text
stringlengths
8
6.05M
import os import json from argparse import ArgumentParser import corenlp os.environ.setdefault('CORENLP_HOME', 'stanford-corenlp') def main(args): num_sentences = 0 with open(args.input, encoding='utf-8') as f, open(args.output, mode='w', encoding='utf-8') as out: with corenlp.CoreNLPClient(annotators="tokenize ner".split(), endpoint="http://localhost:5000") as client: for line in f.readlines(): mrp_json = json.loads(line) tok = [] ner = [] ann = client.annotate(mrp_json['input'], output_format='json') for sentence in ann['sentences']: for tokens in sentence['tokens']: tok.append(tokens['word']) ner.append(tokens['ner']) if len(ner) != len(mrp_json['nodes']): print(mrp_json['id'], " error!") mrp_json['tok'] = tok mrp_json['ner'] = ner # for ner, nodes in zip(ner, mrp_json['nodes']): # nodes['properties'].append('ner') # nodes['values'].append(ner) out.write(json.dumps(mrp_json) + '\n') num_sentences += 1 if num_sentences % 1000 == 0: print(f"Processed {num_sentences} sentences!") if __name__ == '__main__': argparser = ArgumentParser() argparser.add_argument('--input', '-i', required=True) argparser.add_argument('--output', '-o', required=True) args = argparser.parse_args() main(args)
import sys sys.path.append('../pyastrohog/') from astrohog2d import * import matplotlib.image as mpimg import matplotlib.pyplot as plt from astropy.io import fits hdul=fits.open('../data/image1.fits') image1=hdul[0].data hdul.close() hdul=fits.open('../data/image2.fits') image2=hdul[0].data hdul.close() circstats, corrframe, smoothframe1, smoothframe2 = HOGcorr_frame(image1, image2) print('Mean resultant vector (r) ', circstats[0]) print('Rayleigh statistic (Z) ', circstats[1]) print('Projected Rayleigh statistic (V) ', circstats[2]) print('Rayleigh statistic (ii) ', circstats[5], '+/-', circstats[6]) print('Mean angle ', circstats[7]) print('Alignment measure (AM) ', circstats[8]) hist, bin_edges = np.histogram(corrframe*180.0/np.pi, density=True, range=[-90.,90.], bins=40) bin_center=0.5*(bin_edges[0:np.size(bin_edges)-1]+bin_edges[1:np.size(bin_edges)]) fig=plt.figure() ax1=plt.subplot(221) plt.imshow(image1, cmap='bone', origin='lower') ax1=plt.subplot(222) plt.imshow(image2, cmap='copper', origin='lower') ax1=plt.subplot(223) im=plt.imshow(np.abs(corrframe)*180.0/np.pi, cmap='spring', origin='lower') cb1=plt.colorbar(im) #,fraction=0.046, pad=0.04) cb1.set_label(r'$|\phi|$ [deg]') ax1=plt.subplot(224) plt.step(bin_center, hist*100, color='red') plt.ylabel('Histogram density [%]') plt.xlabel(r'$\phi$ [deg]') plt.xticks([-90.,-45.,0.,45.,90.]) plt.tight_layout() plt.show() #import pdb; pdb.set_trace()
from django.conf.urls.defaults import * urlpatterns = patterns( 'trade.views', url(r'^$', 'home', name='trade-home'), url(r'^init_trade_request/$', 'init_trade_request', name='init-trade-request'), )
import ev3dev.ev3 as ev3 from time import sleep from classed_line_trace import LineTrace ts = ev3.TouchSensor('in3') lt = LineTrace() if __name__ == "__main__": while not (ts.value()): lt.line_trace() lt.stop()
#glassclient.py #*********************************************** #Client program for RJGlass to display guages #*********************************************** import time, sys import logging def init_log(): level = logging.INFO if '-debug' in sys.argv: level = logging.DEBUG logging.basicConfig(level=level, format='%(asctime)s.%(msecs)d %(levelname)s:%(message)s', datefmt='%H:%M:%S') #Set up File log logger = logging.getLogger() handler = logging.FileHandler('GlassClient.log', mode='w') #handler.setLevel(logging.DEBUG) handler.setFormatter(logging.Formatter('%(asctime)s.%(msecs)d %(levelname)s:%(message)s', '%H:%M:%S')) logger.addHandler(handler) #Initalize logging init_log() #Finish Imports import display import pyglet import gauge import client class myEventLoop(pyglet.app.EventLoop): def __init__(self): super(myEventLoop, self).__init__() self.FPS_clock = pyglet.clock.Clock() self.fps_display = pyglet.clock.ClockDisplay(clock=self.FPS_clock) def idle(self): t = time.time() pyglet.clock.tick(poll=True) # display.win.dispatch_event('on_draw') # display.win.flip() # #print "IDLE" # #print pyglet.clock.get_sleep_time(sleep_idle=True) #time.sleep(0.01) #print time.time()-t #time.sleep((1/30.0)-t) return pyglet.clock.get_sleep_time(sleep_idle=True) def myDraw(self, dt): self.FPS_clock.tick(poll=True) display.win.dispatch_event('on_draw') #Draw FPS Display self.fps_display.draw() display.win.flip() def myDraw(dt): #if c.VD_recv: # c.VD_recv = False #display.myDraw(dt) pass #print rx_count #print c.rx_count event_loop = myEventLoop() #Start GlassClient program c = client.client_c() display = display.display_c('view.xml') c.start() pyglet.clock.schedule_interval(event_loop.myDraw, 1/30.0) #pyglet.app.run() #pyglet.clock.schedule_interval(myDraw, 1.0/60.0) event_loop.run() #Stop Client c.stop()
import parmed as pmd lib_file = 'GF2.lib' mol2_red = '/home/haichit/research/rna_project/resp_fit/GF2/download_RED/P25049/Data-R.E.D.Server/Mol_MM/INTER/CT-A_m1-c1_m2-c1.mol2' resname = 'GF2' output = 'GF2_RED_update.lib' # load off file and get 1st residue res0 = pmd.load_file(lib_file)[resname] res1 = pmd.load_file(mol2_red) # mapping atom names to be replaced atom_map = [ ("O1P", "OP1"), ("O2P", "OP2"), ("F2'", "F"), ("H5'1", "H5'"), ("H5'2", "H5''"), ] adict = dict(atom_map) # print(adict) # match atom name for mol2 file from R.E.D to tleap # todo: idiom for atom in res1: if atom.name in adict: atom.name = adict[atom.name] # print (set(a.name for a in res0) ^ set(a.name for a in res1)) # update charge for off file for atom0 in res0: for atom1 in res1: if atom1.name == atom0.name: atom0.charge = atom1.charge res0.save(output)
import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt from keras.models import load_model from pyAudioAnalysis import audioFeatureExtraction, audioBasicIO import pandas as pd import numpy as np import argparse import imutils import pickle import cv2 import os ap = argparse.ArgumentParser() ap.add_argument("-m", "--model", required=True, help="Path to trained model") ap.add_argument("-l", "--labelbin", required=True, help="Path to label binarizer") ap.add_argument("-i", "--file", required=True, help="Path to input sound file") args = vars(ap.parse_args()) FRAME_SIZE = 5.e-2 # msecs print("[INFO] Loading sound file") [Fs, x] = audioBasicIO.readAudioFile(args['file']) x = audioBasicIO.stereo2mono(x) features, _ = audioFeatureExtraction.stFeatureExtraction( x, Fs, FRAME_SIZE * Fs, FRAME_SIZE / 2 * Fs) inputArray = np.expand_dims(features, axis=3) print("[INFO] loading network...") model = load_model(args["model"]) lb = pickle.loads(open(args["labelbin"], "rb").read()) first_layer = model.get_layer(index=0) required_input_shape = first_layer.get_config()['batch_input_shape'][1:] print('[INFO] Required Shape:', required_input_shape) print('[INFO] Actual shape:', inputArray.shape) # Adjust input to match required shape if required_input_shape[1] > inputArray.shape[1]: zerosArray = np.zeros((required_input_shape[0], required_input_shape[1] - inputArray.shape[1], 1), dtype=inputArray.dtype) inputArray = np.concatenate( (inputArray, zerosArray), axis = 1) else: inputArray = inputArray[:, :required_input_shape[1], :] print('[INFO] Post processed actual shape:', inputArray.shape) print("[INFO] classifying sound...") proba = model.predict(np.expand_dims(inputArray, axis=0))[0] idx = np.argmax(proba) label = lb.classes_[idx] label_with_predictions = {} for i in range(len(proba)): label_with_predictions[lb.classes_[i]] = proba[i] print("[INFO] Probabilities:", label_with_predictions) print("[INFO] Prediction {}".format(label))
from django.urls import path from . import views urlpatterns = [ path('', views.index, name='index'), path('response/<str:query>', views.graphData, name='response'), path('list/<str:pq>',views.options,name='list') ]
def main(): Read_character() line() def Read_character(): infile = open("/Users/again/Desktop/GIT/ProblemSolving/essay_file/Example.txt",'r') readcharacter = infile.read() infile.close() read_charlen = len(readcharacter) print(read_charlen) def line(): infile = open("/Users/again/Desktop/GIT/ProblemSolving/essay_file/example.txt",'r') line1 = infile.read() infile.close() result = len(line1.splitlines()) print(result) main()
# the highest level conftest file in a project determines the starting point of your pytest suite # all fixtures are visible to all lower level test files # multiple conftest files can exist in a directory. # lower level conftest files are applied after higher level ones import pytest @pytest.fixture() def teardown_example(): a = 1 yield a print(a) # scope: # session = entire pytest run # module = 1 pytest file # function = as name implies. 1 function # class = as name implies. 1 class #autouse: # every test in the session will call the fixture automatically @pytest.fixture(scope='session', autouse=False) def fixture_example(): print('this is only called once per run because its scope is "session"') # any test that invokes this fixture will be run 5 times. The tests will be reported with the names, "apple", "ball", "car", "dice", "elephant" @pytest.fixture(params=[1, 2, 3, 4, 5], ids=['apple', 'ball', 'car', 'dice', 'elephant']) def param_example(request): return request.param
# socket模块负责socket百年城 import socket # 模拟服务器的函数 def serverFunc(): # 1.建立socket # socket.AF_INET:使用ipv4协议族 # socket.SOCK_DGRSM:使用UDP通信 sock = socket.socket(socket.AF_INET,socket.SOCK_DGRAM) # 2.绑定ip和port # 127.0.0.1:这个ip地址代表是机器本身 # 7852:随手指定的端口号 # 地址是一个tuple类型(ip,port) addr = ("127.0.0.1",7852) sock .bind(addr) # 接受对方消息 # 等待对方为死等,没有其他可能性 # recvfrom接受的返回值是一个元组,前一项表示数据,后一项表示地址 # 参数的含义是缓冲区大小 # rst = sock.recvfrom(500) data,addr = sock.recvfrom(500) print(data) print(type(data)) # 发送过来的数据是bytes格式,必须通过解码才能得到str格式 text = data.decode() print(type(text)) print(text) # 给对方返回消息 rsp = "wo bu e" # 发送的数据需要编码成bytes格式 # 默认的是utf8 data = rsp.encode() sock.sendto(data,addr) if __name__ == '__main__': import time while 1: try: serverFunc() except Exception as e: print(e) time.sleep(1)
# Generated by Django 2.1.7 on 2019-04-20 10:31 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('amazon', '0009_auto_20190420_1306'), ] operations = [ migrations.CreateModel( name='clothes', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('Product', models.CharField(max_length=50)), ('Price', models.IntegerField()), ], options={ 'db_table': 'clothes', }, ), migrations.CreateModel( name='footware', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('Product', models.CharField(max_length=50)), ('Price', models.IntegerField()), ], options={ 'db_table': 'footware', }, ), migrations.RenameModel( old_name='women_shops', new_name='accessories', ), migrations.AlterModelTable( name='accessories', table='Accessories', ), ]
# Copyright 2020 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). import threading import time from pants.pantsd.service.store_gc_service import StoreGCService from pants.testutil.rule_runner import RuleRunner def test_run() -> None: interval_secs = 0.1 # Start the service in another thread (`setup` is a required part of the service lifecycle, but # is unused in this case.) sgcs = StoreGCService( RuleRunner().scheduler.scheduler, period_secs=(interval_secs / 4), lease_extension_interval_secs=interval_secs, gc_interval_secs=interval_secs, ) sgcs.setup(services=None) # type: ignore[arg-type] t = threading.Thread(target=sgcs.run, name="sgcs") t.daemon = True t.start() # Ensure that the thread runs successfully for long enough to have run each step at least once. # TODO: This is a coverage test: although it could examine the internal details of the service # to validate correctness, we don't do that yet. time.sleep(interval_secs * 10) assert t.is_alive() # Exit the thread, and then join it. sgcs.terminate() t.join(timeout=interval_secs * 10) assert not t.is_alive()
# -*- coding: utf-8 -*- # Generated by Django 1.9.9 on 2016-10-01 17:57 from __future__ import unicode_literals import benchmarklib.charts.models from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Chart', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=128, unique=True)), ('xname', models.CharField(max_length=128)), ('xunit', models.CharField(blank=True, max_length=50, validators=[benchmarklib.charts.models.validate_unit])), ('yname', models.CharField(max_length=128)), ('yunit', models.CharField(blank=True, max_length=50, validators=[benchmarklib.charts.models.validate_unit])), ('legend', models.CharField(blank=True, max_length=20)), ('pub_date', models.DateTimeField(auto_now=True)), ('originator', models.CharField(default='guest', max_length=20)), ('reference', models.CharField(blank=True, max_length=500)), ('details', models.CharField(blank=True, max_length=1000)), ('filename', models.FileField(storage=benchmarklib.charts.models.OverwriteStorage(), upload_to=benchmarklib.charts.models.generate_filename)), ], ), ]
# Python Coroutines and Tasks. # Coroutines declared with async/await syntax is the preferred way of writing asyncio applications. # # To actually run a coroutine, asyncio provides three main mechanisms: # # > The asyncio.run() function to run the top-level entry point “main()” function. # > Awaiting on a coroutine. # > The asyncio.create_task() function to run coroutines concurrently as asyncio Tasks. # Sleeping: # coroutine asyncio.sleep(delay, result=None, *, loop=None) # Block for delay seconds. # If result is provided, it is returned to the caller when the coroutine completes. # sleep() always suspends the current task, allowing other tasks to run. # The loop argument is deprecated and scheduled for removal in Python 3.10. # Example of coroutine displaying the current date every second for 5 seconds: # import asyncio import datetime async def display_date(): loop = asyncio.get_running_loop() end_time = loop.time() + 5.0 while True: print(datetime.datetime.now()) if (loop.time() + 1.0) >= end_time: break await asyncio.sleep(1) asyncio.run(display_date())
# Generated by Django 2.1.5 on 2019-02-12 15:25 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('updd', '0003_auto_20190206_2149'), ] operations = [ migrations.AddField( model_name='personnel', name='affectation', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='updd.Service'), ), ]
from selenium import webdriver from selenium.webdriver.common.by import By from selenium.webdriver.support.wait import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.common.action_chains import ActionChains as AC from selenium.common.exceptions import NoSuchElementException from bs4 import BeautifulSoup import time import json import os.path import os import sys import tkinter as tk from tkinter import ttk import re import subprocess from lang import * from switch import switch __version__="v.1.4" class Autocompleter(): def __init__(self) : #PATH self.PATH=os.path.dirname(__file__) self.sellang() self.chrome_options=webdriver.ChromeOptions() self.chrome_options.add_argument('--disable-gpu') self.chrome_options.add_argument('--hide-scrollbars') self.chrome_options.add_argument('blink-settings=imagesEnabled=false') fnull = open(os.devnull, 'w') return1 = subprocess.call('ping 35.168.176.193', shell = True, stdout = fnull, stderr = fnull) if return1: self.error(self.get_dict_value(self.lang_dict,["error","Network_exception"])) else: fnull.close() def get_dict_value(self,obj,pathlist): obj=dict(obj) for l in pathlist: obj=obj[l] return obj def start(self): self.msgbox() def date(self): i=0 _date="" if i == 0 : i+=1 elif i >= 1: return _date #date today = time.localtime() year=today.tm_year mon=today.tm_mon day=today.tm_mday hour=today.tm_hour _min=today.tm_min sec=today.tm_sec if mon < 10 : mon="0{month}".format(month=str(mon)) if day < 10 : day="0{day}".format(day=str(day)) if hour < 10 : hour="0{hour}".format(hour=str(hour)) if _min < 10 : _min="0{_min}".format(_min=str(_min)) if sec < 10 : sec="0{sec}".format(sec=str(sec)) _date="{year}{mon}{day}-{hour}{min}-{sec}".format(year=year,mon=mon,day=day,hour=hour,min=_min,sec=sec) return _date def exit(self): try: self.run.quit() self._sellang.destroy() self._msgbox.destroy() self._close.destroy() self._tkerror.destroy() except: pass finally: sys.exit(0) def sellang(self): with open(file="{}\\assest\\lang\\list.json".format(self.PATH),mode="r",encoding="utf-8") as f: self.__langList__=dict(json.load(f)) self._sellang=tk.Tk() self._sellang.title("Select Language") self._sellang.iconbitmap(self.PATH+"\\assest\\ico\\war.ico") frm=tk.Frame(self._sellang) frm.pack(side="right",padx=5) lab=tk.Frame(frm) btn=tk.Frame(frm) lab.pack() btn.pack() lab1=tk.Label(lab,text="Select Language",font=("微軟正黑體",12)) lab1.pack() self.comlist=tk.StringVar() com1=ttk.Combobox(lab,textvariable=self.comlist) ll=[] for i in self.__langList__.keys(): ll.append(self.__langList__[i]) com1["values"]=ll com1.current(0) com1.pack() btn_Continue_execution=tk.Button(btn,text="Next",font=("微軟正黑體",12),command=self.next) btn_Close=tk.Button(btn,text="Close",font=("微軟正黑體",12),command=self.exit) btn_Continue_execution.pack(side="left",padx=5) btn_Close.pack(side="right") self._sellang.geometry() self._sellang.mainloop() def next(self): self._sellang.destroy() cl={} for i in self.__langList__.keys(): cl[self.__langList__[i]]=i for case in switch(cl[self.comlist.get()]): if case("en_US"): self.lang_dict=en_US().__langDict__ break if case("zh_TW"): self.lang_dict=zh_TW().__langDict__ break if case("ja_JP"): self.lang_dict=ja_JP().__langDict__ break if case(): self.lang_dict=en_US().__langDict__ def msgbox(self): #tk self._msgbox=tk.Tk() self._msgbox.title(self.get_dict_value(self.lang_dict,["GUI_msgbox","title"])) self._msgbox.resizable(False, False) self._msgbox.iconbitmap(self.PATH+"\\assest\\ico\\war.ico") frm=tk.Frame(self._msgbox) frm.pack(side="right",padx=5) lab=tk.Frame(frm) btn=tk.Frame(frm) img=tk.Frame(self._msgbox) img.pack(side="left",padx=5) image_=tk.PhotoImage(file=self.PATH+"\\assest\\png\\war.png") img1=tk.Label(img,image=image_) img1.pack() lab.pack() lab1=tk.Label(lab,text=self.get_dict_value(self.lang_dict,["GUI_msgbox","lab1"]),font=("微軟正黑體",12)) lab2=tk.Label(lab,text=self.get_dict_value(self.lang_dict,["GUI_msgbox","lab2"]),font=("微軟正黑體",12)) lab3=tk.Label(lab,text=self.get_dict_value(self.lang_dict,["GUI_msgbox","lab3"]),font=("微軟正黑體",12)) lab1.pack() lab2.pack() lab3.pack() btn.pack() btn_Continue_execution=tk.Button(btn,text=self.get_dict_value(self.lang_dict,["GUI_msgbox","BTN_Continue_execution"]),font=("微軟正黑體",12),command=self.input_ep) btn_Close=tk.Button(btn,text=self.get_dict_value(self.lang_dict,["GUI_msgbox","BTN_Close"]),font=("微軟正黑體",12),command=self.exit) btn_Continue_execution.pack(side="left",padx=5) btn_Close.pack(side="right") self._msgbox.geometry() self._msgbox.mainloop() def input_ep(self): try: self._msgbox.destroy() except: pass self._start=tk.Tk() self._start.title(self.get_dict_value(self.lang_dict,["GUI_input_ep","title"])) self._start.resizable(False, False) self._start.iconbitmap(self.PATH+".\\assest\\ico\\start.ico") self.e_text=tk.StringVar() self.p_text=tk.StringVar() _input=tk.Frame(self._start) _input.pack() lab1=tk.Label(_input,text=self.get_dict_value(self.lang_dict,["GUI_input_ep","lab1"]),font=("微軟正黑體",12)) lab2=tk.Label(_input,text=self.get_dict_value(self.lang_dict,["GUI_input_ep","lab2"]),font=("微軟正黑體",12)) lab3=tk.Label(_input,text=self.get_dict_value(self.lang_dict,["GUI_input_ep","lab3"]),font=("微軟正黑體",12)) e_entry=tk.Entry(_input,font=("微軟正黑體",12),state=tk.NORMAL,textvariable=self.e_text,width=20) p_entry=tk.Entry(_input,font=("微軟正黑體",12),state=tk.NORMAL,textvariable=self.p_text,width=20,show="\u25CF") self.e_text.set(self.get_dict_value(self.lang_dict,["GUI_input_ep","email_input_default"])) p_entry.bind("<Return>",self._data_login_e) lab1.grid(row=0,column=1) lab2.grid(row=1,column=0) lab3.grid(row=2,column=0) e_entry.grid(row=1,column=1,columnspan=2) p_entry.grid(row=2,column=1,columnspan=2) btn=tk.Frame(self._start) btn.pack() btn_Start=tk.Button(btn,text=self.get_dict_value(self.lang_dict,["GUI_input_ep","BTN_Start"]),font=("微軟正黑體",12),command=self._data_login) btn_Start.pack() self._start.geometry() self._start.mainloop() def restart(self): self._tkerror.destroy() self.input_ep() def close(self) : try: self.run.quit() except: pass self._close=tk.Tk() self._close.title(self.get_dict_value(self.lang_dict,["GUI_close","title"])) self._close.resizable(False, False) self._close.iconbitmap(self.PATH+".\\assest\\ico\\war.ico") frm=tk.Frame(self._close) frm.pack(side="right",padx=5) lab=tk.Frame(frm) btn=tk.Frame(frm) img=tk.Frame(self._close) img.pack(side="left",padx=5) image_=tk.PhotoImage(file=self.PATH+"\\assest\\png\\war.png") img1=tk.Label(img,image=image_) img1.pack() lab.pack() lab1=tk.Label(lab,text=self.get_dict_value(self.lang_dict,["GUI_close","lab1"]),font=("微軟正黑體",12)) lab2=tk.Label(lab,text=self.get_dict_value(self.lang_dict,["GUI_close","lab2"]),font=("微軟正黑體",12)) lab3=tk.Label(lab,text=self.get_dict_value(self.lang_dict,["GUI_close","lab3"]),font=("微軟正黑體",12)) lab1.pack() lab2.pack() lab3.pack() btn.pack() btn_Continue_execution=tk.Button(btn,text=self.get_dict_value(self.lang_dict,["GUI_close","BTN_Continue_execution"]),font=("微軟正黑體",12),command=self.is_) btn_Close=tk.Button(btn,text=self.get_dict_value(self.lang_dict,["GUI_close","BTN_Close"]),font=("微軟正黑體",12),command=self.exit) btn_Continue_execution.pack(side="left",padx=5) btn_Close.pack(side="right") self._close.geometry() self._close.mainloop() def error(self,msg): try: self.run.quit() except: pass self._tkerror=tk.Tk() self._tkerror.title(self.get_dict_value(self.lang_dict,["GUI_error","title"])) self._tkerror.resizable(False, False) self._tkerror.iconbitmap(self.PATH+".\\assest\\ico\\start.ico") frm=tk.Frame(self._tkerror) img=tk.Frame(self._tkerror) img.pack(side="left",padx=5) frm.pack(side="right") _input=tk.Frame(frm) _input.pack() btn=tk.Frame(frm) image_=tk.PhotoImage(file=self.PATH+"\\assest\\png\\error.png") img1=tk.Label(img,image=image_) img1.pack() lab1=tk.Label(_input,text=self.get_dict_value(self.lang_dict,["GUI_error","lab1"]),font=("微軟正黑體",12)) lab2=tk.Label(_input,text=self.get_dict_value(self.lang_dict,["GUI_error","lab2_1"])+"\"{}\"".format(msg)+self.get_dict_value(self.lang_dict,["GUI_error","lab2_2"]),font=("微軟正黑體",12)) lab3=tk.Label(_input,text=self.get_dict_value(self.lang_dict,["GUI_error","lab3"]),font=("微軟正黑體",12)) lab4=tk.Label(_input,text=self.get_dict_value(self.lang_dict,["GUI_error","lab4"]),font=("微軟正黑體",12)) lab1.pack() lab2.pack() lab3.pack() lab4.pack() btn.pack() btn_restart=tk.Button(btn,text=self.get_dict_value(self.lang_dict,["GUI_error","BTN_Restart"]),font=("微軟正黑體",12),command=self.restart) btn_close=tk.Button(btn,text=self.get_dict_value(self.lang_dict,["GUI_error","BTN_Close"]),font=("微軟正黑體",12),command=self.exit) btn_restart.pack(side="left",padx=5) btn_close.pack(side="right") self._tkerror.geometry() self._tkerror.mainloop() def settings(self): pass self.set=tk.Tk() def _data_login_e(self,event): self._data_login() def _data_login(self): self._start.destroy() self.ac=self.e_text.get() self.pw=self.p_text.get() self.login(self.ac,self.pw) def entry_word(self,css_selector,word,wait_sec) : #輸入文字 word=word entry_list=list(word) self.run.find_element_by_css_selector(css_selector).clear() for entry_key in entry_list : self.run.find_element_by_css_selector(css_selector).send_keys(entry_key) time.sleep(wait_sec) def entry_key(self,word,WPM): word_list=list(word) sec=60/(WPM*5) print(sec) for wl in word_list : AC(self.run).send_keys(wl).perform() time.sleep(sec) def login(self,email,password) : self.run=webdriver.Chrome(executable_path=self.PATH+".\\assest\\chromedriver.exe",chrome_options=self.chrome_options) self.run.maximize_window() self.run.set_page_load_timeout(10) url="http://www.ratatype.com/login/" self.run.get(url) time.sleep(15) self.run.execute_script('window.stop()') time.sleep(3) try: self.run.find_element_by_css_selector("#email") except NoSuchElementException : self.error(self.get_dict_value(self.lang_dict,["error","Network_delay_is_too_high"])) self.run.quit() self.entry_word("#email",email,0.05) time.sleep(0.5) self.entry_word("#password",password,0.05) time.sleep(0.5) <<<<<<< HEAD try: self.run.find_element_by_css_selector("#fauth > div.form-group.btn-group-auth > button").click() except NoSuchElementException: self.error(self.get_dict_value(self.lang_dict,["error","Website_was_updated"])) ======= self.run.find_element_by_css_selector("#fauth > div.form-group.btn-group-auth > button").click() >>>>>>> 4e0fcf74f1aff7304049b10eae1654cd60a66f14 time.sleep(2) try: self.run.find_element_by_css_selector("body > div.center > div > div > div > div.rightSide > div > div:nth-child(3)") except: self.keystart() self.error(self.get_dict_value(self.lang_dict,["error","Password_is_incorrect"])) self.run.quit() def keystart(self) : time.sleep(2) self.run.find_element_by_css_selector("body > div.center > div > div.rightSide > div > div:nth-child(7) > div.nextExercise > form > button").click() time.sleep(3) self.run.find_element_by_css_selector("#ui-id-1 > button").click() time.sleep(2) html_doc=self.run.page_source soup = BeautifulSoup(html_doc, 'html.parser') w=(soup.find("div",{"id":"str_in"}).string) time.sleep(3) <<<<<<< HEAD self.entry_key(w,105) ======= self.entry_key(w,100) >>>>>>> 4e0fcf74f1aff7304049b10eae1654cd60a66f14 time.sleep(2) self.run.save_screenshot(".\\assest\\finish image\\{}.png".format(self.date())) time.sleep(1) self.close() #os.exit_(1) def is_(self): self._close.destroy() self.login(self.ac,self.pw) if __name__ == "__main__" : pl=Autocompleter() pl.start()
# Generated by Django 3.1.4 on 2020-12-13 10:10 from django.conf import settings from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('Users', '0002_auto_20201213_1005'), ] operations = [ migrations.AlterField( model_name='followlist', name='followings', field=models.ManyToManyField(related_name='followings', to=settings.AUTH_USER_MODEL), ), ]
import csv import random import datetime import sys __author__ = 'jambo' import numpy as np MAX_ITER = 100 class SVDModel: def __init__(self, dataset, num_of_factors, regularization_constant, learning_rate): self.dataset = dataset self.average = self._average_rating() self.b_users = np.zeros(dataset.n_users) self.b_items = np.zeros(dataset.n_items) self.p = np.random.random((dataset.n_users, num_of_factors)) - 0.5 self.q = np.random.random((dataset.n_items, num_of_factors)) - 0.5 self.regularization_constant = regularization_constant self.learning_rate = learning_rate self.validate_set_size = int(len(self.dataset.tests) * 0.2) self.size = len(self.dataset.tests) def predict(self, u, i): return self.average + self.b_users[u] + self.b_items[i] + np.inner(self.p[u], self.q[i]) def fit_model(self): self._sgd() def rmse(self, cut=None): if cut is None: cut = self.size estimate = np.array([self.predict(u, i) for u, i in self.dataset.tests])[:cut] answers = self.dataset.answers[:cut] return float(np.sqrt(np.mean((estimate - answers) ** 2))) def _average_rating(self): return np.average(self.dataset.ratings[self.dataset.ratings > 0]) def _error(self, u, i): return self.dataset.ratings[(u, i)] - self.predict(u, i) def validated_rmse(self): return self.rmse(cut=self.validate_set_size) def _sgd(self): gamma = self.learning_rate lam = self.regularization_constant previous_rmse = None for _ in xrange(MAX_ITER): random.shuffle(self.dataset.ratings_as_list) for u, i, r in self.dataset.ratings_as_list: error = self._error(u, i) new_b_u = self.b_users[u] + gamma * (error - lam * self.b_users[u]) new_b_i = self.b_items[i] + gamma * (error - lam * self.b_items[i]) new_p_u = self.p[u] + gamma * (error * self.q[i] - lam * self.p[u]) new_q_i = self.q[i] + gamma * (error * self.p[u] - lam * self.q[i]) self.b_users[u], self.b_items[i], self.p[u], self.q[i] = new_b_u, new_b_i, new_p_u, new_q_i new_rmse = self.validated_rmse() print "validate rmse: %0.5f" % new_rmse if previous_rmse is not None and previous_rmse - new_rmse < 5e-4: break previous_rmse = new_rmse def grid_search(dataset): """ Best Parameters searching """ global results, learning_rate, factor_number, regularization_constant, model, time, rmse results = [] for learning_rate in [0.005]: for factor_number in [0, 5, 10, 50, 100]: print "factor number = %d" % factor_number for regularization_constant in [0.05, 0.1, 0.5, 1, 5]: model = SVDModel(dataset, 50, regularization_constant, learning_rate) time = datetime.datetime.now() model.fit_model() print "seconds_passed: %s" % (datetime.datetime.now() - time).total_seconds() rmse = model.rmse() print ("rmse for learning rate %0.4f and regularisation constant %0.4f: %0.5f" % (learning_rate, regularization_constant, rmse)) results.append((rmse, factor_number, learning_rate, regularization_constant)) print "done" for rmse, factor_number, learning_rate, regularization_constant in sorted(results): print ("rmse for factor_number %d, learning rate %0.4f and regularisation constant %0.4f: %0.5f" % (factor_number, learning_rate, regularization_constant, rmse))
# activate theano on gpu import os; #os.environ['THEANO_FLAGS'] = "device=gpu"; #import theano; #theano.config.floatX = 'float32'; import numpy as np; import sys, os; import gzip; from six.moves import cPickle; from vae_conv import conv_variational_autoencoder; from keras import backend as K; import pdb channels = 1; batch_size = 32; conv_layers = 3; feature_maps = [128,128,128,128]; filter_shapes = [(3,3),(3,3),(3,3),(3,3)]; strides = [(1,1),(2,2),(1,1),(1,1)]; dense_layers = 1; dense_neurons = [128]; dense_dropouts = [0]; latent_dim = 3; epochs = 1; nb_start = 0; nb_end = 50; epochs = 1 batch_size = 8 nb_start = 0 nb_end = 50 dim = 21 X_train = np.random.randn(2,dim,dim,1) X_test = np.random.randn(1,dim,dim,1) X_train = np.pad(X_train, ((0,0), (1,1), (1,1), (0,0)), 'constant')[:, 1:, 1:, :] X_test = np.pad(X_test, ((0,0), (1,1), (1,1), (0,0)), 'constant')[:, 1:, 1:, :] print(X_train) feature_maps = feature_maps[0:conv_layers]; filter_shapes = filter_shapes[0:conv_layers]; strides = strides[0:conv_layers]; image_size = X_train.shape[1:]; autoencoder = conv_variational_autoencoder(image_size,channels,conv_layers,feature_maps, filter_shapes,strides,dense_layers,dense_neurons,dense_dropouts,latent_dim); for i in range (nb_start, nb_end): if i == 0: print("skipping - no previous saved file to load") # load model; else: autoencoder.load("./model/model_%i" %i) # train model; print X_train.shape print X_test.shape pdb.set_trace() autoencoder.train(X_train[0:],batch_size,epochs=epochs, validation_data=(), checkpoint=False,filepath="./savedweights.dat"); # save model; print "pass" autoencoder.save(filepath="./model/model_%i" %(i+1)); # save loss over train & validation; np.savetxt('./hist/history.losses_%i' %(i+1), autoencoder.history.losses, delimiter=','); np.savetxt('./hist/history.val_losses_%i' %(i+1), autoencoder.history.val_losses, delimiter=','); print('completed %i epochs' % ((i+1)*epochs));
from django.shortcuts import render from django.http import HttpResponse,HttpResponseRedirect from .models import BlogUser from django.views.decorators.csrf import csrf_exempt from django.contrib.auth import authenticate,login,logout from json import dumps from .forms import UserForm,UserProfileForm from django.contrib.auth.decorators import login_required def index(request): ''' 个人信息页面 如果登陆了就显示个人信息等信息 没有登陆则是一个空白界面 ''' if request.user.is_authenticated: user=request.user hasLogin=True else: hasLogin=False user=False if request.user.is_authenticated: #django自带的一个判断是否为已登陆请求的方法 user=request.user userProfile=BlogUser.objects.get(user=user) hasLogin=True else: userProfile=[] data={'userProfile':userProfile,'hasLogin':hasLogin,'user':user} return render(request, 'accounts/index.html',data) @csrf_exempt def register(request): ''' 注册账号 ''' if request.method == 'GET': if request.user.is_authenticated: user=request.user hasLogin=True else: hasLogin=False user=False userForm = UserForm() profileForm = UserProfileForm() data={'userForm':userForm,'profileForm':profileForm,'hasLogin':hasLogin,'user':user} return render(request, 'accounts/register.html', data) elif request.method == 'POST': userForm = UserForm(request.POST) userProfileForm = UserProfileForm(request.POST) if userForm.is_valid() and userProfileForm.is_valid(): user=userForm.save() user.set_password(user.password) user.save() profile=userProfileForm.save(commit=False) profile.user = user if 'mugshot' in request.FILES: profile.mugshot = request.FILES['mugshot'] profile.save() # user_login(request) return HttpResponseRedirect('/user/') else: req={'message':'fail','reason':'未接收到正确的表单,或创建过程中出错'} return HttpResponse(dumps(req),content_type="application/json") @csrf_exempt def user_login(request): ''' 用户登陆页面 登陆的后台逻辑 ''' if request.method == 'GET': if request.user.is_authenticated: user=request.user hasLogin=True else: hasLogin=False user=False data={'hasLogin':hasLogin,'user':user} return render(request, 'accounts/login.html', data) elif request.method == 'POST': username=request.POST['username'] password=request.POST['password'] user=authenticate(username=username,password=password) if user: if user.is_active: login(request,user) req={'message':'success','reason':'登陆成功'} return HttpResponse(dumps(req),content_type="application/json") else: req={'message':'fail','reason':'该用户以被禁止登陆'} return HttpResponse(dumps(req),content_type="application/json") else: req={'message':'fail','reason':'错误的用户名和密码'} return HttpResponse(dumps(req),content_type="application/json") @login_required def user_logout(request): ''' 用户登出 ''' logout(request) return HttpResponseRedirect('/user/login') @csrf_exempt @login_required def resetpassword(request): ''' 重置密码 ''' if request.method == 'GET': if request.user.is_authenticated: user=request.user hasLogin=True else: hasLogin=False user=False data={'hasLogin':hasLogin,'user':user} return render(request, 'accounts/resetpassword.html', data) elif request.method == 'POST': user=request.user user.set_password(request.POST['password']) user.save() req={'message':'success','reason':'更改成功'} return HttpResponse(dumps(req),content_type="application/json") else: req={'message':'fall','reason':'请求方式错误'} return HttpResponse(dumps(req),content_type="application/json") @csrf_exempt def getUserInfo(request): ''' 获取用户信息 ''' return HttpResponse('todo')
#!/usr/bin/env python3 # # QT Buttons 1 # # Converts all images in a dir to greyscale adding a prefix from PIL import Image import os prefix='inactive' included_extenstions = ['jpg', 'bmp', 'png', 'gif'] file_names = [fn for fn in os.listdir() if any(fn.endswith(ext) for ext in included_extenstions)] for f in file_names: img = Image.open(f).convert('LA') img.save(prefix+'_'+f)
# Generated by Django 2.0.3 on 2018-11-11 08:23 from django.conf import settings from django.db import migrations class Migration(migrations.Migration): atomic=False dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('orders', '0006_orders_checkedout'), ] operations = [ migrations.RenameModel( old_name='Orders', new_name='Order', ), ]
import unittest from header import Header from packer import Packer from unpacker import Unpacker class TestHeader(unittest.TestCase): def test_pack(self): buf = bytearray(256) packer = Packer(buf) header = Header() header.version = 2 header.length = 23 header.id = 42 packer.pack_message(header) self.assertEqual(10, packer.offset) def test_unpack(self): buf = bytearray(256) packer = Packer(buf) header = Header() header.version = 2 header.length = 23 header.id = 42 packer.pack_message(header) self.assertEqual(10, packer.offset) unpacker = Unpacker(bytes(buf[:packer.offset])) hdr = Header() hdr.unpack(unpacker) self.assertEqual(header.version, hdr.version) self.assertEqual(header.length, hdr.length) self.assertEqual(header.id, hdr.id) if __name__ == '__main__': unittest.main()
#!/usr/bin/env python # -*- coding: utf-8 -*- "Link Class mapping to SQL table" from django.db import models from django.utils.html import format_html from labman2.data.subdata.ReST.models import ReST #from labman2.data.models import rest_to_html #============================================================================== # A numerical value, e.g. a universal constant or a simple measurement class NumValue(ReST): "A simple numeric data entry" num_value = models.FloatField(null=True, blank=True, help_text="Use style like 1.234e-5") def __unicode__(self): try: return format_html(u'{0}: {1}', str(self.num_value), ReST.__unicode__(self)) except StandardError as err: print "NumValue.__unicode__", err return u'%s: %s' % (str(self.num_value), u"ReST.__unicode__(self)") def show_details(self): 'Return a list of the fields for detailed view' info_dict = [('NumValue', str(self.num_value))] info_dict.extend(ReST.show_details(self)) return info_dict
from model import AmbarFileMeta, AmbarFileContent from datetime import datetime from hashlib import sha256 from subprocess import call from os import walk, path import hashlib import re import io class PstProcessor(): def __init__(self, Logger, ApiProxy): self.logger = Logger self.apiProxy = ApiProxy self.tempPath = '/pst-temp' self.pstFileName = 'archive.pst' def CleanUpTemp(self): retcode = -1 try: retcode = call('rm -rf {0}/*'.format(self.tempPath), shell=True) if retcode != 0: self.logger.LogMessage('info', 'error cleaning temp dir, code: {0}'.format(retcode)) return False except Exception as e: self.logger.LogMessage('info', 'error cleaning temp dir') return False return True def ExtractPstArchive(self): retcode = -1 cmd = 'readpst -o {0} -D -j 1 -r -tea -u -w -e {0}/{1}'.format(self.tempPath, self.pstFileName) try: retcode = call(cmd, shell=True) if retcode != 0: self.logger.LogMessage('info', 'error extracting pst, code: {0}'.format(retcode)) return False except Exception as e: self.logger.LogMessage('error', 'error extracting pst {0}'.format(repr(e))) return False return True def WriteFileData(self, FileData): try: f = open('{0}/{1}'.format(self.tempPath, self.pstFileName), 'wb') f.write(FileData) f.close() except Exception as e: self.logger.LogMessage('error', 'error writing file {0}'.format(repr(e))) return False return True def ReadFileData(self, FilePath): try: f = open(FilePath, 'rb') fileData = f.read() f.close() return fileData except Exception as e: self.logger.LogMessage('error', 'error reading file {0} {1}'.format(FilePath, e)) return None def Process(self, FileData, FileMeta, SourceId): self.logger.LogMessage('verbose', 'processing pst archive {0}'.format(FileMeta.full_name)) try: if not self.CleanUpTemp(): return if not self.WriteFileData(FileData): return if not self.ExtractPstArchive(): return for (dirpath, dirnames, filenames) in walk(self.tempPath): for fileName in filenames: self.logger.LogMessage('verbose', 'enqueuing file {0} from pst archive {1}'.format(fileName, FileMeta.full_name)) fullNameInArchive = '{0}{1}'.format(FileMeta.full_name, path.join(dirpath.replace(self.tempPath,''), fileName)) fullNameInFs = path.join(dirpath, fileName) fileData = self.ReadFileData(fullNameInFs) if not fileData: continue sha = sha256(fileData).hexdigest() size = len(fileData) if size == 0: continue # checking content existance apiResp = self.apiProxy.CheckIfParsedAmbarFileContentExists(sha) if not apiResp.Success: self.logger.LogMessage('error', 'error checking content existance {0} {1}'.format(fullNameInArchive, apiResp.message)) continue if not (apiResp.Found or apiResp.NotFound): self.logger.LogMessage('error', 'unexpected response on checking content existance {0} {1} {2}'.format(fullNameInArchive, apiResp.code, apiResp.message)) continue if apiResp.NotFound: self.logger.LogMessage( 'verbose', 'content not found {0}'.format(fullNameInArchive)) # creating content createContentApiResp = self.apiProxy.CreateAmbarFileContent(fileData, sha) if not createContentApiResp.Success: self.logger.LogMessage('error', 'error creating content {0} {1}'.format(fullNameInArchive, createContentApiResp.message)) continue if not (createContentApiResp.Found or createContentApiResp.Created): self.logger.LogMessage('error', 'unexpected response on create content {0} {1} {2}'.format(fullNameInArchive, createContentApiResp.code, createContentApiResp.message)) continue if createContentApiResp.Found: self.logger.LogMessage('verbose', 'content found {0}'.format(fullNameInArchive)) if createContentApiResp.Created: self.logger.LogMessage('verbose', 'content created {0}'.format(fullNameInArchive)) if apiResp.Found: self.logger.LogMessage('verbose', 'content found {0}'.format(fullNameInArchive)) # sending meta back to queue fileMeta = AmbarFileMeta.InitWithoutId(FileMeta.created_datetime, FileMeta.updated_datetime, fileName, fullNameInArchive, FileMeta.source_id, [{'key': 'from_container', 'value': 'true'}]) apiResp = self.apiProxy.EnqueueAmbarFileMeta(fileMeta, sha, SourceId) if not apiResp.Success: self.logger.LogMessage('error', 'error adding meta {0} {1}'.format( fileMeta.full_name, apiResp.message)) continue if apiResp.BadRequest: self.logger.LogMessage('verbose', 'bad meta, ignoring... {0}'.format(fileMeta.full_name)) continue if not apiResp.Ok: self.logger.LogMessage('error', 'unexpected response on adding meta {0} {1} {2}'.format(fileMeta.full_name, apiResp.code, apiResp.message)) continue self.logger.LogMessage('verbose', 'meta added {0}'.format(fileMeta.full_name)) self.CleanUpTemp() except Exception as ex: self.logger.LogMessage( 'info', 'unable to unpack {0} {1}'.format(FileMeta.full_name, ex))
#!/usr/bin/python import pyOTDR import sys import os import xlsxwriter import re import time from config import * import matplotlib.pyplot as plt import kvCreateXLSReport def processReports(filenames): createXLSReports(filenames) def convertPair(s): return map(float, re.findall(r'(.*)\t(.*)\n', s)[0]) def createXLSReports(filenames): print('Старт программы') pathReport = os.path.join(os.path.dirname(os.path.normpath(filenames[0])), f'Report {len(filenames)} traces.xlsx') print(f'Имя файла отчёта: {pathReport}') print('Перед созданием файла') # if not os.path.exists(pathReport) and os.access(pathReport, os.R_OK): print('Создание книги') workbook = xlsxwriter.Workbook(pathReport) prop = {'font_name': 'Arial', 'font_size': '11'} # Задаем параметры форматирования для рабочей книги cellFormatHeader = workbook.add_format(prop) cellFormatHeader.set_font_size(16) cellFormatHeader.set_bold(True) cellFormatSubHeader = workbook.add_format(prop) cellFormatSubHeader.set_bold(True) prop_table = {'font_name': 'Arial', 'font_size': '11', 'border': 1, 'valign': 'center'} cellFormatTableHeader = workbook.add_format(prop_table) cellFormatTableDataCenter = workbook.add_format(prop_table) cellFormatTableDataCenter.set_align('center') cellFormatTableDataLeft = workbook.add_format(prop_table) cellFormatTableDataLeft.set_align('left') cellFormatTableDataRight = workbook.add_format(prop_table) cellFormatTableDataRight.set_align('right') START_EVENT_ROW = 42 cellFormatMainText = workbook.add_format(prop) print('Перед прогоном файлов') c = 1 width_columns = [9.14, 15, 18, 15, 15, 18.29, 5.29] enum_widths = enumerate(width_columns) for filename in filenames: status, results, tracedata = pyOTDR.ConvertSORtoTPL(filename) # Функцию доработать, так как не все файлы именуют с указанием с 2х сторон адресов Addr1, Port1, Addr2, Port2 = parseFilenameSOR(filename) if str(results["FxdParams"]["unit"]) == "km (kilometers)": unit = "км" else: unit = "ошибка" # Создаём страницу для отчёта worksheet = workbook.add_worksheet(f'{c}') c += 1 worksheet.set_portrait() worksheet.set_paper(9) # устанавливаем ширину колонок enum_widths = enumerate(width_columns) for col, width in enum_widths: worksheet.set_column(col, col, width) # Заголовок отчёта worksheet.write('C2', f'Отчёт OTDR', cellFormatHeader) # Подзаголовок параметров worksheet.write('C4', f'Параметры', cellFormatSubHeader) # Параметры левая колонка worksheet.write('A5', f'Начало: {Addr1}', cellFormatMainText) worksheet.write('A6', f'Кабель:', cellFormatMainText) worksheet.write('A7', f'Диапазон: {results["FxdParams"]["range"]:6.3f} {unit}', cellFormatMainText) worksheet.write('A8', f'Длина волны: {results["FxdParams"]["wavelength"]}', cellFormatMainText) worksheet.write('A9', f'Порог потерь: {(results["FxdParams"]["loss thr"]).replace("dB", "дБ")}', cellFormatMainText) regexptime = r'\w+ \((.*)\ sec\)' inttime = int(re.findall(regexptime, results["FxdParams"]["date/time"], re.IGNORECASE)[0]) dt = time.strftime('%d.%m.%Y %H:%M:%S', time.localtime(inttime)) worksheet.write('A10', f'Дата : {dt}', cellFormatMainText) worksheet.write('A11', f'OTDR: {results["SupParams"]["OTDR"]} S/N: {results["SupParams"]["OTDR S/N"]}', cellFormatMainText) worksheet.write('A12', f'Модуль: {results["SupParams"]["module"]} S/N: {results["SupParams"]["module S/N"]}', cellFormatMainText) worksheet.write('A13', 'Заказчик: ПАО "Ростелеком', cellFormatMainText) worksheet.write('A14', 'Подрядчик: АО "ТКТ-Строй', cellFormatMainText) # Параметры правая колонка worksheet.write('D5', f'Конец: {Addr2}', cellFormatMainText) worksheet.write('D6', f'Волокно: {Port2}', cellFormatMainText) worksheet.write('D7', f'Импульс: {(results["FxdParams"]["pulse width"]).replace("ns", "нс")}', cellFormatMainText) worksheet.write('D8', f'Коэф. преломления: {results["FxdParams"]["index"]}', cellFormatMainText) worksheet.write('D9', f'Порог отражения: {results["FxdParams"]["refl thr"]}', cellFormatMainText) worksheet.write('D10', f'Файл: {results["filename"]}', cellFormatMainText) # Подзаголовок результатов измерений worksheet.write('C16', f'Результат измерений', cellFormatSubHeader) numEvents = results["KeyEvents"]["num events"] distance = results["KeyEvents"][f'event {numEvents}']['distance'] totalLoss = results["KeyEvents"]["Summary"]['total loss'] lenghtLoss = float(totalLoss) / float(distance) # Результат измерений worksheet.write('A17', f'Длина волокна: \t{distance} {unit}', cellFormatMainText) worksheet.write('A18', f'Затухание: \t{lenghtLoss:5.3f} дБ/{unit}', cellFormatMainText) worksheet.write('E17', f'Полные потери: \t{totalLoss} дБ', cellFormatMainText) # Список событий в списке для графиков и таблицы events = [] for numEvent in range(numEvents): event = results["KeyEvents"][f'event {numEvent + 1}'] spliceLoss = "---" if float(event["splice loss"]) == 0.00 else event["splice loss"] reflectLoss = "---" if event["refl loss"] == "0.000" else event["refl loss"] if numEvent + 1 == numEvents: typeEvent = "Конец" elif float(event["splice loss"]) < 0: typeEvent = "Положит. дефект" else: typeEvent = "Потери" events.append((numEvent + 1, typeEvent, event["distance"], spliceLoss, reflectLoss, event["slope"])) # Тут будет график рисоваться # path = os.path.normpath("D:\develop\python_projects\sorViewer\Гагарина 6а [2]-trace.dat") resultTpl = [convertPair(elem) for elem in tracedata] xs = [] ys = [] for x, y in resultTpl: xs.append(x) ys.append(y) plt.grid(True) # plt.plot([1.442, 1.442], [17, 15], label='1', color='red') # plt.plot([3.332, 3.332], [17, 15], label='2', color='red') plt.plot(xs, ys, linewidth=0.4, color='black') plt.title('Рефлектограмма OTDR') deltax = float(len(xs)*0.025*(xs[1] - xs[0])) plt.axis([-deltax*0.3, max(xs), -0.05, max(ys)]) plt.xlabel('Длина, км') plt.ylabel('дБ') # Дописать функцию, в зависимости от событий должны чёрточки ставится. for i, event in enumerate(events): f = False for n, x in enumerate(xs): if float(event[2]) < x: f = True break d = n-int(len(ys)*0.002) if f: level = ys[d] else: level = 0.0 plt.text(xs[d], level-1.5, event[0]) plt.plot([xs[d], xs[d]], [level+1, level-1], label='1', color='red') if i < numEvents-1: continue plt.arrow(xs[d], level+1, -deltax, 0, color='red', linewidth=0.5, shape='full', head_width=0.4, head_length=deltax*0.2) plt.arrow(xs[d], level-1, -deltax, 0, color='red', linewidth=0.5, shape='full', head_width=0.4, head_length=deltax*0.2) fname, = os.path.splitext(os.path.basename(filename))[:-1] pngname = os.path.join(os.path.dirname(filename), fname + '.png') plt.savefig(pngname, dpi=300) plt.close() worksheet.insert_image('A20', pngname, {'x_offset': 40, 'x_scale': 0.9, 'y_scale': 0.9}) # Тут должна рисоваться таблица worksheet.write('C41', 'Таблица событий', cellFormatSubHeader) # Рисуем заголовок таблицы worksheet.write_row(START_EVENT_ROW-1, 0, ('№', 'Тип', 'Дистанция', 'Потери, дБ', 'Отражение, дБ', 'Затухание, дБ/км'), cellFormatTableHeader) # Заполняем данные событий в таблицу for n, curEvent in enumerate(events): worksheet.write_row(START_EVENT_ROW + n, 0, curEvent, cell_format=cellFormatTableDataCenter) # Задаём область печати worksheet.print_area('A1:G57') worksheet.fit_to_pages(1, 1) workbook.close() print('Книга закрылась, запись удалась') def parseFilenameSOR(filename): regexp = r'(.*)\[(.*)\].*[!-](.*)\[(.*)\](.*)' addressPackage = re.findall(regexp, os.path.split(filename)[-1], re.IGNORECASE)[0][:-1] Addr1, Port1, Addr2, Port2 = addressPackage return Addr1, Port1, Addr2, Port2 if __name__ == '__main__': filenames = sys.argv[1:] processReports(filenames)
"""A CNC-CR-DQN agent training on Atari. """ # pylint: disable=g-bad-import-order import collections import itertools import sys import typing from absl import app from absl import flags from absl import logging import dm_env import haiku as hk import jax from jax.config import config import jax.numpy as jnp import numpy as np import optax from dqn_zoo import atari_data from dqn_zoo import gym_atari from dqn_zoo import networks from dqn_zoo import parts from dqn_zoo import processors from dqn_zoo import replay as replay_lib from typing import Any, Callable, Mapping, Text import rlax from rlax._src.value_learning import _quantile_regression_loss as rlax_quantile_regression_loss import chex Array = chex.Array Numeric = chex.Numeric #from dqn_zoo.cnc_cr_dqn.cnc_cr_dqn_parts import qr_atari_network, nc_qr_atari_network, symm_qr_atari_network, _batch_quantile_q_learning from cnc_cr_dqn_parts import qr_atari_network, nc_qr_atari_network, symm_qr_atari_network, _batch_quantile_q_learning class CrDqn: """Quantile Regression DQN agent, using Cramér loss""" def __init__( self, preprocessor: processors.Processor, sample_network_input: jnp.ndarray, network: parts.Network, #quantiles: jnp.ndarray, optimizer: optax.GradientTransformation, transition_accumulator: Any, replay: replay_lib.TransitionReplay, batch_size: int, exploration_epsilon: Callable[[int], float], min_replay_capacity_fraction: float, learn_period: int, target_network_update_period: int, rng_key: parts.PRNGKey, ): self._preprocessor = preprocessor self._replay = replay self._transition_accumulator = transition_accumulator self._batch_size = batch_size self._exploration_epsilon = exploration_epsilon self._min_replay_capacity = min_replay_capacity_fraction * replay.capacity self._learn_period = learn_period self._target_network_update_period = target_network_update_period # Initialize network parameters and optimizer. self._rng_key, network_rng_key = jax.random.split(rng_key) self._online_params = network.init(network_rng_key, sample_network_input[None, ...]) self._target_params = self._online_params self._opt_state = optimizer.init(self._online_params) # Other agent state: last action, frame count, etc. self._action = None self._frame_t = -1 # Current frame index. # Define jitted loss, update, and policy functions here instead of as # class methods, to emphasize that these are meant to be pure functions # and should not access the agent object's state via `self`. def loss_fn(online_params, target_params, transitions, rng_key): """Calculates loss given network parameters and transitions.""" # Compute Q value distributions. _, online_key, target_key = jax.random.split(rng_key, 3) dist_q_tm1 = network.apply(online_params, online_key, transitions.s_tm1).q_dist q_target_t = network.apply(target_params, target_key, transitions.s_t) dist_q_target_t = q_target_t.q_dist #this could be used instead of recomputing the mean q_values_target_t = q_target_t.q_values losses = _batch_quantile_q_learning( dist_q_tm1, transitions.a_tm1, transitions.r_t, transitions.discount_t, dist_q_target_t, # No double Q-learning here. dist_q_target_t, q_values_target_t, ) assert losses.shape == (self._batch_size,) loss = jnp.mean(losses) return loss def update(rng_key, opt_state, online_params, target_params, transitions): """Computes learning update from batch of replay transitions.""" rng_key, update_key = jax.random.split(rng_key) d_loss_d_params = jax.grad(loss_fn)(online_params, target_params, transitions, update_key) updates, new_opt_state = optimizer.update(d_loss_d_params, opt_state) new_online_params = optax.apply_updates(online_params, updates) return rng_key, new_opt_state, new_online_params self._update = jax.jit(update) def select_action(rng_key, network_params, s_t, exploration_epsilon): """Samples action from eps-greedy policy wrt Q-values at given state.""" rng_key, apply_key, policy_key = jax.random.split(rng_key, 3) q_t = network.apply(network_params, apply_key, s_t[None, ...]).q_values[0] a_t = rlax.epsilon_greedy().sample(policy_key, q_t, exploration_epsilon) return rng_key, a_t self._select_action = jax.jit(select_action) #self._select_action = select_action def step(self, timestep: dm_env.TimeStep) -> parts.Action: """Selects action given timestep and potentially learns.""" self._frame_t += 1 timestep = self._preprocessor(timestep) if timestep is None: # Repeat action. action = self._action else: action = self._action = self._act(timestep) for transition in self._transition_accumulator.step(timestep, action): self._replay.add(transition) if self._replay.size < self._min_replay_capacity: return action if self._frame_t % self._learn_period == 0: self._learn() if self._frame_t % self._target_network_update_period == 0: self._target_params = self._online_params return action def reset(self) -> None: """Resets the agent's episodic state such as frame stack and action repeat. This method should be called at the beginning of every episode. """ self._transition_accumulator.reset() processors.reset(self._preprocessor) self._action = None def _act(self, timestep) -> parts.Action: """Selects action given timestep, according to epsilon-greedy policy.""" s_t = timestep.observation self._rng_key, a_t = self._select_action(self._rng_key, self._online_params, s_t, self.exploration_epsilon) return parts.Action(jax.device_get(a_t)) def _learn(self) -> None: """Samples a batch of transitions from replay and learns from it.""" logging.log_first_n(logging.INFO, 'Begin learning', 1) transitions = self._replay.sample(self._batch_size) #print(frame_t) self._rng_key, self._opt_state, self._online_params = self._update( self._rng_key, self._opt_state, self._online_params, self._target_params, transitions ) @property def online_params(self) -> parts.NetworkParams: """Returns current parameters of Q-network.""" return self._online_params @property def exploration_epsilon(self) -> float: """Returns epsilon value currently used by (eps-greedy) behavior policy.""" return self._exploration_epsilon(self._frame_t) def get_state(self) -> Mapping[Text, Any]: """Retrieves agent state as a dictionary (e.g. for serialization).""" state = { 'rng_key': self._rng_key, 'frame_t': self._frame_t, 'opt_state': self._opt_state, 'online_params': self._online_params, 'target_params': self._target_params, 'replay': self._replay.get_state(), } return state def set_state(self, state: Mapping[Text, Any]) -> None: """Sets agent state from a (potentially de-serialized) dictionary.""" self._rng_key = state['rng_key'] self._frame_t = state['frame_t'] self._opt_state = jax.device_put(state['opt_state']) self._online_params = jax.device_put(state['online_params']) self._target_params = jax.device_put(state['target_params']) self._replay.set_state(state['replay']) @property def statistics(self) -> Mapping[Text, float]: """Returns current agent statistics as a dictionary.""" return {} ######################################################################## # Relevant flag values are expressed in terms of environment frames. FLAGS = flags.FLAGS flags.DEFINE_string('environment_name', 'pong', '') flags.DEFINE_integer('environment_height', 84, '') flags.DEFINE_integer('environment_width', 84, '') flags.DEFINE_bool('use_gym', False, '') flags.DEFINE_integer('replay_capacity', int(1e6), '') flags.DEFINE_bool('compress_state', True, '') flags.DEFINE_float('min_replay_capacity_fraction', 0.05, '') flags.DEFINE_integer('batch_size', 32, '') flags.DEFINE_integer('max_frames_per_episode', 108000, '') # 30 mins. flags.DEFINE_integer('num_action_repeats', 4, '') flags.DEFINE_integer('num_stacked_frames', 4, '') flags.DEFINE_float('exploration_epsilon_begin_value', 1., '') flags.DEFINE_float('exploration_epsilon_end_value', 0.01, '') flags.DEFINE_float('exploration_epsilon_decay_frame_fraction', 0.02, '') flags.DEFINE_float('eval_exploration_epsilon', 0.001, '') flags.DEFINE_integer('target_network_update_period', int(4e4), '') flags.DEFINE_float('learning_rate', 0.00005, '') flags.DEFINE_float('optimizer_epsilon', 0.01 / 32, '') flags.DEFINE_float('additional_discount', 0.99, '') flags.DEFINE_float('max_abs_reward', 1., '') flags.DEFINE_float('max_global_grad_norm', 10., '') flags.DEFINE_integer('seed', 1, '') # GPU may introduce nondeterminism. flags.DEFINE_integer('num_iterations', 200, '') flags.DEFINE_integer('num_train_frames', int(1e6), '') # Per iteration. flags.DEFINE_integer('num_eval_frames', int(5e5), '') # Per iteration. flags.DEFINE_integer('learn_period', 16, '') flags.DEFINE_string('results_csv_path', '/tmp/results.csv', '') flags.DEFINE_integer('num_quantiles', 201, '') flags.DEFINE_integer('n_nodes', 512, '') flags.DEFINE_integer('n_layers', 1, '') flags.DEFINE_bool('nc', False, '') flags.DEFINE_bool('symm', False, '') def main(argv): """Trains CR-DQN agent on Atari.""" logging.info(FLAGS.flags_into_string()) del argv logging.info('CR-DQN with Cramer on Atari on %s.', jax.lib.xla_bridge.get_backend().platform) random_state = np.random.RandomState(FLAGS.seed) rng_key = jax.random.PRNGKey( random_state.randint(-sys.maxsize - 1, sys.maxsize + 1)) if FLAGS.results_csv_path: writer = parts.CsvWriter(FLAGS.results_csv_path) else: writer = parts.NullWriter() def environment_builder(): """Creates Atari environment.""" env = gym_atari.GymAtari( FLAGS.environment_name, seed=random_state.randint(1, 2**32)) return gym_atari.RandomNoopsEnvironmentWrapper( env, min_noop_steps=1, max_noop_steps=30, seed=random_state.randint(1, 2**32), ) env = environment_builder() logging.info('Environment: %s', FLAGS.environment_name) logging.info('Action spec: %s', env.action_spec()) logging.info('Observation spec: %s', env.observation_spec()) num_actions = env.action_spec().num_values #if FLAGS.nc and FLAGS.num_quantiles%2 != 0: #must be even # print("num_quantiles must be even for nc") # exit(1) #num_quantiles = FLAGS.num_quantiles #quantiles = (jnp.arange(0, num_quantiles) + 0.5) / float(num_quantiles) if FLAGS.symm: logging.info('Symm network') network_fn = symm_qr_atari_network(num_actions, FLAGS.num_quantiles, FLAGS.n_layers, FLAGS.n_nodes) elif FLAGS.nc: logging.info('NC network') network_fn = nc_qr_atari_network(num_actions, FLAGS.num_quantiles, FLAGS.n_layers, FLAGS.n_nodes) else: logging.info('Standard QR network') network_fn = qr_atari_network(num_actions, FLAGS.num_quantiles) network = hk.transform(network_fn) def preprocessor_builder(): return processors.atari( additional_discount=FLAGS.additional_discount, max_abs_reward=FLAGS.max_abs_reward, resize_shape=(FLAGS.environment_height, FLAGS.environment_width), num_action_repeats=FLAGS.num_action_repeats, num_pooled_frames=2, zero_discount_on_life_loss=True, num_stacked_frames=FLAGS.num_stacked_frames, grayscaling=True, ) # Create sample network input from sample preprocessor output. sample_processed_timestep = preprocessor_builder()(env.reset()) sample_processed_timestep = typing.cast(dm_env.TimeStep, sample_processed_timestep) sample_network_input = sample_processed_timestep.observation assert sample_network_input.shape == (FLAGS.environment_height, FLAGS.environment_width, FLAGS.num_stacked_frames) exploration_epsilon_schedule = parts.LinearSchedule( begin_t=int(FLAGS.min_replay_capacity_fraction * FLAGS.replay_capacity * FLAGS.num_action_repeats), decay_steps=int(FLAGS.exploration_epsilon_decay_frame_fraction * FLAGS.num_iterations * FLAGS.num_train_frames), begin_value=FLAGS.exploration_epsilon_begin_value, end_value=FLAGS.exploration_epsilon_end_value) if FLAGS.compress_state: def encoder(transition): return transition._replace( s_tm1=replay_lib.compress_array(transition.s_tm1), s_t=replay_lib.compress_array(transition.s_t)) def decoder(transition): return transition._replace( s_tm1=replay_lib.uncompress_array(transition.s_tm1), s_t=replay_lib.uncompress_array(transition.s_t)) else: encoder = None decoder = None replay_structure = replay_lib.Transition( s_tm1=None, a_tm1=None, r_t=None, discount_t=None, s_t=None, ) replay = replay_lib.TransitionReplay(FLAGS.replay_capacity, replay_structure, random_state, encoder, decoder) optimizer = optax.adam( learning_rate=FLAGS.learning_rate, eps=FLAGS.optimizer_epsilon) if FLAGS.max_global_grad_norm > 0: optimizer = optax.chain( optax.clip_by_global_norm(FLAGS.max_global_grad_norm), optimizer) train_rng_key, eval_rng_key = jax.random.split(rng_key) train_agent = CrDqn( preprocessor=preprocessor_builder(), sample_network_input=sample_network_input, network=network, #quantiles=quantiles, optimizer=optimizer, transition_accumulator=replay_lib.TransitionAccumulator(), replay=replay, batch_size=FLAGS.batch_size, exploration_epsilon=exploration_epsilon_schedule, min_replay_capacity_fraction=FLAGS.min_replay_capacity_fraction, learn_period=FLAGS.learn_period, target_network_update_period=FLAGS.target_network_update_period, rng_key=train_rng_key, ) eval_agent = parts.EpsilonGreedyActor( preprocessor=preprocessor_builder(), network=network, exploration_epsilon=FLAGS.eval_exploration_epsilon, rng_key=eval_rng_key, ) # Set up checkpointing. checkpoint = parts.NullCheckpoint() state = checkpoint.state state.iteration = 0 state.train_agent = train_agent state.eval_agent = eval_agent state.random_state = random_state state.writer = writer if checkpoint.can_be_restored(): checkpoint.restore() while state.iteration <= FLAGS.num_iterations: # New environment for each iteration to allow for determinism if preempted. env = environment_builder() logging.info('Training iteration %d.', state.iteration) train_seq = parts.run_loop(train_agent, env, FLAGS.max_frames_per_episode) num_train_frames = 0 if state.iteration == 0 else FLAGS.num_train_frames train_seq_truncated = itertools.islice(train_seq, num_train_frames) train_trackers = parts.make_default_trackers(train_agent) train_stats = parts.generate_statistics(train_trackers,train_seq_truncated) logging.info('Evaluation iteration %d.', state.iteration) eval_agent.network_params = train_agent.online_params eval_seq = parts.run_loop(eval_agent, env, FLAGS.max_frames_per_episode) eval_seq_truncated = itertools.islice(eval_seq, FLAGS.num_eval_frames) eval_trackers = parts.make_default_trackers(eval_agent) eval_stats = parts.generate_statistics(eval_trackers,eval_seq_truncated) # Logging and checkpointing. human_normalized_score = atari_data.get_human_normalized_score( FLAGS.environment_name, eval_stats['episode_return']) capped_human_normalized_score = np.amin([1., human_normalized_score]) log_output = [ ('iteration', state.iteration, '%3d'), ('frame', state.iteration * FLAGS.num_train_frames, '%5d'), ('eval_episode_return', eval_stats['episode_return'], '% 2.2f'), ('train_episode_return', train_stats['episode_return'], '% 2.2f'), ('eval_num_episodes', eval_stats['num_episodes'], '%3d'), ('train_num_episodes', train_stats['num_episodes'], '%3d'), ('eval_frame_rate', eval_stats['step_rate'], '%4.0f'), ('train_frame_rate', train_stats['step_rate'], '%4.0f'), ('train_exploration_epsilon', train_agent.exploration_epsilon, '%.3f'), ('normalized_return', human_normalized_score, '%.3f'), ('capped_normalized_return', capped_human_normalized_score, '%.3f'), ('human_gap', 1. - capped_human_normalized_score, '%.3f'), ] log_output_str = ', '.join(('%s: ' + f) % (n, v) for n, v, f in log_output) logging.info(log_output_str) writer.write(collections.OrderedDict((n, v) for n, v, _ in log_output)) state.iteration += 1 checkpoint.save() writer.close() if __name__ == '__main__': config.update('jax_platform_name', 'gpu') # Default to GPU. config.update('jax_numpy_rank_promotion', 'raise') config.config_with_absl() app.run(main)
from ..base.handlers import BaseHandler class RelativesIndexHandler(BaseHandler): def get(self): self.render('monitor/index.html') class TemplatesIndexHandler(BaseHandler): def get(self): self.redirect("http://falcon-portal.nosa.me/templates") class ExpressionsIndexHandler(BaseHandler): def get(self): self.redirect("http://falcon-portal.nosa.me/expressions") class NodatasIndexHandler(BaseHandler): def get(self): self.redirect("http://falcon-portal.nosa.me/nodatas") handlers = [ ('/relatives', RelativesIndexHandler), ('/templates', TemplatesIndexHandler), ('/expressions', ExpressionsIndexHandler), ('/nodatas', NodatasIndexHandler) ]
from hylite import HyLibrary import numpy as np from scipy.spatial.qhull import ConvexHull from tqdm import tqdm def polynomial(data, degree = 1, method='div'): """ Detrend an image data array using a polynomial fit and np.polyfit( ... ). *Arguments*: - data = numpy array of the format image[x][y][b]. - degree = the degree of the polynomial to fit. Default is 2. - method = 'divide' or 'subtract'. Default is 'divide'. *Returns*: - corr = the corrected (detrended) data. - trend = the trend that was removed. """ #calculate trend y = np.array(data.reshape( -1, data.shape[-1] )) #reshape array so each pixel is a column y[np.logical_not(np.isfinite(y))] = 0 #kill NaNs _x = np.arange(data.shape[-1]) fit = np.polynomial.polynomial.polyfit(_x, y.T, degree) # fit polynomial t = np.polynomial.polynomial.polyval(_x, fit) # evaluate it #apply correction if 'div' in method: y /= t elif 'sub' in method.lower(): y -= t y += np.min(y) #map to positive return y.reshape(data.shape), t.reshape(data.shape) def hull(spectra, div=True): """ Detrend a 1D spectra by performing a hull correction. Note that this performs the correction in-situ. *Arguments*: - div = True if the spectra should be divided by it's hull (default). False if the hull should be subtracted. *Returns*: - corr = hull corrected spectra. - trend = the (hull) trend that was subtracted to give the corrected spectra Returns an unchanged spectra and trend = [0,0,...] if the spectra contains nans or infs. """ # calculate convex hull hull = ConvexHull(np.array([np.hstack([0, np.arange(len(spectra)), len(spectra) - 1]), np.hstack([0, spectra, 0])]).T) # remove unwanted simplices (e.g. along sides and base) mask = (hull.simplices != 0).all(axis=1) & (hull.simplices != len(spectra) + 1).all(axis=1) # build piecewise equations x = np.arange(len(spectra), dtype=np.float32) if not mask.any(): # edge case - convex hull is one simplex between first and last points! y = spectra[0] + (spectra[-1] - spectra[0]) / x[-1] else: grad = -hull.equations[mask, 0] itc = -hull.equations[mask, 2] dom = [(min(x[s[0]], x[s[1]]), max(x[s[0]], x[s[1]])) for s in (hull.simplices[mask] - 1)] cl = [(x >= d[0]) & (x <= d[1]) for d in dom] # evaluate piecewise functions fn = [(lambda x, m=grad[i], c=itc[i]: m * x + c) for i in range(len(grad))] y = np.piecewise(x, cl, fn) # return if div: return spectra / y, y else: return 1 + spectra - y, y def get_hull_corrected(data, band_range=None, method='div', vb=True): """ Apply a hull correction to an entire HyData instance (HyImage, HyCloud or HyLibrary). Returns a corrected copy of the input dataset. *Arguments*: - band_range = Tuple containing the (min,max) band indices or wavelengths to run the correction between. If None (default) then the correction is run of the entire range. - method = Trend removal method: 'divide' or 'subtract'. Default is 'divide'. - vb = True if this should print output. """ # create copy containing the bands of interest if band_range is None: band_range = (0, -1) else: band_range = (data.get_band_index(band_range[0]), data.get_band_index(band_range[1])) corrected = data.export_bands(band_range) # convert integer data to floating point (we need floats for the hull correction) comp = False if corrected.is_int(): if np.nanmax( corrected.data ) > 100: # check large number used in compressed form corrected.decompress() else: corrected.data = corrected.data.astype(np.float32) # cast to float for hull correction comp = True method = 'div' in method # convert method to bool (for performance) # get valid pixels D = corrected.get_raveled() nan = corrected.header.get_data_ignore_value() valid = (np.isfinite(D) & (D != nan)).all(axis=1) # drop nans/no-data values valid = valid & (D != D[:, 0][:, None]).any(axis=1) # drop flat spectra (e.g. all zeros) if len(valid > 0): # if some valid points exist, do correction X = D[valid] upper = [] lower = [] loop = range(X.shape[0]) if vb: loop = tqdm(loop, leave=False, desc='Applying hull correction') for p in loop: X[p, :], fac = hull(X[p, :], div=method) # special case - also apply this correction to upper/lower spectra of the HyData instance if isinstance(corrected, HyLibrary): if corrected.upper is not None: # also apply correction to bounds if method: upper.append(corrected.upper[valid][p, :] / fac) else: upper.append(corrected.upper[valid][p, :] - fac) if corrected.lower is not None: # also apply correction to bounds if method: lower.append(corrected.lower[valid][p, :] / fac) else: lower.append(corrected.lower[valid][p, :] - fac) # copy data back into original array D[valid] = X corrected.set_raveled(D) if len(upper) > 0: corrected.upper[valid] = np.array(upper) if len(lower) > 0: corrected.lower[valid] = np.array(lower) # convert back to integer if need be if comp: corrected.compress() return corrected
from django.shortcuts import render from .models import address import csv import codecs from django.shortcuts import HttpResponse, render, render_to_response from django.template import RequestContext from django.contrib import messages from .forms import AddForm#, UploadFileForm from django.core.files.storage import FileSystemStorage from django.template.context_processors import csrf from django.http import HttpResponse from django.core.urlresolvers import resolve from django.http import HttpResponse #import pdb; pdb.set_trace() EmailCol = 0 NameCol = 1 def addressbook(request): form = AddForm() addressList = address.objects.all() appname = request.resolver_match.app_name return render(request, 'myapp/index.html', locals()) def add(request): if request.method == 'POST': form = AddForm(request.POST) if form.is_valid(): name = form.cleaned_data['name'] email = form.cleaned_data['email'] if address.objects.filter(email=email).exists(): row = [email, name] request.session["email"] = email request.session["name"] = name return askConfirm(row, 0, request) else: addRecord(email, name) messages.info(request, 'New contact "%s" added.' % email) return addressbook(request) def upload(request): if request.method == 'POST': if 'file' in request.FILES: try: csvfile = request.FILES['file'] if not request.FILES['file'].name.split(".")[-1] == "csv": raise("File extenxion is not csv.") handle_uploaded_file(csvfile) reader = csv.reader(codecs.iterdecode(csvfile, 'utf-8')) except: return HttpResponse("You need a proper csv file withe first line 'email,name'.") else: return HttpResponse("You need to select a csv file.") count = 0 for row in reader: if count==0 and row[0].lower()!='email': messages.info(request, 'CSV format should be:"email, name"') return addressbook(request) if not handleRow(row, count, request): return askConfirm(row, count, request) count += 1 return addressbook(request) def continueProcessCSV(request): global EmailCol global NameCol count = 0 currentRow = int(request.POST["current"]) # single add through form if currentRow==0: if 'Yes' in request.POST: email = request.session["email"] name = request.session["name"] updateRecord(email=email, name=name) messages.info(request, 'Single record updated.') elif 'No' in request.POST: messages.info(request, 'Single record skiped.') return addressbook(request) # multiple add through csv with open('addsave.csv') as csvfile: reader = csv.reader(csvfile) for row in reader: if count==currentRow : if 'Yes' in request.POST: updateRecord(email=row[EmailCol], name=row[NameCol]) messages.info(request, 'Updated %s.' % row[EmailCol]) elif 'No' in request.POST: messages.info(request, 'Skiped %s.' % row[EmailCol]) elif count > currentRow: if not handleRow(row, count, request): return askConfirm(row, count, request) count += 1 messages.info(request, 'CSV processed.') return addressbook(request) def ifExist(row): global EmailCol return address.objects.filter(email=row[EmailCol]).count()>0 def handleRow(row, currentRowIndex, request): global EmailCol global NameCol if currentRowIndex == 0: #is csv header if row[0].lower()=='name': EmailCol = 1 NameCol = 0 elif row[0].lower()=='email': EmailCol = 0 NameCol = 1 return True if ifExist(row): # existed return False else: addRecord(email=row[EmailCol], name=row[NameCol]) # add new return True def askConfirm(row, currentRowIndex, request): global EmailCol message = 'Found existed record %s, override?' % row[EmailCol] current = currentRowIndex action_link = "/myapp/continue/" return render(request, 'myapp/confirm.html', locals()) def addRecord(email, name): newItem = address(email=email, name=name) newItem.save() def updateRecord(email, name): oldItem = address.objects.get(email=email) oldItem.name = name oldItem.save() def handle_uploaded_file(f): destination = open('./addsave.csv', 'wb+') for chunk in f.chunks(): destination.write(chunk) destination.close() def downloadCSV(request): response = HttpResponse(content_type='text/csv') response['Content-Disposition'] = 'attachment; filename=addressbook.csv' writer = csv.writer(response) writer.writerow(['email', 'name']) allAddress = address.objects.all() for row in allAddress: writer.writerow([row.email, row.name]) return response from django.db import connection, transaction def truncateTable(request): cursor = connection.cursor() cursor.execute("TRUNCATE TABLE ADDRESS") return addressbook(request)
# 唉没想到枚举,一开始想着怎么直接模拟到给定时间了 class Solution: def minCostSetTime(self, startAt: int, moveCost: int, pushCost: int, targetSeconds: int) -> int: a, res = [0] * 4, sys.maxsize for i in range(1, 10000): a[0], a[1] = i // 1000, i//100 % 10 a[2], a[3] = i // 10 % 10, i % 10 if a[0]*600 + a[1]*60 + a[2]*10 + a[3] != targetSeconds: continue # 忽略前导零 j = 0 while j < 4 and not a[j]: j += 1 temp, k = 0, startAt while j < 4: if k != a[j]: k = a[j] temp += moveCost temp += pushCost j += 1 res = min(res, temp) return res
"""Extension management.""" from django.conf import settings from django.urls import include from django.urls import re_path from django.utils.encoding import smart_str class ModoExtension(object): """ Base extension class. Each Modoboa extension must inherit from this class to be considered as valid. """ name = None label = None version = "NA" description = "" needs_media = False always_active = False url = None topredirection_url = None def get_url(self): """Return extension base url.""" if self.url is None: return self.name return self.url def infos(self): """Information about this extension.""" return { "name": self.name, "label": self.label, "version": self.version, "description": self.description, "url": self.get_url(), "topredirection_url": self.topredirection_url, "always_active": self.always_active } def load_initial_data(self): """Declare extension data in this method.""" pass def load(self): """Add extension loading tasks in this method.""" pass class ExtensionsPool(object): """The extensions manager""" def __init__(self): self.extensions = {} def register_extension(self, ext, show=True): """Register an extension. :param ext: a class inheriting from ``Extension`` :param show: list the extension or not """ self.extensions[ext.name] = {"cls": ext, "show": show} def get_extension(self, name): """Retrieve the current instance of an extension.""" if name not in self.extensions: return None if "instance" not in self.extensions[name]: self.extensions[name]["instance"] = self.extensions[name]["cls"]() return self.extensions[name]["instance"] def get_extension_infos(self, name): """Return information about the specified extension.""" instance = self.get_extension(name) if instance is None: return None return instance.infos() def load_extension(self, name): """Load a registered extension.""" __import__(name, locals(), globals(), [smart_str("modo_extension")]) extinstance = self.get_extension(name) if extinstance is None: return None extinstance.load() return extinstance def load_all(self): """Load all defined extensions. Each extension must be loaded in order to integrate with Modoboa. Only enabled and special extensions are loaded but urls are always returned. The reason is urls are imported only once so must know all of them when the python process starts. Otherwise, it would lead to unexpected 404 errors :p :return: a list of url maps """ for ext in settings.MODOBOA_APPS: self.load_extension(ext) def get_urls(self, category="app"): """Get all urls defined by extensions.""" result = [] for ext_name in list(self.extensions.keys()): ext = self.get_extension(ext_name) if category == "api": root = "" pattern = "{}.urls_api" else: root = r"^{}/".format(ext.get_url()) pattern = "{}.urls" try: result.append( re_path(root, include(pattern.format(ext_name))) ) except ImportError: # No urls for this extension pass return result def list_all(self): """List all defined extensions.""" result = [] for extname, extdef in list(self.extensions.items()): if not extdef["show"]: continue infos = self.get_extension_infos(extname) infos["id"] = extname result += [infos] return sorted(result, key=lambda i: i["name"]) exts_pool = ExtensionsPool()
#!/usr/bin/python from Emakefun_MotorDriver import PWM import time class Emakefun_StepperMotor: MICROSTEPS = 8 MICROSTEP_CURVE = [0, 50, 98, 142, 180, 212, 236, 250, 255] #MICROSTEPS = 16 # a sinusoidal curve NOT LINEAR! #MICROSTEP_CURVE = [0, 25, 50, 74, 98, 120, 141, 162, 180, 197, 212, 225, 236, 244, 250, 253, 255] def __init__(self, controller, num, steps=200): self.MC = controller self.revsteps = steps self.motornum = num self.sec_per_step = 0.1 self.steppingcounter = 0 self.currentstep = 0 num -= 1 if (num == 0): #self.PWMA = 8 self.AIN2 = 13 self.AIN1 = 11 #self.PWMB = 13 self.BIN2 = 10 self.BIN1 = 8 elif (num == 1): #self.PWMA = 2 self.AIN2 = 2 self.AIN1 = 4 #self.PWMB = 7 self.BIN2 = 5 self.BIN1 = 7 else: raise NameError('MotorHAT Stepper must be between 1 and 2 inclusive') def setSpeed(self, rpm): self.sec_per_step = 60.0 / (self.revsteps * rpm) self.steppingcounter = 0 def oneStep(self, dir, style): pwm_a = pwm_b = 255 # first determine what sort of stepping procedure we're up to if (style == Emakefun_MotorHAT.SINGLE): if ((self.currentstep/(self.MICROSTEPS/2)) % 2): # we're at an odd step, weird if (dir == Emakefun_MotorHAT.FORWARD): self.currentstep += self.MICROSTEPS/2 else: self.currentstep -= self.MICROSTEPS/2 else: # go to next even step if (dir == Emakefun_MotorHAT.FORWARD): self.currentstep += self.MICROSTEPS else: self.currentstep -= self.MICROSTEPS if (style == Emakefun_MotorHAT.DOUBLE): if not (self.currentstep/(self.MICROSTEPS/2) % 2): # we're at an even step, weird if (dir == Emakefun_MotorHAT.FORWARD): self.currentstep += self.MICROSTEPS/2 else: self.currentstep -= self.MICROSTEPS/2 else: # go to next odd step if (dir == Emakefun_MotorHAT.FORWARD): self.currentstep += self.MICROSTEPS else: self.currentstep -= self.MICROSTEPS if (style == Emakefun_MotorHAT.INTERLEAVE): if (dir == Emakefun_MotorHAT.FORWARD): self.currentstep += self.MICROSTEPS/2 else: self.currentstep -= self.MICROSTEPS/2 if (style == Emakefun_MotorHAT.MICROSTEP): if (dir == Emakefun_MotorHAT.FORWARD): self.currentstep += 1 else: self.currentstep -= 1 # go to next 'step' and wrap around self.currentstep += self.MICROSTEPS * 4 self.currentstep %= self.MICROSTEPS * 4 pwm_a = pwm_b = 0 if (self.currentstep >= 0) and (self.currentstep < self.MICROSTEPS): pwm_a = self.MICROSTEP_CURVE[self.MICROSTEPS - self.currentstep] pwm_b = self.MICROSTEP_CURVE[self.currentstep] elif (self.currentstep >= self.MICROSTEPS) and (self.currentstep < self.MICROSTEPS*2): pwm_a = self.MICROSTEP_CURVE[self.currentstep - self.MICROSTEPS] pwm_b = self.MICROSTEP_CURVE[self.MICROSTEPS*2 - self.currentstep] elif (self.currentstep >= self.MICROSTEPS*2) and (self.currentstep < self.MICROSTEPS*3): pwm_a = self.MICROSTEP_CURVE[self.MICROSTEPS*3 - self.currentstep] pwm_b = self.MICROSTEP_CURVE[self.currentstep - self.MICROSTEPS*2] elif (self.currentstep >= self.MICROSTEPS*3) and (self.currentstep < self.MICROSTEPS*4): pwm_a = self.MICROSTEP_CURVE[self.currentstep - self.MICROSTEPS*3] pwm_b = self.MICROSTEP_CURVE[self.MICROSTEPS*4 - self.currentstep] # go to next 'step' and wrap around self.currentstep += self.MICROSTEPS * 4 self.currentstep %= self.MICROSTEPS * 4 # only really used for microstepping, otherwise always on! #self.MC._pwm.setPWM(self.PWMA, 0, pwm_a*16) #self.MC._pwm.setPWM(self.PWMB, 0, pwm_b*16) # set up coil energizing! coils = [0, 0, 0, 0] if (style == Emakefun_MotorHAT.MICROSTEP): if (self.currentstep >= 0) and (self.currentstep < self.MICROSTEPS): coils = [1, 1, 0, 0] elif (self.currentstep >= self.MICROSTEPS) and (self.currentstep < self.MICROSTEPS*2): coils = [0, 1, 1, 0] elif (self.currentstep >= self.MICROSTEPS*2) and (self.currentstep < self.MICROSTEPS*3): coils = [0, 0, 1, 1] elif (self.currentstep >= self.MICROSTEPS*3) and (self.currentstep < self.MICROSTEPS*4): coils = [1, 0, 0, 1] else: step2coils = [ [1, 0, 0, 0], [1, 1, 0, 0], [0, 1, 0, 0], [0, 1, 1, 0], [0, 0, 1, 0], [0, 0, 1, 1], [0, 0, 0, 1], [1, 0, 0, 1] ] coils = step2coils[int(self.currentstep/(self.MICROSTEPS/2))] #print "coils state = " + str(coils) self.MC.setPin(self.AIN2, coils[0]) self.MC.setPin(self.BIN1, coils[1]) self.MC.setPin(self.AIN1, coils[2]) self.MC.setPin(self.BIN2, coils[3]) return self.currentstep def step(self, steps, direction, stepstyle): s_per_s = self.sec_per_step lateststep = 0 if (stepstyle == Emakefun_MotorHAT.INTERLEAVE): s_per_s = s_per_s / 2.0 if (stepstyle == Emakefun_MotorHAT.MICROSTEP): s_per_s /= self.MICROSTEPS steps *= self.MICROSTEPS print (s_per_s , " sec per step") for s in range(steps): lateststep = self.oneStep(direction, stepstyle) time.sleep(s_per_s) if (stepstyle == Emakefun_MotorHAT.MICROSTEP): # this is an edge case, if we are in between full steps, lets just keep going # so we end on a full step while (lateststep != 0) and (lateststep != self.MICROSTEPS): lateststep = self.oneStep(dir, stepstyle) time.sleep(s_per_s) class Emakefun_DCMotor: def __init__(self, controller, num): self.MC = controller self.motornum = num in1 = in2 = 0 self._speed = 0 if (num == 0): in2 = 13 in1 = 11 elif (num == 1): in2 = 8 in1 = 10 elif (num == 2): in2 = 2 in1 = 4 elif (num == 3): in2 = 5 in1 = 7 else: raise NameError('MotorHAT Motor must be between 1 and 4 inclusive') #self.PWMpin = pwm self.IN1pin = in1 self.IN2pin = in2 def run(self, command): if not self.MC: return if (command == Emakefun_MotorHAT.FORWARD): self.MC.setPin(self.IN2pin, 0) self.MC.setPWM(self.IN1pin, self._speed*16) if (command == Emakefun_MotorHAT.BACKWARD): self.MC.setPin(self.IN1pin, 0) self.MC.setPWM(self.IN2pin, self._speed*16) if (command == Emakefun_MotorHAT.RELEASE): self.MC.setPin(self.IN1pin, 0) self.MC.setPin(self.IN2pin, 0) def setSpeed(self, speed): if (speed < 0): speed = 0 if (speed > 255): speed = 255 #self.MC._pwm.setPWM(self.PWMpin, 0, speed*16) self._speed = speed class Emakefun_Servo: def __init__(self, controller, num): self.MC = controller self.pin = [0, 1, 14, 15, 9, 12, 3, 6] self.PWM_pin = self.pin[num] self.currentAngle = 0 def writeServo(self, angle): pulse = 4096 * ((angle*11)+500) / 20000 self.MC.setPWM(self.PWM_pin, pulse) self.currentAngle = angle def writeServoWithSpeed(self, angle, speed): if (speed == 10): pulse = 4096 * ((angle * 11) + 500) / 20000 self.MC.setPWM(self.PWM_pin, pulse) else: if angle < self.currentAngle: for i in range(self.currentAngle, angle, -1): time.sleep(4 * (10 - speed) / 1000) pulse = 4096 * ((i * 11) + 500) / 20000 self.MC.setPWM(self.PWM_pin, pulse) else: for i in range(self.currentAngle, angle, 1): time.sleep(4 * (10 - speed) / 1000) pulse = 4096 * ((i * 11) + 500) / 20000 self.MC.setPWM(self.PWM_pin, pulse) self.currentAngle = angle def readDegrees(self): return self.currentAngle class Emakefun_MotorHAT: FORWARD = 1 BACKWARD = 2 BRAKE = 3 RELEASE = 4 SINGLE = 1 DOUBLE = 2 INTERLEAVE = 3 MICROSTEP = 4 def __init__(self, addr = 0x60, freq = 50): self._i2caddr = addr # default addr on HAT self._frequency = freq # default @1600Hz PWM freq self.servos = [ Emakefun_Servo(self, n) for n in range(8) ] self.motors = [ Emakefun_DCMotor(self, m) for m in range(4) ] self.steppers = [ Emakefun_StepperMotor(self, 1), Emakefun_StepperMotor(self, 2) ] self._pwm = PWM(addr, debug=False) self._pwm.setPWMFreq(self._frequency) def setPin(self, pin, value): if (pin < 0) or (pin > 15): raise NameError('PWM pin must be between 0 and 15 inclusive') if (value != 0) and (value != 1): raise NameError('Pin value must be 0 or 1!') if (value == 0): self._pwm.setPWM(pin, 0, 4096) if (value == 1): self._pwm.setPWM(pin, 4096, 0) def setPWM(self, pin, value): if (value > 4095): self._pwm.setPWM(pin, 4096, 0) else: self._pwm.setPWM(pin, 0, value) def getStepper(self, steps, num): if (num < 1) or (num > 2): raise NameError('MotorHAT Stepper must be between 1 and 2 inclusive') return self.steppers[num-1] def getMotor(self, num): if (num < 1) or (num > 4): raise NameError('MotorHAT Motor must be between 1 and 4 inclusive') return self.motors[num-1] def getServo(self, num): if (num < 1) or (num > 8): raise NameError('MotorHAT Motor must be between 1 and 8 inclusive') return self.servos[num-1]
import matplotlib.pyplot as plt import pandas as pd df = pd.read_csv('E:\csvdhf5xlsxurlallfiles\percent-bachelors-degrees-women-usa.csv') year=df['Year'] physical_science=df['Physical Sciences'] computer_science=df['Computer Science'] plt.style.use('ggplot') plt.subplot(2,2,1) plt.plot(year, physical_science, color='blue') plt.title('physical science') plt.subplot(2,2,2) plt.plot(year, computer_science, color='red') plt.title('computer science') #add annotation cs_max=computer_science.max() yr_max=year[computer_science.argmax()] plt.annotate('maximum', xy=(yr_max, cs_max), xytext=(yr_max+5, cs_max+5), arrowprops=dict(facecolor='k')) plt.show()
#!/usr/bin/env python ''' Tests ParseTree and downstream ParseTreeNode. ''' __author__ = 'Aditya Viswanathan' __email__ = 'aditya@adityaviswanathan.com' import os import sys import unittest from parse_tree import ParseTree # Append parent dir to $PYTHONPATH to import ReportTraverser, whose public # methods have bindings into the ParseTreeNode. my_path = os.path.dirname(os.path.abspath(__file__)) sys.path.append(os.path.abspath(os.path.join(my_path, os.pardir))) import report_utils class ParseTreeBasic(unittest.TestCase): @classmethod def setUpClass(self): pass def test_basic(self): answers = { 'Add(2)' : 2, 'Add(2,1)' : 3.0, 'Subtract(2,1)' : 1.0, 'Multiply(2,1)' : 2.0, 'Divide(2,1)' : 2.0, 'Multiply(2.5, 2.5)' : 6.25, 'Count(2.5, 2.5, 4)' : 3.0, 'Average(1, 2, 3)' : 2.0, 'Average(2, 2.5, 3)' : 2.5, 'Ceiling(2.3)' : 3.0, 'Round(2.156, 2)' : 2.16 } for input_str, val in answers.iteritems(): self.assertEqual(ParseTree(input_str).evaluate_tree().val, val) def test_nesting(self): answers = { 'Add(Add(2,1), Add(3,1))' : 7.0, 'Subtract( Multiply( 2.5, 3.5), Add(3, 1))' : 4.75 } for input_str, val in answers.iteritems(): self.assertEqual(ParseTree(input_str).evaluate_tree().val, val) def test_varargs(self): answers = { 'Add(1, 2.0, 3, 5, 7.5)' : 18.5, 'Subtract( Add(2, 3), Add (3,4), Add( 4,5))' : -11 } for input_str, val in answers.iteritems(): self.assertEqual(ParseTree(input_str).evaluate_tree().val, val) def test_comparators(self): answers = { 'GreaterThan(1,1)' : 0, 'GreaterThan(1.1,1)' : 1, 'GreaterThan( 1 , 1.1 )' : 0, 'GreaterEqualThan(1,1)' : 1, 'GreaterEqualThan(1.1,1.1)' : 1, 'GreaterEqualThan(1.1,1.2)' : 0, 'LessThan(1,1)' : 0, 'LessThan(1.1,1)' : 0, 'LessThan( 1 , 1.1 )' : 1, 'LessEqualThan(1,1)' : 1, 'LessEqualThan(1.1,1.1)' : 1, 'LessEqualThan(1.1,1.2)' : 1, 'LessEqualThan(0.1, 10, 1, 100)' : 1 # TODO(aditya): clean up varargs definition. } for input_str, val in answers.iteritems(): self.assertEqual(ParseTree(input_str).evaluate_tree().val, val) def test_if_else(self): answers = { 'IfElse(GreaterThan(1,1), 1, -1)' : '-1', 'IfElse(GreaterThan(2,1), 1, -1)' : '1', } for input_str, val in answers.iteritems(): self.assertEqual(ParseTree(input_str).evaluate_tree().val, val) class ParseTreeTraverser(unittest.TestCase): @classmethod def setUpClass(self): data_file = open('testdata/cashflow_test.csv').name axis_decision = report_utils.AxisDecision(data_file) axis_decision.decide() self.traverser = report_utils.ReportTraverser( data_file, axis_decision.date_axis, axis_decision.date_index, axis_decision.title_axis, axis_decision.title_index) def test_traverser_bindings(self): answers = { 'Count(get_dates(0))' : 14, 'Count( get_titles ( 0 ) )' : 51, 'get_cell_by_text (0, Late Fee, JAN 17 )' : '0.0', 'Add(get_cell_by_text (0, Late Fee, OCT 17 ), get_cell_by_index(0, 5, 11))' : 510, 'Ceiling(Average(get_cells_by_date(0, SEP 17)))' : 1122, 'Ceiling(Average(get_cells_by_date(0, JAN 17 )))' : 1268, 'Count(get_cells_by_date(0, JAN 17 ))' : 50, 'IfElse(GreaterThan(2,1), Count(get_dates(0)), Count(get_titles(0)))' : 14, } for input_str, val in answers.iteritems(): self.assertEqual( ParseTree(input_str, [self.traverser]).evaluate_tree().val, val) def test_if_else_list_response(self): answers = { 'IfElse(GreaterThan(2,1), get_dates(0), get_titles(0))' : ['Account Name', 'JAN 17', 'FEB 17'], } for input_str, val in answers.iteritems(): res = ParseTree(input_str, [self.traverser]).evaluate_tree(is_list=True) self.assertEqual([i.val for i in res][0:3], val) answers = { 'Count(IfElse(GreaterThan(2,1), get_dates(0), get_titles(0)))' : 14, 'Count(IfElse(GreaterThan(1,2), get_dates(0), get_titles(0)))' : 51, 'Add(IfElse(GreaterThan(1,2), 1, Count(get_titles(0))), \ IfElse(GreaterThan(2,1), 1, Count(get_titles(0))))' : 52 } for input_str, val in answers.iteritems(): self.assertEqual( ParseTree(input_str, [self.traverser]).evaluate_tree().val, val) def test_list_response(self): answers = { 'get_dates(0)' : ['AUG 17', 'SEP 17', 'OCT 17'], 'get_cells_by_title(0, Discount/Promotion)' : ['0.0', '0.0', '-50.0'], 'get_cells_by_date(0, SEP 17)' : ['$4,600.00', '', '$9,234.00'] } for input_str, val in answers.iteritems(): res = ParseTree(input_str, [self.traverser]).evaluate_tree(is_list=True) self.assertGreaterEqual(len(res), 3) self.assertEqual([i.val for i in res][-6:-3], val) def test_title_annotations(self): answers = { 'get_cells_by_date(0, JAN 17)' : [ 'Income', 'Rent-Tempe', 'Discount/Promotion' ], 'get_cells_by_title(0, Discount/Promotion)' : [ 'Discount/Promotion', 'Discount/Promotion', 'Discount/Promotion' ] } for input_str, val in answers.iteritems(): res = ParseTree(input_str, [self.traverser]).evaluate_tree(is_list=True) self.assertGreaterEqual(len(res), 3) self.assertEqual([i.title.val for i in res][:3], val) def test_date_annotations(self): answers = { 'get_cells_by_date(0, JAN 17)' : ['JAN 17', 'JAN 17', 'JAN 17'], 'get_cells_by_title(0, Discount/Promotion)' : ['JAN 17', 'FEB 17', 'MAR 17'] } for input_str, val in answers.iteritems(): res = ParseTree(input_str, [self.traverser]).evaluate_tree(is_list=True) self.assertGreaterEqual(len(res), 3) self.assertEqual([i.date.val for i in res][:3], val) def test_nested_annotations(self): q = 'Add(get_cell_by_index(0, 2, 10), get_cell_by_index(0,3, 10))' res = ParseTree(q, [self.traverser]).evaluate_tree() self.assertEqual(res.val, 10309) self.assertEqual(res.date.val, 'OCT 17') # TODO(aditya): Establish and test well-defined behavior for differing # annotations in arguments to functions with singleton response (as # above). Currently, we merely use the annotation of args[0] element. def test_vec(self): vector_funcs = { # TODO(aditya): Enable test below when divide by zero bug fix is implemented. # 'VectorDivide' : (12800, 'Discount/Promotion'), 'VectorAdd' : (-166.2, 'Discount/Promotion'), 'VectorSubtract' : (66.2, 'Discount/Promotion'), 'VectorMultiply' : (1789440, 'Discount/Promotion') } fixed_index_check = 9 for func, out in vector_funcs.iteritems(): q0 = 'get_cells_by_title(0, Discount/Promotion)' q1 = 'get_cells_by_date(0,OCT 17)' q2 = 'get_cells_by_date(0,NOV 17)' q = func + '(' + q0 + ', ' + q1 + ', ' + q2 + ')' res = ParseTree(q, [self.traverser]).evaluate_tree(is_list=True) self.assertEqual(round([i.val for i in res][fixed_index_check], 1), out[0]) self.assertEqual([i.title for i in res][fixed_index_check].val, out[1]) class ParseTreeTraversers(unittest.TestCase): @classmethod def setUpClass(self): data_file = open('testdata/cashflow_test.csv').name axis_decision = report_utils.AxisDecision(data_file) axis_decision.decide() self.traversers = [ report_utils.ReportTraverser(data_file, axis_decision.date_axis, axis_decision.date_index, axis_decision.title_axis, axis_decision.title_index), report_utils.ReportTraverser(data_file, axis_decision.date_axis, axis_decision.date_index, axis_decision.title_axis, axis_decision.title_index)] def test_eval_trees(self): q1 = 'Add(get_cell_by_index(0, 2, 10), get_cell_by_index(0, 3, 10))' q2 = 'Add(get_cell_by_index(0, 3, 10), get_cell_by_index(0, 4, 10))' tree1 = ParseTree(q1, [self.traversers[0]]) tree2 = ParseTree(q2, [self.traversers[1]]) responses = ParseTree.evaluate_trees([tree1, tree2]) self.assertEqual(responses[0].val, 10309) self.assertEqual(responses[1].val, -50) def test_eval_manytrees(self): q = 'Add(get_cell_by_index(0, 2, 10), get_cell_by_index(0, 3, 10))' trees = [ParseTree(q, [self.traversers[0]])] * 100 responses = ParseTree.evaluate_trees(trees) self.assertEqual(responses[0].val, 10309) self.assertEqual(responses[99].val, 10309) def test_eval_tree_by_index(self): q = 'Add(get_cell_by_index(0, 2, 10), ' + \ 'get_cell_by_index(1, 5, 10))' res = ParseTree(q, self.traversers).evaluate_tree() self.assertEqual(res.val, 10579) class ParseTreeErrors(unittest.TestCase): @classmethod def setUpClass(self): data_file = open('testdata/cashflow_test.csv').name axis_decision = report_utils.AxisDecision(data_file) axis_decision.decide() self.traverser = report_utils.ReportTraverser( data_file, axis_decision.date_axis, axis_decision.date_index, axis_decision.title_axis, axis_decision.title_index) def test_nonexistent_func(self): nonexistents = [ 'IDONTEXIST()', 'IDONTEXIST(1.1)' ] with self.assertRaises(Exception): for nonexistent in nonexistents: ParseTree(nonexistent, [self.traverser]).evaluate_tree() def test_invalid_argc(self): invalids = [ 'Floor(1.1, 2.1)', 'Floor(get_cell_by_index(0, 2, 10), get_cell_by_index(0, 3, 10))', 'get_cell_by_index(0, 2, 10, 20)' ] with self.assertRaises(Exception): for invalid in invalids: ParseTree(invalid, [self.traverser]).evaluate_tree() if __name__ == '__main__': unittest.main()
# -*- coding: utf-8 -*- ''' Created on Oct 27, 2009 @author: sxin ''' import MySQLdb from MySQLdb.cursors import DictCursor #import MySQLdb.cursors class MySql: _conn = '' def __init__(self, host, user, password, db, port=3306): i = host.find(':') if i >= 0: host, port = host[:i], int(host[i+1:]) else: host, port = host, port self._conn = MySQLdb.connect(user=user, passwd=password, db=db, charset='utf8', host=host, port=port, cursorclass=DictCursor, connect_timeout=10) def query(self, sql, params=None): try: c = self._conn.cursor() c.execute(sql, params) except: raise return c def commit(self): """ 提交事务 """ self.query('COMMIT')
# @Time : 2018-9-10 # @Author : zxh import threading import traceback import os import datetime import sys _file_path = os.path.realpath(__file__) _src_index = _file_path.rfind('src') if _src_index == -1: _file_path = sys.argv[0] _src_index = _file_path.rfind('src') if _src_index == -1: PROJECT_PATH = None else: PROJECT_PATH =_file_path[0:_src_index] print('PROJECT PATH:',PROJECT_PATH) print() def relative_project_path(*args): if PROJECT_PATH is None: raise Exception('PROJECT_PATH is None') return os.path.join(PROJECT_PATH, *args) # ... def wrapper_mutex(instance, func, mutex_name='', timeout=1): mutex_name = '_mutex_' + mutex_name mutex = None if mutex_name in dir(instance): mutex = instance.__getattribute__(mutex_name) else: mutex = threading.Lock() instance.__setattr__(mutex_name, mutex) def new_func(*args): if mutex.acquire(timeout=timeout): r = None try: r = func(*args) except: traceback.print_exc() mutex.release() return r else: print(func.__name__, 'acquire timeout') instance.__setattr__(func.__name__, new_func) def get_sort_index(a, reverse=True):#默认降序 b = [i for i in range(len(a))] c = list(zip(a, b)) c.sort(key = lambda x: x[0], reverse=reverse) _, b = zip(*c) return b def this_time(): now = datetime.datetime.now() date = now.strftime('%Y-%m-%d') t = now.strftime('%H-%M-%S') return date, t def today(): return datetime.datetime.now().strftime('%Y-%m-%d') def yesterday(): return (datetime.datetime.now() - datetime.timedelta(days=1)).strftime('%Y-%m-%d') __all__ = ['wrapper_mutex', 'relative_project_path', 'get_sort_index', 'today', 'this_time']
from flask import Flask, render_template, request, jsonify import pickle import numpy as np import pandas as pd from sklearn.pipeline import Pipeline from sklearn.linear_model import LogisticRegression from sklearn.preprocessing import MinMaxScaler app = Flask(__name__) app.config['TEMPLATES_AUTO_RELOAD'] = True @app.route('/', methods=['GET']) def index(): return render_template('cardio.html') pickle_file = open('model.pickle', 'rb') model = pickle.load(pickle_file) @app.route('/predict', methods=['POST']) def predict(): user_data = request.json age, gender, height, weight, pulse = user_data['age'], user_data['gender'], user_data['height'], user_data['weight'], user_data['pulse'] food, relative, smoke, heaviest = user_data['food'], user_data['relative'], user_data['smoke'], user_data['heaviest'] race, pressure, salt, supps, tv = user_data['race'], user_data['pressure'], user_data['salt'], user_data['supps'], user_data['tv'] age_smoke, milk, income = user_data['age_smoke'], user_data['milk'], user_data['income'] risk = _model_prediction(income, pulse, age_smoke, race, height, weight, supps, food, milk, gender, smoke, salt, pressure, tv, relative, heaviest, age) return jsonify({'risk': risk}) def _model_prediction(income, pulse, age_smoke, race, height, weight, supps, food, milk, gender, smoke, salt, pressure, tv, relative, heaviest, age): income, tv, heaviest, bmi, race1, race2, race3, race4, race6, race7 = _clean_data(income, tv, heaviest, height, weight, race) X = np.array([income, pulse, age_smoke, race1, bmi, supps, food, race6, race4, race3, race2, milk, gender, race7, smoke, salt, pressure, tv, relative, heaviest, age]).reshape(1, -1) y_hat = model.predict_proba(X) if y_hat[:,1] > 0.5: #probability threshold of 50% return 'HIGH-RISK' elif y_hat[:,1] <= 0.5: return 'NOT HIGH-RISK' def _clean_data(income, tv, heaviest, height, weight, race): race_array = np.zeros(6) race_array[race-1] = 1 #creates array: value of 1 at selected race, else 0 race1, race2, race3, race4, race6, race7 = race_array #deconstruct array poverty_ratio = income/20000 tv = round(tv,1) heaviest = round(heaviest,1) bmi = (weight*0.453592)/(height*0.0254)**2 return poverty_ratio, tv, heaviest, bmi, race1, race2, race3, race4, race6, race7 if __name__ == '__main__': app.run()
#!/usr/bin/python import re import sqlite3 from BeautifulSoup import BeautifulSoup SELECT_TMPL = '''SELECT asin, html FROM fresh;''' INSERT_TMPL = '''INSERT INTO fresh_categories VALUES (?,?,?)''' conn = sqlite3.connect('../../data/data') c = conn.cursor() c.execute('''DELETE FROM fresh_categories where 1''') conn.commit() def loadDatabase(asin, categories): zipped = zip([asin] * len(categories), categories, \ reversed(range(len(categories)))) c.executemany(INSERT_TMPL, zipped) conn.commit() def parseCategories(asin, soup): category_parent_node = soup.find('div', {'class': 'productSims'}) if category_parent_node != None: categories = category_parent_node.findAll('span') categories = map(lambda x: x.text, categories)[:(len(categories)-1)] loadDatabase(asin, categories) cs = conn.cursor() cs.execute(SELECT_TMPL) for row in cs: asin = row[0] input = row[1] soup = BeautifulSoup(input.encode('ascii', 'replace')) parseCategories(asin, soup)
# url https://www.cnblogs.com/wuzhanpeng/p/4261015.html#3767420 import pygame # 导入 pygame 库 from pygame.locals import * # 导入 pygame 库中的一些常量 from sys import exit # 导入 sys 库中的exit 函数 import time from random import randint class Enemy(pygame.sprite.Sprite): def __init__(self, enemy_surface, enemy_init_pos): pygame.sprite.Sprite.__init__(self) self.image = enemy_surface self.rect = self.image.get_rect() self.rect.topleft = enemy_init_pos self.speed = 2 self.down_index = 0 def update(self): self.rect.top += self.speed if self.rect.top >= SCREEN_HEIGHT: self.kill() class Bullet(pygame.sprite.Sprite): def __init__(self, bullet_surface, bullet_init_pos): pygame.sprite.Sprite.__init__(self) self.image = bullet_surface self.rect = self.image.get_rect() self.rect.topleft = bullet_init_pos self.speed = 8 def update(self): self.rect.top -= self.speed if self.rect.top <= - self.rect.height: self.kill() class Hero(pygame.sprite.Sprite): def __init__(self, hero_surface, hero_init_pos): pygame.sprite.Sprite.__init__(self) self.image = hero_surface self.rect = self.image.get_rect() self.rect.topleft = hero_init_pos self.speed = 6 self.is_hit = False self.bullet1 = pygame.sprite.Group() def single_shoot(self, bullet1_surface): bullet1 = Bullet(bullet1_surface, self.rect.midtop) self.bullet1.add(bullet1) def move(self, offset): x = self.rect.left + offset[pygame.K_RIGHT]- offset[pygame.K_LEFT] y = self.rect.top + offset[pygame.K_DOWN] - offset[pygame.K_UP] if x <0: self.rect.left = 0 elif x > SCREEN_WIDTH - self.rect.width: self.rect.left = SCREEN_WIDTH - self.rect.width else: self.rect.left = x if y <0: self.rect.top = 0 elif x > SCREEN_HEIGHT - self.rect.height: self.rect.top = SCREEN_HEIGHT - self.rect.height else: self.rect.top = y # 定义窗口的分辨率 SCREEN_WIDTH = 480 SCREEN_HEIGHT = 640 ticks = 0 # 定义画面帧率 FRAME_RATE = 60 # 定义动画周期(帧数) ANIMATE_CYCLE = 30 # 初始化游戏 pygame.init() # 初始化一个用于显示的窗口 screen = pygame.display.set_mode([SCREEN_WIDTH, SCREEN_HEIGHT]) # 设置窗口标题 pygame.display.set_caption('this is my first pygame-program') offset = {pygame.K_LEFT:0, pygame.K_RIGHT:0, pygame.K_UP:0, pygame.K_DOWN:0} # 载入背景图 background = pygame.image.load('resources/image/background.png') # 载入资源图片 shoot_img = pygame.image.load('resources/image/shoot.png') # 用subsurface 剪切读入的图片 # hero1_rect = pygame.Rect(0,99,102, 126) # hero2_rect = pygame.Rect(165,360,102,126) # hero1 = shoot_img.subsurface(hero1_rect) # hero2 = shoot_img.subsurface(hero2_rect) hero_pos = [200,500] bullet1_surface = shoot_img.subsurface(pygame.Rect(1004, 987, 9, 21)) enemy1_surface = shoot_img.subsurface(pygame.Rect(534, 612, 57, 43)) enemy1_down_surface = [] enemy1_down_surface.append(shoot_img.subsurface(pygame.Rect(267, 347, 57, 43))) enemy1_down_surface.append(shoot_img.subsurface(pygame.Rect(873, 697, 57, 43))) enemy1_down_surface.append(shoot_img.subsurface(pygame.Rect(267, 296, 57, 43))) enemy1_down_surface.append(shoot_img.subsurface(pygame.Rect(930, 697, 57, 43))) hero_surface = [] hero_surface.append(shoot_img.subsurface(pygame.Rect(0, 99, 102, 126))) hero_surface.append(shoot_img.subsurface(pygame.Rect(165, 360, 102, 126))) hero_surface.append(shoot_img.subsurface(pygame.Rect(165, 234, 102, 126))) hero_surface.append(shoot_img.subsurface(pygame.Rect(330, 624, 102, 126))) hero_surface.append(shoot_img.subsurface(pygame.Rect(330, 498, 102, 126))) hero_surface.append(shoot_img.subsurface(pygame.Rect(432, 624, 102, 126))) hero = Hero(hero_surface[0], hero_pos) clock = pygame.time.Clock() enemy_group = pygame.sprite.Group() enemy_down_group = pygame.sprite.Group() hero_down_index = 1 gameover = pygame.image.load('resources/image/gameover.png') # 事件循环 (main loop) while True: clock.tick(FRAME_RATE) # 绘制背景 screen.blit(background, (0,0)) if hero.is_hit: if ticks %(ANIMATE_CYCLE//2) ==0: hero_down_index +=1 hero.image = hero_surface[hero_down_index] if hero_down_index == 5: break else: hero.image = hero_surface[ticks//(ANIMATE_CYCLE//2)] # if ticks % 50 <25: # screen.blit(hero1, hero_pos) # else: # screen.blit(hero2, hero_pos) if ticks >= ANIMATE_CYCLE: ticks = 0 # hero.image = hero_surface[ticks//(ANIMATE_CYCLE//2)] if ticks %10 ==0: hero.single_shoot(bullet1_surface) hero.bullet1.update() hero.bullet1.draw(screen) if ticks %30 ==0: enemy = Enemy(enemy1_surface, [randint(0, SCREEN_WIDTH-enemy1_surface.get_width()),- enemy1_surface.get_height()]) enemy_group.add(enemy) enemy_group.update() enemy_group.draw(screen) enemy_down_group.add(pygame.sprite.groupcollide(enemy_group, hero.bullet1, True, True)) for enemy1_down in enemy_down_group: screen.blit(enemy1_down_surface[enemy1_down.down_index], enemy1_down.rect) if ticks % (ANIMATE_CYCLE//2) ==0: if enemy1_down.down_index <3: enemy1_down.down_index +=1 else: enemy_down_group.remove(enemy1_down) enemy_down_list = pygame.sprite.spritecollide(hero, enemy_group, True) if len(enemy_down_list) >0: enemy_down_group.add(enemy_down_list) hero.is_hit = True screen.blit(hero.image, hero.rect) ticks += 1 # 更新屏幕 pygame.display.update() # 处理游戏推出 # 从消息队列中循环取 for event in pygame.event.get(): if event.type == pygame.QUIT: print("exit") pygame.quit() exit() if event.type == pygame.KEYDOWN: if event.key in offset: offset[event.key] = 3 elif event.type == pygame.KEYUP: if event.key in offset: offset[event.key] =0 # offset_x = offset[pygame.K_RIGHT] - offset[pygame.K_LEFT] # offset_y = offset[pygame.K_DOWN] - offset[pygame.K_UP] # print(offset_x,"------", offset_y) # # time.sleep(1) # hero_pos = [hero_pos[0] + offset_x, hero_pos[1] + offset_y] hero.move(offset) screen.blit(gameover, (0, 0)) # 玩家坠毁后退出游戏 while True: pygame.display.update() for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() exit()
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Jul 18 11:51:58 2018 Code to test models of PSFs @author: ppxee """ import numpy as np from astropy.io import fits import matplotlib.pyplot as plt from scipy.stats import norm from scipy.optimize import curve_fit plt.close('all') def radial_profile(data, center): y, x = np.indices((data.shape)) #create coordinate grid r = np.sqrt((x - center[0])**2 + (y - center[1])**2) #get radius values for grid r = r.astype(np.int) tbin = np.bincount(r.ravel(), data.ravel()) # counts number of times value # of radius occurs in the psf # weighted by the data nr = np.bincount(r.ravel()) # counts number of radii values in psf radialprofile = tbin / nr # as weighted is r*data then get profile by # dividing by unweighted counts of r values. return radialprofile def FWHM2sigma_arcsecs(FWHM): ''' Function to convert the FWHM of a distribution into a sigma for that distribution. It assumes the distribution is gaussian. Input: FWHM = Full width half maximum of a distriubtution (in my case usually of an object from SExtractor) Output: sigma = standard deviation value of a guassian distribution with the given FWHM. This roughly equates to the psf of the object. ''' return FWHM/np.sqrt(8*np.log(2)) def normalise(array): return array/np.nansum(array) def getguass(sdata, sem): colname = 'FWHM_WORLD_' colnames = colname+sem mag = sdata['MAG_APER_'+sem][:,4] mask1 = mag > 15 #removes saturated mask2 = mag < 20 #removes very faint stars mask = mask1 * mask2 tempsdata = sdata[mask] fwhm = np.median(tempsdata[colnames]) * 3600 print(sem+'='+str(fwhm)) sig = FWHM2sigma_arcsecs(fwhm) guas = norm.pdf(r, 0, sig) # guas = normalise(guas) return guas, sig def my_gaussian(xdata, mean, sigma): guass = (1/(sigma*np.sqrt(2*np.pi))) * np.exp(-0.5 * ((xdata - mean)/sigma)**2) return guass def origin_gaussian(xdata, sigma): guass = (1/(sigma*np.sqrt(2*np.pi))) * np.exp(-0.5 * ((xdata - 0)/sigma)**2) return guass def basic_gaussian(xdata, a, b, c): guass = a * np.exp(-((xdata - b)**2)/(2*(c**2))) return guass sdata = fits.open('mag_flux_tables/stars_mag_flux_table_new_limited.fits')[1].data oldsdata = fits.open('mag_flux_tables/stars_mag_flux_table.fits')[1].data hdr08B = fits.getheader('Images/UDS_08B_K.fits') # random year (same in all) const = -hdr08B['CD1_1'] # constant that defines unit conversion for FWHM sems = ['10B']#['05B', '06B', '07B', '08B', '09B', '10B', '11B', '12B'] n=1 for sem in sems: if sem == '10B': psf = fits.getdata('PSFs/limited_'+sem+'_K_PSF.fits') else: psf = fits.getdata('PSFs/new_limited_'+sem+'_K_PSF.fits') # find radial profiles radialprofile = radial_profile(psf, [63,63]) # radialprofile = normalise(radialprofile) sqrtrp = np.sqrt(radialprofile) r = np.arange(0,90,1) * const * 3600 # define radius values # find gaussian profile from FWHM guas, sig1 = getguass(sdata, sem) sqrtguas = np.sqrt(guas) # # # plot psf (logged so you can see it) # plt.figure(1) # plt.subplot(121) # plt.imshow(np.log(psf)) # plt.title('new PSF') # # # plot radial profile on same plot with its model # plt.subplot(322) # plt.plot(r, radialprofile, label=sem) # plt.xlabel('Radius (arcsecs)') # plt.ylabel('Flux') # plt.legend() # plt.subplot(324) # plt.plot(r, sqrtrp, label=sem) # plt.xlabel('Radius (arcsecs)') # plt.ylabel('sqrt(Flux)') # plt.legend() # plt.subplot(326) # plt.plot(r, radialprofile, label=sem) # plt.yscale('log') # plt.xlabel('Radius (arcsecs)') # plt.ylabel('log(Flux)') # plt.legend() # plt.tight_layout(pad=1) # n+=1 # n += 3 ### set up plots wit radial profile ### plt.figure(1) plt.subplot(211) plt.title('My gaussian function') plt.plot(r, sqrtrp, label=sem+' real') plt.xlabel('Radius (arcsecs)') plt.ylabel('sqrt(Flux)') plt.xlim(xmin=0, xmax=1.5) plt.legend() plt.subplot(212) plt.plot(r, radialprofile, label=sem+' after') plt.xlabel('Radius (arcsecs)') plt.ylabel('Flux') plt.xlim(xmin=0, xmax=1.5) plt.legend() ## Make test guassians so you can see how it changes ### #sigs = np.linspace(sig1, sig1+1, 10) #for sig in sigs: # # gaus2 = my_gaussian(r, 0, sig) # sqrtgaus2 = np.sqrt(gaus2) # # plt.figure(1) # plt.subplot(211) # plt.plot(r, sqrtgaus2, '--', label=sem+' Model') # plt.legend() # # plt.subplot(212) # plt.plot(r, gaus2, '--', label=sem+' Model') # plt.legend() # Try curve_fit function init_vals = [0, sig1] popt, pcov = curve_fit(my_gaussian, r, radialprofile, p0=init_vals) fitgaus = my_gaussian(r, popt[0], popt[1]) sqrtfitgaus = np.sqrt(fitgaus) fitfwhm = popt[1] * np.sqrt(8*np.log(2)) plt.figure(1) plt.subplot(211) plt.plot(r, sqrtfitgaus, '--', label=sem+' 2 param fit') plt.legend() plt.subplot(212) plt.plot(r, fitgaus, '--', label=sem+' 2 param fit') plt.legend() ## Try curve_fit function with fixed mean #popt, pcov = curve_fit(origin_gaussian, r, radialprofile, p0=sig1) # #fitgaus2 = origin_gaussian(r, popt) #sqrtfitgaus2 = np.sqrt(fitgaus2) #fitfwhm = popt * np.sqrt(8*np.log(2)) # #plt.figure(1) #plt.subplot(211) #plt.plot(r, sqrtfitgaus2, '--', label=sem+' 1 param fit') #plt.legend() # #plt.subplot(212) #plt.plot(r, fitgaus2, '--', label=sem+' 1 param fit') #plt.legend() # Try curve_fit function with 3 params init_vals = [1, 0, sig1] popt, pcov = curve_fit(basic_gaussian, r, radialprofile, p0=init_vals) fitgaus2 = basic_gaussian(r, popt[0], popt[1], popt[2]) sqrtfitgaus2 = np.sqrt(fitgaus2) plt.figure(1) plt.subplot(211) plt.plot(r, sqrtfitgaus2, '--', label=sem+' 3 param fit') plt.legend() plt.subplot(212) plt.plot(r, fitgaus2, '--', label=sem+' 3 param fit') plt.legend()
def printList(value): print(value[0], end='') for i in range (1, len(value)): if i == (len(value) - 1): print(', and ' + value[i]) else : print(', ' + value[i], end = '') spam = ['apples', 'bananas', 'tofu', 'cats'] printList(spam)
import numpy as np xs = [] ys = [] try: while True: x, y = map(float, input().split()) xs.append([1,x]) ys.append(y) except: pass for i in range (0,len(xs)): for j in range (2,len(xs)): xs[i].append(pow(xs[i][1],j)) ans = np.linalg.solve(xs,ys) for i in range (0,len(ans)): print('a'+str(i)+':',ans[i])
""" Convert a Peglet grammar to a Parson one. """ import re from parson import Grammar, alter name = r'[A-Za-z_]\w*' grammar = Grammar(r""" grammar : _? rule* !/./. rule : name _ '= ' :equ token* :'.' _?. token : '|' :'|' | /(\/\w*\/\s)/ | name !(_ '= ') | '!' :'!' | _ !(name _ '= ' | !/./) | !('= '|name) /(\S+)/ :mk_regex. name : /("""+name+""")/ !!(/\s/ | !/./). _ : /(\s+)/. """) def mk_regex(s): return '/' + s.replace('/', '\\/') + '/' def peglet_to_parson(text): nonterminals = set() def equ(name, space): nonterminals.add(name) return name, space, ': ' g = grammar(equ=alter(equ), mk_regex=mk_regex) tokens = g.grammar(text) return ''.join(':'+token if re.match(name+'$', token) and token not in nonterminals else token for token in tokens) if __name__ == '__main__': import sys print peglet_to_parson(sys.stdin.read())
#!/usr/bin/env python """ @file routeGenerator.py @author Simon Box @date 31/01/2013 Code to generate a routes file for the "simpleT" SUMO model. """ import random routes = open("grid.rou.xml", "w") print >> routes, """<routes> <vType id="typeCar" accel="0.8" decel="4.5" sigma="0.5" length="5" minGap="2.5" maxSpeed="25" guiShape="passenger"/> <vType id="typeBus" accel="0.8" decel="4.5" sigma="0.5" length="17" minGap="3" maxSpeed="25" guiShape="bus"/> <route id="bottom0totop0" edges="bottom0to0/0 0/0to0/1 0/1totop0" /> <route id="bottom0totop1" edges="bottom0to0/0 0/0to1/0 1/0to1/1 1/1totop1" /> <route id="bottom0toright1" edges="bottom0to0/0 0/0to1/0 1/0to1/1 1/1toright1" /> <route id="left0toright1" edges="left0to0/0 0/0to1/0 1/0to1/1 1/1toright1" /> <route id="top0toright0" edges="top0to0/1 0/1to1/1 1/1to1/0 1/0toright0" /> <route id="top1toleft1" edges="top1to1/1 1/1to0/1 0/1toleft1" /> """ N = 9000 peS = 1./30 peW = 1./10 pwS = 1./30 pwE = 1./10 psE = 1./50 psW = 1./50 lastVeh = 0 vehNr = 0 for i in range(N): if random.uniform(0,1) < peS: print >> routes, ' <vehicle id="%i" type="typeCar" route="bottom0totop0" depart="%i" />' % (vehNr, i) vehNr += 1 lastVeh = i if random.uniform(0,1) < peW: print >> routes, ' <vehicle id="%i" type="typeCar" route="bottom0totop1" depart="%i" />' % (vehNr, i) vehNr += 1 lastVeh = i if random.uniform(0,1) < pwS: print >> routes, ' <vehicle id="%i" type="typeCar" route="bottom0toright1" depart="%i" />' % (vehNr, i) vehNr += 1 lastVeh = i if random.uniform(0,1) < pwE: print >> routes, ' <vehicle id="%i" type="typeCar" route="left0toright1" depart="%i" />' % (vehNr, i) vehNr += 1 lastVeh = i if random.uniform(0,1) < psE: print >> routes, ' <vehicle id="%i" type="typeCar" route="top0toright0" depart="%i" />' % (vehNr, i) vehNr += 1 lastVeh = i if random.uniform(0,1) < psW: print >> routes, ' <vehicle id="%i" type="typeCar" route="top1toleft1" depart="%i" />' % (vehNr, i) vehNr += 1 lastVeh = i print >> routes, "</routes>" routes.close()
# Copyright 2023 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from textwrap import dedent import pytest from pants.build_graph.address import Address, ResolveError from pants.core import register from pants.core.target_types import GenericTarget from pants.testutil.rule_runner import RuleRunner, engine_error from pants.version import PANTS_SEMVER def test_get_with_version(): rule_runner = RuleRunner(aliases=[register.build_file_aliases()], target_types=[GenericTarget]) rule_runner.write_files( { "BUILD": dedent( """\ target(name=f'test{PANTS_VERSION}') """ ), } ) tgt = rule_runner.get_target(Address("", target_name=f"test{PANTS_SEMVER}")) assert tgt is not None # NOTE: We Stringify PANTS_SEMVER in parametrize to ensure the generated test name is understandable. @pytest.mark.parametrize( "comparator,comparand", [ (">", "2.0"), (">=", str(PANTS_SEMVER)), ("==", str(PANTS_SEMVER)), ("<=", str(PANTS_SEMVER)), ("<", "3.0"), ("!=", "1.0"), ], ) def test_get_version_comparable(comparator, comparand): rule_runner = RuleRunner(aliases=[register.build_file_aliases()], target_types=[GenericTarget]) rule_runner.write_files( { "BUILD": dedent( f"""\ if PANTS_VERSION {comparator} "{comparand}": target(name=f'test{{PANTS_VERSION}}') """ ), } ) tgt = rule_runner.get_target(Address("", target_name=f"test{PANTS_SEMVER}")) assert tgt is not None @pytest.mark.parametrize( "comparator,comparand", [ (">", "3.0"), (">=", "3.0"), ("==", "3.0"), ("<=", "1.0"), ("<", "1.0"), ("!=", str(PANTS_SEMVER)), ], ) def test_get_version_not_comparable(comparator, comparand): rule_runner = RuleRunner(aliases=[register.build_file_aliases()], target_types=[GenericTarget]) rule_runner.write_files( { "BUILD": dedent( f"""\ if PANTS_VERSION {comparator} "{comparand}": target(name=f'test{{PANTS_VERSION}}') """ ), } ) with engine_error(ResolveError): rule_runner.get_target(Address("", target_name=f"test{PANTS_SEMVER}"))
from turtle import * def paint_4(len): if(len>5): circle(len) right(90) forward(5) paint_4(len-5) def paint_Concentric_circle(radius): if(radius>10): paint_Concentric_circle(radius-20) circle(radius) penup() right(90) forward(20) left(90) pendown() def paint_spiral(radius): if(radius>10): paint_spiral(radius-10) circle(radius,180) def paint_tree(length,level): if level<=0: return forward(length) left(45) paint_tree(length*0.6,level-1) right(90) paint_tree(length*0.6,level-1) left(45) backward(length) return if __name__ == "__main__": #paint_4(120) #paint_Concentric_circle(100) #paint_spiral(120) speed(1) left(90) paint_tree(60,3) mainloop()
#!/usr/bin/python # -*- coding:UTF-8 -*- import urllib2 import re import requests from HTMLParser import HTMLParser import time import urllib2 from bs4 import BeautifulSoup # re.S 整个字符串看成一行不去关注是否有换行符 # re.I 忽略大小写 # Python2.7 def crawl_joke_list(page=4): url = "http://www.qiushibaike.com/8hr/page/" + str(page) # request = urllib2.Request(url) # request.add_header('User-Agent', 'fake-client') # response = urllib2.urlopen(request) # text = response.read().decode("utf-8") text=requests.get(url).content.decode("utf-8") pattern = re.compile("<div class=\"article block untagged mb15.*?<div class=\"content\">.*?</div>", re.S) html_parser = HTMLParser() body = html_parser.unescape(text).replace("<br/>", "") m = pattern.findall(body) user_pattern = re.compile("<div class=\"author clearfix\">.*?<h2>(.*?)</h2>", re.S) content_pattern = re.compile("<div class=\"content\">.*?<span>(.*?)</span>", re.S) strs="" for joke in m: user = user_pattern.findall(joke) output = [] if len(user) > 0: output.append(user[0]) content = content_pattern.findall(joke) if len(content) > 0: output.append(content[0]) strs="\n".join(output).encode("utf-8") print strs # "\t" 使用tab符号连接列表的所有元素 "\n" 换行 with open("hello","arw+") as f: f.writelines(strs) time.sleep(1) # if __name__ == '__main__': # crawl_joke_list() # 爬取照片 def file_save_img(image_url, image_local_path): r = requests.get(image_url, stream=True) with open(image_local_path, "wb") as f: f.write(r.content) def craw_joke_img(page=1): url = "http://www.qiushibaike.com/imgrank/page/" + str(page) request = urllib2.Request(url) request.add_header('User-Agent', 'fake-client') response = urllib2.urlopen(request) text = response.read().decode("utf-8") # text=requests.get(url).content.decode("utf-8") content_list = re.findall(r'<div class="thumb">(.*?)</div>', text, re.S) for content in content_list: image_list = re.findall(r'<img src="(.*?)"', content) for img_url in image_list: file_save_img("https:" + img_url, "./img/" + img_url.strip().split('/')[-1]) # beautifulsoup def craw_beautifulsoup_img(page=1): urls = "http://www.qiushibaike.com/imgrank/page/" + str(page) res = requests.get(urls) soup = BeautifulSoup(res.text, "html5lib") joke_list = soup.find_all("div", class_="thumb") for child in joke_list: img_url = child.find("img").get("src") file_save_img("https:" + img_url, "./img/" + img_url.strip().split('/')[-1]) # if __name__ == '__main__': # craw_beautifulsoup_img()
from django import forms from .models import * from time import time from django.core.exceptions import ValidationError from django.utils.text import slugify class TagForm(forms.ModelForm): obj_id = None #using when edit class Meta: model = Tags fields = ['title'] widgets = { 'title': forms.TextInput(attrs={'class': 'form-control'}), } labels = { 'title': 'Enter title', } def clean_title(self): new_title = self.cleaned_data['title'].lower() n_slug = slugify(new_title) filt_slug = self.Meta.model.objects.filter(slug__iexact=n_slug) if n_slug == 'create': raise ValidationError('You shall not create this title #1"create"') if filt_slug: if self.obj_id: if self.obj_id != filt_slug[0].id: raise ValidationError('You shall not edit this title like you do #4"Unique"') else: raise ValidationError('You shall not create this title #2"Unique"') if not n_slug: raise ValidationError('You shall not create this title #3"Empty"') return new_title class PostForm(forms.ModelForm): obj_id = None #using when edit class Meta: model = Posts fields = ['title', 'body', 'tags'] widgets = { 'title': forms.TextInput(attrs={'class': 'form-control'}), 'body': forms.Textarea(attrs={'class': 'form-control', 'style': 'height: 250px; resize: none;'}), 'tags': forms.CheckboxSelectMultiple(attrs={'class': 'form-check'}), } labels = { 'title': 'Enter "title":', 'body': 'Enter text:', 'tags': 'Choose tags', } def clean_title(self): new_title = self.cleaned_data['title'].lower() n_slug = slugify(new_title) filt_slug = self.Meta.model.objects.filter(slug__iexact=n_slug) if n_slug == 'create': raise ValidationError('You shall not create this title #1"create"') if filt_slug: if self.obj_id: if self.obj_id != filt_slug[0].id: raise ValidationError('You shall not edit this title like you do #4"Unique"') else: raise ValidationError('You shall not create this title #2"Unique"') if not n_slug: raise ValidationError('You shall not create this title #3"Empty"') return new_title class CommentForm(forms.ModelForm): class Meta: model = Comments fields = ['comment'] widgets = {'comment': forms.Textarea(attrs={'class': 'form-control', 'style': 'height: 70px; resize: none;'})} labels = {'comment': 'Enter your comment:'}
from sortedcontainers import SortedSet from util import _get_hash class GodelHashSet2: def __init__(self, iterable): if not isinstance(iterable, (str, list)): raise ValueError("value must be string or list") self.collision_prob = 0.2 self.container = [SortedSet()] * len(iterable) * 2 self.size = 0 for item in iter: def add(self, val) -> bool: content_ratio = self.size / len(self.container) _hash = _get_hash(val) idx = _hash % len(self.container) bucket: SortedSet = self.container[idx] if val in bucket: return False if content_ratio > self.collision_prob: self._resize() bucket.add(val) self.size += 1 return True def remove(self, val) -> bool: _hash = _get_hash(val) idx = _hash % len(self.container) bucket: SortedSet = self.container[idx] if val in bucket: bucket.remove(val) self.size -= 1 return True else: return False def contains(self, val) -> bool: _hash = _get_hash(val) idx = _hash % len(self.container) bucket: SortedSet = self.container[idx] return val in bucket def _add_to_bucket(val, hash_val: int): size = len(self.container) i = hash_val % size bucket: SortedSet = self.container[i] bucket.add(val) def _resize(): new_size = len(self.container) * 2 old_container = self.container self.container = [SortedSet()] * new_size item_count = 0 for bucket in old_container: for val in bucket: _hash = _get_hash(val) _add_to_bucket(val, _hash) item_count += 1 self.size = item_count
import numpy as np from datetime import datetime, timedelta from olanalytics.dt import DatetimeDescription from olanalytics.generators import timeseries, CustomTimedCurve def test_dt_generation(): X = timeseries( start=datetime(2020, 1, 1), end=datetime(2020, 1, 2), step=timedelta(hours=1), ) np.random.seed(seed=30) curve = CustomTimedCurve(X) curve.add_noise(0, 1, loc=DatetimeDescription(hour=[(0, 8), (18, 24)])) curve.add_noise(0, 3, loc=DatetimeDescription(hour=[(8, 18)])) curve.add_gaussian(8, center=DatetimeDescription(hour=12), stdev=1) curve.set_zero(loc=DatetimeDescription(hour=[2, 14])) np.testing.assert_almost_equal( curve.Y, [ 0.644143536068335, 0.38074848963511654, 0.0, 0.16365072610275336, 0.96260781367442, 0.34666184056294447, 0.9917511141334456, 0.23508770883102223, 0.8574881179026603, 0.6761857426160136, 4.065263318784986, 5.557786770552034, 8.716959115827953, 6.739544770182674, 0.0, 2.15390512150755, 0.09607594627610168, 2.7075713429709816, 1.2659962072021014, 0.13623432220222573, 0.5441362876382811, 0.5181763468258455, 0.7668551062985054, 0.9338501433185797, ] )
# Generated by Django 3.0.3 on 2020-03-26 01:35 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Batch', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=50)), ('startdate', models.DateTimeField(auto_now=True)), ('enddate', models.DateTimeField(blank=True, null=True)), ('size', models.IntegerField()), ('active', models.BooleanField(default=True)), ('startingGravity', models.FloatField()), ('estimatedEndGravity', models.FloatField()), ], options={ 'verbose_name_plural': 'batches', }, ), migrations.CreateModel( name='BatchAdditionItem', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(help_text='Name of this addition item.', max_length=50)), ('maker', models.CharField(blank=True, help_text='Name of the company who made this item.', max_length=50)), ('lotid', models.CharField(blank=True, help_text='The lot or batch id of this item. Useful when looking for batches made with bad Lot', max_length=20)), ], ), migrations.CreateModel( name='BatchNoteType', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=50)), ], ), migrations.CreateModel( name='BatchStyle', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=30)), ], ), migrations.CreateModel( name='BatchTestType', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=25)), ('shortid', models.SlugField(unique=True)), ], ), migrations.CreateModel( name='Unit', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('identifier', models.CharField(help_text="Enter the unit identifier, i.e. 'mgL' or 'ph'", max_length=10)), ('label', models.CharField(help_text="Enter abbreviation label of the measured unit, i.e. 'mg/L'", max_length=25, null=True)), ('name', models.CharField(help_text='Descriptive Name of the measuring unit.', max_length=25, null=True)), ('category', models.SmallIntegerField(choices=[(0, 'Temperature'), (1, 'Concentration/Density'), (2, 'Weight/Mass'), (3, 'pH'), (4, 'Timing'), (5, 'Volume')])), ], ), migrations.CreateModel( name='Fermenter', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=25)), ('max_size', models.IntegerField()), ('used_size', models.IntegerField(blank=True, null=True)), ('status', models.CharField(default='Clean/Ready', max_length=15)), ('max_size_units', models.ForeignKey(on_delete=models.SET('_del'), related_name='fermenter_max_size_units', to='batchthis.Unit')), ('used_size_units', models.ForeignKey(blank=True, null=True, on_delete=models.SET('_del'), related_name='fermenter_used_size_units', to='batchthis.Unit')), ], ), migrations.CreateModel( name='BatchTest', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('datetime', models.DateTimeField(auto_now=True)), ('value', models.FloatField()), ('description', models.CharField(blank=True, max_length=250)), ('batch', models.ForeignKey(blank=True, on_delete=django.db.models.deletion.CASCADE, related_name='tests', to='batchthis.Batch')), ('type', models.ForeignKey(on_delete=models.SET('_del'), to='batchthis.BatchTestType')), ('units', models.ForeignKey(on_delete=models.SET('_del'), to='batchthis.Unit')), ], ), migrations.CreateModel( name='BatchNote', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('text', models.TextField()), ('date', models.DateTimeField(auto_now_add=True)), ('batch', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='notes', to='batchthis.Batch')), ('notetype', models.ForeignKey(on_delete=models.SET('_del'), to='batchthis.BatchNoteType')), ], ), migrations.CreateModel( name='BatchCategory', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=30)), ('bjcp_code', models.CharField(max_length=3)), ('style', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='batchthis.BatchStyle')), ], options={ 'verbose_name_plural': 'batch categories', }, ), migrations.CreateModel( name='BatchAddition', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('description', models.CharField(blank=True, help_text='Add a brief description of this Addition item and why', max_length=250)), ('amount', models.FloatField()), ('batch', models.ForeignKey(blank=True, on_delete=django.db.models.deletion.CASCADE, related_name='additions', to='batchthis.Batch')), ('name', models.ForeignKey(on_delete=models.SET('_del'), to='batchthis.BatchAdditionItem')), ('units', models.ForeignKey(on_delete=models.SET('_del'), to='batchthis.Unit')), ], ), migrations.AddField( model_name='batch', name='category', field=models.ForeignKey(blank=True, null=True, on_delete=models.SET('_del'), to='batchthis.BatchCategory'), ), migrations.AddField( model_name='batch', name='fermenter', field=models.ManyToManyField(blank=True, related_name='batch', to='batchthis.Fermenter'), ), migrations.AddField( model_name='batch', name='size_units', field=models.ForeignKey(on_delete=models.SET('_del'), to='batchthis.Unit'), ), ]
import os import sys import csv from pathlib import Path try: from pampers import log except Exception as e: sys.path.insert(0, str(Path(os.path.dirname(os.path.realpath(__file__))).parents[1])) from pampers import log from pampers import CHAIN, APP def csv_writer(fname: str = 'airdrop', header: list = ['public_key', 'private_key', 'tx_hash']) -> csv.DictWriter: stamp = CHAIN.get('TIMESTAMP') fname = f"{APP.get('NET')}-{stamp}_{fname}" if not fname.endswith('.csv'): fname = f'{fname}.csv' if os.path.isfile(fname): log.critical('please look at %s and rename it', fname) raise Exception('airdrop outfile already exists. Retrying too soon?') log.debug('creating csv file %s with headers %s', fname, header) csvfile = open(fname, "w", newline='') writer = csv.DictWriter(csvfile, fieldnames=header, dialect='excel') writer.writeheader() return writer
import logging import sys import simpy from entities.delivery_boy import DeliveryBoy class DeliveryBoyManager: def __init__(self, env, config, xy_generator): speed = config['speed'] self.hireCount = config['hires'] self.algoConfig = config['algo'] self.env = env self.freePool = simpy.FilterStore(env, self.hireCount) self.orderServed = 0 self.deliveryTimeTotal = 0 self.idleTimeTotal = 0 self.xy_generator = xy_generator logging.critical( "Delivery Manager: Hired %d boys with Speed %d, Algo: %s" % (self.hireCount, speed, self.algoConfig["type"])) for i in range(self.hireCount): x, y = self.xy_generator.next() self.freePool.put(DeliveryBoy(self.env, i + 1, self, x, y, speed)) def deliverOrder(self, order): # Get DB Id to be assigned or assign First Free boyId = self.getDeliveryBoyId(order) if boyId is None: boy = yield self.freePool.get() else: boy = yield self.freePool.get(lambda boy: boy.id == boyId) # Note down idle time and assign Order self.idleTimeTotal += (self.env.now - boy.lastDeliveryTime) self.env.process(boy.deliver(order)) def reportOrderServed(self, boy, deliveryTime): self.orderServed += 1 self.deliveryTimeTotal += deliveryTime self.freePool.put(boy) def printSummary(self): logging.critical("-------- Simulation Summary ------------") logging.critical("Orders Served: %d" % self.orderServed) logging.critical("Average Delivery Time: %f" % (self.deliveryTimeTotal / self.orderServed)) logging.critical("Average Idle Time: %f" % (self.idleTimeTotal / self.hireCount)) def getDeliveryBoyId(self, order): if self.algoConfig["type"] == "LEAST_COST": # Find DB with least cost free pool and return minCost, minId = sys.maxint, None for boy in self.freePool.items: cost = self.getCost(order, boy) if cost < minCost: minCost = cost minId = boy.id return minId else: return None def getCost(self, order, boy): weight = self.algoConfig["weight"] return boy.getCost(order, weight["restaurant"], weight["idle"])
from time import sleep import xlrd from xlutils.copy import copy # from wrapt_timeout_decorator import * import db import tools import importlib import ip_test import traceback import Chrome_driver import random import Changer_windows_info as changer import traceback import os import json import thread_tokill import sys import threadpool import threading import datetime write_flag = 0 pool = threadpool.ThreadPool(5) def makedir_account(path): isExists=os.path.exists(path) if isExists: return else: os.makedirs(path) def writelog(chrome_driver,submit): ''' writelog and ''' path = r'..\log' makedir_account(path) path_ = r'..\log\pics' makedir_account(path_) path_ = os.path.join(path_,str(submit['Mission_Id'])) makedir_account(path_) starttime = datetime.datetime.utcnow() time_now = str(starttime).split('.')[0].replace(' ','').replace(':','') pic_name = time_now+'.png' pic = os.path.join(path_,pic_name) print(pic) try: chrome_driver.save_screenshot(pic) print('pic saved success') except Exception as e: print(str(e)) with open(pic,'rb') as f: png = f.read() Mission_Id = submit['Mission_Id'] traceback_ = traceback.format_exc() db.write_log_db(Mission_Id,traceback_,png) # write_flag = 0 def get_excel(path): path_excel = path workbook = xlrd.open_workbook(path_excel) sheet = workbook.sheet_by_index(0) return sheet,workbook def get_one_data(sheet,Mission_Id,Country=''): rows = sheet.nrows print(rows) # list_rows = random.sample(range(rows),rows) badname = [] submit_ = {} for i in range(rows): print(i) if i==0: keys = sheet.row_values(i) continue values = sheet.row_values(i) submit = dict(zip(keys,values)) # print(submit) if Country != '': if submit['Country'] != Country: continue key = 'Status_'+ str(Mission_Id) flag_alpha = True for key_ in submit: submit[key_] = str(submit[key_]).replace('\t','').replace(' ','') firstname = submit['firstname'].replace('\t','').replace(' ','') lastname = submit['lastname'].replace('\t','').replace(' ','') # print(submit[key]) # print(firstname) # print(lastname) if submit[key] == '': if len(firstname) == 0: submit['row'] = i submit['badname'] = badname submit_ = submit break if len(lastname) == 0: submit['row'] = i submit['badname'] = badname submit_ = submit break for part in firstname: a = tools.is_alphabet(part) if a == False: flag_alpha = a print('not alpha:',part) break for part in lastname: a = tools.is_alphabet(part) if a == False: print('not alpha:',part) flag_alpha = a break if flag_alpha == True: submit['row'] = i submit['badname'] = badname submit['lastname'] = lastname submit['firstname'] = firstname submit_ = submit break else: badname.append(i) # print('submit find:',submit) return submit_ def change_ip(country): for i in range(5): try: ip_test.ip_Test('',state = '',country=country ) return # if zipcode != '' and zipcode != None: # submit['zipcode'] = zipcode # return submit except: pass changer.restart() def change_ip_dadao(): import urllib.request opener = urllib.request.build_opener(urllib.request.ProxyHandler({'socks5':'socks5://51.15.13.163:2380'})) # {'http':'http://192.168.30.131:24001'})) # url_test = 'http://lumtest.com/myip.json' # url_test = 'http://www.google.com' res = str(opener.open('http://lumtest.com/myip.json').read(),encoding = "utf-8") # res = json.loads(res) print(res) def write_status(path,workbook,submit,content): book2 = copy(workbook) sheet2 = book2.get_sheet(0) col = int(str(submit['Mission_Id'])[-3:])+12 print(col) sheet2.write(submit['Dadao']['row'],col,content) book2.save(path) # write_flag = 0 def mission(plans): requests = threadpool.makeRequests(reg_part, plans) [pool.putRequest(req) for req in requests] pool.wait() def get_write_content(submit): submit_ = {} if 'password' in submit: submit_['password'] = submit['password'] if 'zipcode' in submit: submit_['zipcode'] = submit['zipcode'] if 'status' in submit: submit_['status'] = submit['status'] content = json.dumps(submit) return content # @timeout(600) def reg_part(plan): path = r'..\res\Dadao.xlsx' global write_flag while True: if write_flag != 0: sleep(3) else: write_flag = 1 break sheet,workbook = get_excel(path) submit_ = get_one_data(sheet,plan['Mission_Id']) if submit_ == {}: print('no data found') write_flag = 0 return submit = {} submit['ID'] = plan['ID'] submit['Dadao'] = submit_ submit['Dadao']['path'] = path submit['Site'] = plan['url_link'] submit['Mission_Id'] = plan['Mission_Id'] submit['count'] = plan['count'] submit['Mission_dir'] = plan['Mission_dir'] submit['Excels_dup'] = ['Dadao',''] submit['Country'] = plan['Country'] print('reg_part') write_status(path,workbook,submit,'0') write_flag = 0 # module = 'Mission_'+str(plan['Mission_Id']) # Module = '' # try: # Module = importlib.import_module(module) # except: # pass try: Page_flags = db.get_page_flag(submit['Mission_Id']) print(Page_flags) if len(Page_flags) == 0: print('No Page_flags found in db') return else: chrome_driver = Chrome_driver.get_chrome(submit,pic=1) submit['Page_flags'] = Page_flags print('Page_flags found,use Record modern') thread_tokill.web_submit(submit,chrome_driver,debug=0) writelog(chrome_driver,submit) # print(submit) except Exception as e: print(str(e)) a = traceback.format_exc() print(a) try: writelog(chrome_driver,submit) print('==========++++') except Exception as e: print(str(e)) # traceback.format_exc() print('misission finished') # content = json.dumps(submit) status = db.get_plan_status(plan['ID']) while True: if write_flag != 0: print('threading ',submit['count'],'Global ',write_flag) sleep(3) else: write_flag = 1 break sheet,workbook = get_excel(path) if str(status) == '0': status = '' write_status(path,workbook,submit,str(status)) write_flag = 0 print('write status finished') # try: # chrome_driver.close() # chrome_driver.quit() # except: # pass for i in submit['Dadao']['badname']: submit['row'] = i while True: if write_flag != 0: sleep(3) else: write_flag = 1 break sheet,workbook = get_excel(path) write_status(path,workbook,submit,'badname') write_flag = 0 def check_version(): num_db = db.get_current_version() num_db = str.join('.',num_db) file = r'ini\\VERSION.ini' with open(file) as f: num_native = f.readline() print('db version:%s'%num_db) print('native version:%s'%num_native) flag = False if num_native == num_db: flag = True # print(flag) return flag def change_update_file(): files = os.listdir('.') print(files) if 'Auto_update2.pyc' in files: # print(modules) file = os.path.join(os.getcwd(),'Auto_update.pyc') file2 = os.path.join(os.getcwd(),'Auto_update2.pyc') os.remove(file) os.rename(file2,file) def main(num): try: flag = check_version() except Exception as e: print(str(e)) print('get db failed,restart........') changer.Restart() if flag == False: change_update_file() command = '''start cmd /k "python Auto_update.pyc 1"{$name$:$qcy$}" "''' os.system(command) return # while True: for i in range(1): account = db.get_account() plan_id = account['plan_id'] # print('Plan_id:',plan_id,',connecting sql for plan info...') try: db.update_flag_use_all() plans = db.read_plans(plan_id) for k in range(len(plans)): plans[k]['count'] = k # print(len(plans_)) # print(plans) # print(len(plans)) except Exception as e: print(str(e)) print('get db failed,restart........') changer.Restart() if len(plans) == 0: print('No plan for this computer!!!!!!') return # print(plans) if num == 0: try: tools.killpid() except Exception as e: print(str(e)) change_ip(plans[0]['Country']) mission(plans) print('All Missions finished..............') try: print('try killing pids') # tools.killpid() sleep(5000) return print('kill pids finished') except Exception as e: print(str(e)) pass restart_time = random.randint(3,5) print('Mission completed.........') print('Sleep',restart_time,'minutes') # sleep(restart_time*60) changer.Restart() sleep(200) def test(): path = r'..\res\Dadao.xlsx' row = 100 for length in range(row): sheet,workbook = get_excel(path) row = sheet.nrows submit = get_one_data(sheet,11000) return submit['Mission_Id'] = 11000 write_status(path,workbook,submit) print(submit['firstname'],submit['lastname']) for i in submit['firstname']: a = tools.is_alphabet(i) print(i,a) if a == False: return for i in submit['lastname']: a = tools.is_alphabet(i) print(i,a) if a == False: return if __name__ == '__main__': paras=sys.argv i = int(paras[1]) main(i)
import json import logging from django.shortcuts import render from django.http import HttpResponse from forms import AccountRegisterForm, AccountLoginForm, AccountUpdateForm from services import AccountService, AuthJWT, require_loggin from django.core.urlresolvers import reverse from django.http import HttpResponseRedirect # Get an instance of a logger logger = logging.getLogger(__name__) @require_loggin def home(request): token = request.GET['token'] return render(request, 'account/home.html', dict(token=token)) def login(request): if request.method == 'POST': form = AccountLoginForm(request.POST) if form.is_valid(): user_name = form.cleaned_data['user_name'] password = form.cleaned_data['password'] token = AuthJWT.authenticate(user_name, password) if token: url = "%s?token=%s" % (reverse('account:home'), token) return HttpResponseRedirect(url) else: response = HttpResponse() response.status_code = 404 return response else: pass else: form = AccountLoginForm() return render(request, 'account/login.html', {'form': form}) @require_loggin def logout(request): return HttpResponse("Account Logout") def register(request): if request.method == 'POST': form = AccountRegisterForm(request.POST) if form.is_valid(): first_name = form.cleaned_data['first_name'] last_name = form.cleaned_data['last_name'] user_name = form.cleaned_data['user_name'] email = form.cleaned_data['email'] password = form.cleaned_data['password'] confirm_password = form.cleaned_data['confirm_password'] if password != confirm_password: pass AccountService.create_account(first_name=first_name, last_name=last_name, user_name=user_name, email=email, password=password) return render(request, 'account/register.html', {'regards': 'Thank for your register'}) else: form = AccountRegisterForm() return render(request, 'account/register.html', {'form': form}) @require_loggin def update(request): logger.info("Update view") token = None if request.method == 'POST': form = AccountUpdateForm(request.POST) if form.is_valid(): token = request.META['QUERY_STRING'].split('=')[1] address = form.cleaned_data['address'] city = form.cleaned_data['city'] country = form.cleaned_data['country'] zipcode = form.cleaned_data['zipcode'] phone = form.cleaned_data['phone'] user_id = AuthJWT.decode_token(token) account = AccountService.get_account(user_id) AccountService.update_account(account=account, address=address, city=city, country=country, zipcode=zipcode, phone=phone) else: token = request.GET['token'] user_id = AuthJWT.decode_token(token) account = AccountService.get_account(user_id) form_data = dict(address=account.address, city=account.city, country=account.country, zipcode=account.zipcode, phone=account.phone) form = AccountUpdateForm(initial=form_data) print form logger.debug("Accound: %s", str(account)) return render(request, 'account/update.html', {'form': form, 'token': token})
""" Base password hashers. Contains weak hashers (the original ones) available with Modoboa. """ import base64 import crypt import hashlib import string from random import Random from django.utils.crypto import constant_time_compare from django.utils.encoding import force_bytes, force_str class MetaHasher(type): """ PasswordHasher Metaclass Allow classmethod to be properties """ @property def name(cls): """Returns the name of the hasher""" return cls.__name__.rstrip('Hasher').lower() @property def label(cls): """Returns the label of the hasher""" return cls.name if not cls._weak else "{} (weak)".format(cls.name) class PasswordHasher(metaclass=MetaHasher): """ Base class of all hashers. """ _weak = False def __init__(self, target="local"): self._target = target def _encrypt(self, clearvalue, salt=None): raise NotImplementedError def _b64encode(self, pwhash): """Encode :keyword:`pwhash` using base64 if needed. :param str pwhash: password hash :return: base64 encoded hash or original hash """ if self._target == "ldap": return base64.b64encode(pwhash) return pwhash def encrypt(self, clearvalue): """Encrypt a password. The format used to store passwords is the same than dovecot's one:: {SCHEME}<hash> <hash> may differ according to the used scheme. :param str clearvalue: clear password :rtype: str :return: encrypted password """ pwhash = self._b64encode(self._encrypt(force_str(clearvalue))) return "%s%s" % (self.scheme, force_str(pwhash)) def verify(self, clearvalue, hashed_value): """Verify a password against a hashed value. :param str clearvalue: clear password :param str hashed_value: password previously hashed :return: True if passwords match, False otherwise """ return constant_time_compare( self._b64encode(self._encrypt(clearvalue, hashed_value)), hashed_value ) def needs_rehash(self, hashed_value): """Check if the provided hash needs rehasing accoring to the current parameters :param str hashed_value: hased password :rtype bool :return: True if the password needs rehash, false otherwise """ return False @classmethod def get_password_hashers(cls): """Return all the PasswordHasher supported by Modoboa""" return cls.__subclasses__() class PLAINHasher(PasswordHasher): """ Plain (ie. clear) password hasher. """ _weak = True @property def scheme(self): return "{PLAIN}" def _encrypt(self, clearvalue, salt=None): return clearvalue class CRYPTHasher(PasswordHasher): """ crypt password hasher. Uses python `crypt` standard module. """ _weak = True @property def scheme(self): return "{CRYPT}" def _encrypt(self, clearvalue, salt=None): if salt is None: salt = "".join( Random().sample( string.ascii_letters + string.digits, 2 ) ) return crypt.crypt(clearvalue, salt) class MD5Hasher(PasswordHasher): """ MD5 password hasher. Uses python `hashlib` standard module. """ _weak = True @property def scheme(self): return "{MD5}" def _encrypt(self, clearvalue, salt=None): obj = hashlib.md5(force_bytes(clearvalue)) return obj.hexdigest() class SHA256Hasher(PasswordHasher): """ SHA256 password hasher. Uses python `hashlib` and `base64` standard modules. """ _weak = True @property def scheme(self): return "{SHA256}" def _encrypt(self, clearvalue, salt=None): return hashlib.sha256(force_bytes(clearvalue)).digest() def _b64encode(self, pwhash): """Encode :keyword:`pwhash` using base64. :param str pwhash: password hash :return: base64 encoded hash """ return base64.b64encode(pwhash)
# -*- coding: utf-8 -*- ''' Obtener justificaciones de un usuario @author Ivan @example python3 getJustificationRequestsToManage.py userId group statusList @example python3 getJustificationRequestsToManage.py 1 ROOT APPROVED PENDING CANCELED ''' import sys sys.path.insert(0, '../../../python') import inject import logging import asyncio import datetime from asyncio import coroutine from autobahn.asyncio.wamp import ApplicationSession from model.config import Config ###### configuracion ##### logging.getLogger().setLevel(logging.DEBUG) def config_injector(binder): binder.bind(Config, Config('server-config.cfg')) inject.configure(config_injector) config = inject.instance(Config) class WampMain(ApplicationSession): def __init__(self, config=None): logging.debug('instanciando') ApplicationSession.__init__(self, config) self.serverConfig = inject.instance(Config) @coroutine def onJoin(self, details): logging.debug('********** getJustificationRequestsToManage **********') ###### parametros ##### if len(sys.argv) < 3: sys.exit("Error de parametros") userId = sys.argv[1] group = sys.argv[2] statusList = [] if len(sys.argv) < 3 else sys.argv[3:] ###### obtencion de datos del servidor ###### justificationRequests = yield from self.call('assistance.justifications.getJustificationRequestsToManage', userId, statusList, group) for just in justificationRequests: print(just) sys.exit() if __name__ == '__main__': from autobahn.asyncio.wamp import ApplicationRunner from autobahn.wamp.serializer import JsonSerializer url = config.configs['server_url'] realm = config.configs['server_realm'] debug = config.configs['server_debug'] json = JsonSerializer() runner = ApplicationRunner(url=url, realm=realm, debug=debug, debug_wamp=debug, debug_app=debug, serializers=[json]) runner.run(WampMain)
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from test.Test import Test from test.AllAssignmentsTest import AllAssignmentsTest from test.AllConditionsTest import AllConditionsTest from test.AllDefinitionsTest import AllDefinitionsTest from test.AllDecisionsTest import AllDecisionsTest from test.AllILoopsTest import AllILoopsTest from test.AllKPathsTest import AllKPathsTest from test.AllUsagesTest import AllUsagesTest from test.AllDUPathsTests import AllDUPathsTests from test.utils import merge_states TESTS = { 'TA': AllAssignmentsTest, 'TD': AllDecisionsTest, 'TC': AllConditionsTest, 'k-TC': AllKPathsTest, 'i-TB': AllILoopsTest, 'TDef': AllDefinitionsTest, 'TU': AllUsagesTest, 'TDU': AllDUPathsTests }
# Generated by Django 3.1.1 on 2020-10-11 10:45 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('BreastCancerApp', '0006_auto_20201011_1042'), ] operations = [ migrations.AlterField( model_name='stories', name='imageUrl', field=models.CharField(default='";', max_length=15000), ), ]
n = int(input()) card_numbers = list(map(int, input().split())) result = [0, 0] i = 0 while card_numbers: # print(card_numbers[0], card_numbers[-1]) result[i % 2] += max(card_numbers[0], card_numbers[-1]) card_numbers.remove(max(card_numbers[0], card_numbers[-1])) # print(card_numbers) i += 1 print(*result)
print('===== Exercicio 027 =====') print('Faça um programa que leia o nome completo de uma pessoa, mostrando em seguida o primeiro e o ultimo nome separadamente') nome = input('Qual seu nome completo? ').strip().split() print('Seu primeiro nome é {} e o ultimo é {}'.format(nome[0], nome[-1]))
import pygame import time import random pygame.init() wx = 600 wy = 600 WINDOW_SIZE = (wx,wy) WINDOW_NAME = 'Slither' #color definitions white = (255,255,255) orange = (255,100,50) red = (255,0,0) green = (10,155,50) blue = (0,0,200) window = pygame.display.set_mode(WINDOW_SIZE) pygame.display.set_caption(WINDOW_NAME) fps = 30 #produces centered graphics text on the window def standard_text(txt,color,fontSize,cent_x = wx/2,cent_y = wy/2): font = pygame.font.SysFont('comicsansms',fontSize) text = font.render(txt,True,color) window.blit(text,[cent_x - text.get_rect().width/2, cent_y + text.get_rect().height/2]) #produces centered graphics text on the window #and enables the player to move up and down and choose def menu_text(txt,currentPos,boldPos,isBold,color,fontSize,cent_x = wx/2,cent_y = wy/2): if isBold[boldPos] and boldPos == currentPos: font = pygame.font.SysFont('comicsansms',fontSize + 30) text = font.render(txt,True,color) window.blit(text,[cent_x - text.get_rect().width/2, cent_y]) else: font = pygame.font.SysFont('comicsansms',fontSize) text = font.render(txt,True,color) window.blit(text,[cent_x - text.get_rect().width/2, cent_y + text.get_rect().height/2]) #displays the main menu def main_menu(): isBold = [] #bool 1-D array wich decides if the current menu choice shall appear as bold isBold.append(True) #The first choice will inititally be isBold.append(False) isBold.append(False) boldPos = 0 gameEnter = False while not gameEnter: for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() if event.type == pygame.KEYDOWN: if event.key == pygame.K_RETURN: if boldPos == 0: gameLoop() elif boldPos == 1: Instructions() else: pygame.quit() elif event.key == pygame.K_DOWN and boldPos != 2: boldPos += 1 isBold[boldPos] = True isBold[boldPos - 1] = False elif event.key == pygame.K_UP and boldPos != 0: boldPos -= 1 isBold[boldPos] = True isBold[boldPos + 1] = False window.fill(green) currentPos = 0 menu_text('Play',currentPos,boldPos,isBold,orange,30,wx/2,wy/4) currentPos += 1 menu_text('Instructions',currentPos,boldPos,isBold,orange,30,wx/2,wy/2) currentPos += 1 menu_text('Quit',currentPos,boldPos,isBold,orange,30,wx/2,3*wy/4) pygame.display.update() def Instructions(): mainMenu = False while not mainMenu: for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() if event.type == pygame.KEYDOWN: if event.key == pygame.K_RETURN or event.key == pygame.K_BACKSPACE: main_menu() window.fill(green) standard_text("Use 'up', 'down', 'right', 'left' keys to guide the snake",white,20,wx/2,wy/8) standard_text("Use 'spacebar' to pause",white,20,wx/2,wy/4) standard_text("Your goal is to eat the apple as many times as possible",white,20,wx/2,3*wy/8) standard_text("Do not crash yourself",white,20,wx/2,wy/2) standard_text("Good luck!",white,20,wx/2,5*wy/8) standard_text("Main menu",orange,40,wx/2,6*wy/8) pygame.display.update() def pause(): while True: standard_text("pause",orange,25,wx/2,10) pygame.display.update() for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() if event.type == pygame.KEYDOWN: if event.key == pygame.K_SPACE: return def gameLoop(): clock = pygame.time.Clock() #direction --> used in order to prevent the player from going backwards direction = '' #rectangle's and apple's dimensions --> dim_x = dim_y = dim dim = 10 #rectangle's initial position --> random head_x = round(random.randint(2*dim, wx - 3*dim)/10.0)*10.0 head_y = round(random.randint(2*dim, wy - 3*dim)/10.0)*10.0 #rectangle's step dx = 0 dy = 0 #apple's initial position --> random apple_x = round(random.randint(dim,wx - 2*dim)/10.0)*10.0 apple_y = round(random.randint(dim,wy - 2*dim)/10.0)*10.0 snakeList = [] snakeLength = 2 while True: if head_x <= 0 or (head_x + dim) >= wx or head_y <= 0 or (head_y + dim) >= wy: game_over_menu() #you touched the borders... for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() if event.type == pygame.KEYDOWN: #break is used in order to prevent the player from #pressing two keys simultaneously if event.key == pygame.K_SPACE: pause() elif event.key == pygame.K_RIGHT and direction != 'left': dx = dim dy = 0 direction = 'right' break elif event.key == pygame.K_LEFT and direction != 'right': dx = -dim dy = 0 direction = 'left' break elif event.key == pygame.K_DOWN and direction != 'up': dx = 0 dy = dim direction = 'down' break elif event.key == pygame.K_UP and direction != 'down': dx = 0 dy = -dim direction = 'up' break head_x += dx head_y += dy #decide if the apple was eaten. If it was, then update its position if head_x == apple_x and head_y == apple_y: apple_x = round(random.randint(dim, wx - 2*dim)/10.0)*10.0 apple_y = round(random.randint(dim, wy - 2*dim)/10.0)*10.0 snakeLength += 1 window.fill(green) pygame.draw.rect(window,red,[apple_x,apple_y,dim,dim]) #draw apple snakeHead = [] snakeHead.append(head_x) snakeHead.append(head_y) snakeList.append(snakeHead) if len(snakeList) >= snakeLength: del snakeList[0] #draw snake as a list of rectangles for XnY in snakeList: pygame.draw.rect(window,blue,[XnY[0],XnY[1],dim,dim]) for rectangle in snakeList[:-1]: if rectangle == snakeHead: game_over_menu() pygame.display.update() clock.tick(fps) #displays the main menu def game_over_menu(): isBold = [] #bool 1-D array wich decides if the current menu choice shall appear as bold isBold.append(True) #The first choice will inititally be isBold.append(False) boldPos = 0 entered = False while not entered: for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() if event.type == pygame.KEYDOWN: if event.key == pygame.K_RETURN: if boldPos == 0: gameLoop() if boldPos == 1: pygame.quit() elif event.key == pygame.K_DOWN and boldPos != 1: boldPos += 1 isBold[boldPos] = True isBold[boldPos - 1] = False elif event.key == pygame.K_UP and boldPos != 0: boldPos -= 1 isBold[boldPos] = True isBold[boldPos + 1] = False window.fill(green) standard_text('Game over',red,60,wx/2,wy/8) currentPos = 0 menu_text('Play again',currentPos,boldPos,isBold,orange,30,wx/2,wy/2) currentPos += 1 menu_text('Quit',currentPos,boldPos,isBold,orange,30,wx/2,6*wy/8) pygame.display.update() ################################## main_menu() gameLoop() #if you lose, then game_over_menu() pygame.quit()
#!/usr/bin/env python # -*- coding: utf-8 -*- def score(seq): # You need to write this method str_seq = [] list_str = [] result = 0 if len(seq) == 0: return result else: for num in seq: print 'initial',num , seq, result if seq.count(num) == 3: if num == 1: result += 1000 print 'after triple 1',num , seq, result else: result += num * 100 print 'after triple n',num , seq, result for trash in range(1, 4): seq.remove(num) print'trash removal:', num , seq, result for index in range(0, len(seq)): if seq[index] == 1: result += 100 elif seq[index] == 5: result += 50 # print 'final', num , seq, result # print '*'*30 print 'index:', index , 'value:', seq[index] return result class tester(): print score([5]) print '^' * 30 print score([2,5,2,2,3]) print '^' * 30 print score([1,5,5,1]) pass
from torch.utils.data import DataLoader from .dataset_lmdb import Dataset from .sampler import StratifiedSampler def get_datasets(args): train_set = Dataset(args, 'train') val_set = Dataset(args, 'test') test_set = Dataset(args, 'val') return train_set, val_set, test_set def get_data_loaders(train_set, val_set, test_set, train_batch_size, test_batch_size, num_workers=4, rpos = 1, rneg = 4, random_state = 1234): sampler = StratifiedSampler(train_set.get_labels(), train_batch_size, rpos = rpos, rneg = rneg, random_state=random_state) train_loader = DataLoader(train_set, batch_size=sampler.real_batch_size, # shuffle=True, sampler=sampler, num_workers=num_workers) val_loader = DataLoader(val_set, batch_size=test_batch_size, shuffle=True, num_workers=num_workers) test_loader = DataLoader(test_set, batch_size=test_batch_size, shuffle=True, num_workers=num_workers) return train_loader, val_loader, test_loader __all__ = ['Dataset', 'get_datasets', 'get_data_loaders', 'StratifiedSampler']
from itertools import chain, izip def isSolved(board): """ is_solved == PEP8 (forced mixedCase by CodeWars) """ cats_game = True diagonals = [[], []] for i, row in enumerate(board): current = set(row) if current == {1}: return 1 elif current == {2}: return 2 if cats_game and 0 in current: cats_game = False diagonals[0].append(row[i]) # nw -> se diagonals[1].append(row[2 - i]) # ne -> sw for col in chain(izip(*board), diagonals): current = set(col) if current == {1}: return 1 elif current == {2}: return 2 return 0 if cats_game else -1
from rest_framework.permissions import BasePermission class IsLoggedUser(BasePermission): """ Only exposes the endpoint for the logged user """ def has_object_permission(self, request, view, obj): return request.user == obj
# -*- coding: utf-8 -*- """ django_async_test.tests.testcase ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Tests for :py:class:`django_async_test.TestCase`. """ import unittest from django.test import TestCase from django_async_test.tests.testapp.models import ModelWithBasicField class TestCaseTestCase(TestCase): def assertTests(self, tests): suite = unittest.TestSuite() suite.addTests(tests) result = unittest.TestResult() suite.run(result) if len(result.errors) > 0: for testcase, traceback in result.errors: print(traceback) if len(result.failures) > 0: for testcase, traceback in result.failures: print(traceback) self.assertEqual(len(result.errors), 0) self.assertEqual(len(result.failures), 0) def test_transaction_support(self): """ Test transaction support of :py:class:`django_async_test.TestCase`. """ from django_async_test.tests.testapp.util import DummyTestCase self.assertTests([ DummyTestCase('test_transaction_support'), DummyTestCase('test_transaction_support')] ) self.assertEqual(ModelWithBasicField.objects.count(), 0) def test_coroutine(self): """ Test coroutine support of :py:class:`django_async_test.TestCase`. """ from django_async_test.tests.testapp.util import DummyTestCase self.assertTests([DummyTestCase('test_coroutine')]) def test_transactional_coroutine(self): """ Test transactional coroutine support of :py:class:`django_async_test.TestCase`.. """ from django_async_test.tests.testapp.util import DummyTestCase self.assertTests([ DummyTestCase('test_transactional_coroutine'), DummyTestCase('test_transactional_coroutine')] ) self.assertEqual(ModelWithBasicField.objects.count(), 0)
# -*- coding: utf-8 -*- """ Created on Fri May 24 10:40:34 2019 @author: andre """ import os import sys import h5py import numpy as np import pandas as pd import copy from scipy.signal import butter, lfilter import scipy.ndimage from sklearn import preprocessing as pre from matplotlib import pyplot as plt # Do some path and import setup from os.path import expanduser home = expanduser("~") sys.path.append("~\\dev\\dev_utils") from tic_toc import tic,toc # ============================================================================= # The main purpose of this script is to generate a csv file and data directory # with the 2 raw signals and then the 'answer' or bramformed and processed signal # from the hdf5 files processed in MATLAB # ============================================================================= tic() """Read in all the text files and hdf5 files""" def read_raw_microphone_data(folderPath, fileType='.dat'): fileList = [f for f in os.listdir(folderPath) if f.endswith(fileType)] fileList.sort() DatList = [np.loadtxt(os.path.join(folderPath, dat_file)) for dat_file in fileList] DatList = np.array(DatList) DatListExist = True print('Raw .dat files read in') return fileList, DatList, DatListExist def read_hdf5(hdf5fullpath, fileType='.hdf5'): '''This takes the hdf5 file that is produced in MATLAB and imports the field (file name) Cleaned Acoustic Pressure, Raw Pressure, and the SmSpectrum (smoothed spectrum) then plots onto a spectogram and saves as a png''' hdfFileList = [f for f in os.listdir(hdf5fullpath) if f.endswith(fileType)] df_list = [] for i in range(0,len(hdfFileList)): f = h5py.File(hdf5fullpath+ '\\' + hdfFileList[i], 'r') key_list = list(f) # print(key_list) CleanedAcousticPressure = f[key_list[0]][:] RawPressure = f[key_list[1]][:] SmSpectrum = f[key_list[2]][:] field = f[key_list[3]][:] field = [i.decode('utf-8') for i in field] # Now, the next thing on the list is to creat a csv file with all the data and # label it with wall noise, or noise of object. I could make the allocation from # an hdf5 to dict general but there should really only be the below fields for # this specific research project. data_dict = {key_list[3]: field, key_list[0]: list(RawPressure), key_list[1]: list(CleanedAcousticPressure), key_list[2]: list(SmSpectrum), } keyList1 = [key_list[3],key_list[0],key_list[1],key_list[2]] # print(keyList1) df = pd.DataFrame(data_dict, columns=keyList1) # print(df[key_list[0]].shape) df_list.append(df) return hdfFileList, df_list, key_list # #def datfiles_to_csv(): def folder_helper(dirName, parentPath): if not os.path.exists(os.path.join(parentPath, dirName)): os.makedirs(os.path.join(parentPath, dirName)) # print("Directory " , dirName , " Created ") return dirName else: # print("Directory " , dirName , " already exists") return dirName def saveSpecPlots(Data, MicNum, parentPath, PlotDirectory=None, key_list=None, hdf5plotFolder=None, fileList=None): ''' The main reason this function is so complicated looking is it is is equipped to handle the read in hdf5 file or the raw dat files''' if isinstance(Data, np.ndarray): temp = folder_helper(PlotDirectory, parentPath) for i in range(1, len(Data)): name = fileList[i][:9]+ '_{}_{}'.format(MicNum, i) plotName = os.getcwd() + '\\'+ PlotDirectory +'\\' + name plt.specgram(Data[i, :, MicNum], cmap='jet', Fs=48000) plt.title(name) plt.xlabel('Time [S]') plt.ylabel('Frequency [Hz]') plt.savefig(plotName) plt.close() elif isinstance(Data, list): for hdfFiles in range(0,len(df_list)): # Take the pd.Datafame out of the list data = df_list[hdfFiles] # Make the new plot directory the key list # Make the maine and sub directories subDIR = folder_helper(hdf5plotFolder, parentPath) print(subDIR) for folder in key_list: if folder == 'field': continue else: subsubDir = folder_helper(folder, subDIR) for ind, row in data.iterrows(): name = data['field'][ind] plotName = name[:9] + '_{}'.format(ind) fileName = os.path.join(parentPath, subDIR, subsubDir)+ '\\' + plotName plt.specgram(data[folder][ind], cmap='jet', Fs=48000) plt.title(plotName) plt.xlabel('Time [S]') plt.ylabel('Frequency [Hz]') plt.savefig(fileName) plt.close() else: raise Exception('saveSpecPlots accepts 3D np.ndarray or a list of pd.core.frame.DataFromes only') # ============================================================================= # The next thing to do would be to import all the processed .hdf5 files from MATLAB # and sync up the raw first and last microphone (raw) signal with the processed # (finalized) signal where is is then batch fed into the model with (research this) # csv/pandas datafrome? or numpy array? # ============================================================================= ## INPUT COMMANDS BELOW # Raw data into spec '''Next thing to do is saveSpecPlots for the hdf5 file... need to figure out how to save cleaned spectrum. maybe put each type into a different folder and then create a generate csv with the _1 and _6 with the target in another column. ''' # Most of the Spectrograms and Inversion are taken from: https://gist.github.com/kastnerkyle/179d6e9a88202ab0a2fe def butter_bandpass(lowcut, highcut, fs, order=5): nyq = 0.5 * fs low = lowcut / nyq high = highcut / nyq b, a = butter(order, [low, high], btype='band') return b, a def butter_bandpass_filter(data, lowcut, highcut, fs, order=5): b, a = butter_bandpass(lowcut, highcut, fs, order=order) y = lfilter(b, a, data) return y def overlap(X, window_size, window_step): """ Create an overlapped version of X Parameters ---------- X : ndarray, shape=(n_samples,) Input signal to window and overlap window_size : int Size of windows to take window_step : int Step size between windows Returns ------- X_strided : shape=(n_windows, window_size) 2D array of overlapped X """ if window_size % 2 != 0: raise ValueError("Window size must be even!") # Make sure there are an even number of windows before stridetricks append = np.zeros((window_size - len(X) % window_size)) X = np.hstack((X, append)) ws = window_size ss = window_step a = X valid = len(a) - ws nw = (valid) // ss out = np.ndarray((int(nw),ws),dtype = a.dtype) for i in range(int(nw)): # "slide" the window along the samples start = i * ss stop = start + ws out[i] = a[start : stop] return out def stft(X, fftsize=128, step=65, mean_normalize=True, real=False, compute_onesided=True): """ Compute STFT for 1D real valued input X """ if real: local_fft = np.fft.rfft cut = -1 else: local_fft = np.fft.fft cut = None if compute_onesided: cut = fftsize // 2 if mean_normalize: X -= X.mean() X = overlap(X, fftsize, step) size = fftsize win = 0.54 - .46 * np.cos(2 * np.pi * np.arange(size) / (size - 1)) X = X * win[None] X = local_fft(X)[:, :cut] return X def pretty_spectrogram(d,log = True, thresh= 5, fft_size = 512, step_size = 64): """ creates a spectrogram log: take the log of the spectrgram thresh: threshold minimum power for log spectrogram """ specgram = np.abs(stft(d, fftsize=fft_size, step=step_size, real=False, compute_onesided=True)) if log == True: specgram /= specgram.max() # volume normalize to max 1 specgram = np.log10(specgram) # take log specgram[specgram < -thresh] = -thresh # set anything less than the threshold as the threshold else: specgram[specgram < thresh] = thresh # set anything less than the threshold as the threshold return specgram # Also mostly modified or taken from https://gist.github.com/kastnerkyle/179d6e9a88202ab0a2fe def invert_pretty_spectrogram(X_s, log = True, fft_size = 512, step_size = 512/4, n_iter = 10): if log == True: X_s = np.power(10, X_s) X_s = np.concatenate([X_s, X_s[:, ::-1]], axis=1) X_t = iterate_invert_spectrogram(X_s, fft_size, step_size, n_iter=n_iter) return X_t def iterate_invert_spectrogram(X_s, fftsize, step, n_iter=10, verbose=False): """ Under MSR-LA License Based on MATLAB implementation from Spectrogram Inversion Toolbox References ---------- D. Griffin and J. Lim. Signal estimation from modified short-time Fourier transform. IEEE Trans. Acoust. Speech Signal Process., 32(2):236-243, 1984. Malcolm Slaney, Daniel Naar and Richard F. Lyon. Auditory Model Inversion for Sound Separation. Proc. IEEE-ICASSP, Adelaide, 1994, II.77-80. Xinglei Zhu, G. Beauregard, L. Wyse. Real-Time Signal Estimation from Modified Short-Time Fourier Transform Magnitude Spectra. IEEE Transactions on Audio Speech and Language Processing, 08/2007. """ reg = np.max(X_s) / 1E8 X_best = copy.deepcopy(X_s) for i in range(n_iter): if verbose: print("Runnning iter %i" % i) if i == 0: X_t = invert_spectrogram(X_best, step, calculate_offset=True, set_zero_phase=True) else: # Calculate offset was False in the MATLAB version # but in mine it massively improves the result # Possible bug in my impl? X_t = invert_spectrogram(X_best, step, calculate_offset=True, set_zero_phase=False) est = stft(X_t, fftsize=fftsize, step=step, compute_onesided=False) phase = est / np.maximum(reg, np.abs(est)) X_best = X_s * phase[:len(X_s)] X_t = invert_spectrogram(X_best, step, calculate_offset=True, set_zero_phase=False) return np.real(X_t) def invert_spectrogram(X_s, step, calculate_offset=True, set_zero_phase=True): """ Under MSR-LA License Based on MATLAB implementation from Spectrogram Inversion Toolbox References ---------- D. Griffin and J. Lim. Signal estimation from modified short-time Fourier transform. IEEE Trans. Acoust. Speech Signal Process., 32(2):236-243, 1984. Malcolm Slaney, Daniel Naar and Richard F. Lyon. Auditory Model Inversion for Sound Separation. Proc. IEEE-ICASSP, Adelaide, 1994, II.77-80. Xinglei Zhu, G. Beauregard, L. Wyse. Real-Time Signal Estimation from Modified Short-Time Fourier Transform Magnitude Spectra. IEEE Transactions on Audio Speech and Language Processing, 08/2007. """ size = int(X_s.shape[1] // 2) wave = np.zeros((X_s.shape[0] * step + size)) # Getting overflow warnings with 32 bit... wave = wave.astype('float64') total_windowing_sum = np.zeros((X_s.shape[0] * step + size)) win = 0.54 - .46 * np.cos(2 * np.pi * np.arange(size) / (size - 1)) est_start = int(size // 2) - 1 est_end = est_start + size for i in range(X_s.shape[0]): wave_start = int(step * i) wave_end = wave_start + size if set_zero_phase: spectral_slice = X_s[i].real + 0j else: # already complex spectral_slice = X_s[i] # Don't need fftshift due to different impl. wave_est = np.real(np.fft.ifft(spectral_slice))[::-1] if calculate_offset and i > 0: offset_size = size - step if offset_size <= 0: print("WARNING: Large step size >50\% detected! " "This code works best with high overlap - try " "with 75% or greater") offset_size = step offset = xcorr_offset(wave[wave_start:wave_start + offset_size], wave_est[est_start:est_start + offset_size]) else: offset = 0 wave[wave_start:wave_end] += win * wave_est[ est_start - offset:est_end - offset] total_windowing_sum[wave_start:wave_end] += win wave = np.real(wave) / (total_windowing_sum + Pref) return wave def xcorr_offset(x1, x2): """ Under MSR-LA License Based on MATLAB implementation from Spectrogram Inversion Toolbox References ---------- D. Griffin and J. Lim. Signal estimation from modified short-time Fourier transform. IEEE Trans. Acoust. Speech Signal Process., 32(2):236-243, 1984. Malcolm Slaney, Daniel Naar and Richard F. Lyon. Auditory Model Inversion for Sound Separation. Proc. IEEE-ICASSP, Adelaide, 1994, II.77-80. Xinglei Zhu, G. Beauregard, L. Wyse. Real-Time Signal Estimation from Modified Short-Time Fourier Transform Magnitude Spectra. IEEE Transactions on Audio Speech and Language Processing, 08/2007. """ x1 = x1 - x1.mean() x2 = x2 - x2.mean() frame_size = len(x2) half = frame_size // 2 corrs = np.convolve(x1.astype('float32'), x2[::-1].astype('float32')) corrs[:half] = -1E30 corrs[-half:] = -1E30 offset = corrs.argmax() - len(x1) return offset ### Parameters ### fft_size = int(2**12) # window size for the FFT step_size = int(fft_size/16) # distance to slide along the window (in time) spec_thresh = 3 # threshold for spectrograms (lower filters out more noise) lowcut = 1000 # Hz # Low cut for our butter bandpass filter highcut = 48000/2 # Hz # High cut for our butter bandpass filter sampleRate = 48000 # DAQ Sample rate (S/sec) NS = 48000 # Number of samples fn = sampleRate/2 # maximum resolvoble frequency NFFT = 2**12 # 4096 point FFT NF = NFFT/2 # No. point for powerspecturm Pref = 20e-6 # Reference pressure c = 343 # Speed of sound MicArrayElements = 7 arraySpacing = 0.00858 # Array spacing (cm) folderPath = home + '\\Dropbox (CSU Fullerton)\\EGME597_AB\\ML_DATA\\RAWDATA' parentPath = os.getcwd() fileList, DatList, DatListExist = read_raw_microphone_data(folderPath) saveSpecPlots(DatList, MicNum=1, PlotDirectory='RawSTFTPlots', parentPath=parentPath, fileList=fileList) # saveSpecPlots(DatList, MicNum=6, PlotDirectory='RawSTFTPlots', parentPath=parentPath, fileList=fileList) # hdf5 file processing to stft in separate folders hdf5fullpath = home + '\\Dropbox (CSU Fullerton)\\EGME597_AB\\ML_DATA' hdfFileList, df_list, key_list = read_hdf5(hdf5fullpath) saveSpecPlots(df_list, MicNum=1, parentPath=parentPath, key_list=key_list, hdf5plotFolder='ProcessedSTFTPlots') saveSpecPlots(df_list, MicNum=6, parentPath=parentPath, key_list=key_list, hdf5plotFolder='ProcessedSTFTPlots') print('STFT plots generated!') data = df_list[0] wav_spectrogram = pretty_spectrogram(data['SmSpecturm'][121], fft_size = fft_size, step_size = step_size, log = True, thresh = spec_thresh) fig, ax = plt.subplots(nrows=1,ncols=1, figsize=(20,4)) cax = ax.matshow(np.transpose(wav_spectrogram), interpolation='nearest', aspect='auto', cmap=plt.cm.jet, origin='lower') fig.colorbar(cax) plt.title('Raw Spectrogram') #This recovery method is not working the best right now. The original spectrum is from -188 to about 1400 in the y # while the recovered is very close to zero... Need to figure out where this is being caused later. recovered_audio_orig = invert_pretty_spectrogram(wav_spectrogram, fft_size = fft_size, step_size = step_size, log = True, n_iter = 100) fig1, ax1 = plt.subplots(nrows=1,ncols=1, figsize=(20,4)) plt.plot(np.linspace(0, recovered_audio_orig.shape[0], num=recovered_audio_orig.shape[0]), recovered_audio_orig) plt.plot(np.linspace(0, 1400, num= 4094), pre.normalize(data['SmSpecturm'][121], axis=0)) plt.title('different plt') toc() # ============================================================================= # Next thing to do is save the data into a numpy array (csv style) to feed into LSTM # =============================================================================
#!/usr/local/bin/python3 import socket import subprocess import sys import argparse from datetime import datetime def scan_ports(remoteServer, start_port='1', end_port='1024'): # Clear the screen """ :rtype : object """ subprocess.call('clear', shell=True) # Ask for input remoteServer = input("Enter a remote host to scan: ") start_port = input("Enter beginning port number: ") end_port = input("Enter end port number: ") start_port = int(start_port) end_port = int(end_port) # Print a banner with information on which host we are about to scan print("-" * 60) print("Please wait, scanning remote host", remoteServer) print("On ports: ", start_port, "to", end_port) print("-" * 60) print('\n') # Check what time the scan started begin_time = datetime.now() # Take the user input of 'start_port' and 'end_port' numbers and place them in a range # These are the port numbers to be scanned try: remoteServerIP = socket.gethostbyname(remoteServer) openPorts = [] for port in range(start_port, end_port): sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.settimeout(1) result = sock.connect_ex((remoteServerIP, port)) # print(result) - Can be used to test reply codes, 0=ok, 61=TCP RST, etc... if result == 0: print("Port {}: \t Open".format(port)) openPorts.append(port) elif result == 61: print("Port {}: \t Rejected by Host".format(port)) else: print("Port {}: \t Timed Out".format(port)) sock.close() # Error handling in the event host cannot be reached or no DNS available except KeyboardInterrupt: print("You pressed Ctrl+C") sys.exit() except socket.gaierror: print('Hostname could not be resolved. Exiting') sys.exit() except socket.error: print('Socket creation failed. Error code: ' + str(err_msg[0]) + ' Error message: ' + err_msg[1]) sys.exit() # Check the time once scan is complete, and compare the start - end times. end_time = datetime.now() total = end_time - begin_time # Print the scan time information print('\n') print('-' * 60) print('Scanning Completed in: ', total) print('Remote Host IP: ', remoteServerIP) print('Open Ports:', openPorts) print('-' * 60) if __name__ == "__main__": # Command line arguments parser = argparse.ArgumentParser(description='Remote Port Scanner') parser.add_argument('--remoteServer', action="store", dest="remoteServerIP", default='localhost') parser.add_argument('--start-port', action="store", dest="start_port", default=1, type=int) parser.add_argument('--end-port', action="store", dest="end_port", default=100, type=int) # Parse arguments given_args = parser.parse_args() remoteServerIP, start_port, end_port = given_args.remoteServerIP, given_args.start_port, given_args.end_port scan_ports(remoteServerIP, start_port, end_port)
from __future__ import absolute_import, division from __future__ import print_function, unicode_literals import collections from copy import deepcopy import json import multiprocessing import numpy as np import os import six import tempfile from six.moves import zip from smqtk.algorithms.nn_index import NearestNeighborsIndex from smqtk.exceptions import ReadOnlyError from smqtk.representation import ( get_data_element_impls, get_descriptor_index_impls, get_key_value_store_impls, ) from smqtk.representation.descriptor_element import elements_to_matrix from smqtk.utils import plugin, merge_dict, metrics # Requires FAISS bindings try: import faiss except ImportError: faiss = None class FaissNearestNeighborsIndex (NearestNeighborsIndex): """ Nearest-neighbor computation using the FAISS library. """ @staticmethod def gpu_supported(): """ :return: If FAISS seems to have GPU support or not. :rtype: bool """ # Test if the GPU version is available if hasattr(faiss, "StandardGpuResources"): return True else: return False @classmethod def is_usable(cls): # if underlying library is not found, the import above will error return faiss is not None @classmethod def get_default_config(cls): """ Generate and return a default configuration dictionary for this class. This will be primarily used for generating what the configuration dictionary would look like for this class without instantiating it. By default, we observe what this class's constructor takes as arguments, turning those argument names into configuration dictionary keys. If any of those arguments have defaults, we will add those values into the configuration dictionary appropriately. The dictionary returned should only contain JSON compliant value types. It is not be guaranteed that the configuration dictionary returned from this method is valid for construction of an instance of this class. :return: Default configuration dictionary for the class. :rtype: dict """ default = super(FaissNearestNeighborsIndex, cls).get_default_config() data_element_default_config = plugin.make_config( get_data_element_impls()) default['index_element'] = data_element_default_config default['index_param_element'] = deepcopy(data_element_default_config) di_default = plugin.make_config(get_descriptor_index_impls()) default['descriptor_set'] = di_default kvs_default = plugin.make_config(get_key_value_store_impls()) default['idx2uid_kvs'] = kvs_default default['uid2idx_kvs'] = deepcopy(kvs_default) return default @classmethod def from_config(cls, config_dict, merge_default=True): """ Instantiate a new instance of this class given the configuration JSON-compliant dictionary encapsulating initialization arguments. This method should not be called via super unless and instance of the class is desired. :param config_dict: JSON compliant dictionary encapsulating a configuration. :type config_dict: dict :param merge_default: Merge the given configuration on top of the default provided by ``get_default_config``. :type merge_default: bool :return: Constructed instance from the provided config. :rtype: LSHNearestNeighborIndex """ if merge_default: cfg = cls.get_default_config() merge_dict(cfg, config_dict) else: cfg = config_dict cfg['descriptor_set'] = plugin.from_plugin_config( cfg['descriptor_set'], get_descriptor_index_impls() ) cfg['uid2idx_kvs'] = plugin.from_plugin_config( cfg['uid2idx_kvs'], get_key_value_store_impls() ) cfg['idx2uid_kvs'] = plugin.from_plugin_config( cfg['idx2uid_kvs'], get_key_value_store_impls() ) if (cfg['index_element'] and cfg['index_element']['type']): index_element = plugin.from_plugin_config( cfg['index_element'], get_data_element_impls()) cfg['index_element'] = index_element else: cfg['index_element'] = None if (cfg['index_param_element'] and cfg['index_param_element']['type']): index_param_element = plugin.from_plugin_config( cfg['index_param_element'], get_data_element_impls()) cfg['index_param_element'] = index_param_element else: cfg['index_param_element'] = None return super(FaissNearestNeighborsIndex, cls).from_config(cfg, False) def __init__(self, descriptor_set, idx2uid_kvs, uid2idx_kvs, index_element=None, index_param_element=None, read_only=False, factory_string='IVF1,Flat', use_multiprocessing=True, use_gpu=False, gpu_id=0, random_seed=None): """ Initialize FAISS index properties. Does not contain a queryable index until one is built via the ``build_index`` method, or loaded from existing model files. :param descriptor_set: Index in which DescriptorElements will be stored. :type descriptor_set: smqtk.representation.DescriptorIndex :param idx2uid_kvs: Key-value storage mapping FAISS indexed vector index to descriptor UID. This should be the inverse of `uid2idx_kvs`. :type idx2uid_kvs: smqtk.representation.KeyValueStore :param uid2idx_kvs: Key-value storage mapping descriptor UIDs to FAISS indexed vector index. This should be the inverse of `idx2uid_kvs`. :type uid2idx_kvs: smqtk.representation.KeyValueStore :param index_element: Optional DataElement used to load/store the index. When None, the index will only be stored in memory. :type index_element: None | smqtk.representation.DataElement :param index_param_element: Optional DataElement used to load/store the index parameters. When None, the index will only be stored in memory. :type index_param_element: None | smqtk.representation.DataElement :param read_only: If True, `build_index` will error if there is an existing index. False by default. :type read_only: bool :param factory_string: String to pass to FAISS' `index_factory`; see the documentation [1] on this feature for more details. TODO(john.moeller): Flat indexes are not supported, so set the default to 'IVF1,Flat', which is essentially a flat index. :type factory_string: str | unicode :param use_multiprocessing: Whether or not to use discrete processes as the parallelization agent vs python threads. :type use_multiprocessing: bool :param use_gpu: Use a GPU index if GPU support is available. A RuntimeError is thrown during instance construction if GPU support is not available and this flag is true. See the following for FAISS GPU documentation and limitations: https://github.com/facebookresearch/faiss/wiki/Faiss-on-the-GPU :type use_gpu: bool :param gpu_id: If the GPU implementation is available for FAISS (automatically determined) use the GPU with this device number / ID. :type gpu_id: int :param random_seed: Integer to use as the random number generator seed. :type random_seed: int | None [1]: https://github.com/facebookresearch/faiss/wiki/High-level-interface-and-auto-tuning#index-factory """ super(FaissNearestNeighborsIndex, self).__init__() if not isinstance(factory_string, six.string_types): raise ValueError('The factory_string parameter must be a ' 'recognized string type.') self._descriptor_set = descriptor_set self._idx2uid_kvs = idx2uid_kvs self._uid2idx_kvs = uid2idx_kvs self._index_element = index_element self._index_param_element = index_param_element self.read_only = read_only self.factory_string = str(factory_string) self.use_multiprocessing = use_multiprocessing self._use_gpu = use_gpu self._gpu_id = gpu_id self.random_seed = None if random_seed is not None: self.random_seed = int(random_seed) # Index value for the next added element. Reset to 0 on a build. self._next_index = 0 # Place-holder for option GPU resource reference. Just exist for the # duration of the index converted with it. self._gpu_resources = None if self._use_gpu and not self.gpu_supported(): raise RuntimeError("Requested GPU use but FAISS does not seem to " "support GPU functionality.") # Lock for accessing FAISS model components. self._model_lock = multiprocessing.RLock() # Placeholder for FAISS model instance. self._faiss_index = None # Load the index/parameters if one exists self._load_faiss_model() def get_config(self): config = { "descriptor_set": plugin.to_plugin_config(self._descriptor_set), "uid2idx_kvs": plugin.to_plugin_config(self._uid2idx_kvs), "idx2uid_kvs": plugin.to_plugin_config(self._idx2uid_kvs), "factory_string": self.factory_string, "read_only": self.read_only, "random_seed": self.random_seed, "use_multiprocessing": self.use_multiprocessing, "use_gpu": self._use_gpu, "gpu_id": self._gpu_id, } if self._index_element: config['index_element'] = plugin.to_plugin_config( self._index_element) if self._index_param_element: config['index_param_element'] = plugin.to_plugin_config( self._index_param_element) return config def _convert_index(self, faiss_index): """ Convert the given index to a GpuIndex if `use_gpu` is True, otherwise return the index given (no-op). :param faiss_index: Index to convert. :type faiss_index: faiss.Index :return: Optionally converted index. :rtype: faiss.Index | faiss.GpuIndex """ # If we're to use a GPU index and what we're given isn't already a GPU # index. if self._use_gpu and not isinstance(faiss_index, faiss.GpuIndex): self._log.debug("-> GPU-enabling index") # New resources self._gpu_resources = faiss.StandardGpuResources() faiss_index = faiss.index_cpu_to_gpu(faiss.StandardGpuResources(), self._gpu_id, faiss_index) return faiss_index def _index_factory_wrapper(self, d, factory_string): """ Create a FAISS index for the given descriptor dimensionality and factory string. This *always* produces an index using the L2 metric. :param d: Integer indexed vector dimensionality. :type d: int :param factory_string: Factory string to drive index generation. :type factory_string: str :return: Constructed index. :rtype: faiss.Index | faiss.GpuIndex """ self._log.debug("Creating index by factory: '%s'", factory_string) index = faiss.index_factory(d, factory_string, faiss.METRIC_L2) return self._convert_index(index) def _has_model_data(self): """ Check if configured model files are configured and not empty. """ with self._model_lock: return (self._index_element and self._index_param_element and not self._index_element.is_empty() and not self._index_param_element.is_empty()) def _load_faiss_model(self): """ Load the FAISS model from the configured DataElement """ with self._model_lock: if self._has_model_data(): # Load the binary index tmp_fp = self._index_element.write_temp() self._faiss_index = self._convert_index( # As of Faiss 1.3.0, only str (not unicode) is # accepted in Python 2.7 faiss.read_index(str(tmp_fp)) ) self._index_element.clean_temp() # Params pickle include the build params + our local state # params. state = json.loads(self._index_param_element.get_bytes()) self.factory_string = state["factory_string"] self.read_only = state["read_only"] self.random_seed = state["random_seed"] self.use_multiprocessing = state["use_multiprocessing"] self._next_index = state["next_index"] # Check that descriptor-set and kvstore instances match up in # size. assert len(self._descriptor_set) == len(self._uid2idx_kvs) == \ len(self._idx2uid_kvs) == self._faiss_index.ntotal, \ "Not all of our storage elements agree on size: " \ "len(dset, uid2idx, idx2uid, faiss_idx) = " \ "(%d, %d, %d, %d)" \ % (len(self._descriptor_set), len(self._uid2idx_kvs), len(self._idx2uid_kvs), self._faiss_index.ntotal) def _save_faiss_model(self): """ Save the index and parameters to the configured DataElements. """ with self._model_lock: # Only write to cache elements if they are both writable. writable = (self._index_element and self._index_element.writable() and self._index_param_element and self._index_param_element.writable()) if writable: self._log.debug("Storing index: %s", self._index_element) # FAISS wants to write to a file, so make a temp file, then # read it in, putting bytes into element. fd, fp = tempfile.mkstemp() try: # Write function needs a CPU index instance, so bring it # down from the GPU if necessary. if self._use_gpu and isinstance(self._faiss_index, faiss.GpuIndex): to_write = faiss.index_gpu_to_cpu(self._faiss_index) else: to_write = self._faiss_index faiss.write_index(to_write, fp) # Use the file descriptor to create the file object. # This avoids reopening the file and will automatically # close the file descriptor on exiting the with block. # fdopen() is required because in Python 2 open() does # not accept a file descriptor. with os.fdopen(fd, 'rb') as f: self._index_element.set_bytes(f.read()) finally: os.remove(fp) # Store index parameters used. params = { "factory_string": self.factory_string, "read_only": self.read_only, "random_seed": self.random_seed, "use_multiprocessing": self.use_multiprocessing, "next_index": self._next_index, } self._index_param_element.set_bytes(json.dumps(params)) def _build_index(self, descriptors): """ Internal method to be implemented by sub-classes to build the index with the given descriptor data elements. Subsequent calls to this method should rebuild the current index. This method shall not add to the existing index nor raise an exception to as to protect the current index. :param descriptors: Iterable of descriptor elements to build index over. :type descriptors: collections.Iterable[smqtk.representation.DescriptorElement] """ if self.read_only: raise ReadOnlyError("Cannot modify read-only index.") self._log.info("Building new FAISS index") # We need to fork the iterator, so stick the elements in a list desc_list = list(descriptors) data, new_uuids = self._descriptors_to_matrix(desc_list) n, d = data.shape idx_ids = np.arange(n) # restart IDs from 0. # Build a faiss index but don't internalize it until we have a lock. faiss_index = self._index_factory_wrapper(d, self.factory_string) # noinspection PyArgumentList faiss_index.train(data) # TODO(john.moeller): This will raise an exception on flat indexes. # There's a solution which involves wrapping the index in an # IndexIDMap, but it doesn't work because of a bug in FAISS. So for # now we don't support flat indexes. # noinspection PyArgumentList faiss_index.add_with_ids(data, idx_ids) assert faiss_index.d == d, \ "FAISS index dimension doesn't match data dimension" assert faiss_index.ntotal == n, \ "FAISS index size doesn't match data size" with self._model_lock: self._faiss_index = faiss_index self._log.info("FAISS index has been constructed with %d " "vectors", n) self._log.debug("Clearing and adding new descriptor elements") self._descriptor_set.clear() self._descriptor_set.add_many_descriptors(desc_list) assert len(self._descriptor_set) == n, \ "New descriptor set size doesn't match data size" self._uid2idx_kvs.clear() self._uid2idx_kvs.add_many( dict(zip(new_uuids, idx_ids)) ) assert len(self._uid2idx_kvs) == n, \ "New uid2idx map size doesn't match data size." self._idx2uid_kvs.clear() self._idx2uid_kvs.add_many( dict(zip(idx_ids, new_uuids)) ) assert len(self._idx2uid_kvs) == n, \ "New idx2uid map size doesn't match data size." self._next_index = n self._save_faiss_model() def _update_index(self, descriptors): """ Internal method to be implemented by sub-classes to additively update the current index with the one or more descriptor elements given. If no index exists yet, a new one should be created using the given descriptors. :param descriptors: Iterable of descriptor elements to add to this index. :type descriptors: collections.Iterable[smqtk.representation.DescriptorElement] :raises RuntimeError: If a given descriptor is already present in this index. Adding a duplicate descriptor would cause duplicates in a nearest-neighbor return (no de-duplication). """ if self.read_only: raise ReadOnlyError("Cannot modify read-only index.") if self._faiss_index is None: self._build_index(descriptors) return self._log.debug('Updating FAISS index') # We need to fork the iterator, so stick the elements in a list desc_list = list(descriptors) data, new_uuids = self._descriptors_to_matrix(desc_list) n, d = data.shape with self._model_lock: # Assert that new descriptors do not intersect with existing # descriptors. for uid in new_uuids: if uid in self._uid2idx_kvs: raise RuntimeError("Descriptor with UID %s already " "present in this index.") old_ntotal = self.count() next_next_index = self._next_index + n new_ids = np.arange(self._next_index, next_next_index) self._next_index = next_next_index assert self._faiss_index.d == d, \ "FAISS index dimension doesn't match data dimension" self._faiss_index.add_with_ids(data, new_ids) assert self._faiss_index.ntotal == old_ntotal + n, \ "New FAISS index size doesn't match old + data size" self._log.info("FAISS index has been updated with %d" " new vectors", n) self._log.debug("Adding new descriptor elements") self._descriptor_set.add_many_descriptors(desc_list) assert len(self._descriptor_set) == old_ntotal + n, \ "New descriptor set size doesn't match old + data size" self._uid2idx_kvs.add_many( dict(zip(new_uuids, new_ids)) ) assert len(self._uid2idx_kvs) == old_ntotal + n, \ "New uid2idx kvs size doesn't match old + new data size." self._idx2uid_kvs.add_many( dict(zip(new_ids, new_uuids)) ) assert len(self._idx2uid_kvs) == old_ntotal + n, \ "New idx2uid kvs size doesn't match old + new data size." self._save_faiss_model() def _remove_from_index(self, uids): """ Internal method to be implemented by sub-classes to partially remove descriptors from this index associated with the given UIDs. :param uids: Iterable of UIDs of descriptors to remove from this index. :type uids: collections.Iterable[collections.Hashable] :raises KeyError: One or more UIDs provided do not match any stored descriptors. """ if self.read_only: raise ReadOnlyError("Cannot modify read-only index.") with self._model_lock: # Check that provided IDs are present in uid2idx mapping. uids_d = collections.deque() for uid in uids: if uid not in self._uid2idx_kvs: raise KeyError(uid) uids_d.append(uid) # Remove elements from structures # - faiss remove_ids requires a np.ndarray of int64 type. rm_idxs = np.asarray([self._uid2idx_kvs[uid] for uid in uids_d], dtype=np.int64) self._faiss_index.remove_ids(rm_idxs) self._descriptor_set.remove_many_descriptors(uids_d) self._uid2idx_kvs.remove_many(uids_d) self._idx2uid_kvs.remove_many(rm_idxs) self._save_faiss_model() def _descriptors_to_matrix(self, descriptors): """ Extract an (n,d) array with the descriptor vectors in each row, and a corresponding list of uuids from the list of descriptors. :param descriptors: List descriptor elements to add to this index. :type descriptors: list[smqtk.representation.DescriptorElement] :return: An (n,d) array of descriptors (d-dim descriptors in n rows), and the corresponding list of descriptor uuids. :rtype: (np.ndarray, list[collections.Hashable]) """ new_uuids = [desc.uuid() for desc in descriptors] sample_v = descriptors[0].vector() n, d = len(new_uuids), sample_v.size data = np.empty((n, d), dtype=np.float32) elements_to_matrix( descriptors, mat=data, use_multiprocessing=self.use_multiprocessing, report_interval=1.0, ) self._log.info("data shape, type: %s, %s", data.shape, data.dtype) self._log.info("# uuids: %d", n) return data, new_uuids def count(self): """ :return: Number of elements in this index. :rtype: int """ with self._model_lock: # If we don't have a searchable index we don't actually have # anything. if self._faiss_index: return self._faiss_index.ntotal else: return 0 def _nn(self, d, n=1): """ Internal method to be implemented by sub-classes to return the nearest `N` neighbors to the given descriptor element. When this internal method is called, we have already checked that there is a vector in ``d`` and our index is not empty. :param d: Descriptor element to compute the neighbors of. :type d: smqtk.representation.DescriptorElement :param n: Number of nearest neighbors to find. :type n: int :return: Tuple of nearest N DescriptorElement instances, and a tuple of the distance values to those neighbors. :rtype: (tuple[smqtk.representation.DescriptorElement], tuple[float]) """ q = d.vector()[np.newaxis, :].astype(np.float32) self._log.debug("Received query for %d nearest neighbors", n) with self._model_lock: s_dists, s_ids = self._faiss_index.search(q, n) s_dists, s_ids = np.sqrt(s_dists[0, :]), s_ids[0, :] uuids = [self._idx2uid_kvs[s_id] for s_id in s_ids] descriptors = self._descriptor_set.get_many_descriptors(uuids) self._log.debug("Min and max FAISS distances: %g, %g", min(s_dists), max(s_dists)) descriptors = tuple(descriptors) d_vectors = elements_to_matrix(descriptors) d_dists = metrics.euclidean_distance(d_vectors, q) self._log.debug("Min and max descriptor distances: %g, %g", min(d_dists), max(d_dists)) order = d_dists.argsort() uuids, d_dists = zip(*((uuids[oidx], d_dists[oidx]) for oidx in order)) self._log.debug("Returning query result of size %g", len(uuids)) return descriptors, tuple(d_dists) NN_INDEX_CLASS = FaissNearestNeighborsIndex
from aiogram.types import ReplyKeyboardMarkup, KeyboardButton main_keyboard = ReplyKeyboardMarkup( keyboard=[ [ KeyboardButton(text='Главный раздел') ], ], resize_keyboard=True )
#cost function import tensorflow as tf import numpy as np import matplotlib.pyplot as plt #그래프에서 즉시 실행모드로 변환 tf.compat.v1.enable_eager_execution() X = np.array([1, 2, 3]) Y = np.array([1, 2, 3]) def cost_func(W, X, Y): hypothesis = X * W return tf.reduce_mean(tf.square(hypothesis - Y)) #-3에서 5까지를 15로 나눈다. W_values = np.linspace(-3, 5, num=15) cost_values = [] print(W_values) for feed_W in W_values: #w값에 따라 curr_cost값이 얼마나 나오는지 curr_cost = cost_func(feed_W, X, Y) cost_values.append(curr_cost) print("{:6.3f} | {:10.5f}".format(feed_W, curr_cost)) plt.rcParams["figure.figsize"] = (8, 6) plt.plot(W_values, cost_values, "b") plt.ylabel('Cost(W)') plt.xlabel('W') plt.show()
import random; import Queue; import BayesianNetwork; MAX_SAMPLES = 10; class IdealUpdate: def __init__(self, addition, vertex, parentInQuestion): self.addition = addition; self.vertex = vertex; self.parentInQuestion = parentInQuestion; class Sample: def __init__(self, joint): self.joint = joint; self.randNum = random.random(); class SampledNetwork: def __init__(self, topologicalOrdering): self.topologicalOrdering = topologicalOrdering; self.samples = {}; for vert in self.topologicalOrdering: self.samples[vert.name] = {}; for val in vert.vals: self.samples[vert.name][val] = Queue.PriorityQueue(maxsize = MAX_SAMPLES); self.underlyingModel = BayesianNetwork.BayesianNetwork(topologicalOrdering); def processNewSample(self, sample): for vertex in self.topologicalOrdering: vertVal = sample.joint[vertex.name]; if (self.samples[vertex.name][vertVal].full()): oldSampleRandNum, oldSampleJoint = self.samples[vertex.name][vertVal].get(); if oldSampleRandNum > sample.randNum: self.samples[vertex.name][vertVal].put((oldSampleRandNum, oldSampleJoint)); else: self.samples[vertex.name][vertVal].put((sample.randNum, sample.joint)); else: self.samples[vertex.name][vertVal].put((sample.randNum, sample.joint)); def getJointsFromPQueue(self, pQueue, pQueueCopy, joints): while (not pQueue.empty()): newDataPoint = pQueue.get(); pQueueCopy.put(newDataPoint); randNum, joint = newDataPoint; joints.append(joint); print("The size of joints is " + str(len(joints))); def updateCountsFromSample(self, vertex, vertexCPTTable): for val in vertex.vals: jointSamples = []; copyPQueue = Queue.PriorityQueue(maxsize = MAX_SAMPLES); self.getJointsFromPQueue(self.samples[vertex.name][val], copyPQueue, jointSamples); self.samples[vertex.name][val] = copyPQueue; for joint in jointSamples: jointParentAssignment = ''; for parent in vertex.parents: jointParentAssignment += str(joint[parent.name]); if jointParentAssignment not in vertexCPTTable.keys(): vertexCPTTable[jointParentAssignment] = {}; for val in vertex.vals: vertexCPTTable[jointParentAssignment][val] = 0; vertexVal = joint[vertex.name]; vertexCPTTable[jointParentAssignment][vertexVal] += 1; def marginalizeDataCounts(self, vertexCPTTable, vertex): for entry in vertexCPTTable: totalCounts = 0; for val in vertex.vals: totalCounts += vertexCPTTable[entry][val]; for val in vertex.vals: vertexCPTTable[entry][val] = float(vertexCPTTable[entry][val]) / float(totalCounts); def updateVertexCPTs(self, vertex): vertexCPTTable = {}; self.updateCountsFromSample(vertex, vertexCPTTable); self.marginalizeDataCounts(vertexCPTTable, vertex); vertex.currCPTTable = vertexCPTTable; def getIdealUpdateModel(self): idealChange = None; largestIncrease = 0; for vertex in self.topologicalOrdering: self.updateVertexCPTs(vertex); vertexSamplePoints = []; for val in vertex.vals: copyPQueue = Queue.PriorityQueue(maxsize = MAX_SAMPLES); sampleJoints = []; self.getJointsFromPQueue(self.samples[vertex.name][val], copyPQueue, sampleJoints); self.samples[vertex.name][val] = copyPQueue; print("The sample joints is " + str(sampleJoints)); for dataPoint in sampleJoints: vertexSamplePoints.append(dataPoint); currVertexScore = self.underlyingModel.vertexContributionToModelScore(vertex, vertexSamplePoints); for parent in vertex.possibleParents: addition = True; if (parent in vertex.parents): self.underlyingModel.removeEdge(parent, vertex); addition = False; else: self.underlyingModel.addEdge(parent, vertex); self.updateVertexCPTs(vertex); newScore = self.underlyingModel.vertexContributionToModelScore(vertex, vertexSamplePoints); if (newScore - currVertexScore) > largestIncrease: largestIncrease = newScore - currVertexScore; idealChange = IdealUpdate(addition, vertex, parent); #backtrack if (not addition): self.underlyingModel.addEdge(parent, vertex); else: self.underlyingModel.removeEdge(parent, vertex); return idealChange; def processNewData(self, data): for dataPoint in data: print(dataPoint); samp = Sample(dataPoint); self.processNewSample(samp); idealUpdateModel = self.getIdealUpdateModel() if (idealUpdateModel == None): return; if (idealUpdateModel.addition == True): self.underlyingModel.addEdge(idealUpdateModel.parentInQuestion, idealUpdateModel.vertex); else: self.underlyingModel.removeEdge(idealUpdateModel.parentInQuestion, idealUpdateModel.vertex);
# Traverse through the tree and return the youngest common ancestor # for the given 2 child nodes. class AncestralTree: def __init__(self, name): self.name = name self.ancestor = None def getYoungestCommonAncestor(topAncestor, descendantOne, descendantTwo): oneDepth = getDepth(descendantOne, topAncestor) twoDepth = getDepth(descendantTwo, topAncestor) if oneDepth > twoDepth: return backTrackAncestralTree( descendantOne, descendantTwo, oneDepth - twoDepth ) else: return backTrackAncestralTree( descendantTwo, descendantOne, twoDepth - oneDepth ) def getDepth(descendant, ancestor): depth = 0 while descendant != ancestor: depth += 1 descendant = descendant.ancestor return depth def backTrackAncestralTree(lowerDescendant, upperDescendant, diff): while diff > 0: lowerDescendant = lowerDescendant.ancestor diff -= 1 while lowerDescendant != upperDescendant: lowerDescendant = lowerDescendant.ancestor upperDescendant = upperDescendant.ancestor return lowerDescendant
from spack import * import sys,os sys.path.append(os.path.join(os.path.dirname(__file__), '../../common')) from scrampackage import write_scram_toolfile class FreetypeToolfile(Package): url = 'file://' + os.path.dirname(__file__) + '/../../common/junk.xml' version('1.0', '68841b7dcbd130afd7d236afe8fd5b949f017615', expand=False) depends_on('freetype') def install(self, spec, prefix): values = {} values['VER'] = spec['freetype'].version values['PFX'] = spec['freetype'].prefix fname = 'freetype.xml' contents = str(""" <tool name="freetype" version="${VER}"> <lib name="freetype"/> <client> <environment name="FREETYPE_BASE" default="${PFX}"/> <environment name="INCLUDE" default="$$FREETYPE_BASE/include"/> <environment name="LIBDIR" default="$$FREETYPE_BASE/lib"/> </client> <runtime name="PATH" value="$$FREETYPE_BASE/bin" type="path"/> <runtime name="ROOT_INCLUDE_PATH" value="$$INCLUDE" type="path"/> <use name="root_cxxdefaults"/> </tool> """) write_scram_toolfile(contents, values, fname, prefix)
import machine from machine import Pin,I2C,SPI import ssd1306 #i2c = I2C(scl=Pin(14), sda=Pin(2), freq=100000) #display = ssd1306.SSD1306_I2C(128,64, i2c) spi = SPI(baudrate=10000000, polarity=1, phase=0, sck=Pin(14,Pin.OUT), mosi=Pin(13,Pin.OUT), miso=Pin(12)) display = ssd1306.SSD1306_SPI(128, 64, spi, Pin(5),Pin(4), Pin(16)) def show(): try: display.poweron() display.init_display() display.text('Hi, MicroPython!',1,16) # Write display buffer display.show() except Exception as ex: display.poweroff()
# System Imports import pytest from unittest import mock from unittest.mock import MagicMock # Framework / Library Imports # Application Imports from main import create_app import config # Local Imports @mock.patch('comms_rabbitmq.get_connection') def test_no_rootpatch(get_conn): """ Tests that a blank route returns a 404 """ get_conn = MagicMock() get_conn.return_value = True get_conn.channel = MagicMock() app = create_app() app.config['TESTING'] = True client = app.test_client() rv = client.get('/') assert rv.status_code == 404 @mock.patch('comms_rabbitmq.get_connection') def test_healthcheck(get_conn): """ Tests that the healthcheck returns a 200 and a text response of 'OK' """ get_conn = MagicMock() get_conn.return_value = True get_conn.channel = MagicMock() app = create_app() app.config['TESTING'] = True client = app.test_client() rv = client.get('/healthcheck') assert rv.status_code == 200 assert b"OK" in rv.data @mock.patch('comms_rabbitmq.publish_webhook') @mock.patch('comms_rabbitmq.get_connection') def test_rmq_runs_webhook(get_conn, mocked_method): """ Tests that when the config mode is RABBITMQ a publish_nats event is run """ get_conn = MagicMock() get_conn.return_value = True get_conn.channel = MagicMock() mocked_method.return_value = True app = create_app() app.config['TESTING'] = True client = app.test_client() rv = client.post('/clockify/webhook/test') mocked_method.assert_called_once() assert rv.status_code == 200 # How to get Flask config # print(client.application.config)
#!/usr/bin/env python3 #Aurel Onuzi import csv import os.path import sys #user input names_file = input('Enter a text file with a list of name: ') nickname_file = input('Enter a file with a list of nicknames, or just enter 0 to skip this step: ') name_var = input('Select name variation: Single Line or Multiple Lines ( either enter single(or type 0) or enter multiple(or type 1) ): ') #dictionary where firstname is the key and nicknames are the values, 1:N pair nickname_dict = {} #some error handling with file names if not os.path.isfile(names_file): raise SystemError('No file found') if not names_file.endswith('.txt'): names_file = names_file+'.txt' if not nickname_file.endswith('.txt'): nickname_file = nickname_file+'.txt' if name_var.strip().lower() == 'single': name_var = '0' elif name_var.strip().lower() == 'multiple': name_var = '1' elif name_var.strip() != '0' and name_var.strip() != '1': raise SystemError('Wrong selection was given') def name_variations(first,last): if name_var == '0': print('(',end="") nickname_single_variations(first,last) print(')',end="") if name_var == '1': nickname_multi_variations(first,last) def generate_single_var(first,last): print('{0} {1} OR {1}, {0} OR {2}{0} OR {0} w/2 {1}'.format(first, last, last[:1]), end="") #third variation generates first initial of last name followed by the first name similar to the example #if you meant the first initial of the first name followed by the last name, change it to the line below #print('{0} {1} OR {1}, {0} OR {2}{1} OR {0} w/2 {1}'.format(first, last, first[:1]), end="") def generate_multi_var(first,last): print('{0} {1}\n{1}, {0}\n{2}{0}\n{0} w/2 {1}'.format(first, last, first[:1])) def populate_dict(file): #creating a dictionary with first names as key to nicknames as values with open(file) as f: reader = csv.reader(f) for row in reader: if row: #ignoring blank lines if row[0] in nickname_dict: nickname_dict[row[0]].append(row[1]) elif row: nickname_dict[row[0]] = [row[1]] def nickname_single_variations(firstname,last): # initial name variation generate_single_var(firstname,last) #nickname variations for key, val in nickname_dict.items(): if key == firstname: for val in nickname_dict[key]: print(' OR ',end="") generate_single_var(val,last) def nickname_multi_variations(firstname,last): generate_multi_var(firstname,last) for key, val in nickname_dict.items(): if key == firstname: for val in nickname_dict[key]: generate_multi_var(val,last) def main(): if not nickname_file == '0': #nicknames file available populate_dict(nickname_file) base_file = os.path.basename(names_file) new_file = os.path.splitext(base_file)[0] + '_Search.txt' origal_stdout = sys.stdout #for reverting back to original standard output with open(names_file,'r') as input_file, open(new_file,'w') as output_file: sys.stdout = output_file #sending data from standard output to the file instead for line in input_file: name = line.split() name_variations(name[0],name[1]) sys.stdout = origal_stdout if __name__ == "__main__": main()
# coding: utf-8 class Digraph(object): """ Digraph is a simple and more or less efficient implementation of a directed graph. It aims to provide all necessary methods for digraphs and to be simple to understand. Therefore, Digraph isn't efficient in any way. When you are looking for an efficient digraph implementation, look at FastDigraph. """ def __init__(self, data=None): self.arcs = set() self.arc_weights = {} if data is not None: self.update(data) def add(self, v1, v2, weight=None): self.add_arc((v1, v2), weight) def add_arc(self, arc, weight=None): self.arcs.add(arc) self.arc_weights[arc] = weight def weight(self, v1, v2, default=None): return self.arc_weights.get((v1, v2), default) def remove(self, v1, v2): self.remove_arc((v1, v2)) def remove_arc(self, arc): self.arcs.remove(arc) def neighbors(self, v): for v1, v2 in self.arcs: if v1 == v: yield v2 def adjacent(self, v1, v2): return (v1, v2) in self.arcs def vertices(self): s = set() for vs in self.arcs: for v in vs: if v not in s: yield v s.add(v) def update(self, arcs): for t in arcs: if len(t) == 3: v1, v2, weight = t elif len(t) == 2: weight = None v1, v2 = t self.add(v1, v2, weight=weight) def __iter__(self): for v1, v2 in self.arcs: yield (v1, v2, self.weight(v1, v2)) def __contains__(self, arc): return arc in self.arcs def __hash__(self): return hash(self.arcs) def __len__(self): return len(self.arcs) def arcs_dot(self): for v1, v2 in self.arcs: yield "\"{v1}\" -> \"{v2}\"".format(v1=hash(v1), v2=hash(v2)) def vertices_dot(self): for v in self.vertices(): yield "\"{v}\" [label=\"{l}\"]".format(v=hash(v), l=str(v)) def dot(self): yield from self.vertices_dot() yield from self.arcs_dot() def dijkstra(self, src, weight=None): if weight is None: weight = self.weight # Dijkstra algorithm state distance = {} previous = {} unvisited = set() # Define distance from source to source as 0 distance[src] = 0 # Define any other distance to infinity and create entry for previous # object in hash table for vertex in self.vertices(): if vertex != src: distance[vertex] = float("inf") previous[vertex] = None unvisited.add(vertex) while unvisited: vertex = sorted(unvisited, key=lambda v: distance[v]).pop(0) unvisited.remove(vertex) for neighbor in self.neighbors(vertex): dist = float(weight(vertex, neighbor, 0)) alt = distance[vertex] + dist if alt < distance[neighbor]: distance[neighbor] = alt previous[neighbor] = vertex return distance, previous def dijkstra_path(self, src, dst, weight=None): path = [] dist, prev = self.dijkstra(src, weight=weight) while dst in prev: path.insert(0, dst) dst = prev[dst] return path def dijkstra_tree(self, src, weight=None): if weight is None: weight = self.weight dist, prev = self.dijkstra(src, weight=weight) g = Digraph() for k, v in prev.items(): g.add(v, k, weight(v, k)) return g def subtree(self, src, initial=[]): g = Digraph() g.handle_neighbors = False s = set(initial) unvisited = set([src]) while unvisited: v = unvisited.pop() s.add(v) for n in set(self.neighbors(v)) - s: g.add(v, n, self.weight(v, n)) unvisited.add(n) return g
from .base import BasePaymentMethod class CardPaymentMethod(BasePaymentMethod): pass
import json from flask import Flask, request, jsonify from os import path, makedirs from subprocess import Popen, PIPE from govr.util import is_dir_empty from govr.test_runner import TestRunner from govr.shields import update_shield PROJECT_DIR_NAME = "project" IMG_DIR_NAME = "img" REPORTS_DIR_NAME = "reports" COVERAGE_FILE = "coverage.json" def routes(server): server.app.add_url_rule("/", methods=["GET"], view_func=server.hello) server.app.add_url_rule("/coverage", methods=["GET"], view_func=server.coverage) server.app.add_url_rule("/hook", methods=["POST"], view_func=server.hook) class Server: FLASK_APP_NAME = "govr-server" def __init__(self, args): if args.server_git_repo == "": raise Exception("Cannot run server without clonable git repo url, via --server-git-repo=$REPO") self.git_repo = args.server_git_repo self.host = args.server_host self.port = args.server_port self.debug = args.server_debug self.state_dir = args.server_state_dir self.coverage_file = path.join(self.state_dir, COVERAGE_FILE) self.app = Flask(Server.FLASK_APP_NAME) self.state_dirs = self._init_state_dirs() checkout_project(self.git_repo, self.state_dirs[PROJECT_DIR_NAME]) self.test_runner = TestRunner(self.state_dirs[PROJECT_DIR_NAME]) # TODO: Checkout alternative branch to master if configured? Not impl yet. self._init_coverage_file() update_shield(self.state_dirs[IMG_DIR_NAME], self._read_total_coverage()) routes(self) ###################################################################### # ROUTE HANDLERS ###################################################################### def hello(self): return "Break the hairpin\n" def coverage(self): return jsonify({"total_coverage": self._read_total_coverage()}) def hook(self): # TODO: Queue? Concurrant runs? Make sure most recent push is triggering? new_master_push = \ request.json["ref"] == "refs/heads/master" and \ request.headers["X-Github-Event"] == "push" # Pull test_sha = request.json["after"] self._update_project(test_sha) # If it's not a push even we care about, ignore if not new_master_push: return ("", 200) self._update_coverage() update_shield(self.state_dirs[IMG_DIR_NAME], self._read_total_coverage()) return ("Running update", 202) ###################################################################### def run(self): self.app.run( debug=self.debug, host=self.host, port=int(self.port) ) def _init_state_dirs(self): ret = {} if not path.exists(self.state_dir): makedirs(self.state_dir) state_dirs = [PROJECT_DIR_NAME, IMG_DIR_NAME, REPORTS_DIR_NAME] for state_dir, full_state_dir in [(dd, path.join(self.state_dir, dd)) for dd in state_dirs]: if not path.exists(full_state_dir): makedirs(full_state_dir) ret[state_dir] = full_state_dir return ret def _init_coverage_file(self, overwrite=True): if path.exists(self.coverage_file) and not overwrite: return self._update_coverage() def _update_project(self, sha): # TODO: Handle errors on these cmds fetch_cmd = ["git", "fetch", "--all", ] checkout_cmd = ["git", "checkout", sha] fetch_p = Popen(fetch_cmd, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=self.state_dirs[PROJECT_DIR_NAME]) output, error = fetch_p.communicate() checkout_p = Popen(checkout_cmd, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=self.state_dirs[PROJECT_DIR_NAME]) output, error = checkout_p.communicate() def _update_coverage(self): coverage = self.test_runner.run() print "Writing coverage to file: %s" % self.coverage_file with open(self.coverage_file, "w") as coverage_file: coverage_file.write(json.dumps(coverage)) def _read_total_coverage(self): with open(self.coverage_file) as coverage_file: # TODO: Error handling? weights = json.load(coverage_file) return weights["total_coverage"] def checkout_project(clone_url, path): if is_dir_empty(path): print "Cloning [ %s ] to [ %s ]" % (clone_url, path) clone_cmd = ["git", "clone", clone_url, path] clone_p = Popen(clone_cmd, stdin=PIPE, stdout=PIPE, stderr=PIPE) output, err = clone_p.communicate() print output
import pyrebase #import pyrebase import datetime #import datetime import time #import time config = { #sets up judge-prefs-pfd firebase "apiKey": "apiKey", "authDomain": "judge-prefs.firebaseapp.com", "databaseURL": "https://judge-prefs.firebaseio.com/", "storageBucket": "judge-prefs.appspot.com" } firebase = pyrebase.initialize_app(config) #initializes app db = firebase.database() #sets db as database variable for upload in db.child('user_uploads').get().each(): #iterates over database of user uploads new = {} #initializes new judge dictionary newcomments = {} #initializes judge comments dictionary firstName = upload.val()['firstName'] #sets full name variable based on upload lastName = upload.val()['lastName'] jid = "doesnotexist" #assigns that judge does not exist for jud in db.child('judges').order_by_child('first_name').equal_to(firstName).get().each(): #finds matching judge if (jud.val()['last_name'] == lastName): jid = jud.key() #assigns judge key to jid variable if (jid != "doesnotexist"): #only processes if judge exists print(jid); jold = firebase.database().child('judges').child(jid).get() #downloads judge com = False; for field in db.child('user_uploads').child(upload.key()).get().each(): #finds matching judge if field.key() == 'comments': com = True; if (com): if (upload.val()['comments'] != "-1"): newcomments['fullName'] = firstName + " " + lastName #creates name for new judge newcomments['comments'] = upload.val()['comments'] #adds comments ts = time.time() #does something newcomments['timestamp'] = datetime.datetime.fromtimestamp(ts).strftime('%Y-%m-%d %H:%M:%S') #timestamps comment db.child('comments').push(newcomments) #updates comments new['first_name'] = firstName #creates fields for new judge new['last_name'] = lastName new['phil'] = jold.val()['phil'] new['num_reviews'] = jold.val()['num_reviews'] + 1 new['spreading'] = ((jold.val()['spreading']) * (jold.val()['num_reviews']) + float(upload.val()['speedPref'])) / (new['num_reviews']) if (upload.val()['aff_type'] == 'aff_trad'): new['trad_aff_num'] = (jold.val()['trad_aff_num']) + 1 if (upload.val()['winner'] == 'aff_win'): new['trad_aff_wr'] = (((jold.val()['trad_aff_wr']) * (jold.val()['trad_aff_num'])) + 1) / (new['trad_aff_num']) else: new['trad_aff_wr'] = (((jold.val()['trad_aff_wr']) * (jold.val()['trad_aff_num']))) / (new['trad_aff_num']) else: new['k_aff_num'] = (jold.val()['k_aff_num']) + 1 if (upload.val()['winner'] == 'aff_win'): new['k_aff_wr'] = (((jold.val()['k_aff_wr']) * (jold.val()['k_aff_num'])) + 1) / (new['k_aff_num']) else: new['k_aff_wr'] = (((jold.val()['k_aff_wr']) * (jold.val()['k_aff_num']))) / (new['k_aff_num']) new['CP'] = {} new['DA'] = {} new['K'] = {} new['T'] = {} new['impact_turn'] = {} if (upload.val()['neg_choice'] == 'k'): new['DA'] = jold.val()['DA'] new['T'] = jold.val()['T'] new['impact_turn'] = jold.val()['impact_turn'] new['CP'] = jold.val()['CP'] new['K']['K_num'] = (jold.val()['K']['K_num']) + 1 if (upload.val()['winner'] == 'aff_win'): new['K']['aff_wr'] = ((jold.val()['K']['aff_wr']) * (jold.val()['K']['K_num']) + 1) / (new['K']['K_num']) else: new['K']['aff_wr'] = ((jold.val()['K']['aff_wr']) * (jold.val()['K']['K_num'])) / (new['K']['K_num']) if (upload.val()['rfd'] == 'framework'): new['K']['framework_wr'] = ((jold.val()['K']['framework_wr']) * (jold.val()['K']['K_num']) + 1) / (new['K']['K_num']) else: new['K']['framework_wr'] = ((jold.val()['K']['framework_wr']) * (jold.val()['K']['K_num'])) / (new['K']['K_num']) if (upload.val()['rfd'] == 'perm'): new['K']['perm_wr'] = ((jold.val()['K']['perm_wr']) * (jold.val()['K']['K_num']) + 1) / (new['K']['K_num']) else: new['K']['perm_wr'] = ((jold.val()['K']['perm_wr']) * (jold.val()['K']['K_num'])) / (new['K']['K_num']) if (upload.val()['rfd'] == 'impact_turn'): new['K']['impact_turn_wr'] = ((jold.val()['K']['impact_turn_wr']) * (jold.val()['K']['K_num']) + 1) / (new['K']['K_num']) else: new['K']['impact_turn_wr'] = ((jold.val()['K']['impact_turn_wr']) * (jold.val()['K']['K_num'])) / (new['K']['K_num']) if (upload.val()['rfd'] == 'no_alt'): new['K']['no_alt_solvency_wr'] = ((jold.val()['K']['no_alt_solvency_wr']) * (jold.val()['K']['K_num']) + 1) / (new['K']['K_num']) else: new['K']['no_alt_solvency_wr'] = ((jold.val()['K']['no_alt_solvency_wr']) * (jold.val()['K']['K_num'])) / (new['K']['K_num']) if (upload.val()['rfd'] == 'case_outweighs'): new['K']['case_outweights_wr'] = ((jold.val()['K']['case_outweights_wr']) * (jold.val()['K']['K_num']) + 1) / (new['K']['K_num']) else: new['K']['case_outweights_wr'] = ((jold.val()['K']['case_outweights_wr']) * (jold.val()['K']['K_num'])) / (new['K']['K_num']) if (upload.val()['rfd'] == 'condo'): new['K']['condo_wr'] = ((jold.val()['K']['condo_wr']) * (jold.val()['K']['K_num']) + 1) / (new['K']['K_num']) else: new['K']['condo_wr'] = ((jold.val()['K']['condo_wr']) * (jold.val()['K']['K_num'])) / (new['K']['K_num']) elif (upload.val()['neg_choice'] == 'cp'): new['DA'] = jold.val()['DA'] new['T'] = jold.val()['T'] new['impact_turn'] = jold.val()['impact_turn'] new['K'] = jold.val()['K'] new['CP']['CP_num'] = (jold.val()['CP']['CP_num']) + 1 if (upload.val()['winner'] == 'aff_win'): new['CP']['aff_wr'] = ((jold.val()['CP']['aff_wr']) * (jold.val()['CP']['CP_num']) + 1) / (new['CP']['CP_num']) else: new['CP']['aff_wr'] = ((jold.val()['CP']['aff_wr']) * (jold.val()['CP']['CP_num'])) / (new['CP']['CP_num']) if (upload.val()['rfd'] == 'perm'): new['CP']['perm_wr'] = ((jold.val()['CP']['perm_wr']) * (jold.val()['CP']['CP_num']) + 1) / (new['CP']['CP_num']) else: new['CP']['perm_wr'] = ((jold.val()['CP']['perm_wr']) * (jold.val()['CP']['CP_num'])) / (new['CP']['CP_num']) if (upload.val()['rfd'] == 'theory'): new['CP']['cp_theory_wr'] = ((jold.val()['CP']['cp_theory_wr']) * (jold.val()['CP']['CP_num']) + 1) / (new['CP']['CP_num']) else: new['CP']['cp_theory_wr'] = ((jold.val()['CP']['cp_theory_wr']) * (jold.val()['CP']['CP_num'])) / (new['CP']['CP_num']) if (upload.val()['rfd'] == 'solvency_def'): new['CP']['solvency_deficit'] = ((jold.val()['CP']['solvency_deficit']) * (jold.val()['CP']['CP_num']) + 1) / (new['CP']['CP_num']) else: new['CP']['solvency_deficit'] = ((jold.val()['CP']['solvency_deficit']) * (jold.val()['CP']['CP_num'])) / (new['CP']['CP_num']) if (upload.val()['rfd'] == 'net_ben_offense'): new['CP']['offense_on_net_benefit'] = ((jold.val()['CP']['offense_on_net_benefit']) * (jold.val()['CP']['CP_num']) + 1) / (new['CP']['CP_num']) else: new['CP']['offense_on_net_benefit'] = ((jold.val()['CP']['offense_on_net_benefit']) * (jold.val()['CP']['CP_num'])) / (new['CP']['CP_num']) if (upload.val()['rfd'] == 'net_ben_links'): new['CP']['links_to_net_benefit'] = ((jold.val()['CP']['links_to_net_benefit']) * (jold.val()['CP']['CP_num']) + 1) / (new['CP']['CP_num']) else: new['CP']['links_to_net_benefit'] = ((jold.val()['CP']['links_to_net_benefit']) * (jold.val()['CP']['CP_num'])) / (new['CP']['CP_num']) if (upload.val()['rfd'] == 'condo'): new['CP']['condo_wr'] = ((jold.val()['CP']['condo_wr']) * (jold.val()['CP']['CP_num']) + 1) / (new['CP']['CP_num']) else: new['CP']['condo_wr'] = ((jold.val()['CP']['condo_wr']) * (jold.val()['CP']['CP_num'])) / (new['CP']['CP_num']) elif (upload.val()['neg_choice'] == 'da'): new['K'] = jold.val()['K'] new['T'] = jold.val()['T'] new['impact_turn'] = jold.val()['impact_turn'] new['CP'] = jold.val()['CP'] new['DA']['DA_num'] = (jold.val()['DA']['DA_num']) + 1 if (upload.val()['winner'] == 'aff_win'): new['DA']['aff_wr'] = ((jold.val()['DA']['aff_wr']) * (jold.val()['DA']['DA_num']) + 1) / (new['DA']['DA_num']) else: new['DA']['aff_wr'] = ((jold.val()['DA']['aff_wr']) * (jold.val()['DA']['DA_num'])) / (new['DA']['DA_num']) if (upload.val()['rfd'] == 'case_outweighs'): new['DA']['case_outweights_wr'] = ((jold.val()['DA']['case_outweights_wr']) * (jold.val()['DA']['DA_num']) + 1) / (new['DA']['DA_num']) else: new['DA']['case_outweights_wr'] = ((jold.val()['DA']['case_outweights_wr']) * (jold.val()['DA']['DA_num'])) / (new['DA']['DA_num']) if (upload.val()['rfd'] == 'no_link_thumpers'): new['DA']['no_link_wr'] = ((jold.val()['DA']['no_link_wr']) * (jold.val()['DA']['DA_num']) + 1) / (new['DA']['DA_num']) else: new['DA']['no_link_wr'] = ((jold.val()['DA']['no_link_wr']) * (jold.val()['DA']['DA_num'])) / (new['DA']['DA_num']) if (upload.val()['rfd'] == 'link_turn'): new['DA']['link_turn_wr'] = ((jold.val()['DA']['link_turn_wr']) * (jold.val()['DA']['DA_num']) + 1) / (new['DA']['DA_num']) else: new['DA']['link_turn_wr'] = ((jold.val()['DA']['link_turn_wr']) * (jold.val()['DA']['DA_num'])) / (new['DA']['DA_num']) if (upload.val()['rfd'] == 'no_impact'): new['DA']['no_impact_wr'] = ((jold.val()['DA']['no_impact_wr']) * (jold.val()['DA']['DA_num']) + 1) / (new['DA']['DA_num']) else: new['DA']['no_impact_wr'] = ((jold.val()['DA']['no_impact_wr']) * (jold.val()['DA']['DA_num'])) / (new['DA']['DA_num']) if (upload.val()['rfd'] == 'impact_turn'): new['DA']['impact_turn_wr'] = ((jold.val()['DA']['impact_turn_wr']) * (jold.val()['DA']['DA_num']) + 1) / (new['DA']['DA_num']) else: new['DA']['impact_turn_wr'] = ((jold.val()['DA']['impact_turn_wr']) * (jold.val()['DA']['DA_num'])) / (new['DA']['DA_num']) if (upload.val()['rfd'] == 'condo'): new['DA']['condo_wr'] = ((jold.val()['DA']['condo_wr']) * (jold.val()['DA']['DA_num']) + 1) / (new['DA']['DA_num']) else: new['DA']['condo_wr'] = ((jold.val()['DA']['condo_wr']) * (jold.val()['DA']['DA_num'])) / (new['DA']['DA_num']) elif (upload.val()['neg_choice'] == 't'): new['DA'] = jold.val()['DA'] new['K'] = jold.val()['K'] new['impact_turn'] = jold.val()['impact_turn'] new['CP'] = jold.val()['CP'] new['T']['T_num'] = (jold.val()['T']['T_num']) + 1 if (upload.val()['winner'] == 'aff_win'): new['T']['aff_wr'] = ((jold.val()['T']['aff_wr']) * (jold.val()['T']['T_num']) + 1) / (new['T']['T_num']) else: new['T']['aff_wr'] = ((jold.val()['T']['aff_wr']) * (jold.val()['T']['T_num'])) / (new['T']['T_num']) if (upload.val()['rfd'] == 'we_meet'): new['T']['we_meet_p'] = ((jold.val()['T']['we_meet_p']) * (jold.val()['T']['T_num']) + 1) / (new['T']['T_num']) else: new['T']['we_meet_p'] = ((jold.val()['T']['we_meet_p']) * (jold.val()['T']['T_num'])) / (new['T']['T_num']) if (upload.val()['rfd'] == 'aff_flex'): new['T']['aff_flex_outweighs'] = ((jold.val()['T']['aff_flex_outweighs']) * (jold.val()['T']['T_num']) + 1) / (new['T']['T_num']) else: new['T']['aff_flex_outweighs'] = ((jold.val()['T']['aff_flex_outweighs']) * (jold.val()['T']['T_num'])) / (new['T']['T_num']) if (upload.val()['rfd'] == 'reasonability'): new['T']['reasonability_p'] = ((jold.val()['T']['reasonability_p']) * (jold.val()['T']['T_num']) + 1) / (new['T']['T_num']) else: new['T']['reasonability_p'] = ((jold.val()['T']['reasonability_p']) * (jold.val()['T']['T_num'])) / (new['T']['T_num']) if (upload.val()['rfd'] == 'condo'): new['T']['condo_p'] = ((jold.val()['T']['condo_p']) * (jold.val()['T']['T_num']) + 1) / (new['T']['T_num']) else: new['T']['condo_p'] = ((jold.val()['T']['condo_p']) * (jold.val()['T']['T_num'])) / (new['T']['T_num']) elif (upload.val()['neg_choice'] == 'it'): new['DA'] = jold.val()['DA'] new['T'] = jold.val()['T'] new['K'] = jold.val()['K'] new['CP'] = jold.val()['CP'] new['impact_turn']['it_num'] = (jold.val()['impact_turn']['it_num']) + 1 if (upload.val()['winner'] == 'aff_win'): new['impact_turn']['aff_wr'] = ((jold.val()['impact_turn']['aff_wr']) * (jold.val()['impact_turn']['it_num']) + 1) / (new['impact_turn']['it_num']) else: new['impact_turn']['aff_wr'] = ((jold.val()['impact_turn']['aff_wr']) * (jold.val()['impact_turn']['it_num'])) / (new['impact_turn']['it_num']) db.child('judges').child(jid).update(new) #updates judge database db.child('user_uploads').child(upload.key()).remove() #removes judge from user uploads
###########tumpukan # tumpukan = [1,2,3,4,5,6] # print('data sekarang : ',tumpukan) # # #memasukkan data baru # tumpukan.append(7) # print('data masuk: ',7) # tumpukan.append(8) # print('data masuk: ',8) # # print('data sekarang : ',tumpukan) # # out = tumpukan.pop() # print('data keluar : ',out) # print('data sekarang : ',tumpukan) # print('\n \n') # # antrian # from collections import deque # # antrian = deque([1,2,3,4,5]) # print('data sekarang : ', antrian) ######menambahkan data # antrian.append(6) # print('data masuk: ', 7) # print('data sekarang: ',antrian) # # #mengurangi antrian # out = antrian.popleft # print('data sekarang: ',antrian)
# Copyright 2021 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from colors import red from setuptools import Extension, setup native_impl = Extension("native.impl", sources=["impl.c"]) setup( name="native", version="2.3.4", packages=["native"], namespace_packages=["native"], package_dir={"native": "."}, ext_modules=[native_impl], description=red("Proof that custom PEP-517 build-time requirements work"), )
import grequests import requests from PIL import Image from requests.adapters import HTTPAdapter from urllib3.util.retry import Retry import time import os import logging import random import math from io import BytesIO from typing import List, Tuple from dataclasses import dataclass import progressbar _GOOGLE_MAP_URL = 'http://www.google.cn/maps/vt?lyrs=s&x={}&y={}&z={}' # _GOOGLE_MAP_URL = 'http://www.google.com/maps/vt?lyrs=s&x={}&y={}&z={}' _USER_AGENTS = [ 'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/60.0.3112.101 Safari/537.36', 'Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US) AppleWebKit/532.5 (KHTML, like Gecko) Chrome/4.0.249.0 Safari/532.5', 'Mozilla/5.0 (Windows; U; Windows NT 5.2; en-US) AppleWebKit/532.9 (KHTML, like Gecko) Chrome/5.0.310.0 Safari/532.9', 'Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) AppleWebKit/534.7 (KHTML, like Gecko) Chrome/7.0.514.0 Safari/534.7', 'Mozilla/5.0 (Windows; U; Windows NT 6.0; en-US) AppleWebKit/534.14 (KHTML, like Gecko) Chrome/9.0.601.0 Safari/534.14', 'Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US) AppleWebKit/534.14 (KHTML, like Gecko) Chrome/10.0.601.0 Safari/534.14', 'Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US) AppleWebKit/534.20 (KHTML, like Gecko) Chrome/11.0.672.2 Safari/534.20", "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/534.27 (KHTML, like Gecko) Chrome/12.0.712.0 Safari/534.27', 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.1 (KHTML, like Gecko) Chrome/13.0.782.24 Safari/535.1', 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.100 Safari/537.36'] TILE_SIZE = 256 def _image_scale(zoom): """ 根据缩放计算瓦片行(列)数 :param zoom: 瓦片等级 :return: 每行或每列的瓦片数 """ return 1 << zoom def _project(lat, lng): """ Web Mercator 投影 :param lat: 纬度 :param lng: 经度 :return: 投影坐标 """ sin_y = math.sin(lat * math.pi / 180) sin_y = min(max(sin_y, -0.9999), 0.9999) # Truncating to 0.9999 effectively limits latitude to 89.1897 return 0.5 + lng / 360, 0.5 - math.log((1 + sin_y) / (1 - sin_y)) / (4 * math.pi) def _inverse(w_x, w_y): """ 反投影 :param w_x: 世界坐标x :param w_y: 世界坐标y :return: 经纬度 """ lat = math.atan(math.sinh(math.pi * (1 - 2 * w_y))) / math.pi * 180 lng = (w_x - 0.5) * 360 return lat, lng def world_xy(lat, lng): """ 经纬度转“世界坐标” :param lat: 纬度 :param lng: 经度 :return: 世界坐标 """ p_x, p_y = _project(lat, lng) return TILE_SIZE * p_x, TILE_SIZE * p_y def pixel_xy(lat, lng, zoom): """ 经纬度转“像素坐标” :param lat: 纬度 :param lng: 经度 :param zoom: 瓦片等级 :return: 像素坐标 """ w_x, w_y = world_xy(lat, lng) scale = _image_scale(zoom) return math.floor(w_x * scale), math.floor(w_y * scale) def tile_xy(lat: float, lng: float, zoom: int) -> Tuple[int, int]: """ 经纬度转“瓦片坐标” :param lat: 纬度 :param lng: 经度 :param zoom: 瓦片等级 :return: 瓦片坐标 """ p_x, p_y = pixel_xy(lat, lng, zoom) return math.floor(p_x / TILE_SIZE), math.floor(p_y / TILE_SIZE) def tile_extents(t_x: int, t_y: int, zoom: int) -> Tuple[float, float, float, float]: """ 获取指定瓦片四至经纬度 :param t_x: x :param t_y: y :param zoom: z :return: 北南西东,四至经纬度 """ scale = _image_scale(zoom) unit = 1 / scale x_min = unit * t_x x_max = unit * (t_x + 1) y_min = unit * t_y y_max = unit * (t_y + 1) lat_top, lng_left = _inverse(x_min, y_min) lat_bottom, lng_right = _inverse(x_max, y_max) return lat_top, lat_bottom, lng_left, lng_right def get_image_from_tiles(extents: (float, float, float, float), zoom, tiles_root): """ 将指定范围的瓦片拼接成图片 :param extents: (top lat, bottom lat, left lng, right lng) :param zoom: google zoom level :param tiles_root: 瓦片根目录 :return: Image """ lat0, lat1, lng0, lng1 = extents x_s, y_s = tile_xy(lat0, lng0, zoom) x_e, y_e = tile_xy(lat1, lng1, zoom) return merge_tiles(x_s, x_e, y_s, y_e, zoom, tiles_root) def merge_tiles(x_s: int, x_e: int, y_s: int, y_e: int, zoom: int, tiles_root: str) -> Image: """ 拼接影像 :param x_s: 起始x瓦片坐标 :param x_e: 截至x瓦片坐标 :param y_s: 起始y瓦片坐标 :param y_e: 截至y瓦片坐标 :param zoom: 瓦片等级 :param tiles_root: 瓦片存放根目录 :return: PIL.Image """ width = TILE_SIZE * (x_e - x_s) height = TILE_SIZE * (y_e - y_s) full_image = Image.new('RGB', (width, height)) tile_path_base = tiles_root + '/{}/{}/{}.jpg' for x in range(x_s, x_e + 1): for y in range(y_s, y_e + 1): tile_path = tile_path_base.format(zoom, x, y) if os.path.exists(tile_path): tile_image = Image.open(tile_path) full_image.paste(tile_image, ((x - x_s) * TILE_SIZE, (y - y_s) * TILE_SIZE)) return full_image @dataclass class Task: zoom: int # 任务层级 size: int # 任务大小 # tiles: [(int, int)] # 任务xy,生成器或列表 x_range: (int, int) # 任务x范围 y_range: (int, int) # 任务y范围 re_list: List[Tuple[int, int]] name: str = 'DEFAULT' # 任务名称 @staticmethod def from_father_tile(task_zoom, tile: (int, int, int), name=None): x, y, z = tile if task_zoom < z: raise ValueError('task zoom should less than z') if name: task_name = name else: task_name = 'SUB_TILES FROM {}-{}-{}'.format(z, x, y) task_scale = _image_scale(task_zoom) father_scale = _image_scale(z) n = int(task_scale / father_scale) # x_range = range(x * n, (x + 1) * n) # y_range = range(y * n, (y + 1) * n) # task_size = len(x_range) * len(y_range) # task_tiles = ((xx, yy) for xx in x_range for yy in y_range) x_range = (x * n, (x + 1) * n) y_range = (y * n, (y + 1) * n) task_size = ((x + 1) * n - x * n) * ((y + 1) * n - y * n) return Task(task_zoom, task_size, x_range, y_range, [], task_name) @staticmethod def from_rectangle(task_zoom, extents: (float, float, float, float), name=None): if name: task_name = name else: task_name = 'LEVEL {} TILES FROM ({}, {}, {}, {})'.format(task_zoom, *extents) lat0, lat1, lng0, lng1 = extents x_s, y_s = tile_xy(lat0, lng0, task_zoom) x_e, y_e = tile_xy(lat1, lng1, task_zoom) # x_range = range(x_s, x_e + 1) # y_range = range(y_s, y_e + 1) # task_size = len(x_range) * len(y_range) # task_tiles = ((xx, yy) for xx in x_range for yy in y_range) x_range = (x_s, x_e + 1) y_range = (y_s, y_e + 1) task_size = (x_e - x_s + 1) * (y_e - y_s + 1) return Task(task_zoom, task_size, x_range, y_range, [], task_name) @staticmethod def from_point(task_zoom, latlng, buffer, name=None): lat, lng = latlng extents = lat + buffer, lat - buffer, lng - buffer, lng + buffer return Task.from_rectangle(task_zoom, extents, name) class ProgressbarCounter: def __init__(self, max_value): self._progress = 0 self._max = max_value def update(self): self._progress = self._progress + 1 print("\r" + "Task tiles downloading: {}/{}, {}%".format(self._progress, self._max, round((self._progress * 100 / self._max)), 2), end='', flush=True) class Downloader: def __init__(self, store_path: str, task: Task = None, merge=False): self._task = task self._root_path = store_path def run(self, coroutine_num=30): task_start_time = time.time() # 下载初始化打印 # print('Task name: {}'.format(self._task.name, )) # print('Task tiles number: {}'.format(self._task.size)) # 进度条 p = ProgressbarCounter(self._task.size) # 下载 async_down_tiles(self._task, self._root_path, p, coroutine_num) # 结束打印 task_end_time = time.time() # print('\n' + 'Task use time: {}s'.format(task_end_time - task_start_time)) # print('--------------------------------------') # 如果有下载失败的瓦片,重新下载 if self._task.re_list and len(self._task.re_list) > 0: # retry task self._task.name = "RETRY:" + self._task.name retry_downloader = Downloader(self._root_path, self._task) retry_downloader.run() def async_down_tiles(task: Task, store_path, progress_bar, req_limit=30): # add retry s = requests.Session() retries = Retry(total=5, backoff_factor=0.2, status_forcelist=[500, 502, 503, 504], raise_on_redirect=True, raise_on_status=True) s.mount('http://', HTTPAdapter(max_retries=retries)) s.mount('https://', HTTPAdapter(max_retries=retries)) z = task.zoom if task.re_list and len(task.re_list) > 0: # if retry task_urls = (grequests.get(_GOOGLE_MAP_URL.format(x, y, z), session=s, hooks={'response': save_tile_hook(zoom=z, x=x, y=y, path=store_path, p=progress_bar, re_list=task.re_list)}, headers={'user-agent': random.choice(_USER_AGENTS)}) for x, y in task.re_list) else: task_urls = (grequests.get(_GOOGLE_MAP_URL.format(x, y, z), session=s, hooks={'response': save_tile_hook(zoom=z, x=x, y=y, path=store_path, p=progress_bar, re_list=task.re_list)}, headers={'user-agent': random.choice(_USER_AGENTS)}) for x in range(*task.x_range) for y in range(*task.y_range)) grequests.map(task_urls, size=req_limit) def save_tile_hook(**kwargs): def save_tile(response, *request_args, **request_kwargs): zoom, x, y = kwargs['zoom'], kwargs['x'], kwargs['y'] path = kwargs['path'] p = kwargs['p'] re_list = kwargs['re_list'] if response.status_code not in (400, 404, 410): try: image = Image.open(BytesIO(response.content)) z_path = path + '/{}'.format(zoom) if not os.path.exists(z_path): os.mkdir(z_path) x_path = z_path + '/{}'.format(x) if not os.path.exists(x_path): os.mkdir(x_path) image_path = x_path + '/{}.jpg'.format(y) image.save(image_path) except Exception as e: if re_list: re_list.append((x, y)) msg = 'tile( x:{}, y:{}, z:{}) download fail, it will retry after task' logging.warning(msg.format(x, y, zoom)) logging.exception(e) p.update() return save_tile def read_tasks_file(file_path): with open(file_path, 'r') as f: return tuple((tuple(map(int, line.strip().split(','))) for line in f.readlines())) def download_image(image_path, task: Task, save_tile=True, tile_path=None): # TODO 完成整图下载 # 下载 # 删除切片文件夹 if not save_tile: pass pass if __name__ == '__main__': # 洛杉矶 LT_xy:34.2757819620,-118.6073152800 RB_xy:33.4426799945,-116.8645182563 # 常州: # LT_xy = tile_xy(31.8822313752,119.8790377320, tasks_zoom) # RB_xy = tile_xy(31.7026003847,120.0009849033, tasks_zoom) # 拉斯维加斯 LT:36.3058948028,-115.3299402473 RB:36.0329247545,-115.0138758082 # 巴黎 LT:48.9033085728,2.2891089475 RB:48.8169904853,2.4196910441 # 旧金山 LT_xy:37.8027936169,-122.5235894369 RB:37.7117271669,-122.3511555838 tasks_zoom = 20 LT_xy = tile_xy(37.8027936169, -122.5235894369, tasks_zoom) RB_xy = tile_xy(37.7117271669, -122.3511555838, tasks_zoom) tiles_path = r"H:\Data\GoogleMap\SanFrancisco" nPatchs = (RB_xy[0] - LT_xy[0] + 1) * (RB_xy[1] - LT_xy[1] + 1) nPatch = 0 dataCheck = True print(LT_xy, RB_xy, nPatchs) with progressbar.ProgressBar(min_value=0, max_value=nPatchs) as bar: for coord_x in range(LT_xy[0], RB_xy[0] + 1): for coord_y in range(LT_xy[1], RB_xy[1] + 1): if dataCheck: if os.path.exists(os.path.join(tiles_path, '{zoom}/{x}/{y}.jpg'.format(zoom=tasks_zoom, x=coord_x, y=coord_y))): print('\r FILE EXISTS', os.path.join(tiles_path, '{zoom}/{x}/{y}.jpg'.format(zoom=tasks_zoom, x=coord_x, y=coord_y)), end='', flush=True) nPatch += 1 bar.update(nPatch) continue else: dataCheck = False test_task = Task.from_father_tile(tasks_zoom, (coord_x, coord_y, tasks_zoom)) downloader = Downloader(tiles_path, test_task) downloader.run() nPatch += 1 bar.update(nPatch) # start_time = time.time() # tasks_xyz = read_tasks_file('./task_xyz_13_4_rest.txt') # # tasks_xyz = [(222, 103, 8)] # tasks_zoom = 19 # tiles_path = 'E:\\' # t = 0 # T = len(tasks_xyz) # for xyz in tasks_xyz: # t = t + 1 # print('Current task: {}/{}'.format(t, T)) # test_task = Task.from_father_tile(tasks_zoom, xyz) # downloader = Downloader(tiles_path, test_task) # downloader.run() # end_time = time.time() # print('Total use time: {}s'.format(end_time-start_time)) # # # narita = (35.764701843299996, 140.386001587) # # lat0, lat1, lng0, lng1 = narita[0]+0.04, narita[0]-0.04, narita[1]-0.04, narita[1]+0.04 # # image = get_image_from_tiles((lat0, lat1, lng0, lng1), 15, 'D:/data/japan/gmap_tiles') # # image.save('D:/data/narita_15.jpg')
import pdb import os, platform import matplotlib if matplotlib.rcParams['backend'] == 'nbAgg': print('Use IPython notebook backend for matplotlib.') elif platform.system() == 'Linux': try: os.environ['DISPLAY'] matplotlib.use('TkAgg') print('Use TkAgg backend for matplotlib.') except KeyError: matplotlib.use('Agg') print('Use Agg backend for matplotlib.') else: print('Use default backend defined in matplotlibrc: ' '{}'.format(matplotlib.rcParams['backend'])) #from __main__ import run from api import set_logging, analysis, load, load_config, make_plots, save set_logging('info') __all__ = [ 'analysis', 'load', 'load_config', 'make_plots', 'save', 'run', ]
from rxdrug import drugs_list ZERO = 0 class Patient: def __init__(self, name, ailment, drugs): self.name = name self.ailment = ailment self.drugs = drugs def __str__(self): # self.self = self return '{n}'.format(n=self.name) + 'is taking {n}'.format(n=self.drug) + 'for {n}'.format(n=self.ailment) def main(): # call drugs_list() rx_dictionary = drugs_list() patients = [] # open prescriptions file with open('prescriptions.txt') as prescriptions: lines = prescriptions.readlines() for line in lines: info = line.replace('\n','').split('|') patients.append(Patient(info[0],info[1],info[2].split(','))) # iterate through each patient for patient in patients: print(patient.name,'is treating',patient.ailment) print('Current prescription:',', '.join(patient.drugs)) try: # check for a second drug second_drug = patient.drugs[1] interactions = rx_dictionary[second_drug].check_interaction(patient.drugs) # if the drug list is not empty # print warning if len(interactions) > ZERO: print('Warning: drug-drug interaction between',', '.join(patient.drugs),'\n') else: print('No interactions!\n') # if the drug list is not empty except: print(patient.name,'is not taking a second drug, no risk of interactions\n') main()
import uopy class U2Message: def __init__(self): self.items = [ {'id': 1, 'name': 'Flight', 'barcode': '893212299897', 'price': 500}, {'id': 2, 'name': 'Flight', 'barcode': '123985473165', 'price': 1000}, {'id': 3, 'name': 'Tour', 'barcode': '231985128446', 'price': 150}, {'id': 4, 'name': 'Holiday', 'barcode': '231985128446', 'price': 750} ] self.planitems = [ {'code': '1', 'type': 'Transfer', 'options': [{'description': 'From?', 'status': 'primary'}, {'description': 'To?', 'status': 'success'}, {'description': 'Date?', 'status': 'success'} ], 'actions': [{'description': 'add', 'status': 'primary'}, {'description': 'del', 'status': 'danger'}] }, {'code': '2', 'type': 'Flight', 'options': [{'description': 'From?', 'status': 'primary'}, {'description': 'To?', 'status': 'success'}, {'description': 'Date?', 'status': 'success'} ], 'actions': [{'description': 'add', 'status': 'primary'}, {'description': 'del', 'status': 'danger'} ] }, {'code': '3', 'type': 'Tour', 'options': [{'description': 'Where?', 'status': 'primary'}, {'description': 'Date?', 'status': 'success'}], 'actions': [{'description': 'add', 'status': 'primary'}, {'description': 'del', 'status': 'danger'} ] }, {'code': '4', 'type': 'Hotel', 'options': [{'description': 'Where?', 'status': 'primary'}, {'description': 'Date?', 'status': 'success'} ], 'actions': [{'description': 'add', 'status': 'primary' }, {'description': 'del', 'status': 'danger' } ] } ] def get_items(self): return self.items def get_planitems(self): return self.planitems #config = {} #config['service'] = 'udcs' #config['account'] = '/unidata/UNIRAMA' #config['host'] = 't01.astratis.com' #config['user'] = 'manos' #config['password'] = 'ursos' #config['port'] = 31438 #ain_U2_session = uopy.connect(**config) #cmd = uopy.Command('SORT TAIRPORTS WITH @ID NE "//M" A1') #cmd.run() #print(cmd.response)
play = True while play is True: operation = raw_input("Do you want to add, subtract, multiply, or divide?") number1 = int(raw_input("Enter a number")) number2 = int(raw_input("Enter another number")) if operation == "add": print number1 + number2 elif operation == "subtract": print number1 - number2 elif operation == "multiply": print number1 * number2 elif operation == "divide": print float(number1)/float(number2) else: print "You did not provide a valid operation" playAgain = raw_input("Do you want to play again?(y/n)") if playAgain == "n": play = False elif playAgain == "y": play = True else: play = False
#!/usr/bin/python #coding=utf-8 #__author__:TaQini from pwn import * # rop1 for i in range(20): p = remote('192.241.138.174',9998) offset = 64+i payload = 'A'*offset print "[+] ",i p.sendline(payload) print p.recvall() p.close() # p.interactive()
# Write a Python program to find the list of words that are longer than n from a given list of words def lonerthanN(n,listprovided): for i in range(len(listprovided)): if len(listprovided[i])>n: print(listprovided[i]) n = int(input(" Please enter the value of n :")) listprovided = ['Red', 'Green', 'White', 'Black', 'Pink', 'Yellow','1','2','5','45554'] lonerthanN(n,listprovided)
#!/usr/bin/env python3 ''' Label image with Google Cloud Vision API. Before use it, check "vision_api_test.sh" in google-vision-setting directory. cred.json is required. Usage : ./auto_labler.py --meme_dir=./meme_cut/ --output_dir=./output_xml/ ''' import sys from subprocess import call import subprocess import json import argparse import io import os import re from pathlib import Path from google.cloud import vision from google.cloud.vision import types def get_args_parser(): parser = argparse.ArgumentParser(description='Directories for processing') parser.add_argument('-i','--meme_dir', type=str, required=True, help='Directory of a input memes.') parser.add_argument('-o','--output_dir', type=str, required=True, help='Directory of a output xml.') parser.add_argument('--lang_hint', type=str, required=True, help="""Google vision detect language hint. =ko for Korean, =en English =ja Japanese =zh* Chinese https://cloud.google.com/vision/docs/languages""") parser.add_argument('-w','--overwrite', default=False, help='Overwrite xml.') args = parser.parse_args() return args def json2xml(json_obj, line_padding=""): result_list = list() json_obj_type = type(json_obj) if json_obj_type is list: for sub_elem in json_obj: result_list.append(json2xml(sub_elem, line_padding)) return "\n".join(result_list) if json_obj_type is dict: for tag_name in json_obj: sub_obj = json_obj[tag_name] result_list.append("%s<%s>" % (line_padding, tag_name)) result_list.append(json2xml(sub_obj, "\t" + line_padding)) result_list.append("%s</%s>" % (line_padding, tag_name)) return "\n".join(result_list) return "%s%s" % (line_padding, json_obj) def detect_text(path, hint): """Detects text in the file.""" client = vision.ImageAnnotatorClient() with io.open(path, 'rb') as image_file: content = image_file.read() image_file.close() image = vision.types.Image(content=content) img_ctxt = vision.types.ImageContext() img_ctxt.language_hints.append(hint) response = client.text_detection(image=image, image_context=img_ctxt) texts = response.text_annotations res = '' for text in texts: res = '"{}"'.format(text.description) break return res def run_tagger(args): in_dir = os.path.abspath(args.meme_dir)+ '/' out_dir = os.path.abspath(args.output_dir)+ '/' hint = args.lang_hint overwrite_flag = args.overwrite if not os.path.exists(out_dir): os.makedirs(out_dir) episodes = os.listdir(in_dir) episodes.sort() # iterate meme dir. for episode in episodes: images = os.listdir(in_dir+'/'+episode) # xml episode folders should not have whitespace in name. xml_ep = episode.replace(' ', '_') if not os.path.exists(out_dir+'/'+ xml_ep): os.makedirs(out_dir + '/' + xml_ep) if episode == '.ipynb_checkpoints': continue print('\n## Episode : ', episode) images.sort() for image in images: img_path = in_dir + episode + '/' + image if not img_path.lower().endswith(('.png', '.jpg', '.jpeg')): continue x_path = out_dir + xml_ep +'/' + image pre, ext = os.path.splitext(x_path) x_path = pre + '.xml' xml_file = Path(x_path) if xml_file.exists() and not overwrite_flag: print('xml already exist : %s ' %(x_path.rsplit('/',1)[1])) continue print('Label -> %s ' %(image)) with open(x_path, 'w') as f: res_txt = detect_text(img_path, hint) if hint == 'ko': res_txt = re.sub(r'[^가-힣\s]', '', res_txt) elif hint == 'en': res_txt = re.sub(r'[^A-z\s]', '', res_txt) res_txt = re.sub(r'\t{1,}', ' ', res_txt) res_txt = re.sub(r'\n{1,}', ' ', res_txt) res_txt = re.sub(r'\s{1,}', ' ', res_txt) res_txt = re.search(r'\s{0,}(.*)', res_txt).group(1) print(': ' +res_txt) s = '{"annotation" : {"folder" : "'+ episode +'", "filename" : "'+ image +'", "segmented": 0, "object" : {"name" : "'+ res_txt +'", "pose" : "Unspecified", "truncated" : 0, "occluded" : 0, "difficult" : 0, "vector" : 0} }}' j = json.loads(s) f.write(json2xml(j)) f.close() print('saved.') def main(): args = get_args_parser() print('## Start text detection, using google cloud vision..') try : run_tagger(args) # xml print('\nLabeling & Generate .xml done.') print('overwrite mode : %s' %(args.overwrite)) print('GCP detect language : %s\n' %(args.lang_hint)) except Exception as e: print(e) print('\nAuto detction failed, check out links below.') print('https://cloud.google.com/vision/docs/libraries') print('https://cloud.google.com/vision/docs/detecting-text\n') sys.exit() if __name__ == '__main__': main()
import os import json import logging logging.getLogger().setLevel(logging.INFO) class DoProcessing() : def __init__( self, JSON_FILE_URL, LOG_FILE_URL, STORAGE_DIR ) : ''' Constructor for this class ''' self.JSON_FILE_URL = JSON_FILE_URL self.LOG_FILE_URL = LOG_FILE_URL self.STORAGE_DIR = STORAGE_DIR def getJsonFileContent( self, url ) : ''' Reads the content from filter json and returns it in a dictionary format ''' cmd = 'curl ' + url jsonFileContent = os.popen( cmd ).read() jsonFileDict = json.loads( jsonFileContent ) return jsonFileDict def getLogFileContent( self, url ) : ''' Reads the content from log file and returns it in a line by line split list ''' cmd = 'curl ' + url logFileContent = os.popen( cmd ).read() logFileLineList = logFileContent.splitlines() return logFileLineList def getInfoFieldsFromLine( self, logFileLine ) : ''' Parses given line from the log file and returns a dictionary containing the extracted information from the line ''' infoDict = { } splittedLine = logFileLine.split() infoDict[ 'year' ] = splittedLine[ 0 ] infoDict[ 'month' ] = splittedLine[ 1 ] infoDict[ 'day' ] = splittedLine[ 2 ] infoDict[ 'time' ] = splittedLine[ 3 ] infoDict[ 'status' ] = splittedLine[ splittedLine.index( 'status:' ) + 1 ] if infoDict[ 'status' ][ -1 ] == ',' : infoDict[ 'status' ] = infoDict[ 'status' ][0:-1] messageStartIndex = splittedLine.index( 'Message:' ) + 1 Message = '' for i in range( messageStartIndex, len( splittedLine ) ) : Message += splittedLine[ i ] + ' ' infoDict[ 'Message' ] = Message return infoDict def createDirectoryAndFiles( self ) : ''' Does the processing, creates the directory and stores the file with content ''' error = False try : jsonFileDict = self.getJsonFileContent( self.JSON_FILE_URL ) except Exception as e : error = True logging.error(e) return error try : logFileLineList = self.getLogFileContent( self.LOG_FILE_URL ) except Exception as e : error = True logging.error(e) return error index = 0 dictIpAddress = { } for logFileLine in logFileLineList : splittedLine = logFileLine.split() ipAddress = splittedLine[ splittedLine.index( 'ip-address:' ) + 1 ][:-1] if ipAddress in dictIpAddress.keys() : dictIpAddress[ ipAddress ].append( index ) else : dictIpAddress[ ipAddress ] = [ index ] index = index + 1 finalContentDict = {} for dictionary in jsonFileDict[ 'data' ] : ipAddress = dictionary[ 'ipAddress' ] degugFlagList = dictionary[ 'debugFlag' ] if ipAddress in dictIpAddress.keys() : indexList = dictIpAddress[ ipAddress ] for index in indexList: logFileLine = logFileLineList[ index ] infoDict = self.getInfoFieldsFromLine( logFileLine ) date = '' date = infoDict[ 'month' ] + '-' + infoDict[ 'day' ] + '-' + infoDict[ 'year' ] directoryName = date fileName = ipAddress + '_' + infoDict[ 'status' ] + '.log' pathTuple = ( directoryName, fileName ) if pathTuple in finalContentDict.keys() : finalContentDict[ pathTuple ].append( infoDict[ 'time' ] +' '+ infoDict[ 'Message' ] + '\n' ) else : finalContentDict[ pathTuple ] = [ infoDict[ 'time' ] +' '+ infoDict[ 'Message' ] + '\n' ] for pathTuple, messageList in finalContentDict.items() : directoryName = pathTuple[ 0 ] fileName = pathTuple[ 1 ] directoryPath = os.path.join( self.STORAGE_DIR, directoryName ) filePath = os.path.join( directoryPath, fileName ) fullContentOfFile = '' for message in messageList : fullContentOfFile += message if os.path.isdir( directoryPath ) == 0 : os.mkdir( directoryPath ) file = open( filePath, "w+" ) file.write( fullContentOfFile ) file.close() logging.info( "Created file with file name %s at path %s", fileName, directoryPath ) return error class FindContentForFile() : def __init__( self, STORAGE_DIR, folderName, fileName ) : ''' Constructor for this class ''' self.STORAGE_DIR = STORAGE_DIR self.folderName = folderName self.fileName = fileName def getFileContent( self ) : ''' Gets the content of a file ''' filePath = self.STORAGE_DIR + '/' + self.folderName + '/' + self.fileName error = False message = '' try : file = open( filePath, "r" ) message = file.read() file.close() except FileNotFoundError as e : error = True logging.error(e) except Exception as e : error = True logging.error(e) return ( error, message ) class FindContentForAll() : def __init__( self, STORAGE_DIR ) : ''' Constructor for this class ''' self.STORAGE_DIR = STORAGE_DIR def getContentForAll( self ) : ''' Gets the content for all the files and returns a dictionary with file name, directory name and message ''' contentDictList = [ ] folderNameList = os.listdir( self.STORAGE_DIR ) for folderName in folderNameList : fileNameList = os.listdir( self.STORAGE_DIR + '/' + folderName ) for fileName in fileNameList : contentDict = {} contentDict[ 'folderName' ] = folderName ipAddress = fileName[ 0 : fileName.index('_') ] status = fileName[ fileName.index('_') + 1 : -4 ] contentDict[ 'fileName' ] = ipAddress + '_' + status + '.log' obj = FindContentForFile( self.STORAGE_DIR, folderName, fileName ) message = obj.getFileContent() contentDict[ 'message' ] = message contentDictList.append( contentDict ) return contentDictList
'''VoidFinder - Hoyle & Vogeley (2002)''' ################################################################################ # # IMPORT MODULES # ################################################################################ from voidfinder import filter_galaxies, find_voids from astropy.io import fits from astropy.table import Table from absmag_comovingdist_functions import Distance import pickle ################################################################################ # # USER INPUTS # ################################################################################ survey_name = 'DESI_dc17_' # File header in_directory = '/scratch/kdougla7/VoidFinder/DESI/' out_directory = '/scratch/kdougla7/VoidFinder/DESI/' # Input file names in_filename = in_directory + 'DESI_sgc.fits' # File format: RA, dec, redshift, comoving distance, absolute magnitude mask_filename = in_directory + 'dc17sgcmask.dat' # File format: RA, dec # Output file names out1_filename = out_directory + in_filename[:-5] + '_maximal.txt' # List of maximal spheres of each void region: x, y, z, radius, distance, ra, dec out2_filename = out_directory + in_filename[:-5] + '_holes.txt' # List of holes for all void regions: x, y, z, radius, flag (to which void it belongs) '''out3_filename = 'out3_vollim_dr7.txt' # List of void region sizes: radius, effective radius, evolume, x, y, z, deltap, nfield, vol_maxhole voidgals_filename = 'vollim_voidgals_dr7.txt' # List of the void galaxies: x, y, z, void region ''' #ngrid = 128 # Number of grid cells max_dist = 3400. # z_ngc = 1.5--> 4158 h-1 Mpc # z_sgc = 1.1 --> 3374 #box = 630. # Size of survey/simulation box dl = 5. # Cell side length [Mpc/h] ################################################################################ # # OPEN FILES # ################################################################################ ''' infile = Table.read(in_filename, format='ascii.commented_header') maskfile = Table.read(mask_filename, format='ascii.commented_header') ''' gal_file = fits.open(in_filename) infile = Table(gal_file[1].data) maskfile = Table.read(mask_filename, format='ascii.commented_header') survey_name = 'DC17_SGC_' ################################################################################ # # FILTER GALAXIES # ################################################################################ #coord_min_table, mask = filter_galaxies(in_filename, mask_filename, ngrid, box, max_dist) coord_min_table, mask, ngrid = filter_galaxies(infile, maskfile, dl, max_dist, survey_name) ################################################################################ # # FIND VOIDS # ################################################################################ find_voids(ngrid, dl, max_dist, coord_min_table, mask, out1_filename, out2_filename, survey_name)
import sys from collections import defaultdict import pyparsing as pp def stripped_lines(filename): with open(filename) as f: for line in f.readlines(): yield line.strip() def make_grammar(): color = pp.Combine(pp.Word(pp.alphas) + pp.Word(pp.alphas), adjacent=False, joinString=' ') bag = color + pp.oneOf(['bag', 'bags']) bags = pp.Group( (pp.Word(pp.nums) + bag) | ('no other bags') ) return bag + 'contain' + pp.delimitedList(bags) + '.' def lex(filename): grammar = make_grammar() return [grammar.parseString(line) for line in stripped_lines(filename)] def parse(filename): all_tokens = lex(filename) contained = defaultdict(list) contains = defaultdict(list) for tokens in all_tokens: outer_color = tokens[0] # 'bags' == tokens[1] # 'contain' == tokens[2] # '.' == tokens[-1] inner_colors = [] for bags in tokens[3:-1]: if bags[0] == 'no other bags': continue count = bags[0] inner_color = bags[1] # 'bag(s)' = bags[2] contained[inner_color].append(outer_color) contains[outer_color].append((inner_color, int(count))) return (contained, contains) def find_reachable(start, edges): # depth first search result = set() for e in edges[start]: result.add(e) result = set.union(result, find_reachable(e, edges)) return result def count_total_bags_inside(start, edges): # depth first search result = 0 for e, count in edges[start]: result += count + count * count_total_bags_inside(e, edges) return result def main(args): contained, contains = parse(args[1]) p1_ans = len(find_reachable('shiny gold', contained)) print(f'part one: {p1_ans}') p2_ans = count_total_bags_inside('shiny gold', contains) print(f'part two: {p2_ans}') # part one: 261 # part two: 3765 if __name__ == '__main__': main(sys.argv)
from flask import g, jsonify,request,session from flask.ext.httpauth import HTTPBasicAuth from .response import unauthorized, forbidden from . import api from ..models import User #initializes the HTTPBasic auth library to be used for regular authenticaiton auth = HTTPBasicAuth() #Login Error Handler @auth.error_handler def auth_error(): """Decorator function for login failed attempt""" return unauthorized("Invalid Credentials") #login authenticaiton verifier @auth.verify_password def verify_password(email_or_token, password): """ Handles the login/token verificaiton @params email/token, optional password @sets global user object @returns Bool True/False """ #checks if the password is empty if password is '': #get the user with the assigned token and store it in the global variable object g.current_user = User.verify_auth_token(email_or_token) #returns true if it's verified succesfully return g.current_user is not None #checks for the email and returns false if not avaible user = User.query.filter_by(email=email_or_token).first() if not user or not user.verify_password(password): return False g.current_user = user return True #Login endpoint @api.route('/auth/login/', methods=['POST']) def login(): """ Logs in A user """ email = request.json.get('email') password = request.json.get('password') # verifies and returns a token for the user if not verify_password(email, password): return unauthorized("Wrong combination of email and password") token = get_auth_token() response = jsonify({'token': token, 'message': 'successfully logged in'}) response.status_code = 200 return response # logout endpoint @api.route('/auth/logout/', methods=['GET']) @auth.login_required def logout(): session.clear() response = jsonify({'status': 'Logged Out'}) response.status_code = 201 return response def get_auth_token(): """ Utility function to generate authentication token @params None @return token """ token = g.current_user.generate_auth_token() return token.decode('ascii')
from . import onmt from . import torchtext
from django.contrib import admin from django.urls import path,include from .views import * urlpatterns = [ path('getauth',AuthURL.as_view()), path('redirect',spotify_callback), path('checkauth',IsAuthenticated.as_view()), path('currentsong',CurrentSong.as_view()), path('play',PlaySong.as_view()), path('pause',PauseSong.as_view()), path('skip',SkipSong.as_view()), path('previous',PrevSong.as_view()), path('usersong',UserSong.as_view()), ]