text
stringlengths
8
6.05M
from random import randint from flask import Flask,render_template,request,redirect from events import get_events from search_parse import parse app = Flask(__name__) @app.route("/") def main(): image = "bg/"+str(randint(0,59)+1)+".jpg" calendar = get_events() return render_template('index.html', events=calendar,image=image) @app.route('/', methods=['POST']) def search(): text = request.form['search'] processed_text = text.upper() url = parse(text) return redirect(url)
# Copyright 2021 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). import os import re import sys from textwrap import dedent import pytest from pants.backend.python import target_types_rules from pants.backend.python.goals import export from pants.backend.python.goals.export import ExportVenvsRequest, PythonResolveExportFormat from pants.backend.python.macros.python_artifact import PythonArtifact from pants.backend.python.target_types import ( PythonDistribution, PythonRequirementTarget, PythonSourcesGeneratorTarget, ) from pants.backend.python.util_rules import local_dists_pep660, pex_from_targets from pants.base.specs import RawSpecs from pants.core.goals.export import ExportResults from pants.core.util_rules import distdir from pants.engine.internals.parametrize import Parametrize from pants.engine.rules import QueryRule from pants.engine.target import Targets from pants.testutil.rule_runner import RuleRunner from pants.util.frozendict import FrozenDict @pytest.fixture def rule_runner() -> RuleRunner: return RuleRunner( rules=[ *export.rules(), *pex_from_targets.rules(), *target_types_rules.rules(), *distdir.rules(), *local_dists_pep660.rules(), QueryRule(Targets, [RawSpecs]), QueryRule(ExportResults, [ExportVenvsRequest]), ], target_types=[PythonRequirementTarget, PythonSourcesGeneratorTarget, PythonDistribution], objects={"python_artifact": PythonArtifact, "parametrize": Parametrize}, ) @pytest.mark.parametrize( "py_resolve_format", [ PythonResolveExportFormat.symlinked_immutable_virtualenv, PythonResolveExportFormat.mutable_virtualenv, ], ) def test_export_venv_new_codepath( rule_runner: RuleRunner, py_resolve_format: PythonResolveExportFormat, ) -> None: # We know that the current interpreter exists on the system. vinfo = sys.version_info current_interpreter = f"{vinfo.major}.{vinfo.minor}.{vinfo.micro}" rule_runner.write_files( { "src/foo/__init__.py": "from colors import *", "src/foo/BUILD": dedent( """\ python_sources(name='foo', resolve=parametrize('a', 'b')) python_distribution( name='dist', provides=python_artifact(name='foo', version='1.2.3'), dependencies=[':foo@resolve=a'], ) python_requirement(name='req1', requirements=['ansicolors==1.1.8'], resolve='a') python_requirement(name='req2', requirements=['ansicolors==1.1.8'], resolve='b') """ ), "lock.txt": "ansicolors==1.1.8", } ) format_flag = f"--export-py-resolve-format={py_resolve_format.value}" rule_runner.set_options( [ f"--python-interpreter-constraints=['=={current_interpreter}']", "--python-enable-resolves=True", "--python-resolves={'a': 'lock.txt', 'b': 'lock.txt'}", "--export-resolve=a", "--export-resolve=b", # Turn off lockfile validation to make the test simpler. "--python-invalid-lockfile-behavior=ignore", # Turn off python synthetic lockfile targets to make the test simpler. "--no-python-enable-lockfile-targets", "--export-py-editable-in-resolve=['a', 'b']", format_flag, ], env_inherit={"PATH", "PYENV_ROOT"}, ) all_results = rule_runner.request(ExportResults, [ExportVenvsRequest(targets=())]) for result, resolve in zip(all_results, ["a", "b"]): if py_resolve_format == PythonResolveExportFormat.symlinked_immutable_virtualenv: assert len(result.post_processing_cmds) == 2 ppc0, ppc1 = result.post_processing_cmds assert ppc0.argv == ("rmdir", "{digest_root}") assert ppc0.extra_env == FrozenDict() assert ppc1.argv[0:2] == ("ln", "-s") # The third arg is the full path to the venv under the pex_root, which we # don't easily know here, so we ignore it in this comparison. assert ppc1.argv[3] == "{digest_root}" assert ppc1.extra_env == FrozenDict() else: if resolve == "a": # editable wheels are installed for a user resolve that has dists assert len(result.post_processing_cmds) == 5 else: # tool resolves (flake8) and user resolves w/o dists (b) # do not run the commands to do editable installs assert len(result.post_processing_cmds) == 2 ppc0 = result.post_processing_cmds[0] # The first arg is the full path to the python interpreter, which we # don't easily know here, so we ignore it in this comparison. # The second arg is expected to be tmpdir/./pex. tmpdir, pex_pex_name = os.path.split(os.path.normpath(ppc0.argv[1])) assert pex_pex_name == "pex" assert re.match(r"\{digest_root\}/\.[0-9a-f]{32}\.tmp", tmpdir) # The third arg is expected to be tmpdir/{resolve}.pex. req_pex_dir, req_pex_name = os.path.split(ppc0.argv[2]) assert req_pex_dir == tmpdir assert req_pex_name == f"{resolve}.pex" assert ppc0.argv[3:] == ( "venv", "--pip", "--collisions-ok", "{digest_root}", ) assert ppc0.extra_env["PEX_MODULE"] == "pex.tools" assert ppc0.extra_env.get("PEX_ROOT") is not None ppc1 = result.post_processing_cmds[-1] assert ppc1.argv == ("rm", "-rf", tmpdir) assert ppc1.extra_env == FrozenDict() reldirs = [result.reldir for result in all_results] assert reldirs == [ f"python/virtualenvs/a/{current_interpreter}", f"python/virtualenvs/b/{current_interpreter}", ]
""" Setup for simstream module. Author: Jeff Kinnison (jkinniso@nd.edu) """ from setuptools import setup, find_packages setup( name="simstream", version="0.1dev", author="Jeff Kinnison", author_email="jkinniso@nd.edu", packages=find_packages(), description="", install_requires=[ "pika >= 0.10.0" ], )
import os import sys import subprocess import shutil import fam sys.path.insert(0, 'scripts') sys.path.insert(0, 'tools/raxml/') import experiments as exp import time import saved_metrics import run_raxml_supportvalues as raxml import sequence_model def run_pargenes(datadir, pargenes_dir, subst_model, samples, cores): raxml_command = "" run_modeltest = (subst_model == "bestAA" or subst_model == "bestNT") if (not run_modeltest): raxml_command +="--model " + sequence_model.get_raxml_model(subst_model) + " --blopt nr_safe" command = [] command.append(exp.python()) command.append(exp.pargenes_script_debug) command.append("-a") command.append(os.path.join(datadir, "alignments")) command.append("-b") command.append(str(samples)) command.append("-o") command.append(pargenes_dir) command.append("-c") command.append(str(cores)) command.append("-s") command.append("0") command.append("-p") command.append("0") if (len(raxml_command) > 0): command.append("-R") command.append(raxml_command) if (run_modeltest): command.append("-m") if (subst_model == "bestAA"): command.append("-d") command.append("aa") command.append("--continue") try: subprocess.check_call(command, stdout = sys.stdout) except: command[0] = exp.python() print(" ".join(command)) subprocess.check_call(command, stdout = sys.stdout) def export_pargenes_trees(pargenes_dir, subst_model, samples, datadir): families_dir = os.path.join(datadir, "families") # tca scores concatenated_dir = os.path.join(pargenes_dir, "concatenated_bootstraps") if (os.path.isdir(concatenated_dir)): for concatenation in os.listdir(concatenated_dir): family = "_".join(concatenation.split("_")[:-1]) # remove everything after the last src = os.path.join(concatenated_dir, concatenation) dest = fam.get_bootstrap_trees(datadir, samples, subst_model, family) shutil.copyfile(src, dest) def run_pargenes_and_extract_trees(datadir, subst_model, samples, cores, pargenes_dir = "bootstrap", extract_trees = True, restart = False): saved_metrics_key = "bootstrap" + str(samples) if (pargenes_dir != "pargenes"): saved_metrics_key = pargenes_dir print(datadir) print(subst_model) print(pargenes_dir) pargenes_dir = fam.get_run_dir(datadir, subst_model, pargenes_dir) if (not restart): shutil.rmtree(pargenes_dir, True) start = time.time() run_pargenes(datadir, pargenes_dir, subst_model, samples, cores) saved_metrics.save_metrics(datadir, fam.get_run_name(saved_metrics_key, subst_model), (time.time() - start), "runtimes") lb = fam.get_lb_from_run(os.path.join(pargenes_dir, "mlsearch_run")) saved_metrics.save_metrics(datadir, fam.get_run_name(saved_metrics_key, subst_model), (time.time() - start) * lb, "seqtimes") if (extract_trees): export_pargenes_trees(pargenes_dir, subst_model, samples, datadir) cleanup = True if (cleanup): shutil.rmtree(pargenes_dir, True) if __name__ == "__main__": if (len(sys.argv) < 6): print("syntax: python run_raxml_supportvalues.py datadir subst_model samples cores restart") sys.exit(1) dataset = sys.argv[1] subst_model = sys.argv[2] samples = int(sys.argv[3]) cores = int(sys.argv[4]) restart = int(sys.argv[5]) == 1 run_pargenes_and_extract_trees(dataset, subst_model, samples, cores, restart = restart)
import datetime import random import json from typing import Callable, Iterable, TypeVar T = TypeVar('T') RANDOM_BASE = [ '0123456789', 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz', ] def to_seconds(*, hours=0, minutes=0, seconds=0) -> int: """ >>> to_seconds(hours=1, minutes=1) 3660 >>> to_seconds(minutes=1, seconds=10) 70 """ assert isinstance(hours, int), TypeError assert isinstance(minutes, int), TypeError assert isinstance(seconds, int), TypeError return hours * 3600 + minutes * 60 + seconds def indexof(fn: Callable[[T], bool], iterable: Iterable[T]) -> int: """ 根据处理函数查找是否存在元素 如果存在满足条件的元素则返回下标,否则返回-1 >>> indexof(lambda n: n == 2, range(10)) 2 >>> indexof(lambda n: n > 10, range(10)) -1 :param fn: 处理函数 :param iterable: 可迭代的数据 :return: 结果下标 """ for idx, el in enumerate(iterable): rst = fn(el) if rst: return idx return -1 def addattr(obj, attr, value): """ 为对象添加属性并返回对象 :param obj: 对象 :param attr: 属性名 :param value: 值 :return: 对象 """ setattr(obj, attr, value) return obj def randomstr(length: int = 6, base: str = 'number') -> str: """ 生成随机字符串 :param length: :param base: 随机范围,枚举(number, letter, both) :return: """ _base = { 'number': RANDOM_BASE[0], 'letter': RANDOM_BASE[1], 'both': RANDOM_BASE[1] + RANDOM_BASE[0] }[base] return ''.join([str(random.choice(_base)) for _ in range(length)]) def jsonformat(**kwargs): return json.dumps(kwargs, indent=2) def timedelta_to_zero() -> datetime.timedelta: now = datetime.datetime.now() next_zero = datetime.datetime( year=now.year, month=now.month, day=now.day) + datetime.timedelta( days=1) return next_zero - now def datetimestring(dt: datetime.datetime = None) -> str: if not dt: dt = datetime.datetime.now() return f'{dt.year}-{dt.month}-{dt.day}'
""" multiple thread, multiple connections """ import threading import mysql.connector from random import uniform from time import sleep def read_user_from_db(): """ read user info from db """ sleep(uniform(0, 1)) user_db = mysql.connector.connect( host="localhost", user="root", passwd="123456", database="users" ) user_cursor = user_db.cursor() user_cursor.execute("select * from userinfo") return user_cursor.fetchall() if __name__ == "__main__": threads = [] for i in xrange(1000): t = threading.Thread(target=read_user_from_db) t.daemon = True t.start() threads.append(t) for thread in threads: thread.join()
celsius = float(input("Please enter the temperature in Celsius: ")) fahrenheit = (celsius * 1.8) + 32 kelvin = celsius + 273.15 print('''\n%0.1f Celsius is equal to %0.2f degrees Fahrenheit.\n'''%(celsius, fahrenheit)) print('''\n%0.1f Celsius is equal to %0.2f Kelvin.\n'''%(celsius, kelvin))
EOF = 3 digits = set(list("0123456789")) lettersdigitsunderscore = set( list("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ_0123456789") ) letters = set(list("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ")) ws = set(list(" \t\n\r")) badidentifiertoken = 1 class StreamReader: def __init__(self, instream): self.instream = instream self.nextChars = "" self.EOF = False self.line = 1 self.column = 0 self.charsRead = 0 def readChar(self): if len(self.nextChars) > 0: nextChar = self.nextChars[0] self.nextChars = self.nextChars[1:] else: nextChar = self.instream.read(1) if nextChar == "": nextChar = chr(EOF) elif nextChar == "\n": self.line += 1 self.column = 0 else: self.column += 1 if nextChar == chr(EOF): self.EOF = True self.charsRead += 1 return nextChar def unreadChar(self, ch): self.EOF = False self.nextChars = ch + self.nextChars if ch == "\n": self.line -= 1 else: self.column -= 1 self.charsRead -= 1 def numCharsRead(self): # return the number of characters read. This is useful when backtracking is performed # in case no progress is being made in reading the stream. return self.charsRead def eof(self): return self.EOF def readUpTo(self, delimiter): result = "" done = False while not done and not self.eof(): c = self.readChar() if not self.eof(): result += c if result[-len(delimiter) :] == delimiter: done = True return result def readInt(self): number = "" self.skipWhiteSpace() digit = self.readChar() while digit in digits: number += digit digit = self.readChar() self.unreadChar(digit) return int(number) def readIdentifier(self): id = "" self.skipWhiteSpace() c = self.readChar() if not c in letters: print( "Bad identifier token found in source file starting with", c, "at line", self.line, "and column", self.column, ) raise Exception(badidentifiertoken) while c in lettersdigitsunderscore: id += c c = self.readChar() self.unreadChar(c) return id def skipWhiteSpace(self): c = self.readChar() while c in ws: c = self.readChar() self.unreadChar(c) def peek(self, value): # Skip white space, then look for the value as the next characters in the input file. # Remember the read characters, but return true if they are found and false otherwise. readChars = "" self.skipWhiteSpace() done = False while len(readChars) < len(value) and not done: c = self.readChar() if c == EOF: done = True else: readChars += c for i in range(len(readChars) - 1, -1, -1): self.unreadChar(readChars[i]) if readChars == value: return True return False def skipComments(self): # skip comments while self.peek("(*"): self.readUpTo("*)") def getLineNumber(self): return self.line def getColNumber(self): return self.column def getToken(self): self.skipWhiteSpace() c = self.readChar() if c in digits: self.unreadChar(c) return self.readInt() if c in letters: self.unreadChar(c) return self.readIdentifier() return c
import Jetson.GPIO as GPIO import time from threading import Thread def checkSuccess(target_time, output_pin): global success start=time.time() while True: current_time=time.time() if (current_time-start>=target_time): GPIO.output(output_pin,GPIO.LOW) success = True # time.sleep(1) return 0 # print(success) ################# Initialize Various ############### RT_pin=18 #turn right pin LT_pin=13 #turn left pin RB_pin=0 #vibration right pin LB_pin=0 #vibration left pin GPIO.setmode(GPIO.BCM) GPIO.setup(RT_pin,GPIO.OUT) GPIO.setup(LT_pin,GPIO.OUT) GPIO.setup(RB_pin,GPIO.OUT) GPIO.setup(LB_pin,GPIO.OUT) TA=0 #target_angle PA=0 #previous_angle PTA=0 #previous_target_angle p_t = 0 #previous_time success = False direction = 0 # TT #target_time # PT #previous_time #################### Main Loop #################### theta = 73 for frame in range(10): TA = theta*9 print(success) if frame==0: pass else: t.do_run = False c_t=time.time() if success==False: CA=(c_t-p_t)*216*direction+PA else: CA=PTA if TA == CA: pass else: direction = (TA-CA)/abs(TA-CA) TT = abs(TA-CA)/216 if direction<0: GPIO.output(RT_pin,GPIO.HIGH) output_pin=RT_pin else: GPIO.output(LT_pin,GPIO.HIGH) output_pin=LT_pin t=Thread(target=checkSuccess, args=(TT,output_pin)) t.start() p_t=time.time() PTA=TA PA=CA time.sleep(0.5)
#!/usr/bin/env python # encoding: utf-8 """ pageobj.py Created by yang.zhou on 2012-09-17. Copyright (c) 2012 zhouyang.me. All rights reserved. """ import logging import time import hashlib import urllib from datetime import datetime from dateutil import parser from dateutil import tz def getMd5(st=''): md5_st = hashlib.md5(st) return md5_st.hexdigest() def getSha1(st=''): sha1_st = hashlib.sha1(st) return sha1_st.hexdigest() def formatDatetime(aDatetime): return aDatetime.strftime("%Y/%m/%d %X") def formatDate(aDatetime): return aDatetime.strftime("%Y/%m/%d") def getWeiboTime(t): utc_zone = tz.gettz('UTC') weibo_zone = tz.gettz('Asia/Shanghai') return parser.parse(t).replace(tzinfo=utc_zone).astimezone(weibo_zone) def _encode_params(**kw): args = [] for k, v in kw.iteritems(): qv = v.encode('utf-8') if isinstance(v, unicode) else str(v) args.append('%s=%s' % (k, urllib.quote(qv))) return '&'.join(args) # Get striped string def striping(content, start, length, ignore_white=True): if len(content.decode("utf-8")) > length: content = content.decode("utf-8")[start: length].encode("utf-8") + "..." if ignore_white: content = content.strip() return content
def substring(string): if not string: return '' length = len(string) longest_sub = 0 sub_strings = [] for a in xrange(length): unique = set() for b in xrange(a, length): unique.add(string[b]) if len(unique) > 2: break if b + 1 - a == longest_sub: sub_strings.append(string[a:b + 1]) if b + 1 - a > longest_sub: longest_sub = b + 1 - a sub_strings = [string[a:b + 1]] return sub_strings[0]
from __future__ import absolute_import from __future__ import division from __future__ import print_function import _init_paths from opts import opts from detectors.detector_factory import detector_factory if __name__ == '__main__': opt = opts().init() image_name = opt.image_name_path Detector = detector_factory[opt.task] detector = Detector(opt) ret = detector.run(image_name) print(ret)
# coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A simple test for validating that the Atari env initializes.""" import datetime import os import shutil from absl import flags from batch_rl.baselines import train import tensorflow.compat.v1 as tf FLAGS = flags.FLAGS class AtariInitTest(tf.test.TestCase): def setUp(self): super(AtariInitTest, self).setUp() FLAGS.base_dir = os.path.join( '/tmp/batch_rl_tests', datetime.datetime.utcnow().strftime('run_%Y_%m_%d_%H_%M_%S')) FLAGS.gin_files = ['batch_rl/baselines/configs/dqn.gin'] # `num_iterations` set to zero to prevent runner execution. FLAGS.gin_bindings = [ 'Runner.num_iterations=0', 'WrappedReplayBuffer.replay_capacity = 100' # To prevent OOM. ] FLAGS.alsologtostderr = True def test_atari_init(self): """Tests that a DQN agent is initialized.""" train.main([]) shutil.rmtree(FLAGS.base_dir) if __name__ == '__main__': tf.test.main()
from multiprocessing import Pool import signal, os, time def f(x): print('hello',x) return x*2 if __name__ == '__main__': original_sigint_handler = signal.signal(signal.SIGINT, signal.SIG_IGN) p = Pool(5) signal.signal(signal.SIGINT, original_sigint_handler) try: res = p.map_async(f, range(10000000)) print("Waiting for results") res.get(60) except KeyboardInterrupt: print("Caught KeyboardInterrupt, terminating workers") p.terminate() else: print("Normal termination") p.close() p.join()
# -*- coding: utf-8 -*- """ Created on Thu Oct 18 17:40:49 2018 @author: Cole Thompson """ import matplotlib.pyplot from matplotlib.pyplot import * import numpy from numpy import * x=arange(0,200.1,0.1) y0=arange(0,200.1,0.1) y1= 125 - x y2= (200/1.3)-((1.2/1.3)*x) xB= 20 + 0.0*y0 yB = 20 + 0.0*x #y= x + y0 # Plot limits must be set for the graph. xlim(100,110) ylim(15,25) # Plot axes need to be labled,title specified and legend shown. xlabel('Donuts') ylabel('Bagels') title('Optimizing Breakfast') plot(x,y1,'b', label='x + y >= 125') plot(x,y2,'r', label='1.20x + 1.3y <= 250') plot(xB,y0,'g', label='x >= 2') plot(x,yB,'g', label='y >= 2') #plot(x,y,'k--', label='z = x + y') # The dashed black line represents the objective function. legend() x= [0, 0, .8, 1.5, 1.5] y= [0, 2.0, 2.4, 1.0, 0] # Matplotlib will fill irregular polygons if the corner points are given. # Different colors are possible. Alpha controls the level of darkness. fill(x,y, color='grey', alpha=0.2) grid() show() obj= matrix([3.0,4.0]) obj= transpose(obj) corners= matrix([x,y]) corners= transpose(corners) result= dot(corners,obj) print ('Value of Objective Function at Each Corner Point:\n', result)
from flask_pagedown.fields import PageDownField from flask_wtf import FlaskForm from wtforms import StringField, SubmitField, PasswordField, BooleanField, TextAreaField, SelectField from wtforms import ValidationError from wtforms.validators import DataRequired, Length, Email, Regexp, EqualTo from app.models import User, Role #==================================================================================================== class LoginForm(FlaskForm): name = StringField('Name', validators=[Length(0, 64)]) email = StringField('Email',validators=[Length(0,64)]) password = PasswordField('Password',validators=[DataRequired()]) remember_me = BooleanField('Keep Logged in') submit = SubmitField('Login') class RegistrationForm(FlaskForm): email = StringField('Email',validators=[DataRequired(),Length(1,64),Email()]) name = StringField('Name',validators=[DataRequired(),Length(1,64), Regexp('^[A-Za-z][A-Za-z0-9._]*$',0, 'Usernames must have only letters,numbers,dots or underscore.') ]) location = StringField('Location',validators=[Length(0,64)]) password = PasswordField('Password',validators=[DataRequired(), EqualTo('password2',message='Passwords must match.')]) password2 = PasswordField('Comfirm Password',validators=[DataRequired()]) submit = SubmitField('Register') def validate_email(self,field): #自定义验证函数 validate+fieldname if User.query.filter_by(email=field.data).first(): raise ValidationError('Email already registered.') def validate_name(self,field): if User.query.filter_by(name=field.data).first(): raise ValidationError('Username already in use.') #==================================================================================================== class EditProfileForm(FlaskForm): name = StringField('Name',validators=[DataRequired(),Length(0,64)]) email = StringField('Email', validators=[ DataRequired(), Length(1, 64), Email()]) role = StringField('Role', render_kw={'readonly': True}) location = StringField('Location',validators=[Length(0,64)]) about_me = TextAreaField('About me') password = PasswordField('Password', validators=[DataRequired()]) submit = SubmitField('Submit') class EditProfileForAdminForm(FlaskForm): name = StringField('Name', validators=[DataRequired(), Length(1, 64), Regexp('^[A-Za-z][A-Za-z0-9._]*$', 0, 'Usernames must have only letters,numbers,dots or underscore.') ]) email = StringField('Email', validators=[ DataRequired(), Length(1, 64), Email()]) password = PasswordField('Password', validators=[DataRequired()]) location = StringField('Location',validators=[Length(0,64)]) about_me = TextAreaField('About me') role = SelectField('Role',coerce=int,choices='',render_kw={'class':'form-control'}, validators=[DataRequired('Pleas choose a role.')]) confirmed = BooleanField('Confirmed') submit = SubmitField('Submit') def __init__(self, user,*args,**kwargs): super(EditProfileForAdminForm, self).__init__(*args, **kwargs) self.role.choices = [(role.id,role.name) for role in Role.query.order_by(Role.name).all()] self.user = user def validate_email(self,field): if field.data!=self.user.email and User.query.filter_by(email=field.data).first(): raise ValidationError('Email already registered.') def validate_name(self,field): if field.data!=self.user.name and User.query.filter_by(name=field.data).first(): raise ValidationError('Username already in use.') #==================================================================================================== class PostForm(FlaskForm): # body = TextAreaField("What's on your mind?",validators=[DataRequired()]) body = PageDownField("What's on your mind?",validators=[DataRequired()]) submit = SubmitField('Submit') #==================================================================================================== class CommentForm(FlaskForm): body = StringField('Comment:',validators=[DataRequired()]) submit = SubmitField('Submit')
def chess(tr, tc, pr, pc, size):# 传入左上角的坐标,特殊点坐标,以及size global mark global table mark += 1 count = mark if size == 1: return half = size // 2 # 确认特殊点位置以及子问题大小,并解决另外三个子问题 if pr < tr + half and pc < tc + half: chess(tr, tc, pr, pc, half) else: table[tr + half - 1][tc + half - 1] = count chess(tr, tc, tr + half - 1, tc + half - 1, half) if pr < tr + half and pc >= tc + half: chess(tr, tc + half, pr, pc, half) else: table[tr + half - 1][tc + half] = count chess(tr, tc + half, tr + half - 1, tc + half, half) if pr >= tr + half and pc < tc + half: chess(tr + half, tc, pr, pc, half) else: table[tr + half][tc + half - 1] = count chess(tr + half, tc, tr + half, tc + half - 1, half) if pr >= tr + half and pc >= tc + half: chess(tr + half, tc + half, pr, pc, half) else: table[tr + half][tc + half] = count chess(tr + half, tc + half, tr + half, tc + half, half) def show(table): n = len(table) for i in range(n): for j in range(n): print(table[i][j], end='\t') print('') if __name__ == "__main__": mark = 0 n = 8 table = [["*" for x in range(n)] for y in range(n)] show(table) chess(0, 0, 4, 2, n) show(table)
from django.conf.urls import include, url from django.contrib import admin from django.conf import settings from django.conf.urls.static import static # from .home import views urlpatterns = [ url(r'^$', include('home.urls', namespace="home")), url(r'^stories/', 'home.views.verhalen'), url(r'^overons/', 'home.views.aboutus'), url(r'^colofon/', 'home.views.colofon'), url(r'^durfjij/', include('polls.urls', namespace="polls")), url(r'^admin/', include(admin.site.urls)), url(r'^blog/', include('blog.urls', namespace="blog")), url(r'^contact/', include('contact.urls', namespace="contact")), url(r'^iamgrey/', include('iamgrey.urls', namespace="iamgrey")), url(r'^partners/', include('partners.urls', namespace="partners")), # url(r'^media/(?P<path>.*)$', 'django.views.static.serve', {'document_root': settings.MEDIA_ROOT,}), ] # + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
import matplotlib.pyplot as plt mes = ["enero","febrero","marzo","abril","mayo","junio","julio","agosto","septiembre","octubre","noviembre","diciembre"] ingresos = ["350.000","780.00","230.000","650.000","500.00","800.00","150.000","450.000","900.000","750.000","970.00","450.000"] plt.bar(mes,ingresos, width = 0.8, color = "m") plt.title("Ingresos durante el 2020") plt.xlabel("Mes") plt.ylabel("Ingresos") plt.savefig("GraficoIngresos.png") plt.show() pieLabels = ["medellin","bogota","cali","pereira","barranquilla"] sizes = [23,25,17,14,21] pieExplode = [0,0.3,0,0,0] plt.pie(sizes,labels=pieLabels, explode = pieExplode) plt.title("Ciudades de colombia") plt.savefig("TortaCiudades.png") plt.show()
# -*- coding: utf-8 -*- """ Created on Tue Apr 3 14:17:35 2018 @author: xingxf03 """ import numpy as np from sklearn import datasets,model_selection from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import classification_report mnist = datasets.fetch_mldata('MNIST original') data,target = mnist.data,mnist.target print('data.shape:{},target.shape:{}'.format(data.shape,target.shape)) index = np.random.choice(len(target), 70000, replace=False) #获取特定大小的数据集 def mk_dataset(size): train_img = [data[i] for i in index[:size]] train_img = np.array(train_img) train_target = [target[i] for i in index[:size]] cond a train_target = np.array(train_target) return train_img,train_target
"""Main module for testing DecisionTreeClassifier, KNeighborsClassifier, RandomForestClassifier and GaussianNB on LeafClassification problem from kaggle. Usage: python3 words.py <URL> """ import sys from sklearn.preprocessing import StandardScaler from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.naive_bayes import GaussianNB from Constants.constants import * from Common.common import * from Algorithms.algorithms import * from Data.data import * def execute_algorithms(train_data, target_data, n_samples, data_scrubbing_description): """Executes Decision Tree, Random Forest, KNeighbors and GaussianNB algorithms on raw or standardized training data. Prints results of classification. Plots results of Random Forest algorithm as a function of number of estimators. Args: train_data: Available data attributes with values. target_data: Class attribute values. n_samples: Number of times that classification will be executed. data_scrubbing_description: Description on what data is being used. """ dt_clf = DecisionTreeClassifier() kn_clf = KNeighborsClassifier() nb_clf = GaussianNB() n_estimators_array = np.array([1, 5, 10, 50, 100, 200]) dt_score, dt_score_std = run_algorithm(dt_clf, train_data, target_data, n_samples) print_single_section("Decision Tree Classifier", data_scrubbing_description, dt_score) rf_score_array = np.zeros(len(n_estimators_array)) rf_score_std_array = np.zeros(len(n_estimators_array)) for i in range(len(n_estimators_array)): rf_clf = RandomForestClassifier(n_estimators = n_estimators_array[i]) rf_score_array[i], rf_score_std_array[i] = run_algorithm(rf_clf, train_data, target_data, n_samples) print_multiple_section("Random Forest Classifier", data_scrubbing_description, "For n_estimators = {0:0=3d} mean accuracy is {1:.6f}", n_estimators_array, rf_score_array) plot_chart("Number of estimators", "accuracy", n_estimators_array, rf_score_array, title_text='Random Forest Classifier ' + data_scrubbing_description, sigma_component=rf_score_std_array) kn_score, kn_std = run_algorithm(kn_clf, train_data, target_data, 5) print_single_section("KNeighbours Classifier", data_scrubbing_description, kn_score) nb_score, nb_std = run_algorithm(nb_clf, train_data, target_data, 5) print_single_section("Naive Bayes Classifier", data_scrubbing_description, nb_score) def execute_pca_variance_calculation(train_data): """Split training set with skicit learn train_test_split function. Train classifier on training set and evaluate it on test set. Args: clf: Used Classifier. data: Available data attributes. target: Class attribute values. split_ratio: split ratio of data to be used for traning/testing. Returns: clf.score(testX, testY): Accuracy of evaluation on test data. """ n_components_array = ([1, 5, 10, 20, 50, 100, 150, 180]) vr = calculate_data_variance_ratio(n_components_array, train_data) plot_pca_chart("Number of PCA components", "variance ratio", n_components_array, vr) def execute_algorithms_with_pca(train_data, target_data, n_samples, data_scrubbing_description): """Executes Decision Tree, Random Forest, KNeighbors and GaussianNB algorithms on raw or standardized training data as a function of number of PCA components. Prints results of classification. Plots results of all algorithms as a function of number of PCA components. Args: train_data: Available data attributes with values. target_data: Class attribute values. n_samples: Number of times that classification will be executed. data_scrubbing_description: Description on what data is being used. """ dt_clf = DecisionTreeClassifier() rf_clf = RandomForestClassifier(n_estimators=100, n_jobs=-1) kn_clf = KNeighborsClassifier() nb_clf = GaussianNB() n_components_array = ([1, 5, 10, 20, 50, 100, 150, 180]) dt_score_array, dt_score_std_array = run_algorithm_with_pca(dt_clf, train_data, target_data, n_components_array, n_samples) print_multiple_section("Decision Tree Classifier + PCA Decomposition", data_scrubbing_description, "For {0:0=3d} PCA components mean accuracy is {1:.6f}", n_components_array, dt_score_array) plot_chart('number of PCA components', 'accuracy', n_components_array, dt_score_array, title_text='Decision Tree Classifier ' + data_scrubbing_description, sigma_component=dt_score_std_array) rf_score_array, rf_score_std_array = run_algorithm_with_pca(rf_clf, train_data, target_data, n_components_array, n_samples) print_multiple_section("Random Forest Classifier + PCA Decomposition", data_scrubbing_description, "For n_estimators = {0:0=3d} mean accuracy is {1:.6f}", n_components_array, rf_score_array) plot_chart('number of PCA components', 'accuracy', n_components_array, rf_score_array, title_text='Random Forest Classifier ' + data_scrubbing_description, sigma_component=rf_score_std_array) kn_score_array, kn_score_std_array = run_algorithm_with_pca(kn_clf, train_data, target_data, n_components_array, n_samples) print_multiple_section("KNeigbors Classifier + PCA Decomposition", data_scrubbing_description, "For {0:0=3d} PCA components mean accuracy is {1:.6f}", n_components_array, kn_score_array) plot_chart('number of PCA components', 'accuracy', n_components_array, kn_score_array, title_text='KNeigbors Classifier ' + data_scrubbing_description, sigma_component=kn_score_std_array) nb_score_array, nb_score_std_array = run_algorithm_with_pca(nb_clf, train_data, target_data, n_components_array, n_samples) print_multiple_section("Naive Bayes Classifier + PCA Decomposition", data_scrubbing_description, "For {0:0=3d} PCA components mean accuracy is {1:.6f}", n_components_array, nb_score_array) plot_chart('number of PCA components', 'accuracy', n_components_array, nb_score_array, title_text='Naive Bayes Classifier ' + data_scrubbing_description, sigma_component=nb_score_std_array) plot_multiple_charts(x_axis_array=n_components_array, errorbar_two_dim_mean_array=[dt_score_array, rf_score_array, kn_score_array, nb_score_array], errorbar_two_dim_std_array=[dt_score_std_array, rf_score_std_array, kn_score_std_array, nb_score_std_array], x_label="num PCA components", y_label="validation accuracy", title_text="Algorithms " + data_scrubbing_description, legend=['Decision Tree', 'Random Forest', 'k Nearest Neighbor', 'Naive Bayes']) def main(n_samples): """Main function. Loads train and test data and invokes execution of classification algorithms. Args: n_samples: Number of times that classification will be executed. """ train = read_csv(TRAIN_FILE_PATH) #test = read_csv(TEST_FILE_PATH) target = train['species'] train = train.drop(['id', 'species'], 1) scaler = StandardScaler().fit(train) train_standardized = scaler.transform(train) print_header("Execute classification without data processing") execute_algorithms(train, target, n_samples, "without any data preprocessing") print_header("Execute classification with data standardization") execute_algorithms(train_standardized, target, n_samples, "with data standardization") print_header("Capture training data variance with PCA") execute_pca_variance_calculation(train) print_header("Execute classification after data decomposition") execute_algorithms_with_pca(train, target, n_samples, "with data decomposition") print_header("Execute classification after data decomposition and standardization") execute_algorithms_with_pca(train_standardized, target, n_samples, "with data decomposition and standardization") if __name__ == '__main__': try: main(sys.argv[1]) except IndexError as e: print("Use default number of samples = 2") main(2)
''' --------------------------------------------------------------------------- arrayUtilities.py Kirk D Evans 07/2018 kdevans@fs.fed.us TetraTech EC for: USDA Forest Service Region 5 Remote Sensing Lab script to: misc array and list function know limitations: python 3.x --------------------------------------------------------------------------- ''' import sys, os import numpy as np import general as g sys.path.append(os.path.abspath('.')) def indexCuts(intLen, intBreaks): ''' Return a list of list/array indeces describing the cut points of an iterable of length intLen into intBreaks slices of approximately equal length. ''' if type(intLen) != int: raise Exception('arg: intLen, must be integer') if type(intLen) != int: raise Exception('arg: intBreaks, must be integer') if intBreaks < 1: raise Exception('arg: intBreaks, must be greater than 0') intwidth = float(intLen)/intBreaks lstCuts = [0] for i in range(1,intBreaks): lstCuts.append(int(round(i * intwidth))) lstCuts.append(intLen) return lstCuts def tupCuts(lstC): ''' Return list of tuples given lstC of length n: [(lstC[0], lstC[1]), (lstC[1], lstC[2]), (lstC[0], lstC[1])..., (lstC[n-2], lstC[n-1])] ''' return [(lstC[i], lstC[i+1]) for i in range(len(lstC) - 1)] def splitSample(lst, tupBreak, bolMakeArray = True, fTransform = g.Return): ''' Given tupBreak (i,j), return two lists: lstSubset = lst[i:j] lstRest = lst[:i] + lst[j:], i.e. arr without lstIn Optionally convert lstIn and lstOut to numpy arrays Optionally apply function fTransform to elements of lstIn and lstOut ''' if type(lst) not in (list, tuple): raise Exception('arg: lst, must be list or tuple') i, j = tupBreak lstSubset = lst[i:j] lstRest = lst[:i] + lst[j:] if bolMakeArray: return fTransform(np.array(lstSubset)), fTransform(np.array(lstRest)) else: return [fTransform(k) for k in lstSubset], [fTransform(k) for k in lstRest] if __name__ == "__main__": pass
import os import exputils import shutil def test_experimentstarter(tmpdir): dir_path = os.path.dirname(os.path.realpath(__file__)) # change working directory to this path os.chdir(dir_path) ############################################################################ ## test 01 - serial # copy the scripts in the temporary folder directory = os.path.join(tmpdir.strpath, 'test_experimentstarter_01') shutil.copytree('./start_scripts', directory) # run scripts exputils.start_experiments(directory=directory, is_parallel=False) # check if the required files have been generated assert os.path.isfile(os.path.join(directory, 'job04.txt')) assert os.path.isfile(os.path.join(directory, 'job01/job01.txt')) assert os.path.isfile(os.path.join(directory, 'job02/job02.txt')) assert not os.path.isfile(os.path.join(directory, 'job03/job03.txt')) ############################################################################ ## test 02 - parallel # copy the scripts in the temporary folder directory = os.path.join(tmpdir.strpath, 'test_experimentstarter_02') shutil.copytree('./start_scripts', directory) # run scripts exputils.start_experiments(directory=directory, is_parallel=True) # check if the required files have been generated assert os.path.isfile(os.path.join(directory, 'job04.txt')) assert os.path.isfile(os.path.join(directory, 'job01/job01.txt')) assert os.path.isfile(os.path.join(directory, 'job02/job02.txt')) assert not os.path.isfile(os.path.join(directory, 'job03/job03.txt')) ############################################################################ ## test 03 - is_chdir=True # copy the scripts in the temporary folder directory = os.path.join(tmpdir.strpath, 'test_experimentstarter_03') shutil.copytree('./start_scripts', directory) # run scripts exputils.start_experiments(directory=directory, is_parallel=True, is_chdir=True) # check if the required files have been generated assert os.path.isfile(os.path.join(directory, 'job04.txt')) assert os.path.isfile(os.path.join(directory, 'job01/job01.txt')) assert os.path.isfile(os.path.join(directory, 'job02/job02.txt')) assert not os.path.isfile(os.path.join(directory, 'job03/job03.txt'))
# !/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2018/4/12 19:37 # @Author : Yunhao Cao # @File : storage.py from sqlalchemy import Column, Integer, String, DateTime, orm, create_engine from sqlalchemy.ext.declarative import declarative_base __author__ = 'Yunhao Cao' __all__ = [ 'Item', 'Column', 'Integer', 'String', 'DateTime', 'Storage', ] # 创建数据库实体的基类: Item = declarative_base() class Storage(object): def __init__(self, config): engine = create_engine(config) self.session = orm.sessionmaker(bind=engine)() def save(self, item): self.session.add(item) self.session.commit()
#!/usr/bin/env python # coding: utf-8 # Copyright (c) Qotto, 2019 """ Contain all StoreBuilder errors """ __all__ = [ 'UninitializedStore', 'CanNotInitializeStore', 'FailToSendStoreRecord', ] class UninitializedStore(RuntimeError): """UninitializedStore This error was raised when store is not initialized """ class CanNotInitializeStore(RuntimeError): """CanNotInitializeStore This error was raised when StoreBuilder can't initialize store """ class FailToSendStoreRecord(Exception): """FailToSendStoreRecord This error was raised when StoreBuilder fail to send StoreRecord """
#!/usr/bin/env python3 # # Auxiliary script for obtaining all inaugural speeches of all U.S. # presidents from Wikipedia. import re import requests from bs4 import BeautifulSoup from urllib.parse import urljoin def getName(title): i = title.index("'") n = title[:i] n = n.replace(" ", "_") return n def getSpeech(name, url): page = requests.get(url) content = page.content soup = BeautifulSoup(content, "html.parser") header = soup.find("div", class_="gen_header_title") div = soup.find(id="mw-content-text") year = re.search(r'\((\d+)\)', header.text).group(1) # Remove all licence containers licences = soup.find_all("div", class_="licenseContainer licenseBanner") for licence in licences: licence.decompose() speech = "" for p in div.find_all("p", recursive=True): speech += p.text + "\n" return year,speech overviewURL = "https://en.wikisource.org/wiki/Category:U.S._Presidential_Inaugural_Addresses" baseURL = urljoin(overviewURL, '/') overviewPage = requests.get(overviewURL) overviewContent = overviewPage.content soup = BeautifulSoup(overviewContent, "html.parser") for category in soup.find_all("div", class_="mw-category-group"): ul = category.find("ul") for li in ul.find_all("li"): a = li.find("a") page = a['href'] name = getName(a.text) print("Processing %s..." % name) url = urljoin(baseURL, page) year, speech = getSpeech(name, url) with open("%s.txt" % (year + "_" + name), "w") as f: f.write(speech)
#!/usr/bin/env python # -*- coding: utf-8 -*- from head import * import ConfigParser def read_config(): try: config_inst = ConfigParser.ConfigParser() config_inst.read('mushroom.conf') #################################################### db_conn_info['HOST'] = config_inst.get('DB', 'host') db_conn_info['USER'] = config_inst.get('DB', 'user') db_conn_info['PASSWORD'] = config_inst.get('DB', 'password') db_conn_info['DATABASE'] = config_inst.get('DB', 'database') #################################################### arm_server_addr = config_inst.get('ARMServer', 'address') arm_server_port = config_inst.getint('ARMServer', 'port') ARM_SERVER_ADDR[0] = arm_server_addr ARM_SERVER_ADDR[1] = arm_server_port django_server_addr = config_inst.get('DjangoServer', 'address') django_server_port = config_inst.getint('DjangoServer', 'port') DJANGO_SERVER_ADDR[0] = django_server_addr DJANGO_SERVER_ADDR[1] = django_server_port #################################################### log_file['ERROR'] = config_inst.get('Log', 'error_path') log_file['COMMUNICATION'] = config_inst.get('Log', 'communication_path') log_file['DEBUG'] = config_inst.get('Log', 'debug_path') log_file['WORK'] = config_inst.get('Log', 'work_path') if config_inst.getint('Log', 'error_open') == 1: log_handler.enable_error() else: log_handler.disable_error() if config_inst.getint('Log', 'communication_open') == 1: log_handler.enable_communication() else: log_handler.disable_communication() if config_inst.getint('Log', 'debug_open') == 1: log_handler.enable_debug() else: log_handler.disable_debug() if config_inst.getint('Log', 'work_open') == 1: log_handler.enable_work() else: log_handler.disable_work() #################################################### MAX_TASK_ID = config_inst.getint('Task', 'max_session_id') if MAX_TASK_ID > 16777215: MAX_TASK_ID = 16777215 #################################################### return SUC except ConfigParser.Error, e: log_msg = str(e) log_handler.error(log_msg) return FAI if __name__ == '__main__': read_config() print db_conn_info print 'ARM_SERVER_ADDR: %s' %str(ARM_SERVER_ADDR) print 'DJANGO_SERVER_ADDR: %s' %str(DJANGO_SERVER_ADDR) print 'log_file: %s' %str(log_file) print 'log_conf: %s' %str(log_conf) print 'MAX_TASK_ID: %d' %MAX_TASK_ID
#Orientaçao a objeto class Carro(): #Construtor def __init__(self, modelo = '', cor = '', velociadade = '', ano = ''): #self é o único parametro obrigatorio self.modelo = modelo self.cor = cor self.velocidade = velocidade self.ano = ano def acelerar(self): self.velocidade += 10 def frear(self): self.velocidade -= 10 if self.velocidade == 0: print('O carro está parado') #criar objeto fusca = Carro('Fusca', 'Vermelho', 0, 1975) verona = Carro() print(fusca.modelo) print(fusca.cor) print(fusca.velocidade) print(fusca.ano) fusca.acelerar() fusca.acelerar() print(fusca.velocidade)
# Generated by Django 2.2.2 on 2019-06-25 18:29 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('main', '0002_auto_20190625_2016'), ] operations = [ migrations.AlterModelOptions( name='history', options={'get_latest_by': ['time'], 'ordering': ['-time']}, ), ]
import pytest import numpy as np from numba import cuda from libgdf_cffi import ffi, libgdf, GDFError from .utils import new_column, unwrap_devary, get_dtype, gen_rand, fix_zeros def test_cuda_error(): dtype = np.float32 col = new_column() gdf_dtype = get_dtype(dtype) libgdf.gdf_column_view(col, ffi.NULL, ffi.NULL, 0, gdf_dtype) #with pytest.raises(GDFError) as raises: # libgdf.gdf_add_generic(col, col, col) #raises.match("CUDA ERROR.")
import knn class Process: def __init__(self,trainDataPath,testDataPath): self.trainPath=trainDataPath self.testPath=testDataPath self.trainData=[] self.trainDataPredict=[] self.testData=[] self.testDataPredict=[] def process(self,path): data=[] mdict={} dict0={'a':0,'b':1} mdict[0]=dict0 dict3={'u':4,'y':5,'l':6,'t':7} mdict[3]=dict3 dict4={'g':8,'p':9,'gg':10} mdict[4]=dict4 dict5={'c':11, 'd':12, 'cc':13, 'i':14, 'j':15, 'k':16, 'm':17,'r':18, 'q':19, 'w':20, 'x':21, 'e':22, 'aa':23, 'ff':24} mdict[5]=dict5 dict6={'v':25,'h':26,'bb':27,'j':28,'n':29,'z':30,'dd':31,'ff':32,'o':33} mdict[6]=dict6 dict8={'t':35,'f':36} mdict[8]=dict8 dict9={'t':37,'f':38} mdict[9]=dict9 dict11={'t':40,'f':41} mdict[11]=dict11 dict12={'g':42,'p':43,'s':44} mdict[12]=dict12 dict14={1:2,2:3,7:34,10:39,13:45,14:46} mdict[14]=dict14 f= open(path) for line in f: k=line.split(',') q=[0]*47 for i in range(0,len(k)-1): if not((i==1) or (i==2) or (i==7) or (i==10) or (i==13) or (i==14)): temp=mdict[i] q[temp[k[i]]]=1 else: temp=mdict[14] q[temp[i]]=float(k[i]) data.append(q) return data def trainPredictValues(self,path): data=[] f= open(path) for line in f: k=line.split(',') k[-1]=k[-1].strip() data.append(k[-1]) return data def getData(self): self.trainData=self.process(self.trainPath) self.trainDataPredict = self.trainPredictValues(self.trainPath) self.testData=self.process(self.testPath) self.testDataPredict = self.trainPredictValues(self.testPath) #self.testData=self.process(self.trainPath) def predict(self,n): k= knn.kNearestNeighbours() k.train(self.trainData,self.trainDataPredict) sol = k.test(self.testData,n) cor=0 wrng=0 print sol print self.testDataPredict for i in range(0,len(sol)): if sol[i]== self.testDataPredict[i]: cor=cor+1 else: wrng = wrng +1 print "for k=",n print 100*cor/len(sol)
import pickle, cv2, math, timeit, random, time, os import numpy as np import matplotlib.pyplot as plt import matplotlib.image as mpimg from pathlib import Path from sklearn.neighbors import KNeighborsClassifier def nothing(x): pass # - Find CONTOURS function def find_contours(filename): picture = cv2.imread(filename) # picture to read # - color converstion picture_gray = cv2.cvtColor(picture,cv2.COLOR_BGR2GRAY) # - THRESHOLD ret, picture_thresh = cv2.threshold(picture_gray,127,255,cv2.THRESH_OTSU) ##picture_thresh2 = cv2.adaptiveThreshold(img_gray,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY,11,2)#9,6 # - find CONTOURS contour_list, hierarchy = cv2.findContours(picture_thresh,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE) return contour_list def feature_extraction(input_mod,features,filename): curvature_threshold = 0.08 # constant values for features calculations polygon_tolerance = 0.05 # constant values for features calculations k = 4 for contour in input_mod: # - FIND VERTICES arc = cv2.arcLength(contour, True) contour_vertices = cv2.approxPolyDP(contour, 0.01*arc, True) vertices__contour_area = cv2.contourArea(contour_vertices) # - LIMIT SIZE if vertices__contour_area > 18000 and vertices__contour_area < 55000: curvature_chain = [] cont_ar = np.asarray(contour) vertices = len(contour_vertices) ##FEATURE_extraction_algorithms ellipse_feature = cv2.fitEllipse(contour) (center,axes,orientation) = ellipse_feature majoraxis_length_feature = max(axes) minoraxis_length_feature = min(axes) axes_ratio_feature = minoraxis_length_feature/majoraxis_length_feature area_feature = cv2.contourArea(contour) perimeter_feature = cv2.arcLength(contour,True) area_ratio_feature = perimeter_feature / area_feature perimeter_ratio_feature = minoraxis_length_feature / perimeter_feature epsilon_feature = polygon_tolerance*perimeter_feature vertex_approx_feature = 1.0 / len(cv2.approxPolyDP(contour,epsilon_feature,True)) length_feature = len(input_mod) ##### begin of Eris Chintelli code # CURVATURE & CONVEXITY for i in range(cont_ar.shape[0]-k): num = cont_ar[i][0][1]-cont_ar[i-k][0][1] # y den = cont_ar[i][0][0]-cont_ar[i-k][0][0] # x angle_prev = -np.arctan2(num,den)/np.pi num = cont_ar[i+k][0][1]-cont_ar[i][0][1] # y den = cont_ar[i+k][0][0]-cont_ar[i][0][0] # x angle_next = -np.arctan2(num,den)/np.pi new_curvature = angle_next-angle_prev curvature_chain.append(new_curvature) convexity = 0 concavity = 0 for i in range(len(curvature_chain)): if curvature_chain[i] > curvature_threshold: convexity += 1 if curvature_chain[i] < -curvature_threshold: concavity += 1 convexity_ratio = convexity / float(i+1) concavity_ratio = concavity / float(i+1) ##### end of Eris Chinchilli code ''' crn_f = cv2.imread('/home/alf/Desktop/Major1/Code/Test1/Final/Gestures/'+filename) crn_f = cv2.cvtColor(crn_f, cv2.COLOR_BGR2GRAY) crn = np.float32(crn_f) crn = cv2.cornerHarris(crn,2,3,0.04) #hull = cv2.convexHull(contour) #hull_area = cv2.contourArea(hull) #solidity = area_feature / float(hull_area) ''' # - DRAW CONTOURS (TRAINING) ##img_draw = cv2.imread('/home/alf/Desktop/Major1/Code/Test1/Final/Gestures/'+filename) #img_resize = cv2.resize(img_draw,(0,0),fx=0.3 , fy=0.3) ##cv2.drawContours(img_draw,[contour],-1,(0,255,0),4) ##cv2.imshow('contours',img_draw) #cv2.waitKey() feature_values=[] # - CHECK FOR MISSING FEATURE, CO counting_error = 0#COUNTING ERROR for ft in nr_features: # - CHECK FOR MISSING FEATURE, COLLECT & APPEND DATA if features_list[ft] in locals(): feature=eval(features_list[ft]) feature_values.append(feature) print '%s' %(features_list[ft]), feature # - SET FEATURE VARIABLE=FALSE,ERROR & APPEND DATA else: counting_error+=1 feature = False # DIRECT APPROACH feature_values.append(feature) if counting_error==len(features_list_array): feed_r = 0 else: feed_r = 1 return feature_values,feed_r # - Start -------------------------------------------------------------------------------------------------------------------------------- # - CLASSIFIER classifier = KNeighborsClassifier(3) # - INIT pth='/home/alf/Desktop/Major1/Code/Test1/Final/Gestures/' shape_names=['cls','opn','two'] # - Features features_list = ['axes_ratio_feature','concavity_ratio','convexity_ratio','area_ratio_feature','vertex_approx_feature','length_feature','perimeter_ratio_feature','vertices'] nr_features = [0, 1, 2, 3, 4, 5, 6, 7] # ideally shound be nr_features= len(features_list) features_list_array = [features_list[ft] for ft in nr_features] # - World - nr_pic_folder examples for each object #nr_pic_folder = 115 # number of training picture per folder n1 = 0 # Loop Count feature_space_values = [] labels = [] model_name = '/home/alf/Desktop/Major1/Code/Test1/Final/test_new_model08.sav' my_file = Path(model_name) tots_loop = 0 last_cnt = 0 # - CHECK FOR & TRAIN MODEL print 'Training was began' # - TRAIN LOOP for folder in range(len(shape_names)):# Loop shape_names Times ###### nr_pic_folder=115 last_cnt = 0 while last_cnt < nr_pic_folder: #for s in range(nr_pic_folder):# Loop nr_pic_folder Times (Total = shape_names x nr_pic_folder) # Do not use tots_loop+=1 files_frm_fldrs = [str(filename)for filename in os.listdir(pth+shape_names[folder])]# random_folder = random.randint(1, nr_pic_folder) filename_update = shape_names[folder]+'/'+files_frm_fldrs[random_folder] #print ' - random_folder :',random_folder print ' - SHAPE NAME :',shape_names[folder] print ' - Train Count : ',n1 print ' - last_cnt : ',last_cnt print ' - tots : ',tots_loop print ' - Folder : ',folder print ' - filename_update :',filename_update current_contour = find_contours(pth+filename_update) train_feature_values,feedd = feature_extraction(current_contour,features_list_array,filename_update) # chain = contours(i) if feedd == 1: n1+=1 last_cnt+=1 feature_space_values.append(train_feature_values) labels.append(folder) else: nr_pic_folder+=1 print ' - Labels : ',labels print ' - Space : ',feature_space_values # - TRAIN MODEL classifier.fit(np.asarray(feature_space_values), np.asarray(labels))# - X_train # - SAVE MODEL TO FILE pickle.dump(classifier, open(model_name, 'wb')) if my_file.is_file(): print 'MODEL SAVED : NO erros occur' else: print 'MODEL NOT SAVED : Something happen'
from flask import Flask, render_template, request from flask_googlemaps import GoogleMaps from flask_googlemaps import Map, icons import json import pandas as pd import requests import geopandas as gpd app = Flask(__name__) markers = [{ "coords":{'lat': 38.694862, 'lng': -122.772130}, 'iconImage':'http://maps.google.com/mapfiles/ms/icons/firedept.png', 'content':'<h3>Kincade Fire</h3> <p>74% contained as of 11/02. For fire status updates visit <a href=\\"https:\/\/www.fire.ca.gov/incidents/2019/10/23/kincade-fire/\\" target=\\"_blank\\">Cal-fire website</a>.</p>' }, { 'coords':{'lat':38.434535, 'lng':-122.701085}, 'iconImage':'http://maps.google.com/mapfiles/ms/icons/homegardenbusiness.png', 'content':'<h3>Santa Rosa Veterans Memorial Building (evacuation center)</h3> <p>If you are trying to locate your large animal contact Animal Services at <a href=\\"tel:17075657100\\">(707) 565-7100</a>.</p>' }, { 'coords':{'lat':38.610939, 'lng':-122.868083}, 'iconImage':'http://maps.google.com/mapfiles/ms/icons/homegardenbusiness.png', 'content':'<h3>St. Paul’s Church Healdsburg CA(warming center)</h3>' } ] # reading the road_closures csv road = pd.read_csv('road_closures.csv') #getting only the closed roads related to fire road = road[road['status'].str.contains('Fire')] #loops over the each closed road # gets and formates the road_geo = [] for i in road.road: i = i.replace(' ', '%20') url = f'https://maps.googleapis.com/maps/api/place/findplacefromtext/json?input={i}&inputtype=textquery&fields=geometry&key={YOUR_API_KEY}' res = requests.get(url) go = res.json() mo =go['candidates'][0]['geometry']['location'] road_geo.append({"coords":mo, "iconImage" : 'http://maps.google.com/mapfiles/kml/shapes/caution.png'}) fire_map = gpd.read_file('MODIS_C6_USA_contiguous_and_Hawaii_24h/') fire_map_loc = [] for i,k in zip(fire_map['LATITUDE'],fire_map['LONGITUDE']): fire_map_loc.append({"coords" : {'lat' : i,'lng' : k }, 'iconImage' : 'http://maps.google.com/mapfiles/ms/icons/firedept.png'}) @app.route('/') def hello_world(): return render_template('dir.html', markers=json.dumps(markers), road_geo=json.dumps(road_geo), fire_map_loc=json.dumps(fire_map_loc)) if __name__ == '__main__': app.run(host="localhost", port=8000, debug=True) url = f'https://maps.googleapis.com/maps/api/geocode/json?address=Walmart+Falls+Church&key={YOUR_API_KEY}'
def fourSum(nums, target) : #头尾两个k、m的for循环,i、j从两端往中间逼近的双指针 nums.sort()#排序,便于去重 n=len(nums) res=[] for k in range(n-3):#k遍历 #print(nums[k]) if k>0 and nums[k]==nums[k-1]:continue #去重,取相等元素的第一个,取过的数不再取 for m in range(n-1,k+2,-1): #print(nums[m]) if m<n-1 and nums[m]==nums[m+1]:continue#去重 i=k+1 #print(nums[i]) j=m-1 #print(nums[j]) while i<j: sum=nums[i]+nums[j]+nums[k]+nums[m] cha=sum-target if cha<0:#和小了就加大一点 i+=1 while i<j and nums[i]==nums[i-1]:i+=1#去重,取过的数不再取 elif cha>0:#和大了就减小一点 j-=1 while i<j and nums[j]==nums[j+1]:j-=1#去重,取过的数不再取 else: res.append([nums[k],nums[i],nums[j],nums[m]])#符合条件,添加到输出列表中 i+=1#注意此时需要移动指针,不然会死循环 j-=1#而且两个指针都要移动,去重 while i<j and nums[i]==nums[i-1]:i+=1#作用同上 while i<j and nums[j]==nums[j]+1:j-=1 return res nums=[-3,-1,0,2,4,5] target=0 print(fourSum(nums, target))
import albumentations class DataTransformManager: def __init__(self, used_img_size, final_img_size, transform_params, custom_additional_targets=None): if custom_additional_targets is None: custom_additional_targets = {"image2": "image", "image3": "image", "image4": "image"} self._custom_additional_targets = custom_additional_targets self._ratio = max(float(final_img_size[0]) / used_img_size[0], float(final_img_size[1]) / used_img_size[1]) self._final_img_size = final_img_size self._scale_compose = [ albumentations.Resize( height=int(used_img_size[0] * self._ratio), width=int(used_img_size[1] * self._ratio), always_apply=True ), albumentations.CenterCrop( height=self._final_img_size[0], width=self._final_img_size[1], always_apply=True, p=1 ) ] self._normalize_transform = albumentations.Normalize() self._normalize_no_transform = albumentations.Normalize(mean=(0, 0, 0), std=(1, 1, 1)) self._train_compose = self._scale_compose if "flip" in transform_params and transform_params["flip"]: flip_compose = [albumentations.HorizontalFlip()] self._train_compose = flip_compose + self._train_compose if "filters" in transform_params and transform_params["filters"]: random_compose = [ albumentations.RandomBrightnessContrast(brightness_limit=(-0.2, 0.2), contrast_limit=(-0.2, 0.2), p=0.5), albumentations.RandomGamma(gamma_limit=(90, 110), p=0.5), albumentations.ChannelShuffle(p=0.5), ] self._train_compose = random_compose + self._train_compose if "normalize" in transform_params and transform_params["normalize"]: self._train_compose.append(albumentations.Normalize()) else: self._train_compose.append(albumentations.Normalize(mean=(0, 0, 0), std=(1, 1, 1))) def get_train_transform(self): return albumentations.Compose(self._train_compose, additional_targets=self._custom_additional_targets) def get_validation_transform(self, with_resize=True, with_normalize=True): scale_compose = self._scale_compose if with_resize else [] return albumentations.Compose(scale_compose + self.get_normalize(with_normalize), additional_targets=self._custom_additional_targets) def get_test_transform(self, with_normalize=True): return albumentations.Compose(self._scale_compose + self.get_normalize(with_normalize), additional_targets=self._custom_additional_targets) def get_normalize(self, with_normalize=True): if with_normalize: return [self._normalize_transform] return [self._normalize_no_transform] def get_normalize_transform(self, with_normalize=True): return albumentations.Compose(self.get_normalize(with_normalize))
""" Drunken Python Python got drunk and the built-in functions str() and int() are acting odd: str(4) ➞ 4 str("4") ➞ 4 int("4") ➞ "4" int(4) ➞ "4" You need to create two functions to substitute str() and int(). A function called int_to_str() that converts integers into strings and a function called str_to_int() that converts strings into integers. Examples: int_to_str(4) ➞ "4" str_to_int("4") ➞ 4 int_to_str(29348) ➞ "29348" Notes This is meant to illustrate the dangers of using already-existing function names. Extra points if you can de-drunk Python. """ # int, str = str, int def int_to_str(n): return str(n) def str_to_int(s): return int(s)
from collections import defaultdict # DFS에 필요한 데이터를 직접 생성하고, DFS를 진행하는 문제 def solution(begin, target, words): # words 데이터 간의 연결 리스트 생성 Ldic = defaultdict(list) words.append(begin) for i in words: for j in words: check = 0 for n in range(len(j)): if i[n] == j[n]: check += 1 if check == len(j) - 1: Ldic[i].append(j) # DFS answer = - 1 visitor = [] stack = [begin] while stack: check = 0 answer += 1 q = stack.pop() if q == target: return answer if q not in visitor: visitor.append(q) for i in Ldic[q]: if i not in visitor: check += 1 stack.append(i) if check == 0: answer -= 1 return 0 # 잘못된 풀이 def solution(begin, target, words): answer = 1 queue = [begin] print(queue) while queue: if queue[0] == target: return answer for i in range(len(queue[0])): if queue[0][i] != target[i]: sub = queue[0][:i] + target[i] + queue[0][i + 1:] print(sub) if sub in words: print(sub) queue.append(sub) print(queue) queue.pop(0) answer += 1 print(queue) return 0 # 잘못된 풀이 answer = 0 def solution(begin, target, words): global answer try: words.index(target) answer = 4 return answer except: return answer def dfs(start, begin_list, target, words): global answer begin_list[start] = 'c' answer = 3 print(begin_list) print('daw', words.index(''.join(begin_list))) # try: # idx = words.index(''.join(begin_list)) # del words[idx] # answer += 1 # print(answer) # dfs(start+1, begin_list, target, words) # except: # return answer # print('d')
from __future__ import absolute_import import glob import logging from dialog.configs import DialogConfiguration from dialog.run_pipeline import create_dialog_agent, load_parsers from log_analysis.argument_parser import model_on_logs_arguments_parser from log_analysis.training_data_from_dialog import build_log_summaries def parse_arguments(): """Parses and logs command-line arguments. Returns: Namespace: Namespace containing parsed arguments. """ args = model_on_logs_arguments_parser().parse_args() logging.basicConfig(level=getattr(logging, args.log_level.upper()), format='%(levelname)s: %(asctime)s: %(message)s') assert (args.log_directories != "") assert (args.alpha >= args.beta) DialogConfiguration.alpha = args.alpha DialogConfiguration.beta = args.beta logging.info("Log Level: %s", args.log_level) logging.info("Log directories: %s", args.log_directories) return args class Interface(object): def __init__(self, conversation): self.conversation = conversation self.error = False self._sys_utterance = self._system_utterance_from_log() self._user_utterance = self._user_utterance_from_log() def get(self): if self.error: return "stop" utterance = self._user_utterance.next() return utterance def put(self, actual_sys_utterance): log_sys_utterance = self._sys_utterance.next() if log_sys_utterance != actual_sys_utterance: self.error = True def _system_utterance_from_log(self): for utterance in self.conversation.sys_utterances: yield utterance def _user_utterance_from_log(self): for utterance in self.conversation.user_utterances: yield utterance def main(): args = parse_arguments() log_files = glob.glob(args.log_directories + "/*.log") log_summaries = build_log_summaries(log_files) t_channel_parser, a_channel_parser, t_fn_parser, a_fn_parser, keyword_parser = load_parsers() for log_summary in log_summaries: n = len(log_summary.goals) for i in xrange(n): goal, conv = log_summary.goals[i], log_summary.conversations[i] # logging.info("Processing log with recipe: %s", goal.recipe_url) interface = Interface(conv) dialog_agent = create_dialog_agent( trigger_channel_parser=t_channel_parser, trigger_fn_parser=t_fn_parser, action_channel_parser=a_channel_parser, action_fn_parser=a_fn_parser, keyword_parser=keyword_parser, istream=interface, ostream=interface) dialog_agent.start_session() if interface.error: logging.info("Error in log with recipe: %s", goal.recipe_url) if __name__ == '__main__': main()
import pygal from data_visualization.die import Die die1 = Die(8) die2 = Die(8) die3 = Die(8) # Make some rolls and store the results in a list rolls = [die1.roll() + die2.roll() + die3.roll() for roll_num in range(100000)] # Analyze the results frequencies = [rolls.count(value) for value in range(3, (die1.num_sides + die2.num_sides + die3.num_sides + 1))] # Visualize the results hist = pygal.Bar() hist.title = "Results of rolling three D8 die 100,000 times." hist.x_labels = [str(i) for i in range(3, 25)] hist.x_title = "Result" hist.y_title = "Frequency of Result" hist.add('D8 + D8 + D8', frequencies) hist.render_to_file('three_d8_visual.svg')
""" Calc code example """ class Calc(object): """ Calculator Class """ def __init__(self, first, second): self._first = first self._second = second def sum_call(self): """ Sum Def """ return self._first+self._second def div_call(self): """ Div Def """ return self._first/self._second def mult_call(self): """ Mult Def """ return self._first*self._second def sub_call(self): """ Subs Def """ return self._first-self._second def main(): """ Initiate the Calc """ first_value = 500 second_value = 39 # Object creation calc_run = Calc(first_value, second_value) # Sum print("Sum of {} + {} is: {}".format(first_value, second_value, calc_run.sum_call())) # Division print("Division of {} / {} is: {}".format(first_value, second_value, calc_run.div_call())) # Multiplication print("Multiplication of {} * {} is: {}".format(first_value, second_value, calc_run.mult_call())) # Subtraction print("Subtraction of {} - {} is: {}".format(first_value, second_value, calc_run.sub_call())) if __name__ == '__main__': main()
import sys import pandas as pd import util import numpy as np def answer(x): if x is np.nan: return 0 return 1 def loadorder(f, vali): order = pd.read_csv(f) v = set() a = open(vali).read().split('\n')[:-1] for line in a: v.add(line) order['ts'] = order['time'].apply(util.convert_ts) order['call'] = order['passenger_id'].apply(lambda x:1) order['answer'] = order['driver_id'].apply(answer) order = order.drop('time', 1) order = order.drop('passenger_id', 1) order = order.drop('driver_id', 1) if __name__ == '__main__': loadorder(sys.argv[1], sys.argv[2])
import logging from schedule_matcher_bot import ScheduleMatchingBot def main(): logging.debug('[start] Schedule-matching bot.') schedule_matching_bot = ScheduleMatchingBot() schedule_matching_bot.start() if __name__ == '__main__': main()
num = str(int(input())) reverse = int(num[::-1]) print(reverse)
# -*- CODING: PTYHON V2 -*- from carizy.items import CarizyItem from scrapy import Request import scrapy class CarizyspiderSpider(scrapy.Spider): name = 'carizyspider' #start_urls = ['http://www.carizy.com/voiture-occasion?page={i}' allowed_domains = ['carizy.com'] custom_settings = { 'LOG_FILE': 'logs/carizy.log', 'LOG_LEVEL':'ERROR' } def start_requests(self): start_url = "http://www.carizy.com/voiture-occasion?page={i}" for i in range(0,66): yield Request(start_url.format(i=i), self.parse) def parse(self, response): print('PROCESSING...' + response.url) for annonce in response.xpath("//div[contains(@class,'col-lg-8 col-md-8 col-sm-8 col-xs-7')]"): item = CarizyItem() try: item['TITLE'] = annonce.css('h2.title-model::text').extract_first() except: print('ERROR TITLE PARSE...' + response.url) try: item['ANNONCE_LINK'] = response.urljoin(annonce.css('a::attr(href)').extract_first()) except: print('ERROR ANNONCE LINK PARSE...' + response.url) yield item
# 注意两条链表遍历完后还加出来的进位 # 需要额外补一个点 class Solution: def addTwoNumbers(self, l1: ListNode, l2: ListNode) -> ListNode: h1, h2 = l1, l2 b = 0 head = ListNode(0) pre = head while h1 and h2: node = ListNode(0) node.val = (h1.val + h2.val + b) % 10 b = (h1.val + h2.val + b) // 10 pre.next = node pre = node h1, h2 = h1.next, h2.next if h1: while h1: node = ListNode(0) node.val = (h1.val + b) % 10 b = (h1.val + b) // 10 pre.next = node pre = node h1 = h1.next else: while h2: node = ListNode(0) node.val = (h2.val + b) % 10 b = (h2.val + b) // 10 pre.next = node pre = node h2 = h2.next if b: node = ListNode(0) node.val = b pre.next = node return head.next # 精简算法,但实际上每次都判断,耗时更长 # 只是代码量少了而已 class Solution: def addTwoNumbers(self, h1: ListNode, h2: ListNode) -> ListNode: b = 0 head = ListNode(0) pre = head while h1 or h2 or b: val1 = h1.val if h1 else 0 val2 = h2.val if h2 else 0 s = val1 + val2 + b node = ListNode(0) node.val = s % 10 b = s // 10 pre.next = node pre = node if h1: h1 = h1.next if h2: h2 = h2.next return head.next
from rest_framework.response import Response from rest_framework import status def judger_account_required(): def decorator(func): def _wrapped_view(request, *args, **kwargs): if not request.user.is_authenticated: return Response( {'detail': 'Login required.'}, status=status.HTTP_401_UNAUTHORIZED ) if not request.user.is_judger: return Response( {'detail': 'Judger account required.'}, status=status.HTTP_403_FORBIDDEN ) return func(request, *args, **kwargs) return _wrapped_view return decorator
import collections import os import subprocess import _pyterminalsize _sources = ('environment', 'stdin', 'stdout', 'stderr', 'tput', 'fallback') SizeSource = collections.namedtuple('SizeSource', _sources)(*_sources) Size = collections.namedtuple('Size', ('columns', 'lines', 'source')) def _from_tput(): # tput doesn't respond when stderr is piped. # But, if we don't have TERM, tput will spew: # $ env -i tput cols # tput: No value for $TERM and no -T specified if not os.environ.get('TERM'): raise OSError('Cannot determine cols / lines without TERM') proc = subprocess.Popen( ('tput', '-S'), stdout=subprocess.PIPE, stdin=subprocess.PIPE, ) output = proc.communicate(b'cols\nlines\n')[0] if proc.returncode: raise OSError('tput returned ' + str(proc.returncode)) columns, lines = map(int, output.splitlines()) return columns, lines def get_terminal_size(fallback=(80, 24)): # First try from the environment (I'm not even sure if this is possible?) try: return Size( int(os.environ['COLUMNS']), int(os.environ['LINES']), SizeSource.environment, ) except (ValueError, KeyError): pass # Then try from file descriptors for fd, source in ( (0, SizeSource.stdin), (1, SizeSource.stdout), (2, SizeSource.stderr), ): try: return Size(*(_pyterminalsize.get_terminal_size(fd) + (source,))) except OSError: pass # Then try from tput (this makes cygwin work) try: return Size(*(_from_tput() + (SizeSource.tput,))) except OSError: pass return Size(*(fallback + (SizeSource.fallback,)))
import math.pi import numpy #INPUTS: list of pairable vectors. Obj1 should be a list of vectors #that you want to match to the corresponding obj2. def vector_angle(v1, v2): v1_u = v1 / numpy.linalg.norm(v1) v2_u = v2 / numpy.linalg.norm(v2) return numpy.arccos(numpy.clip(numpy.dot(v1_u, v2_u), -1.0, 1.0)) def zero_vector_pair(v_pair): trans = [0. - v_pair[0][0], 0. - v_pair[0][1], 0. - v_pair[0][2]] new_pair = [] for point in v_pair: new_point = numpy.array(point) + numpy.array(trans) new_pair.append(new_point) return new_pair def calc_rmsa(obj1, obj2, ratio=(pi/6.0)): compare_vectors = zip(obj1, obj2) vector_ang_sum = 0.0 for vector_pairs in compare_vectors: vector1 = zero_vector_pair(vector_pairs[0]) vector2 = zero_vector_pair(vector_pairs[1]) vector_ang_sum += vector_angle(numpy.array(vector1[1]), numpy.array(vector2[1])) rmsa = ((vector_ang_sum/ratio)**2 / len(compare_vectors))**0.5 return rmsa
#!/usr/bin/env python2 # # The MIT License (MIT) # # Copyright (c) 2014 Fam Zheng <fam@euphon.net> # # Permission is hereby granted, free of charge, to any person obtaining a copy of # this software and associated documentation files (the "Software"), to deal in # the Software without restriction, including without limitation the rights to # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of # the Software, and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. from message import Message import series import patch import pymongo import datetime import pickle import bson.binary import search class MessageDuplicated(Exception): pass class MessageNotFound(Exception): pass def _list_add(l, *add): return l + [x for x in add if x not in l] def _sensible_cmp(x, y): """Compare two patches by message-id sequence, otherwise date""" if not patch.is_patch(x) or not patch.is_patch(y): return -cmp(x.get_date(), y.get_date()) a = x.get_message_id() b = y.get_message_id() while b and a.startswith(b[0]): a = a[1:] b = b[1:] while b and a.endswith(b[-1]): a = a[:-1] b = b[:-1] try: an = int(a) bn = int(b) return cmp(an, bn) except: return cmp(a, b) class DB(object): _status_prefix = "s-" def __init__(self, server, port, dbname): self._db_name = dbname + "-default" self._client = pymongo.MongoClient(server, port) self._db = self._client[self._db_name] self._messages = self._db.messages self._identities = self._db.identities def reset(self): self._messages.remove() self._messages.create_index([('message-id', pymongo.DESCENDING), ('in-reply-to', pymongo.DESCENDING), ('date', pymongo.DESCENDING), ('untagged-subject', pymongo.DESCENDING)]) def _init_status(self, m, d): status = {} for k, v in d.iteritems(): if k.startswith(self._status_prefix): m.set_status(k[len(self._status_prefix):], v) def _series_from_dict(self, d): if 'mbox' not in d: return None ret = series.Series(d['mbox']) self._init_status(ret, d) return ret def _message_from_dict(self, d): if 'mbox' not in d: return None ret = Message(d['mbox']) self._init_status(ret, d) return ret def get_message(self, msg_id): r = self._messages.find_one({"message-id": msg_id}) if not r: return None return self._message_from_dict(r) def get_series(self, msg_id): r = self._messages.find_one({"message-id": msg_id}) if r and series.is_series(self._message_from_dict(r)): return self._series_from_dict(r) def _status_list_add(self, msg_id, field, new): if isinstance(new, tuple): new = list(new) l = self.get_status(msg_id, field, []) l = _list_add(l, new) self.set_status(msg_id, field, l) def _add_patch(self, msg_id, patch_msg_id): return self._status_list_add(msg_id, "patches", patch_msg_id) def _add_reply(self, msg_id, reply_msg_id): return self._status_list_add(msg_id, "replies", reply_msg_id) def _obsolete_previous_series(self, m): name = m.get_subject(strip_tags=True) version = m.get_version() prev = self._messages.find({"untagged-subject": name, "is-series": True}) for p in prev: pm = self._message_from_dict(p) if version <= max(pm.get_status("obsoleted-by-version", 0), pm.get_version()): continue print "obsolete '%s' %d => %d" % (name, pm.get_version(), version) self.set_statuses(p['message-id'], {'obsoleted-by': m.get_message_id(), 'obsoleted-by-version': m.get_version()}) def _get_top_message(self, msg_id, check): seen = set([msg_id]) while True: m = self.get_message(msg_id) if not m: return None if check(m): return m msg_id = m.get_in_reply_to() if msg_id in seen or not msg_id: return None seen.add(msg_id) def _get_top_series_or_patch(self, msg_id): return self._get_top_message(msg_id, lambda x: series.is_series(x) or patch.is_patch(x)) def _get_top_series(self, msg_id): return self._get_top_message(msg_id, series.is_series) def process_message(self, msg_id): """Process a new seen msg and update db""" m = self.get_message(msg_id) assert m irt = m.get_in_reply_to() revby = m.get_reviewed_by() p = self._get_top_series_or_patch(msg_id) s = self._get_top_series(msg_id) if irt: # A reply to some other message self._add_reply(irt, msg_id) if patch.is_patch(m): self._add_patch(irt, msg_id) elif m.is_reply(): if s: self._status_list_add(s.get_message_id(), "repliers", m.get_from()) if revby: if p: # Mark the target of review, either a patch or a series, reviewed self._status_list_add(p.get_message_id(), "reviewed-by", revby) if s: self._status_list_add(s.get_message_id(), "reviewers", revby) if patch.is_patch(p): # This is a review on patch, book it in series self._status_list_add(s.get_message_id(), "reviewed-patches", p.get_message_id()) else: # This is a review on series, mark all patches reviewed for i in self.get_patches(s): self._status_list_add(s.get_message_id(), "reviewed-patches", i.get_message_id()) else: # A top message if series.is_series(m): self._obsolete_previous_series(m) def add_message(self, m): """Add a new message to DB""" e = self._messages.find_one({'message-id': m.get_message_id()}) if e and e.get('from'): raise MessageDuplicated(e) d = { 'message-id': m.get_message_id(), 'mbox': bson.binary.Binary(m.mbox()), 'in-reply-to': m.get_in_reply_to(), 'date': m.get_date(), 'from': m.get_from(), 'subject': m.get_subject(), 'untagged-subject': m.get_subject(strip_tags=True), 'tags': list(m.get_tags()), 'is-series': series.is_series(m), } if e: for k, v in e.iteritems(): d[k] = d.get(k, v) self._messages.save(d) return m.get_message_id() def get_statuses(self, msg_id): r = {"message-id": msg_id} m = self._messages.find_one(r) if m: for k, v in m.iteritems(): if k.startswith(self._status_prefix): r[k[len(self._status_prefix):]] = v return r def get_status(self, msg_id, st, default=None): s = self.get_statuses(msg_id) return s.get(st, default) def set_statuses(self, msg_id, args): m = self._messages.find_one({"message-id": msg_id}) if not m: m = {"message-id": msg_id} for k, v in args.iteritems(): key = self._status_prefix + k if v is None and key in m: del m[key] continue m[key] = v self._messages.save(m) def set_status(self, msg_id, name, value): return self.set_statuses(msg_id, {name: value}) def _find_series_iter(self, query="", skip=0, limit=0, sort_keys=['date']): q = {'is-series': True} sort = [(s, pymongo.DESCENDING) for s in sort_keys] if query: filter0 = search.Filter(query) else: filter0 = None n = 0 for i in self._messages.find(q, sort=sort): s = self._series_from_dict(i) if not series.is_series(s): continue if not query or filter0.match(s): n += 1 if n > skip: yield s if limit and n > limit + skip: break def find_series_count(self, query=""): num = 0 for i in self._find_series_iter(query=query): num += 1 return num def find_series(self, query="", skip=0, limit=0, sort_keys=['date']): """query all the series with tags and status with pagination, but skip and limit are applied before tags and status filtering""" for m in self._find_series_iter(query=query, skip=skip, limit=limit, sort_keys=sort_keys): yield m def find_messages(self): for i in self._messages.find(): if not i.get('mbox'): continue yield self._message_from_dict(i) def get_patches(self, s): r = [self.get_message(x) for x in s.get_status("patches", [])] r.sort(_sensible_cmp) if not r: r = [s] return r def get_replies(self, m): r = [self.get_message(x) for x in m.get_status("replies", [])] r.sort(_sensible_cmp) return r def save_identity_pair(self, i, key): self._identities.remove({'identity': i}) self._identities.insert({'identity': i, 'key': key}) def get_key(self, i): a = self._identities.find_one({'identity': i}) if a: return str(a['key'])
# @created 25-8-2015 # @author MCS # @description comms.py module for high level communications between ESTR and PC import serial # for UART hardware abstraction. class Comms(object): def __init__(self, COM_port, baudrate): # initialise the COMs port on the PC. """initialise the COMs port on the PC, and opens it.""" self.ser = serial.Serial() self.ser.port = COM_port self.ser.baudrate = baudrate self.ser.timeout = 0 self.ser.parity = serial.PARITY_EVEN self.ser.open() def sendStr(self, str): """Write a string to the COM port.""" self.ser.write(str) def readChar(self): """Read a character from the COM port.""" return self.ser.read() def openCOMPort(self): """Open the COM port.""" self.ser.open() def closeCOMPort(self): """Close the COM port.""" self.ser.close() def inWaiting(self): """return the number of bytes waiting in the COM port.""" return self.ser.inWaiting()
#!/usr/bin/env python import pygame import mimo from .BaseScene import SceneBase from utils import utils from utils import neopixelmatrix as graphics from utils.NeoSprite import NeoSprite, AnimatedNeoSprite, TextNeoSprite, SpriteFromFrames from utils import constants # Boot Scene # should reset all button and light states, # clear the led matrix and led ring # all inputs are locked # set colors for all leds, turn all leds and increase the brightness # this boot scene should take some seconds, max 10? 8-6? # some aditional test display that specific modules are loading. # after that change to the next scene - tutorial class BootScene(SceneBase): def __init__(self): SceneBase.__init__(self) self.logo = utils.Sprite( constants.SPRITES_INTRO + 'logo_MCorp.png', constants.VIEWPORT_CENTER_X, constants.VIEWPORT_CENTER_Y ) self.logo.SetOpacity(0) self.sfx_mimo_logo = utils.get_sound('assets/audio/SFX/M_OS/UI_Booth.ogg') self.AddTrigger(0.1, self.sfx_mimo_logo, 'play') self.AddTrigger(9.2, self, 'SwitchToScene', "Edit") mimo.set_led_brightness(150) font = pygame.font.Font("assets/fonts/VCR_OSD_MONO_1.001.ttf", 24) self.title = utils.Text("M-OS STARTING", font) self.title.SetOpacity(0) self.title.SetColor(constants.PALETTE_TEXT_RED) self.title.SetPosition(constants.VIEWPORT_CENTER_X, 500) self.text_updater_counter = 0 self.text_updater_frequency = 0.06 self.text_updater_values = ['|', '\\', '-', '/'] self.text_updater_index = 0 resolution = 6 self.AddTween("easeInOutSine", 1.5, self.title, "opacity", 0, 255, 0) self.AddTween("easeInOutSine", 1.5, self.logo, "opacity", 0, 255, 0, resolution) self.AddTween("easeInOutSine", 1.5, self.logo, "opacity", 255, 0, 1.5, resolution) self.AddTween("easeInOutSine", 1.5, self.logo, "opacity", 0, 255, 3, resolution) self.AddTween("easeInOutSine", 1.5, self.logo, "opacity", 255, 0, 4.5, resolution) self.AddTween("easeInOutSine", 1.5, self.logo, "opacity", 0, 255, 6, resolution) self.AddTween("easeInOutSine", 1.5, self.logo, "opacity", 255, 0, 7.5, resolution) self.AddTween("easeInOutSine", 1.5, self.title, "opacity", 255, 0, 7.5, resolution) self.brightness = 1 self.cache_brightness = 1 self.scheduleTextLoader('es') self.whiteSprite = NeoSprite('assets/white.png') self.reset_mimo() def ProcessInput(self, events, pressed_keys): pass def Update(self, dt): SceneBase.Update(self, dt) self.text_updater_counter += dt if self.text_updater_counter > self.text_updater_frequency: if self.cache_brightness != int(self.brightness): mimo.set_led_brightness(int(self.brightness)) self.cache_brightness = self.brightness self.text_updater_index += 1 self.text_updater_counter = 0 if self.text_updater_index >= len(self.text_updater_values): self.text_updater_index = 0 self.title.DecorateText(self.text_updater_values[self.text_updater_index] + ' ', ' '+self.text_updater_values[-self.text_updater_index]) def Render(self, screen): screen.fill(constants.PALETTE_TEXT_BLACK) self.logo.RenderWithAlpha(screen) self.title.RenderWithAlpha(screen) graphics.setColor(0xfff) self.whiteSprite.render() graphics.render() def reset_mimo(self): mimo.set_led_brightness(1) max_brightness = 150 mat_all_lights = [] for index in range(0, 28): mat_all_lights += [index, 255, 255, 255] mimo.set_material_leds_color(mat_all_lights) opt_all_lights = [] for index in range(0, 5): opt_all_lights += [index, 255, 255, 255] mimo.set_optimization_leds_color(opt_all_lights) mat_lights_on = [] for index in range(0, 28): mat_lights_on += [index, 0, 0, 0] opt_lights_on = [] for index in range(0, 5): opt_lights_on += [index, 0, 0, 0] self.brightness = 1 self.AddTween("easeInOutSine", 1, self, "brightness", 1, max_brightness, 0) self.AddTween("easeInOutSine", 1, self, "brightness", max_brightness, 1, 1.5) self.AddTween("easeInOutSine", 1, self, "brightness", 1, max_brightness, 3) self.AddTween("easeInOutSine", 1, self, "brightness", max_brightness, 1, 4.5) self.AddTween("easeInOutSine", 1, self, "brightness", 1, max_brightness, 6) self.AddTween("easeInOutSine", 1, self, "brightness", max_brightness, 1, 7.5) self.AddTrigger(9.1, mimo, 'set_material_leds_color', mat_lights_on) self.AddTrigger(9.1, mimo, 'set_optimization_leds_color', opt_lights_on) self.AddTrigger(9.1, mimo, 'clean_matrix') def scheduleTextLoader(self, lang): if lang == 'en': self.AddTrigger(1.9, self.title, 'SetText', '') self.AddTrigger(2, self.title, 'SetText', 'LOADING') self.AddTrigger(2.1, self.title, 'SetText', 'LOADING EMOSENSE') self.AddTrigger(2.2, self.title, 'SetText', 'LOADING EMOSENSE PREDICTOR') self.AddTrigger(2.3, self.title, 'SetText', 'LOADING EMOSENSE PREDICTOR.') self.AddTrigger(2.4, self.title, 'SetText', 'LOADING EMOSENSE PREDICTOR..') self.AddTrigger(2.5, self.title, 'SetText', 'LOADING EMOSENSE PREDICTOR...') self.AddTrigger(3.5, self.title, 'SetText', '') self.AddTrigger(3.6, self.title, 'SetText', 'PROCESSING') self.AddTrigger(3.7, self.title, 'SetText', 'PROCESSING EMOTIONAL') self.AddTrigger(3.8, self.title, 'SetText', 'PROCESSING EMOTIONAL OPTIMIZATION') self.AddTrigger(3.9, self.title, 'SetText', 'PROCESSING EMOTIONAL OPTIMIZATION MODULES') self.AddTrigger(4.0, self.title, 'SetText', 'PROCESSING EMOTIONAL OPTIMIZATION MODULES.') self.AddTrigger(4.1, self.title, 'SetText', 'PROCESSING EMOTIONAL OPTIMIZATION MODULES..') self.AddTrigger(4.2, self.title, 'SetText', 'PROCESSING EMOTIONAL OPTIMIZATION MODULES...') self.AddTrigger(5.0, self.title, 'SetText', '') self.AddTrigger(5.1, self.title, 'SetText', 'INITIALIZING') self.AddTrigger(5.2, self.title, 'SetText', 'INITIALIZING PUCHINTZKY') self.AddTrigger(5.3, self.title, 'SetText', 'INITIALIZING PUCHINTZKY ALGORITHM') self.AddTrigger(5.4, self.title, 'SetText', 'INITIALIZING PUCHINTZKY ALGORITHM ENGINE') self.AddTrigger(5.5, self.title, 'SetText', 'INITIALIZING PUCHINTZKY ALGORITHM ENGINE.') self.AddTrigger(5.6, self.title, 'SetText', 'INITIALIZING PUCHINTZKY ALGORITHM ENGINE..') self.AddTrigger(5.7, self.title, 'SetText', 'INITIALIZING PUCHINTZKY ALGORITHM ENGINE...') self.AddTrigger(6.0, self.title, 'SetText', 'M') self.AddTrigger(6.1, self.title, 'SetText', 'M-') self.AddTrigger(6.2, self.title, 'SetText', 'M-O') self.AddTrigger(6.3, self.title, 'SetText', 'M-OS') self.AddTrigger(6.4, self.title, 'SetText', 'M-OS ') self.AddTrigger(6.5, self.title, 'SetText', 'M-OS I') self.AddTrigger(6.6, self.title, 'SetText', 'M-OS IS') self.AddTrigger(6.7, self.title, 'SetText', 'M-OS IS ') self.AddTrigger(6.8, self.title, 'SetText', 'M-OS IS R') self.AddTrigger(6.9, self.title, 'SetText', 'M-OS IS RE') self.AddTrigger(7.0, self.title, 'SetText', 'M-OS IS REA') self.AddTrigger(7.1, self.title, 'SetText', 'M-OS IS READ') self.AddTrigger(7.2, self.title, 'SetText', 'M-OS IS READY') elif lang == 'es': self.AddTrigger(1.9, self.title, 'SetText', '') self.AddTrigger(2, self.title, 'SetText', 'CARGANDO') self.AddTrigger(2.1, self.title, 'SetText', 'CARGANDO EMOSENSE') self.AddTrigger(2.2, self.title, 'SetText', 'CARGANDO EMOSENSE PREDICTOR') self.AddTrigger(2.3, self.title, 'SetText', 'CARGANDO EMOSENSE PREDICTOR.') self.AddTrigger(2.4, self.title, 'SetText', 'CARGANDO EMOSENSE PREDICTOR..') self.AddTrigger(2.5, self.title, 'SetText', 'CARGANDO EMOSENSE PREDICTOR...') self.AddTrigger(3.5, self.title, 'SetText', '') self.AddTrigger(3.6, self.title, 'SetText', 'PROCESANDO') self.AddTrigger(3.7, self.title, 'SetText', 'PROCESANDO MÓDULOS') self.AddTrigger(3.8, self.title, 'SetText', 'PROCESANDO MÓDULOS DE OPTIMIZACIÓN') self.AddTrigger(3.9, self.title, 'SetText', 'PROCESANDO MÓDULOS DE OPTIMIZACIÓN EMOCIONAL') self.AddTrigger(4.0, self.title, 'SetText', 'PROCESANDO MÓDULOS DE OPTIMIZACIÓN EMOCIONAL.') self.AddTrigger(4.1, self.title, 'SetText', 'PROCESANDO MÓDULOS DE OPTIMIZACIÓN EMOCIONAL..') self.AddTrigger(4.2, self.title, 'SetText', 'PROCESANDO MÓDULOS DE OPTIMIZACIÓN EMOCIONAL...') self.AddTrigger(5.0, self.title, 'SetText', '') self.AddTrigger(5.1, self.title, 'SetText', 'INICIALIZANDO') self.AddTrigger(5.2, self.title, 'SetText', 'INICIALIZANDO ALGORITMO') self.AddTrigger(5.3, self.title, 'SetText', 'INICIALIZANDO ALGORITMO COMPLEJO') self.AddTrigger(5.4, self.title, 'SetText', 'INICIALIZANDO ALGORITMO COMPLEJO DE PUCHINTZKY') self.AddTrigger(5.5, self.title, 'SetText', 'INICIALIZANDO ALGORITMO COMPLEJO DE PUCHINTZKY.') self.AddTrigger(5.6, self.title, 'SetText', 'INICIALIZANDO ALGORITMO COMPLEJO DE PUCHINTZKY..') self.AddTrigger(5.7, self.title, 'SetText', 'INICIALIZANDO ALGORITMO COMPLEJO DE PUCHINTZKY...') self.AddTrigger(6.0, self.title, 'SetText', 'M') self.AddTrigger(6.1, self.title, 'SetText', 'M-') self.AddTrigger(6.2, self.title, 'SetText', 'M-O') self.AddTrigger(6.3, self.title, 'SetText', 'M-OS') self.AddTrigger(6.4, self.title, 'SetText', 'M-OS ') self.AddTrigger(6.5, self.title, 'SetText', 'M-OS E') self.AddTrigger(6.6, self.title, 'SetText', 'M-OS ES') self.AddTrigger(6.7, self.title, 'SetText', 'M-OS EST') self.AddTrigger(6.8, self.title, 'SetText', 'M-OS ESTÁ') self.AddTrigger(6.9, self.title, 'SetText', 'M-OS ESTÁ ') self.AddTrigger(7.0, self.title, 'SetText', 'M-OS ESTÁ L') self.AddTrigger(7.1, self.title, 'SetText', 'M-OS ESTÁ LI') self.AddTrigger(7.2, self.title, 'SetText', 'M-OS ESTÁ LIS') self.AddTrigger(7.3, self.title, 'SetText', 'M-OS ESTÁ LIST') self.AddTrigger(7.4, self.title, 'SetText', 'M-OS ESTÁ LISTO')
# -*- coding: utf-8 -*- import babel.dates import re import werkzeug import math from werkzeug.datastructures import OrderedMultiDict from datetime import datetime, timedelta from dateutil.relativedelta import relativedelta from odoo import fields, http, _ from odoo.addons.http_routing.models.ir_http import slug from odoo.addons.website.controllers.main import QueryURL from odoo.http import request from odoo.tools.misc import get_lang from odoo.osv import expression class WebsiteServicesController(http.Controller): _data_per_page = 30 _pager_max_pages = 5 @http.route(['''/serviskami/<model("services.website.mnc", "[('website_id', 'in', (False, current_website_id))]"):services>'''], type='http', auth="public", website=True, sitemap=False) def services_detail(self, services, **post): if not services.can_access_from_current_website(): raise werkzeug.exceptions.NotFound() values = { 'services': services, } return request.render("mnc_x_gjs_website.services_detail", values) class WebsiteNewsController(http.Controller): _data_per_page = 30 _pager_max_pages = 5 @http.route(['''/berita/<model("news.website.mnc", "[('website_id', 'in', (False, current_website_id))]"):news>'''], type='http', auth="public", website=True, sitemap=False) def news_detail(self, news, **post): if not news.can_access_from_current_website(): raise werkzeug.exceptions.NotFound() values = { 'news': news, } return request.render("mnc_x_gjs_website.news_detail", values) class WebsiteCarrierController(http.Controller): _data_per_page = 30 _pager_max_pages = 5 @http.route(['''/karir/<model("carrier.website.mnc", "[('website_id', 'in', (False, current_website_id))]"):carrier>'''], type='http', auth="public", website=True, sitemap=False) def services_detail(self, carrier, **post): if not carrier.can_access_from_current_website(): raise werkzeug.exceptions.NotFound() values = { 'carrier': carrier, } return request.render("mnc_x_gjs_website.carrier_detail", values)
""" DATASET GENERATION """ # IMPORTING LIBRARIES # * General libraries import cv2 import os import glob import pandas as pd import numpy as np import shutil from shutil import copyfile import argparse # * ML specific libraries import torch import torchvision from torch.utils.data import DataLoader from sklearn import preprocessing, model_selection # Testing function for convert_dataset function def test_convert_dataset(path): # setup df = pd.DataFrame({ "Unnamed: 0": ["11.jpg", "11.jpg", "11.jpg", "11.jpg", 1], "0": [0, 0, 224, 224, "a"], "1": [0, 0, 224, 224, 2], "2": [224, 0, 0, 224, "random"], "3": [224, 0, 0, 224, -1.00], }) df_exp = pd.DataFrame({ "file_name": ["11.jpg", "11.jpg", "11.jpg", "11.jpg"], "x_center_norm": [0.5, 0, 0.5, 1.0], "y_center_norm": [0.5, 0, 0.5, 1.0], "width_norm": [1.0, 0, -1, 0], "height_norm": [1.0, 0, -1, 0], }) # call function actual = convert_dataset(path, df) # set expectations expected = df_exp # assertion pd.testing.assert_frame_equal(actual, expected) return 0 # Function to split training and test set def dataset_split(df, folder, train_img_path, train_label_path): """ Split dataset into training and test set and store in a new directory structure Args: df: Data Frame of the split dataset folder : Path of the original dataset train_img_path : Path of the training images train_label_path : Path of the training labels """ filenames = [] for name in df.file_name: filenames.append(name) """ Directory Structure : --Dataset_yolo --Images --Train --Val --Dataset_yolo --Labels --Train --Val Image format .jpg, Label format .txt (Separate .txt file label for each image) Inside label.txt : x_center_norm, y_center_norm, width_norm, height_norm """ for filename in filenames: yolo_list = [] for i, row in df[df.file_name == filename].iterrows(): yolo_list.append([0, row.x_center_norm, row.y_center_norm, row.width_norm, row.height_norm]) yolo_list = np.array(yolo_list) print("\n", yolo_list) txt_filename = os.path.join(train_label_path, str(row.file_name.split('.')[0])+".txt") print("\n", txt_filename) np.savetxt(txt_filename, yolo_list, fmt=["%d", "%f", "%f", "%f", "%f"]) shutil.copyfile(os.path.join(folder, row.file_name), os.path.join(train_img_path, row.file_name)) return(0) # Function to convert Dataset into YoloV5 compatible format def convert_dataset(path, table): """ Convert dataset into Yolo V5 compatible format Args: path: Global path table : Data Frame of the original dataset """ img_width = 224 img_height = 224 width = [] height = [] x_center = [] y_center = [] # YoloV5 compatible dataset has x_center_norm, y_center_norm, # width_norm, height_norm as its columns df = pd.DataFrame(columns=['file_name', 'x_center_norm', 'y_center_norm', 'width_norm', 'height_norm']) table=table[table["0"].apply(lambda x: isinstance(x, (int, np.int64)))] print(table) df["file_name"] = table['Unnamed: 0'].astype(str) df["width_norm"] = (table["2"]-table["0"]) / img_width df["height_norm"] = (table["3"]-table["1"]) / img_height df["x_center_norm"] = (table["0"]/img_width) + (df["width_norm"]/2) df["y_center_norm"] = (table["1"]/img_height) + (df["height_norm"]/2) df["width_norm"] = df["width_norm"].astype(float) df["height_norm"] = df["height_norm"].astype(float) df["x_center_norm"] = df["x_center_norm"].astype(float) df["y_center_norm"] = df["y_center_norm"].astype(float) print(df.dtypes) print(df) df.to_csv(os.path.join(path, 'Dataset/Dataset_yolo/BB_labels_yolo.txt')) return(df) # Function to load dataset def display_dataset_images(folder, table): """ Display dataset images initially Args: folder: Path of the original dataset table : Data Frame of the original dataset """ print(table) images = [] image_path = [] filename = [] x1 = [] y1 = [] x2 = [] y2 = [] start_point = [] end_point = [] i = 0 print("Displaying dataset images ... \n") for i in range(len(table.index)): print("Image", i) image_path.append(table.iloc[i, 0]) image_path[i] = os.path.join(folder, image_path[i]) print(image_path[i]) # Gets xmin, ymin, xmax, ymax when # Table (dataset_raw) is passed as argument # Gets x_center_norm, y_center_norm, # width_norm, height_norm when DF (dataset_yolo) is passed as argument x1.append(table.iloc[i, 1]) y1.append(table.iloc[i, 2]) x2.append(table.iloc[i, 3]) y2.append(table.iloc[i, 4]) # De-normalizes in the case when DF is passed as argument if "x_center_norm" in table: image_path[i] = os.path.join(folder, table.iloc[i, 0]) print(image_path[i]) x1[i] = int(224*(x1[i] - x2[i]/2)) # 224(x_center-width/2) y1[i] = int(224*(y1[i] - y2[i]/2)) # 224(x_center-height/2) x2[i] = int(224*x2[i] + x1[i] - x2[i]/2) # 224(width+x_center-width/2) y2[i] = int(224*y2[i] + y1[i] - y2[i]/2) # 224(width+x_center-height/2) start_point.append((x1[i], y1[i])) print("Bounding box \n(xmin,ymin)", start_point[i]) end_point.append((x2[i], y2[i])) print("(xmax,ymax)", end_point[i]) font = cv2.FONT_HERSHEY_SIMPLEX img = cv2.imread(image_path[i]) img = cv2.rectangle(img, start_point[i], end_point[i], color=(255, 0, 0), thickness=2) img = cv2.putText(img, table.name, (10, 20), font, 0.5, (255, 255, 255), 2, cv2.LINE_AA) cv2.waitKey(100) # Displays images cv2.imshow('image', img) if img is not None: images.append(img) i = i + 1 cv2.waitKey(1000) return(images, start_point, end_point) # Define main function def main(): # Define path of the dataset path = os.path.dirname(os.path.abspath(__file__)) print("Current directory : ") print(path) folder = os.path.join(path, "Dataset/Dataset_raw") os.chdir(path) # Arguments parser parser = argparse.ArgumentParser() parser.add_argument('-p', "--path", default=folder, type=str, help="Path to the raw dataset directory") args = parser.parse_args() print(args.path) # Load dataset csv_path = os.path.join(args.path, "BB_labels.csv") print(path) table = pd.read_csv(csv_path) table.name = 'Raw' print(table) # Display dataset print("Raw dataset ... \n") display_dataset_images(args.path, table) # Basic unit testing for convert_dataset function print("Test-case \n") test_convert_dataset(path) # Convert dataset to Yolo Compatible df = convert_dataset(path, table) # Train-test split df_train, df_valid = model_selection.train_test_split( df, test_size=0.2, random_state=13, shuffle=True) train_img_path = os.path.join(path, 'Dataset/Dataset_yolo/images/train') train_label_path = os.path.join(path, 'Dataset/Dataset_yolo/labels/train') valid_img_path = os.path.join(path, "Dataset/Dataset_yolo/images/val") valid_label_path = os.path.join(path, "Dataset/Dataset_yolo/labels/val") dataset_split(df_train, args.path, train_img_path, train_label_path) dataset_split(df_valid, args.path, valid_img_path, valid_label_path) print("No. of Training images", len(os.listdir(train_img_path))) print("No. of Training labels", len(os.listdir(train_label_path))) print("No. of valid images", len(os.listdir(valid_img_path))) print("No. of valid labels", len(os.listdir(valid_label_path))) # Display converted dataset for verification print("Training dataset ... \n") df_train.name = 'Train' display_dataset_images(train_img_path, df_train) print("Validation dataset ... \n") df_valid.name = 'Test' display_dataset_images(valid_img_path, df_valid) if __name__ == '__main__': main()
# Generated by Django 3.1.7 on 2021-03-19 21:53 import django.db.models.deletion from django.db import migrations, models import delivery.validators class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Courier', fields=[ ('courier_id', models.PositiveIntegerField(primary_key=True, serialize=False, verbose_name='Идентификатор курьера')), ('courier_type', models.CharField( choices=[('foot', 'Пеший'), ('bike', 'Велокурьер'), ('car', 'Курьер на автомобиле')], max_length=4, verbose_name='Тип курьера')), ], ), migrations.CreateModel( name='Invoice', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('assign_time', models.DateTimeField(auto_now_add=True, verbose_name='Время выдачи курьеру')), ('expected_reward', models.PositiveIntegerField( verbose_name='Ожидаемое вознаграждение')), ('courier', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='invoices', to='delivery.courier', verbose_name='Назначенный курьер')), ], ), migrations.CreateModel( name='Region', fields=[ ('code', models.PositiveIntegerField(primary_key=True, serialize=False, verbose_name='Код района')), ], ), migrations.CreateModel( name='TimeInterval', fields=[ ('name', models.CharField(max_length=11, primary_key=True, serialize=False, validators=[ delivery.validators.interval_validator], verbose_name='Интервал(HH:MM-HH:MM)')), ('begin', models.PositiveIntegerField( verbose_name='Начало интервала в минутах')), ('end', models.PositiveIntegerField( verbose_name='Конец интервала в минутах')), ], ), migrations.CreateModel( name='Order', fields=[ ('order_id', models.PositiveIntegerField(primary_key=True, serialize=False, verbose_name='Идентификатор заказа')), ('weight', models.DecimalField(decimal_places=2, max_digits=4, validators=[ delivery.validators.weight_validator])), ('delivery_hours', models.ManyToManyField(db_index=True, related_name='orders', to='delivery.TimeInterval', verbose_name='Часы работы')), ('region', models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, related_name='orders', to='delivery.region', verbose_name='Район заказа')), ], ), migrations.CreateModel( name='InvoiceOrder', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('complete_time', models.DateTimeField(null=True, verbose_name='Время завершения заказа')), ('delivery_time', models.PositiveIntegerField(null=True, verbose_name='Время доставки в секундах')), ('invoice', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='invoice_orders', to='delivery.invoice')), ('order', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='invoice_orders', to='delivery.order')), ], ), migrations.AddField( model_name='invoice', name='orders', field=models.ManyToManyField(db_index=True, related_name='invoices', through='delivery.InvoiceOrder', to='delivery.Order', verbose_name='Заказы'), ), migrations.AddField( model_name='courier', name='regions', field=models.ManyToManyField(db_index=True, related_name='couriers', to='delivery.Region', verbose_name='Районы доставки'), ), migrations.AddField( model_name='courier', name='working_hours', field=models.ManyToManyField(db_index=True, related_name='couriers', to='delivery.TimeInterval', verbose_name='Часы работы'), ), ]
#coding=UTF-8 ''' Created on 2017年3月13日 @author: admin ''' import os, os.path, datetime, locale locale.setlocale(locale.LC_CTYPE, 'chinese') base_dir = "D:\\apache-tomcat-7.0.6\\webapps\\" l=os.listdir(base_dir) l.sort(key=lambda fn: os.path.getmtime(base_dir+fn) if not os.path.isdir(base_dir+fn) else 0) d=datetime.datetime.fromtimestamp(os.path.getmtime(base_dir+l[-1])) print('最后改动的文件是'+l[-1]+",时间:"+d.strftime("%Y年%m月%d日 %H时%M分%S秒"))
import collections class TreeNode(object): """ Definition of a binary tree node.""" def __init__(self, x): self.val = x self.left = None self.right = None class Solution: def levelOrder(self, root): """ :type root: TreeNode :rtype: List[List[int]] """ levels = [] if not root: return levels level = 0 queue = collections.deque([root,]) while queue: # start the current level levels.append([]) # number of elements in the current level level_length = len(queue) for _ in range(level_length): node = queue.popleft() # fulfill the current level levels[level].append(node.val) # add child nodes of the current level # in the queue for the next level if node.left: queue.append(node.left) if node.right: queue.append(node.right) # go to next level level += 1 return levels # Tree Node # 3 # / \ # 9 20 # / \ / \ # 7 6 15 17 root = TreeNode(3) root.left = TreeNode(9) root.left.left = TreeNode(7) root.left.right = TreeNode(6) root.right = TreeNode(20) root.right.left = TreeNode(15) root.right.right = TreeNode(17) result = Solution().levelOrder(root) print(result)
import tensorflow as tf import numpy as np import os import scipy.misc # output_img = graph.get_tensor_by_name("output_img:0") # x = graph.get_tensor_by_name("x:0") # batch_size = graph.get_tensor_by_name("batch_size:0") batch_size_now = 2 values = np.load('celeba_variables.npz') sess = tf.InteractiveSession() x = tf.placeholder(tf.float32, shape=[None, 64, 64, 3], name="x") batch_size = tf.placeholder(tf.int32, None, name="batch_size") def random_filelist(batch_size): index = np.random.uniform(1, 202599.99, batch_size) index = index.astype(int) filelist = np.array(['%06i.png' % i for i in index]) return filelist def nums_to_filelist(index): filelist = np.array(['%06i.png' % i for i in index]) return filelist # def weight_variable(shape): # initial = tf.truncated_normal(shape, stddev=0.1) # return tf.Variable(initial) # # def bias_variable(shape): # initial = tf.constant(0.1, shape=shape) # return tf.Variable(initial) def conv2d(x, W): return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') def deconv2d(x, W, output_shape): return tf.nn.conv2d_transpose(x, W,output_shape, strides=[1, 2, 2, 1], padding='VALID') def max_pool_2x2(x): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') # num_convs = 2 num_filters1 = 16 num_filters2 = 32 num_fc1 = 2048 num_fc2 = 512 # Rueckweg channels = 48 # 8*3RGB also: MUSS DURCH 3 TEILBAR SEIN! W_conv1 = tf.Variable(values['W_conv1_v']) b_conv1 = tf.Variable(values['b_conv1_v']) # x_flat = tf.reshape(x, [-1]) x_image = tf.reshape(x, [-1, 64, 64, 3]) h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) h_pool1 = max_pool_2x2(h_conv1) W_conv2 = tf.Variable(values['W_conv2_v']) b_conv2 = tf.Variable(values['b_conv2_v']) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) h_pool2 = max_pool_2x2(h_conv2) # output last convlayer W_fc1 = tf.Variable(values['W_fc1_v']) b_fc1 = tf.Variable(values['b_fc1_v']) h_pool2_flat = tf.reshape(h_pool2, [-1, 16*16*num_filters2]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) W_fc2 = tf.Variable(values['W_fc2_v']) b_fc2 = tf.Variable(values['b_fc2_v']) y_conv_ = tf.matmul(h_fc1, W_fc2) y_conv = tf.reduce_mean(tf.add(y_conv_, b_fc2), axis=0, keep_dims=True) W_fc1_r = tf.Variable(values['W_fc1_r_v']) b_fc1_r = tf.Variable(values['b_fc1_r_v']) h_fc1_r_ = tf.matmul(y_conv, W_fc1_r) h_fc1_r = tf.add(h_fc1_r_, b_fc1_r) h_fc1_r_flat = tf.reshape(h_fc1_r, [-1, 16, 16, channels]) W_conv2_r = tf.Variable(values['W_conv2_r_v']) b_conv2_r = tf.Variable(values['b_conv2_r_v']) output_shape_conv2r = [1, 32, 32, channels] h_conv2_r = tf.nn.relu(deconv2d(h_fc1_r_flat, W_conv2_r, output_shape_conv2r) + b_conv2_r) # deconvolution1 W_conv1_r = tf.Variable(values['W_conv1_r_v']) b_conv1_r = tf.Variable(values['b_conv1_r_v']) output_shape_conv1r = [1, 64, 64, channels] h_conv1_r = deconv2d(h_conv2_r, W_conv1_r, output_shape_conv1r) + b_conv1_r # deconvolution 2 # output_img = tf.nn.softmax(tf.reshape(tf.reduce_mean(h_conv1_r, axis=3, keep_dims=True), [-1]), name='output_img') # output_img = tf.reshape(tf.reduce_mean(h_conv1_r, axis=3, keep_dims=True), [-1], name='output_img') output_img = tf.reshape(h_conv1_r, [1, 64, 64, 3, channels//3]) output_img = tf.reduce_mean(output_img, axis=4, name='output_img') sess.run(tf.global_variables_initializer()) saver = tf.train.Saver() filelist = nums_to_filelist([1, 2]) batch = np.array([scipy.misc.imread('./Datasets/img_align_celeba_resized/'+bild) for bild in filelist]) img = sess.run(output_img, feed_dict={x: batch, batch_size: batch_size_now}) scipy.misc.imsave('imagesCeleba64x64_mean/image.png', img[0])
import numpy as np import sys sys.path.append('..') from chap11.dubins_params import dubins_params from message_types.msg_path import msg_path class path_manager: def __init__(self): # message sent to path follower self.path = msg_path() # pointers to previous, current, and next waypoints self.ptr_previous = 0 self.ptr_current = 1 self.ptr_next = 2 self.ptrs_updated = True # flag that request new waypoints from path planner self.flag_need_new_waypoints = True self.num_waypoints = 0 self.halfspace_n = np.inf * np.ones((3,1)) self.halfspace_r = np.inf * np.ones((3,1)) # state of the manager state machine self.manager_state = 1 # dubins path parameters self.dubins_path = dubins_params() self.state_changed = True def update(self, waypoints, radius, state): if waypoints.flag_waypoints_changed: waypoints.flag_waypoints_changed = False self.num_waypoints = waypoints.num_waypoints self.initialize_pointers() self.manager_state = 1 self.flag_need_new_waypoints = False if self.path.flag_path_changed: self.path.flag_path_changed = False if waypoints.num_waypoints == 0: waypoints.flag_manager_requests_waypoints = True else: if waypoints.type == 'straight_line': self.line_manager(waypoints, state) elif waypoints.type == 'fillet': self.fillet_manager(waypoints, radius, state) elif waypoints.type == 'dubins': self.dubins_manager(waypoints, radius, state) else: print('Error in Path Manager: Undefined waypoint type.') return self.path def line_manager(self, waypoints, state): p = np.array([[state.pn, state.pe, -state.h]]).T w_im1 = waypoints.ned[:,self.ptr_previous].reshape(3,1) w_i = waypoints.ned[:,self.ptr_current].reshape(3,1) w_ip1 = waypoints.ned[:,self.ptr_next].reshape(3,1) q_im1 = w_i -w_im1 q_im1 /= np.linalg.norm(q_im1) q_i = w_ip1 - w_i q_i /= np.linalg.norm(q_i) n_i = q_im1 + q_i n_i /= np.linalg.norm(n_i) self.halfspace_r = w_i self.halfspace_n = n_i self.path.airspeed = waypoints.airspeed.item(self.ptr_current) self.path.flag = 'line' if self.inHalfSpace(p): self.increment_pointers() self.path.flag_path_changed = True self.path.line_origin = w_i self.path.line_direction = q_i else: self.path.flag_path_changed = False self.path.line_origin = w_im1 self.path.line_direction = q_im1 def fillet_manager(self, waypoints, radius, state): p = np.array([[state.pn, state.pe, -state.h]]).T w_im1 = waypoints.ned[:,self.ptr_previous].reshape(3,1) w_i = waypoints.ned[:,self.ptr_current].reshape(3,1) w_ip1 = waypoints.ned[:,self.ptr_next].reshape(3,1) q_im1 = w_i -w_im1 q_im1 /= np.linalg.norm(q_im1) q_i = w_ip1 - w_i q_i /= np.linalg.norm(q_i) var_phi = np.arccos(-q_im1.T @ q_i) if self.manager_state == 1: self.path.flag_path_changed = self.state_changed self.state_changed = False self.path.flag = 'line' self.path.line_origin = w_im1 self.path.line_direction = q_im1 self.path.airspeed = waypoints.airspeed.item(self.ptr_current) z = w_i - (radius/np.tan(var_phi/2.0))*q_im1 self.halfspace_r = z self.halfspace_n = q_im1 if self.inHalfSpace(p): self.manager_state = 2 self.state_changed = True else: self.path.flag_path_changed = self.state_changed self.state_changed = False direction = (q_im1-q_i) direction /= np.linalg.norm(direction) c = w_i - (radius/np.sin(var_phi/2.0))*direction lam = np.sign(q_im1.item(0)*q_i.item(1)-q_im1.item(1)*q_i.item(0)) self.path.flag = 'orbit' self.path.airspeed = waypoints.airspeed.item(self.ptr_current) self.path.orbit_center = c self.path.orbit_radius = radius if lam > 0: self.path.orbit_direction = 'CW' else: self.path.orbit_direction = 'CCW' z = w_i + (radius/np.tan(var_phi/2.0))*q_i self.halfspace_r = z self.halfspace_n = q_i if self.inHalfSpace(p): self.increment_pointers() self.manager_state = 1 self.state_changed = True def dubins_manager(self, waypoints, radius, state): p = np.array([[state.pn, state.pe, -state.h]]).T self.path.airspeed = waypoints.airspeed.item(self.ptr_current) if self.ptrs_updated: self.ptrs_updated = False ps = waypoints.ned[:,self.ptr_previous].reshape(3,1) pe = waypoints.ned[:,self.ptr_current].reshape(3,1) chis = waypoints.course.item(self.ptr_previous) chie = waypoints.course.item(self.ptr_current) self.dubins_path.update(ps,chis,pe,chie,radius) if self.manager_state == 1: self.path.flag_path_changed = self.state_changed self.state_changed = False self.path.flag = 'orbit' self.path.orbit_center = self.dubins_path.center_s self.path.orbit_radius = radius if self.dubins_path.dir_s > 0: self.path.orbit_direction = 'CW' else: self.path.orbit_direction = 'CCW' self.halfspace_n = self.dubins_path.n1 self.halfspace_r = self.dubins_path.r1 if self.inHalfSpace(p): self.manager_state = 2 self.state_changed = True elif self.manager_state == 2: self.halfspace_n = self.dubins_path.n1 self.halfspace_r = self.dubins_path.r1 if self.inHalfSpace(p): self.manager_state = 3 self.state_changed = True elif self.manager_state == 3: self.path.flag_path_changed = self.state_changed self.state_changed = False self.path.flag = 'line' self.path.line_origin = self.dubins_path.r1 self.path.line_direction = self.dubins_path.n1 self.halfspace_n = self.dubins_path.n1 self.halfspace_r = self.dubins_path.r2 if self.inHalfSpace(p): self.manager_state = 4 self.state_changed = True elif self.manager_state == 4: self.path.flag_path_changed = self.state_changed self.state_changed = False self.path.flag = 'orbit' self.path.orbit_center = self.dubins_path.center_e if self.dubins_path.dir_e > 0: self.path.orbit_direction = 'CW' else: self.path.orbit_direction = 'CCW' self.halfspace_n = self.dubins_path.n3 self.halfspace_r = self.dubins_path.r3 if self.inHalfSpace(p): self.manager_state = 5 self.path.dubins_state_changed = True else: self.path.flag_path_changed = self.state_changed self.state_changed = False self.halfspace_n = self.dubins_path.n3 self.halfspace_r = self.dubins_path.r3 if self.inHalfSpace(p): self.manager_state = 1 self.path.dubins_state_changed = True self.increment_pointers() def initialize_pointers(self): self.ptr_previous = 0 self.ptr_current = 1 self.ptr_next = 2 self.ptrs_updated = True def increment_pointers(self): self.ptr_previous += 1 if self.ptr_previous >= self.num_waypoints: self.ptr_previous = 0 self.ptr_current += 1 if self.ptr_current >= self.num_waypoints: self.ptr_current = 0 self.ptr_next += 1 if self.ptr_next >= self.num_waypoints: self.ptr_next = 0 self.ptrs_updated = True def inHalfSpace(self, pos): if (pos-self.halfspace_r).T @ self.halfspace_n >= 0: return True else: return False
import yaml import os import git import logging from .i_repository_parser import IRepositoryParser class RosdistroRepositoryParser(IRepositoryParser): """ Pulls the rosdistro-package and gets all urls from the rosdistro files. """ def __init__(self, settings: dict): """ Creates a new instance of the RosdistroRepositoryParser class :param settings: Settings containing information about rosdistro_workspace and rosdistro_url """ self.__settings = settings def __get_rosdistro_repository(self) -> None: """ Clones the repository from rosdistro_url into rosdistro_workspace (defined in settings) :return: None """ if not os.path.exists(self.__settings["rosdistro_workspace"]): os.makedirs(self.__settings["rosdistro_workspace"]) try: logging.info("[RosdistroRepositoryParser]: Cloning rosdistro repository...") git.Repo.clone_from(self.__settings["rosdistro_url"], self.__settings["rosdistro_workspace"]) except git.exc.GitCommandError: logging.warning("[RosdistroRepositoryParser]: Repository already exists, pulling changes...") repo = git.Repo(self.__settings["rosdistro_workspace"]) repo.remotes.origin.pull() logging.info("[RosdistroRepositoryParser]: Rosdistro up-to-date...") def __get_urls_from_file(self, file_path: str, repository_dict: dict) -> None: """ Gets the URLs from a distribution.yaml that adheres to rosdistro-specs. :param file_path: path to a distribution.yaml file :param repository_dict: dictionary with repository-type (git, svn, hg, ...) as key and the repo-url as value :return: None """ # Load file. file = open(file_path, 'r') rosdistro = yaml.load(file) # Iterate repositories and add them to the repository_dict. for repository in rosdistro["repositories"]: try: vcs_type = str(rosdistro["repositories"][repository]["doc"]["type"]) url = str(rosdistro["repositories"][repository]["doc"]["url"]) repository_dict[vcs_type].add(url) except KeyError: pass try: vcs_type = str(rosdistro["repositories"][repository]["doc"]["type"]) url = str(rosdistro["repositories"][repository]["source"]["url"]) repository_dict[vcs_type].add(url) except KeyError: pass try: # This has to be a git repository (required by bloom) repository_dict["git"].add(rosdistro["repositories"][repository]["release"]["url"]) except KeyError: pass def parse_repositories(self, repository_dict: dict) -> None: # Actually get the repository self.__get_rosdistro_repository() # Parse index.yaml index_file = open(self.__settings["rosdistro_workspace"] + "index.yaml", "r") index_yaml = yaml.load(index_file) # Get all urls from all distribution.yaml files for distribution in index_yaml["distributions"]: logging.info("Parsing distribution " + index_yaml["distributions"][distribution]["distribution"][0]) self.__get_urls_from_file(self.__settings["rosdistro_workspace"] + index_yaml["distributions"][distribution]["distribution"][0], repository_dict)
''' Another Lottery Even in times of an economic crisis, people in Byteland still like to participate in lotteries. With a bit of luck, they might get rid of all their sorrows and become rich. The most popular lottery in Byteland consists of m rounds. In each round, everyone can purchase as many tickets as he wishes, and among all tickets sold in this round, one ticket is chosen randomly, each one with the same probability. The owner of that ticket wins the prize money of this round. Since people in Byteland like powers of 2, the prize money for the winner of round i amounts to 2i Bytelandian Dollars. Can you determine for each participant in the lottery the probability that he will win more money than anybody else? Input The input consists of several test cases. Each test case starts with a line containing two integers n and m, the number of participants in the lottery and the number of rounds in the lottery. You may assume that 1 ≤ n ≤ 10000 and 1 ≤ m ≤ 30. The following n lines contain the description of the tickets bought by the participant. The ith such line contains m non-negative integers c1, ..., cm, where cj (1 ≤ j ≤ m) is the amount of tickets of round j bought by participant i. The total number of tickets sold in each round is between 1 and 109. The input ends with a line containing 2 zeros. Output For each test case, print n lines of output, where line i contains the probability as a reduced fraction that participant i wins the most money. See the sample output for details. ''' def reducefraction(numerator, denominator): def gcd(numerator, denominator): while denominator != 0: aux = denominator denominator = numerator % denominator numerator = aux return numerator greatest = gcd(numerator, denominator) numerator /= greatest denominator /= greatest return int(numerator), int(denominator) while True: participants, rounds = [int(x) for x in input().split()] if participants == 0 and rounds == 0: break listLastTicket = [] for x in range(1, participants + 1): ticket = input().split() listLastTicket.append(ticket[rounds - 1]) Sum = sum(int(i) for i in listLastTicket) for x in listLastTicket: numerator, denominator = reducefraction(int(x), Sum) print('{} / {}'.format(numerator, denominator))
from selenium import webdriver import pytest from selenium.webdriver.common.by import By sticker_new = "//*[@id='box-%s']//*[@class='product column shadow hover-light']//*[@title='%s']//*[@title='New']" sticker_sale = "//*[@id='box-%s']//*[@class='product column shadow hover-light']//*[@title='%s']//*[@title='On Sale']" products = [("most-popular", "Blue Duck"), ("most-popular", "Yellow Duck"), ("most-popular", "Purple Duck"), ("most-popular", "Red Duck"), ("most-popular", "Green Duck"), ("campaigns", "Yellow Duck"), ("latest-products", "Blue Duck"), ("latest-products", "Yellow Duck"), ("latest-products", "Purple Duck"), ("latest-products", "Red Duck"), ("latest-products", "Green Duck")] @pytest.yield_fixture() def driver(): _driver = webdriver.Chrome() yield _driver _driver.quit() def login(driver, username, password): driver.get("http://localhost/litecart/admin/") driver.find_element_by_name("username").send_keys(username) driver.find_element_by_name("password").send_keys(password) driver.find_element_by_name("login").click() def sum_of_stickers(driver, group, product): amount_of_new_stickers = len(driver.find_elements(By.XPATH, sticker_new % (group, product))) amount_of_sale_stickers = len(driver.find_elements(By.XPATH, sticker_sale % (group, product))) return amount_of_new_stickers + amount_of_sale_stickers def test_home_task_8(driver): login(driver, username="admin", password="admin") driver.find_element(By.XPATH, "//*[@title='Catalog']").click() for (group, product) in products: assert sum_of_stickers(driver, group, product) == 1
""" A simple Point class. NOTE: This is NOT rosegraphics -- it is your OWN Point class. Authors: David Mutchler, Valerie Galluzzi, Mark Hays, Amanda Stouder, their colleagues and SOLUTION by Muqing Zheng. September 2015. """ # DONE: 1. PUT YOUR NAME IN THE ABOVE LINE. def main(): """ Calls the TEST functions in this module. """ test_init() test_repr() test_clone() test_move_to() test_move_by() test_number_of_moves_made() test_distance_from() test_distance_from_start() test_distance_traveled() test_closer_to() test_halfway_to() # ---------------------------------------------------------------------- # DONE: 2. With your instructor, READ THE INSTRUCTIONS # in file m0_INSTRUCTIONS.txt, asking questions as needed. # # Then write a class called Point that knows nothing # and has no data yet. Check it for syntax (notational) errors. # ---------------------------------------------------------------------- class Point: def __init__(self, x, y,): # Done __init__ self.x = x self.y = y self.initial_x = x self.initial_y = y self.count = 0 self.distance = 0 self.travel = 0 def __repr__(self): # Done __repr__ return('Point(' + str(self.x) + ', ' + str(self.y) + ')') def clone(self): # Done clone() return Point(self.x, self.y) def move_to(self, dex, dey): # Done move_to() self.travel += self.distance_from(Point(dex, dey)) self.x = dex self.y = dey self.count += 1 self.distance = self.distance_from(Point(self.initial_x, self.initial_y)) def move_by(self, dx, dy): # Done move_by() self.travel += self.distance_from(Point(self.x + dx, self.y + dy)) self.x = self.x + dx self.y = self.y + dy self.count += 1 self.distance = self.distance_from(Point(self.initial_x, self.initial_y)) def number_of_moves_made(self): # Done number_of_moves_made() return self.count def distance_from(self, Point): # Done distance_from() return ((self.x - Point.x) ** 2 + (self.y - Point.y) ** 2) ** 0.5 def distance_from_start(self): # Done distance_from_start() return self.distance def distance_traveled(self): # Done distance_traveled() return self.travel def closer_to(self, Point1, Point2): # Done closer_to() d1 = self.distance_from(Point1) d2 = self.distance_from(Point2) if d1 > d2: return Point2 elif d1 < d2: return Point1 else: return Point1 def halfway_to(self, Point1): # Done halfway_to() newx = (self.x + Point1.x) / 2 newy = (self.y + Point1.y) / 2 return Point(newx, newy) def test_init(): """ Tests the __init__ method of the Point class. The __init__ method: -- Has two arguments: x and y, both numbers. -- It sets instance variables: x y to the given coordinates. Other methods should maintain these variables as needed so that they always indicate the CURRENT position of the Point. -- The __init__ method runs when one constructs a Point. -- There are TWO underscores on each side. -- For example, the following invokes the __init__ method, as part of the construction of the Point object: p = Point(30, 18) print(p.x) # Should print 30 print(p.y) # Should print 18 """ # ------------------------------------------------------------------ # DONE: 3. # a. Implement this TEST function. COMMIT YOUR WORK. # b. CHECK this TEST function, correcting it as needed. COMMIT. # c. Implement and test the __init__ method. COMMIT. # ------------------------------------------------------------------ print() print('-----------------------------------------------------------') print('Testing the __init__ method of the Point class.') print('-----------------------------------------------------------') p1 = Point(30, 18) # "Done test for __init__" expected_x = 30 expected_y = 18 print('Expected x:', expected_x, 'Actual:', p1.x) print('Expected y:', expected_y, 'Actual:', p1.y) p2 = Point(0, 0) # "Done more tests for __init__" expected_x = 0 expected_y = 0 print('Expected x:', expected_x, 'Actual:', p2.x) print('Expected y:', expected_y, 'Actual:', p2.y) expected_x = 30 # "Done more tests for __init__" expected_y = 18 print('Expected x:', expected_x, 'Actual:', p1.x) print('Expected y:', expected_y, 'Actual:', p1.y) # Instructor's tests p1 = Point(30, 18) print('p1: Should print 30, 18:', p1.x, p1.y) p2 = Point(100, -40) print('p1: Should still print 30, 18:', p1.x, p1.y) print('p2: Should print 100, -40:', p2.x, p2.y) p1.y = 500 print('p1: Should now print 30, 500:', p1.x, p1.y) print('p2: Should still print 100, -40:', p2.x, p2.y) def test_repr(): """ Tests the __repr__ method of the Point class. The __repr__ method: -- Has no arguments. -- Returns a string representation of a Point like this: 'Point(x, y)' where x and y are replaced by the Point's x and y coordinates. -- The __repr__ called by the print and other functions when the Point must be displayed. -- There are TWO underscores on each side. -- For example, the following invokes the __repr__ method, as part of what the print function does. p = Point(30, 18) print(p) # Should display Point(30, 18) """ # ------------------------------------------------------------------ # DONE: 4. # a. Implement this TEST function. COMMIT YOUR WORK. # b. CHECK this TEST function, correcting it as needed. COMMIT. # c. Implement and test the __repr__ method. COMMIT. # ------------------------------------------------------------------ print() print('-----------------------------------------------------------') print('Testing the __repr__ method of the Point class.') print('-----------------------------------------------------------') p1 = Point(30, 18) # "Done test for __repr__" expectedp1 = 'Point(30,18)' print('Expected:', expectedp1, 'Actual:', p1) p2 = Point(1.1, 1.8) # "Done more tests for __repr__" expectedp2 = 'Point(1.1,1.8)' print('Expected:', expectedp2, 'Actual:', p2) p3 = Point(16, 22) # "Done more tests for __repr__" expectedp2 = 'Point(16,22)' print('Expected:', expectedp2, 'Actual:', p3) # Instructor's tests p1 = Point(30, 18) print('p1: Should print Point(30, 18):', p1) p2 = Point(100, -40) print('p1: Should still print Point(30, 18):', p1) print('p2: Should print Point(100, -40):', p2) p1.y = 500 print('p1: Should now print Point(30, 500):', p1) print('p2: Should still print Point(100, -40):', p2) p1 = Point(555, 444) print('p1: Should now print Point(555, 444):', p1) print('p2: Should still print Point(100, -40):', p2) def test_clone(): """ Tests the clone method of the Point class. The clone method: -- Has no arguments. -- Returns a new Point whose x and y coordinates are the same as the x and y coordinates of this Point. -- For example, if a Point p is at (10, 8) and clone is applied to it, then a new Point at (10, 8) should be returned. """ # ------------------------------------------------------------------ # DONE: 5. # a. Implement this TEST function. COMMIT YOUR WORK. # b. CHECK this TEST function, correcting it as needed. COMMIT. # c. Implement and test the clone method. COMMIT. # ------------------------------------------------------------------ print() print('-----------------------------------------------------------') print('Testing the clone method of the Point class.') print('-----------------------------------------------------------') p = Point(10, 18) # "Done test for clone()" p2 = p.clone() p.x = -30 expected = '10' print('Expected value:', expected, 'Actual:', p2.x) p = Point(16, 20) # "Done more tests for clone()" p2 = p.clone() p.y = -30 expected = '20' print('Expected value:', expected, 'Actual:', p2.y) p = Point(10, 18) # "Done more tests for clone()" p2 = p.clone() p.y = -30 expected = '18' print('Expected value:', expected, 'Actual:', p2.y) # Instructor's tests p1 = Point(10, 8) print('p1: Should print Point(10, 8):', p1) p2 = p1.clone() p3 = p2.clone() print('p1: Should print Point(10, 8):', p1) print('p2: Should print Point(10, 8):', p2) print('p3: Should print Point(10, 8):', p3) p1.x = 999 print('p1: Should now print Point(999, 8):', p1) print('p2: Should still print Point(10, 8):', p2) print('p3: Should still print Point(10, 8):', p3) p1.y = 333 p2 = Point(11, 22) p3.x = 777 p3.y = 555 print('p1: Should now print Point(999, 333):', p1) print('p2: Should still print Point(11, 22):', p2) print('p3: Should now print Point(777, 555):', p3) def test_move_to(): """ Tests the move_to method of the Point class. The move_to method: -- Has two arguments, x and y, both numbers. -- Moves the Point to the given x and y coordinates. That is, changes the Point's coordinates to the given ones. -- For example, if a Point p is at (10, 8) and move_to is applied to it with arguments 5 and -1, then Point p's new position should be (5, -1). """ # ------------------------------------------------------------------ # DONE: 6. # a. Implement this TEST function. COMMIT YOUR WORK. # b. CHECK this TEST function, correcting it as needed. COMMIT. # c. Implement and test the move_to method. COMMIT. # ------------------------------------------------------------------ print() print('-----------------------------------------------------------') print('Testing the move_to method of the Point class.') print('-----------------------------------------------------------') p1 = Point(10, 8) # "Done test for move_to()" p1.move_to(5, -1) expected = 'Point(5,-1)' print('Expected:', expected, 'Actual:', p1) p1 = Point(10, 8) # "Done more tests for move_to()" p1.move_to(7, -1) expected = 'Point(7,-1)' print('Expected:', expected, 'Actual:', p1) p1 = Point(10, 8) # "Done more tests for move_to()" p1.move_to(15, -11) expected = 'Point(15,-11)' print('Expected:', expected, 'Actual:', p1) # Instructor's tests p1 = Point(10, 8) p2 = Point(50, 20) print('p1: Should print Point(10, 8):', p1) print('p2: Should print Point(50, 20):', p2) p1.move_to(5, -1) p2.move_to(0, 0) print('p1: Should now print Point(5, -1):', p1) print('p2: Should now print Point(0, 0):', p2) p2.y = 99 print('p1: Should still print Point(5, -1):', p1) print('p2: Should now print Point(0, 99):', p2) p2.move_to(0, 222) print('p1: Should still print Point(5, -1):', p1) print('p2: Should now print Point(0, 222):', p2) def test_move_by(): """ Tests the move_by method of the Point class. The move_by method: -- Has two arguments, dx and dy, both numbers. -- Translates the Point by the given dx and dy amounts. That is, changes the Point's x-coordinate to what-it-was + dx, and changes its y-coordinate to what-it-was + dy. -- For example, if a Point p is at (10, 8) and move_by is applied to it with arguments 5 and -1, then Point p's new position should be (15, 7). """ # ------------------------------------------------------------------ # DONE: 7. # a. Implement this TEST function. COMMIT YOUR WORK. # b. CHECK this TEST function, correcting it as needed. COMMIT. # c. Implement and test the move_by method. COMMIT. # ------------------------------------------------------------------ print() print('-----------------------------------------------------------') print('Testing the move_by method of the Point class.') print('-----------------------------------------------------------') p1 = Point(10, 8) # "Done test for move_by()" p1.move_by(5, -1) expected = 'Point(15,7)' print('Expected:', expected, 'Actual:', p1) p1 = Point(10, 8) # "Done more tests for move_by()" p1.move_by(15, -1) expected = 'Point(25,7)' print('Expected:', expected, 'Actual:', p1) p1 = Point(10, 8) # "Done test for move_by()" p1.move_by(-5, 1) expected = 'Point(5,9)' print('Expected:', expected, 'Actual:', p1) # Instructor's tests p1 = Point(10, 8) p2 = Point(50, 20) print('p1: Should print Point(10, 8):', p1) print('p2: Should print Point(50, 20):', p2) p1.move_by(5, -1) p2.move_by(0, 0) print('p1: Should now print Point(15, 7):', p1) print('p2: Should now print Point(50, 20):', p2) p2.move_by(200, 0) print('p1: Should still print Point(15, 7):', p1) print('p2: Should now print Point(250, 20):', p2) p2.move_by(-100, 300) print('p1: Should still print Point(15, 7):', p1) print('p2: Should now print Point(150, 320):', p2) def test_number_of_moves_made(): """ Tests the number_of_moves_made method of the Point class. The number_of_moves_made method: -- Has no arguments. -- Returns the number of times the Point has moved. That is, returns the number of times move_to and move_by have been called on this Point. -- For example, if a Point p is constructed and later: -- is moved somewhere by move_to [or move_by] -- is moved somewhere by move_to [or move_by] -- is moved somewhere by move_by [or move_to] -- is moved somewhere by move_to [or move_by] then this method should return 4. If thereafter, Point p: -- is moved somewhere by move_by [or move_to] then this method should (then) return 5. """ # ------------------------------------------------------------------ # DONE: 8. # a. Implement this TEST function. COMMIT YOUR WORK. # b. CHECK this TEST function, correcting it as needed. COMMIT. # c. Implement and test the number_of_moves_made method. COMMIT. # ------------------------------------------------------------------ print() print('-----------------------------------------------------------') print('Testing the number_of_moves_made method of the Point class.') print('-----------------------------------------------------------') p1 = Point(10, 8) # "Done test for number_of_moves_made()" p1.move_by(5, -1) p1.move_to(5, -1) expected = '2' print('Expected:', expected, 'Actual:', p1.number_of_moves_made()) p2 = Point(10, 8) # "Done more tests for number_of_moves_made()" p2.move_to(5, -1) expected = '1' print('Expected:', expected, 'Actual:', p2.number_of_moves_made()) p3 = Point(10, 8) # "Done more tests for number_of_moves_made()" p3.move_by(5, -1) p3.move_to(15, -1) p3.move_to(5, -11) p3.move_to(25, -1) expected = '4' print('Expected:', expected, 'Actual:', p3.number_of_moves_made()) # Instructor's tests p1 = Point(10, 8) p2 = Point(50, 20) print('p1: Should print Point(10, 8):', p1) print('p2: Should print Point(50, 20):', p2) p1.move_by(5, -1) p2.move_by(0, 0) print('p1: Moves made should be 1:', p1.number_of_moves_made()) print('p2: Moves made should be 1:', p2.number_of_moves_made()) p2.move_by(200, 0) p2.move_by(-100, 300) p2.move_to(-100, 300) p1.move_to(3, 3) print('p1: Moves made should be 2:', p1.number_of_moves_made()) print('p2: Moves made should be 4:', p2.number_of_moves_made()) p1.move_by(200, 0) p1.move_by(-100, 300) p1.move_to(-100, 300) p1.move_to(3, 3) print('p1: Moves made should be 6:', p1.number_of_moves_made()) print('p2: Moves made should be 4:', p2.number_of_moves_made()) p1.x = 400 print('p1: Moves made should be 6:', p1.number_of_moves_made()) print('p2: Moves made should be 4:', p2.number_of_moves_made()) p1.move_to(3, 3) p2.move_by(0, 0) print('p1: Moves made should be 7:', p1.number_of_moves_made()) print('p2: Moves made should be 5:', p2.number_of_moves_made()) def test_distance_from(): """ Tests the distance_from method of the Point class. The distance_from method: -- Has one argument, another Point object. -- Returns the distance the Point is from that given Point. -- For example, if the Point is at (1, 5) and the given Point (i.e., the argument) is at (10, 5), then this method should return 9. """ # ------------------------------------------------------------------ # DONE: 9. # a. Implement this TEST function. COMMIT YOUR WORK. # b. CHECK this TEST function, correcting it as needed. COMMIT. # c. Implement and test the distance_from method. COMMIT. # ------------------------------------------------------------------ print() print('-----------------------------------------------------------') print('Testing the distance_from method of the Point class.') print('-----------------------------------------------------------') p1 = Point(1, 5) # "Done test for distance_from()" p2 = Point(10, 5) expected = '9.0' print('Expected:', expected, 'Actual:', p1.distance_from(p2)) p1 = Point(1, 5) # "Done more tests for distance_from()" p2 = Point(4, 9) expected = '5.0' print('Expected:', expected, 'Actual:', p1.distance_from(p2)) p1 = Point(1, 5) # "Done more tests for distance_from()" p2 = Point(13, 10) expected = '13.0' print('Expected:', expected, 'Actual:', p1.distance_from(p2)) # Instructor's tests p1 = Point(1, 5) p2 = Point(10, 5) p3 = Point(13, 9) print('p1 to p2: Should be 9.0', p1.distance_from(p2)) print('p2 to p1: Should be 9.0', p2.distance_from(p1)) print('p2 to p3: Should be 5.0', p2.distance_from(p3)) print('p3 to p2: Should be 5.0', p3.distance_from(p2)) print('p1 to p3: Should be about 12.65', p1.distance_from(p3)) print('p3 to p1: Should be about 12.65', p3.distance_from(p1)) print('p1 to p1: Should be 0.0', p1.distance_from(p1)) print('p2 to p2: Should be 0.0', p2.distance_from(p2)) print('p3 to p3: Should be 0.0', p3.distance_from(p3)) p4 = p1.clone() print('p1 to p4: Should be 0.0', p1.distance_from(p4)) print('p4 to p2: Should be 0.0', p4.distance_from(p1)) print('p4 to p2: Should be 9.0', p4.distance_from(p2)) print('p2 to p4: Should be 9.0', p2.distance_from(p4)) def test_distance_from_start(): """ Tests the distance_from_start method of the Point class. The distance_from_start method: -- Has no arguments. -- Returns the distance from the Point's current position to the position at which the Point began, that is, its position when it was constructed. -- For example, if a Point p is constructed at (20, 30) and later: -- is moved somewhere by move_to [or move_by] -- is moved somewhere by move_to [or move_by] -- is moved somewhere by move_by [or move_to] -- is moved to (21, 31) by move_to [or move_by] then this method should return (approximately) 1.414 since 1.414 is the distance from (20, 30) to (21, 31). If thereafter, Point p: -- is moved to (50, 70) by move_by with arguments 29 and 39 this method should (then) return 50 since 50 is the distance from (20, 30) to (50, 70). """ # ------------------------------------------------------------------ # DONE: 10. # a. Implement this TEST function. COMMIT YOUR WORK. # b. CHECK this TEST function, correcting it as needed. COMMIT. # c. Implement and test the distance_from_start method. COMMIT. # ------------------------------------------------------------------ print() print('-----------------------------------------------------------') print('Testing the distance_from_start method of the Point class.') print('-----------------------------------------------------------') p1 = Point(20, 30) # "Done test for distance_from()" p1.move_to(50, 70) p1.move_to(70, 150) expected = '130.0' print('Expected:', expected, 'Actual:', p1.distance_from_start()) p1 = Point(30, 30) # "Done more tests for distance_from()" p1.move_by(50, 70) p1.move_to(60, 70) expected = '50.0' print('Expected:', expected, 'Actual:', p1.distance_from_start()) p1 = Point(10, 10) # "Done more tests for distance_from()" p1.move_to(50, 70) p1.move_by(60, 70) expected = '164.0' print('Expected:', expected, 'Actual:', p1.distance_from_start()) # Instructor's tests p1 = Point(20, 30) p1.move_to(111, 222) p1.move_by(10, 20) p1.move_to(0, 0) p1.move_to(21, 31) print('p1 from start to (21, 31), should be about 1.414', p1.distance_from_start()) p1.move_by(29, 39) print('p1 from start to (50, 70), should be about 50.0', p1.distance_from_start()) p2 = Point(1, 1) print('p2 from start to (1, 1), should be about 0.0', p2.distance_from_start()) p2.move_to(11, 1) print('p2 from start to (11, 1), should be about 10.0', p2.distance_from_start()) p2.move_to(999, 999) p2.move_to(1, 1) print('p2 from start to (1, 1), should be about 0.0', p2.distance_from_start()) def test_distance_traveled(): """ Tests the distance_traveled method of the Point class. The distance_traveled method: -- Has no arguments. -- Returns the distance that the Point has traveled via calls to move_to and move_by. -- For example, if a Point p is constructed at (20, 30) and later: -- is moved to (21, 30) by move_to [or move_by] -- is moved to (21, 38 by move_to [or move_by] then this method should return 9 since it moved 1 unit on the first move and 8 units on the second move, for a total of 9 units. If thereafter, Point p: -- is moved to (22, 39) by move_by [or move_to] then this method should (then) return 10.414 since it has now moved 1 unit, then 8 units, then 1.414 units, for a total of 10.414 units. """ # ------------------------------------------------------------------ # DONE: 11. # a. Implement this TEST function. COMMIT YOUR WORK. # b. CHECK this TEST function, correcting it as needed. COMMIT. # c. Implement and test the distance_traveled method. COMMIT. # ------------------------------------------------------------------ print() print('-----------------------------------------------------------') print('Testing the distance_traveled method of the Point class.') print('-----------------------------------------------------------') p1 = Point(20, 30) # "Done test for distance_traveled()" p1.move_to(21, 30) expected = '1' print('Expected:', expected, 'Actual:', p1.distance_traveled()) p1 = Point(20, 30) # "Done more tests for distance_traveled()" p1.move_to(21, 30) p1.move_by(10, 20) expected = '23.4' print('Expected:', expected, 'Actual:', p1.distance_traveled()) p1 = Point(20, 30) # "Done more tests for distance_traveled()" p1.move_by(21, 30) p1.move_to(10, 20) expected = '87.2' print('Expected:', expected, 'Actual:', p1.distance_traveled()) # Instructor's tests p1 = Point(20, 30) p1.move_to(21, 30) p1.move_to(21, 38) print('p1 has traveled 9.0', p1.distance_traveled()) p1.move_by(1, 1) print('p1 has now traveled about 10.414', p1.distance_traveled()) p2 = Point(0, 0) p3 = Point(100, 22) p4 = Point(0, 555) for k in range(100): p2.move_by(0, k + 1) p3.move_by(k + 1, 0) p4.move_to(k + 1, 555) print('p2 has now traveled', 101 * 50.0, p2.distance_traveled()) print('p3 has now traveled', 101 * 50.0, p3.distance_traveled()) print('p4 has now traveled 100.0', p4.distance_traveled()) def test_closer_to(): """ Tests the closer_to method of the Point class. The closer_to method: -- Has two arguments p2 and p3, both Point objects. -- Returns whichever of p2 and p3 the Point is closer to. (Just to be specific, it should return p2 in the case of a tie.) -- For example, if the Point is at (10, 20) and p1 is at (15, 20) and p2 is at (14, 24), then p2 should be returned since the distance from the Point to p1 is 5 and the distance from the Point to p2 is the square root of 32, which is more than 5. """ # ------------------------------------------------------------------ # DONE: 12. # a. Implement this TEST function. COMMIT YOUR WORK. # b. CHECK this TEST function, correcting it as needed. COMMIT. # c. Implement and test the closer_to method. COMMIT. # ------------------------------------------------------------------ print() print('-----------------------------------------------------------') print('Testing the closer_to method of the Point class.') print('-----------------------------------------------------------') p = Point(10, 20) # "Done test for closer_to()" p1 = Point(15, 20) p2 = Point(14, 24) expected = 'Point(15, 20)' print('Expected:', expected, 'Actual:', p.closer_to(p1, p2)) p = Point(10, 20) # "Done more tests for closer_to()" p1 = Point(11, 20) p2 = Point(12, 24) expected = 'Point(11, 20)' print('Expected:', expected, 'Actual:', p.closer_to(p1, p2)) p = Point(10, 20) # "Done more tests for closer_to()" p1 = Point(111, 20) p2 = Point(12, 24) expected = 'Point(12, 20)' print('Expected:', expected, 'Actual:', p.closer_to(p1, p2)) # Instructor's tests p1 = Point(10, 20) p2 = Point(15, 20) p3 = Point(14, 24) print('Should be', p2, p1.closer_to(p2, p3)) print('Should be', p2, p1.closer_to(p3, p2)) print('Should be', p1, p1.closer_to(p1, p3)) print('Should be', p2, p2.closer_to(p3, p2)) print('Should be', p3, p3.closer_to(p3, p3)) p4 = p1.clone() p5 = p1.clone() print('Should be', p4, p1.closer_to(p4, p5)) print('Should be True:', p1.closer_to(p4, p5) is p4) print('Should be False:', p1.closer_to(p4, p5) is p5) def test_halfway_to(): """ Tests the halfway_to method of the Point class. The halfway_to method: -- Has one argument p2, a Point. -- Returns a new Point that is halfway between the Point and p2. That is, the x coordinate of the new Point is the average of the x coordinate of the Point and the x coordinate of p2, and likewise for the new Point's y coordinate. """ # ------------------------------------------------------------------ # DONE: 13. # a. Implement this TEST function. COMMIT YOUR WORK. # b. CHECK this TEST function, correcting it as needed. COMMIT. # c. Implement and test the halfway_to method. COMMIT. # ------------------------------------------------------------------ print() print('-----------------------------------------------------------') print('Testing the halfway_to method of the Point class.') print('-----------------------------------------------------------') p = Point(10, 20) # "Done test for halfway_to()" p1 = Point(14, 20) expected = 'Point(12, 20)' print('Expected:', expected, 'Actual:', p.halfway_to(p1)) p = Point(15, 20) # "Done test for halfway_to()" p1 = Point(13, 20) expected = 'Point(14, 20)' print('Expected:', expected, 'Actual:', p.halfway_to(p1)) p = Point(10, 10) # "Done test for halfway_to()" p1 = Point(20, 20) expected = 'Point(15, 15)' print('Expected:', expected, 'Actual:', p.halfway_to(p1)) # Instructor's tests p1 = Point(10, 20) p2 = Point(30, 100) print('Should be Point(20.0, 60.0)', p1.halfway_to(p2)) print('Should be Point(20.0, 60.0)', p2.halfway_to(p1)) print('Should be Point(10.0, 20.0)', p1.halfway_to(p1)) p3 = Point(-10, 20) p4 = Point(30, -100) print('Should be Point(10.0, -40.0)', p3.halfway_to(p4)) print('Should be Point(10.0, -40.0)', p3.halfway_to(p4)) print('Should be Point(-10.0, 20.0)', p3.halfway_to(p3)) # ---------------------------------------------------------------------- # Calls main to start the ball rolling. # ---------------------------------------------------------------------- main()
class User: def __init__(self, name ,email): self. name=name self. email=email self. account_balance=0 def make_deposit(self,amount): self.account_balance+=amount return self def make_withdrawal(self,amount): self. account_balance-= amount return self def display_user(self): print(self.name,self.account_balance) return self def transfer_money(self, other_user,amount): self.account_balance=-amount self.other_user=+amount return self Hoda=User("Hoda","hoda@lgmail.com") Laila=User("Laila","laila@gmail.com") Ahmad=User("Ahmad","Ahmadd@gmail.com") Hoda.make_deposit(200) Hoda.make_deposit(200) Hoda.make_withdrawal(300) Hoda.display_user() Laila.make_deposit(200) Laila.make_deposit(1200) Laila.make_withdrawal(400) Laila.make_withdrawal(100) Laila.display_user() Ahmad.make_deposit(900) Ahmad.make_withdrawal(100) Ahmad.make_withdrawal(50) Ahmad.make_withdrawal(50) Ahmad.display_user()
import unittest from greeting.greeting import hello class TestGreeting(unittest.TestCase): def test_hello(self): testparams = [ ["Lilla", "Hello Lilla"], ["Béla", "Hello Béla"], ] for name, greeting in testparams: with self.subTest("Testing with data", input=name, expected=greeting): self.assertEqual(hello(name), greeting, "The parameter is incorrect") if __name__ == "__main__": unittest.main()
from django.contrib.auth import get_user_model from rest_framework import authentication, exceptions from rest_framework.generics import * from rest_framework.response import Response from rest_framework import status from rest_framework.views import APIView from post_app.serializers import * class PostCreateAPIView(ListCreateAPIView): queryset = Post.objects.all() serializer_class = PostCreateUpdateSerializer def perform_create(self, serializer): serializer.save(user= self.request.user) class PostListViewAPI(ListAPIView): queryset = Post.objects.all() serializer_class = PostSerializer def get_queryset(self): #do stuff with queryset return self.queryset.all() class PostDetailAPIView(RetrieveAPIView): queryset = Post.objects.all() serializer_class = PostSerializer class PostUpdateAPIView(RetrieveUpdateAPIView): queryset = Post.objects.all() serializer_class = PostCreateUpdateSerializer ''' def perform_create(self, serializer): serializer.save(user= self.request.user) ''' class PostDeleteAPIView(DestroyAPIView): queryset = Post.objects.all() serializer_class = PostSerializer class UserDetailsList(RetrieveAPIView): queryset = Profile.objects.all() serializer_class = ProfileSerializer class CommentCreateAPIView(ListCreateAPIView): queryset = Comment.objects.all() serializer_class = CommentCreateSerializer def perform_create(self, serializer): post = self.kwargs['post'] name = self.request.user.username user = Profile.objects.get(user__username= name) serializer.save(user=user, post_id=post) class LikeCreateAPIView(APIView): #queryset = Like.objects.all() #serializer_class = LikeCreateSerializer def post(self, request, post): id = request.user.id user = Poster.objects.get(id=id) post = Post.objects.get(id = post) try: Like.objects.get(user=user, post=post) return Response(data= {'error': 'already liked'} ,status = status.HTTP_400_BAD_REQUEST) except: Like.objects.create(user=user, post=post) post.nr_likes = Like.objects.filter(post=post).count() post.save() return Response(status = status.HTTP_200_OK)
# -*- encoding:utf-8 -*- # __author__=='Gan' # Given n, how many structurally unique BST's (binary search trees) that store values 1...n? # For example, # Given n = 3, there are a total of 5 unique BST's. # 1 3 3 2 1 # \ / / / \ \ # 3 2 1 1 3 2 # / / \ \ # 2 1 2 3 # G(n) is number of unique BST for a sequence of length n. # F(i, n), 1 <= i <= n: the number of unique BST, where the number i is the root of BST, # and the sequence ranges from 1 to n. # G(n) = F(1, n) + F(2, n) + F(3, n) + ... + F(n, n) # F(i, n) = G(i - 1) * G(n - i) # G(n) = G(0) * G(n - 1) + G(1) + G(n - 2) + G(2) + G(n - 3) + ... + G(n - 1) * G(n) # 19 / 19 test cases passed. # Status: Accepted # Runtime: 29 ms # Your runtime beats 81.28 % of python submissions. class Solution(object): def numTrees(self, n): """ :type n: int :rtype: int """ if not n: return 0 combine_list = [0] * (n + 1) combine_list[0] = combine_list[1] = 1 for i in range(2, n+1): for j in range(1, i+1): combine_list[i] += combine_list[j-1] * combine_list[i-j] return combine_list[1] # Catalan number! # 19 / 19 test cases passed. # Status: Accepted # Runtime: 35 ms # Your runtime beats 39.76 % of python submissions. class Solution(object): def numTrees(self, n): """ :type n: int :rtype: int """ from functools import reduce mul = lambda x, y: x * y # reduce(mul, iterator, 1) to handle the 0. # Otherwise TypeError: reduce() of empty sequence with no initial value. return reduce(mul, range(n + 1, (2 * n) + 1), 1) // (reduce(mul, range(1, n + 1), 1) * (n+1)) if __name__ == '__main__': print(Solution().numTrees(0)) print(Solution().numTrees(3)) print(Solution().numTrees(4)) print(Solution().numTrees(5))
x = memoryview(bytes(5)) print(x) print(type(x))
import os from bsm.util import ensure_list from bsm.util import safe_rmdir from bsm.util import safe_mkdir from bsm.util import call_and_log def run(param): source_dir = param['config_package'].get('path', {}).get('source') if not source_dir: return {'success': False, 'message': 'Path "source" is not specified'} build_dir = param['config_package'].get('path', {}).get('build') if not build_dir: return {'success': False, 'message': 'Path "build" is not specified'} install_dir = param['config_package'].get('path', {}).get('install') if not install_dir: return {'success': False, 'message': 'Path "install" is not specified'} if source_dir != build_dir: safe_rmdir(build_dir) safe_mkdir(build_dir) configure_args = param['config_package'].get('configure', {}).get('args', []) configure_args = ensure_list(configure_args) configure_args = [p.format(**param['config_package_install_path']) for p in configure_args] if not param['config_package'].get('configure', {}).get('ignore_install_prefix', False): configure_args.insert(0, '--prefix='+install_dir) env = param.get('env') env_configure = env.copy() for k, v in param['config_package'].get('configure', {}).get('env', {}).items(): env_configure[k] = v.format(**param['config_package_install_path']) configure_path = os.path.join(source_dir, 'configure') with open(param['log_file'], 'w') as f: cmd = [configure_path] + configure_args ret = call_and_log(cmd, log=f, cwd=build_dir, env=env_configure) return {'success': ret==0, 'message': 'Configure exit code: {0}'.format(ret)}
import random def score(_goal, _user_input): bulls_counter = 0 cows_counter = 0 for i in range(0, 4): if _user_input[i] == _goal[i]: cows_counter += 1 bulls_counter -= 1 if _user_input[i] in set(_goal): bulls_counter += 1 return cows_counter, bulls_counter if __name__ == "__main__": goal = str(random.randint(1000, 9999)) won = False iterations = 1 temp_score = (0, 0) print(goal) while not won: print("Please input number: ") user_input = str(input()) tmp_score = score(goal, user_input) # +ifs for language things if tmp_score == (4, 0): print("You won in " + str(iterations) + " turns") won = True else: print(str(tmp_score[0]) + " cows, " + str(tmp_score[1]) + " bulls") iterations += 1
#!/usr/bin/python3 ''' contain teardown method ''' from flask import Flask, jsonify from models import storage from api.v1.views import app_views from flask_cors import CORS import os app = Flask(__name__) CORS(app, resources={r"/*": {"origins": ["0.0.0.0"]}}) app.register_blueprint(app_views) @app.errorhandler(404) def handle_404(error): ''' custom JSON 404 error''' return (jsonify({"error": "Not found"}), 404) @app.teardown_appcontext def teardown(exception): ''' Teardown method for storage session ''' storage.close() if __name__ == "__main__": app.run("0.0.0.0", 5000)
import requests from requests_toolbelt.multipart.encoder import MultipartEncoder m = MultipartEncoder( fields={ 'file': ("test.cfg", open('test.cfg', 'rb'), 'text/plain')} ) #print m.to_string() r = requests.post('http://localhost:9000/upload', data=m, headers={'Content-Type': m.content_type}) print r.text
# Copyright 2023 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import annotations from pants.backend.python.subsystems.python_tool_base import PythonToolBase, get_lockfile_metadata from pants.backend.python.util_rules.interpreter_constraints import InterpreterConstraints from pants.backend.python.util_rules.lockfile_metadata import PythonLockfileMetadataV3 from pants.backend.python.util_rules.pex_requirements import ( LoadedLockfile, LoadedLockfileRequest, Lockfile, PexRequirements, Resolve, ) from pants.engine.internals.native_engine import EMPTY_DIGEST from pants.testutil.option_util import create_subsystem from pants.testutil.rule_runner import MockGet, run_rule_with_mocks from pants.util.ordered_set import FrozenOrderedSet class _DummyTool(PythonToolBase): options_scope = "dummy" default_lockfile_resource = ("dummy", "dummy") def test_install_from_resolve_default() -> None: tool = create_subsystem( _DummyTool, lockfile="dummy.lock", install_from_resolve="dummy_resolve", requirements=["foo", "bar", "baz"], ) pex_reqs = tool.pex_requirements() assert isinstance(pex_reqs, PexRequirements) assert pex_reqs.from_superset == Resolve("dummy_resolve", False) assert pex_reqs.req_strings_or_addrs == FrozenOrderedSet(["bar", "baz", "foo"]) def test_get_lockfile_metadata() -> None: tool = create_subsystem( _DummyTool, lockfile="dummy.lock", install_from_resolve="dummy_resolve", requirements=["foo", "bar", "baz"], ) metadata = PythonLockfileMetadataV3( valid_for_interpreter_constraints=InterpreterConstraints(), requirements=set(), manylinux=None, requirement_constraints=set(), only_binary=set(), no_binary=set(), ) lockfile = Lockfile("dummy_url", "dummy_description_of_origin", "dummy_resolve") loaded_lockfile = LoadedLockfile(EMPTY_DIGEST, "", metadata, 0, True, None, lockfile) assert ( run_rule_with_mocks( get_lockfile_metadata, rule_args=[tool], mock_gets=[ MockGet(Lockfile, (Resolve,), lambda x: lockfile), MockGet( LoadedLockfile, (LoadedLockfileRequest,), lambda x: loaded_lockfile if x.lockfile == lockfile else None, ), ], ) == metadata )
# -*- coding: utf-8 -*- import yaml from django import forms import msrest from azure.common.credentials import ServicePrincipalCredentials from azure.mgmt.resource import ResourceManagementClient from azure.mgmt.network import NetworkManagementClient from azure.mgmt.compute import ComputeManagementClient from azure.mgmt.subscription import SubscriptionClient from azure.mgmt.containerservice import ContainerServiceClient from architect.manager.client import BaseClient from architect.manager.validators import validate_manager_name from architect.manager.models import Manager from celery.utils.log import get_logger import json logger = get_logger(__name__) DEFAULT_RESOURCES = [ 'az_subscription', # 'az_load_balancer', 'az_location', 'az_resource_group', 'az_managed_cluster', 'az_virtual_machine_size', 'az_virtual_machine', 'az_network', 'az_subnet', # 'az_network_interface', # '__all__' ] RESOURCE_MAP = { 'Microsoft.ContainerRegistry/registries': 'az_registry', 'Microsoft.ContainerRegistry/registries/replications': 'az_registry_replication', 'Microsoft.Compute/availabilitySets': 'az_availability_set', 'Microsoft.Compute/disks': 'az_disk', 'Microsoft.Compute/images': 'az_image', 'Microsoft.Compute/virtualMachineScaleSets': 'az_virtual_machine_scale_set', 'Microsoft.Compute/virtualMachines': 'az_virtual_machine', 'Microsoft.Compute/virtualMachines/extensions': 'az_virtual_machine_extension', 'Microsoft.ContainerService/managedClusters': 'az_kubernetes_cluster', 'Microsoft.Network/dnszones': 'az_dns_zone', 'Microsoft.Network/virtualNetworks': 'az_network', 'Microsoft.Network/routeTables': 'az_route_table', 'Microsoft.Network/loadBalancers': 'az_load_balancer', 'Microsoft.Network/networkInterfaces': 'az_network_interface', 'Microsoft.Network/networkSecurityGroups': 'az_security_group', 'Microsoft.Network/publicIPAddresses': 'az_public_ip_address', 'Microsoft.OperationalInsights/workspaces': 'az_workspace', 'Microsoft.OperationsManagement/solutions': 'az_solution', 'Microsoft.Storage/storageAccounts': 'az_storage_account', } class MicrosoftAzureClient(BaseClient): credentials = None resource_group = {} size_location = {} network = [] def __init__(self, **kwargs): super(MicrosoftAzureClient, self).__init__(**kwargs) def auth(self): if self.credentials is None: self.credentials = ServicePrincipalCredentials( client_id=self.metadata['client_id'], secret=self.metadata['client_secret'], tenant=self.metadata['tenant_id'] ) self.resource_api = ResourceManagementClient(self.credentials, self.metadata['subscription_id']) self.compute_api = ComputeManagementClient(self.credentials, self.metadata['subscription_id']) self.network_api = NetworkManagementClient(self.credentials, self.metadata['subscription_id']) self.container_service_api = ContainerServiceClient(self.credentials, self.metadata['subscription_id']) self.subscription_api = SubscriptionClient(self.credentials) return True def update_resources(self, resources=None): if self.auth(): if resources is None: resources = DEFAULT_RESOURCES for resource in resources: metadata = self.get_resource_metadata(resource) self.process_resource_metadata(resource, metadata) count = len(self.resources.get(resource, {})) logger.info("Processed {} {} resources".format(count, resource)) self.process_relation_metadata() def get_resource_status(self, kind, metadata): if kind == 'az_resource_group': state = metadata.get('properties', {}).get('provisioning_state', '') if state == 'Succeeded': return 'active' elif kind in ['az_virtual_machine_size', 'az_location']: return 'active' elif kind in ['az_virtual_machine', 'az_managed_cluster', 'az_network', 'az_subnet']: state = metadata.get('provisioning_state', '') if state == 'Succeeded': return 'active' elif state == 'Creating': return 'build' elif kind == 'az_subscription': if metadata.get('state', '') == 'Enabled': return 'active' return 'unknown' def process_relation_metadata(self): for resource_id, resource in self.resources.get('az_managed_cluster', {}).items(): self._create_relation( 'in_resource_group', resource_id, self.get_group_id_from_resource_id(resource_id)) self._create_relation( 'at_location', resource_id, resource['metadata']['location']) for resource_id, resource in self.resources.get('az_subnet', {}).items(): self._create_relation( 'in_resource_group', resource_id, self.get_group_id_from_resource_id(resource_id)) for resource_id, resource in self.resources.get('az_network', {}).items(): self._create_relation( 'in_resource_group', resource_id, self.get_group_id_from_resource_id(resource_id)) for subnet in resource['metadata'].get('subnets', []): self._create_relation( 'in_network', subnet['id'], resource_id) for resource_id, resource in self.resources.get('az_virtual_machine', {}).items(): self._create_relation( 'in_resource_group', resource_id, self.resource_group[self.get_group_name_from_resource_id(resource_id).lower()]) self._create_relation( 'has_size', resource_id, resource['metadata']['hardware_profile']['vm_size']) self._create_relation( 'at_location', resource_id, resource['metadata']['location']) for location, sizes in self.size_location.items(): for size in sizes: self._create_relation( 'at_location', size, location) for resource_id, resource in self.resources.get('az_resource_group', {}).items(): self._create_relation( 'at_location', resource_id, resource['metadata']['location']) self._create_relation( 'in_subscription', resource_id, self.get_subscription_id_from_resource_id(resource_id)) def get_resource_metadata(self, kind): logger.info("Getting {} resources".format(kind)) response = [] if kind == 'az_subscription': response = self.subscription_api.subscriptions.list(raw=True) elif kind == 'az_managed_cluster': for subscription in self.subscription_api.subscriptions.list(raw=True): for item in self.container_service_api.managed_clusters.list(subscription.subscription_id, raw=True): response.append(item) elif kind == 'az_location': for subscription in self.subscription_api.subscriptions.list(raw=True): for item in self.subscription_api.subscriptions.list_locations(subscription.subscription_id, raw=True): response.append(item) elif kind == 'az_resource_group': for subscription in self.subscription_api.subscriptions.list(raw=True): for item in self.resource_api.resource_groups.list(raw=True): response.append(item) elif kind == 'az_subnet': for network in self.network: for subnet in self.network_api.subnets.list(resource_group_name=network[0], virtual_network_name=network[1], raw=True): response.append(subnet) elif kind == 'az_load_balancer': for subscription in self.subscription_api.subscriptions.list(raw=True): for load_balancer in self.network_api.load_balancers.list_all(raw=True): response.append(load_balancer) elif kind == 'az_network_interface': for network_interface in self.network_api.network_interfaces.list(raw=True): response.append(network_interface) logger.info(network_interface) elif kind == 'az_network': for subscription in self.subscription_api.subscriptions.list(raw=True): for virtual_network in self.network_api.virtual_networks.list_all(raw=True): response.append(virtual_network) self.network.append((virtual_network.id.split('/')[4], virtual_network.name,)) elif kind == 'az_virtual_machine': for subscription in self.subscription_api.subscriptions.list(raw=True): for virtual_machine in self.compute_api.virtual_machines.list_all(raw=True): response.append(virtual_machine) elif kind == 'az_virtual_machine_size': for subscription in self.subscription_api.subscriptions.list(raw=True): size_names = {} for location in self.subscription_api.subscriptions.list_locations(subscription.subscription_id, raw=True): try: for size in self.compute_api.virtual_machine_sizes.list(location.name): if not location.name in self.size_location: self.size_location[location.name] = [] self.size_location[location.name].append(size.name) size_names[size.name] = size except msrest.exceptions.ClientException as error: logger.error(error) for size_name, size in size_names.items(): response.append(size) elif kind == '__all__': response = self.resource_api.resources.list(raw=True) return response def process_resource_metadata(self, kind, metadata): if kind == 'az_resource_group': for item in metadata: resource = item.__dict__ resource['properties'] = resource['properties'].__dict__ self._create_resource(resource['id'], resource['name'], kind, metadata=resource) self.resource_group[resource['name'].lower()] = resource['id'] elif kind == 'az_virtual_machine_size': for item in metadata: resource = item.__dict__ self._create_resource(resource['name'], resource['name'], kind, metadata=resource) elif kind == 'az_load_balancer': for item in metadata: resource = item.__dict__ resource['sku'] = resource['sku'].__dict__ if resource['inbound_nat_pools'] is not None: inbound_nat_pools = [] for res in resource.pop('inbound_nat_pools'): if not isinstance(res, str): res = res.__dict__ inbound_nat_pools.append(res) resource['inbound_nat_pools'] = inbound_nat_pools if resource['outbound_rules'] is not None: outbound_rules = [] for res in resource.pop('outbound_rules'): if not isinstance(res, str): res = res.__dict__ outbound_rules.append(res) resource['outbound_rules'] = outbound_rules if resource['inbound_nat_rules'] is not None: inbound_nat_rules = [] for res in resource.pop('inbound_nat_rules'): if not isinstance(res, str): res = res.__dict__ inbound_nat_rules.append(res) resource['inbound_nat_rules'] = inbound_nat_rules if resource['probes'] is not None: probes = [] for res in resource.pop('probes'): if not isinstance(res, str): res = res.__dict__ if res['load_balancing_rules'] is not None: load_balancing_rules = [] for subres in resource.pop('load_balancing_rules'): if not isinstance(subres, str): subres = subres.__dict__ load_balancing_rules.append(subres) res['load_balancing_rules'].append(load_balancing_rules) probes.append(res) resource['probes'] = probes if resource['frontend_ip_configurations'] is not None: frontend_ip_configurations = [] for res in resource.pop('frontend_ip_configurations'): if not isinstance(res, str): res = res.__dict__ frontend_ip_configurations.append(res) resource['frontend_ip_configurations'] = frontend_ip_configurations if resource['backend_address_pools'] is not None: backend_address_pools = [] for res in resource.pop('backend_address_pools'): if not isinstance(res, str): res = res.__dict__ backend_address_pools.append(res) resource['backend_address_pools'] = backend_address_pools if resource['load_balancing_rules'] is not None: load_balancing_rules = [] for res in resource.pop('load_balancing_rules'): if not isinstance(res, str): res = res.__dict__ load_balancing_rules.append(res) resource['load_balancing_rules'] = load_balancing_rules logger.info(resource) self._create_resource(resource['id'], resource['name'], kind, metadata=resource) elif kind == 'az_subscription': for item in metadata: resource = item.__dict__ resource['subscription_policies'] = resource['subscription_policies'].__dict__ self._create_resource(resource['id'], resource['display_name'], kind, metadata=resource) elif kind == 'az_managed_cluster': for item in metadata: resource = item.__dict__ resource['network_profile'] = resource.pop('network_profile').__dict__ if resource['aad_profile'] is not None: resource['aad_profile'] = resource.pop('aad_profile').__dict__ if resource['linux_profile'] is not None: resource['linux_profile'] = resource.pop('linux_profile').__dict__ resource['linux_profile']['ssh'] = resource['linux_profile'].pop('ssh').__dict__ public_keys = [] for public_key in resource['linux_profile']['ssh'].pop('public_keys'): public_keys.append(public_key.__dict__) resource['linux_profile']['ssh']['public_keys'] = public_keys resource['service_principal_profile'] = resource.pop('service_principal_profile').__dict__ if resource['addon_profiles'] is not None: addon_profiles = [] for res in resource.pop('addon_profiles'): if not isinstance(res, str): res = res.__dict__ addon_profiles.append(res) resource['addon_profiles'] = addon_profiles if resource['agent_pool_profiles'] is not None: agent_pool_profiles = [] for res in resource.pop('agent_pool_profiles'): res = res.__dict__ agent_pool_profiles.append(res) resource['agent_pool_profiles'] = agent_pool_profiles self._create_resource(resource['id'], resource['name'], kind, metadata=resource) elif kind == 'az_location': for item in metadata: resource = item.__dict__ self._create_resource(resource['name'], resource['display_name'], kind, metadata=resource) elif kind == 'az_virtual_machine': for item in metadata: resource = item.__dict__ resource['hardware_profile'] = resource.pop('hardware_profile').__dict__ resource['storage_profile'] = resource.pop('storage_profile').__dict__ if resource['storage_profile']['image_reference'] is not None: resource['storage_profile']['image_reference'] = resource['storage_profile'].pop('image_reference').__dict__ data_disks = [] if 'data_disks' in resource['storage_profile']: for data_disk in resource['storage_profile'].pop('data_disks'): data_disk = data_disk.__dict__ if data_disk['managed_disk'] is not None: data_disk['managed_disk'] = data_disk.pop('managed_disk').__dict__ if data_disk['vhd'] is not None: data_disk['vhd'] = data_disk.pop('vhd').__dict__ data_disks.append(data_disk) resource['storage_profile']['data_disks'] = data_disks resource['storage_profile']['os_disk'] = resource['storage_profile'].pop('os_disk').__dict__ if resource['storage_profile']['os_disk']['managed_disk'] is not None: resource['storage_profile']['os_disk']['managed_disk'] = resource['storage_profile']['os_disk'].pop('managed_disk').__dict__ if resource['storage_profile']['os_disk']['image'] is not None: resource['storage_profile']['os_disk']['image'] = resource['storage_profile']['os_disk'].pop('image').__dict__ if resource['storage_profile']['os_disk']['vhd'] is not None: resource['storage_profile']['os_disk']['vhd'] = resource['storage_profile']['os_disk'].pop('vhd').__dict__ network_interfaces = [] resource['network_profile'] = resource.pop('network_profile').__dict__ for network_interface in resource['network_profile'].pop('network_interfaces'): network_interfaces.append(network_interface.__dict__) resource['network_profile']['network_interfaces'] = network_interfaces if resource['diagnostics_profile'] is not None: resource['diagnostics_profile'] = resource.pop('diagnostics_profile').__dict__ resource['diagnostics_profile']['boot_diagnostics'] = resource['diagnostics_profile'].pop('boot_diagnostics').__dict__ resource['os_profile'] = resource.pop('os_profile').__dict__ if 'linux_configuration' in resource['os_profile']: resource['os_profile']['linux_configuration'] = resource['os_profile'].pop('linux_configuration').__dict__ resource['os_profile']['linux_configuration']['ssh'] = resource['os_profile']['linux_configuration'].pop('ssh').__dict__ public_keys = [] for public_key in resource['os_profile']['linux_configuration']['ssh'].pop('public_keys'): public_keys.append(public_key.__dict__) resource['os_profile']['linux_configuration']['ssh']['public_keys'] = public_keys if resource['resources'] is not None: resources = [] for res in resource.pop('resources'): resources.append(res.__dict__) resource['resources'] = resources if resource['availability_set'] is not None: resource['availability_set'] = resource.pop('availability_set').__dict__ self._create_resource(resource['id'], resource['name'], kind, metadata=resource) elif kind == 'az_network': for item in metadata: resource = item.__dict__ resource['address_space'] = resource.pop('address_space').__dict__ if 'network_security_group' in resource: resource['network_security_group'] = resource.pop('network_security_group').__dict__ if resource['dhcp_options'] is not None: resource['dhcp_options'] = resource.pop('dhcp_options').__dict__ if len(resource['virtual_network_peerings']) > 0: virtual_network_peerings = [] for res in resource.pop('virtual_network_peerings'): res = res.__dict__ res['remote_virtual_network'] = res.pop('remote_virtual_network').__dict__ res['remote_address_space'] = res.pop('remote_address_space').__dict__ virtual_network_peerings.append(res) resource['virtual_network_peerings'] = virtual_network_peerings if resource['subnets'] is not None: subnets = [] for res in resource.pop('subnets'): res = res.__dict__ if res['route_table'] is not None: res['route_table'] = res.pop('route_table').__dict__ if 'network_security_group' in res and res['network_security_group'] is not None: res['network_security_group'] = res.pop('network_security_group').__dict__ if res['ip_configurations'] is not None: ip_configurations = [] for ress in res.pop('ip_configurations'): ip_configurations.append(ress.__dict__) res['ip_configurations'] = ip_configurations subnets.append(res) resource['subnets'] = subnets self._create_resource(resource['id'], resource['name'], kind, metadata=resource) elif kind == 'az_subnet': for item in metadata: resource = item.__dict__ if resource['route_table'] is not None: resource['route_table'] = resource.pop('route_table').__dict__ if resource['network_security_group'] is not None: resource['network_security_group'] = resource.pop('network_security_group').__dict__ if resource['ip_configurations'] is not None: ip_configurations = [] for res in resource.pop('ip_configurations'): ip_configurations.append(res.__dict__) resource['ip_configurations'] = ip_configurations self._create_resource(resource['id'], resource['name'], kind, metadata=resource) elif kind == '__all__': for item in metadata: resource = item.__dict__ if resource.get('sku', None) != None: resource['sku'] = resource['sku'].__dict__ if resource.get('identity', None) != None: identity = resource['identity'].__dict__ identity['type'] = identity['type'].__dict__ resource['identity'] = identity if resource['type'] not in RESOURCE_MAP: logger.info(resource['type']) self._create_resource(resource['id'], resource['name'], RESOURCE_MAP[resource['type']], metadata=resource) def get_subscription_id_from_resource_id(self, id): parts = id.split('/') return '/'.join(parts[:3]) def get_group_id_from_resource_id(self, id): parts = id.split('/') return '/'.join(parts[:5]).replace('/resourcegroups/', '/resourceGroups/') def get_group_name_from_resource_id(self, id): parts = id.split('/') return parts[4] def get_resource_action_fields(self, resource, action): fields = {} if resource.kind == 'az_managed_cluster': if action == 'create_manager': initial_name = resource.metadata['node_resource_group'].replace('MC_', '') fields['name'] = forms.CharField(label='New manager name', validators=[validate_manager_name], help_text='Managed cluster <strong>{}</strong> from resource group <strong>{}</strong> will be imported.'.format( resource.name, self.get_group_name_from_resource_id(resource.uid)), initial=initial_name) return fields def process_resource_action(self, resource, action, data): if resource.kind == 'az_managed_cluster': if action == 'create_manager': if self.auth(): raw_data = self.container_service_api.managed_clusters.list_cluster_admin_credentials(self.get_group_name_from_resource_id(resource.uid), resource.metadata['name']) for raw_kubeconfig in raw_data.kubeconfigs: kubeconfig_yaml = raw_kubeconfig.value.decode() kubeconfig = yaml.load(kubeconfig_yaml) cluster = kubeconfig['clusters'][0]['cluster'] user = kubeconfig['users'][0]['user'] manager = Manager.objects.create( name=data['name'], engine="kubernetes", metadata={ 'user': user, 'cluster': cluster, 'engine': "kubernetes", 'scope': "global" }) manager.save() if manager.client().check_status(): manager.status = 'active' else: manager.status = 'error' manager.save()
import psycopg2 import win32com.client import pythoncom import time #================== Database Connection =================== st conn_string = "host='localhost' dbname ='Anthouse' user='blue1028' password='ehdghks57'" try: conn = psycopg2.connect(conn_string) except: print("error database connection") curs = conn.cursor() class XASessionEvents: logInState = 0 def OnLogin(self, code, msg): print("OnLogin method is called") print(str(code)) print(str(msg)) if str(code) == '0000': XASessionEvents.logInState = 1 def OnLogout(self): print("OnLogout method is called") def OnDisconnect(self): print("OnDisconnect method is called") class XAQueryEvents: queryState = 0 def OnReceiveData(self,szTrCode): print("ReceiveData") XAQueryEvents.queryState = 1 def OnReceiveMessage(self, systemError, messageCode, message): print("ReceiveMessage") if __name__ == "__main__": server_addr = "hts.ebestsec.co.kr" server_port = 20001 server_type = 0 user_id = "songdh10" user_pass ="gusdl57" user_certificate_pass="gusdlsla57" inXASession = win32com.client.DispatchWithEvents("XA_Session.XASession", XASessionEvents) inXASession.ConnectServer(server_addr, server_port) inXASession.Login(user_id, user_pass, user_certificate_pass, server_type, 0) while XASessionEvents.logInState == 0: pythoncom.PumpWaitingMessages() inXAQuery2 = win32com.client.DispatchWithEvents("XA_DataSet.XAQuery", XAQueryEvents) inXAQuery2.LoadFromResFile("C:\\eBEST\\xingAPI\\Res\\t1901.res") curs.execute("SELECT s_code FROM sdata_stock2") result = curs.fetchall() print(result) for i in result: s_codelist = list(i) print(s_codelist[0]) inXAQuery2.SetFieldData('t1901InBlock', 'shcode', 0 , "%s"%(s_codelist[0])) inXAQuery2.Request(0) print(inXAQuery2.Request(0)) while XAQueryEvents.queryState == 0: pythoncom.PumpWaitingMessages() hname = inXAQuery2.GetFieldData('t1901OutBlock','hname',0) price = inXAQuery2.GetFieldData('t1901OutBlock','price',0) sign = inXAQuery2.GetFieldData('t1901OutBlock','sign',0) change = inXAQuery2.GetFieldData('t1901OutBlock','change',0) diff = inXAQuery2.GetFieldData('t1901OutBlock','diff',0) volume = inXAQuery2.GetFieldData('t1901OutBlock','volume',0) recprice = inXAQuery2.GetFieldData('t1901OutBlock','recprice',0) avgp = inXAQuery2.GetFieldData('t1901OutBlock','avg',0) uplmtprice = inXAQuery2.GetFieldData('t1901OutBlock','uplmtprice',0) dnlmtprice = inXAQuery2.GetFieldData('t1901OutBlock','dnlmtprice',0) jnilvolume = inXAQuery2.GetFieldData('t1901OutBlock','jnilvolume',0) volumediff = inXAQuery2.GetFieldData('t1901OutBlock','volumediff',0) openp = inXAQuery2.GetFieldData('t1901OutBlock','open',0) opentime = inXAQuery2.GetFieldData('t1901OutBlock','opentime',0) high = inXAQuery2.GetFieldData('t1901OutBlock','high',0) hightime = inXAQuery2.GetFieldData('t1901OutBlock','hightime',0) low = inXAQuery2.GetFieldData('t1901OutBlock','low',0) lowtime = inXAQuery2.GetFieldData('t1901OutBlock','lowtime',0) high52w = inXAQuery2.GetFieldData('t1901OutBlock','high52w',0) high52wdate = inXAQuery2.GetFieldData('t1901OutBlock','high52wdate',0) low52w = inXAQuery2.GetFieldData('t1901OutBlock','low52w',0) low52wdate = inXAQuery2.GetFieldData('t1901OutBlock','low52wdate',0) exhratio = inXAQuery2.GetFieldData('t1901OutBlock','exhratio',0) flmtvol = inXAQuery2.GetFieldData('t1901OutBlock','flmtvol',0) per = inXAQuery2.GetFieldData('t1901OutBlock','per',0) listing = inXAQuery2.GetFieldData('t1901OutBlock','listing',0) jkrate = inXAQuery2.GetFieldData('t1901OutBlock','jkrate',0) vol = inXAQuery2.GetFieldData('t1901OutBlock','vol',0) shcode = inXAQuery2.GetFieldData('t1901OutBlock','shcode',0) valuep = inXAQuery2.GetFieldData('t1901OutBlock','value',0) highyear = inXAQuery2.GetFieldData('t1901OutBlock','highyear',0) highyeardate = inXAQuery2.GetFieldData('t1901OutBlock','highyeardate',0) lowyear = inXAQuery2.GetFieldData('t1901OutBlock','lowyear',0) lowyeardate = inXAQuery2.GetFieldData('t1901OutBlock','lowyeardate',0) upname = inXAQuery2.GetFieldData('t1901OutBlock','upname',0) upcode = inXAQuery2.GetFieldData('t1901OutBlock','upcode',0) upprice = inXAQuery2.GetFieldData('t1901OutBlock','upprice',0) upsign = inXAQuery2.GetFieldData('t1901OutBlock','upsign',0) upchange = inXAQuery2.GetFieldData('t1901OutBlock','upchange',0) updiff = inXAQuery2.GetFieldData('t1901OutBlock','updiff',0) curs.execute("INSERT INTO sdata_stock_current (hname,price,sign,change,diff,volume,recprice,avgp,uplmtprice,dnlmtprice,jnilvolume,volumediff,openp,opentime,high,hightime,low,lowtime,high52w,high52wdate,low52w,low52wdate,exhratio,flmtvol,per,listing,jkrate,vol,shcode,valuep,highyear,highyeardate,lowyear,lowyeardate,upname,upcode,upprice,upsign,upchange,updiff) VALUES ('%s','%s', '%s', '%s','%s', '%s','%s','%s', '%s','%s','%s', '%s','%s','%s', '%s','%s','%s', '%s', '%s','%s', '%s','%s','%s', '%s','%s','%s', '%s','%s','%s', '%s','%s','%s', '%s','%s','%s', '%s','%s','%s', '%s','%s')"%(hname,price,sign,change,diff,volume,recprice,avgp,uplmtprice,dnlmtprice,jnilvolume,volumediff,openp,opentime,high,hightime,low,lowtime,high52w,high52wdate,low52w,low52wdate,exhratio,flmtvol,per,listing,jkrate,vol,shcode,valuep,highyear,highyeardate,lowyear,lowyeardate,upname,upcode,upprice,upsign,upchange,updiff)) print(XAQueryEvents.queryState) XAQueryEvents.queryState = 0 conn.commit() time.sleep(1.1)
import openpyxl from openpyxl.chart import PieChart, Reference wb = openpyxl.load_workbook("..\data\pie_chart.xlsx") sh = wb.active #print(sh.max_row) data = Reference(sh, min_col=2, min_row=1, max_row=sh.max_row) labels = Reference(sh, min_col=1, min_row=2, max_row=sh.max_row) chart = PieChart() chart.title = "各部門業績" chart.add_data(data, titles_from_data=True) chart.set_categories(labels) sh.add_chart(chart, "D3") wb.save("..\data\pie_chart.xlsx")
import matcom.tools.edge_calculators as edg import numpy as np from matcom.pipelines.generate_structure_collection import FRAMEWORK_FEATURIZER from collections import defaultdict from dataspace.base import Pipe, in_batches from dataspace.workspaces.remote_db import MongoFrame from pymatgen.core import Structure from pymatgen.analysis.defects.generators import VacancyGenerator from pandas import DataFrame ''' this module implements a pipeline for generating a mongo database containing a graph structure from a database of structural feature vectors. pipeline operations are implemented as instance methods ''' class GenerateGraphCollection(Pipe): ''' structures (verticies) within a similarity threshold are connected by edges to form a graph of the structure space. additional edges connect structures that are similar to another when a defect (vacancy/interstical) is induced in one of the structures (Ex rocksalt + intersticial = BCC). the graph structure is stored as an adjacency list to conserve storage/memory. Notes: document schema for the graph collection "material_id" (str) the source vertex "edges" (list of str) the destination verticies "vacancy_edges" (dict) the destination verticies for each symmetrically inequivalant site (keys are site indicies, values are lists of str) Attributes: source (MongoFrame) a workspace which retrieves structural features destination (MongoFrame) a workspace which stores graph structure ''' def __init__(self, host='localhost', port=27017, database='structure_graphs', structure_collection='structure', graph_collection='graph'): ''' Args: host (str) hostname or IP address or Unix domain socket path port (int) port number on which to connect database (str) name of a pymongo database structure_collection (str) name of a pymongo collection that holds data on the structures being analyzed graph_collection (str) name of a pymongo collection that holds data on the graph representation of the structures ''' structure_space = MongoFrame( host=host, port=port, database=database, collection=structure_collection) graph_space = MongoFrame( host=host, port=port, database=database, collection=graph_collection) Pipe.__init__(self, source=structure_space, destination=graph_space) def _load_structure_features(self): ''' loads feature vectors into self.source.memory ''' self.source.from_storage(filter={'structure_features': {'$exists': True}}, projection={'material_id': 1, 'structure_features': 1, '_id': 0}) self.source.compress_memory(column='structure_features', decompress=True) self.source.memory.set_index('material_id', inplace=True) def _load_structures(self, material_ids): ''' loads structures into self.source.memory ''' self.source.from_storage(filter={'material_id': {'$in': material_ids}}, projection={'material_id': 1, 'structure': 1, '_id': 0}) self.source.memory.set_index('material_id', inplace=True) self.source.memory = self.source.memory.loc[material_ids] def update_verticies(self, criteria={'structure_features': {'$exists': True}}): ''' populate verticies in graph space with verticies from structure space Notes: IO limited method ''' self.source.from_storage(filter=criteria, projection={'material_id': 1}) self.transfer(to='destination') self.destination.to_storage(identifier='material_id', upsert=True) @in_batches def update_edges(self, threshold=0.5, batch_size=10000, edge_calculator=edg.pairwise_squared_similarity): ''' solve for undirected, boolean edges based on exact similarity Notes: Tranformation limited method Args: threshold (float) distance threshold to connect an edge batch_size (int) batch size for computing pairwise distances when generating graph edges. subject to memory constraints edge_calculator (func) a pairwise edge calculator that returns an N x M adjacency matrix ''' # load material ids without defined edges self.destination.from_storage(filter={'edges': {'$exists': False}}, projection={'material_id': 1}, limit=batch_size) if len(self.destination.memory.index) == 0: return 0 # returns False when update is complete else: # saves ids of source verticies from batch source_ids = self.destination.memory['material_id'].values self.destination.memory = None # cleanup memory # saves the potential destination verticies and clean-up memory self._load_structure_features() all_ids = self.source.memory.index.values all_vectors = self.source.memory.values source_vectors = self.source.memory.loc[source_ids].values self.source.memory = None # cleanup memory # determines edge matrix and coresponding adjacency list edge_matrix = edge_calculator( all_vectors, source_vectors, threshold) adjacency_list = {} for j in range(edge_matrix.shape[1]): adjacency_list[source_ids[j]] = { 'edges': list(all_ids[edge_matrix[:, j]])} # stores edges in the graph collection self.destination.memory = DataFrame.from_dict( adjacency_list, orient='index').reset_index().rename( columns={'index': 'material_id'}) self.destination.to_storage(identifier='material_id') return 1 # returns True to continue the update @in_batches def update_vacancy_edges(self, threshold=0.5, batch_size=100, edge_calculator=edg.pairwise_squared_similarity, featurizer=FRAMEWORK_FEATURIZER): ''' solve for directed, boolean edges based on similarity with a vacancy Notes: Transformation limited method (featurization of vacancy structures) Args: threshold (float) distance threshold to connect an edge batch_size (int) batch size for computing pairwise distances when generating graph edges. subject to memory constraints edge_calculator (func) a sub-pairwise distance calculator that returns an N x M adjacency matrix featurizer (BaseFeaturizer) an instance of a structural featurizer ''' # loads a batch of verticies without defined edges self.destination.from_storage( filter={'vacancy_edges': {'$exists': False}}, projection={'material_id': 1}, limit=batch_size) if len(self.destination.memory.index) == 0: return 0 # returns False when update is complete else: # gets the source vertex ids for the current batch source_ids = self.destination.memory['material_id'].values self.destination.memory = None # cleanup memory # gets the potential destination vertex ids and their features self._load_structure_features() all_ids = self.source.memory.index.values all_vectors = self.source.memory.values vector_labels = np.array( [s.split('.')[1] for s in self.source.memory.columns.values]) self.source.memory = None # cleanup memory # calculates feature vectors for each (source) vacancy structure self._load_structures(list(source_ids)) source_structures = self.source.memory['structure'].values self.source.memory = None # cleanup memory vacancy_structures = [] for material_id, structure in zip(source_ids, source_structures): structure = Structure.from_dict(structure) for site_i, vacancy in enumerate(VacancyGenerator(structure)): vacancies = [ material_id, str(site_i), vacancy.generate_defect_structure(supercell=(1, 1, 1)) ] vacancy_structures.append(vacancies) vacancy_structures = DataFrame( data=vacancy_structures, columns=['source_id', 'site_index', 'structure']) vacancy_vectors = featurizer.featurize_dataframe( vacancy_structures, 'structure', ignore_errors=True, pbar=False, inplace=False)[vector_labels].values # determine edge matrix and coresponding adjacency list edge_matrix = edge_calculator( all_vectors, vacancy_vectors, threshold) adjacency_list = defaultdict(dict) for j in range(edge_matrix.shape[1]): source_id = vacancy_structures['source_id'][j] site_index = vacancy_structures['site_index'][j] adjacency_list[source_id][site_index] = list( all_ids[edge_matrix[:, j]]) # store edges in graph space self.destination.memory = DataFrame.from_records( list(adjacency_list.items()), columns=['material_id', 'vacancy_edges']) self.destination.to_storage(identifier='material_id') return 1 # return True to continue the update if __name__ == '__main__': gen = GenerateGraphCollection() # gen.destination.delete_storage(clear_collection=True) # gen.update_verticies() # gen.update_edges() # gen.update_vacancy_edges()
if __name__=="__main__": import pymysql pymysql.install_as_MySQLdb() from blog import db from blog import User db.create_all() user1=User(username='Corey',email='c@gmail.com',password='1234') db.session.add(user1) db.session.commit() print(User.query.all())
#Challenge: Implement a queue with two stacks. class stack: def __init__(self): self.container = [] def __repr__(self): return str(self.container) def push(self, elem): self.container.append(elem) def pull(self): return self.container.pop() def peek(self): return self.container[len(self.container)-1] def isempty(self): return self.container is [] class twostackqueue: def __init__(self): self.instack = stack() self.outstack = stack() def __repr__(self): return str(self.instack) + '<->' + str(self.outstack) def enqueue(self, elem): self.instack.push(elem) def dequeue(self): if self.outstack.isempty(): while not self.instack.isempty(): self.outstack.push(self.instack.pull()) return self.outstack.pull() else: return self.outstack.pull()
from multiprocessing import Process import time import traceback from logging import Logger from core.schema import S1 from services import poller_worker from services.service_base import ServiceBase from utils import config from core import Data class Poller(ServiceBase): def __init__(self, logger, name, data, providers, config_path, dummy=False): """ @type logger: Logger @type data: Data """ super(Poller, self).__init__(logger, name, data, providers, config_path) self.kwargs = None # default poller driver period self.period_s = 2 # how many gids are allowed to expire in period_s before new worker is launched self.gid_set_threshold = 100 # number of worker processes self.workers_min = 3 # max number of worker process self.workers_max = 4 # default gid poll period, 10 min self.gid_poll_s = 600 # default no poll period, 30 min self.gid_no_poll_s = 1800 self.started_at = time.time() self.stats = { 'hour': (self.started_at, 0), 'day': (self.started_at, 0), } self.channel_handler = { S1.poller_channel_name('all-out'): self.on_all_out, S1.poller_channel_name(self.name): self.on_my_name } def get_worker(self, sub_name): kwargs = self.kwargs kwargs['name'] = sub_name return Process(target=poller_worker.run_poller_worker, name=sub_name, kwargs=self.kwargs) def on_terminate(self, *args, **kwargs): """ Called by signal handlers from ServiceBase WARNING: This can be called multiple times during process termination! """ self.logger.warning('Poller master is terminating...') # stop workers while self.stop_worker(): self.logger.warning('One worker stopped') # stop self self.send_exit(S1.poller_channel_name(self.name), self_target=True) self.logger.warning('Poller master terminate sequence complete!') def on_exit(self, channel): self.logger.warning('Poller master terminating listener...') self.terminate() def on_raw(self, channel, raw): try: # channel_handler is one of the two routines below self.channel_handler[channel](raw) except Exception as e: self.logger.error('ERROR: Exception in on_raw: {0}, \r\n{1}'.format(e, traceback.format_exc())) def on_all_out(self, gid): """ Reschedules the gid for next poll based on gid activity, other factors may be added later @param gid: assuming raw data is gid """ at_time = time.time() # default poll period for each gid is 10 * 60 sec next_time = at_time + self.gid_poll_s try: # get num results in this 3-hour period if not self.data.cache.get_num_minute_updates(gid, int(at_time), 90): # no updates this time of day --> add 45 minutes to next poll epoch next_time += self.gid_no_poll_s except Exception as e: msg = 'Exception while processing stats [{0}], [{1}], {2}' self.logger.error(msg.format(gid, e, traceback.format_exc())) # store just polled gid in sorted gid set self.data.balancer.add_gid_set(gid, next_time) def on_my_name(self, raw): self.schedule_next_batch(allow_worker_start=False) def on_timeout(self): self.schedule_next_batch(allow_worker_start=True) def schedule_next_batch(self, allow_worker_start=False): try: self.logger.info('[{0}] wake up!'.format(self.name)) # get the gid set until all processed while True: at_time = time.time() gid_set = self.data.balancer.get_next_poll_set(at_time + self.period_s / 2.0) gid_set_len = len(gid_set) if not gid_set_len: self.logger.warning('[{0}] Empty gid_set...'.format(self.name)) return elif allow_worker_start and gid_set_len > self.gid_set_threshold: self.logger.warning('Gid set count [{0}] above threshold, starting worker...'.format(gid_set_len)) self.start_worker() self.logger.info('[{0}] Invoking poll for [{1}] items...'.format(self.name, gid_set_len)) # clean orphaned gids update_set = [gid for gid in gid_set if not self.data.check_orphan(gid, at_time)] # post each gid to poller for gid in update_set: # move next poll time for the gid to avoid duplicate polling self.data.balancer.add_gid_set(gid, at_time + self.gid_poll_s) # post to pollers self.broadcast_command(S1.poller_channel_name('all'), S1.msg_update(), gid) # update stats self.update_stats(at_time, len(update_set)) except Exception as e: self.logger.warning('Exception in poller driver: {0}'.format(e)) self.logger.exception(traceback.format_exc()) self.data.unregister_poller(self.name) def update_stats(self, at_time, count): s = self.stats['hour'] self.stats['hour'] = (s[0], s[1] + count) s = self.stats['day'] self.stats['day'] = (s[0], s[1] + count) # set in DB self.data.balancer.set_poller_stats(self.name, hour=self.stats['hour'][1], day=self.stats['day'][1]) # clean stats if lapsed if at_time - self.stats['hour'][0] > 3600: # reset counters self.stats['hour'] = (at_time, 0) if at_time - self.stats['day'][0] > 86400: self.stats['day'] = (at_time, 0) def run(self, *args, **kwargs): self.kwargs = kwargs cfg = config.load_config(kwargs['config_path'], 'poller.json') self.gid_poll_s = cfg['gid_poll_s'] if 'gid_poll_s' in cfg else self.gid_poll_s self.period_s = cfg['period_s'] if 'period_s' in cfg else self.period_s self.workers_min = cfg['workers_min'] if 'workers_min' in cfg else self.workers_min self.workers_max = cfg['workers_max'] if 'workers_max' in cfg else self.workers_max self.logger.info('Poller v[{0}], name=[{1}], poll delay=[{2}]s, period=[{3}]s starting...'.format(config.version, self.name, self.gid_poll_s, self.period_s)) # give pub sub some time... not using syncho notifications... time.sleep(1) # register self as poller self.data.register_poller(self.name) # start worker processes for n in range(0, self.workers_min): self.start_worker() # drop message to self to do immediate poll round self.broadcast_data(S1.poller_channel_name(self.name), '#') # start listening self.listener([S1.poller_channel_name('all-out'), S1.poller_channel_name(self.name)], None, timeout=self.period_s) self.logger.warning('Poller master listener exit!') # un-register self self.data.unregister_poller(self.name) # force kill any remaining workers while self.workers: p = self.workers.popitem() self.logger.warning('Terminating remaining poller {0}!'.format(p[0])) p[1].terminate() self.logger.warning('Poller master process exit!')
#!/usr/bin/env python # # ssl_sigs.py # Create Suricata and Snort signatures to detect an inbound SSL Cert for a single domain. # # Mega thanks to Darien Huss[1] and his work on a DNS signature script which is where most of this code was ripped from. Another big thanks to Travis Green for assistance. # [1]https://github.com/darienhuss/dns_sigs # # Example: $ python ssl_sigs.py -d something.bad.com -m "Ursnif Injects" -s 100000000 -r "31d7c3e829be03400641f80b821ef728|0421008445828ceb46f496700a5fa65e" # # OUTPUT: #=========================[Certificate Signatures]========================= # #Suricata 3.2.+ SSL Cert Rule: #alert tls $EXTERNAL_NET any -> $HOME_NET any (msg:"ET TROJAN Observed Malicious SSL Cert (Ursnif Injects)"; flow:established,to_client; tls_cert_subject; content:"CN=something.bad.com"; nocase; isdataat:!1,relative; reference:md5,31d7c3e829be03400641f80b821ef728; reference:md5,0421008445828ceb46f496700a5fa65e; classtype:trojan-activity; sid:100000000; rev:1;) # #Suricata 1.3+ SSL Cert Rule: #alert tls $EXTERNAL_NET any -> $HOME_NET any (msg:"ET TROJAN Observed Malicious SSL Cert (Ursnif Injects)"; flow:established,to_client; content:"|55 04 03|"; content:"|11|something.bad.com"; distance:1; within:18; fast_pattern; reference:md5,31d7c3e829be03400641f80b821ef728; reference:md5,0421008445828ceb46f496700a5fa65e; classtype:trojan-activity; sid:100000000; rev:1;) # #Snort 2.9+ SSL Cert Rule: #alert tcp $EXTERNAL_NET 443 -> $HOME_NET any (msg:"ET TROJAN Observed Malicious SSL Cert (Ursnif Injects); flow:established,to_client; content:"|55 04 03|"; content:"|11|something.bad.com"; distance:1; within:18; fast_pattern; reference:md5,31d7c3e829be03400641f80b821ef728; reference:md5,0421008445828ceb46f496700a5fa65e; classtype:trojan-activity; sid:100000000; rev:1;) # # You can also use -t/--sni to also print the equivilent TLS SNI signaures (useful for detecting the cert via the outbound request incase domain is down/cert is gone) # # $ python ssl_sigs.py -d something.bad.com -m "ET TROJAN Observed Malicious SSL Cert (Ursnif Injects)" -s 100000000 -r "31d7c3e829be03400641f80b821ef728|0421008445828ceb46f496700a5fa65e" -t # # <snip> # #=========================[SNI Signatures]========================= # #Suricata 3.2+ TLS SNI Cert Rule: #alert tls $HOME_NET any -> $EXTERNAL_NET any (msg:"ET TROJAN Observed Ursnif Injects Domain (something .bad .com in TLS SNI)"; flow:established,to_server; tls_sni; content:"something.bad.com"; isdataat:!1,relative; reference:md5,31d7c3e829be03400641f80b821ef728; reference:md5,0421008445828ceb46f496700a5fa65e; classtype:trojan-activity; sid:100000001; rev:1;) # #Suricata 1.3+ TLS SNI Cert Rule: #alert tls $HOME_NET any -> $EXTERNAL_NET any (msg:"ET TROJAN Observed Ursnif Injects Domain (something .bad .com in TLS SNI)"; flow:established,to_server; content:"|00 00 11|something.bad.com|00|"; fast_pattern; reference:md5,31d7c3e829be03400641f80b821ef728; reference:md5,0421008445828ceb46f496700a5fa65e; classtype:trojan-activity; sid:100000001; rev:1;) # #Snort 2.9+ TLS SNI Cert Rule: #alert tcp $HOME_NET any -> $EXTERNAL_NET 443 (msg:"ET TROJAN Observed Ursnif Injects Domain (something .bad .com in TLS SNI)"; flow:established,to_server; content:"|00 00 11|something.bad.com|00|"; fast_pattern; reference:md5,31d7c3e829be03400641f80b821ef728; reference:md5,0421008445828ceb46f496700a5fa65e; classtype:trojan-activity; sid:100000001; rev:1;) # import argparse,re def main(): parser = argparse.ArgumentParser(description='Create Suricata/Snort SSL Certificate Signatures') parser.add_argument('-d','--domain', help='Domain name',required=True,default="") parser.add_argument('-m','--message', help='Malware name and or Activity (e.g. "Urnsif Injects")',required=True,default="") parser.add_argument('-r','--reference', help='Provide a md5 or url reference, or list of references separated by a |',required=False,default="") parser.add_argument('-c','--classtype', help='Provide signature classtype (default: trojan-activity)',required=False,default="trojan-activity") parser.add_argument('-s','--sid', help='Provide starting sid number (default: 10000000)',required=False,default="10000000") parser.add_argument('-t','--sni', help='Include TLS SNI signatures also',action="store_true",required=False,default="") parser.add_argument('-C','--category', help='Add a category for this rule (default: TROJAN',required=False,default="TROJAN") parser.add_argument('-n','--rulesetname', help='Add a custom ruleset name (default: ET', required=False,default="ET") args = parser.parse_args() domain = args.domain message = args.message references = args.reference classtype = args.classtype sid = int(args.sid) sni = args.sni category = args.category rulesetname = args.rulesetname reference = '' if references: md5_re = re.compile('^[a-f0-9]{32}$') references = references.split('|') for ref in references : if md5_re.search(ref): reference += 'reference:md5,%s; ' % ref else: reference += 'reference:url,%s; ' % ref domain_len = '|{:02x}|'.format(len(domain)) within = len(domain_len + domain) - 3 domain_len_tlssni = '|00 00 {:02x}|'.format(len(domain)) tls_sid = sid + 1 domain_defang = re.sub(r"\.", " .", domain) rule_stub_start_suri = 'alert tls $EXTERNAL_NET any -> $HOME_NET any (msg:"%s %s Observed Malicious SSL Cert (%s)"; flow:established,to_client; content:"|55 04 03|"; ' % (rulesetname,category,message) rule_stub_start_suri_current = 'alert tls $EXTERNAL_NET any -> $HOME_NET any (msg:"%s %s Observed Malicious SSL Cert (%s)"; flow:established,to_client; tls_cert_subject; ' % (rulesetname,category,message) rule_stub_start_snort = 'alert tcp $EXTERNAL_NET 443 -> $HOME_NET any (msg:"%s %s Observed Malicious SSL Cert (%s)"; flow:established,to_client; content:"|55 04 03|"; ' % (rulesetname,category,message) rule_stub_content_suri_current = 'content:"CN=%s"; nocase; isdataat:!1,relative; ' % domain rule_stub_len = 'content:"%s%s"; distance:1; ' % (domain_len,domain) rule_stub_within = 'within:%s; fast_pattern; ' % within rule_stub_end = '%sclasstype:%s; sid:%s; rev:1;)' % (reference,classtype,sid) sid += 1 #SSL Cert stuff print '\r\n#=========================[Certificate Signatures]=========================\r\n' print '#Suricata 3.2.+ SSL Cert Rule:\r\n' + rule_stub_start_suri_current + rule_stub_content_suri_current + rule_stub_end + '\r\n' print '#Suricata 1.3+ SSL Cert Rule:\r\n' + rule_stub_start_suri + rule_stub_len + rule_stub_within + rule_stub_end + '\r\n' print '#Snort 2.9+ SSL Cert Rule:\r\n' + rule_stub_start_snort + rule_stub_len + rule_stub_within + rule_stub_end + '\r\n' #TLSSNI stuff if sni: tls_sni_rule_stub_start_suri = 'alert tls $HOME_NET any -> $EXTERNAL_NET any (msg:"%s %s Observed %s Domain (%s in TLS SNI)"; flow:established,to_server; ' % (rulesetname,category,message,domain_defang) tls_sni_rule_stub_start_snort = 'alert tcp $HOME_NET any -> $EXTERNAL_NET 443 (msg:"%s %s Observed %s Domain (%s in TLS SNI)"; flow:established,to_server; ' % (rulesetname,category,message,domain_defang) rule_stub_content_suri_4 = 'tls_sni; content:"%s"; isdataat:!1,relative; ' % domain rule_stub_content_snort_suri2 = 'content:"%s%s|00|"; fast_pattern; ' % (domain_len_tlssni,domain) rule_stub_end_tlssni = '%sclasstype:%s; sid:%s; rev:1;)' % (reference,classtype,tls_sid) print '\r\n#=========================[SNI Signatures]=========================\r\n' print '#Suricata 3.2+ TLS SNI Cert Rule:\r\n' + tls_sni_rule_stub_start_suri + rule_stub_content_suri_4 + rule_stub_end_tlssni + '\r\n' print '#Suricata 1.3+ TLS SNI Cert Rule:\r\n' + tls_sni_rule_stub_start_suri + rule_stub_content_snort_suri2 + rule_stub_end_tlssni + '\r\n' print '#Snort 2.9+ TLS SNI Cert Rule:\r\n' + tls_sni_rule_stub_start_snort + rule_stub_content_snort_suri2 + rule_stub_end_tlssni + '\r\n' else: print '\r\n' if __name__ == '__main__': main()
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # import pytest import re import time from tests.common.environ import specific_build_type_timeout from tests.common.impala_test_suite import ImpalaTestSuite from tests.common.skip import SkipIfLocal, SkipIfIsilon WAIT_TIME_MS = specific_build_type_timeout(60000, slow_build_timeout=100000) # Skipping Isilon due to IMPALA-6998. TODO: Remove when there's a holistic revamp of # what tests to run for non-HDFS platforms @SkipIfLocal.multiple_impalad @SkipIfIsilon.jira(reason="IMPALA-6998") class TestRuntimeFilters(ImpalaTestSuite): @classmethod def get_workload(cls): return 'functional-query' @classmethod def add_test_dimensions(cls): super(TestRuntimeFilters, cls).add_test_dimensions() # Runtime filters are disabled on HBase cls.ImpalaTestMatrix.add_constraint( lambda v: v.get_value('table_format').file_format not in ['hbase']) def test_basic_filters(self, vector): self.run_test_case('QueryTest/runtime_filters', vector, test_file_vars={'$RUNTIME_FILTER_WAIT_TIME_MS' : str(WAIT_TIME_MS)}) def test_wait_time(self, vector): """Test that a query that has global filters does not wait for them if run in LOCAL mode""" now = time.time() self.run_test_case('QueryTest/runtime_filters_wait', vector) duration_s = time.time() - now assert duration_s < (WAIT_TIME_MS / 1000), \ "Query took too long (%ss, possibly waiting for missing filters?)" % str(duration) def test_file_filtering(self, vector): if 'kudu' in str(vector.get_value('table_format')): return self.change_database(self.client, vector.get_value('table_format')) self.execute_query("SET RUNTIME_FILTER_MODE=GLOBAL") self.execute_query("SET RUNTIME_FILTER_WAIT_TIME_MS=10000") result = self.execute_query("""select STRAIGHT_JOIN * from alltypes inner join (select * from alltypessmall where smallint_col=-1) v on v.year = alltypes.year""") assert re.search("Files rejected: 8 \(8\)", result.runtime_profile) is not None assert re.search("Splits rejected: [^0] \([^0]\)", result.runtime_profile) is None @SkipIfLocal.multiple_impalad class TestBloomFilters(ImpalaTestSuite): @classmethod def get_workload(cls): return 'functional-query' @classmethod def add_test_dimensions(cls): super(TestBloomFilters, cls).add_test_dimensions() # Bloom filters are disabled on HBase, Kudu cls.ImpalaTestMatrix.add_constraint( lambda v: v.get_value('table_format').file_format not in ['hbase', 'kudu']) def test_bloom_filters(self, vector): self.run_test_case('QueryTest/bloom_filters', vector) def test_bloom_wait_time(self, vector): """Test that a query that has global filters does not wait for them if run in LOCAL mode""" now = time.time() self.run_test_case('QueryTest/bloom_filters_wait', vector) duration_s = time.time() - now assert duration_s < (WAIT_TIME_MS / 1000), \ "Query took too long (%ss, possibly waiting for missing filters?)" % str(duration) @SkipIfLocal.multiple_impalad class TestMinMaxFilters(ImpalaTestSuite): @classmethod def get_workload(cls): return 'functional-query' @classmethod def add_test_dimensions(cls): super(TestMinMaxFilters, cls).add_test_dimensions() # Min-max filters are only implemented for Kudu. cls.ImpalaTestMatrix.add_constraint( lambda v: v.get_value('table_format').file_format in ['kudu']) def test_min_max_filters(self, vector): self.run_test_case('QueryTest/min_max_filters', vector) def test_large_strings(self, cursor, unique_database): """Tests that truncation of large strings by min-max filters still gives correct results""" table1 = "%s.min_max_filter_large_strings1" % unique_database cursor.execute( "create table %s (string_col string primary key) stored as kudu" % table1) # Min-max bounds are truncated at 1024 characters, so construct some strings that are # longer than that, as well as some that are very close to the min/max bounds. matching_vals =\ ('b' * 1100, 'b' * 1099 + 'c', 'd' * 1100, 'f'* 1099 + 'e', 'f' * 1100) cursor.execute("insert into %s values ('%s'), ('%s'), ('%s'), ('%s'), ('%s')" % ((table1,) + matching_vals)) non_matching_vals = ('b' * 1099 + 'a', 'c', 'f' * 1099 + 'g') cursor.execute("insert into %s values ('%s'), ('%s'), ('%s')" % ((table1,) + non_matching_vals)) table2 = "%s.min_max_filter_large_strings2" % unique_database cursor.execute( "create table %s (string_col string primary key) stored as kudu" % table2) cursor.execute("insert into %s values ('%s'), ('%s'), ('%s'), ('%s'), ('%s')" % ((table2,) + matching_vals)) cursor.execute("select count(*) from %s a, %s b where a.string_col = b.string_col" % (table1, table2)) assert cursor.fetchall() == [(len(matching_vals),)] # Insert a string that will have the max char (255) trailing after truncation, to # test the path where adding 1 to the max bound after trunc overflows. max_trail_str = "concat(repeat('h', 1000), repeat(chr(255), 50))" cursor.execute("insert into %s values (%s)" % (table1, max_trail_str)) cursor.execute("insert into %s values (%s)" % (table2, max_trail_str)) cursor.execute("select count(*) from %s a, %s b where a.string_col = b.string_col" % (table1, table2)) assert cursor.fetchall() == [(len(matching_vals) + 1,)] # Insert a string that is entirely the max char to test the path where the max can't # have 1 added to it after truncation and the filter is disabled. all_max_str = "repeat(chr(255), 1030)" cursor.execute("insert into %s values (%s)" % (table1, all_max_str)) cursor.execute("insert into %s values (%s)" % (table2, all_max_str)) cursor.execute("select count(*) from %s a, %s b where a.string_col = b.string_col" % (table1, table2)) assert cursor.fetchall() == [(len(matching_vals) + 2,)] @SkipIfLocal.multiple_impalad class TestRuntimeRowFilters(ImpalaTestSuite): @classmethod def get_workload(cls): return 'functional-query' @classmethod def add_test_dimensions(cls): super(TestRuntimeRowFilters, cls).add_test_dimensions() cls.ImpalaTestMatrix.add_constraint(lambda v: v.get_value('table_format').file_format in ['parquet']) def test_row_filters(self, vector): self.run_test_case('QueryTest/runtime_row_filters', vector, test_file_vars={'$RUNTIME_FILTER_WAIT_TIME_MS' : str(WAIT_TIME_MS)})
import requests import bs4 # # url = 'http://github.com' # r = requests.get(url) # # r_html = r.text #r_html contain HTML # # soup = bs4.BeautifulSoup(r_html,features="lxml") # # title = soup.find('summary').text # # # print(r_html) # print(title) # # sauce = requests.get("https://niebezpiecznik.pl") soup = bs4.BeautifulSoup(sauce.text, features="html.parser") titles = soup.find_all() # print(soup.find("h2").text) for title in soup.find_all("h2"): print(title.string)
import pygame, sys, time, random from pygame.locals import * import numpy as np class Particle: """ @summary: Data class to store particle details i.e. Position, Direction and speed of movement, radius, etc """ def __init__(self): self.__version = 0 """@type: int""" self.__position = [] # Sub dicts of the whole vertexMarkupDict self.__movement = [] self.__radius = 0 # Python overrides ------------------------------------------------------------------------------------------------- def __str__(self): printStr = '' printStr += 'Position: (' + str(self.__position[0]) + ',' + str(self.__position[1]) + ') ' printStr += 'Direction and Speed: (' + str(self.__movement[0]) + ',' + str(self.__movement[1]) + ') ' printStr += 'Radius: ' + str(self.__radius) return printStr def __setitem__(self, position, movement, rad, c): print position, movement, rad # TODO: Check inputs self.__position = position self.__movement = movement self.__radius = rad # Properties ------------------------------------------------------------------------------------------------------- @property def Position(self): return self.__position @property def Movement(self): return self.__movement @property def Radius(self): return self.__radius # Methods ---------------------------------------------------------------------------------------------------------- def SetPosition(self, pos): self.__position = pos def SetMovement(self, move): self.__movement = move def SetRadius(self, rad): self.__radius = rad def CalculateGrid(screenWidth, screenHeight, resolution): x_size = resolution + divmod(screenWidth, resolution)[1] y_size = resolution + divmod(screenHeight, resolution)[1] print x_size, y_size grid = [] for y in range(0, y_size): temp_list = [] for x in range(0, x_size): temp_list += [[x * (screenWidth / x_size), y * (screenHeight / y_size)]] grid += [temp_list] print np.array(grid).shape return grid pygame.init() windowSurface = pygame.display.set_mode((500, 400), 0, 32) pygame.display.set_caption("Paint") # get screen size info = pygame.display.Info() sw = info.current_w sh = info.current_h grid = CalculateGrid(sw, sh, 50) # NEED TO CALCULATE OCCUPIED VALUE FOR ALL GRID CELLS!!!!!!!!!!!!!!!! y_size = len(grid[:]) x_size = len(grid[0]) cell_size_x = sw / x_size cell_size_y = sh / y_size print x_size, y_size # for celly in range(0, y_size): # for cellx in range(0, x_size): # print grid[celly][cellx][0] max_dx = 5 max_dy = 5 min_radius = 15 max_radius = 60 circle_objs = [] num_circles = 10 for i in range(0, num_circles): p = Particle() p.SetRadius(random.randrange(min_radius, max_radius)) p.SetPosition([random.randrange(p.Radius, sw - p.Radius), random.randrange(p.Radius, sh - p.Radius)]) p.SetMovement([random.random() * max_dx + 1, random.random() * max_dy + 1]) circle_objs += [p] BLACK = (0, 0, 0) GREEN = (0, 255, 0) windowSurface.fill(BLACK) while True: for event in pygame.event.get(): if event.type == QUIT: pygame.quit() sys.exit() windowSurface.fill(BLACK) for particle in circle_objs: dx = particle.Movement[0] dy = particle.Movement[1] radius = particle.Radius # update position with direction particle.SetPosition([particle.Position[0] + dx, particle.Position[1] + dy]) pos = particle.Position # check bounds if (pos[0] - radius) + dx < 0 or (pos[0] + radius) + dx > sw: dx = -dx particle.SetMovement([dx, dy]) if (pos[1] - radius) + dy < 0 or (pos[1] + radius) + dy > sh: dy = -dy particle.SetMovement([dx, dy]) # pygame.draw.circle(windowSurface, GREEN, (int(pos[0]), int(pos[1])), radius, 1) for cellx in range(0, x_size): for celly in range(0, y_size): sum_cell = 0 for p in circle_objs: sum_cell += pow(p.Radius, 2) / (pow((grid[celly][cellx][0]) - p.Position[0], 2) + pow((grid[celly][cellx][1]) - p.Position[1], 2)) if sum_cell > 1: pygame.draw.rect(windowSurface, GREEN, [grid[celly][cellx][0], grid[celly][cellx][1], 3, 3], 0) pygame.time.Clock().tick(20) pygame.display.update()
import numpy as np def is_pos_def(x): return np.all(np.linalg.eigvals(x) > 0) # Funcion que crea la matriz de H a utilizar en quadProg # Q es una matriz cuadrada de (NxN) # P es una matriz cuadrada de (NxN) # R_i valor asociado a u # N es el horizonte de prediccion def Hqp(Q, P, R_1, R_2, N): # Se consigue el tamano de las matrices size_Q = np.shape(Q)[0] size_P = np.shape(P)[0] # Matriz de ceros de (NxN) zeros_matriz = np.zeros((size_Q, size_Q)) zeros_columna = np.zeros((size_Q, 1)) zeros_fila = np.zeros((1 ,size_Q)) # Crear parte Q de la matriz H H_q = 0 for i in range(N): zeros_izq = np.tile(zeros_matriz, i) zeros_der = np.tile(zeros_matriz, N-i) fila = np.concatenate((zeros_izq, Q, zeros_der), axis=1) if (np.isscalar(H_q)): H_q = fila else: H_q = np.concatenate((H_q, fila), axis=0) # Extender H_q para incluir matriz P H_p = np.concatenate((np.tile(zeros_matriz, N), P), axis=1) H_qp = np.concatenate((H_q, H_p), axis=0) # Extender H_qp para incluir R_1 y R_2 # R_1 for i in range(N): columna = np.tile(np.array([[0]]), (np.shape(H_qp)[0], 1)) H_qp = np.concatenate((H_qp, columna), axis=1) fila_zeros = np.tile(np.array([[0]]), (1, np.shape(H_qp)[0])) fila = np.concatenate((fila_zeros, np.array([[R_1]])), axis=1) H_qp = np.concatenate((H_qp, fila), axis=0) # R_2 for i in range(N): columna = np.tile(np.array([[0]]), (np.shape(H_qp)[0], 1)) H_qp = np.concatenate((H_qp, columna), axis=1) fila_zeros = np.tile(np.array([[0]]), (1, np.shape(H_qp)[0])) fila = np.concatenate((fila_zeros, np.array([[R_2]])), axis=1) H_qp = np.concatenate((H_qp, fila), axis=0) H_qp = 2*H_qp return H_qp # Funcion que crea el vector f a utilizar en quadProg # Hqp es la matriz H a ingresar en quadProg def f(Hqp): tamano = np.shape(Hqp)[0] f = np.tile(np.array([[0]]), (tamano, 1)) return f # Funcion que crea la matriz A a ingresar en quadProg def Aqp(F, G, H, N): # Se consigue el tamano de las matrices size_F = np.shape(F)[0] size_G= np.shape(G)[0] size_H = np.shape(H) # Matriz de ceros de (NxN) zeros_matriz = np.zeros((size_F, size_F)) zeros_matriz_H = np.zeros(size_H) zeros_columna = np.zeros((size_F, 1)) zeros_fila = np.zeros((1 ,size_F)) # Crear parte Fde la matriz Aqp A_f = 0 for i in range(N): zeros_izq = np.tile(zeros_matriz, i) zeros_der = np.tile(zeros_matriz, N-i) fila = np.concatenate((zeros_izq, F, zeros_der), axis=1) if (np.isscalar(A_f)): A_f = fila else: A_f = np.concatenate((A_f, fila), axis=0) # Extender A_f para incluir matriz H A_h = np.concatenate((np.tile(zeros_matriz_H, N), H), axis=1) A_fh = np.concatenate((A_f, A_h), axis=0) # Extender A_fh para incluir G for i in range(N): columna = np.tile(np.array([[0]]), (np.shape(A_fh)[0], 1)) A_fh = np.concatenate((A_fh, columna), axis=1) fila_zeros = np.tile(zeros_columna, (1, np.shape(A_fh)[1]-1)) fila = np.concatenate((fila_zeros, G), axis=1) A_fh = np.concatenate((A_fh, fila), axis=0) columna_zeros = np.tile(np.array([[0]]), (np.shape(A_fh)[0], 1)) A_fh = np.concatenate((A_fh, columna_zeros), axis=1) # Agregar ceros para condiciones de duk # for i in range(N): # columna = np.tile(np.array([[0]]), (np.shape(A_fh)[0], 1)) # A_fh = np.concatenate((A_fh, columna), axis=1) return A_fh # Funcion que crea el vector b a utilizar en quadProg # f, g, h son vectores columna def bqp(f, g, h, N): f = np.tile(f, (N, 1)) g = np.tile(g, (N, 1)) bqp = np.concatenate((f, h, g), axis=0) return bqp # Funcion que crea la matriz Aeq a utilizar en quadProg # A es una matriz cuadrada de (NxN) # B es un vector de (Nx1) # N es el horizonte de prediccion def Aeq(A, B, N): # Se consigue el tamano de las matrices size_A = np.shape(A)[0] size_B = np.shape(B)[0] # Creacion de matrices I = np.identity(size_A) zeros_matrix = np.zeros((size_A, size_A)) zeros_vector = np.zeros((size_B, 1)) # Primera mitad de la matriz Aeq Aeq_izquierda = np.concatenate((I, zeros_matrix), axis=1) Aeq_izquierda = np.concatenate((Aeq_izquierda, np.concatenate((A, -I), axis=1)), axis=0) for i in range(N - 1): fila = np.concatenate((np.tile(zeros_matrix, i + 1), A), axis=1) columna = np.concatenate((np.tile(zeros_matrix, (i + 2, 1)), -I)) Aeq_izquierda = np.concatenate((Aeq_izquierda, fila), axis=0) Aeq_izquierda = np.concatenate((Aeq_izquierda, columna), axis=1) # Segunda mitad de la matriz Aeq Aeq_derecha = np.concatenate((zeros_vector, B), axis=0) for i in range(N - 1): fila = np.tile(zeros_vector, i + 1) columna = np.concatenate((np.tile(zeros_vector, (i + 2, 1)), B), axis=0) Aeq_derecha = np.concatenate((Aeq_derecha, fila), axis=0) Aeq_derecha = np.concatenate((Aeq_derecha, columna), axis=1) # Se crea la matriz completa Aeq = np.concatenate((Aeq_izquierda, Aeq_derecha), axis=1) # Extension de Aeq para considerar duk columna = np.tile(zeros_vector, (N+1, N)) Aeq = np.concatenate((Aeq, columna), axis=1) fila_izq = np.tile(np.transpose(zeros_vector), N+1) fila_cent = np.array([[-1, 1]]) fila_der = np.tile(np.array([[0]]), 2*N-2) fila = np.concatenate((fila_izq, fila_cent, fila_der), axis=1) Aeq = np.concatenate((Aeq, fila), axis=0) # Iteracion para horizonte N for i in range(N-1): zeros_izq = np.tile(np.transpose(zeros_vector), N+1) zeros_cent = np.tile(np.array([[0]]), 2*i) seq = np.array([[1, 0, -1, 1]]) pre_fila = np.concatenate((zeros_izq, zeros_cent, seq), axis=1) zeros_der = np.tile(np.array([[0]]), np.shape(Aeq)[1] - np.shape(pre_fila)[1]) fila = np.concatenate((pre_fila, zeros_der), axis=1) Aeq = np.concatenate((Aeq, fila), axis=0) return Aeq # Funcion que crea el vector beq a utilizar en quadProg def beq(x_eq, Aeq): columna_zeros = np.tile(np.array([[0]]), (np.shape(Aeq)[0]-np.shape(x_eq)[0], 1)) beq = np.concatenate((x_eq, columna_zeros), axis=0) return beq # Funcion que crea lb a utilizar en quadProg def lb(lb_xk, lb_uk, lb_duk, N): xk = np.tile(lb_xk, (N+1, 1)) uk = np.tile(lb_uk, (N, 1)) duk = np.tile(lb_duk, (N, 1)) lb = np.concatenate((xk, uk, duk), axis=0) return lb # Funcion que crea ub a utilizar en quadProg def ub(ub_xk, ub_uk, ub_duk, N): xk = np.tile(ub_xk, (N+1, 1)) uk = np.tile(ub_uk, (N, 1)) duk = np.tile(ub_duk, (N, 1)) ub = np.concatenate((xk, uk, duk), axis=0) return ub
import os import sys path = '/var/django-apps/Mycompanytv' if path not in sys.path: sys.path.append(path) os.environ['DJANGO_SETTINGS_MODULE'] = 'media_server.settings' from django.core.wsgi import get_wsgi_application application = get_wsgi_application()
from django.db import models from django.contrib.auth.models import User import datetime from django.core.validators import MaxValueValidator, MinValueValidator class Student(models.Model): student_id = models.IntegerField(verbose_name='شماره دانش آموزی') user = models.OneToOneField(User, on_delete=models.CASCADE, verbose_name='کاربر') courses = models.ManyToManyField('Course', through='StudentCourse', related_name='students') classrooms = models.ManyToManyField('Classroom', through='Register', related_name='students') last_modified_date = models.DateTimeField(null=True) def __str__(self): return self.user.first_name + ' ' + self.user.last_name class Teacher(models.Model): user = models.OneToOneField(User, on_delete=models.CASCADE, verbose_name='کاربر') hire_date = models.DateField(null=True, blank=True, verbose_name='تاریخ استخدام') @property def get_experience(self): return datetime.datetime.now().year - self.hire_date.year DIPLOMA, ASSOCIATE, BACHELOR, MASTER, PHD = 'DP', 'AS', 'BA', 'MA', 'PHD' degree_choices = ( (DIPLOMA, 'دیپلم'), (ASSOCIATE, 'فوق دیپلم'), (BACHELOR, 'لیسانس'), (MASTER, 'فوق لیسانس'), (PHD, 'دکتری') ) education_degree = models.CharField(max_length=2, choices=degree_choices, verbose_name='مدرک تحصیلی') profession = models.ManyToManyField('Course', verbose_name='تخصص') def __str__(self): return self.user.first_name + ' ' + self.user.last_name class LevelField(models.Model): FIRST, SECOND, THIRD = 'first', 'second', 'third' level_choices = ( (FIRST, 'اول'), (SECOND, 'دوم'), (THIRD, 'سوم') ) level = models.CharField(max_length=10, choices=level_choices, default='first', verbose_name='پایه') MATH, NATURAL, HUMANITY = 'math', 'natural', 'humanity' field_choices = ( (MATH, 'ریاضی'), (NATURAL, 'تجربی'), (HUMANITY, 'انسانی') ) field = models.CharField(max_length=10, choices=field_choices, verbose_name='رشته', blank=True) def __str__(self): return self.get_level_display() + ' ' + self.get_field_display() class Classroom(models.Model): level_field = models.ForeignKey('LevelField', on_delete=models.SET_NULL, null=True) A, B, C = 'a', 'b', 'c' branch_choices = ( (A, 'الف'), (B, 'ب'), (C, 'ج') ) branch = models.CharField(max_length=2, choices=branch_choices, default='a', null=True, verbose_name='گروه', blank=True) education_year = models.CharField(max_length=20, null=True) courses = models.ManyToManyField('Course', through='TeacherClassCourse', related_name='classrooms') teachers = models.ManyToManyField('Teacher', through='TeacherClassCourse', related_name='classrooms') is_active = models.BooleanField(verbose_name='فعال') def __str__(self): return str(self.level_field) + ' ' + self.get_branch_display() class Course(models.Model): name = models.CharField(max_length=20) level_field = models.ForeignKey('LevelField', on_delete=models.SET_NULL, null=True) unit = models.IntegerField() def __str__(self): return self.name class StudentCourse(models.Model): student = models.ForeignKey('Student', related_name='student_courses', on_delete=models.SET_NULL, null=True) course = models.ForeignKey('Course', related_name='student_courses', on_delete=models.SET_NULL, null=True) final_grade = models.FloatField(blank=True, null=True, validators=[ MaxValueValidator(20), MinValueValidator(0) ]) mid_grade = models.FloatField(blank=True, null=True, validators=[ MaxValueValidator(20), MinValueValidator(0) ]) class Register(models.Model): student = models.ForeignKey('Student', related_name='registers', on_delete=models.SET_NULL, null=True, verbose_name='دانش آموز') classroom = models.ForeignKey('Classroom', related_name='registers', on_delete=models.SET_NULL, null=True, verbose_name='کلاس') is_active = models.BooleanField(verbose_name='فعال') class TeacherClassCourse(models.Model): teacher = models.ForeignKey('Teacher', related_name='teacher_class_courses', on_delete=models.SET_NULL, null=True, verbose_name='معلم') classroom = models.ForeignKey('Classroom', related_name='teacher_class_courses', on_delete=models.SET_NULL, null=True, verbose_name='کلاس') course = models.ForeignKey('Course', related_name='teacher_class_courses', on_delete=models.SET_NULL, null=True, verbose_name='دزس') class_time = models.ManyToManyField('ClassTime', related_name='teacher_class_course', verbose_name='زمان کلاس') def __str__(self): return str(self.classroom) + ' ' + str(self.course) + ' ' + str(self.teacher) class ClassTime(models.Model): A, B, C, D = '1', '2', '3', '4' part_choices = ( (A, 'زنگ اول'), (B, 'زنگ دوم'), (C, 'زنگ سوم'), (D, 'زنگ چهارم') ) part = models.CharField(max_length=20, choices=part_choices, default='1', null=True, verbose_name='زنگ', blank=True) Saturday, Sunday, Monday, Tuesday, Wednesday = 'Sa', 'Su', 'Mo', 'Tu', 'We' day_choices = ( (Saturday, 'شنبه'), (Sunday, 'یکشنبه'), (Monday, 'دوشنبه'), (Tuesday, 'سه شنبه'), (Wednesday, 'چهارشنبه') ) day = models.CharField(max_length=20, choices=day_choices, default='Sa', null=True, verbose_name='روز', blank=True) def __str__(self): return self.get_day_display() + ' ' + self.get_part_display() class Assignment(models.Model): file = models.FileField(upload_to='assignments') sent_time = models.DateField() deadline_time = models.DateField() teacher_class_course = models.ForeignKey(TeacherClassCourse, on_delete=models.SET_NULL, null=True) grade = models.IntegerField(null=True, blank=True, validators=[ MaxValueValidator(20), MinValueValidator(0) ]) description = models.TextField() class StudentPresence(models.Model): student_course = models.ForeignKey(StudentCourse, on_delete=models.SET_NULL, null=True) date = models.DateField() presence = models.BooleanField(verbose_name='حضور') POSITIVE, NEGETIVE = 'pos', 'neg' activity_choices = ( (POSITIVE, '+'), (NEGETIVE, '-') ) activity = models.CharField(max_length=20, choices=activity_choices, null=True, blank=True, verbose_name='فعالیت') class TeacherPresence(models.Model): teacher_class_course = models.ForeignKey(TeacherClassCourse, on_delete=models.SET_NULL, null=True) date = models.DateField() presence = models.BooleanField(verbose_name='حضور')
import random from fxengine.event.event import SignalEvent class TestRandomStrategy(object): def __init__(self, events): self.events = events self.ticks = 0 random.seed(5) def calculate_signals(self, event): if event.type == 'TICK': self.ticks += 1 if self.ticks % 5 == 0: side = random.choice(["buy", "sell"]) order = SignalEvent( event.instrument, "market", side ) self.events.put(order)
import subprocess as sp import os def get_test(id, rank): sp.call("wget --load-cookies cookies.txt 'http://gpe2.acm-icpc.tw/domjudge2/pctjury/testcase.php?probid=%s&rank=%s&fetch=input' -O '%s/%s.in'"%(id, rank, id, rank), shell=True) sp.call("wget --load-cookies cookies.txt 'http://gpe2.acm-icpc.tw/domjudge2/pctjury/testcase.php?probid=%s&rank=%s&fetch=output' -O '%s/%s.out'"%(id, rank, id, rank), shell=True) try: x = open("%s/%s.in"%(id, rank)).read() y = open("%s/%s.out"%(id, rank)).read() except: return True error = open("error").read() if x == error or y == error: os.remove("%s/%s.in"%(id, rank)) os.remove("%s/%s.out"%(id, rank)) return False return True if __name__ == "__main__": get_test(24941, 10)
def convert_hash_to_array(hash): return sorted([[k,v] for k,v in hash.items()]) ''' Convert a hash into an array. Nothing more, Nothing less. {name: 'Jeremy', age: 24, role: 'Software Engineer'} should be converted into [["name", "Jeremy"], ["age", 24], ["role", "Software Engineer"]] Note: The output array should be sorted alphabetically. '''
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #Loading the dataset mnist = input_data.read_data_sets("MNIST_data/",one_hot=True) n_nodes_hl1 = 100 n_nodes_hl2 = 100 n_nodes_hl3 = 100 n_nodes_hl4 = 100 n_classes = 10 batch_size = 100 # PLACEHOLDERS x = tf.placeholder(tf.float32,shape=[None,784]) y_true = tf.placeholder(tf.float32,[None,10]) def neural_network(data): hidden_layer_1 = {'weights':tf.Variable(tf.random_normal([784,n_nodes_hl1])), 'bias':tf.Variable(tf.random_normal([n_nodes_hl1]))} hidden_layer_2 = {'weights': tf.Variable(tf.random_normal([n_nodes_hl1, n_nodes_hl2])), 'bias': tf.Variable(tf.random_normal([n_nodes_hl2]))} hidden_layer_3 = {'weights':tf.Variable(tf.random_normal([n_nodes_hl2,n_nodes_hl3])), 'bias':tf.Variable(tf.random_normal([n_nodes_hl3]))} hidden_layer_4 = {'weights': tf.Variable(tf.random_normal([n_nodes_hl3, n_nodes_hl4])), 'bias': tf.Variable(tf.random_normal([n_nodes_hl4]))} output_layer = {'weights': tf.Variable(tf.random_normal([n_nodes_hl4, n_classes])), 'bias': tf.Variable(tf.random_normal([n_classes]))} #y=xW+b l1 = tf.add(tf.matmul(data,hidden_layer_1['weights']),hidden_layer_1['bias']) l1 = tf.nn.sigmoid(l1) l2 = tf.add(tf.matmul(l1, hidden_layer_2['weights']), hidden_layer_2['bias']) l2 = tf.nn.sigmoid(l2) l3 = tf.add(tf.matmul(l2, hidden_layer_3['weights']), hidden_layer_3['bias']) l3 = tf.nn.sigmoid(l3) l4 = tf.add(tf.matmul(l3, hidden_layer_4['weights']), hidden_layer_4['bias']) l4 = tf.nn.sigmoid(l4) output = tf.matmul(l4,output_layer['weights']) + output_layer['bias'] return output """ #VARIABLES W = tf.Variable(tf.zeros([784,10])) b = tf.Variable(tf.zeros([10])) #GRAPH OPERATIONS y = tf.matmul(x,W)+b #LOSS FUNCTION cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels = y_true,logits=y)) #OPTIMIZER optimizer = tf.train.AdamOptimizer(learning_rate=0.5) train = optimizer.minimize(cross_entropy) """ def train_neural_network(x): y_pred = neural_network(x) cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=y_pred,labels=y_true)) optimizer = tf.train.AdamOptimizer(learning_rate=0.001) train = optimizer.minimize(cross_entropy) #CREATE SESSION init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) for step in range(4000): batch_x,batch_y = mnist.train.next_batch(100) sess.run(train,feed_dict={x:batch_x,y_true:batch_y}) if(step%100==0): #EVALUATE MODEL pred = tf.equal(tf.argmax(y_pred,1),tf.argmax(y_true,1)) acc = tf.reduce_mean(tf.cast(pred,tf.float32)) print(" Accuracy After ",step," Epoch " ) print(sess.run(acc,feed_dict={x:mnist.test.images,y_true:mnist.test.labels})) print('\n') train_neural_network(x)
from kivy.network.urlrequest import UrlRequest def got_weather(req, results): for key, value in results['weather'][0].items(): print(key, ': ', value) if __name__ == '__main__': ID = 5391811 URL = 'http://api.openweathermap.org/data/2.5/weather?q=San_Diego,CA&APPID=' req = UrlRequest(URL, got_weather, debug=True) req.wait() print 'Done' ''' #!/bin/sh export PYTHONOPTIMIZE=2 export ANDROID_ROOT=/system export ANDROID_CACHE=/cache export ANDROID_DATA=/data export ANDROID_ASSETS=/system/app export ANDROID_PRIVATE=/data/data/com.hipipal.qpyplus/files export ANDROID_STORAGE=/storage export ANDROID_PROPERTY_WORKSPACE=8,65536 export ANDROID_PUBLIC=/storage/sdcard1/com.hipipal.qpyplus export PYLOC=/data/data/com.hipipal.qpyplus/files export SDLOC=/storage/sdcard1/com.hipipal.qpyplus/lib/python2.7/ export PATH=$PYLOC/bin:$PATH export PYTHONHOME=$PYLOC:$PYTHONHOME export PYTHONPATH=$PYLOC/lib/python2.7/:$PYTHONPATH export PYTHONPATH=$PYLOC/lib/python2.7/lib-dynload/:$PYTHONPATH export PYTHONPATH=$PYLOC/lib/python2.7/site-package/:$PYTHONPATH export PYTHONPATH=$SDLOC/site-packages/:$PYTHONPATH export PYTHONSTARTUP=$SDLOC/site-packages/qpythoninit.py export LD_LIBRARY_PATH=/data/data/com.hipipal.qpyplus/files/lib:/data/data/com.hipipal.qpyplus/files:/data/data/com.hipipal.qpyplus/lib export TMPDIR=/storage/sdcard1/com.hipipal.qpyplus/cache '''
from django import forms class QuestionForm(forms.Form): id=forms.IntegerField() question=forms.CharField(required=True,max_length=100) answer=forms.BooleanField(required=False) comment=forms.CharField(required=True,max_length=100) class DeleteForm(forms.Form): id=forms.IntegerField()
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import operator import os # Start Functions def clear(): ''' Clear console ''' os.system('cls' if os.name=='nt' else 'clear') def print_words(pos=False): ''' Print words resolves Arguments: pos - View numbers ''' print_pos = ' ' print_pos_bar = ' ' print_pos_letters = ' ' for i in range(num_letters): if pos: print_pos = print_pos + str(i + 1) + ' ' print_pos_bar = print_pos_bar + '| ' print_pos_letters = print_pos_letters + word_resolve[i] + ' ' print(print_pos) print(print_pos_bar) print(print_pos_letters) print('') print('') def best_letter(word_resolve): ''' Search best letter Arguments: word_resolve - list with word resolve ''' # Read all words and count letters letters = dict() ignore = ('\xb1', '\xc3', '\xb6', '.', '\xae') words = open('words.txt') # Read alls words for dictionary for word in words.readlines(): # Just consider which have the same length if len(word_resolve) == len(word.strip()): l_word = list(word.strip().lower()) # Check word_resolve is same letters fit = True for i in range(len(l_word)): if word_resolve[i] != l_word[i] and word_resolve[i] != '_': fit = False # Count the letters if fit: for letter in l_word: if letter.lower() not in ignore: if letter in letters: letters[letter] = letters[letter] + 1 elif not letter in letters_used: letters[letter] = 1 # Sort sorted_letters = sorted( letters.items(), key=operator.itemgetter(1), reverse=True ) # Best letter if len(sorted_letters) > 0: return sorted_letters[0][0] else: end = True print('No more possibilities') return None # End Functions # Start clear() print('Hangman Bot 1.0v') print(' _________ ') print('| | ') print('| 0 ') print('| /|\\ ') print('| / \\ ') print('| ') print('| ') # Get num letters and make list resolve num_letters = input('Number of letters: ') clear() play = True word_resolve = list() letters_used = list() for pos in range(num_letters): word_resolve.append('_') print('') print('Okay, come on!') print('') # Logic while play: # Get best letter best_option = best_letter(word_resolve) if best_option: # The guard not to give it back letters_used.append(best_option) print_words() # Print best letter print('Test with the letter> {letter}'.format( letter=best_option.upper() )) # Save successes print('') question_success = raw_input('I successful? (yes o no): ').lower() clear() if question_success == 'no': clear() print('') print('Ups!') elif question_success == 'yes': print('') print_words(True) good_pos = raw_input('Tell me that positions (Example> 2 4 7): ').split(' ') clear() for pos in good_pos: word_resolve[int(pos) - 1] = best_option # Game over end = False if not '_' in word_resolve: end = True if end: play = False print('Game over :)')
#!/usr/bin/env python from assignment1.srv import * import rospy def handle_task2(req): if req.c==1: return task2Response(req.a + req.b) elif req.c==2: return task2Response(req.a - req.b) elif req.c==3: return task2Response(req.a * req.b) elif req.c==4: return task2Response(req.a / req.b) else: return 0 def server_task2(): rospy.init_node('server_task2') s = rospy.Service('task2', task2, handle_task2) print "Ready." rospy.spin() if __name__ == "__main__": server_task2()
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import sys import re # safe print of possible UTF-8 character strings on ISO-8859 terminal def cprint(s, end=None): s = re.sub("◻","-ENSP-", s) s = re.sub("◻"," ", s) t = "".join([x if ord(x) < 128 else '?' for x in s]) if end != None: print(t, end=end) else: print(t) # Emit the UTF-8 chars as \uXXXX hex strings def uprint(s): #s = re.sub("◻"," ", s) t = "".join([x if ord(x) < 128 else ("\\u"+hex(ord(x))) for x in s]) print(t) def dprint(level, msg): from config import debug if int(debug) >= level: cprint("{}".format(msg)) def fatal(message): sys.stderr.write("fatal: " + message + "\n") exit(1) warningTag = {} def wprint(tag, message, end=None): if giveWarning(tag): cprint(message, end=end) def setWarnings(tagList): tags = tagList.split() for tag in tags: warningTag[tag] = False # Give a warning if tag is **not** in the list of suppressed warnings def giveWarning(tag): return tag not in warningTag
from typing import Text from django.urls import path from .views import * urlpatterns = [ path('',home, name='dashboard'), path('test',test), path('help',help) ]
import sys print(sys.path) name = "zhan" age =19 job = "iT" msg = ''' =============user name %s yourname is: %s your age is: %s your job js: %s ''' % (name,name,age,job) print(msg) resArr = ['zhang','chaofu','age'] print(resArr) print(resArr[0]) print(resArr[2]) print(resArr[1:3]) resArr.append("lai") print(resArr) resArr_copy = resArr.copy(); print(resArr_copy) print(resArr_copy.count("lai")) info = { 'stu1101': "TengLan Wu", 'stu1102': "LongZe Luola", 'stu1103': "XiaoZe Maliya", } info['stu1104'] ="zhouenlai" print(info) print(info.get("stu1101")) print("hello world !") #for for key in info: print(key,info[key]) #file # f =open("test.py") # frist_line = f.readline() # print(frist_line) # print("line-------".center(50,'+')) # # data = f.read() # # print(data) # f.close() #集合 jihe = {1,2,3,4,5,4,3} print(jihe) #元组 不能修改 #只读列表,只有count, index 2 个方法 #作用:如果一些数据不想被人修改, 可以存成元组,比如身份证列表 #函数 a,b =5,8 def cacl(x,y): res = x**y return res sumd= cacl(a,b) print(sumd)
ARR = [3, 34, 4, 12, 5, 2] S = 9 # 选或者不选 # Subset(arr[5], 9) # --- # 选 Sunbet(arr[4], 7) 不选 Subset(arr[4], 9) def rec_subset(arr, i, s): if s == 0: return True elif i == 0: return arr[0] == s elif arr[i] > s: return rec_subset(arr, i-1, s) else: A = rec_subset(arr, i-1, s-arr[i]) B = rec_subset(arr, i-1, s) return A or B print(rec_subset(ARR, len(ARR)-1, 9)) print(rec_subset(ARR, len(ARR)-1, 11)) print(rec_subset(ARR, len(ARR)-1, 12))
import pickle class PickleData: def __init__(self,fil): self.file = fil def dump_object(self,obj): with open(self.file,'wb') as destination: pickle.dump(obj,destination) def depickle(self): with open(self.file,'rb') as f: Pikl = pickle.load(f) return Pikl
# Copyright 2018 Cable Television Laboratories, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from drp_python.model_layer.subnet_config_model import SubnetConfigModel from drp_python.translation_layer.subnets_translation import \ SubnetTranslation from mock_session import MockHttpSession import logging logging.basicConfig( format='%(asctime)s,%(msecs)d %(levelname)-8s [%(filename)s:%(lineno)d] ' '%(message)s', datefmt='%d-%m-%Y:%H:%M:%S', level=logging.WARNING) logger = logging.getLogger('drp-python') class SubnetTranslationTest(unittest.TestCase): def setUp(self): self.session = MockHttpSession('http://127.0.0.1:' + '9999', 'username', 'password') self.subnet_translation = SubnetTranslation(self.session) subnet_object = { 'address': '10.197.111.0', 'broadcast_address': '10.197.111.255', 'default_lease': 7200, 'dn': 'cablelabs.com', 'dns': '8.8.8.8', 'listen_iface': 'eno1', 'max_lease': 7200, 'name': 'TestSubnet', 'netmask': '255.255.255.0', 'range': '10.197.111.12 10.197.111.16', 'router': '10.197.111.1', 'type': 'management', 'next_server': '10.191.111.131' } subnet_object2 = { 'address': '10.197.111.0', 'broadcast_address': '10.197.111.255', 'default_lease': 7600, 'dn': 'cablelabs.com', 'dns': '8.8.8.8', 'listen_iface': 'eno1', 'max_lease': 7600, 'name': 'TestSubnet', 'netmask': '255.255.255.0', 'range': '10.197.111.12 10.197.111.26', 'router': '10.197.111.2', 'type': 'management', 'next_server': '10.191.111.131' } self.subnet_config_model = SubnetConfigModel(**subnet_object) self.subnet_config_model2 = SubnetConfigModel(**subnet_object2) def tearDown(self): pass def test_create_subnet(self): model = self.subnet_translation.create_subnet(self.subnet_config_model) self.assertEqual(model.name, self.subnet_config_model.name) self.assertEqual(model.address, self.subnet_config_model.address) self.assertEqual(model.broadcast_address, self.subnet_config_model.broadcast_address) self.assertEqual(model.default_lease, self.subnet_config_model.default_lease) self.assertEqual(model.dn, self.subnet_config_model.dn) self.assertEqual(model.dns, self.subnet_config_model.dns) self.assertEqual(model.listen_iface, self.subnet_config_model.listen_iface) self.assertEqual(model.max_lease, self.subnet_config_model.max_lease) self.assertEqual(model.netmask, self.subnet_config_model.netmask) self.assertEqual(model.range, self.subnet_config_model.range) self.assertEqual(model.router, self.subnet_config_model.router) self.assertEqual(model.next_server, self.subnet_config_model.next_server) self.assertEqual(model.type, self.subnet_config_model.type) self.assertEquals(model.extension, {}) self.assertEqual(model.available, True) self.assertEqual(model.errors, []) self.assertEqual(model.validated, True) self.assertEqual(model.options, [{'Code': 6, 'Value': '8.8.8.8'}, {'Code': 15, 'Value': 'cablelabs.com'}, {'Code': 1, 'Value': '255.255.255.0'}, {'Code': 3, 'Value': '10.197.111.1'}, {'Code': 28, 'Value': '10.197.111.255'}]) self.assertEqual(model.pickers, ['hint', 'nextFree', 'mostExpired']) self.assertEqual(model.strategy, 'MAC') model = self.subnet_translation.get_subnet( self.subnet_config_model.name) self.assertEqual(model.name, self.subnet_config_model.name) self.assertEqual(model.address, self.subnet_config_model.address) self.assertEqual(model.broadcast_address, self.subnet_config_model.broadcast_address) self.assertEqual(model.default_lease, self.subnet_config_model.default_lease) self.assertEqual(model.dn, self.subnet_config_model.dn) self.assertEqual(model.dns, self.subnet_config_model.dns) self.assertEqual(model.listen_iface, self.subnet_config_model.listen_iface) self.assertEqual(model.max_lease, self.subnet_config_model.max_lease) self.assertEqual(model.netmask, self.subnet_config_model.netmask) self.assertEqual(model.range, self.subnet_config_model.range) self.assertEqual(model.router, self.subnet_config_model.router) self.assertEqual(model.next_server, self.subnet_config_model.next_server) self.assertEqual(model.type, self.subnet_config_model.type) self.assertEquals(model.extension, {}) self.assertEqual(model.available, True) self.assertEqual(model.errors, []) self.assertEqual(model.validated, True) self.assertEqual(model.options, [{'Code': 6, 'Value': '8.8.8.8'}, {'Code': 15, 'Value': 'cablelabs.com'}, {'Code': 1, 'Value': '255.255.255.0'}, {'Code': 3, 'Value': '10.197.111.1'}, {'Code': 28, 'Value': '10.197.111.255'}]) self.assertEqual(model.pickers, ['hint', 'nextFree', 'mostExpired']) self.assertEqual(model.strategy, 'MAC') def test_update_subnet(self): model = self.subnet_translation.update_subnet( self.subnet_config_model2, self.subnet_config_model.name) self.assertEqual(model.name, self.subnet_config_model2.name) self.assertEqual(model.address, self.subnet_config_model2.address) self.assertEqual(model.broadcast_address, self.subnet_config_model2.broadcast_address) self.assertEqual(model.default_lease, self.subnet_config_model2.default_lease) self.assertEqual(model.dn, self.subnet_config_model2.dn) self.assertEqual(model.dns, self.subnet_config_model2.dns) self.assertEqual(model.listen_iface, self.subnet_config_model2.listen_iface) self.assertEqual(model.max_lease, self.subnet_config_model2.max_lease) self.assertEqual(model.netmask, self.subnet_config_model2.netmask) self.assertEqual(model.range, self.subnet_config_model2.range) self.assertEqual(model.router, self.subnet_config_model2.router) self.assertEqual(model.next_server, self.subnet_config_model2.next_server) self.assertEqual(model.type, self.subnet_config_model2.type) self.assertEquals(model.extension, {}) self.assertEqual(model.available, True) self.assertEqual(model.errors, []) self.assertEqual(model.validated, True) self.assertEqual(model.options, [ {'Code': 6, 'Value': '8.8.8.8'}, {'Code': 15, 'Value': 'cablelabs.com'}, {'Code': 1, 'Value': '255.255.255.0'}, {'Code': 3, 'Value': '10.197.111.2'}, {'Code': 28, 'Value': '10.197.111.255'}]) self.assertEqual(model.pickers, ['hint', 'nextFree', 'mostExpired']) self.assertEqual(model.strategy, 'MAC') def test_delete_subnet(self): self.subnet_translation.delete_subnet( self.subnet_config_model.name)