_y.append(0) self.down_right_x.append(0) self.down_right_y.append(0) # Initiate time step self.time_step = 0 def sendResult(self): while self.STOP_CHAT: self.check = 0 print('starting the server at', datetime.now()) print('waiting for a client to call.') data, client = self.server.recvfrom(self.max_size) data = data.decode('utf-8') recData = json.loads(data) # print(recData) veh_id = recData["Veh_id"] current = tuple(recData["current_position"]) origin = tuple(recData["origin_4"]) destination = tuple(recData["destination_4"]) speed = recData["speed"] current_time = recData["time_step"] pattern = recData["pattern"] if pattern == 11: if self.light_veh_pattern11(veh_id, current, origin, destination, speed, current_time): self.sendData[recData["Veh_id"]]["result"] = 1 else: self.sendData[recData["Veh_id"]]["result"] = 0 elif pattern == 12: if self.light_veh_pattern12(veh_id, current, origin, destination, speed, current_time): self.sendData[recData["Veh_id"]]["result"] = 1 else: self.sendData[recData["Veh_id"]]["result"] = 0 elif pattern == 13: if self.light_veh_pattern13(veh_id, current, origin, destination, speed, current_time): self.sendData[recData["Veh_id"]]["result"] = 1 else: self.sendData[recData["Veh_id"]]["result"] = 0 elif pattern == 14: if self.light_veh_pattern14(veh_id, current, origin, destination, speed, current_time): self.sendData[recData["Veh_id"]]["result"] = 1 else: self.sendData[recData["Veh_id"]]["result"] = 0 elif pattern == 21: if self.light_veh_pattern21(veh_id, current, origin, destination, speed, current_time): self.sendData[recData["Veh_id"]]["result"] = 1 else: self.sendData[recData["Veh_id"]]["result"] = 0 elif pattern == 22: if self.light_veh_pattern22(veh_id, current, origin, destination, speed, current_time): self.sendData[recData["Veh_id"]]["result"] = 1 else: self.sendData[recData["Veh_id"]]["result"] = 0 elif pattern == 23: if self.light_veh_pattern23(veh_id, current, origin, destination, speed, current_time): self.sendData[recData["Veh_id"]]["result"] = 1 else: self.sendData[recData["Veh_id"]]["result"] = 0 elif pattern == 24: if self.light_veh_pattern24(veh_id, current, origin, destination, speed, current_time): self.sendData[recData["Veh_id"]]["result"] = 1 else: self.sendData[recData["Veh_id"]]["result"] = 0 elif pattern == 31: if self.light_veh_pattern31(veh_id, current, origin, destination, speed, current_time): self.sendData[recData["Veh_id"]]["result"] = 1 else: self.sendData[recData["Veh_id"]]["result"] = 0 elif pattern == 32: if self.light_veh_pattern32(veh_id, current, origin, destination, speed, current_time): self.sendData[recData["Veh_id"]]["result"] = 1 else: self.sendData[recData["Veh_id"]]["result"] = 0 elif pattern == 33: if self.light_veh_pattern33(veh_id, current, origin, destination, speed, current_time): self.sendData[recData["Veh_id"]]["result"] = 1 else: self.sendData[recData["Veh_id"]]["result"] = 0 else: if self.light_veh_pattern34(veh_id, current, origin, destination, speed, current_time): self.sendData[recData["Veh_id"]]["result"] = 1 else: self.sendData[recData["Veh_id"]]["result"] = 0 # Send Json mes = bytes(json.dumps(self.sendData[recData["Veh_id"]]), encoding='utf-8') self.server.sendto(mes, client) self.server.close() # function to Initiate intersection grid def init_intersec_grid(self, t_ahead): for k in range(t_ahead): for i in range(600, 660, 10): for j in range(600, 660, 10): self.intersec_grid[k][(i, j)] = True # function to update intersection grid def update_intersec_grid(self, current_time, current_time_step, veh_num): sa = current_time - current_time_step self.time_step = current_time for i in range(sa): self.intersec_grid.append(copy.deepcopy(self.grid)) del self.intersec_grid[0] self.r[veh_num] = 0 # check whether grid has already been lighten up def collision(self, veh_num, x, y, time): if (x // 10 * 10, y // 10 * 10) in self.intersec_grid[time]: if self.intersec_grid[time][(x // 10 * 10, y // 10 * 10)] == False: self.beze_t[veh_num] = 2 return False else: return True else: return True def check_lighten(self, veh_num, up_left_x, up_left_y, up_right_x, up_right_y, down_left_x, down_left_y, down_right_x, down_right_y, time): # Up left if not self.collision(veh_num, up_left_x, up_left_y, time): print("upleft, pattern2", veh_num) return False # Up right if not self.collision(veh_num, up_right_x, up_right_y, time): print("upright, pattern2", veh_num) return False # Down left if not self.collision(veh_num, down_left_x, down_left_y, time): print("downleft, pattern2", veh_num) return False # Down right if ((down_right_x) // 10 * 10, (down_right_y) // 10 * 10) in \ self.intersec_grid[time]: if self.intersec_grid[time][(down_right_x // 10 * 10, down_right_y // 10 * 10)] == False: print("downright, pattern2", veh_num) self.beze_t[veh_num] = 2 return False # lighten up all four points together else: if (up_left_x // 10 * 10, up_left_y // 10 * 10) in self.intersec_grid[time]: self.intersec_grid[time][ (up_left_x // 10 * 10, up_left_y // 10 * 10)] = False if (up_right_x // 10 * 10, up_right_y // 10 * 10) in self.intersec_grid[ time]: self.intersec_grid[time][ (up_right_x // 10 * 10, up_right_y // 10 * 10)] = False if (down_left_x // 10 * 10, down_left_y // 10 * 10) in self.intersec_grid[ time]: self.intersec_grid[time][ (down_left_x // 10 * 10, down_left_y // 10 * 10)] = False if (down_right_x // 10 * 10, down_right_y // 10 * 10) in self.intersec_grid[ time]: self.intersec_grid[time][( down_right_x // 10 * 10, down_right_y // 10 * 10)] = False # lighten up all three points together else: if (up_left_x // 10 * 10, up_left_y // 10 * 10) in self.intersec_grid[ time]: self.intersec_grid[time][ (up_left_x // 10 * 10, up_left_y // 10 * 10)] = False if (up_right_x // 10 * 10, up_right_y // 10 * 10) in \ self.intersec_grid[time]: self.intersec_grid[time][ (up_right_x // 10 * 10, up_right_y // 10 * 10)] = False if (down_left_x // 10 * 10, down_left_y // 10 * 10) in \ self.intersec_grid[time]: self.intersec_grid[time][ (down_left_x // 10 * 10, down_left_y // 10 * 10)] = False # situation that middle grid exists # x coordinate is the reason if abs(self.up_left_x[veh_num] - self.up_right_x[veh_num]) > 10: if ((self.up_left_x[veh_num] + 10) // 10 * 10, self.up_left_y[veh_num] // 10 * 10) in \ self.intersec_grid[time]: self.intersec_grid[time][ ((self.up_left_x[veh_num] + 10) // 10 * 10, self.up_left_y[veh_num] // 10 * 10)] = False if ((self.up_left_x[veh_num] + 10) // 10 * 10, self.down_left_y[veh_num] // 10 * 10) in \ self.intersec_grid[time]: self.intersec_grid[time][ ((self.up_left_x[veh_num] + 10) // 10 * 10,self.down_left_y[veh_num] // 10 * 10)] = False # y coordinate is the reason if abs(self.up_left_y[veh_num] - self.down_left_y[veh_num]) > 10: if (self.up_left_x[veh_num] // 10 * 10, (self.up_left_y[veh_num] + 10) // 10 * 10) in \ self.intersec_grid[time]: self.intersec_grid[time][ (self.up_left_x[veh_num] // 10 * 10, (self.up_left_y[veh_num] + 10) // 10 * 10)] = False if (self.up_right_x[veh_num] // 10 * 10, (self.up_left_y[veh_num] + 10) // 10 * 10) in \ self.intersec_grid[time]: self.intersec_grid[time][ (self.up_right_x[veh_num] // 10 * 10, (self.up_left_y[veh_num] + 10) // 10 * 10)] = False return True # vehicles travel from N_1 to W_6 # origin and destination is a pattern of (x,y) def light_veh_pattern11(self, veh_num, current, origin, destination, speed, current_time): new_position = current time = 0 # To light up grid(270, 270) check_first = False # Initiate intersection grid if self.time_step == 0: self.init_intersec_grid(self.t_ahead) if current_time > self.time_step: self.update_intersec_grid(current_time, self.time_step, veh_num) print('Pattern11') # Before veh get out of the intersection while new_position[1] < destination[1]: # Check if all parts of veh have been in intersection if new_position[1] == 594: if not self.intersec_grid[time][(640, 600)]: print('firstgrid') return False else: new_position = (origin[0], origin[1]) check_first = True # print("check p11 current_time", current_time) # print('time', time) # print(self.beze_t[veh_num]) # print('new_position', new_position) # print(self.up_left_x[veh_num], self.up_left_y[veh_num]) # print(self.up_right_x[veh_num], self.up_right_y[veh_num]) # print(self.down_left_x[veh_num], self.down_left_y[veh_num]) # print(self.down_right_x[veh_num], self.down_right_y[veh_num]) # print(self.intersec_grid[time]) time += 1 else: # Calculate trajectory by using Bezier Curve x = pow(1 - (self.beze_t[veh_num] / 50), 2) * origin[0] + 2 * (self.beze_t[veh_num] / 50) * ( 1 - self.beze_t[veh_num] / 50) * origin[0] + pow( self.beze_t[veh_num] / 50, 2) * destination[0] y = pow(1 - (self.beze_t[veh_num] / 50), 2) * origin[1] + 2 * (self.beze_t[veh_num] / 50) * ( 1 - self.beze_t[veh_num] / 50) * destination[1] + pow( self.beze_t[veh_num] / 50, 2) * destination[1] new_position = (x, y) self.beze_t[veh_num] += 2 print(new_position[1]) print(origin[1]) print(-(new_position[1] - (origin[1] + speed)) / 50) # Calculate rotation angle if 15.0 < (-(origin[1] - (new_position[1] + speed)) / 50) * 90 <= 90.0: self.r[veh_num] = (-(origin[1] - (new_position[1] + speed)) / 50) * 90 elif (-(origin[1] - (new_position[1] + speed)) / 50) * 90 > 90: self.r[veh_num] = 90 else: self.r[veh_num] = 0 # Calculate the big Square's coordinate (self.up_left_x[veh_num], self.up_left_y[veh_num]) = new_Rect.new_t_rec(x, y, 0)[0] (self.down_left_x[veh_num], self.down_left_y[veh_num]) = new_Rect.new_t_rec(x, y, 0)[1] (self.up_right_x[veh_num], self.up_right_y[veh_num]) = new_Rect.new_t_rec(x, y, 0)[2] (self.down_right_x[veh_num], self.down_right_y[veh_num]) = new_Rect.new_t_rec(x, y, 0)[3] if not self.check_lighten(veh_num, self.up_left_x[veh_num], self.up_left_y[veh_num], self.up_right_x[veh_num], self.up_right_y[veh_num], self.down_left_x[veh_num], self.down_left_y[veh_num], self.down_right_x[veh_num], self.down_right_y[veh_num], time): return False if check_first: self.intersec_grid[time][(640, 600)] = False check_first = False # print("check p11 current_time", current_time) # print('time', time) # print(self.beze_t[veh_num]) # print('new_position', new_position, 'r', self.r[veh_num]) # print(self.up_left_x[veh_num], self.up_left_y[veh_num]) # print(self.up_right_x[veh_num], self.up_right_y[veh_num]) # print(self.down_left_x[veh_num], self.down_left_y[veh_num]) # print(self.down_right_x[veh_num], self.down_right_y[veh_num]) # print(self.intersec_grid[time]) time += 1 # Initiate beze_t self.beze_t[veh_num] = 2 return True def light_veh_pattern12(self, veh_num, current, origin, destination, speed, current_time): new_position = current time = 0 # To light up grid(270, 270) check_first = False # Initiate intersection grid if self.time_step == 0: self.init_intersec_grid(self.t_ahead) if current_time > self.time_step: self.update_intersec_grid(current_time, self.time_step, veh_num) print('Pattern12') # Before veh get out of the intersection while new_position[1] > destination[1]: # Check if all parts of veh have been in intersection if new_position[1] == 666: if not self.intersec_grid[time][(610, 650)]: print('firstgrid') return False else: new_position = (origin[0], origin[1]) check_first = True # print("check p12 current_time", current_time) # print('time', time) # print(self.beze_t[veh_num]) # print('new_position', new_position) # print(self.up_left_x[veh_num], self.up_left_y[veh_num]) # print(self.up_right_x[veh_num], self.up_right_y[veh_num]) # print(self.down_left_x[veh_num], self.down_left_y[veh_num]) # print(self.down_right_x[veh_num], self.down_right_y[veh_num]) # print(self.intersec_grid[time]) time += 1 else: # Calculate trajectory by using Bezier Curve x = pow(1 - (self.beze_t[veh_num] / 50), 2) * origin[0] + 2 * (self.beze_t[veh_num] / 50) * ( 1 - self.beze_t[veh_num] / 50) * origin[0] + pow( self.beze_t[veh_num] / 50, 2) * destination[0] y = pow(1 - (self.beze_t[veh_num] / 50), 2) * origin[1] + 2 * (self.beze_t[veh_num] / 50) * ( 1 - self.beze_t[veh_num] / 50) * destination[1] + pow( self.beze_t[veh_num] / 50, 2) * destination[1] new_position = (x, y) self.beze_t[veh_num] += 2 # Calculate rotation angle if 15.0 < ((origin[1] - (new_position[1] + speed)) / 50) * 90 <= 90.0: self.r[veh_num] = ((origin[1] - (new_position[1] + speed)) / 50) * 90 elif ((origin[1] - (new_position[1] + speed)) / 50) * 90 > 90: self.r[veh_num] = 90 else: self.r[veh_num] = 0 # Calculate the big Square's coordinate (self.up_left_x[veh_num], self.up_left_y[veh_num]) = new_Rect.new_v_rec(x, y, 0)[0] (self.down_left_x[veh_num], self.down_left_y[veh_num]) = new_Rect.new_v_rec(x, y, 0)[1] (self.up_right_x[veh_num], self.up_right_y[veh_num]) = new_Rect.new_v_rec(x, y, 0)[2] (self.down_right_x[veh_num], self.down_right_y[veh_num]) = new_Rect.new_v_rec(x, y, 0)[3] if not self.check_lighten(veh_num, self.up_left_x[veh_num], self.up_left_y[veh_num], self.up_right_x[veh_num], self.up_right_y[veh_num], self.down_left_x[veh_num], self.down_left_y[veh_num], self.down_right_x[veh_num], self.down_right_y[veh_num], time): return False if check_first: self.intersec_grid[time][(610, 650)] = False check_first = False # print("check p12 current_time", current_time) # print('time', time) # print(self.beze_t[veh_num]) # print('new_position', new_position, 'r', self.r[veh_num]) # print(self.up_left_x[veh_num], self.up_left_y[veh_num]) # print(self.up_right_x[veh_num], self.up_right_y[veh_num]) # print(self.down_left_x[veh_num], self.down_left_y[veh_num]) # print(self.down_right_x[veh_num], self.down_right_y[veh_num]) # print(self.intersec_grid[time]) time += 1 # Initiate beze_t self.beze_t[veh_num] = 2 return True # vehicles travel from W_1 to S_6 # origin and destination is a pattern of (x,y) def light_veh_pattern13(self, veh_num, current, origin, destination, speed, current_time): new_position = current time = 0 # To light up grid(270, 270) check_first = False # Initiate intersection grid if self.time_step == 0: self.init_intersec_grid(self.t_ahead) if current_time > self.time_step: self.update_intersec_grid(current_time, self.time_step, veh_num) print('Pattern13') # Before veh get out of the intersection while new_position[0] < destination[0]: # Check if all parts of veh have been in intersection if new_position[0] == 594: if not self.intersec_grid[time][(600, 610)]: print('firstgrid') return False else: new_position = (origin[0], origin[1]) check_first = True # print("check p13 current_time", current_time) # print('time', time) # print(self.beze_t[veh_num]) # print('new_position', new_position, 'r', self.r[veh_num]) # print(self.up_left_x[veh_num], self.up_left_y[veh_num]) # print(self.up_right_x[veh_num], self.up_right_y[veh_num]) # print(self.down_left_x[veh_num], self.down_left_y[veh_num]) # print(self.down_right_x[veh_num], self.down_right_y[veh_num]) # print(self.intersec_grid[time]) time += 1 else: # Calculate trajectory by using Bezier Curve x = pow(1 - (self.beze_t[veh_num] / 50), 2) * origin[0] + 2 * (self.beze_t[veh_num] / 50) * ( 1 - self.beze_t[veh_num] / 50) * destination[0] + pow( self.beze_t[veh_num] / 50, 2) * destination[0] y = pow(1 - (self.beze_t[veh_num] / 50), 2) * origin[1] + 2 * (self.beze_t[veh_num] / 50) * ( 1 - self.beze_t[veh_num] / 50) * origin[1] + pow( self.beze_t[veh_num] / 50, 2) * destination[1] new_position = (x, y) self.beze_t[veh_num] += 2 # Calculate rotation angle if 15.0 < (-(origin[0] - (new_position[0] + speed)) / 50) * 90 <= 90.0: self.r[veh_num] = (-(origin[0] - (new_position[0] + speed)) / 50) * 90 elif (-(origin[0] - (new_position[0] + speed)) / 50) * 90 > 90: self.r[veh_num] = 90 else: self.r[veh_num] = 0 # Calculate the big Square's coordinate (self.up_left_x[veh_num], self.up_left_y[veh_num]) = new_Rect.new_t_rec(x, y, 0)[0] (self.down_left_x[veh_num], self.down_left_y[veh_num]) = new_Rect.new_t_rec(x, y, 0)[1] (self.up_right_x[veh_num], self.up_right_y[veh_num]) = new_Rect.new_t_rec(x, y, 0)[2] (self.down_right_x[veh_num], self.down_right_y[veh_num]) = new_Rect.new_t_rec(x, y, 0)[3] if not self.check_lighten(veh_num, self.up_left_x[veh_num], self.up_left_y[veh_num], self.up_right_x[veh_num], self.up_right_y[veh_num], self.down_left_x[veh_num], self.down_left_y[veh_num], self.down_right_x[veh_num], self.down_right_y[veh_num], time): return False if check_first: self.intersec_grid[time][(600, 610)] = False check_first = False # print("check p13 current_time", current_time) # print('time', time) # print(self.beze_t[veh_num]) # print('new_position', new_position, 'r', self.r[veh_num]) # print(self.up_left_x[veh_num], self.up_left_y[veh_num]) # print(self.up_right_x[veh_num], self.up_right_y[veh_num]) # print(self.down_left_x[veh_num], self.down_left_y[veh_num]) # print(self.down_right_x[veh_num], self.down_right_y[veh_num]) # print(self.intersec_grid[time]) time += 1 # Initiate beze_t self.beze_t[veh_num] = 2 return True # vehicles travel from E_5 to N_2 # origin and destination is a pattern of (x,y) def light_veh_pattern14(self, veh_num, current, origin, destination, speed, current_time): new_position = current time = 0 # To light up grid(270, 270) check_first = False # Initiate intersection grid if self.time_step == 0: self.init_intersec_grid(self.t_ahead) if current_time > self.time_step: self.update_intersec_grid(current_time, self.time_step, veh_num) print('Pattern14') # Before veh get out of the intersection while new_position[0] > destination[0]: # Check if all parts of veh have been in intersection if new_position[0] == 666: if not self.intersec_grid[time][(650, 640)]: print('firstgrid') return False else: new_position = (origin[0], origin[1]) check_first = True # print("check p14 current_time", current_time) # print('time', time) # print(self.beze_t[veh_num]) # print('new_position', new_position) # print(self.up_left_x[veh_num], self.up_left_y[veh_num]) # print(self.up_right_x[veh_num], self.up_right_y[veh_num]) # print(self.down_left_x[veh_num], self.down_left_y[veh_num]) # print(self.down_right_x[veh_num], self.down_right_y[veh_num]) # print(self.intersec_grid[time]) time += 1 else: # Calculate trajectory by using Bezier Curve x = pow(1 - (self.beze_t[veh_num] / 50), 2) * origin[0] + 2 * (self.beze_t[veh_num] / 50) * ( 1 - self.beze_t[veh_num] / 50) * destination[0] + pow( self.beze_t[veh_num] / 50, 2) * destination[0] y = pow(1 - (self.beze_t[veh_num] / 50), 2) * origin[1] + 2 * (self.beze_t[veh_num] / 50) * ( 1 - self.beze_t[veh_num] / 50) * origin[1] + pow( self.beze_t[veh_num] / 50, 2) * destination[1] new_position = (x, y) self.beze_t[veh_num] += 2 # Calculate rotation angle if 15.0 < ((origin[0] - (new_position[0] + speed)) / 50) * 90 <= 90.0: self.r[veh_num] = ((origin[0] - (new_position[0] + speed)) / 50) * 90 elif ((origin[0] - (new_position[0] + speed)) / 50) * 90 > 90: self.r[veh_num] = 90 else: self.r[veh_num] = 0 # Calculate the big Square's coordinate (self.up_left_x[veh_num], self.up_left_y[veh_num]) = new_Rect.new_t_rec(x, y, 0)[0] (self.down_left_x[veh_num], self.down_left_y[veh_num]) = new_Rect.new_t_rec(x, y, 0)[1] (self.up_right_x[veh_num], self.up_right_y[veh_num]) = new_Rect.new_t_rec(x, y, 0)[2] (self.down_right_x[veh_num], self.down_right_y[veh_num]) = new_Rect.new_t_rec(x, y, 0)[3] if not self.check_lighten(veh_num, self.up_left_x[veh_num], self.up_left_y[veh_num], self.up_right_x[veh_num], self.up_right_y[veh_num], self.down_left_x[veh_num], self.down_left_y[veh_num], self.down_right_x[veh_num], self.down_right_y[veh_num], time): return False if check_first: self.intersec_grid[time][(650, 640)] = False check_first = False # print("check p14 current_time", current_time) # print('time', time) # print(self.beze_t[veh_num]) # print('new_position', new_position, 'r', self.r[veh_num]) # print(self.up_left_x[veh_num], self.up_left_y[veh_num]) # print(self.up_right_x[veh_num], self.up_right_y[veh_num]) # print(self.down_left_x[veh_num], self.down_left_y[veh_num]) # print(self.down_right_x[veh_num], self.down_right_y[veh_num]) # print(self.intersec_grid[time]) time += 1 # Initiate beze_t self.beze_t[veh_num] = 2 return True # vehicles travel from N_5 to S_5 # origin and destination is a pattern of (x,y) def light_veh_pattern21(self, veh_num, current, origin, destination, speed, current_time): new_position = current time = 0 # to light up grid(320, 300) check_first = False # Initiate intersection grid if self.time_step == 0: self.init_intersec_grid(self.t_ahead) if current_time > self.time_step: self.update_intersec_grid(current_time, self.time_step, veh_num) print('Pattern21') # Before veh get out of the intersection while new_position[1] < destination[1]: # Calculate trajectory by using Bezier Curve x = new_position[0] y = new_position[1] + speed new_position = (x, y) # Calculate the big Square's coordinate (self.up_left_x[veh_num], self.up_left_y[veh_num]) = new_Rect.new_v_rec(x, y, 0)[0] (self.down_left_x[veh_num], self.down_left_y[veh_num]) = new_Rect.new_v_rec(x, y, 0)[1] (self.up_right_x[veh_num], self.up_right_y[veh_num]) = new_Rect.new_v_rec(x, y, 0)[2] (self.down_right_x[veh_num], self.down_right_y[veh_num]) = new_Rect.new_v_rec(x, y, 0)[3] if not self.check_lighten(veh_num, self.up_left_x[veh_num], self.up_left_y[veh_num], self.up_right_x[veh_num], self.up_right_y[veh_num], self.down_left_x[veh_num], self.down_left_y[veh_num], self.down_right_x[veh_num], self.down_right_y[veh_num], time): return False print("check p21 current_time", current_time) # print(self.intersec_grid[time]) # print('time', time) # print('veh_num', veh_num) # print(self.beze_t) # print(self.beze_t[veh_num]) print('new_position', new_position) # print(self.intersec_grid[time]) time += 1 # Initiate beze_t self.beze_t[veh_num] = 2 return True def light_veh_pattern22(self, veh_num, current, origin, destination, speed, current_time): new_position = current time = 0 # to light up grid(320, 300) check_first = False # Initiate intersection grid if self.time_step == 0: self.init_intersec_grid(self.t_ahead) if current_time > self.time_step: self.update_intersec_grid(current_time, self.time_step, veh_num) print('Pattern22') # Before veh get out of the intersection while new_position[1] > destination[1]: # Calculate trajectory by using Bezier Curve x = new_position[0] y = new_position[1] + speed new_position = (x, y) # Calculate the big Square's coordinate (self.up_left_x[veh_num], self.up_left_y[veh_num]) = new_Rect.new_v_rec(x, y, 0)[0] (self.down_left_x[veh_num], self.down_left_y[veh_num]) = new_Rect.new_v_rec(x, y, 0)[1] (self.up_right_x[veh_num], self.up_right_y[veh_num]) = new_Rect.new_v_rec(x, y, 0)[2] (self.down_right_x[veh_num], self.down_right_y[veh_num]) = new_Rect.new_v_rec(x, y, 0)[3] if not self.check_lighten(veh_num, self.up_left_x[veh_num], self.up_left_y[veh_num], self.up_right_x[veh_num], self.up_right_y[veh_num], self.down_left_x[veh_num], self.down_left_y[veh_num], self.down_right_x[veh_num], self.down_right_y[veh_num], time): return False # print("check p22 current_time", current_time) # print(self.intersec_grid[time]) # print('time', time) # print('veh_num', veh_num) # print(self.beze_t) # print(self.beze_t[veh_num]) # print('new_position', new_position) # print(self.intersec_grid[time]) time += 1 # Initiate beze_t self.beze_t[veh_num] = 2 return True def light_veh_pattern23(self, veh_num, current, origin, destination, speed, current_time): new_position = current time = 0 # to light up grid(320, 300) check_first = False # Initiate intersection grid if self.time_step == 0: self.init_intersec_grid(self.t_ahead) if current_time > self.time_step: self.update_intersec_grid(current_time, self.time_step, veh_num) print('Pattern22') # Before veh get out of the intersection while new_position[0] < destination[0]: # Calculate trajectory by using Bezier Curve x = new_position[0] + speed y = new_position[1] new_position = (x, y) # Calculate the big Square's coordinate (self.up_left_x[veh_num], self.up_left_y[veh_num]) = new_Rect.new_v_rec(x, y, 0)[0] (self.down_left_x[veh_num], self.down_left_y[veh_num]) = new_Rect.new_v_rec(x, y, 0)[1] (self.up_right_x[veh_num], self.up_right_y[veh_num]) = new_Rect.new_v_rec(x, y, 0)[2] (self.down_right_x[veh_num], self.down_right_y[veh_num]) = new_Rect.new_v_rec(x, y, 0)[3] if not self.check_lighten(veh_num, self.up_left_x[veh_num], self.up_left_y[veh_num], self.up_right_x[veh_num], self.up_right_y[veh_num], self.down_left_x[veh_num], self.down_left_y[veh_num], self.down_right_x[veh_num], self.down_right_y[veh_num], time): return False # print("check p23 current_time", current_time) # print(self.intersec_grid[time]) # print('time', time) # print('veh_num', veh_num) # print(self.beze_t) # print(self.beze_t[veh_num]) # print('new_position', new_position) # print(self.intersec_grid[time]) time += 1 # Initiate beze_t self.beze_t[veh_num] = 2 return True def light_veh_pattern24(self, veh_num, current, origin, destination, speed, current_time): new_position = current time = 0 # to light up grid(320, 300) check_first = False # Initiate intersection grid if self.time_step == 0: self.init_intersec_grid(self.t_ahead) if current_time > self.time_step: self.update_intersec_grid(current_time, self.time_step, veh_num) print('Pattern22') # Before veh get out of the intersection while new_position[0] > destination[0]: # Calculate trajectory by using Bezier Curve x = new_position[0] + speed y = new_position[1] new_position = (x, y) # Calculate the big Square's coordinate (self.up_left_x[veh_num], self.up_left_y[veh_num]) = new_Rect.new_v_rec(x, y, 0)[0] (self.down_left_x[veh_num], self.down_left_y[veh_num]) = new_Rect.new_v_rec(x, y, 0)[1] (self.up_right_x[veh_num], self.up_right_y[veh_num]) = new_Rect.new_v_rec(x, y, 0)[2] (self.down_right_x[veh_num], self.down_right_y[veh_num]) = new_Rect.new_v_rec(x, y, 0)[3] if not self.check_lighten(veh_num, self.up_left_x[veh_num], self.up_left_y[veh_num], self.up_right_x[veh_num], self.up_right_y[veh_num], self.down_left_x[veh_num], self.down_left_y[veh_num], self.down_right_x[veh_num], self.down_right_y[veh_num], time): return False # print("check p24 current_time", current_time) # print(self.intersec_grid[time]) # print('time', time) # print('veh_num', veh_num) # print(self.beze_t) # print(self.beze_t[veh_num]) # print('new_position', new_position) # print(self.intersec_grid[time]) time += 1 # Initiate beze_t self.beze_t[veh_num] = 2 return True # vehicles travel from N_5 to E_2 # origin and destination is a pattern of (x,y) def light_veh_pattern31(self, veh_num, current, origin, destination, speed, current_time): new_position = current time = 0 # To light up grid(270, 270) check_first = False # Initiate intersection grid if self.time_step == 0: self.init_intersec_grid(self.t_ahead) if current_time > self.time_step: self.update_intersec_grid(current_time, self.time_step, veh_num) print('Pattern31') # Before veh get out of the intersection while new_position[1] < destination[1]: if new_position[1] == 594: if not self.intersec_grid[time][(640, 600)]: print('firstgrid') return False else: new_position = (origin[0], origin[1]) check_first = True # print("check p31 current_time", current_time) # print('time', time) # print(self.beze_t[veh_num]) # print('new_position', new_position) # print(self.up_left_x[veh_num], self.up_left_y[veh_num]) # print(self.up_right_x[veh_num], self.up_right_y[veh_num]) # print(self.down_left_x[veh_num], self.down_left_y[veh_num]) # print(self.down_right_x[veh_num], self.down_right_y[veh_num]) # print(self.intersec_grid[time]) time += 1 else: # All parts of veh have been in intersection # Calculate trajectory by using Bezier Curve x = pow(1 - (self.beze_t[veh_num] / 20), 2) * origin[0] + 2 * (self.beze_t[veh_num] / 20) * ( 1 - self.beze_t[veh_num] / 20) * origin[0] + pow( self.beze_t[veh_num] / 20, 2) * destination[0] y = pow(1 - (self.beze_t[veh_num] / 20), 2) * origin[1] + 2 * (self.beze_t[veh_num] / 20) * ( 1 - self.beze_t[veh_num] / 20) * destination[1] + pow( self.beze_t[veh_num] / 20, 2) * destination[1] new_position = (x, y) # Calculate rotation angle if 15.0 < (-(origin[1] - (new_position[1] + speed)) / 20) * 90 <= 90.0: self.r[veh_num] = -(-(origin[1] - (new_position[1] + speed)) / 20) * 90 elif (-(origin[1] - (new_position[1] + speed)) / 20) * 90 > 90: self.r[veh_num] = -90 else: self.r[veh_num] = 0 self.beze_t[veh_num] += 2 # Calculate the big Square's coordinate (self.up_left_x[veh_num], self.up_left_y[veh_num]) = new_Rect.new_v_rec(x, y, 0)[0] (self.down_left_x[veh_num], self.down_left_y[veh_num]) = new_Rect.new_v_rec(x, y, 0)[1] (self.up_right_x[veh_num], self.up_right_y[veh_num]) = new_Rect.new_v_rec(x, y, 0)[2] (self.down_right_x[veh_num], self.down_right_y[veh_num]) = new_Rect.new_v_rec(x, y, 0)[3] if not self.check_lighten(veh_num, self.up_left_x[veh_num], self.up_left_y[veh_num], self.up_right_x[veh_num], self.up_right_y[veh_num], self.down_left_x[veh_num], self.down_left_y[veh_num], self.down_right_x[veh_num], self.down_right_y[veh_num], time): return False if check_first: self.intersec_grid[time][(640, 600)] = False check_first = False # print("check p31 current_time", current_time) # print('time', time) # print(self.beze_t[veh_num]) # print('new_position', new_position, 'r:', self.r[veh_num]) # print(self.up_left_x[veh_num], self.up_left_y[veh_num]) # print(self.up_right_x[veh_num], self.up_right_y[veh_num]) # print(self.down_left_x[veh_num], self.down_left_y[veh_num]) # print(self.down_right_x[veh_num], self.down_right_y[veh_num]) # print(self.intersec_grid[time]) time += 1 # Initiate beze_t self.beze_t[veh_num] = 2 return True # vehicles travel from S_3 to W_4 # origin and destination is a pattern of (x,y) def light_veh_pattern32(self, veh_num, current, origin, destination, speed, current_time): new_position = current time = 0 # To light up grid(270, 270) check_first = False # Initiate intersection grid if self.time_step == 0: self.init_intersec_grid(self.t_ahead) if current_time > self.time_step: self.update_intersec_grid(current_time, self.time_step, veh_num) print('Pattern32') # Before veh get out of the intersection while new_position[1] > destination[1]: if new_position[1] == 666: if not self.intersec_grid[time][(610, 650)]: print('firstgrid') return False else: new_position = (origin[0], origin[1]) check_first = True # print("check p32 current_time", current_time) # print('time', time) # print(self.beze_t[veh_num]) # print('new_position', new_position) # print(self.up_left_x[veh_num], self.up_left_y[veh_num]) # print(self.up_right_x[veh_num], self.up_right_y[veh_num]) # print(self.down_left_x[veh_num], self.down_left_y[veh_num]) # print(self.down_right_x[veh_num], self.down_right_y[veh_num]) # print(self.intersec_grid[time]) time += 1 else: # All parts of veh have been in intersection # Calculate trajectory by using Bezier Curve x = pow(1 - (self.beze_t[veh_num] / 20), 2) * origin[0] + 2 * (self.beze_t[veh_num] / 20) * ( 1 - self.beze_t[veh_num] / 20) * origin[0] + pow( self.beze_t[veh_num] / 20, 2) * destination[0] y = pow(1 - (self.beze_t[veh_num] / 20), 2) * origin[1] + 2 * (self.beze_t[veh_num] / 20) * ( 1 - self.beze_t[veh_num] / 20) * destination[1] + pow( self.beze_t[veh_num] / 20, 2) * destination[1] new_position = (x, y) # Calculate rotation angle if 15.0 < ((origin[1] - (new_position[1] + speed)) / 20) * 90 <= 90.0: self.r[veh_num] = ((origin[1] - (new_position[1] + speed)) / 20) * 90 elif ((origin[1] - (new_position[1] + speed)) / 20) * 90 > 90: self.r[veh_num] = 90 else: self.r[veh_num] = 0 self.beze_t[veh_num] += 2 # Calculate the big Square's coordinate (self.up_left_x[veh_num], self.up_left_y[veh_num]) = new_Rect.new_v_rec(x, y, 0)[0] (self.down_left_x[veh_num], self.down_left_y[veh_num]) = new_Rect.new_v_rec(x, y, 0)[1] (self.up_right_x[veh_num], self.up_right_y[veh_num]) = new_Rect.new_v_rec(x, y, 0)[2] (self.down_right_x[veh_num], self.down_right_y[veh_num]) = new_Rect.new_v_rec(x, y, 0)[3] if not self.check_lighten(veh_num, self.up_left_x[veh_num], self.up_left_y[veh_num], self.up_right_x[veh_num], self.up_right_y[veh_num], self.down_left_x[veh_num], self.down_left_y[veh_num], self.down_right_x[veh_num], self.down_right_y[veh_num], time): return False if check_first: self.intersec_grid[time][(610, 650)] = False check_first = False # print("check p32 current_time", current_time) # print('time', time) # print(self.beze_t[veh_num]) # print('new_position', new_position, 'r:', self.r[veh_num]) # print(self.up_left_x[veh_num], self.up_left_y[veh_num]) # print(self.up_right_x[veh_num], self.up_right_y[veh_num]) # print(self.down_left_x[veh_num], self.down_left_y[veh_num]) # print(self.down_right_x[veh_num], self.down_right_y[veh_num]) # print(self.intersec_grid[time]) time += 1 # Initiate beze_t self.beze_t[veh_num] = 2 return True # vehicles travel from W_2 to N_2 # origin and destination is a pattern of (x,y) def light_veh_pattern33(self, veh_num, current, origin, destination, speed, current_time): new_position = current time = 0 # To light up grid(270, 270) check_first = False # Initiate intersection grid if self.time_step == 0: self.init_intersec_grid(self.t_ahead) if current_time > self.time_step: self.update_intersec_grid(current_time, self.time_step, veh_num) print('Pattern33') # Before veh get out of the intersection while new_position[0] < destination[0]: if new_position[0] == 594: if not self.intersec_grid[time][(600, 610)]: print('firstgrid') return False else: new_position = (origin[0], origin[1]) check_first = True # print("check p33 current_time", current_time) # print('time', time) # print(self.beze_t[veh_num]) # print('new_position', new_position) # print(self.up_left_x[veh_num], self.up_left_y[veh_num]) # print(self.up_right_x[veh_num], self.up_right_y[veh_num]) # print(self.down_left_x[veh_num], self.down_left_y[veh_num]) # print(self.down_right_x[veh_num], self.down_right_y[veh_num]) # print(self.intersec_grid[time]) time += 1 else: # All parts of veh have been in intersection # Calculate trajectory by using Bezier Curve x = pow(1 - (self.beze_t[veh_num] / 20), 2) * origin[0] + 2 * (self.beze_t[veh_num] / 20) * ( 1 - self.beze_t[veh_num] / 20) * destination[0] + pow( self.beze_t[veh_num] / 20, 2) * destination[0] y = pow(1 - (self.beze_t[veh_num] / 20), 2) * origin[1] + 2 * (self.beze_t[veh_num] / 20) * ( 1 - self.beze_t[veh_num] / 20) * origin[1] + pow( self.beze_t[veh_num] / 20, 2) * destination[1] new_position = (x, y) # Calculate rotation angle if 15.0 < -((origin[0] - (new_position[0] + speed)) / 20) * 90 <= 90.0: self.r[veh_num] = -(-((origin[0] - (new_position[0] + speed)) / 20)) * 90 elif -((origin[0] - (new_position[0] + speed)) / 20) * 90 > 90: self.r[veh_num] = -90 else: self.r[veh_num] = 0 self.beze_t[veh_num] += 2 # Calculate the big Square's coordinate (self.up_left_x[veh_num], self.up_left_y[veh_num]) = new_Rect.new_v_rec(x, y, 0)[0] (self.down_left_x[veh_num], self.down_left_y[veh_num]) = new_Rect.new_v_rec(x, y, 0)[1] (self.up_right_x[veh_num], self.up_right_y[veh_num]) = new_Rect.new_v_rec(x, y, 0)[2] (self.down_right_x[veh_num], self.down_right_y[veh_num]) = new_Rect.new_v_rec(x, y, 0)[3] if not self.check_lighten(veh_num, self.up_left_x[veh_num], self.up_left_y[veh_num], self.up_right_x[veh_num], self.up_right_y[veh_num], self.down_left_x[veh_num], self.down_left_y[veh_num], self.down_right_x[veh_num], self.down_right_y[veh_num], time): return False if check_first: self.intersec_grid[time][(600, 610)] = False check_first = False # print("check p33 current_time", current_time) # print('time', time) # print(self.beze_t[veh_num]) # print('new_position', new_position, 'r:', self.r[veh_num]) # print(self.up_left_x[veh_num], self.up_left_y[veh_num]) # print(self.up_right_x[veh_num], self.up_right_y[veh_num]) # print(self.down_left_x[veh_num], self.down_left_y[veh_num]) # print(self.down_right_x[veh_num], self.down_right_y[veh_num]) # print(self.intersec_grid[time]) time += 1 # Initiate beze_t self.beze_t[veh_num] = 2 return True # vehicles travel from E_5 to S_5 # origin and destination is a pattern of (x,y) def light_veh_pattern34(self, veh_num, current, origin, destination, speed, current_time): new_position = current time = 0 # To light up grid(270, 270) check_first = False # Initiate intersection grid if self.time_step == 0: self.init_intersec_grid(self.t_ahead) if current_time > self.time_step: self.update_intersec_grid(current_time, self.time_step, veh_num) print('Pattern34') # Before veh get out of the intersection while new_position[0] > destination[0]: if new_position[0] == 666: if not self.intersec_grid[time][(650, 640)]: print('firstgrid') return False else: new_position = (origin[0], origin[1]) check_first = True # print("check p34 current_time", current_time) # print('time', time) # print(self.beze_t[veh_num]) # print('new_position', new_position) # print(self.up_left_x[veh_num], self.up_left_y[veh_num]) # print(self.up_right_x[veh_num], self.up_right_y[veh_num]) # print(self.down_left_x[veh_num], self.down_left_y[veh_num]) # print(self.down_right_x[veh_num], self.down_right_y[veh_num]) # print(self.intersec_grid[time]) time += 1 else: # All parts of veh have been in intersection # Calculate trajectory by using Bezier Curve x = pow(1 - (self.beze_t[veh_num] / 20), 2) * origin[0] + 2 * (self.beze_t[veh_num] / 20) * ( 1 - self.beze_t[veh_num] / 20) * destination[0] + pow( self.beze_t[veh_num] / 20, 2) * destination[0] y = pow(1 - (self.beze_t[veh_num] / 20), 2) * origin[1] + 2 * (self.beze_t[veh_num] / 20) * ( 1 - self.beze_t[veh_num] / 20) * origin[1] + pow( self.beze_t[veh_num] / 20, 2) * destination[1] # Calculate rotation angle if ((origin[0] - (new_position[0] + speed)) / 20) * 90 > 15: self.r[veh_num] = -((origin[0] - (new_position[0] + speed)) / 20) * 90 elif ((origin[0] - (new_position[0] + speed)) / 20) * 90 > 90: self.r[veh_num] = -90 else: self.r[veh_num] = 0 self.beze_t[veh_num] += 2 new_position = (x, y) # Calculate the big Square's coordinate (self.up_left_x[veh_num], self.up_left_y[veh_num]) = new_Rect.new_v_rec(x, y, 0)[0] (self.down_left_x[veh_num], self.down_left_y[veh_num]) = new_Rect.new_v_rec(x, y, 0)[1] (self.up_right_x[veh_num], self.up_right_y[veh_num]) = new_Rect.new_v_rec(x, y, 0)[2] (self.down_right_x[veh_num], self.down_right_y[veh_num]) = new_Rect.new_v_rec(x, y, 0)[3] if not self.check_lighten(veh_num, self.up_left_x[veh_num], self.up_left_y[veh_num], self.up_right_x[veh_num], self.up_right_y[veh_num], self.down_left_x[veh_num], self.down_left_y[veh_num], self.down_right_x[veh_num], self.down_right_y[veh_num], time): return False if check_first: self.intersec_grid[time][(650, 640)] = False check_first = False # print("check p34 current_time", current_time) # print('time', time) # print(self.beze_t[veh_num]) # print('new_position', new_position, 'r', self.r[veh_num]) # print(self.up_left_x[veh_num], self.up_left_y[veh_num]) # print(self.up_right_x[veh_num], self.up_right_y[veh_num]) # print(self.down_left_x[veh_num], self.down_left_y[veh_num]) # print(self.down_right_x[veh_num], self.down_right_y[veh_num]) # print(self.intersec_grid[time]) time += 1 # Initiate beze_t self.beze_t[veh_num] = 2 return True if __name__ == '__main__': test = IM().sendResult() # IM.sendResult() # sys.exit(test.exec_())
from collections import OrderedDict from network.rnn_5 import CLSTM_cell # build model # in_channels=v[0], out_channels=v[1], kernel_size=v[2], stride=v[3], padding=v[4] convlstm_encoder_params = [ [ OrderedDict({'conv1_leaky_1': [2, 16, 3, 1, 1]}), OrderedDict({'conv2_leaky_1': [32, 32, 3, 2, 1]}), OrderedDict({'conv3_leaky_1': [64, 64, 3, 2, 1]}), ], [ CLSTM_cell(shape=(64,64), input_channels=16, filter_size=5, num_features=32), #When called goes to ConvRNN dir CLSTM_cell(shape=(32,32), input_channels=32, filter_size=5, num_features=64), CLSTM_cell(shape=(16,16), input_channels=64, filter_size=5, num_features=64) ] ] convlstm_decoder_params = [ [ OrderedDict({'deconv1_leaky_1': [64, 64, 4, 2, 1]}), OrderedDict({'deconv2_leaky_1': [64, 64, 4, 2, 1]}), OrderedDict({ 'conv3_leaky_1': [32, 16, 3, 1, 1], 'conv4_none_1': [16, 2, 1, 1, 0] }), ], [ CLSTM_cell(shape=(16,16), input_channels=64, filter_size=5, num_features=64), CLSTM_cell(shape=(32,32), input_channels=64, filter_size=5, num_features=64), CLSTM_cell(shape=(64,64), input_channels=64, filter_size=5, num_features=32), ] ]
import dash import dash_core_components as dcc import dash_html_components as html import plotly.graph_objs as go import pandas as pd import json app = dash.Dash() with open("contrCode.json") as f: country_codes = json.load(f) with open("dataToUse.json") as f: data = json.load(f) app.layout = html.Div([ html.Div([ dcc.Location(id='url', refresh=False), html.H1(id='country'), html.H3(id='total'), html.Div([ dcc.RadioItems( id='graph-type', options=[{'label': i, 'value': k} for k, i in enumerate(['Minimum', 'Average', 'Maximum'])], value=0, labelStyle={'display': 'inline-block'} ) ], style={'width': '48%', 'display': 'inline-block'}), ]), dcc.Graph(id='indicator-graphic'), dcc.Slider( id='days-slider', min=1, max=31, value=1, step=1, marks={str(year): str(year) for year in range(1, 32)} ) ]) app.css.append_css({"external_url": "https://codepen.io/chriddyp/pen/bWLwgP.css"}) @app.callback( dash.dependencies.Output('indicator-graphic', 'figure'), [dash.dependencies.Input('url', 'pathname'), dash.dependencies.Input('graph-type', 'value'), dash.dependencies.Input('days-slider', 'value')]) def update_graph(country, graph_type, days_slider): global data country_data = data[country.strip("/")] groups = list(country_data.keys()) values = [int(country_data[group][graph_type] * days_slider) for group in groups] return { 'data': [go.Pie( labels=groups, values=values, textinfo='value', hoverinfo='label+percent' )], 'layout': go.Layout( ) } @app.callback( dash.dependencies.Output('country', 'children'), [dash.dependencies.Input('url', 'pathname')]) def update_country(country): return country_codes[country.strip("/")] @app.callback( dash.dependencies.Output('total', 'children'), [dash.dependencies.Input('url', 'pathname'), dash.dependencies.Input('graph-type', 'value'), dash.dependencies.Input('days-slider', 'value')]) def update_total(country, graph_type, days_slider): global data country_data = data[country.strip("/")] groups = list(country_data.keys()) values = [int(country_data[group][graph_type] * days_slider) for group in groups] return "Total: {} RUB".format(sum(values)) if __name__ == '__main__': app.run_server()
# -*- coding: utf-8 -*- ############################################################################## # # Copyright (C) 2013-2015 Marcos Organizador de Negocios SRL http://marcos.do # Write by Eneldo Serrata (eneldo@marcos.do) # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## from ..tools import is_ncf from openerp import fields, models, api import openerp.addons.decimal_precision as dp from openerp import netsvc class cjc_invoice_wizard(models.TransientModel): _name = "cjc.invoice.wizard" @api.model def _get_reference_type(self): return [('none', u'Referencia libre / Nº Fact. Proveedor'), ('01', '01 - Gastos de personal'), ('02', '02 - Gastos por trabajo, suministros y servicios'), ('03', '03 - Arrendamientos'), ('04', '04 - Gastos de Activos Fijos'), ('05', u'05 - Gastos de Representación'), ('06', '06 - Otras Deducciones Admitidas'), ('07', '07 - Gastos Financieros'), ('08', '08 - Gastos Extraordinarios'), ('09', '09 - Compras y Gastos que forman parte del Costo de Venta'), ('10', '10 - Adquisiciones de Activos'), ('11', '11 - Gastos de Seguro') ] @api.model def _get_journals(self): if self.env.context.get("active_model", False): active_model = self.pool.get("account.bank.statement").browse(self.env.cr, self.env.uid, self.env.context["active_id"]) informal_journal = active_model.journal_id.informal_journal_id gastos_journal_id = active_model.journal_id.gastos_journal_id purchase_journal_id = active_model.journal_id.purchase_journal_id res = [] res.append((informal_journal.id, informal_journal.name)) res.append((gastos_journal_id.id, gastos_journal_id.name)) res.append((purchase_journal_id.id, purchase_journal_id.name)) if len(res) != 3: raise models.except_orm('Configuracion pendiente!', "Se deben configurar los diarios para este tipo de docuemnto.") return tuple(res) company_id = fields.Many2one('res.company', 'Company', default=1) partner_id = fields.Many2one("res.partner", "Proveedor") reference_type = fields.Selection(_get_reference_type, "Tipo de comprobante", required=True) date = fields.Date("Fecha", required=True, default=fields.Date.context_today) concept = fields.Char("Concepto", required=True) ncf = fields.Char("NCF", size=19) journal_id = fields.Many2one("account.journal", "Diario de compra", domain=[('ncf_special', 'in', ('gasto', 'informal', 'pruchase'))], required=True) line_ids = fields.One2many("cjc.invoice.line.wizard", "invoice_id", "Productos", select=False, required=True, ondelete='cascade') ncf_requierd = fields.Boolean("NCF Requerido.", default=False) ncf_minor = fields.Boolean(default=False) @api.onchange("journal_id") def onchange_journal(self): if self.journal_id: self.ncf_requierd = True self.ncf_minor = False if self.journal_id.ncf_special in ['gasto', 'informal']: self.ncf_requierd = False if self.journal_id.special_partner: self.ncf_minor = True self.partner_id = self.journal_id.special_partner.id @api.model def _parse_vals(self, current_model): vals = {} for inv in self: journal_obj = self.env["account.journal"].browse(int(inv.journal_id)) if not journal_obj.default_credit_account_id.id: raise models.except_orm('Configuracion pendiente!', "Se deben configurar las cuentas para este diario.") elif not inv.line_ids: raise models.except_orm('Registro sin productos!', "Debe de registrar por lo menos un producto.") ncf_required = True if journal_obj.ncf_special in ['gasto', 'informal']: ncf_required = False if ncf_required and not is_ncf(inv.ncf.encode("ascii")): raise models.except_orm(u"NCF Invalido!", u"El NCF del proveedor no es válido!") vals.update({ u'account_id': current_model.journal_id.default_credit_account_id.id, u'check_total': 0, u'child_ids': [[6, False, []]], u'comment': "Factura de caja chica", u'company_id': inv.company_id.id, u'currency_id': journal_obj.company_id.currency_id.id, u'date_due': False, u'date_invoice': self.date, u'fiscal_position': self.partner_id.property_account_position.id, u'internal_number': self.ncf, u'journal_id': int(self.journal_id.id), u'message_follower_ids': False, u'message_ids': False, u'name': False, u'ncf_required': ncf_required, u'origin': current_model.name, u'parent_id': False, u'partner_bank_id': False, u'partner_id': self.partner_id.id or self.journal_id.special_partner.id, u'payment_term': False, u'period_id': current_model.period_id.id, u'reference': self.ncf, u'reference_type': self.reference_type, u'supplier_invoice_number': False, u'tax_line': [], u'user_id': self.env.uid, u'pay_to': current_model.journal_id.pay_to.id, u'invoice_line': [] }) for line in inv.line_ids: line_list = [0, False] line_dict = {} line_dict.update({ u'account_analytic_id': False, u'account_id': line.concept_id.account_expense.id, u'asset_category_id': False, u'discount': 0, u'invoice_line_tax_id': [[6, False, [t.id for t in line.concept_id.supplier_taxes_id]]], u'name': line.concept_id.name, u'price_unit': abs(line.amount), # u'product_id': line.concept_id.product_id.id, u'quantity': 1, u'uos_id': 1 }) line_list.append(line_dict) vals["invoice_line"].append(line_list) context = {u'default_type': u'in_invoice', u'journal_type': u'purchase'} result = self.env["account.invoice"].with_context(context).create(vals) return result @api.multi def create_purchase(self): current_model = self.pool.get(self.env.context['active_model']).browse(self.env.cr, self.env.uid, self.env.context['active_id']) purchase_invoice_id = self._parse_vals(current_model) inv = self.env["account.invoice"].browse(purchase_invoice_id.id) inv.check_total = inv.amount_total wf_service = netsvc.LocalService("workflow") wf_service.trg_validate(self.env.uid, 'account.invoice', inv.id, 'invoice_open', self.env.cr) lines_vals = {u'account_id': current_model.journal_id.default_debit_account_id.id, u'amount': inv.amount_total * -1, u'analytic_account_id': False, u'date': inv.date_invoice, u'name': self.concept, u'partner_id': self.partner_id.id or self.journal_id.special_partner.id, u'ref': inv.number, u'sequence': 0, u'statement_id': current_model.id, u'type': u'supplier', u'voucher_id': False, u"invoice_id": inv.id, u"journal_id": current_model.journal_id.id } self.pool.get('account.bank.statement.line').create(self.env.cr, self.env.uid, lines_vals, context=self.env.context) return {'type': 'ir.actions.act_window_close'} class cjc_invoice_line_wizard(models.TransientModel): _name = "cjc.invoice.line.wizard" concept_id = fields.Many2one("marcos.cjc.concept", "Conceptos", required=True) amount = fields.Float('Amount', digits_compute=dp.get_precision('Account'), required=True, default=1) invoice_id = fields.Many2one("cjc.invoice.wizard", "Factura", ondelete='cascade', select=True) # "quantity": fields.float('Quantity', digits_compute= dp.get_precision('Product Unit of Measure'), required=True),
# Date: 10/09/2020 # Author: rohith mulumudy # Description: contains configuration data. # Check the keys which are tagged "Important" before execution. #Important ## Certificate Fetching Constants ### Contains domains list cert_in_file = "sample.txt" #important ### File that stores domains which threw error while fetching certificates cert_err_file = "error_hosts.txt" ### File that stores certifcate data cert_out_file = "certs.json" # should be a json file ### File that temporarily stores certificate data (before parsing) cert_tmp_file = "certs_temp.json" ### If True gets the certificate chain data else gets the end user certificate cert_chain_flag = False ### If True coninues from where it stopped else starts the execution freshly resume_flag = False # Important ######################################################################################## ## Preporcessing ### urllib timeout timeout = 10 # Important ######################################################################################## ## get_san_domains ### File that stores san domains san_file = "sans.txt" ######################################################################################## ## General ### Optimal value for a 4 core machine any value >= 64 thread_count = 128 # Important ### Directory directory = "data_files" ### display flag display_flag = True # Important ### refreshes display after the specified amount of hosts are processed display_rate = 100
# Generated by Django 3.2.8 on 2021-10-28 21:43 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('chatbot', '0006_auto_20211028_1611'), ] operations = [ migrations.AddField( model_name='trainingmodels', name='acc_train', field=models.FloatField(null=True), ), migrations.AddField( model_name='trainingmodels', name='acc_validate', field=models.FloatField(null=True), ), ]
import numpy as np from permaviss.gauss_mod_p.gauss_mod_p import gauss_col def test_gauss_col(): A1 = np.array([[0, 1, 1], [1, 1, 0], [1, 1, 0]]) R1 = np.array([[0, 1, 0], [1, 0, 0], [1, 0, 0]]) T1 = np.array([[1, 1, 1], [0, 1, 1], [0, 0, 1]]) eq1 = np.array([R1, T1]) eq2 = np.array(gauss_col(A1, 2)) assert np.array_equal(eq1, eq2) A2 = np.array([[2, 1, 0, 1], [3, 1, 2, 3], [4, 1, 4, 3], [2, 1, 1, 0]]) R2 = np.array([[2, 0, 4, 3], [3, 2, 2, 0], [4, 4, 0, 0], [2, 0, 0, 0]]) T2 = np.array([[1, 2, 1, 4], [0, 1, 2, 4], [0, 0, 1, 3], [0, 0, 0, 1]]) eq1 = np.array([R2, T2]) eq2 = np.array(gauss_col(A2, 5)) assert np.array_equal(eq1, eq2)
#!/usr/bin/env python '''Helping functions''' __author__ = 'Denys Tarnavskyi' __copyright__ = 'Copyright 2018, RPD site project' __license__ = 'MIT' __version__ = '1.0' __email__ = 'marzique@gmail.com' __status__ = 'Development' import re import os import secrets from PIL import Image from itsdangerous import URLSafeTimedSerializer from rpd_site import app, db from .constants import VAR_MAIL_SALT, VAR_SAFE_TIMED_KEY, VAR_PASSWORD_SALT, VAR_MIN_PASS_LEN from .models import Role, User, Post, Upload def create_role(role_name): ''' adds new role to database ''' role_search = Role.query.filter_by(name=role_name).first() if not role_search: role = Role(name=role_name) db.session.add(role) db.session.commit() return True print('New role ' + role_name + ' added!') else: return False def delete_role(role_name): ''' deletes new role from database ''' role = Role.query.filter_by(name=role_name).first() if role: db.session.delete(role) db.session.commit() print('Role ' + role_name + ' deleted!') else: print('Role ' + role_name + ' doesn\'t exist!') def get_all_roles(): ''' get's all role names from db table ''' names = [] roles = Role.query.all() for role in roles: names.append(role.name) return names def get_role_tuples(): ''' make tuples duplicating role names for SelectField choices ''' role_tuples = [] tuppy = zip(get_all_roles(), get_all_roles()) for item1, item2 in tuppy: if item1 not in ['unconfirmed', 'confirmed']: role_tuples.append((item1, item2)) return role_tuples # TODO: definitely refactor this to something better then separate functions def get_number_of_users(): return len(User.query.all()) def get_number_of_posts(): return len(Post.query.all()) def get_number_of_uploads(): return len(Upload.query.all()) # All useful functions and objects for routes def month_translation(eng_month): ''' Translates month name to Ukranian ''' month_translations = {'January': 'Cічня', 'February': 'Лотого', 'March': 'Березня', 'April': 'Квітня', 'May': 'Травня', 'June': 'Червня', 'July': 'Липня', 'August': 'Серпня', 'September': 'Вересня', 'October': 'Жовтня', 'November': 'Листопада', 'December': 'Грудня'} ukranian_month = month_translations[eng_month] return ukranian_month def password_check(password): """ Verify the strength of 'password' A password is considered strong if: 8 characters length or more 1 digit or more 1 symbol or more 1 uppercase letter or more 1 lowercase letter or more returns True if all checks passed https://stackoverflow.com/a/32542964/10103803 """ length_error = len(password) < VAR_MIN_PASS_LEN # length digit_error = re.search(r"\d", password) is None # digits uppercase_error = re.search(r"[A-Z]", password) is None # uppercase lowercase_error = re.search(r"[a-z]", password) is None # lowercase symbol_error = re.search(r"\W", password) is None # symbols password_ok = not ( length_error or digit_error or uppercase_error or lowercase_error or symbol_error) # overall result return password_ok def save_picture(form_picture, size_crop, is_avatar): ''' Uploads cropped image with randomised filename and returns it's filename + input extension ''' random_hex = secrets.token_hex(8) # get image extension _, f_ext = os.path.splitext(form_picture.filename) picture_fn = random_hex + f_ext if is_avatar: picture_path = os.path.join( app.root_path, 'static/img/avatars', picture_fn) output_size = size_crop i = Image.open(form_picture) # crop top square to leave aspect ratio f_width, _ = i.size i = i.crop((0, 0, f_width, f_width)) i.thumbnail(output_size) i.save(picture_path) else: picture_path = os.path.join(app.root_path, 'static/img', picture_fn) output_size = size_crop i = Image.open(form_picture) i.thumbnail(output_size) i.save(picture_path) return picture_fn def generate_confirmation_token(email): ''' Creates unique token for each email passed :param email: email to create token for, used as part of the salt to make each token different. :return: token ''' serializer = URLSafeTimedSerializer(VAR_SAFE_TIMED_KEY) return serializer.dumps(email, salt=VAR_MAIL_SALT + email) def generate_password_token(email): '''[summary] Arguments: email {string} -- [email to make token for] ''' serializer = URLSafeTimedSerializer(VAR_SAFE_TIMED_KEY) return serializer.dumps(email, salt=VAR_PASSWORD_SALT) def role_label(role_name): '''generate HTML button snippet for role''' label_classes = {'unconfirmed': 'btn-default', 'confirmed': 'btn-primary', 'admin': 'btn-success', 'student': 'btn-info', 'teacher': 'btn-warning', 'moderator': 'btn-danger' } return '<button type="button" style="padding: 2px;" data-whatever="' + role_name + '"\ data-toggle="modal" data-target="#deleteModal" class="btn btn-sm '\ + label_classes[role_name] + '">' + role_name + '</button>' # TODO: rename span to button (figure out how to refactor variable across all files like in PyCharm) def role_spans(user): '''Generate list of role spans(buttons!) for specific user''' spans = [] roles = user.get_roles() for role in roles: span = role_label(role) spans.append(span) return spans # TODO: think about it # def add_superadmin(): # user = User.query.filter_by(id=1).first() # user.add_roles('superadmin')
def es5(sequenza): n = len(sequenza) T = [0 for _ in range(n)] T[0] = 1 max_index = 0 for i in range(1, n): T[i] = max([T[j] for j in range(0, i) if sequenza[j] < sequenza[i]], default = 0) + 1 max_index = max_index if T[max_index] >= T[i] else i # Ricostruisco la sequenza. nuova_sequenza = ["_" for _ in range(n)] length_seq = T[max_index] last_index = max_index while length_seq > 0: nuova_sequenza[last_index] = sequenza[last_index] length_seq -= 1 if length_seq > 0: left_index = last_index - 1 while sequenza[left_index] > sequenza[last_index] \ or T[left_index] != length_seq: left_index -= 1 last_index = left_index return nuova_sequenza
import random import adecide from adecide import adecide class attack: def start(self,na,nd): self.x=0 self.l=adecide() self.m=attack() if adecide.decide(self.l,na,nd)==1: self.x=adecide.war(self.m,na,nd) else: pass return self.x def war(self,na,nd): self.a=0 self.m=0 while ((self.a==0)): self.t=attack() self.l=adecide() #print("war!") self.m=self.m+1 if adecide.win(self.l,nd)>0: self.k=1 break else: self.k=0 self.numadie=attack.numadie(self.t,na) self.numddie=attack.numddie(self.t,nd) self.aroll=attack.aroll(self.t,self.numadie) self.droll=attack.droll(self.t,self.numddie) self.out=attack.compare(self.t,self.aroll,self.droll) na=attack.aresult(self.t,self.out,na) nd=attack.dresult(self.t,self.out,nd) self.a=adecide.cont(self.l,na,nd) print("numturns= ",self.m) return self.k def numadie(self,na): if na>3: self.numadie=3 else: self.numadie=na-1 #print("numadie= ",self.numadie) return self.numadie def numddie(self,nd): if nd>1: self.numddie=2 elif nd==1: self.numddie=1 else: self.numddie=0 #print("numddie= ",self.numddie) return self.numddie def diecreate(self,num): self.out=[] for self.x in range(num): self.out.append(0) #print("diecreated= ",self.out) return self.out def aroll(self,num): self.j=attack() self.aroll=attack.diecreate(self.j,num) for self.x in range(num): self.aroll[self.x]=random.randint(1,6) self.aroll.sort(reverse=True) #print("aroll= ",self.aroll) return self. aroll def droll(self,num): self.j=attack() self.droll=attack.diecreate(self.j,num) for self.x in range(num): self.droll[self.x]=random.randint(1,6) self.droll.sort(reverse=True) #print("droll= ",self.droll) return self.droll def compare(self,aroll,droll): self.out=[0,0] if len(aroll)>len(droll): for self.x in range(len(droll)): if aroll[self.x] > droll[self.x]: self.out[1]=self.out[1]-1 #print("defense lost 1") else: self.out[0]=self.out[0]-1 else: for self.x in range(len(droll)): if aroll[self.x] > droll[self.x]: self.out[1]=self.out[1]-1 #print("defense lost 1") else: self.out[0]=self.out[0]-1 return self.out def aresult(self,out,na): na=na+out[0] #print("aresult= ",na) return na def dresult(self,out,nd): nd=nd+out[1] #print("dresult= ",nd) return nd
from django.contrib import admin from . models import joinus, researchpaper, alumini # Register your models here. admin.site.register(researchpaper) admin.site.register(joinus) admin.site.register(alumini)