text
stringlengths
8
6.05M
# Generated by Django 2.2 on 2020-10-04 12:11 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('instagram', '0002_api_error_instagram_account'), ] operations = [ migrations.AddField( model_name='instagram_accounts', name='current_proxy', field=models.CharField(default='188.166.83.102', max_length=200, verbose_name='Proxy IP Adress'), ), ]
from . import legacy from .keras_pipeline import KerasPipeline from .utils import copytree, save_parameter_dict
# Dato un numero n, contare le stringhe lunghe n su un alfabeto ternario {'a', # 'b', 'c'} in cui #a <= #b <= #c, in tempo O(n * S(n)). # # Esempio: # n | conteggio # --|---------- # 1 | 1 ('c') # 2 | 3 ('cc', 'cb', 'bc') # 3 | 10 ('cba' e permutazioni, 'ccc', 'ccb' e combinazioni) # 4 | 24 def ternario(n): ''' Restituisce il numero di stringhe con alfabeto ternario {'a', 'b', 'c'} tale che #a <= #b <= #c. ''' def genera(i = 0, a = 0, b = 0, c = 0): if i == n: # foglia return 1 else: # nodo interno total = 0 # Aggiunta di una 'a'. b1 = max(0, a + 1 - b) # b necessarie a coprire la 'a' aggiunta c1 = max(0, b + b1 - c) # c necessarie per coprire a sua volta 'b'. if b1 + c1 <= n - i - 1: total += genera(i + 1, a + 1, b, c) # Aggiunta di una 'b'. b1 = max(0, a - (b + 1)) c1 = max(0, b + 1 + b1 - c) if b1 + c1 <= n - i - 1: total += genera(i + 1, a, b + 1, c) # Aggiunta di una 'c'. b1 = max(0, a - b) c1 = max(0, b + b1 - (c + 1)) if b1 + c1 <= n - i - 1: total += genera(i + 1, a, b, c + 1) return total return genera()
import classes as c x = c.Datum(-1.1, 0.08) print(x) paolo = c.Person("Paolo") paolo.display() print(paolo)
import socket IP = '10.2.4.64' # 修改为别人的 IP PORT port = 8812 address = (IP, port) cli = socket.socket(socket.AF_INET, socket.SOCK_STREAM) cli.connect(address) while True: msg=input('type your msg') msg = '马塞洛:{}'.format(msg) cli.send(msg.encode('utf8')) remsg= cli.recv(1024) print(remsg.decode('utf8')) if remsg is None: cli.close() break
from django.db import models from django.utils.translation import gettext_lazy as _ from users.models import User class SongGroup(models.Model): name = models.CharField(verbose_name="分组名称", max_length=50) user = models.ForeignKey(User, on_delete=models.CASCADE) class Meta: db_table="singer_song_group" verbose_name_plural = verbose_name = "歌曲分组" def __str__(self): return self.name #点歌歌曲 class Song(models.Model): name = models.CharField(verbose_name="歌曲名称", max_length=50) create_time = models.DateTimeField(verbose_name="创建时间", auto_now=True) update_time = models.DateTimeField(verbose_name="更新时间", auto_now=True) singer = models.CharField(_("原唱歌手"), max_length=50) user = models.ForeignKey(User, on_delete=models.CASCADE) group = models.ForeignKey(SongGroup, verbose_name=_("分组名称"), on_delete=models.CASCADE, blank=True, null=True, related_name="songs") is_pub = models.BooleanField(verbose_name="是否发布", default=True) class Meta: db_table="singer_song" verbose_name_plural = verbose_name = "歌曲" def __str__(self): return self.name #演唱列表 class SongList(models.Model): user = models.ForeignKey(User,on_delete=models.CASCADE, verbose_name="用户") song = models.CharField(verbose_name="歌名", max_length=50, blank=True) create_time = models.DateTimeField(verbose_name="点歌时间", auto_now=True) sang_time = models.DateTimeField(verbose_name="唱歌时间", auto_now=True) sponsor = models.CharField(verbose_name="打赏人",max_length=50) money = models.DecimalField(verbose_name="打赏金额",max_digits=6,decimal_places=2,default=0) is_sang = models.BooleanField(verbose_name="是否已唱", default=False) class Meta: db_table="singer_song_list" verbose_name_plural = verbose_name = "点歌列表"
import os import json from decouple import config, Csv from django import template from django.db.models import Count from accounts.models import User from ..models import Category, Post, BibleStudies, Devotion register = template.Library() @register.filter def human_format(num): # format long number like 1000 to 1k.... num = float("{:.3g}".format(num)) # num = '{:.3}'.format(float(num)) magnitude = 0 while abs(num) >= 1000: magnitude += 1 num /= 1000.0 return '{}{}'.format('{:f}'.format(num).rstrip('0').rstrip('.'), ['', 'k', 'm', 'b', 't', 'p'][magnitude]) # register.filter('human_format', human_format) # print(human_format(999999)) @register.simple_tag(takes_context=True) def user_categories_list(context): # retrive user topic / categories request = context['request'] return Category.objects.filter(user=request.user.id, is_active=True) @register.simple_tag def popular_post(count=4): # show most liked post. Popular post return Post.objects.annotate(like_count=Count('likes'), total_post_comments=Count('comment')).order_by('-like_count')[:count] @register.simple_tag(takes_context=True) def who_to_follow(context, count=1): # retrive random users for a login user to follow... request = context['request'] return User.objects.filter(is_active=True).order_by('?').exclude(id=request.user.id).distinct()[:count] @register.simple_tag def google_analytics_id(): return config("GOOGLE_ANALYTICS_ID")
from django.conf.urls import url urlpatterns = [ url(r'registration/$', 'registration.views.registration', name='registration'), url(r'register-complete/$', 'registration.views.register_complete', name='register_complete'), ]
# chat/consumers.py import json from asgiref.sync import async_to_sync,sync_to_async from channels.generic.websocket import AsyncJsonWebsocketConsumer from chat.models import Message from django.conf import settings from .views import get_last_10_messages,get_curent_chat from channels.db import database_sync_to_async # from user.models import Message from accounts.models import User #User=settings.AUTH_USER_MODEL class ChatConsumer(AsyncJsonWebsocketConsumer): async def fetch_messages(self,data): print('fetching') messages=await database_sync_to_async(get_last_10_messages)(int(self.room_name)) message_json = await self.messages_to_json(messages,self.room_name) context ={ 'command': 'messages', 'messages' : message_json } await self.send_message(context) # def typing(self,data) : # person =await database_sync_to_async(User.objects.get)(username=data['username']) # context ={ # 'command':'typing', # 'type':data['type'], # 'message':{ # 'name':person.username # } # } # await self.send_chat_message(context) """ def online(self,data) : person= User.objects.get(username=data['username']) context ={ 'command':'online', 'message':{ 'name':person.username } } self.send_chat_message(context)""" async def new_messages(self,data) : print("new message") user = await database_sync_to_async(User.objects.get)(username =data["from"]) # author_user=User.objects.filter(username=contact)[0] message = await database_sync_to_async(Message.objects.create)(user=user,content=data['message']) message_json = await self.message_to_json(message,self.room_name) content={ 'command':'new_message', 'message': message_json } current_chat = await database_sync_to_async(get_curent_chat)(self.room_name) await database_sync_to_async(current_chat.messages.add)(message) await database_sync_to_async(current_chat.save)() # print(data['message']) return await self.send_chat_message(content) async def send_media(self,event) : item = event["item"] content = { "url" : item["url"], "media_type":item["media_type"], "caption" : item["caption"], "author" : item["user"], "command" : "media" } await self.send_message(content) @database_sync_to_async def messages_to_json(self,messages,id) : result = [] for message in messages: if message.content_type : media_type = message.content_type.model result.append({ 'id':message.id, 'author':message.user.username, 'url':message.item.file.url, 'title':message.item.title, 'timestamp':str(message.timestamp), 'chatId':id, "media_type":media_type }) else : result.append({ 'id':message.id, 'author':message.user.username, 'content' : message.content, 'timestamp':str(message.timestamp), 'chatId':id }) return result @database_sync_to_async def message_to_json(self,message,id): return { 'id':message.id, 'author':message.user.username, 'content':message.content, 'timestamp':str(message.timestamp), 'chatId':id } commands ={ 'fetch_messages': fetch_messages, 'new_message' : new_messages, # 'online':online, #'typing':typing, 'media':send_media } async def connect(self): print("connecting") self.room_name = self.scope['url_route']['kwargs']['room_name'] self.room_group_name = 'chat_%s' % str(self.room_name) # Join room group await self.channel_layer.group_add( self.room_group_name, self.channel_name ) await self.accept() async def disconnect(self, close_code): # Leave room group await self.channel_layer.group_discard( self.room_group_name, self.channel_name ) # Receive message from WebSocket async def receive_json(self, text_data): data = text_data await self.commands[data['command']](self,data) async def send_chat_message(self,message) : #message =data_json['message'] # Send message to room group await self.channel_layer.group_send( self.room_group_name, { 'type': 'chat_message', 'message': message } ) print(self.room_group_name) async def send_message(self,context) : await self.send_json(content=context ) # Receive message from room group async def chat_message(self, event): # print('on chat.message worked') message = event['message'] # Send message to WebSocket await self.send_json(content={ 'message':message } )
#!/usr/bin/python3 """ Prints all City objects from the database hbtn_0e_14_usa """ from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker from sys import argv from model_state import Base, State from model_city import City if __name__ == '__main__': try: engine = create_engine( 'mysql+mysqldb://{}:{}@localhost:3306/{}'.format( argv[1], argv[2], argv[3]), pool_pre_ping=True ) Session = sessionmaker(bind=engine) session = Session() results = session.query(City, State).filter(City.state_id == State.id) for city, state in results.order_by(City.id).all(): print('{}: ({}) {}'.format(state.name, city.id, city.name)) session.close() except Exception as e: print("Error: {}".format(e))
import random import pickle from .wiki_category import WikiCategory class WikiDataLoader: """Handle data loading and saving of articles from multiple wikipedia category. Randomly select `N` wikipedia categories among `CATEGORIES` and load articles text extract for each of them using the `WikiCategory` class. Note: When loading a category it starts by looking at a corresponding pickle. If None is found then it will load the data directly from wikipedia API. Attributes: data (List[Dict]): Store for each categorie its name and all the retrieved texts. """ # Constant CATEGORIES = [ "Category:Physics", "Category:Arts", "Category:Biology", "Category:Electronics", "Category:Earth sciences", "Category:Diseases and disorders", "Category:Chemistry", "Category:Astronomy", "Category:Sports", "Category:Nutrition" ] def __init__(self, N): """Initialize attributes and load the Categories. Args: N (int): Number of categories to load (must be between 1 and 10). categories (List[str]): Store the selected categories. """ self.data = [] self.categories = [] try: # category_indices = random.sample(range(10), N) category_indices = range(N) except ValueError: print('The number of category N must be between 1 and 10') for category_index in category_indices: category_str = WikiDataLoader.CATEGORIES[category_index] self.categories.append(category_str) self.load(category_str) def load(self, category_str): """Load the corresponding category either from pickle or `WikiCategory`. Args: category_str (str): Query string representing the category. """ filename = category_str.replace('Category:', '') try: texts = pickle.load(open('./saved_states/pickles/' + filename + '.pickle', "rb")) print(category_str + " retrieved from file!") except (OSError, IOError): category = WikiCategory(category_str) category.fetch_all_pageids() category.fetch_all_text() category.save_to_file() texts = category.texts self.data.append({ 'category': self.categories.index(category_str), 'texts': texts }) def getFullCorpus(self): """Return the whole corpus as a list of text.""" for data in self.data: for text in data['texts']: yield (data['category'], text)
from django import forms from django.forms import extras from datetime import datetime class Register(forms.Form): years_to_display = range(datetime.now().year - 100, datetime.now().year + 1) first_name = forms.CharField( label = "First Name", max_length = 45, min_length = 2, widget = forms.TextInput( attrs = { "class": "form-control", "placeholder": "Your first name", } ) ) last_name = forms.CharField( label="Last Name", max_length=45, min_length = 2, widget=forms.TextInput( attrs={ "class": "form-control", "placeholder": "Your last name", } ) ) email = forms.EmailField( label = "Email", max_length = 45, widget = forms.TextInput( attrs = { "class": "form-control", "placeholder": "Your email", } ) ) password = forms.CharField( label = "Password", max_length = 45, min_length = 8, widget = forms.PasswordInput( attrs = { "class": "form-control", "placeholder": "Your password", } ) ) cpassword = forms.CharField( label = "Confirm Password", max_length = 45, widget = forms.PasswordInput( attrs = { "class": "form-control", "placeholder": "Your password", } ) ) birthday = forms.DateField( widget = extras.SelectDateWidget ( years = years_to_display, attrs = { "class": "form-control", "placeholder": "Your birthdate", } ) ) class Login(forms.Form): email = forms.EmailField( label = "Email", max_length = 45, widget = forms.TextInput( attrs = { "class": "form-control", "placeholder": "Your email", } ) ) password = forms.CharField( label = "Password", max_length = 45, min_length = 8, widget = forms.PasswordInput( attrs = { "class": "form-control", "placeholder": "Your password", } ) )
def bouncing_ball(initial, proportion): output = 0 while initial > 1: initial *= proportion output +=1 return output ''' You drop a ball from a given height. After each bounce, the ball returns to some fixed proportion of its previous height. If the ball bounces to height 1 or less, we consider it to have stopped bouncing. Return the number of bounces it takes for the ball to stop moving. bouncingBall(initialHeight, bouncingProportion) boucingBall(4, 0.5) After first bounce, ball bounces to height 2 After second bounce, ball bounces to height 1 Therefore answer is 2 bounces boucingBall(30, 0.3) After first bounce, ball bounces to height 9 After second bounce, ball bounces to height 2.7 After third bounce, ball bounces to height 0.81 Therefore answer is 3 bounces Initial height is an integer in range [2,1000] Bouncing Proportion is a decimal in range [0, 1) '''
import argparse import pandas as pd import numpy as np import os import ntpath from sklearn.preprocessing import StandardScaler, MinMaxScaler from sklearn.decomposition import PCA """ Preprocessing functions """ def normalize(x, scalerType): """ Nomalize the columns of the array passed Parameters ========== x : pandas.DataFrame The input data array (NxM). scalerType : sklearn.base.BaseEstimator Type of scaler to use (StandardScaler or MinMaxScaler). Returns ======= : pandas.DataFrame The array normalized. """ if len(x) > 1: result = np.zeros(x.shape) # Normalize data for i in range(x.shape[1]): # Select the column col = x.to_numpy()[:, i] # Normalize the column scaler = scalerType() result[:, i] = scaler.fit_transform(col.reshape(-1, 1)).squeeze() return pd.DataFrame(result, columns=x.columns, index=x.index) else: raise Exception("The dimension does not match the expected ones") def remove_outliers(x): """ Remove outliers (data outside of [1%, 99%]). Parameters ========== x : pandas.DataFrame The input data array (NxM). Returns ======= : pandas.DataFrame The array without outliers. """ result = x.copy() # Remove outliners for i in range(result.shape[1]): # Select the column col = result.iloc[:, i] # Find data between 1%-99% inLimits = col.between(col.quantile(0.01), col.quantile(0.99)) # Remove the others result.drop(np.where(inLimits == False)[0], inplace=True) result.reset_index(drop=True, inplace=True) return result def features_selection(dataset, n_components=5): """ Select the most important features of the data. Parameters ========== dataset : pandas.DataFrame The input data array (NxM). n_components : int The number of features to keep. Returns ======= : pandas.DataFrame A new array containing only the *n_components* most important features. """ # PCA pca = PCA(n_components=n_components) pca.fit(dataset) # Project axes in reduced space res = pca.transform(np.eye(dataset.shape[1])) # Compute contribution contrib = np.sum(abs(res), axis=1) # Sort features principal_features = np.argsort(contrib) return principal_features[-1 : -n_components - 1 : -1] def preprocess(filepath, norm, rm_outliers, scalerType="StandardScaler", max_comp=None): """ Preprocess the data of the wine in the *data* folder. Parameters ========== norm : boolean Defined if the data have to be normalized. rm_outliers : boolean Defined if the outliers have to be removed. scalerType : sklearn.base.BaseEstimator Type of scaler to use (StandardScaler or MinMaxScaler). n_components : int The number of features to keep. """ options = "" # Paths path_dir = ntpath.dirname(filepath) filename = ntpath.basename(filepath) # Load data data = pd.read_csv(path_dir+'/'+filename, sep=";") # Drop NaN values data = data.dropna(axis="index") # Remove outliers if rm_outliers: data = remove_outliers(data) options += "ro_" # Normalize if norm: scalerType = StandardScaler if scalerType == "StandardScaler" else MinMaxScaler data = normalize(data, scalerType) options += "n_" if max_comp is not None: # Search for the X most contributing features princ_comp = features_selection(data.iloc[:, :-1], max_comp) # Add quality column princ_comp = np.append(princ_comp, -1) # Keep X principal components data = data.iloc[:, princ_comp] # Save data.to_csv(path_dir + "/preprocessed_" + options + filename, index=False) print("Preprocessing done !")
from src.cached_card_lookup import CachedCardLookup from src.mongo import EXTRACTED_CARDS, AGGREGATED_CARD_SYNERGIES, AGGREGATED_CARDS, AGGREGATED_CARD_DECK_OCCURRENCES from src.redis import CACHED_CARDS class CardLoader: def __init__(self, mongo, redis): self.mongo = mongo self.redis = redis def run(self): aggregated_card_synergies = self.mongo.get_all(AGGREGATED_CARD_SYNERGIES) aggregated_card_deck_occurrences = self.mongo.get_all(AGGREGATED_CARD_DECK_OCCURRENCES) extracted_cards = self.mongo.get_all(EXTRACTED_CARDS) aggregated_card_synergies_by_card_key = {acs['key']: acs for acs in aggregated_card_synergies} aggregated_card_deck_occurrences_by_card_key = {acdo['key']: acdo for acdo in aggregated_card_deck_occurrences} joined_aggregated_card_synergies_and_deck_occurrences = [ dict( **self._get_dict_projection( aggregated_card_synergies_by_card_key.get(card_key, {}), ['key', 'name', 'names', 'synergies'] ), **self._get_dict_projection( aggregated_card_deck_occurrences_by_card_key.get(card_key, {}), ['deckOccurrences'] ) ) for card_key in set( list(aggregated_card_synergies_by_card_key.keys()) + list(aggregated_card_deck_occurrences_by_card_key.keys()) ) ] aggregated_cards = [] cached_card_lookup = CachedCardLookup(extracted_cards) for card_synergies_and_deck_occurrences in joined_aggregated_card_synergies_and_deck_occurrences: card = cached_card_lookup.find(card_synergies_and_deck_occurrences['names']) if not card: continue aggregated_cards.append(dict( **card_synergies_and_deck_occurrences, **self._get_dict_without_fields(card, ['name', 'names', 'key']) )) self.mongo.replace_all(AGGREGATED_CARDS, aggregated_cards, 'key') self.redis.cache_data(CACHED_CARDS, aggregated_cards) @staticmethod def _get_dict_projection(a_dict, fields_to_get): return {k: v for k, v in a_dict.items() if k in fields_to_get} @staticmethod def _get_dict_without_fields(a_dict, fields_to_exclude): return {k: v for k, v in a_dict.items() if k not in fields_to_exclude}
''' The partially defined functions and classes of this module will be called by a marker script. You should complete the functions and classes according to their specified interfaces. ''' import search import sokoban # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - def my_team(): ''' Return the list of the team members of this assignment submission as a list of triplet of the form (student_number, first_name, last_name) ''' return [(7521022, 'Jordan', 'Hawkes'),(7561555, 'Stewart','Whitehead')] # return [ (1234567, 'Ada', 'Lovelace'), (1234568, 'Grace', 'Hopper'), (1234569, 'Eva', 'Tardos') ] # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - #Function relies on rule 1 being implemented perfectly (corner that isn't target is taboo) def foundOtherTabooCorner(cellx, celly, startCellX, startCellY, wallDirection, *taboos): #Found another taboo corner, cells lining walls are all taboo if ( (cellx + wallDirection[0], celly + wallDirection[1]) in taboos): # For walls travelling horizonatally #if celly == startCellY: if wallDirection == (1, 0) or (-1, 0): for cellsTravelled in (abs (cellx - startCellX)): if startCellX > cellx: taboos.append((startCellX - cellsTravelled - 1)) elif startCellX < cellx: taboos.append((startCellX + cellsTravelled + 1)) # For walls travelling vertically #if cellx == startCellX: if wallDirection == (0, 1) or (0, -1): for cellsTravelled in (abs (celly - startCellY)): if startCellY > celly: taboos.append((startCellY - cellsTravelled - 1)) elif startCellY < celly: taboos.append((startCellY + cellsTravelled + 1)) def taboo_cells(warehouse): ''' Identify the taboo cells of a warehouse. A cell is called 'taboo' if whenever a box get pushed on such a cell then the puzzle becomes unsolvable. When determining the taboo cells, you must ignore all the existing boxes, simply consider the walls and the target cells. Use only the following two rules to determine the taboo cells; Rule 1: if a cell is a corner and not a target, then it is a taboo cell. Rule 2: all the cells between two corners along a wall are taboo if none of these cells is a target. @param warehouse: a Warehouse object @return A string representing the puzzle with only the wall cells marked with an '#' and the taboo cells marked with an 'X'. The returned string should NOT have marks for the worker, the targets, and the boxes. ''' ## "INSERT YOUR CODE HERE" tabooCells=[] for x,y in warehouse.walls: if (x-1,y+1) in warehouse.walls: if(((x,y+1) not in warehouse.targets) & ((x,y+1) not in warehouse.walls) & ((x,y+1) not in tabooCells)): tabooCells.append((x, y+1)) if(((x-1,y) not in warehouse.targets) & ((x-1,y) not in warehouse.walls) & ((x-1,y) not in tabooCells)): tabooCells.append((x-1,y)) elif (x+1,y+1) in warehouse.walls: if(((x+1,y) not in warehouse.targets) & ((x+1,y) not in warehouse.walls) & ((x+1,y) not in tabooCells)): tabooCells.append((x+1, y)) if(((x,y+1) not in warehouse.targets) & ((x,y+1) not in warehouse.walls) & ((x,y+1) not in tabooCells)): tabooCells.append((x,y+1)) elif (x+1,y-1) in warehouse.walls: if(((x,y-1) not in warehouse.targets) & ((x,y-1) not in warehouse.walls) & ((x,y-1) not in tabooCells)): tabooCells.append((x, y-1)) if(((x+1,y) not in warehouse.targets) & ((x+1,y) not in warehouse.walls) & ((x+1,y) not in tabooCells)): tabooCells.append((x+1,y)) elif (x-1,y-1) in warehouse.walls: if(((x,y-1) not in warehouse.targets) & ((x,y-1) not in warehouse.walls) & ((x,y-1) not in tabooCells)): tabooCells.append((x,y-1)) if(((x-1,y) not in warehouse.targets) & ((x-1,y) not in warehouse.walls) & ((x-1,y) not in tabooCells)): tabooCells.append((x-1,y)) originalTaboos =tabooCells; north = (0, -1) east = (1, 0) south = (0, 1) west = (-1, 0) for cells in originalTaboos: cellx = cells[0] celly = cells[1] startCellX = cellx startCellY = celly counter=0 cornerFound= False while (cornerFound == False): if (((cellx + 1, celly) not in warehouse.walls) & ((cellx + 1, celly) not in warehouse.targets) & ((cellx + 1, celly-1) in warehouse.walls)): cellx=cellx+1 counter=counter+1 elif (cellx + 1, celly-1) not in warehouse.walls: cornerFound=True elif(cellx +1, celly) in warehouse.targets: cornerFound=True elif (cellx +1,celly) in warehouse.walls: index = 0 while index < counter: tabooCells.append(startCellX+index, startCellY) index += 1 cornerFound=True for cells in originalTaboos: cellx = cells[0] celly = cells[1] startCellX = cellx startCellY = celly counter=0 cornerFound= False while (cornerFound == False): if (((cellx + 1, celly) not in warehouse.walls) & ((cellx + 1, celly) not in warehouse.targets) & ((cellx + 1, celly+1) in warehouse.walls)): cellx=cellx+1 counter=counter+1 elif (cellx + 1, celly+1) not in warehouse.walls: cornerFound=True elif(cellx +1, celly) in warehouse.targets: cornerFound=True elif (cellx +1,celly) in warehouse.walls: index = 0 while index < counter: tabooCells.append(startCellX+index, startCellY) index += 1 cornerFound=True for cells in originalTaboos: cellx = cells[0] celly = cells[1] startCellX = cellx startCellY = celly counter=0 cornerFound= False while (cornerFound == False): if (((cellx, celly+1) not in warehouse.walls) & ((cellx, celly+1) not in warehouse.targets) & ((cellx - 1, celly+1) in warehouse.walls)): celly=celly+1 counter=counter+1 elif (cellx - 1, celly+1) not in warehouse.walls: cornerFound=True elif(cellx, celly +1) in warehouse.targets: cornerFound=True elif (cellx,celly+1) in warehouse.walls: index = 0 while index < counter: tabooCells.append(startCellX, startCellY +index) index += 1 cornerFound=True for cells in originalTaboos: cellx = cells[0] celly = cells[1] startCellX = cellx startCellY = celly counter=0 cornerFound= False while (cornerFound == False): if (((cellx, celly+1) not in warehouse.walls) & ((cellx, celly+1) not in warehouse.targets) & ((cellx + 1, celly+1) in warehouse.walls)): celly=celly+1 counter=counter+1 elif (cellx + 1, celly+1) not in warehouse.walls: cornerFound=True elif(cellx, celly +1) in warehouse.targets: cornerFound=True elif (cellx,celly+1) in warehouse.walls: index = 0 while index < counter: tabooCells.append(startCellX, startCellY +index) index += 1 cornerFound=True # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - class SokobanPuzzle(search.Problem): ''' Class to represent a Sokoban puzzle. Your implementation should be compatible with the search functions of the provided module 'search.py'. Use the sliding puzzle and the pancake puzzle for inspiration! ''' ## "INSERT YOUR CODE HERE" def __init__(self, warehouse): self.initial=warehouse self.initial.read_warehouse_file(self,warehouse) def actions(self, state): """ Return the list of actions that can be executed in the given state if these actions do not push a box in a taboo cell. The actions must belong to the list ['Left', 'Down', 'Right', 'Up'] """ raise NotImplementedError # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - def check_action_seq(warehouse, action_seq): ''' Determine if the sequence of actions listed in 'action_seq' is legal or not. Important notes: - a legal sequence of actions does not necessarily solve the puzzle. - an action is legal even if it pushes a box onto a taboo cell. @param warehouse: a valid Warehouse object @param action_seq: a sequence of legal actions. For example, ['Left', 'Down', Down','Right', 'Up', 'Down'] @return The string 'Failure', if one of the action was not successul. For example, if the agent tries to push two boxes at the same time, or push one box into a wall. Otherwise, if all actions were successful, return A string representing the state of the puzzle after applying the sequence of actions. This must be the same string as the string returned by the method Warehouse.__str__() ''' ## "INSERT YOUR CODE HERE" raise NotImplementedError() # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - def solve_sokoban_elem(warehouse): ''' This function should solve using elementary actions the puzzle defined in a file. @param warehouse: a valid Warehouse object @return A list of strings. If puzzle cannot be solved return ['Impossible'] If a solution was found, return a list of elementary actions that solves the given puzzle coded with 'Left', 'Right', 'Up', 'Down' For example, ['Left', 'Down', Down','Right', 'Up', 'Down'] If the puzzle is already in a goal state, simply return [] ''' ## "INSERT YOUR CODE HERE" raise NotImplementedError() # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - def can_go_there(warehouse, dst): ''' Determine whether the worker can walk to the cell dst=(row,col) without pushing any box. @param warehouse: a valid Warehouse object @return True if the worker can walk to cell dst=(row,col) without pushing any box False otherwise ''' ## "INSERT YOUR CODE HERE" raise NotImplementedError() # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - def solve_sokoban_macro(warehouse): ''' Solve using macro actions the puzzle defined in the warehouse passed as a parameter. A sequence of macro actions should be represented by a list M of the form [ ((r1,c1), a1), ((r2,c2), a2), ..., ((rn,cn), an) ] For example M = [ ((3,4),'Left') , ((5,2),'Up'), ((12,4),'Down') ] means that the worker first goes the box at row 3 and column 4 and pushes it left, then goes the box at row 5 and column 2 and pushes it up, and finally goes the box at row 12 and column 4 and pushes it down. @param warehouse: a valid Warehouse object @return If puzzle cannot be solved return ['Impossible'] Otherwise return M a sequence of macro actions that solves the puzzle. If the puzzle is already in a goal state, simply return [] ''' ## "INSERT YOUR CODE HERE" raise NotImplementedError() # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - wh = sokoban.Warehouse() wh.read_warehouse_file("./warehouses/warehouse_03.txt") # field.write_warehouse_file("./F_01.txt")
import openpyxl from WhatsAppUIAutomation.automation import WhatsAppUi def load_excel(r, input_message): workbook = openpyxl.load_workbook('./whatsapp_ui.xlsx') print(str(workbook) + " Workbook Opened...") sheet = workbook['whatsapp'] print(str(sheet) + " Reading...") sl_no = sheet.cell(row=r, column=1).value number = sheet.cell(row=r, column=2).value whatsapp = WhatsAppUi() whatsapp.search_number(number) whatsapp.send_message(input_message) # OUTPUT WRITE TO EXCEL FILE sheet.cell(row=r, column=3).value = whatsapp.message sheet.cell(row=r, column=4).value = whatsapp.sent_status sheet.cell(row=r, column=5).value = whatsapp.read_status sheet.cell(row=r, column=6).value = whatsapp.login_status sheet.cell(row=r, column=7).value = whatsapp.logout_status workbook.save('./whatsapp_ui.xlsx') print("DATA INSERTED SUCCESSFULLY IN ROW " + str(r)) # print(f'SL No : {sl_no} \n Number : {number} \n ' # f'Message : {message} \n Sent Status : {whatsapp.sent_status} \n ' # f'Checked : {whatsapp.read_status} \n ' # f'Login : {whatsapp.login_status} \n Logout : {whatsapp.logout_status}') if __name__ == "__main__": while True: row = int(input('Enter Excel Row Number : ')) message = input('Enter Message to Send : ') load_excel(row, message) # whatsapp = WhatsAppUi() # whatsapp.search_number("+8801402004389") # whatsapp.send_message("Message sent, Status Checked")
from .development import Dev from .production import Pro import pymysql pymysql.install_as_MySQLdb()
from os.path import splitext, join, basename import numpy as np from torch import from_numpy import torch class WriteTensorToDisc(object): def __init__(self, write_loc, path_annotations): self.write_loc = write_loc self.annotations = path_annotations def __call__(self, sample): name, _ = splitext(basename(sample["name"])) base = name + ".pt" save_file = join("data", sample["label"], base) filesystem_name = join(self.write_loc, sample["label"], base) torch.save(sample["data"], filesystem_name) with open(self.annotations, "a") as f: f.write("{},{},{}\n".format(save_file, sample["label"], "({},{},{},{})".format( sample["data"].shape[0], sample["data"].shape[1], sample["data"].shape[2], sample["data"].shape[3] ))) return sample
import sys s = "I_W1sh_I_H4d_IDA_inst4lled_But_Wh0_C4n_4ff0rd_Th4t" xor = 0xd1 result = 0xd1 print "int xor_bytes[%d] = {" % len(s) for i, c in enumerate(s): xor = result ^ ord(c) result ^= xor sys.stdout.write("0x{:02x}".format(xor) + ", ") if (i + 1) % 16 == 0: print "" print "" print "}"
# simple network sniffer with raw sockets on windows. # requires administrator privileges to modify the interface. import socket # the public network interface HOST = socket.gethostbyname(socket.gethostname()) # create a raw socket and bind it to the public interface s = socket.socket(socket.AF_INET, socket.SOCK_RAW, socket.IPPROTO_IP) s.bind((HOST, 0)) # include IP headers s.setsockopt(socket.IPPROTO_IP, socket.IP_HDRINCL, 1) # receive all packages s.ioctl(socket.SIO_RCVALL, socket.RCVALL_ON) # receive packages while True: print(s.recvfrom(65565)) # disabled promiscuous mode s.ioctl(socket.SIO_RCVALL, socket.RCVALL_OFF)
""" Log output class Created by mahiro hoshino How to use: logger = Logger().get_logger() logger.error("error msg") logger.debug("debug msg") etc... @see https://docs.python.jp/3/howto/logging.html Log output format: time(year-month-day hour-minute-seconds,millisecond): function name: line number: log name: massage """ import logging class Logger: def __init__(self): self._logger = logging.getLogger(__name__) self._logger.setLevel(10) # output file log.txt file_handler = logging.FileHandler('log.txt') self._logger.addHandler(file_handler) stream_handler = logging.StreamHandler() self._logger.addHandler(stream_handler) # time(year-month-day hour-minute-seconds,millisecond): function name: line number: log name: massage formatter = logging.Formatter('%(asctime)s:\t%(funcName)s:\t%(lineno)d:\t%(levelname)s:\t%(message)s') file_handler.setFormatter(formatter) stream_handler.setFormatter(formatter) def get_logger(self): return self._logger
# -*- coding: utf-8 -*- # Generated by Django 1.11.15 on 2018-08-25 14:53 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('user_operation', '0009_auto_20180825_0255'), ] operations = [ migrations.AlterField( model_name='usermessages', name='file', field=models.FileField(blank=True, help_text='Files to Upload', null=True, upload_to='file/usermsg/', verbose_name='Files to Upload'), ), migrations.AlterField( model_name='usermessages', name='msg_type', field=models.IntegerField(choices=[(1, 'Feedback About Products'), (2, 'Complain'), (3, 'Gift Card'), (4, 'Shipping & Handling'), (5, 'Return & Exchange'), (6, 'Product Inquiries'), (7, 'Payment')], default=1, help_text='Message Type: 1: Feedback About Products, 2: Complain, 3: Gift Cards, 4: Shipping & Handling, 5: Return & Exchange, 6: Product Inquiries, 7: Payment', verbose_name='Message Type'), ), ]
# -*- coding: utf-8 -*- # Part of Odoo. See LICENSE file for full copyright and licensing details. { 'name': 'Point of Sale [Mimoki]', 'version': '1.0.1', 'category': 'Point Of Sale', 'author': 'TrendAV', 'maintainer': 'TrendAV', 'website': 'http://www.trendav.com', 'sequence': 21, 'summary': 'Touchscreen Interface for Shops', 'description': """ Quick and Easy sale process from PoS - TrendAV for Mimoki ========================================================= """, 'depends': ['trend_point_of_sale'], 'data': [ 'views/pos_view.xml', 'views/pos_static.xml', ], 'demo': [ ], 'test': [ ], 'installable': True, 'application': True, 'qweb': ['static/src/xml/pos.xml',], 'auto_install': False, }
""" A zero-indexed array A consisting of N different integers is given. The array contains integers in the range [1..(N + 1)], which means that exactly one element is missing. Your goal is to find that missing element. Write a function: def solution(A) that, given a zero-indexed array A, returns the value of the missing element. For example, given array A such that: A[0] = 2 A[1] = 3 A[2] = 1 A[3] = 5 the function should return 4, as it is the missing element. Assume that: N is an integer within the range [0..100,000]; the elements of A are all distinct; each element of array A is an integer within the range [1..(N + 1)]. Complexity: expected worst-case time complexity is O(N); expected worst-case space complexity is O(1), beyond input storage (not counting the storage required for input arguments). Elements of input arrays can be modified. """ def solution(A): # write your code in Python 2.7 N = len(A) #sum of 1 to N+1 total_N = int(0.5 * (N + 1) * (N + 2)) #difference between total_N and sum of elements in A gives you the missing number return total_N - sum(A)
from django import template register = template.Library() @register.filter def str_to_float(value): try: return float(value) except ValueError as e: return None
import pandas as pd, numpy as np oneDList = [10, 20, 30, 40] oneDTable = pd.DataFrame(oneDList) print("Default Column Name:\n", oneDTable) oneDTableIndex = pd.DataFrame({"ColName" : oneDList}) print("With Column Name:\n", oneDTableIndex) withColNameAndRow = pd.Series(oneDList, index=["r1", "r2", "r3", "r4"]) print("With Column and Row Name:\n", withColNameAndRow) withNpAndPd = pd.DataFrame({'Row1' : pd.Series(np.arange(51, 91, 2)), 'Row2' : pd.Series(np.arange(0, 20)), 'Row3' : pd.Series(np.arange(90, 50, -2))}) print("Dimension of withColNameAndRow:", withNpAndPd.ndim) print("Range:", withNpAndPd.axes) print("With Numpy, Panda Series in DataFrame:\n", withNpAndPd) dict_var = [{'col1' : 1, 'col2': 2}, {'col1' : 20, 'col2' : 26, 'col3' : 71}, {'col1' : 50, 'col3' : 51}] dFrameDict = pd.DataFrame(dict_var, index=['row1', 'row2', 'row3']) print(dFrameDict) stud1 = pd.Series([90, 95, 99], index=['Physics', 'Chemistry', 'Mathematics']) stud2 = pd.Series([95, 98, 100, 100], index=['Physics', 'Chemistry', 'Mathematics', 'Cse']) marksTable = pd.DataFrame({ "Dee" : stud1, "Pan" : stud2 }) marksTable['Dp'] = pd.Series([90, 89, 95], index=['Cse', 'Chemistry', 'Mathematics']) print("\nPanda stud1 series:\n", stud1) print("\nPanda stud2 series:\n", stud2) print("\n---Print All Marks---\n", marksTable) addRow = pd.DataFrame([[70, 71, 73]], columns=['Dee', 'Dp', 'Pan']) print("Type of addRow:", type(addRow)) print("Type of stud2:", type(stud2)) print("\n---Add New Row---") marksTable = marksTable.append(addRow) print(marksTable) print("\n---Print Mathematics Row---\n", marksTable.loc['Mathematics']) print("\n---Print 0th Row---\n", marksTable.iloc[0]) # del and pop is for removing columns # drop is for removing rows del(marksTable['Dp']) print("\n---After removing Dp---\n", marksTable) delEntry = marksTable.pop('Pan') print("\n---Popping Pan Entry---\n", delEntry) print("\n---After removing Pan---\n", marksTable) marksTable = marksTable.drop(0) print("\n---After Drop 0---\n", marksTable) marksTable = marksTable.drop('Chemistry') print("\n---After Drop Chemistry---\n", marksTable)
import math import random import sys lastAnswer = 0.0 memory = 0.0 print("-- tCalc V1.2 -- Programmed by Bailey Dawson --") def numGet(token):#get the number out of the string if token == "m": return memory if token =="r": return random.random() if token == "p": return math.pi if str(token).isnumeric(): return token return "ERROR" def getAnswer(inp):#Take in a string, convert it to a answer if "+" in inp: if "+" == inp[0]: try: num = numGet(inp[1:]) if num != "ERROR": return lastAnswer + float(num) else: print("Invalid value | Code 1.1") return "ERROR" except: print("Invalid value | Code 1.2") return "ERROR" else: vals = inp.split("+") return float(numGet(vals[0])) + float(numGet(vals[1])) elif "-" in inp: if "-" == inp[0]: try: num = numGet(inp[1:]) if num != "ERROR": return lastAnswer - float(num) else: print("Invalid value | Code 2.1") return "ERROR" except: print("Invalid value | Code 2.2") return "ERROR" else: vals = inp.split("-") return float(numGet(vals[0])) - float(numGet(vals[1])) elif "*" in inp: if "*" == inp[0]: try: num = numGet(inp[1:]) if num != "ERROR": return lastAnswer * float(num) else: print("Invalid value | Code 3.1") return "ERROR" except: print("Invalid value | Code 3.2") return "ERROR" else: vals = inp.split("*") return float(numGet(vals[0])) * float(numGet(vals[1])) elif "/" in inp: if "/" == inp[0]: try: num = numGet(inp[1:]) if num != "ERROR": return lastAnswer / float(num) else: print("Invalid value | Code 4.1") return "ERROR" except: print("Invalid value | Code 4.2") return "ERROR" else: vals = inp.split("/") return float(numGet(vals[0])) / float(numGet(vals[1])) elif "cos(" in inp: vals = inp.split("(") if vals[1] != "": vals[1] = vals[1].replace(")", "") num = numGet(vals[1]) if num != "ERROR": return math.cos(float(num)) elif "tan(" in inp: vals = inp.split("(") if vals[1] != "": vals[1] = vals[1].replace(")", "") num = numGet(vals[1]) if num != "ERROR": return math.tan(float(num)) elif "sin(" in inp: vals = inp.split("(") if vals[1] != "": vals[1] = vals[1].replace(")", "") num = numGet(vals[1]) if num != "ERROR": return math.sin(float(num)) return "Invalid Input | Code 0.2" if len(sys.argv) > 1: del sys.argv[0] for x in sys.argv: lastAnswer = getAnswer(x) print(lastAnswer) sys.exit() print("Type 'exit' to stop, 'help' for help") while True: inp = input(":> ").replace(" ", "") if inp == "exit": #Stop break elif inp == "help": # Help print("You can add onto the last answer given, by typing '<operator><Number or value>'\nSupported operators:\n\t+\n\t-\n\t*\n\t/\n\tcos(<val>)\n\tsin(<val>)\n\ttan(<val>)\nUsing pi or memory:\n\tto use pi, type p.\n\tTo set memory, type m after it gives the answer you want in memory. To acces memory type m in a calculation") continue elif inp == "m": #Put last into memory memory = lastAnswer continue else: #Calculation lastAnswer = getAnswer(inp) if lastAnswer != "ERROR": print(lastAnswer) continue print("ERROR") continue print("Invalid Input | Code 0.1") print("ERROR")
# coding: utf-8 import argparse import os.path import numpy as np import scipy as sp import pandas as pd import hail as hl from hail.linalg import BlockMatrix from hail.utils import new_temp_file gnomad_latest_versions = {"GRCh37": "2.1.1", "GRCh38": "3.1.2"} gnomad_pops = {"GRCh37": ["afr", "amr", "eas", "fin", "nfe"], "GRCh38": ["afr", "amr", "eas", "fin", "nfe", "sas"]} gnomad_ld_variant_indices = { "GRCh37": "gs://gcp-public-data--gnomad/release/2.1.1/ld/gnomad.genomes.r2.1.1.{pop}.common.adj.ld.variant_indices.ht", "GRCh38": "gs://finucane-requester-pays/slalom/gnomad/release/2.1.1/ld/gnomad.genomes.r2.1.1.{pop}.common.adj.ld.variant_indices.b38.ht", } class ParseKwargs(argparse.Action): def __call__(self, parser, namespace, values, option_string=None): setattr(namespace, self.dest, dict()) for value in values: key, value = value.split("=") if value.isnumeric(): value = float(value) getattr(namespace, self.dest)[key] = value # cf. https://github.com/armartin/prs_disparities/blob/master/run_prs_holdout.py def flip_text(base): """ :param StringExpression base: Expression of a single base :return: StringExpression of flipped base :rtype: StringExpression """ return hl.switch(base).when("A", "T").when("T", "A").when("C", "G").when("G", "C").default(base) def align_alleles(ht, ht_gnomad, flip_rows=None): ht = ht.annotate( **( hl.case() .when( hl.is_defined(ht_gnomad[ht.locus, hl.array([ht.alleles[0], ht.alleles[1]])]), hl.struct(alleles=[ht.alleles[0], ht.alleles[1]], flip_row=False), ) .when( hl.is_defined(ht_gnomad[ht.locus, hl.array([ht.alleles[1], ht.alleles[0]])]), hl.struct(alleles=[ht.alleles[1], ht.alleles[0]], flip_row=True), ) .when( hl.is_defined(ht_gnomad[ht.locus, hl.array([flip_text(ht.alleles[0]), flip_text(ht.alleles[1])])]), hl.struct(alleles=[flip_text(ht.alleles[0]), flip_text(ht.alleles[1])], flip_row=False), ) .when( hl.is_defined(ht_gnomad[ht.locus, hl.array([flip_text(ht.alleles[1]), flip_text(ht.alleles[0])])]), hl.struct(alleles=[flip_text(ht.alleles[1]), flip_text(ht.alleles[0])], flip_row=True), ) .default(hl.struct(alleles=[ht.alleles[0], ht.alleles[1]], flip_row=False)) ) ) if flip_rows is not None: ht = ht.annotate(**{row: hl.if_else(ht.flip_row, -ht[row], ht[row]) for row in flip_rows}) ht = ht.drop("flip_row") return ht def get_diag_mat(diag_vec: BlockMatrix): x = diag_vec.T.to_numpy() diag_mat = np.identity(len(x)) * np.outer(np.ones(len(x)), x) return BlockMatrix.from_numpy(diag_mat) def abf(beta, se, W=0.04): z = beta / se V = se ** 2 r = W / (W + V) lbf = 0.5 * (np.log(1 - r) + (r * z ** 2)) denom = sp.special.logsumexp(lbf) prob = np.exp(lbf - denom) return lbf, prob def get_cs(variant, prob, coverage=0.95): ordering = np.argsort(prob)[::-1] idx = np.where(np.cumsum(prob[ordering]) > coverage)[0][0] cs = variant[ordering][: (idx + 1)] return cs def main(args): hl._set_flags(no_whole_stage_codegen="1") reference_genome = args.reference_genome gnomad_version = gnomad_latest_versions[reference_genome] gnomad_ht_path = f"gs://finucane-requester-pays/slalom/gnomad/release/{gnomad_version}/ht/genomes/gnomad.genomes.r{gnomad_version}.sites.most_severe.ht" ht_snp = hl.import_table(args.snp, impute=True, types={"chromosome": hl.tstr}, delimiter="\s+") ht_snp = ht_snp.annotate( locus=hl.parse_locus( hl.delimit([ht_snp.chromosome, hl.str(ht_snp.position)], delimiter=":"), reference_genome=reference_genome ), alleles=[ht_snp.allele1, ht_snp.allele2], ) if args.align_alleles: ht_gnomad = hl.read_table(gnomad_ht_path) ht_snp = align_alleles(ht_snp, ht_gnomad, flip_rows=["beta"]) ht_snp = ht_snp.annotate(variant=hl.variant_str(ht_snp.locus, ht_snp.alleles)) ht_snp = ht_snp.key_by("locus", "alleles") ht_snp = ht_snp.add_index("idx_snp") # annotate in novel CUPs and reject cup = hl.read_table(f"gs://finucane-requester-pays/slalom/cup_files/FASTA_BED.ALL_{reference_genome}.novel_CUPs.ht") reject = hl.read_table( f"gs://finucane-requester-pays/slalom/cup_files/FASTA_BED.ALL_{reference_genome}.reject_2.ht" ) ht_snp = ht_snp.annotate(in_cups=hl.is_defined(cup[ht_snp.locus]) | hl.is_defined(reject[ht_snp.locus])) # annotate vep and freq if args.annotate_consequence or args.annotate_gnomad_freq: ht_gnomad = hl.read_table(gnomad_ht_path) consequences = ["most_severe", "gene_most_severe", "consequence"] if args.annotate_consequence else [] freq_expr = ( {f"gnomad_v{gnomad_version[0]}_af_{pop}": ht_gnomad.freq[pop].AF for pop in gnomad_pops[reference_genome]} if args.annotate_gnomad_freq else {} ) ht_gnomad = ht_gnomad.select(*consequences, **freq_expr) ht_snp = ht_snp.join(ht_gnomad, how="left") ht_snp = ht_snp.checkpoint(new_temp_file()) df = ht_snp.key_by().drop("locus", "alleles", "idx_snp").to_pandas() if args.abf: lbf, prob = abf(df.beta, df.se, W=args.abf_prior_variance) cs = get_cs(df.variant, prob, coverage=0.95) cs_99 = get_cs(df.variant, prob, coverage=0.99) df["lbf"] = lbf df["prob"] = prob df["cs"] = df.variant.isin(cs) df["cs_99"] = df.variant.isin(cs_99) if args.lead_variant is None: if args.lead_variant_choice == "p": lead_idx_snp = df.p.idxmin() elif args.lead_variant_choice == "prob": lead_idx_snp = df.prob.idxmax() elif args.lead_variant_choice in ["gamma", "gamma-p"]: lead_idx_snp = df.index[df.gamma] if len(lead_idx_snp) == 0: if args.lead_variant_choice == "gamma-p": lead_idx_snp = df.p.idxmin() else: raise ValueError("No lead variants found with gamma.") elif len(lead_idx_snp) > 1: raise ValueError("Multiple lead variants found with gamma.") else: lead_idx_snp = lead_idx_snp[0] args.lead_variant = df.variant[lead_idx_snp] else: lead_idx_snp = df.index[df.variant == args.lead_variant] df["lead_variant"] = False df["lead_variant"].iloc[lead_idx_snp] = True # annotate LD r2_label = "r2" if not args.export_r else "r" if args.ld_reference == "gnomad": ld_matrices = [ f"gs://gcp-public-data--gnomad/release/2.1.1/ld/gnomad.genomes.r2.1.1.{pop}.common.ld.bm" for pop in gnomad_pops["GRCh37"] ] ld_variant_indices = [ gnomad_ld_variant_indices[reference_genome].format(pop=pop) for pop in gnomad_pops["GRCh37"] ] ld_labels = [f"gnomad_lead_{r2_label}_{pop}" for pop in gnomad_pops["GRCh37"]] else: ld_matrices = [args.custom_ld_path] ld_variant_indices = [args.custom_ld_variant_index_path] ld_labels = [f"{args.custom_ld_label}_lead_{r2_label}"] for ld_bm_path, ld_ht_path, col in zip(ld_matrices, ld_variant_indices, ld_labels): ht = hl.read_table(ld_ht_path) ht = ht_snp.join(ht, "inner") ht = ht.checkpoint(new_temp_file()) lead_idx = ht.filter(hl.variant_str(ht.locus, ht.alleles) == args.lead_variant).head(1).idx.collect() if len(lead_idx) == 0: df[col] = np.nan continue idx = ht.idx.collect() idx2 = sorted(list(set(idx))) bm = BlockMatrix.read(ld_bm_path) bm = bm.filter(idx2, idx2) if not np.all(np.diff(idx) > 0): order = np.argsort(idx) rank = np.empty_like(order) _, inv_idx = np.unique(np.sort(idx), return_inverse=True) rank[order] = inv_idx mat = bm.to_numpy()[np.ix_(rank, rank)] bm = BlockMatrix.from_numpy(mat) # re-densify triangluar matrix bm = bm + bm.T - get_diag_mat(bm.diagonal()) bm = bm.filter_rows(np.where(np.array(idx) == lead_idx[0])[0].tolist()) idx_snp = ht.idx_snp.collect() r2 = bm.to_numpy()[0] if not args.export_r: r2 = r2 ** 2 df[col] = np.nan df[col].iloc[idx_snp] = r2 if args.weighted_average_r is not None: n_samples = [] ld = [] for k, v in args.weighted_average_r.items(): if isinstance(v, str): if v not in df.columns: print(f"Column {v} not found.") continue n_samples.append(df[v].values) else: n_samples.append(np.tile(v, len(df.index))) ld.append(df[f"gnomad_lead_r_{k}"].values) if len(n_samples) == 1: df["r"] = ld[0] else: n_samples = np.array(n_samples).T ld = np.array(ld).T df["r"] = np.nansum(n_samples * ld, axis=1) / np.nansum(n_samples * ~np.isnan(ld), axis=1) elif args.ld_reference == "custom": df["r"] = df[ld_labels[0]] else: df["r"] = df["gnomad_lead_r_nfe"] if args.dentist_s: lead_z = (df.beta / df.se).iloc[lead_idx_snp] df["t_dentist_s"] = ((df.beta / df.se) - df.r * lead_z) ** 2 / (1 - df.r ** 2) df["t_dentist_s"] = np.where(df["t_dentist_s"] < 0, np.inf, df["t_dentist_s"]) df["t_dentist_s"].iloc[lead_idx_snp] = np.nan df["nlog10p_dentist_s"] = sp.stats.chi2.logsf(df["t_dentist_s"], df=1) / -np.log(10) if args.out.startswith("gs://"): fopen = hl.hadoop_open else: fopen = open with fopen(args.out, "w") as f: df.drop(columns=["variant"]).to_csv(f, sep="\t", na_rep="NA", index=False) if args.summary: df["r2"] = df.r ** 2 if args.case_control: df["n_eff_samples"] = df.n_samples * (df.n_cases / df.n_samples) * (1 - df.n_cases / df.n_samples) else: df["n_eff_samples"] = df.n_samples n_r2 = np.sum(df.r2 > args.r2_threshold) n_dentist_s_outlier = np.sum( (df.r2 > args.r2_threshold) & (df.nlog10p_dentist_s > args.nlog10p_dentist_s_threshold) ) max_pip_idx = df.prob.idxmax() nonsyn_idx = (df.r2 > args.r2_threshold) & df.consequence.isin(["pLoF", "Missense"]) variant = df.chromosome.str.cat([df.position.astype(str), df.allele1, df.allele2], sep=":") n_eff_r2 = df.n_eff_samples.loc[df.r2 > args.r2_threshold] df_summary = pd.DataFrame( { "lead_pip_variant": [variant.iloc[max_pip_idx]], "n_total": [len(df.index)], "n_r2": [n_r2], "n_dentist_s_outlier": [n_dentist_s_outlier], "fraction": [n_dentist_s_outlier / n_r2 if n_r2 > 0 else 0], "n_nonsyn": [np.sum(nonsyn_idx)], "max_pip": [np.max(df.prob)], "max_pip_nonsyn": [np.max(df.prob.loc[nonsyn_idx])], "cs_nonsyn": [np.any(df.cs.loc[nonsyn_idx])], "cs_99_nonsyn": [np.any(df.cs_99.loc[nonsyn_idx])], "nonsyn_variants": [",".join(variant.loc[nonsyn_idx].values)], "min_neff_r2": [np.nanmin(n_eff_r2) if n_r2 > 0 else np.nan], "max_neff_r2": [np.nanmax(n_eff_r2)] if n_r2 > 0 else np.nan, } ) with fopen(args.out_summary, "w") as f: df_summary.to_csv(f, sep="\t", na_rep="NA", index=False) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--snp", type=str, required=True, help="Input snp file from fine-mapping") parser.add_argument("--out", type=str, required=True, help="Output path") parser.add_argument("--out-summary", type=str, help="Output summary path") parser.add_argument("--delimiter", type=str, default=" ", help="Delimiter for output ld matrix") parser.add_argument("--lead-variant", type=str, help="Lead variant to annotate gnomAD LD") parser.add_argument( "--lead-variant-choice", type=str, default="p", choices=["p", "prob", "gamma", "gamma-p"], help="Strategy for choosing a lead variant", ) parser.add_argument("--align-alleles", action="store_true", help="Whether to align alleles with gnomAD") parser.add_argument("--annotate-consequence", action="store_true", help="Whether to annotate VEP consequences") parser.add_argument("--annotate-gnomad-freq", action="store_true", help="Whether to annotate gnomAD frequencies") parser.add_argument( "--ld-reference", type=str, default="gnomad", choices=["gnomad", "custom"], help="Choice of LD reference" ) parser.add_argument("--custom-ld-path", type=str, help="Path of user-provided LD BlockMatrix") parser.add_argument("--custom-ld-variant-index-path", type=str, help="Path of user-provided LD variant index table") parser.add_argument("--custom-ld-label", type=str, help="Label of user-provided LD") parser.add_argument("--export-r", action="store_true", help="Export signed r values instead of r2") parser.add_argument("--weighted-average-r", type=str, nargs="+", action=ParseKwargs, help="") parser.add_argument("--dentist-s", action="store_true", help="Annotate DENTIST-S statistics") parser.add_argument("--abf", action="store_true", help="Run ABF") parser.add_argument("--abf-prior-variance", type=float, default=0.04, help="Prior effect size variance for ABF") parser.add_argument( "--reference-genome", type=str, default="GRCh37", choices=["GRCh37", "GRCh38"], help="Reference genome of sumstats", ) parser.add_argument("--summary", action="store_true", help="Whether to output a summary file") parser.add_argument("--case-control", action="store_true", help="Whether the input is from a case-control study") parser.add_argument( "--r2-threshold", type=float, default=0.6, help="r2 threshold of DENTIST-S outlier variants for prediction" ) parser.add_argument( "--nlog10p-dentist-s-threshold", type=float, default=4, help="-log10 DENTIST-S P value threshold of DENTIST-S outlier variants for prediction", ) args = parser.parse_args() if args.out_summary is None: args.out_summary = f"{os.path.splitext(args.out)[0]}.summary.txt" if args.ld_reference == "custom" and ( (args.custom_ld_path is None) or (args.custom_ld_variant_index_path is None) or (args.custom_ld_label is None) ): raise argparse.ArgumentError( "All of --custom-ld-path, --custom-ld-variant-index-path, and --custom-ld-label should be provided" ) main(args)
from drivers.driver import IDriver from selenium import webdriver class DriverChrome(IDriver): def __init__(self): self.driver =None def instanceDriver(self): self.driver = webdriver.Chrome(executable_path=r'C:\Users\pc\Desktop\django\chromedriver.exe') def freeDriver(self): self.driver.quit() def returnDriver(self): return self.driver
from discord.ext import commands from DaveBOT import checks class Admin: """Admin-only commands.""" def __init__(self, bot): self.client = bot @commands.command(hidden=True) @checks.adminonly() async def load(self, *, module: str): """Load a module.""" try: self.client.load_extension(module) except Exception as e: await self.client.say(f"{type(e).__name__}: {e}") else: await self.client.say("Module loaded.") @commands.command(hidden=True) @checks.adminonly() async def unload(self, *, module: str): """Unload a module.""" try: self.client.unload_extension(module) except Exception as e: await self.client.say(f"{type(e).__name__}: {e}") else: await self.client.say("Module unloaded.") @commands.command(hidden=True) @checks.adminonly() async def reload(self, *, module: str): """Reload a module.""" try: self.client.unload_extension(module) self.client.load_extension(module) except Exception as e: await self.client.say(f"{type(e).__name__}: {e}") else: await self.client.say("Module reloaded.") def setup(bot): bot.add_cog(Admin(bot))
import requests from bs4 import BeautifulSoup import pandas as pd wiki = requests.get('https://en.wikipedia.org/wiki/List_of_mass_shootings_in_the_United_States') soup = BeautifulSoup(wiki.content, 'html.parser') tables = soup.find_all('table', class_='wikitable sortable') alltables=pd.DataFrame() for x in tables: df = pd.read_html(str(x)) alltables=alltables.append(df,ignore_index=True) print(alltables) alltables.to_csv('data.csv')
import numpy as np from copy import deepcopy import lasagne from braindecode.veganlasagne.layers import get_all_paths from braindecode.veganlasagne.layer_util import set_to_new_input_layer def get_longest_path(final_layer): all_paths = get_all_paths(final_layer) path_lens = [len(p) for p in all_paths] i_longest = np.argmax(path_lens) return all_paths[i_longest] def create_adversarial_model(final_layer, i_split_layer): final_adv = deepcopy(final_layer) longest_path_seiz = get_longest_path(final_layer) longest_path_adv = get_longest_path(final_adv) longest_path_adv[i_split_layer+1].input_layer = longest_path_seiz[ i_split_layer] # just in case there is a hanging input layer # maybe this is not the full fix to the problem # of multiple paths through the final layer network # mostly just a hack for now in_l_main = [l for l in lasagne.layers.get_all_layers(final_layer) if l.__class__.__name__ == 'InputLayer'] assert len(in_l_main) == 1 set_to_new_input_layer(final_adv, in_l_main[0]) # check if everything is correct, layers up to i split layer # are shared, later ones not longest_path_adv = get_longest_path(final_adv) for i_layer in range(i_split_layer+1): assert longest_path_adv[i_layer] == longest_path_seiz[i_layer] for i_layer in range(i_split_layer+1, len(longest_path_adv)): assert longest_path_adv[i_layer] != longest_path_seiz[i_layer] return final_adv
import urllib import urllib2 import hashlib url = 'http://219.223.254.66/cgi-bin/srun_portal' val = { 'action' : 'logout' } data = urllib.urlencode(val) req = urllib2.Request(url, data) response = urllib2.urlopen(req) the_page = response.read() print the_page
from django.urls import path from reddituser import views urlpatterns = [ path('<str:username>/', views.user_profile_view, name='user_profile'), path('<str:username>/delete/', views.delete_profile_view, name='delete_profile'), ]
# Generated by Django 2.2.1 on 2019-05-09 06:46 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('portalapp', '0011_auto_20190507_1806'), ] operations = [ migrations.AddField( model_name='student', name='mentor', field=models.CharField(default=' ', max_length=100), ), ]
import time import datetime def create_timestamp(): today_now = datetime.datetime.now() # __secs = today_now.second # __minutes = today_now.minute # __hour = today_now.hour # __days = today_now.day # __month = today_now.month # __year = today_now.year return today_now.timestamp() def coin_data_formatter(list__): """ The function would take a coin dictionary parameter and return formated string which would be used for hashing """ data_to_hash = " _ ".join(list__) return data_to_hash
#!/usr/bin/env python #coding=utf-8 import os import logging import re logging.basicConfig(level=logging.DEBUG,format='%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s', datefmt='%a, %d %b %Y %H:%M:%S') def config_stats(): """ config the all port of config.py in the marathon-lb :None """ if not os.path.isfile('config.py'): logging.debug("The file: config.py doesn't exist...") return try: with open('config.py','r+') as fd: flag_stats=False for line in fd.readlines(): with open('config_tmp.py','a+') as ftmp: stats_r=re.match("listen stats\n",line) if stats_r or flag_stats: logging.debug("Find the line:{}".format(line)) if stats_r: flag_stats=True ftmp.write(line) continue elif flag_stats: stat_bind=re.match(" bind ",line) if stat_bind: logging.debug("Find the line:{}".format(line)) stat_port=os.getenv("STATS") logging.debug("Get the envvariable:{}".format(stat_port)) sub_r=" bind 0.0.0.0:{}".format(stat_port) line=re.sub(r" bind 0.0.0.0:10002",sub_r,line) logging.debug("The dealed line :{}".format(sub_r)) ftmp.write(line) flag_stats=False else: ftmp.wrie(line) else: ftmp.write(line) except Exception: logging.debug("Open or Read the config.py Failed!...") os.system("rm -rf config.py") os.system("cp config_tmp.py config.py") os.system("rm -rf config_tmp.py") def config_marathon_http_in(): """ config the all port of config.py in the marathon-lb :None """ if not os.path.isfile('config.py'): logging.debug("The file: config.py doesn't exist...") return try: with open('config.py','r+') as fd: flag_marathon_http_in=False for line in fd.readlines(): with open('config_tmp.py','a+') as ftmp: marathon_http_in_r=re.match("frontend marathon_http_in\n",line) if marathon_http_in_r or flag_marathon_http_in: logging.debug("Find the line:{}".format(line)) if marathon_http_in_r: flag_marathon_http_in=True ftmp.write(line) continue elif flag_marathon_http_in: stat_bind_marathon_http_in=re.match(" bind ",line) if stat_bind_marathon_http_in: logging.debug("Find the line:{}".format(line)) marathon_http_in_port=os.getenv("MARATHON_HTTP_IN") logging.debug("Get the envvariable:{}".format(marathon_http_in_port)) marathon_http_in_sub_r=" bind *:{}".format(marathon_http_in_port) marathon_http_in_line=re.sub(r" bind \*:8080",marathon_http_in_sub_r,line) logging.debug("The dealed line :{}".format(marathon_http_in_line)) ftmp.write(marathon_http_in_line) flag_marathon_http_in=False else: ftmp.wrie(line) else: ftmp.write(line) except Exception: logging.debug("Open or Read the config.py Failed!...") os.system("rm -rf config.py") os.system("cp config_tmp.py config.py") os.system("rm -rf config_tmp.py") def config_marathon_http_appid_in(): """ config the marathon_http_appid_in's port of config.py in the marathon-lb :None """ if not os.path.isfile('config.py'): logging.debug("The file: config.py doesn't exist...") return try: with open('config.py','r+') as fd: flag_marathon_http_appid_in=False for line in fd.readlines(): with open('config_tmp.py','a+') as ftmp: marathon_http_appid_in_r=re.match("frontend marathon_http_appid_in\n",line) if marathon_http_appid_in_r or flag_marathon_http_appid_in: logging.debug("Find the line:{}".format(line)) if marathon_http_appid_in_r: flag_marathon_http_appid_in=True ftmp.write(line) continue elif flag_marathon_http_appid_in: stat_bind_marathon_http_appid_in=re.match(" bind ",line) if stat_bind_marathon_http_appid_in: logging.debug("Find the line:{}".format(line)) marathon_http_appid_in_port=os.getenv("MARATHON_HTTP_APPID_IN") logging.debug("Get the envvariable:{}".format(marathon_http_appid_in_port)) marathon_http_appid_in_sub_r=" bind *:{}".format(marathon_http_appid_in_port) marathon_http_appid_in_line=re.sub(r" bind \*:9091",marathon_http_appid_in_sub_r,line) logging.debug("The dealed line :{}".format(marathon_http_appid_in_line)) ftmp.write(marathon_http_appid_in_line) flag_marathon_http_appid_in=False else: ftmp.wrie(line) else: ftmp.write(line) except Exception: logging.debug("Open or Read the config.py Failed!...") os.system("rm -rf config.py") os.system("cp config_tmp.py config.py") os.system("rm -rf config_tmp.py") def config_marathon_https_in(): """ config the all port of config.py in the marathon-lb :None """ if not os.path.isfile('config.py'): logging.debug("The file: config.py doesn't exist...") return try: with open('config.py','r+') as fd: flag_marathon_https_in=False for line in fd.readlines(): with open('config_tmp.py','a+') as ftmp: marathon_https_in_r=re.match("frontend marathon_https_in\n",line) if marathon_https_in_r or flag_marathon_https_in: logging.debug("Find the line:{}".format(line)) if marathon_https_in_r: flag_marathon_https_in=True ftmp.write(line) continue elif flag_marathon_https_in: stat_bind_marathon_https_in=re.match(" bind ",line) if stat_bind_marathon_https_in: logging.debug("Find the line:{}".format(line)) marathon_https_in_port=os.getenv("MARATHON_HTTPS_IN") logging.debug("Get the envvariable:{}".format(marathon_https_in_port)) marathon_https_in_sub_r=" bind *:{} ssl ".format(marathon_https_in_port)+"{"+"sslCert"+"}" logging.debug("The marathon_https_in_sub_r : {}".format(marathon_https_in_sub_r)) marathon_https_in_line=re.sub(r" bind \*:443 ssl \{sslCerts\}",marathon_https_in_sub_r,line) logging.debug("The dealed line :{}".format(marathon_https_in_line)) ftmp.write(marathon_https_in_line) flag_marathon_https_in=False else: ftmp.wrie(line) else: ftmp.write(line) except Exception: logging.debug("Open or Read the config.py Failed!...") os.system("rm -rf config.py") os.system("cp config_tmp.py config.py") os.system("rm -rf config_tmp.py") if __name__=='__main__': config_stats() config_marathon_http_in() config_marathon_http_appid_in() #config_marathon_https_in()
# import pytest, sys from helpers_for_tests import reset_queries, run_args_on_parser as runargs # sys.path.insert(1, './backup') # from parser import create_parser def test_no_args(): result = runargs([]) assert "No arguments were provided." in result.err def test_check_if_enter_something_other_than_config_add_update_remove_run(): # with pytest.raises(SystemExit): # parser.parse_args(['foo']) # out, err = capfd.readouterr() result = runargs(["foo"]) assert "invalid choice: 'foo'" in result.err # assert "error: argument command: invalid choice: 'foo'" in out
def evaporator(content, evap_per_day, threshold): day = 0 evap_per_day /= 100.0 threshold = content * (threshold / 100.0) while content >= threshold: content -= content * evap_per_day day += 1 return day
from src.ChessQueenWorld import ChessQueenWorld cqw = ChessQueenWorld() #cqw.solve_sample_board(0) cqw.bulk_solve(10)
import requests import re from urllib.parse import urlparse import sys import keyboard url = "https://ifunny.co/" file = open("links.txt", "a+") visited = [] iteration = 0 start_index = 0 recursive_depth = -1 def scrape(links): global iteration output = [] valid = True for link in links: if link not in visited or link == url: try: parsed = urlparse(link) base = f"{parsed.scheme}://{parsed.netloc}" html = requests.get(link) output = re.findall('''<a\s+(?:[^>]*?\s+)?href="([^"]*)"''', str(html.content)) temp = [] for i in output: if i.find('/picture/') != -1: temp.append(i) output = temp for o in range(len(output)): if not urlparse(output[o]).netloc: link_with_base = base + output[o] output[o] = link_with_base file = open("links.txt", "a+") file.write(str(output)) file.close() except: valid = False pass if valid == True: print("Scraped "+str(link)) resp = requests.post('https://qxvxx2xw1g.execute-api.us-east-2.amazonaws.com/basic/submit', json={"body":output}) print(output) visited.append(link) iteration += 1 if iteration < recursive_depth: print("Recursion Reset.") iteration = 0 scrape([url]) scrape(output[start_index:]) else: pass scrape([url])
{ 'targets': [{ 'target_name': 'test', 'type': 'executable', 'dependencies': [ 'testlib/testlib.gyp:proxy', 'proxy/proxy.gyp:testlib', ], }], }
from unittest import TestCase from phi.field._field_math import data_bounds from phi.field._point_cloud import distribute_points from phi.flow import * def step(particles: PointCloud, obstacles: list, dt: float, **grid_resolution): # --- Grid Operations --- velocity = prev_velocity = field.finite_fill(resample(particles, StaggeredGrid(0, 0, particles.bounds, **grid_resolution), outside_handling='clamp', scatter=True)) occupied = resample(field.mask(particles), CenteredGrid(0, velocity.extrapolation.spatial_gradient(), velocity.bounds, velocity.resolution), scatter=True) velocity, pressure = fluid.make_incompressible(velocity + (0, -9.81 * dt), obstacles, active=occupied) # --- Particle Operations --- particles += resample(velocity - prev_velocity, particles) # FLIP update # particles = velocity @ particles # PIC update particles = advect.points(particles, velocity * field.mask(~union(obstacles)), dt, advect.finite_rk4) particles = fluid.boundary_push(particles, obstacles + [~particles.bounds]) return particles class FlipTest(TestCase): def test_single_particles(self): """ Tests if single particles at the boundaries and within the domain really fall down. """ particles = initial_particles = distribute_points(union(Box['x,y', 0:1, 10:11], Box['x,y', 31:32, 20:21], Box['x,y', 10:11, 10:11]), x=32, y=32, points_per_cell=1) * (0, 0) self.assertEqual(3, particles.points.points.size) for i in range(10): particles = step(particles, [], x=32, y=32, dt=0.05) assert math.all(particles.points.vector[1] < initial_particles.points.vector[1]) def test_pool(self): """ Tests if a pool of liquid at the bottom stays constant over time. """ particles = initial_particles = distribute_points(Box['x,y', :, :10], x=32, y=32) * (0, 0) for i in range(100): particles = step(particles, [], x=32, y=32, dt=0.05) occupied_start = initial_particles.with_values(1) @ CenteredGrid(0, 0, x=32, y=32) occupied_end = particles.with_values(1) @ CenteredGrid(0, 0, x=32, y=32) math.assert_close(occupied_start.values, occupied_end.values) math.assert_close(initial_particles.points, particles.points, abs_tolerance=1e-3) def test_falling_block_long(self): """ Tests if a block of liquid has a constant shape during free fall. """ particles = initial_particles = distribute_points(Box['x,y', 12:20, 110:120], x=32, y=128) * (0, 0) initial_bounds = data_bounds(particles) for i in range(90): particles = step(particles, [], x=32, y=128, dt=0.05) math.assert_close(data_bounds(particles).size, initial_bounds.size) # shape of falling block stays the same assert math.max(particles.points, dim='points').vector['y'] < math.max(initial_particles.points, dim='points').vector['y'] # block really falls def test_block_and_pool(self): """ Tests if the impact of a block on a pool has no side-effects (e.g. liquid explosion). """ particles = distribute_points(union(Box['x,y', :, :5], Box['x,y', 12:18, 15:20]), x=32, y=32) * (0, 0) for i in range(100): particles = step(particles, [], x=32, y=32, dt=0.05) assert math.all(particles.points.vector[1] < 15) def test_symmetry(self): """ Tests the symmetry of a setup where a liquid block collides with 2 rotated obstacles. """ OBSTACLES = [Box['x,y', 20:30, 10:12].rotated(math.tensor(20)), Box['x,y', 34:44, 10:12].rotated(math.tensor(-20))] x_low = 26 x_high = 38 y_low = 40 y_high = 50 particles = distribute_points(Box['x,y', x_low:x_high, y_low:y_high], x=64, y=64, center=True) * (0, 0) x_num = int((x_high - x_low) / 2) y_num = y_high - y_low particles_per_cell = 8 total = x_num * y_num for i in range(100): print(i) particles = step(particles, OBSTACLES, x=64, y=64, dt=0.05) left = particles.points.points[particles.points.vector[0] < 32] right = particles.points.points[particles.points.vector[0] > 32] self.assertEqual(left.points.size, right.points.size) mirrored = math.copy(right).numpy('points,vector') mirrored[:, 0] = 64 - right[:, 0] smirrored = np.zeros_like(mirrored) # --- particle order of mirrored version differs from original one and must be fixed for MSE # (caused by ordering in phi.physics._boundaries _distribute_points) --- for p in range(particles_per_cell): for b in range(x_num): smirrored[p * total + b * y_num:p * total + (b + 1) * y_num] = mirrored[(p + 1) * total - (b + 1) * y_num:(p + 1) * total - b * y_num] mse = np.square(smirrored - left.numpy('points,vector')).mean() if i < 45: assert mse == 0 # block is still falling, hits obstacles at step 46 else: # ToDo this currently fails assert mse <= 1e-3 # error increases gradually after block and obstacles collide
bu dosyaya yazdigimiz ilk satir.
# coding=utf-8 import math import os from src.util import common def split_by_proportion(src_file_path, target_dir_path, split_file_cnt): """按照相等的概率(拟合频率)将文件 src_file 划分为 split_file_cnt 个文件, 并保存在 target_dir_path 目录下. 不保证每个文件的行数严格相等, 只保证将 1 行分配到各文件的概率相等. """ with open(src_file_path) as file: split_files = [open(os.path.join(target_dir_path, 'part-%d.split' % file_no), 'w') for file_no in range(split_file_cnt)] for line in file: file_no = int(math.floor(common.new_proportion() * split_file_cnt)) split_files[file_no].write(line) [split_file.close() for split_file in split_files]
# coding:utf-8 # 导入Numpy(数学运算)和Matplotlib的pyplot两个模块 # matplotlib.pyplot.plot(x, y, label="标签颜色", color="折线颜色", linestyle="折线类型", linewidth="线宽", # marker="标记点符号", markersize="标记点大小") import numpy as np import matplotlib import matplotlib.pyplot as plt # 设置字体 plt.rcParams['font.sans-serif'] = ['SimHei'] # 显示中文标签 plt.rcParams['axes.unicode_minus'] = False # 1.使用plot来绘制折线 # 修改标签文字和线条粗细 plt.title("squre number", fontsize=24) plt.xlabel("Value", fontsize=14) plt.ylabel("square of value", fontsize=14) plt.tick_params(axis='both', labelsize=14) x_values = [1, 2, 3, 4, 5] y_values = [1, 4, 9, 16, 25] plt.plot(x_values, y_values, linewidth=5) print("===================折线图1=========================") plt.show() # 2.使用Matplotlib绘制一个正弦和余弦函数曲线 # 创建X轴的数据:从-PI到PI的256个等差数字 x = np.linspace(-np.pi, np.pi, 256, endpoint=True) # 使用cos和sin函数以x为自变量创建C和S C, S = np.cos(x), np.sin(x) zhfont1 = matplotlib.font_manager.FontProperties(fname="../font/SimHei.ttf") # 修改标签文字和线条粗细 plt.title("正弦与余弦曲线", fontsize=24) # 使用plot()分别绘制正弦和余弦函数 plt.plot(x, C) plt.plot(x, S) print("===================正弦与余弦曲线===================") plt.show() # 3.绘制一段最基本的折线图 # 创建1个点数 8 x 6 的窗口,并设置分辨率为80像素/英寸 plt.figure(figsize=(8, 6), dpi=80) # 创建X轴的数据:从-2到6的5个等差数字,分别为-2,0,2,4,6 x = np.linspace(-2, 6, 5) # 绘制直线1 y1 = x + 3 # 绘制直线2 y2 = 3 - x # 绘制绿色,宽度为1个像素的实线 plt.plot(x, y1, color="green", linewidth=1.0, linestyle="-", label="y1") # 绘制红色,宽度为2个像素的虚线 plt.plot(x, y2, color="red", linewidth=2.0, linestyle="--", label="y2") # 设置横轴的上下限为-1~6 plt.xlim(-1, 6) # 设置纵轴的上下限为-2~10 plt.ylim(-2, 10) # 设置图例 plt.legend(loc="upper left") # 注释特殊点位 # scatter([x][y],s="点的大小")函数用于绘制散点图 plt.scatter([3], [6], s=30, color="blue") plt.scatter([3], [0], s=30, color="red") # annotate("标注内容",xy=(要在哪个位置点标注内容)) plt.annotate("(3,6)", xy=(3.3, 5.5), fontsize=16) plt.annotate("(3,0)", xy=(3.3, 0), fontsize=16) # 想给点添加注释,需要使用text(x,y,s)函数 plt.text(4, -0.5, "该处为重要点位", fontdict={'size': 12, 'color': 'green'}) # 保存图表 # plt.savefig()函数: # 支持png/pdf/svg/ps等,以后缀名来指定 # dpi=分辨率, # bbox_inches='tight',尝试剪除图表周围的空白部分 # facecolor/edgecolor: plt.savefig("pic.png", dpi=100, bbox_inches='tight', facecolor="purple", edgecolor="blue") print("===================折线图2=========================") plt.show() # 4.使用bar()函数绘制一个柱状图 # 创建1个点数 8 x 6 的窗口,并设置分辨率为80像素/英寸 plt.figure(figsize=(8, 6), dpi=80) # 设置柱子总数 N = 6 # 包含每个柱子对应值的序列 values = (5, 16, 20, 25, 23, 28) # 包含每个柱子下标的序列 index = np.arange(N) # 柱子的宽度 width = 0.55 # 绘制柱状图,每根柱子的颜色为蓝色 ps = plt.bar(index, values, width, label="月均气温", color="#87CEFA") # 设置横轴标签 plt.xlabel("月份") # 设置纵轴标签 plt.ylabel("温度(摄氏度)") # 添加标题 plt.title("月均气温") # 添加纵横轴的刻度(1st列表的值代表刻度,2nd列表的值代表所显示的标签) plt.xticks(index, ('一月', '二月', '三月', '四月', '五月', '六月')) # arange函数用于创建等差数组:np.arange([start, ]stop, [step, ]dtype=None) plt.yticks(np.arange(0, 50, 10)) # 添加图例 plt.legend(['温度'], loc="upper right") print("===================柱状图==========================") plt.show() # 5.使用pie()函数绘制一个柱状图 labels = '大一', '大二', '大三', '大四' # labels设置各个分片的标签 sizes = [15, 30, 45, 10] # 数值列表 # 将"大二"突出显示 explode = (0, 0.1, 0, 0) # explode指定饼图中突出的分片 # autopct设置标签中的数字格式; shadow设置是否有阴影;startangle设置从哪个角度开始绘制饼图 plt.pie(sizes, explode=explode, labels=labels, autopct='%1.1f%%', shadow=True, startangle=90) plt.axis('equal') # 确保饼图是个圆形 plt.title('饼图示例') print("===================饼图===========================") plt.show()
# FOR Loops or count controlled iteration # FOR loops will run for a predetermined number of times # FOR loops can also use break and continue as covered in 02 # i is a variable, you can pass one in or create a new one. i is typically used as it relates to "index". # the range() creates a sequence of values to iterate through (0, 1, 2, 3..) for i in range(5): print(i) print("==============") # Range can have 2 values passed into. Value 1 is where it will start, Value 2 is where it will enf for i in range(5, 10): print(i) print("==============") # Range can actually have 3 values passed into it. The third value is the STEP argument which states how many it changes each time # Such as move in 2s for i in range(0, 10, 2): print(i) print("==============")
# -*- coding: utf-8 -*- # Generated by Django 1.11.2 on 2018-03-20 06:55 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('fitbit', '0003_auto_20180313_0749'), ] operations = [ migrations.CreateModel( name='UserFitbitDataSleep', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('date_of_sleep', models.TextField()), ('data', models.TextField()), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='fitbit_sleep_data', to=settings.AUTH_USER_MODEL)), ], ), ]
import numpy as np from scipy.integrate import odeint, solve_ivp import pandas as pd import matplotlib.pyplot as plt import datetime def derivSIR(y, t, N, beta, gamma): S, I, R = y dSdt = -beta * S * I / N dIdt = beta * S * I / N - gamma * I dRdt = gamma * I return dSdt, dIdt, dRdt def derivSIR_RK45(t, y, N, beta, gamma): S, I, R = y dSdt = -beta * S * I / N dIdt = beta * S * I / N - gamma * I dRdt = gamma * I return dSdt, dIdt, dRdt def derivSI_RK45(t, y, N, beta): S, I = y dSdt = -beta * S * I / N dIdt = beta * S * I / N return dSdt, dIdt def derivSI(y, t, N, beta): S, I = y dSdt = -beta * S * I / N dIdt = beta * S * I / N return dSdt, dIdt #Modelos SI y SIR #Lectura de datos SALUDATA data_covid = pd.read_csv('/Users/safer/Desktop/Quinto Semestre Ingeniería de Sistemas/Análisis Numérico/Referencias/covid_19_bog.csv', encoding='cp1252', sep=';') data_covid['FECHA_DIAGNOSTICO'] = pd.to_datetime(data_covid['FECHA_DIAGNOSTICO'], format='%d/%m/%Y') #Datos iniciales pob = 7743955 rec = 0 inf = 1 sus = pob - inf - rec t = np.arange(0, 360) r = [pob, inf] v = [pob, inf, rec] #Indices de contacto y recuperacion beta, gamma = 0.2775, 0.022 #Calculo de sistemas de ecuaciones con ODEINT retSI = odeint(derivSI, r, t, args=(pob, beta)) retSIR = odeint(derivSIR, v, t, args=(pob, beta, gamma)) SS, II = retSI.T S, I, R = retSIR.T #Calculo de sistemas de ecuaciones con RK45 retSI_RK45 = solve_ivp(derivSI_RK45, (t[0], t[-1]), r, 'RK45', args=(pob, beta)) retSIR_RK45 = solve_ivp(derivSIR_RK45, (t[0], t[-1]), v, 'RK45', args=(pob, beta, gamma)) SS_RK45, II_RK45 = retSI_RK45.y[0], retSI_RK45.y[1] S_RK45, I_RK45, R_RK45 = retSIR_RK45.y[0], retSIR_RK45.y[1], retSIR_RK45.y[2] #Graficas ODEINT dfSI = pd.DataFrame({ 'Susceptibles': SS, 'Infectados': II, 'Dia': t }) plt.style.use('ggplot') dfSI.plot(x='Dia', y=['Infectados', 'Susceptibles'], color=['#bb6424', '#aac6ca', '#cc8ac0'], kind='line', stacked=False, title="Modelo SI (Odeint)") plt.show() dfSIR = pd.DataFrame({ 'Susceptibles': S, 'Infectados': I, 'Recuperados': R, 'Dia': t }) plt.style.use('ggplot') dfSIR.plot(x='Dia', y=['Infectados', 'Susceptibles', 'Recuperados'], color=['#bb6424', '#aac6ca', '#cc8ac0'], kind='area', stacked=False, title="Modelo SIR (Odeint)") plt.show() #Graficas RK45 dfSI_RK45 = pd.DataFrame({ 'Susceptibles': SS_RK45, 'Infectados': II_RK45, 'Dia': retSI_RK45.t }) plt.style.use('ggplot') dfSI.plot(x='Dia', y=['Infectados', 'Susceptibles'], color=['#bb6424', '#aac6ca', '#cc8ac0'], kind='line', stacked=False, title="Modelo SI (RK45)") plt.show() dfSIR = pd.DataFrame({ 'Susceptibles': S_RK45, 'Infectados': I_RK45, 'Recuperados': R_RK45, 'Dia': retSIR_RK45.t }) plt.style.use('ggplot') dfSIR.plot(x='Dia', y=['Infectados', 'Susceptibles', 'Recuperados'], color=['#bb6424', '#aac6ca', '#cc8ac0'], kind='area', stacked=False, title="Modelo SIR (RK 45)") plt.show() #Calculo de errores TEMP = 14 index = 0 errorSI = [] errorSIR = [] start_date = pd.to_datetime('2020-03-06') end_date = pd.to_datetime('2020-03-20') for i in range(10): df_quincenal = data_covid.loc[(data_covid['FECHA_DIAGNOSTICO'] > start_date) & (data_covid['FECHA_DIAGNOSTICO'] < end_date)] errorSI.append(abs(II[index] - len(df_quincenal))) errorSIR.append(abs(I[index] - len(df_quincenal))) start_date = end_date end_date += datetime.timedelta(days=TEMP) index += TEMP dfER = pd.DataFrame({ 'Errores SI': errorSI, 'Errores SIR': errorSIR, }) print(dfER) print("----------------------------------------------") #Modelo Depredador-Presa def euler_completo(x0, y0, h, f, g, a, b): val_x = [] val_y = [] val_t = [] x = x0 y = y0 t = 0 while t < b: val_t.append(t) val_x.append(x) val_y.append(y) x = x + h * f(x,y) y = y + h * g(x,y) t += h return val_t, val_x, val_y def rungeKutta(f, g, x0, y0, a, b, h): t = np.arange(a, b, h) n = len(t) x = np.zeros(n) y = np.zeros(n) x[0] = x0 y[0] = y0 for i in range(0, n - 1): k1 = h*f(x[i], y[i]) l1 = h*g(x[i], y[i]) k2 = h*f(x[i] + k1/2, y[i] + l1/2) l2 = h*g(x[i] + k1/2, y[i] + l1/2) k3 = h*f(x[i] + k2/2, y[i] + l2/2) l3 = h*g(x[i] + k2/2, y[i] + l2/2) k4 = h*f(x[i] + k3, y[i] + l3) l4 = h*g(x[i] + k3, y[i] + l3) x[i + 1] = x[i] + (1/6) * (k1 + 2 * k2 + 2 * k3 + 2 * k4) y[i + 1] = y[i] + (1/6) * (l1 + 2 * l2 + 2 * l3 + 2 * l4) return t, y, x f = lambda x, y: 0.4*x - 0.3*x*y g = lambda x, y: -0.37*y + 0.05*x*y x0 = 3 y0 = 1 a = 0 b = 100 h = 1 ti, y, x = rungeKutta(f, g, x0, y0, a, b, h) plt.plot(ti, y, 'r--',ti, x, 'c.-') plt.xlabel("Tiempo") plt.ylabel("Poblacion") plt.title('Modelo Depredador-Presa (Runge-Kutta)') plt.legend(['Datos Depredador', 'Datos Presa']) plt.show() #Calculo de errores datos_error_dp = pd.read_csv("C:/Users/safer/Desktop/Quinto Semestre Ingeniería de Sistemas/Análisis Numérico/Referencias/datosErrorDP.csv", encoding='cp1252', sep=';') def cambio_punto_coma(df, col_name): df[col_name] = df[col_name].apply(lambda x: float(x.replace(',', '.'))) return df datos_error_dp.pipe(cambio_punto_coma,'x') datos_error_dp.pipe(cambio_punto_coma,'y') datos_error_dp = datos_error_dp.to_numpy() errorRelativoPresa = (abs(datos_error_dp[len(datos_error_dp)-1, 2] - x[len(x) - 1]) / datos_error_dp[len(datos_error_dp) - 1, 2]) * 100 errorRelativoDepredador = (abs(datos_error_dp[len(datos_error_dp)-1, 3] - y[len(y) - 1]) / datos_error_dp[len(datos_error_dp) - 1, 3]) * 100 print("Eror Relativo Presas RK = {}% ".format(errorRelativoPresa)) print("Error Relativo Depredadores RK {}%".format(errorRelativoDepredador)) print("----------------------------------------------") ti, x, y = euler_completo(x0,y0,h,f,g,a,b) plt.plot(ti, y, 'r--',ti, x, 'c.-') plt.xlabel("Tiempo") plt.ylabel("Poblacion") plt.title('Modelo Depredador-Presa (Euler)') plt.legend(['Datos Depredador', 'Datos Presa']) plt.show() #Calculo de errores datos_error_dp = pd.read_csv("C:/Users/safer/Desktop/Quinto Semestre Ingeniería de Sistemas/Análisis Numérico/Referencias/datosErrorDP.csv", encoding='cp1252', sep=';') def cambio_punto_coma(df, col_name): df[col_name] = df[col_name].apply(lambda x: float(x.replace(',', '.'))) return df datos_error_dp.pipe(cambio_punto_coma,'x') datos_error_dp.pipe(cambio_punto_coma,'y') datos_error_dp = datos_error_dp.to_numpy() errorRelativoPresa = (abs(datos_error_dp[len(datos_error_dp)-1, 2] - x[len(x) - 1]) / datos_error_dp[len(datos_error_dp) - 1, 2]) * 100 errorRelativoDepredador = (abs(datos_error_dp[len(datos_error_dp)-1, 3] - y[len(y) - 1]) / datos_error_dp[len(datos_error_dp) - 1, 3]) * 100 print("Eror Relativo Presas Euler = {}% ".format(errorRelativoPresa)) print("Error Relativo Depredadores Euler {}%".format(errorRelativoDepredador))
#edit-mode: -*- python -*- #coding:gbk #工作路径. WORKROOT('../../../') #使用硬链接copy. CopyUsingHardLink(True) #支持32位/64位平台编译 #ENABLE_MULTI_LIBS(True) #C预处理器参数. CPPFLAGS('-D_GNU_SOURCE -D__STDC_LIMIT_MACROS -DVERSION=\\\"1.0.0.0\\\"') #为32位目标编译指定额外的预处理参数 #CPPFLAGS_32('-D_XOPEN_SOURE=500') #C编译参数. CFLAGS('-std=c++11 -g -pipe -W -Wall -fPIC') #C++编译参数. CXXFLAGS('-std=c++11 -g -pipe -W -Wall -Wno-unused-parameter -fPIC') #IDL编译参数 IDLFLAGS('--compack') #UBRPC编译参数 UBRPCFLAGS('--compack') #头文件路径. INCPATHS('. ../src ../include ../proto') #链接参数. LDFLAGS('-lpthread -lcrypto -lrt -lcrypt') #依赖模块 ImportConfigsFrom('../') #为32位/64位指定不同的依赖路径. #CONFIGS_32('lib2/ullib') #CONFIGS_64('lib2-64/ullib') test_sources=GLOB('../src/*.cpp ../src/*.cc *.cpp ../proto/*.cc').replace("../src/main.cpp", ' ') Application('gtest',Sources(test_sources),ENV.LinkLibs()-LinkLibs('../../third-64/boost/lib/libboost_prg_exec_monitor.a')-LinkLibs('../../third-64/boost/lib/libboost_test_exec_monitor.a')-LinkLibs('../../third-64/boost/lib/libboost_unit_test_framework.a')-LinkLibs('../../public/bslext/output/lib/libbsl_var_vscript.a'))
import os import sys import importlib import re SPACE_NORMALIZER = re.compile(r"\s+") def tokenize_line_word(line): line = SPACE_NORMALIZER.sub(" ", line) line = line.strip() return line.split() def tokenize_line_char(line): line = SPACE_NORMALIZER.sub("", line) line = line.strip() return list(line) def import_user_module(module_path): if module_path is not None: module_path = os.path.abspath(module_path) module_parent, module_name = os.path.split(module_path) if module_name not in sys.modules: sys.path.insert(0, module_parent) importlib.import_module(module_name) sys.path.pop(0)
import Tkinter as tk import threading import pyaudio import wave from array import array from os import stat import socket import time import os global x x=0 def sendLastFun(): send(x) def send(n): time.sleep(2) arr = array('B') # create binary array to hold the wave file name = "File" + str(n) + ".wav" result = stat(name) f = open(name, 'rb') # this will send arr.fromfile(f, result.st_size) # using file size as the array length #print("Length of data: " + str(len(arr))) HOST = 'localhost'#Loopback to cheak the trans. info use on -IPv4 in TCP/IP one way rode PORT = 50007 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((HOST, PORT)) s.send(arr) print('Finished sending...') s.close() f.closed print('done.') def TestSendFun(): arr = array('B') # create binary array to hold the wave file name = "swapFile.wav" result = stat(name) # sample file is in the same folder f = open(name, 'rb') # this will play arr.fromfile(f, result.st_size) # using file size as the array length #print("Length of data: " + str(len(arr))) HOST = 'localhost' PORT = 50007 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((HOST, PORT)) s.send(arr) print('Finished sending swap File...') s.close() time.sleep(2) os.system('python Pc2.py') exit() send(x+1)
""" Необходимо использовать функции. Программа должна поддерживать следующие арифметические операции: +, -, /, *, %(получение процента от числа), **(возведение в квадрат), **х(возведение в степень числа х). Запрещено подключать дополнительные модули. Для вывода результата необходимо использовать функцию print(). """ args = input().replace("**", "$") print(args) op = "" ops = ("$", "+", "-", "/", "*", "%", "/") for item in args: if item in ops: op = item op_idx = args.find(op) result = 0 print(op) if op == "%": result = int(args[:op_idx]) / 100 else: first = 0 list = 0 first = int(args[:op_idx]) last = int(args[op_idx + 1:]) print(first, op, last) print(result)
#coding:gb2312 #分析文本 filename = 'test.txt' try: with open(filename) as f: infomation = f.read() except FileNotFoundError: msg = ("Sorry,the file "+filename+" does not exit.") print(msg) else: """ 对变量infomation(它现在是一个长长的字符串,包含断箭的全部文本) 调用方法split(),以生成一个列表,其中包含这个文章中的所有文字 """ words = infomation.split() num_words = len(words) print("这篇文章一共有 "+str(num_words)+" 个单词。")
# -*- coding: utf-8 -*- from flask import Flask, g, json, render_template, Response, request import psycopg2 import psycopg2.extras from Config import Config import logging import os.path from subprocess import call import tempfile from zipfile import * from urllib2 import urlopen, URLError, HTTPError app = Flask(__name__) ### CONFIG # 설정 읽어오기 crr_path = os.path.dirname(os.path.realpath(__file__)) config = Config(os.path.join(crr_path, "GeepsAdminZoneService.cfg")) ### LOGGING # 로깅 모드 설정 logging.basicConfig(level=eval("logging." + config.log_mode)) LOG_FILE_PATH = os.path.join(crr_path, config.log_file) # 로깅 형식 지정 # http://gyus.me/?p=418 logger = logging.getLogger("AdminZone") formatter = logging.Formatter('[%(levelname)s] %(asctime)s > %(message)s') fileHandler = logging.FileHandler(LOG_FILE_PATH) fileHandler.setFormatter(formatter) logger.addHandler(fileHandler) ### HANGUL # 한글로 된 인자들을 받을때 오류가 생기지 않게 기본 문자열을 utf-8로 지정 # http://libsora.so/posts/python-hangul/ import sys reload(sys) sys.setdefaultencoding('utf-8') ### DATABASE # Using SQLite 3 with Flask를 참조해 DB 관리 구조를 만듬 # http://flask.pocoo.org/docs/0.10/patterns/sqlite3/#sqlite3 def connect_to_database(): if config.db_pwd: return psycopg2.connect("dbname={} user={} password={}" .format(config.db_database, config.db_user, config.db_pwd)) else: return psycopg2.connect("dbname={} user={}" .format(config.db_database, config.db_user)) def get_db(): db = getattr(g, '_database', None) if db is None: db = g._database = connect_to_database() logger.info("### DB CONNECTED.") return db @app.teardown_appcontext def close_connection(exception): db = getattr(g, '_database', None) if db is not None: db.close() logger.info("### DB DISCONNECTED.") def query_db(query, args=(), one=False, cursor_factory=None): logger.debug(query) try: if cursor_factory: cur = get_db().cursor(cursor_factory=cursor_factory) else: cur = get_db().cursor() cur.execute(query, args) rv = cur.fetchall() except Exception as e: logger.error("[DB ERROR] {}\n L___ {}", str(e), query) rv = (None,) finally: cur.close() return (rv[0] if rv else None) if one else rv def get_class1(): return query_db("select distinct class1 from adminzone_meta order by class1") def get_class2(class1): return query_db("select distinct class2 from adminzone_meta where class1 = '{}' order by class2".format(class1.encode("utf-8"))) def get_class3(class1, class2): return query_db("select distinct class1, class2, class3 from adminzone_meta where class1 = ? and class2 = ? order by class1, class2, class3", class1.encode("utf-8"), class2.encode("utf-8")) def get_timing(class1, class2): return query_db("select distinct timing, table_name from adminzone_meta where class1 = '{}' and class2 = '{}' order by timing desc".format(class1.encode("utf-8"), class2.encode("utf-8"))) def get_all_meta(): # 결과를 col_name:value 딕셔너리로 만든다. # http://initd.org/psycopg/docs/extras.html return query_db("select * from adminzone_meta order by class1, class2, class3, timing desc", cursor_factory=psycopg2.extras.NamedTupleCursor) def get_all_meta_json(): res = get_all_meta() dict_res = dict() for row in res: class1 = row.class1 level = 1 class2 = row.class2 if class2: level = 2 class3 = row.class3 if class3: level = 3 data = {'table_name':row.table_name, 'timing':row.timing, 'agency':row.agency, 'source_url':row.source_url, 'image_url':row.image_url, 'source_name':row.source_name, 'description':row.description} if level == 1: if not dict_res.has_key(class1): dict_res[class1] = list() dict_res[class1].append(data) elif level == 2: if not dict_res.has_key(class1): dict_res[class1] = dict() if not dict_res[class1].has_key(class2): dict_res[class1][class2] = list() dict_res[class1][class2].append(data) else: # level == 3 if not dict_res.has_key(class1): dict_res[class1] = dict() if not dict_res[class1].has_key(class2): dict_res[class1][class2] = dict() if not dict_res[class1][class2].has_key(class3): dict_res[class1][class2][class3] = list() dict_res[class1][class2][class3].append(data) return json.dumps(dict_res, ensure_ascii=False) def get_count_info(): return query_db("select (select count(*) as n_class1 from (select distinct class1 from adminzone_meta) as t_class1), (select count(*) as n_total from adminzone_meta)") ### EVENT @app.route('/test') @app.route('/adminzone/test') def hello(): return "GeepsAdminZoneService Activated!" @app.route('/api/get_class1') @app.route('/adminzone/api/get_class1') def api_get_class1(): out_list = list() for row in get_class1(): out_list.append(row[0]) ret = Response(json.dumps(out_list, ensure_ascii=False), mimetype='text/json') ret.content_encoding = 'utf-8' ret.headers.set("Cache-Control", "public, max-age=604800") return ret @app.route('/api/get_all_meta') @app.route('/adminzone/api/get_all_meta') def api_get_all_meta(): json_res = get_all_meta_json() ret = Response(json_res, mimetype='text/json') ret.content_encoding = 'utf-8' ret.headers.set("Cache-Control", "public, max-age=604800") return ret @app.route('/api/get_image') @app.route('/adminzone/api/get_image') def api_get_image(): table_name = request.args.get('table_name', None) if not table_name: return Response("table_name 인자가 필요합니다.", 400) # table_name 있는지 확인 res = query_db("select count(*) from adminzone_meta where table_name = %s", args=(table_name,), one=True) if res[0] <= 0: return Response("요청한 TABLE이 없습니다.", 500) # image_url 조회 res = query_db("select image_url from adminzone_meta where table_name = %s", args=(table_name,), one=True) image_url = res[0] image_path = os.path.join(config.image_folder, table_name+'.png') if not os.path.isfile(image_path): try: f = urlopen(image_url) # Open our local file for writing with open(image_path, "wb") as local_file: local_file.write(f.read()) #handle errors except HTTPError, e: logger.error("HTTP Error:" + e.code + image_url) except URLError, e: logger.error("URL Error:" + e.reason + image_url) try: with open(image_path, "rb") as f: image_bin = f.read() except Exception as e: logger.error("Image 다운로드 중 오류: "+str(e)) return Response("Image 다운로드 중 오류", 500) ret = Response(image_bin, mimetype='image/png') return ret @app.route('/service_page') @app.route('/adminzone/service_page') def service_page(): count_info = get_count_info() all_meta_json = get_all_meta_json() return render_template("service_page.html", count_info=count_info[0], metadata=all_meta_json, crs_list=config.crs_list) @app.route('/makefile') @app.route('/adminzone/makefile') def makefile(): table_name = request.args.get('table_name', None) crs = request.args.get('crs', None) if not crs: return Response("crs 인자가 필요합니다.", 400) if not table_name: return Response("table_name 인자가 필요합니다.", 400) # crs 있는지 확인 # if not ("EPSG:"+crs) in config.crs_list: res = query_db("select count(*) from spatial_ref_sys where srid = %s", args=(crs,), one=True) if res[0] <= 0: return Response("요청한 CRS가 없습니다.", 500) # table_name 있는지 확인 res = query_db("select count(*) from adminzone_meta where table_name = %s", args=(table_name,), one=True) if res[0] <= 0: return Response("요청한 TABLE이 없습니다.", 500) # file name을 <table_name>__<crs>로 정함 file_base = table_name+"__"+crs zip_file = os.path.join(config.download_folder, file_base+".zip") if os.path.isfile(zip_file): return Response("기존 파일 있음", 200) temp_dir = tempfile.gettempdir() shp_file = os.path.join(temp_dir, file_base+".shp") # 조회용 Query 만들기 # http://splee75.tistory.com/93 res = query_db( """ select string_agg(txt, ', ') from ( SELECT concat('SELECT ', string_agg(column_name, ', ')) as txt FROM information_schema.columns WHERE table_schema = 'public' AND table_name = '{table_name}' AND udt_name != 'geometry' union SELECT concat('ST_Transform(', string_agg(column_name, ', '), ',{crs}) as geom FROM ""{table_name}""') as txt FROM information_schema.columns WHERE table_schema = 'public' AND table_name = '{table_name}' AND udt_name = 'geometry' ) tbl """.format(crs=crs, table_name=table_name), one=True) sql = res[0] try: # Shape 파일 만들기 command = 'pgsql2shp -f {shp_file} -u {user} -P {pwd} {database} "{sql}"'.format( shp_file=shp_file, user=config.db_user, pwd=config.db_pwd, database=config.db_database, sql=sql) logger.debug(command) rc = call(command) if rc != 0: return Response("Shape 파일 생성 중 오류", 500) with ZipFile(zip_file, 'w') as shape_zip: shape_zip.write(os.path.join(temp_dir, file_base+".shp"), arcname=file_base+".shp") shape_zip.write(os.path.join(temp_dir, file_base+".shx"), arcname=file_base+".shx") shape_zip.write(os.path.join(temp_dir, file_base+".dbf"), arcname=file_base+".dbf") shape_zip.write(os.path.join(temp_dir, file_base+".prj"), arcname=file_base+".prj") os.remove(os.path.join(temp_dir, file_base+".shp")) os.remove(os.path.join(temp_dir, file_base+".shx")) os.remove(os.path.join(temp_dir, file_base+".dbf")) os.remove(os.path.join(temp_dir, file_base+".prj")) except Exception as e: logger.error("Shape 파일 생성 중 오류: "+str(e)) return Response("Shape 파일 생성 중 오류", 500) return Response("파일 생성 완료", 200) @app.route('/download') @app.route('/adminzone/download') def download(): table_name = request.args.get('table_name', None) crs = request.args.get('crs', None) if not crs: return Response("crs 인자가 필요합니다.", 400) if not table_name: return Response("table_name 인자가 필요합니다.", 400) # file name을 <table_name>__<crs>로 정함 file_base = table_name+"__"+crs zip_file = os.path.join(config.download_folder, file_base+".zip") if not os.path.isfile(zip_file): return Response("ZIP 파일 없음", 500) try: with open(zip_file, "rb") as f: zip_bin = f.read() except Exception as e: logger.error("Shape 다운로드 중 오류: "+str(e)) return Response("Shape 다운로드 중 오류", 500) ret = Response(zip_bin, mimetype='application/zip') ret.headers["Content-Disposition"] = "attachment; filename={}".format(file_base+".zip") return ret if __name__ == '__main__': app.run()
from __future__ import annotations from dataclasses import dataclass from typing import List @dataclass class Node: val: int = None next: Node = None @property def last(self) -> bool: return self.next is None def __lt__(self, other: Node) -> bool: return self.val < other.val def merge(lists: List[Node]) -> Node: """ Merges linked lists. """ while len(lists) > 1: lists = [Merger(lists[i], lists[i + 1]).merge() for i in range(0, len(lists) - 1, 2)] return lists[0] class Merger: def __init__(self, node_1: Node, node_2: Node): self.nodes = [node_1, node_2] self.start = Node() self.point = self.start def merge(self) -> Node: """ Merges two linked lists. """ while not self._reached_end: self._move_point() self._choose_node(self._min) self._connect_rest(self._min) return self.start.next @property def _min(self) -> int: """ Returns list with lesser minimum element. """ return 0 if self.nodes[0] < self.nodes[1] else 1 @property def _reached_end(self) -> bool: """ True is one of the nodes is last in its list. """ return any(node.last for node in self.nodes) def _move_forward(self, node_index) -> None: """ Switches node to next one. """ self.nodes[node_index] = self.nodes[node_index].next def _move_point(self): """ Creates new element in merged list. """ self.point.next = Node() self.point = self.point.next def _choose_node(self, node_index): """ Copies value from node to current list. """ self.point.val = self.nodes[node_index].val self._move_forward(node_index) def _connect_rest(self, starting_node_index): """ Links nodes to the end of merged list starting from given node. """ self.point.next = self.nodes.pop(starting_node_index) self._scroll_point() self.point.next = self.nodes.pop() def _scroll_point(self): """ Moves current node to the end of the list. """ while self.point.next is not None: self.point = self.point.next
#!/usr/bin/env python # Copyright (c) 2013 Google Inc. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """ Verify that a target marked as 'link_dependency==1' isn't being pulled into the 'none' target's dependency (which would otherwise lead to a dependency cycle in ninja). """ import TestGyp # See https://codereview.chromium.org/177043010/#msg15 for why this doesn't # work with cmake. test = TestGyp.TestGyp(formats=['!cmake']) test.run_gyp('test.gyp') test.build('test.gyp', 'main') # If running gyp worked, all is well. test.pass_test()
#from PyML import * #from PyML import ker import matplotlib.pyplot as plt import csv as csv import numpy as np from sklearn import svm, metrics,cross_validation from sklearn.multiclass import OneVsRestClassifier,OneVsOneClassifier from sklearn import preprocessing def read_data(file_name): if file_name =='train': csv_file_object = csv.reader(open('train.csv', 'rb')) header = csv_file_object.next() train=[] labels=[] for row in csv_file_object: labels.append(int(row[0])) train.append(map(int,row[1:])) return labels,train if file_name == 'test': csv_file_object = csv.reader(open('test.csv', 'rb')) header = csv_file_object.next() test=[] for row in csv_file_object: test.append(row) return test #data = np.array(data) def write_prediction(file_name,prediction): prediction_file = open(file_name+".csv", "wb") prediction_file_object = csv.writer(prediction_file) for i in prediction: prediction_file_object.writerow((i)) ''' set all labels in target 0 and the rest 1''' def trim_labels(target,labels): trimmed_labels=[] for i in labels: if i in target: trimmed_labels.append(0) else: trimmed_labels.append(1) return trimmed_labels '''test by hand''' def manual_test(clf,train, train_labels,test,test_labels): clf.fit(train, train_labels) predicted = clf.predict(test) print_report(clf,test_labels,predicted) '''print report and confusion matrx''' def print_report(clf,expected,predicted): print("Classification report for classifier %s:\n%s\n" % (clf, metrics.classification_report(expected, predicted))) print("Confusion matrix:\n%s" % metrics.confusion_matrix(expected, predicted)) '''cross validation test with one vs all svm''' def cv_one_vs_all(clf,train, labels): clf = OneVsRestClassifier(svm.LinearSVC()) scores = cross_validation.cross_val_score(clf,train,labels, cv=5) print "one vs all", ("{0:.5f}".format(np.mean(scores))) return clf '''cross validation test with one vs one svm''' def cv_one_vs_one(clf,train, labels): #clf = OneVsOneClassifier(LinearSVC()) scores = cross_validation.cross_val_score(clf,train,labels, cv=5) print "one vs all", ("{0:.5f}".format(np.mean(scores))) return clf def baseline(train, labels): classifier = svm.SVC(gamma=1) classifier.fit(train[:1000], labels[:1000]) expected = labels[1000:2000] predicted = classifier.predict(train[1000:2000]) #print_report(classifier, expected, predicted) print("Classification report for classifier \n%s\n" % metrics.classification_report(expected, predicted)) print("Confusion matrix:\n%s" % metrics.confusion_matrix(expected, predicted)) return expected,predicted def F_score(train,labels): sum_f=[[0,0,0,0,0,0,0,0,0,0] for i in range(len(train[0]))] for i in range(len(train)): label=labels[i] for j in range(len(train[0])): sum_f[j][label]+=train[i][j] feature=[0,0,0,0,0,0,0,0,0,0] for i in range(len(labels)): feature[labels[i]]+=1; total_sum=[sum(sum_f[i]) for i in range(len(sum_f))] total_mean=[(total_sum[i]+0.0)/len(train) for i in range(len(total_sum))] mean_f=[[0,0,0,0,0,0,0,0,0,0] for i in range(len(train[0]))] for i in range(len(sum_f)): for j in range(len(sum_f[0])): mean_f[i][j]=(sum_f[i][j]+0.0)/feature[j] f=[0 for i in range(len(train[0]))] numerator=[0 for i in range(len(train[0]))] divider=[0 for i in range(len(train[0]))] for i in range(len(f)): for j in range(10): numerator[i]+=(mean_f[i][j]-total_mean[i])*(mean_f[i][j]-total_mean[i]) #print mean_f[i][j], total_mean[i] de_sum=[0.0 for i in range(10)] for m in range(len(train)): l=labels[m] de_sum[l]+=(train[m][i]+mean_f[i][l]+0.0)*(train[m][i]+mean_f[i][l]+0.0) #print train[m][i],mean_f[i][l] de_sum=[(de_sum[i]+0.0)/feature[i] for i in range(len(de_sum))] divider[i]=sum(de_sum) if divider[i] == 0: f[i]=100000 else: f[i]=numerator[i]/divider[i] return f #for i in range(len(sum_f)): if remove_all_zero(data,total_sum): for i in range(len(total_sum)): if total_sum[len(total_sum)-1-i]==0: scipy.delete(second,len(total_sum)-1-i,1) if __name__ == "__main__": labels,train=read_data('train') A=F_score(train,labels) #test=read_data('test') #print 'finish reading test' #clf = svm.LinearSVC() #baseline(train,labels) #cv_one_vs_all(clf,train[:500], labels[:500]) #cv_one_vs_one(clf,train[:500], labels[:500]) #expected,predicted=baseline(train,labels) #classifier = svm.LinearSVC() #scores = cross_validation.cross_val_score(classifier,train,labels, cv=5) #classifier.fit(train[:1000], labels[:1000]) #expected = labels[500:1000] #predicted = classifier.predict(train[1000:2000]) #print_report(classifier, expected, predicted) #print("Classification report for classifier %s:\n%s\n" # % (classifier, metrics.classification_report(expected, predicted))) #print("Confusion matrix:\n%s" % metrics.confusion_matrix(expected, predicted))
#coding:utf-8 from pyecharts import ThemeRiver import json def tongji(filepath): rate = [] with open(filepath,'r') as f: rows = f.readlines() for row in rows: if len(row.split(',')) == 5: rate.append(row.split(',')[3].replace('\n','')) v1=(rate.count('5')+rate.count('4.5')) v2=(rate.count('4')+rate.count('3.5')) v3=(rate.count('3')+rate.count('2.5')) v4=(rate.count('2')+rate.count('1.5')) v5=(rate.count('1')+rate.count('0.5')) #饼状图 from pyecharts import Pie attr = [u"五星", u"四星", u"三星", u"二星", u"一星"] print json.dumps(attr,ensure_ascii=False) #分别代表各星级评论数 v=[v1,v2,v3,v4,v5] print v if filepath=='xie_zheng.txt': pie = Pie(u"《邪不压正》饼图-星级玫瑰图示例", title_pos='center', width=900) pie.add("7-17", attr, v, center=[75, 50], is_random=True, radius=[30, 75], rosetype='area', is_legend_show=False, is_label_show=True) pie.render(filepath.split('.')[0]+'_pie.html') else: pie = Pie(u"《我不是药神》饼图-星级玫瑰图示例", title_pos='center', width=900) pie.add("7-17", attr, v, center=[75, 50], is_random=True, radius=[30, 75], rosetype='area', is_legend_show=False, is_label_show=True) pie.render(filepath.split('.')[0]+'_pie.html') print "《邪不压正》:" tongji('xie_zheng.txt') print '\n' print "《我不是药神》:" tongji('yaoshen.txt')
def adding(a,b): my_sum = a+b my_string = "{} + {} = {}".format(a,b,my_sum) print(my_string) def subtract(a,b): my_sum = a-b my_string = "{} - {} = {}".format(a,b,my_sum) print(my_string) def multiply(a,b): my_product = a*b my_string = "{} * {} = {}".format(a,b,my_product) print(my_string) def divide(a,b): my_product = a/b my_string = "{} / {} = {}".format(a,b,my_product) print(my_string) def get_integer(m): my_number = int(input(m)) return my_number def menu(): num_one = get_integer("Please enter your first number: ") num_two = get_integer("Please enter your second number: ") my_menu = ''' 1 : add 2 : subtract 3 : multiply 4 : divide 0 : quit ''' print(my_menu) choice = get_integer("Please enter your choice from the menu: ") if choice ==1: adding(num_one, num_two) elif choice ==2: subtract(num_one, num_two) elif choice ==3: multiply(num_one, num_two) elif choice ==4: divide(num_one, num_two) elif choice ==0: print("Thank you") else: print("Unrecognised entry") #adding(3,5) #subtract(8,5) #multiply(3,4) #divide(35,7) menu()
from Algorithm import GreedySearchDecoder, EncoderRNN, LuongAttnDecoderRNN from LoadFile import loadPrepareData from Evaluate import evaluateInput import argparse import os import torch import torch.nn as nn parser = argparse.ArgumentParser(description='Train Data') parser.add_argument("-c", "--checkpoint", type=int, help="Input checkpoint number") args = vars(parser.parse_args()) USE_CUDA = torch.cuda.is_available() device = torch.device("cuda" if USE_CUDA else "cpu") # load data and model save_dir = os.path.join("model", "save") corpus = "data" datafile = os.path.join(corpus, "formatted_movie_lines.txt") model_name = 'cb_model' hidden_size = 500 encoder_n_layers = 2 decoder_n_layers = 2 dropout = 0.1 attn_model = 'dot' checkpoint_iter = args['checkpoint'] if args['checkpoint'] != None else 4000 # call function loadPrepareData voc, pairs = loadPrepareData(corpus, datafile) loadFilename = os.path.join(save_dir, model_name, corpus, '{}-{}_{}'.format(encoder_n_layers, decoder_n_layers, hidden_size), '{}_checkpoint.tar'.format(checkpoint_iter)) # Load model if a loadFilename is provided checkpoint = torch.load(loadFilename, map_location=device) voc.__dict__ = checkpoint['voc_dict'] # load embedding embedding = nn.Embedding(voc.num_words, hidden_size) embedding.load_state_dict(checkpoint['embedding']) # load encoder & decoder models encoder = EncoderRNN(hidden_size, embedding, encoder_n_layers, dropout) decoder = LuongAttnDecoderRNN( attn_model, embedding, hidden_size, voc.num_words, decoder_n_layers, dropout) encoder.load_state_dict(checkpoint['en']) decoder.load_state_dict(checkpoint['de']) # Set dropout layers to eval mode encoder.eval() decoder.eval() # Initialize search module searcher = GreedySearchDecoder(encoder, decoder) # Begin chatting (uncomment and run the following line to begin) evaluateInput(encoder, decoder, searcher, voc)
from .slam_data import SLAMData from .state import State from .cone_finder import find_nearest_cone class SLAM: def __init__(self, searchable_size): self.left_index = 0 self.right_index = 0 self.searchable_size = searchable_size def update(self, car, all_left_cones, all_right_cones): # Obtain vehicle state state = State.from_car(car) # Get the first nearest left and right cone in terms of index self.left_index = find_nearest_cone(car.x, car.y, all_left_cones, self.left_index, self.searchable_size) self.right_index = find_nearest_cone(car.x, car.y, all_right_cones, self.right_index, self.searchable_size) # Obtain a list of N nearest left and right cones in front of the car, and update the state left_cones = all_left_cones[self.left_index:(self.left_index + self.searchable_size + 1)] right_cones = all_right_cones[self.right_index:(self.right_index + self.searchable_size + 1)] # For the cones detected by SLAM, toggle them so they will be rendered [cone.set_detected(True) for cone in left_cones + right_cones] # Return the updated state return SLAMData(state, left_cones, right_cones)
# Copyright 2021 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import annotations import io import zipfile from pathlib import PurePath from textwrap import dedent import pytest from pants.backend.python import target_types_rules from pants.backend.python.goals import package_dists from pants.backend.python.macros.python_artifact import PythonArtifact from pants.backend.python.subsystems.setuptools import rules as setuptools_rules from pants.backend.python.target_types import PythonDistribution, PythonSourcesGeneratorTarget from pants.backend.python.util_rules import local_dists, pex_from_targets from pants.backend.python.util_rules.interpreter_constraints import InterpreterConstraints from pants.backend.python.util_rules.local_dists import LocalDistsPex, LocalDistsPexRequest from pants.backend.python.util_rules.pex_from_targets import InterpreterConstraintsRequest from pants.backend.python.util_rules.python_sources import PythonSourceFiles from pants.build_graph.address import Address from pants.core.util_rules.source_files import SourceFiles from pants.engine.fs import CreateDigest, Digest, DigestContents, FileContent, Snapshot from pants.testutil.python_rule_runner import PythonRuleRunner from pants.testutil.rule_runner import QueryRule @pytest.fixture def rule_runner() -> PythonRuleRunner: return PythonRuleRunner( rules=[ *local_dists.rules(), *package_dists.rules(), *setuptools_rules(), *target_types_rules.rules(), *pex_from_targets.rules(), QueryRule(InterpreterConstraints, (InterpreterConstraintsRequest,)), QueryRule(LocalDistsPex, (LocalDistsPexRequest,)), ], target_types=[PythonSourcesGeneratorTarget, PythonDistribution], objects={"python_artifact": PythonArtifact}, ) def test_build_local_dists(rule_runner: PythonRuleRunner) -> None: foo = PurePath("foo") rule_runner.write_files( { foo / "BUILD": dedent( """ python_sources() python_distribution( name = "dist", dependencies = [":foo"], provides = python_artifact(name="foo", version="9.8.7"), sdist = False, generate_setup = False, ) """ ), foo / "bar.py": "BAR = 42", foo / "setup.py": dedent( """ from setuptools import setup setup(name="foo", version="9.8.7", packages=["foo"], package_dir={"foo": "."},) """ ), } ) rule_runner.set_options([], env_inherit={"PATH"}) sources_digest = rule_runner.request( Digest, [ CreateDigest( [FileContent("srcroot/foo/bar.py", b""), FileContent("srcroot/foo/qux.py", b"")] ) ], ) sources_snapshot = rule_runner.request(Snapshot, [sources_digest]) sources = PythonSourceFiles(SourceFiles(sources_snapshot, tuple()), ("srcroot",)) addresses = [Address("foo", target_name="dist")] interpreter_constraints = rule_runner.request( InterpreterConstraints, [InterpreterConstraintsRequest(addresses)] ) request = LocalDistsPexRequest( addresses, internal_only=True, sources=sources, interpreter_constraints=interpreter_constraints, ) result = rule_runner.request(LocalDistsPex, [request]) assert result.pex is not None contents = rule_runner.request(DigestContents, [result.pex.digest]) whl_content = None for content in contents: if content.path == "local_dists.pex/.deps/foo-9.8.7-py3-none-any.whl": whl_content = content assert whl_content with io.BytesIO(whl_content.content) as fp: with zipfile.ZipFile(fp, "r") as whl: assert "foo/bar.py" in whl.namelist() # Check that srcroot/foo/bar.py was subtracted out, because the dist provides foo/bar.py. assert result.remaining_sources.source_files.files == ("srcroot/foo/qux.py",)
import json import rdflib as rdfl import sbol3 import tyto import labop import uml from labop.execution_engine import ExecutionEngine from labop_convert.opentrons.opentrons_specialization import OT2Specialization # Dev Note: This is a test of the initial version of the OT2 specialization. Any specs shown here can be changed in the future. Use at your own risk. Here be dragons. ############################################# # set up the document print("Setting up document") doc = sbol3.Document() sbol3.set_namespace("https://bbn.com/scratch/") ############################################# # Import the primitive libraries print("Importing libraries") labop.import_library("liquid_handling") print("... Imported liquid handling") labop.import_library("plate_handling") print("... Imported plate handling") labop.import_library("spectrophotometry") print("... Imported spectrophotometry") labop.import_library("sample_arrays") print("... Imported sample arrays") # Example of how to generate a template for a new protocol step # print(primitives["https://bioprotocols.org/labop/primitives/liquid_handling/Dispense"].template()) protocol = labop.Protocol("iGEM_LUDOX_OD_calibration_2018") protocol.name = "iGEM 2018 LUDOX OD calibration protocol for OT2" protocol.description = """ Test Execution """ doc.add(protocol) # create the materials to be provisioned CONT_NS = rdfl.Namespace("https://sift.net/container-ontology/container-ontology#") OM_NS = rdfl.Namespace("http://www.ontology-of-units-of-measure.org/resource/om-2/") PREFIX_MAP = json.dumps({"cont": CONT_NS, "om": OM_NS}) ddh2o = sbol3.Component("ddH2O", "https://identifiers.org/pubchem.substance:24901740") ddh2o.name = "Water, sterile-filtered, BioReagent, suitable for cell culture" doc.add(ddh2o) ludox = sbol3.Component("LUDOX", "https://identifiers.org/pubchem.substance:24866361") ludox.name = "LUDOX(R) CL-X colloidal silica, 45 wt. % suspension in H2O" doc.add(ludox) p300 = sbol3.Agent("p300_single", name="P300 Single") doc.add(p300) load = protocol.primitive_step("ConfigureInstrument", instrument=p300, mount="left") # Define labware spec_rack = labop.ContainerSpec( "working_reagents_rack", name="rack for reagent aliquots", queryString="cont:Opentrons24TubeRackwithEppendorf1.5mLSafe-LockSnapcap", prefixMap=PREFIX_MAP, ) spec_ludox_container = labop.ContainerSpec( "ludox_working_solution", name="tube for ludox working solution", queryString="cont:MicrofugeTube", prefixMap=PREFIX_MAP, ) spec_water_container = labop.ContainerSpec( "water_stock", name="tube for water aliquot", queryString="cont:MicrofugeTube", prefixMap=PREFIX_MAP, ) spec_plate = labop.ContainerSpec( "calibration_plate", name="calibration plate", queryString="cont:Corning96WellPlate360uLFlat", prefixMap=PREFIX_MAP, ) spec_tiprack = labop.ContainerSpec( "tiprack", queryString="cont:Opentrons96TipRack300uL", prefixMap=PREFIX_MAP ) doc.add(spec_rack) doc.add(spec_ludox_container) doc.add(spec_water_container) doc.add(spec_plate) doc.add(spec_tiprack) # Load OT2 instrument with labware load = protocol.primitive_step("LoadRackOnInstrument", rack=spec_rack, coordinates="1") load = protocol.primitive_step( "LoadRackOnInstrument", rack=spec_tiprack, coordinates="2" ) load = protocol.primitive_step("LoadRackOnInstrument", rack=spec_plate, coordinates="3") # Set up reagents rack = protocol.primitive_step("EmptyRack", specification=spec_rack) load_rack1 = protocol.primitive_step( "LoadContainerInRack", slots=rack.output_pin("slots"), container=spec_ludox_container, coordinates="A1", ) load_rack2 = protocol.primitive_step( "LoadContainerInRack", slots=rack.output_pin("slots"), container=spec_water_container, coordinates="A2", ) provision = protocol.primitive_step( "Provision", resource=ludox, destination=load_rack1.output_pin("samples"), amount=sbol3.Measure(500, tyto.OM.microliter), ) provision = protocol.primitive_step( "Provision", resource=ddh2o, destination=load_rack2.output_pin("samples"), amount=sbol3.Measure(500, tyto.OM.microliter), ) # Set up target samples plate = protocol.primitive_step("EmptyContainer", specification=spec_plate) water_samples = protocol.primitive_step( "PlateCoordinates", source=plate.output_pin("samples"), coordinates="A1:D1" ) ludox_samples = protocol.primitive_step( "PlateCoordinates", source=plate.output_pin("samples"), coordinates="A2:D2" ) transfer = protocol.primitive_step( "Transfer", source=load_rack1.output_pin("samples"), destination=water_samples.output_pin("samples"), amount=sbol3.Measure(100, tyto.OM.microliter), ) transfer = protocol.primitive_step( "Transfer", source=load_rack1.output_pin("samples"), destination=ludox_samples.output_pin("samples"), amount=sbol3.Measure(100, tyto.OM.microliter), ) filename = "ot2_ludox_labop" agent = sbol3.Agent("ot2_machine", name="OT2 machine") ee = ExecutionEngine(specializations=[OT2Specialization(filename)]) parameter_values = [] execution = ee.execute(protocol, agent, id="test_execution") # v = doc.validate() # assert len(v) == 0, "".join(f'\n {e}' for e in v) doc.write("foo.ttl", file_format="ttl") # render and view the dot # dot = protocol.to_dot() # dot.render(f'{protocol.name}.gv') # dot.view()
# OpenWeatherMap API Key api_key = "0217370abad49447a775734efd95b987"
import support_lib as bnw import time import re # This module handles interactions with special ports, and normal trading ports def specialPort(purchaseDict): specialText = "Special Port" genericText = "Trading Commodities" xBanner = "html/body/h1" xWholePage = "html/body" # cost of the tech, Quantity on hand, input box for purchasing more xGenesisTorps = ["html/body/form/table[1]/tbody/tr[2]/td[2]", "html/body/form/table[1]/tbody/tr[2]/td[3]", "html/body/form/table[1]/tbody/tr[2]/td[5]/input"] xSpaceBeacons = ["html/body/form/table[1]/tbody/tr[3]/td[2]", "html/body/form/table[1]/tbody/tr[3]/td[3]", "html/body/form/table[1]/tbody/tr[3]/td[5]/input"] xEmerWarpDev = ["html/body/form/table[1]/tbody/tr[4]/td[2]", "html/body/form/table[1]/tbody/tr[4]/td[3]", "html/body/form/table[1]/tbody/tr[4]/td[5]/input"] xWarpEditors = ["html/body/form/table[1]/tbody/tr[5]/td[2]", "html/body/form/table[1]/tbody/tr[5]/td[3]", "html/body/form/table[1]/tbody/tr[5]/td[5]/input"] xMineDeflectors = ["html/body/form/table[1]/tbody/tr[7]/td[2]", "html/body/form/table[1]/tbody/tr[7]/td[3]", "html/body/form/table[1]/tbody/tr[7]/td[5]/input"] xFighters = ["html/body/form/table[2]/tbody/tr[2]/td[2]", "html/body/form/table[2]/tbody/tr[2]/td[3]", "html/body/form/table[2]/tbody/tr[2]/td[5]/input"] xArmorPoints = ["html/body/form/table[2]/tbody/tr[3]/td[2]", "html/body/form/table[2]/tbody/tr[3]/td[3]", "html/body/form/table[2]/tbody/tr[3]/td[5]/input"] xEscapePod = ["html/body/form/table[1]/tbody/tr[8]/td[2]", "html/body/form/table[1]/tbody/tr[8]/td[3]", "html/body/form/table[1]/tbody/tr[8]/td[5]/input"] xFuelScoop = ["html/body/form/table[1]/tbody/tr[9]/td[2]", "html/body/form/table[1]/tbody/tr[9]/td[3]", "html/body/form/table[1]/tbody/tr[9]/td[5]/input"] xLastShipSeenDev = ["html/body/form/table[1]/tbody/tr[10]/td[2]", "html/body/form/table[1]/tbody/tr[10]/td[3]", "html/body/form/table[1]/tbody/tr[10]/td[5]/input"] xTorpedoes = ["html/body/form/table[2]/tbody/tr[2]/td[7]", "html/body/form/table[2]/tbody/tr[2]/td[8]", "html/body/form/table[2]/tbody/tr[2]/td[10]/input"] xColonists = ["html/body/form/table[2]/tbody/tr[3]/td[6]", "html/body/form/table[2]/tbody/tr[3]/td[8]", "html/body/form/table[2]/tbody/tr[3]/td[10]/input"] compList = ["Hull", "Engines", "Power", "Computer", "Sensors", "Beam Weapons", "Armor", "Cloak", "Torpedo launchers", "Shields"] xSelectors = {} # http://stackoverflow.com/questions/22171558/what-does-enumerate-mean for compoffset, compName in enumerate(compList, 2): xSelectors[compName] = "html/body/form/table[1]/tbody/tr[{}]/td[9]/select".format(compoffset) xBuyButton = "html/body/form/table[3]/tbody/tr/td[1]/input" xCredits = "html/body/p[1]" xResultsBanner = "html/body/table/tbody/tr[1]/td/font/strong" xTotalCost = "html/body/table/tbody/tr[2]/td/strong/font" currentPage = bnw.getPage() baseURL = ('/').join(currentPage.split('/')[:-1]) portPage = "{}/port.php".format(baseURL) mainPage = "{}/main.php".format(baseURL) # load the page bnw.loadPage(portPage) if not bnw.elementExists(xBanner): allText = bnw.textFromElement(xWholePage) if "There is no port here" in allText: print("There is no port in this sector") bnw.load(mainPage) return ["ERROR", "NO PORT"] else: print("Unhandled Error #1 in specialPort") exit(1) bannerText = bnw.textFromElement(xBanner) if genericText in bannerText: print("This is not a special port") bnw.load(mainPage) return ["ERROR", "WRONG PORT"] if not bannerText == specialText: print("Unhandled Error #2 in specialPort") exit(1) # determine how many credits are available for spending textBlob = bnw.textFromElement(xCredits) # regex out the cost # You have 206,527,757 credits to spend. m = re.search("have\s+(.*)\s+credits", textBlob) if not m: print("Unable to regex the available credits!") exit(1) creditAvailable = int(m.group(1).replace(",","")) print("Credits available: {}".format(creditAvailable)) # get the current tech levels currentTech = {} desiredTech = {} for compName in compList: if compName in purchaseDict: xpath = xSelectors[compName] currentTech[compName] = int(bnw.selectedValue(xpath)) desiredTech[compName] = purchaseDict[compName] print("Current {} Tech: {}, Desired Tech: {}".format(compName, currentTech[compName], desiredTech[compName])) if desiredTech[compName] != currentTech[compName]: if not bnw.selectDropDownNew(xSelectors[compName], desiredTech[compName]): print("Unable to select the requested {} tech value".format(compName)) exit(1) print("Attempting to execute the purchase") if not bnw.clickButton(xBuyButton): print("Was unable to click the 'Buy' button") exit(1) time.sleep(2) if not bnw.elementExists(xResultsBanner): allText = bnw.textFromElement(xWholePage) m = re.search("total cost is\s+(.*)\s+credits and you only have\s+(.*)\s+credits.", allText) if not m: print("Not a successful trade, and unable to determine why") exit(1) theCost = int(m.group(1).replace(",","")) theCredits = int(m.group(2).replace(",","")) notEnough = theCost - theCredits print("Short {} credits".format(notEnough)) return["ERROR", "TOO EXPENSIVE"] resultBanner = bnw.textFromElement(xResultsBanner) if not resultBanner == "Results for this trade": print("Results banner not found") exit(1) # Cost : 2,500 Credits finalBlob = bnw.textFromElement(xTotalCost) if finalBlob == "DONTEXIST": print("Total cost not found") exit(1) m = re.search("Cost\s\:\s(.*)\sCredits", finalBlob) if not m: print("Unable to regex the final cost") exit(1) finalCost = int(m.group(1).replace(",","")) print("final cost: {}".format(finalCost)) bnw.loadPage(mainPage) return ["SUCCESS", finalCost]
''' Problem 12: Write a function group(list, size) that take a list and splits into smaller lists of given size. group([1, 2, 3, 4, 5, 6, 7, 8, 9], 3) [[1, 2, 3], [4, 5, 6], [7, 8, 9]] group([1, 2, 3, 4, 5, 6, 7, 8, 9], 4) [[1, 2, 3, 4], [5, 6, 7, 8], [9]] ''' import sys print "What are the elements you want to cut up?" x = raw_input().split(' ') print "How big are the chunks ?" y = int(raw_input()) i = 0 final_list = [] chunk_size_counter = 0 for i in x: print "i is " + str(i) print "chunk_size_counter is " + str(chunk_size_counter) print "y is " + str(y) if chunk_size_counter < y: final_list.append(i) chunk_size_counter += 1 print "if i is " + str(i) print "if chunk_size_counter is " + str(chunk_size_counter) print "if y is " + str(y) if (i is x[-1]): print "last i is " + str(i) print "last chunk_size_counter is " + str(chunk_size_counter) print "last y is " + str(y) print "last element is " + str(i) print final_list else: print "final_list is " + str(final_list) + "\n" final_list = [] chunk_size_counter = 0 print "i is now " + str(i) print "chunk_size_counter is now " + str(chunk_size_counter) print "y is now " + str(y) ''' final_list = [] for i in elements: print "i is " + str(i) count=0 if count < y: print count count +=1 counter +=1 final_list.append(i) print "chunk #" + str(counter) + " is " + str(final_list) final_list = [] count=0 # print "final chunk " + str(final_list) '''
import esphome.codegen as cg import esphome.config_validation as cv from esphome.components import sensor from esphome.const import CONF_ID, UNIT_EMPTY, ICON_EMPTY from . import EmptySensorHub, CONF_HUB_ID DEPENDENCIES = ['empty_sensor_hub'] sensor_ns = cg.esphome_ns.namespace('sensor') Sensor = sensor_ns.class_('Sensor', sensor.Sensor, cg.Nameable) CONFIG_SCHEMA = sensor.sensor_schema(UNIT_EMPTY, ICON_EMPTY, 1).extend({ cv.GenerateID(): cv.declare_id(Sensor), cv.GenerateID(CONF_HUB_ID): cv.use_id(EmptySensorHub) }).extend(cv.COMPONENT_SCHEMA) def to_code(config): paren = yield cg.get_variable(config[CONF_HUB_ID]) var = cg.new_Pvariable(config[CONF_ID]) yield sensor.register_sensor(var, config) cg.add(paren.register_sensor(var))
import numpy as np import sklearn import pandas as pd from sklearn.cluster import KMeans from skimage.io import imread import pylab import math import matplotlib.pyplot as plot from skimage import img_as_float as iaf image = imread('/Users/winniethepooh/PycharmProjects/ml/data-out/_3160f0832cf89866f4cc20e07ddf1a67_parrots.jpg') image = iaf(image) r = image[:, :, 0].ravel() g = image[:, :, 1].ravel() b = image[:, :, 2].ravel() rgb = np.transpose(np.vstack((r, g, b))) clf = KMeans(random_state=241, init='k-means++') clf.fit(rgb) clusters = clf.labels_ avg = clf.cluster_centers_# cls_img = np.reshape(clusters, (-1, 713)) mean_img = np.copy(image) for cluster in range(0, clf.n_clusters): mean_r = np.mean(mean_img[:, :, 0][cls_img == cluster]) mean_g = np.mean(mean_img[:, :, 1][cls_img == cluster]) mean_b = np.mean(mean_img[:, :, 2][cls_img == cluster]) mean_img[cls_img == cluster] = avg[cluster] plot.imshow(mean_img) med_img = np.copy(image) for cluster in range(0, clf.n_clusters): median_r = np.median(med_img[:, :, 0][cls_img == cluster]) median_g = np.median(med_img[:, :, 1][cls_img == cluster]) median_b = np.median(med_img[:, :, 2][cls_img == cluster]) med_img[cls_img == cluster] = avg[cluster] plot.imshow(med_img) def PSNR(image1, image2): mse = np.mean((image1 - image2) ** 2) psnr = 10 * math.log10(np.max(image1) / mse) return psnr psnr1 = PSNR(image, med_img) psnr2 = PSNR(image, mean_img) print(psnr1, psnr2) for i in range(1, 21): clf = KMeans(random_state=241, init='k-means++', n_clusters=i) clf.fit(rgb) clusters = clf.labels_ avg = clf.cluster_centers_ cls_img = np.reshape(clusters, (-1, 713)) img = np.copy(image) for cluster in range(0, i): img[cls_img == cluster] = avg[cluster] print(i, PSNR(image, img))
import sys a = 0 b = 0 max = None try: max = int(sys.argv[1]) except: print("Not an integer") sys.exit(1) for n in range(1,max): if n % 3 == 0 and n % 5 == 0: print("fizz buzz") elif n % 3 == 0: print("fizz") a += 1 elif n % 5 == 0: print("buzz") b += 1 else: print(n) print("There are %d fizzes and %d buzzes") % (a,b)
from re import compile, match REGEX = compile(r'((\d|[1-9]\d|1\d\d|2[0-4]\d|25[0-5])\.){4}$') def ipv4_address(address): # refactored thanks to @leonoverweel on CodeWars return bool(match(REGEX, address + '.'))
from django.db import models import uuid from .constants import MessageConstants from .managers import ChatMessageManager from cryptography.fernet import Fernet def getKey(): return Fernet.generate_key().decode("utf8") class ChatInfo(models.Model): member1 = models.ForeignKey( "loginsignup.Beaver", on_delete=models.CASCADE, related_name="memberOne", related_query_name="memOne", ) member2 = models.ForeignKey( "loginsignup.Beaver", on_delete=models.CASCADE, related_name="memberTwo", related_query_name="memTwo", ) urlparam = models.UUIDField( "URL Parameter", primary_key=True, default=uuid.uuid4, editable=False ) publicKey = models.CharField( "Encryption key", max_length=32, default=getKey, editable=False ) class Meta: verbose_name_plural = "Chat Informations" def __str__(self): return f"{self.member1} <-> {self.member2}" # When someone creates a new friend call this method @classmethod def createChatInformation(cls, member1, member2): cls.objects.get_or_create(member1=member1, member2=member2) # Returns all the url param for a particular user in the form of an # queryset @classmethod def getAllURLParams(cls, beaver): return cls.objects.select_related("member1").filter( member1=beaver ) | cls.objects.select_related("member2").filter(member2=beaver) @classmethod def convertUUIDToString(cls, uniqueid): return str(uniqueid).replace("-", "") @classmethod def convertStringToUUID(cls, string): return uuid.UUID(string) def getAllMessages(self): getMessages = self.messages.all() response = [] for messageDetail in getMessages: messageInfo = {} messageInfo["message"] = ChatMessage.decryptMessage( messageDetail.message, urlparam=messageDetail.chatinfo.urlparam ) messageInfo["sender"] = messageDetail.sender.user.username response.append(messageInfo) return response class ChatMessage(models.Model): objects = ChatMessageManager() chatinfo = models.ForeignKey( ChatInfo, on_delete=models.CASCADE, related_name="messages", related_query_name="message", ) sender = models.ForeignKey( "loginsignup.Beaver", on_delete=models.CASCADE, related_name="messages_sent", related_query_name="message_sent", ) message = models.TextField(null=False) timeSent = models.DateTimeField(auto_now_add=True) class Meta: verbose_name_plural = "Chat Messages" def __str__(self): return f"{self.chatinfo} || Sent : {self.timeSent}" @classmethod def decryptMessage(cls, message, urlparam): chat_info = None try: chat_info = ChatInfo.objects.get(urlparam=urlparam) except BaseException: return {"status": False, "error": MessageConstants.notAFriend} publicKey = chat_info.publicKey.encode("utf8") fernet = Fernet(publicKey) # Convert the message into byte string and then into string return fernet.decrypt(message.encode("utf8")).decode("utf8") # Sender must be a beaver instance # urlparam must be an UUID @classmethod def createMessage(cls, urlparam, sender, message): chat_info = None try: chat_info = ChatInfo.objects.get(urlparam=urlparam) except BaseException: return {"status": False, "error": MessageConstants.notAFriend} publicKey = chat_info.publicKey.encode("utf8") fernet = Fernet(publicKey) # Convert the message into byte and then convert the encrypted byte # string into string encryptedMessage = fernet.encrypt(message.encode("utf8")).decode("utf8") cls.objects.create(chatinfo=chat_info, sender=sender, message=encryptedMessage) return {"status": True, "error": None}
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'qt.ui' # # Created: Tue Apr 12 14:31:51 2016 # by: PyQt4 UI code generator 4.11.3 # # WARNING! All changes made in this file will be lost! import pickle from PyQt4 import QtCore, QtGui from PyQt4.QtGui import QLabel, QMessageBox, QPixmap import popsift import sys, time import cv2 try: _fromUtf8 = QtCore.QString.fromUtf8 except AttributeError: def _fromUtf8(s): return s try: _encoding = QtGui.QApplication.UnicodeUTF8 def _translate(context, text, disambig): return QtGui.QApplication.translate(context, text, disambig, _encoding) except AttributeError: def _translate(context, text, disambig): return QtGui.QApplication.translate(context, text, disambig) class ExtendedQLabel(QtGui.QLabel): def __init(self, parent): QLabel.__init__(self, parent) def mouseReleaseEvent(self, ev): self.emit(QtCore.SIGNAL('clicked()')) class Ui_MainWindow(QtGui.QMainWindow): BUTTON_IMAGE = 'im.png' def __init__(self, *args): QtGui.QMainWindow.__init__(self) self.setupUi(self) self.connect(self.ImageButton, QtCore.SIGNAL('clicked()'), self.buttonClicked) def setupUi(self, MainWindow): MainWindow.setObjectName(_fromUtf8("MainWindow")) MainWindow.resize(563, 554) self.centralwidget = QtGui.QWidget(MainWindow) self.centralwidget.setObjectName(_fromUtf8("centralwidget")) self.verticalLayout = QtGui.QVBoxLayout(self.centralwidget) self.verticalLayout.setObjectName(_fromUtf8("verticalLayout")) self.label = QtGui.QLabel(self.centralwidget) font = QtGui.QFont() font.setFamily(_fromUtf8("Kinnari")) font.setPointSize(20) font.setBold(True) font.setWeight(75) self.label.setFont(font) self.label.setAlignment(QtCore.Qt.AlignCenter) self.label.setWordWrap(False) self.label.setMargin(1) self.label.setObjectName(_fromUtf8("label")) self.verticalLayout.addWidget(self.label) self.widget = QtGui.QWidget(self.centralwidget) self.widget.setEnabled(True) self.widget.setMinimumSize(QtCore.QSize(600, 450)) self.widget.setSizeIncrement(QtCore.QSize(0, 0)) self.widget.setObjectName(_fromUtf8("widget")) self.gridLayout = QtGui.QGridLayout(self.widget) self.gridLayout.setMargin(0) self.gridLayout.setObjectName(_fromUtf8("gridLayout")) self.ImageButton = ExtendedQLabel(self.widget) # self.ImageButton.move(0, 0) self.pix1 = QtGui.QPixmap(self.BUTTON_IMAGE) self.ImageButton.setPixmap(self.pix1) # self.ImageButton.setGeometry(QtCore.QRect(0, 0, 1000, 1000)) self.ImageButton.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.ImageButton.setText(_fromUtf8("")) self.ImageButton.setObjectName(_fromUtf8("ImageButton")) self.ImageButton.setScaledContents(True) # sift=cv2.xfeatures2d.SIFT_create() self.gridLayout.addWidget(self.ImageButton, 0, 0, 1, 1) self.progressBar = QtGui.QProgressBar(self.widget) self.progressBar.setCursor(QtGui.QCursor(QtCore.Qt.ArrowCursor)) self.progressBar.setProperty("value", 0) self.progressBar.setObjectName(_fromUtf8("progressBar")) self.gridLayout.addWidget(self.progressBar, 1, 0, 1, 1) self.verticalLayout.addWidget(self.widget) self.label_2 = QtGui.QLabel(self.centralwidget) self.label_2.setText(_fromUtf8("")) self.label_2.setAlignment(QtCore.Qt.AlignCenter) self.label_2.setObjectName(_fromUtf8("label_2")) font = QtGui.QFont() font.setFamily(_fromUtf8("Monotype Corsiva")) font.setPointSize(20) font.setBold(True) font.setWeight(75) self.label_2.setFont(font) self.verticalLayout.addWidget(self.label_2) '''self.widget_2 = QtGui.QWidget(self.centralwidget) self.widget_2.setObjectName(_fromUtf8("widget_2")) self.pushButton = QtGui.QPushButton(self.widget_2) self.pushButton.setGeometry(QtCore.QRect(200, 0, 150, 31)) self.pushButton.setMaximumSize(QtCore.QSize(150, 16777215)) self.pushButton.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.pushButton.setLayoutDirection(QtCore.Qt.RightToLeft) self.pushButton.setObjectName(_fromUtf8("pushButton")) self.pushButton.clicked.connect(self.annotate) self.verticalLayout.addWidget(self.widget_2)''' self.pushButton = QtGui.QCommandLinkButton(self.centralwidget) self.pushButton.setMaximumSize(QtCore.QSize(130, 16777215)) self.pushButton.setObjectName(_fromUtf8("commandLinkButton")) self.pushButton.setLayoutDirection(QtCore.Qt.RightToLeft) self.verticalLayout.addWidget(self.pushButton, QtCore.Qt.AlignHCenter) self.pushButton.clicked.connect(self.annotate) MainWindow.setCentralWidget(self.centralwidget) self.menubar = QtGui.QMenuBar(MainWindow) self.menubar.setGeometry(QtCore.QRect(0, 0, 563, 25)) self.menubar.setObjectName(_fromUtf8("menubar")) MainWindow.setMenuBar(self.menubar) self.statusbar = QtGui.QStatusBar(MainWindow) self.statusbar.setObjectName(_fromUtf8("statusbar")) MainWindow.setStatusBar(self.statusbar) self.retranslateUi(MainWindow) QtCore.QMetaObject.connectSlotsByName(MainWindow) def retranslateUi(self, MainWindow): MainWindow.setWindowTitle(_translate("MainWindow", "MainWindow", None)) self.label.setText(_translate("MainWindow", "Automatic Image Anotation", None)) self.pushButton.setText(_translate("MainWindow", "Anotate Image", None)) def buttonClicked(self): self.label_2.setText("") self.progressBar.setProperty("value", 0) self.file_name = QtGui.QFileDialog.getOpenFileName(self, "Pick a folder") self.pix = QPixmap(self.file_name) if not self.pix.isNull(): self.ImageButton.setPixmap(self.pix) self.flag = 1 else: self.ImageButton.setPixmap(QtGui.QPixmap(self.BUTTON_IMAGE)) mBox = QMessageBox() mBox.setText("Not a Valid Image or Image Not Selected!") mBox.setWindowTitle("ERROR") mBox.setStandardButtons(QMessageBox.Ok) mBox.exec_() def annotate(self): self.val = 0.0 userdes = popsift.computeKp(str(self.file_name)) f = open('monuments.pkl', 'rb') tup = pickle.load(f) maxp = -1 completed = 0 prev = time.time() while (tup): self.val = self.val + float(100)/29 self.progressBar.setProperty("value", self.val) print tup[1] c = popsift.compare(userdes, tup[0], 0) print time.ctime() if c > 0: if maxp < c: maxp = c self.qpath = tup[1] try: tup = pickle.load(f) except: if maxp != -1: print self.qpath ind = self.qpath.rfind("/") ind2 = -1 for i in ['1', '2', '3', '4', '5']: ind2 = max(self.qpath.find(i), ind2) self.label_2.setText("The image is of : " + self.qpath[ind + 1:ind2]) else: self.label_2.setText("Sorry !No matches found") break now = time.time() print "Total time elapsed :", now - prev if __name__ == "__main__": app = QtGui.QApplication(sys.argv) window = Ui_MainWindow() window.show() sys.exit(app.exec_())
#!/usr/bin/env python3 from os import system from time import sleep x = [] while True: x.append('#' * 99999) sleep(0.1) system('sleep 9999 &')
from django.contrib import admin from django.urls import path, include from django.conf import settings from django.conf.urls.static import static from ticketingsystem import views urlpatterns = [ path('admin/', admin.site.urls), path('', include('django.contrib.auth.urls')), path ('', views.home, name = 'home'), path ('dashboard/', views.dashboard, name = 'Dashboard'), path ('dashboard/tickets/<int:ticket_id>/', views.ticket_detail, name = 'Ticket_Detail'), path ('dashboard/create-ticket/', views.createTicket, name = 'create-ticket'), path ('customer_list/', views.customerList, name = 'Customer_List'), path ('customer_list/create_customer/', views.createCustomer, name = 'create_customer'), path ('my_tickets/', views.myTickets, name = 'my-tickets'), path ('stock_list/', views.stockList, name = 'stock-list'), path ('stock_list/create_stock/', views.createStock, name = 'create_stock'), path ('stock_list/<int:stock_id>/', views.editStock, name = 'stock_edit'), ]
from django.urls import path, re_path from .apis import * urlpatterns = [ path('unemployments/add', AddUnemploymentApi.as_view(), name='unemployment_add'), re_path(r'^unemployments/list/(?:start=(?P<start>(?:19|20)\d{2}(0[1-9]|1[012])))&(?:end=(?P<end>(?:19|20)\d{2}(0[1-9]|1[012])))$', UnemploymentListApi.as_view(), name='unemployment_list'), path('unemployments/update/<int:unemployment_id>', UpdateUnemploymentApi.as_view(), name='unemployment_update'), path('unemployments/delete/<int:unemployment_id>', DeleteUnemploymentApi.as_view(), name='unemployment_delete'), ]
from .decode import * def calc_acc(target, output): output_argmax = output.detach().permute(1, 0, 2).argmax(dim=-1) target = target.cpu().numpy() output_argmax = output_argmax.cpu().numpy() # print(target, output, output_argmax) a = np.array([decode_target(true) == decode(pred) for true, pred in zip(target, output_argmax)]) return a.mean()
import httplib import os import signal import socket import time PROJECT_PATH = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) EXECFILE = os.path.join(os.path.join(PROJECT_PATH, "src"), "wheatserver") class WheatServer(object): def __init__(self, conf_file="", *options): assert os.access(EXECFILE, os.F_OK) self.exec_pid = os.fork() if not conf_file: conf_file = os.path.join(PROJECT_PATH, "wheatserver.conf") if not self.exec_pid: os.execl(EXECFILE, EXECFILE, conf_file, *options) def __del__(self): os.kill(self.exec_pid, signal.SIGQUIT); def server_socket(port): s = socket.socket() s.connect(("127.0.0.1", port)) return s def construct_command(*args): return "\r\r%s$" % ("\n".join(args)) def pytest_generate_tests(metafunc): metafunc.parametrize(('port',), [(10827,),(10829,),]) def test_config_command(port): s = server_socket(port) s.send(construct_command("config", "logfile-level")) assert s.recv(100) == "logfile-level: DEBUG" def test_stat_accuracy(port): global sync_server, async_server for i in range(100): conn = httplib.HTTPConnection("127.0.0.1", port-1, timeout=1); conn.request("GET", "/") r1 = conn.getresponse() assert r1.status == 200 time.sleep(0.1) os.kill(sync_server.exec_pid, signal.SIGUSR1) os.kill(async_server.exec_pid, signal.SIGUSR1) time.sleep(0.1) s = server_socket(port) s.send(construct_command("stat", "master")) assert "Total client: 100" in s.recv(1000) def test_static_file(port): time.sleep(0.1) for i in range(10): conn = httplib.HTTPConnection("127.0.0.1", port-1, timeout=1); conn.request("GET", "/static/example.jpg") r1 = conn.getresponse() assert r1.status == 200 sync_server = async_server = None def setup_module(module): global sync_server, async_server sync_server = WheatServer("", "--port 10826", "--stat-port 10827", "--worker-type %s" % "SyncWorker", "--app-project-path %s" % os.path.join(PROJECT_PATH, "example"), "--document-root %s" % os.path.join(PROJECT_PATH, "example/"), "--static-file-dir /static/", "--protocol Http") async_server = WheatServer("", "--worker-type %s" % "AsyncWorker", "--app-project-path %s" % os.path.join(PROJECT_PATH, "example"), "--document-root %s" % os.path.join(PROJECT_PATH, "example/"), "--static-file-dir /static/", "--protocol Http") time.sleep(0.5) def teardown_module(module): global sync_server, async_server del sync_server, async_server
# Массив, который нужно было создать в предыдущей задаче, хранится в переменной mat. Превратите его в вертикальный вектор и напечатайте. import numpy as np z = mat.flatten() print(z.reshape(z.shape+(1,))) # import numpy as np # mat = mat.reshape((12,1)) # print(mat)
#B intgr=input() muldig=1 for i in intgr: muldig=muldig*int(i) print(muldig)
saludo = "Hola Mundo" edad = 20 estatura = 1.55 print(saludo, edad, estatura)
# 简单dp # 可以简化为f[i] MOD = int(1e9+7) class Solution: def countHousePlacements(self, n: int) -> int: # dp[i][0] 表示前 i 块放置房子的总情况数,0表示第i块不放,1表示第i块放 dp = [[0] * 2 for _ in range(n+1)] dp[1][0] = dp[1][1] = 1 for i in range(2, n+1): dp[i][1] = dp[i-1][0] % MOD dp[i][0] = (dp[i-1][0] + dp[i-1][1]) % MOD return (dp[n][1] + dp[n][0]) * (dp[n][1] + dp[n][0]) % MOD
#Cubic spline curve using Hermite interpolation #@Mkchaudhary 16 sept 2018 from OpenGL.GL import * from OpenGL.GLU import * from OpenGL.GLUT import * import sys def init(): glClearColor(0.0,1.0,1.0,0.0) glColor3f(1.0,0.0,0.0) glMatrixMode(GL_PROJECTION) glLoadIdentity() gluOrtho2D(-10.0,10.0,-10.0,10.0) def setPixel(xcoordinate,ycoordinate): glBegin(GL_POINTS) glVertex2f(xcoordinate,ycoordinate) glEnd() glFlush() def read_controlpoint(): global p,m n=input("Enter no of control points: ") p=[[0 for x in range(2)] for y in range(n)] m=[0 for x in range(n)] for i in range(n): p[i][0]=input("Enter control point_x: ") p[i][1]=input("Enter control point_y: ") m[i]=input("Enter slope at control point: ") def draw_cubic_spline(): while True: read_controlpoint() n=len(p) for i in range(n-1): hermite(p[i],p[i+1],m[i],m[i+1]) print("Enter a decimal no other than 0 to continue") check=int(input("Enter 0 to exit: ")) if check == 0: break else: pass def hermite(p1,p2,m1,m2): u=0.0 while u <= 1.0: H0_u=2*u*u*u -3*u*u +1 H1_u=-2*u*u*u + 3*u*u H2_u=u*u*u -2*u*u + u H3_u=u*u*u - u*u x=H0_u*p1[0] + H1_u*p2[0] + H2_u*m1 + H3_u*m2 y=H0_u*p1[1] + H1_u*p2[1] + H2_u*m1 + H3_u*m2 setPixel(x,y) u+=0.001 def Display(): glClear(GL_COLOR_BUFFER_BIT) draw_cubic_spline() def main(): glutInit(sys.argv) glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB) glutInitWindowSize(600,600) glutInitWindowPosition(50,50) glutCreateWindow("Cubic spline") glutDisplayFunc(Display) init() glutMainLoop() main()
# To get started, copy over hyperparams from another experiment. # Visit rll.berkeley.edu/gps/hyperparams.html for documentation. """ Hyperparameters for Laika Reinforcement Learning experiment. """ from __future__ import division from datetime import datetime import os.path import numpy as np from gps import __file__ as gps_filepath from gps.agent.ros.agent_laika_ros import AgentLaikaROS from gps.algorithm.algorithm_traj_opt import AlgorithmTrajOpt from gps.algorithm.algorithm_mdgps import AlgorithmMDGPS from gps.algorithm.cost.cost_state import CostState from gps.algorithm.dynamics.dynamics_prior_gmm import DynamicsPriorGMM from gps.algorithm.dynamics.dynamics_lr_prior import DynamicsLRPrior from gps.algorithm.traj_opt.traj_opt_lqr_python import TrajOptLQRPython from gps.algorithm.traj_opt.traj_opt_pilqr import TrajOptPILQR from gps.algorithm.policy_opt.policy_opt_tf import PolicyOptTf from gps.algorithm.policy.lin_gauss_init import init_lqr from gps.algorithm.policy.policy_prior_gmm import PolicyPriorGMM from gps.gui.target_setup_gui import load_pose_from_npz from gps.gui.config import generate_experiment_info from gps.proto.gps_pb2 import BODY_POSITIONS, BODY_VELOCITIES, CABLE_RL, ACTION from gps.algorithm.policy_opt.tf_model_example import tf_network #WHERE IS THE TF POLICY IMPORTED? SENSOR_DIMS = { BODY_POSITIONS: 54, BODY_VELOCITIES: 54, CABLE_RL: 32, ACTION: 36, #32 CABLES AND 4 MOTORS ON THE LEGS } BASE_DIR = '/'.join(str.split(gps_filepath, '/')[:-2]) EXP_DIR = BASE_DIR + '/../experiments/Laika_Test/' common = { 'experiment_name': 'my_experiment' + '_' + \ datetime.strftime(datetime.now(), '%m-%d-%y_%H-%M'), 'experiment_dir': EXP_DIR, 'data_files_dir': EXP_DIR + 'data_files/', 'target_filename': EXP_DIR + 'target.npz', 'log_filename': EXP_DIR + 'log.txt', 'conditions': 1, 'iterations':1, } if not os.path.exists(common['data_files_dir']): os.makedirs(common['data_files_dir']) agent = { 'type': AgentLaikaROS, 'dt': 0.02, #NTRT dt * substeps 'conditions': common['conditions'], 'T': 100, 'substeps': 20, 'state_size' : 140, #wrong 'x0': [np.zeros(140)], #debug: change later 'sensor_dims': SENSOR_DIMS, 'state_include': [BODY_POSITIONS, BODY_VELOCITIES, CABLE_RL], 'obs_include': [BODY_POSITIONS, BODY_VELOCITIES, CABLE_RL], } algorithm = { 'type': AlgorithmMDGPS, 'conditions': common['conditions'], 'iterations': 12, 'kl_step': 1.0, 'min_step_mult': 0.5, 'max_step_mult': 3.0, 'policy_sample_mode': 'replace', } algorithm['init_traj_distr'] = { 'type': init_lqr, 'init_gains': np.zeros(SENSOR_DIMS[ACTION]), 'init_acc': np.zeros(SENSOR_DIMS[ACTION]), 'init_var': 1.0, 'stiffness': 0.5, 'stiffness_vel': 0.25, 'final_weight': 50, 'dt': agent['dt'], 'T': agent['T'], } algorithm['cost'] = { 'type': CostState, 'data_types' : { #BODY_POSITIONS: { # 'average': (9,6), # 'wp': np.ones(54), # 'target_state': np.ones(54)*100, #}, BODY_VELOCITIES: { 'average':(9,6), 'wp': [-1.0,0.,0.,0.,0.,0.], #np.ones(6), 'target_state': np.zeros(6), }, #CABLE_RL: { # 'wp': np.ones(32), # 'target_state': np.ones(32)*100, #}, }, #'alpha': 1e-3, #'l1':0, #'l2':1.0, } algorithm['dynamics'] = { 'type': DynamicsLRPrior, 'regularization': 1e-6, 'prior': { 'type': DynamicsPriorGMM, 'max_clusters': 40, 'min_samples_per_cluster': 40, 'max_samples': 20, }, } algorithm['traj_opt'] = { 'type': TrajOptLQRPython, 'cons_per_step': False,#True, } #algorithm['traj_opt'] = { # 'type': TrajOptPILQR, # 'covariance_damping':10.0, # 'kl_threshold': 0.5, #} algorithm['policy_opt'] = { 'type': PolicyOptTf, 'network_params': { 'obs_include': [BODY_POSITIONS, BODY_VELOCITIES, CABLE_RL], 'obs_vector_data': [BODY_POSITIONS, BODY_VELOCITIES, CABLE_RL], 'sensor_dims': SENSOR_DIMS, 'n_layers': 2, 'dim_hidden': [100, 100], }, 'network_model': tf_network, 'iterations': 1000, 'weights_file_prefix': EXP_DIR + 'policy', } algorithm['policy_prior'] = { 'type': PolicyPriorGMM, 'max_clusters': 50, 'min_samples_per_cluster': 40, 'max_samples': 40, } config = { 'iterations': algorithm['iterations'], 'common': common, 'verbose_trials': 1, 'verbose_policy_trials':1, 'agent': agent, 'gui_on': True, 'algorithm': algorithm, 'num_samples': 15, 'image_on':False, } common['info'] = generate_experiment_info(config)
from django.apps import AppConfig class EmailMessagesConfig(AppConfig): name = 'email_messages'
import subprocess user = 'dkdexpota' password = '8x5h915XXX' cmd = "git init" subprocess.call(cmd, shell=True) cmd = 'git config --global user.name "dkdexpota"' subprocess.call(cmd, shell=True) cmd = 'git config --global user.email "artur202080202080@gmail.com"' subprocess.call(cmd, shell=True)
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # import sys from gbpclient.gbp.v2_0 import groupbasedpolicy as gbp from gbpclient.tests.unit import test_cli20 class CLITestV20PolicyClassifierJSON(test_cli20.CLITestV20Base): def setUp(self): super(CLITestV20PolicyClassifierJSON, self).setUp() def test_create_policy_classifier_with_mandatory_params(self): """grouppolicy-policy-classifier-create with all mandatory params.""" resource = 'policy_classifier' cmd = gbp.CreatePolicyClassifier(test_cli20.MyApp(sys.stdout), None) name = 'my-name' direction = 'bi' tenant_id = 'my-tenant' my_id = 'my-id' args = ['--tenant-id', tenant_id, '--direction', direction, name] position_names = ['name', ] position_values = [name, ] self._test_create_resource(resource, cmd, name, my_id, args, position_names, position_values, tenant_id=tenant_id, direction=direction) def test_create_policy_classifier_with_all_params(self): """grouppolicy-policy-classifier-create with all params.""" resource = 'policy_classifier' cmd = gbp.CreatePolicyClassifier(test_cli20.MyApp(sys.stdout), None) name = 'my-name' tenant_id = 'my-tenant' description = 'My PolicyClassifier' my_id = 'my-id' port_range = '10-80' direction = 'in' shared = 'true' for protocol in ['tcp', 'icmp', 'udp', '50']: args = ['--tenant-id', tenant_id, '--description', description, '--protocol', protocol, '--port-range', port_range, '--direction', direction, '--shared', shared, name] position_names = ['name', ] position_values = [name, ] self._test_create_resource(resource, cmd, name, my_id, args, position_names, position_values, tenant_id=tenant_id, description=description, protocol=protocol, port_range=port_range, direction=direction, shared=shared) def test_list_policy_classifiers(self): """grouppolicy-policy-classifier-list.""" resources = 'policy_classifiers' cmd = gbp.ListPolicyClassifier(test_cli20.MyApp(sys.stdout), None) self._test_list_resources(resources, cmd, True) def test_list_policy_classifiers_pagination(self): """grouppolicy-policy-classifier-list.""" resources = 'policy_classifiers' cmd = gbp.ListPolicyClassifier(test_cli20.MyApp(sys.stdout), None) self._test_list_resources_with_pagination(resources, cmd) def test_list_policy_classifiers_sort(self): """grouppolicy-policy-classifier-list --sort-key name --sort-key id --sort-key asc --sort-key desc """ resources = 'policy_classifiers' cmd = gbp.ListPolicyClassifier(test_cli20.MyApp(sys.stdout), None) self._test_list_resources(resources, cmd, sort_key=["name", "id"], sort_dir=["asc", "desc"]) def test_list_policy_classifiers_limit(self): """grouppolicy-policy-classifier-list -P.""" resources = 'policy_classifiers' cmd = gbp.ListPolicyClassifier(test_cli20.MyApp(sys.stdout), None) self._test_list_resources(resources, cmd, page_size=1000) def test_show_policy_classifier_id(self): """grouppolicy-policy-classifier-show test_id.""" resource = 'policy_classifier' cmd = gbp.ShowPolicyClassifier(test_cli20.MyApp(sys.stdout), None) args = ['--fields', 'id', self.test_id] self._test_show_resource(resource, cmd, self.test_id, args, ['id']) def test_show_policy_classifier_id_name(self): """grouppolicy-policy-classifier-show.""" resource = 'policy_classifier' cmd = gbp.ShowPolicyClassifier(test_cli20.MyApp(sys.stdout), None) args = ['--fields', 'id', '--fields', 'name', self.test_id] self._test_show_resource(resource, cmd, self.test_id, args, ['id', 'name']) def test_update_policy_classifier(self): """grouppolicy-policy-classifier-update myid --name myname --tags a b. """ resource = 'policy_classifier' cmd = gbp.UpdatePolicyClassifier(test_cli20.MyApp(sys.stdout), None) self._test_update_resource(resource, cmd, 'myid', ['myid', '--name', 'myname', '--tags', 'a', 'b'], {'name': 'myname', 'tags': ['a', 'b'], }) def test_update_policy_classifier_with_allparams(self): resource = 'policy_classifier' port_range = '10-80' direction = 'in' cmd = gbp.UpdatePolicyClassifier(test_cli20.MyApp(sys.stdout), None) my_id = 'someid' shared = 'true' for protocol in ['tcp', 'icmp', 'udp', '50']: body = { 'protocol': protocol, 'port_range': port_range, 'direction': direction, 'shared': shared } args = [my_id, '--protocol', protocol, '--port-range', port_range, '--direction', direction, '--shared', shared, ] self._test_update_resource(resource, cmd, my_id, args, body) def test_delete_policy_classifier(self): """grouppolicy-policy-classifier-delete my-id.""" resource = 'policy_classifier' cmd = gbp.DeletePolicyClassifier(test_cli20.MyApp(sys.stdout), None) my_id = 'my-id' args = [my_id] self._test_delete_resource(resource, cmd, my_id, args)
name = input("Enter file:") if len(name) < 1: name = "mbox-short.txt" handle = open(name) lst = list() counts = dict() for line in handle: if line.startswith("From ") == True: line = line.split() tpart = line[5] tpart = tpart.split(":") time = tpart[0] lst.append(time) else: continue for iterv in lst: counts[iterv] = counts.get(iterv, 0) + 1 tup = list() #flip; tuple as value in a list for key, value in counts.items(): tup.append((key, value)) #from the smallest tup.sort() for k, v in tup: print(k, v)
import pandas as pd import pytrec_eval from collections import defaultdict import os class Utils: @staticmethod def parse_query_result(filename): results = [] with open(filename, 'r') as file: for line in file: split_line = line.strip("\n").split(" ") results.append([split_line[1], float(split_line[2])]) return results @staticmethod def parse_res_file(filename): results = [] with open(filename, 'r') as file: for line in file: split_line = line.strip("\n").split(" ") results.append([split_line[0], split_line[2], float(split_line[4])]) return results @staticmethod def parse_singleline_topics_file(filepath, tokenise=True): """ Parse a file containing topics, one per line Args: file_path(str): The path to the topics file tokenise(bool): whether the query should be tokenised, using Terrier's standard Tokeniser. If you are using matchop formatted topics, this should be set to False. Returns: pandas.Dataframe with columns=['qid','query'] """ rows = [] from jnius import autoclass # TODO: this can be updated when 5.3 is released system = autoclass("java.lang.System") system.setProperty("SingleLineTRECQuery.tokenise", "true" if tokenise else "false") slqIter = autoclass("org.terrier.applications.batchquerying.SingleLineTRECQuery")(filepath) for q in slqIter: rows.append([slqIter.getQueryId(), q]) return pd.DataFrame(rows, columns=["qid", "query"]) @staticmethod def parse_trec_topics_file(file_path): """ Parse a file containing topics in standard TREC format Args: file_path(str): The path to the topics file Returns: pandas.Dataframe with columns=['qid','query'] """ from jnius import autoclass system = autoclass("java.lang.System") system.setProperty("TrecQueryTags.doctag", "TOP") system.setProperty("TrecQueryTags.idtag", "NUM") system.setProperty("TrecQueryTags.process", "TOP,NUM,TITLE") system.setProperty("TrecQueryTags.skip", "DESC,NARR") trec = autoclass('org.terrier.applications.batchquerying.TRECQuery') tr = trec(file_path) topics_lst = [] while(tr.hasNext()): topic = tr.next() qid = tr.getQueryId() topics_lst.append([qid, topic]) topics_dt = pd.DataFrame(topics_lst, columns=['qid', 'query']) return topics_dt @staticmethod def parse_qrels(file_path): """ Parse a file containing qrels Args: file_path(str): The path to the qrels file Returns: pandas.Dataframe with columns=['qid','docno', 'label'] """ df = pd.read_csv(file_path, sep='\s+', names=["qid", "iter", "docno", "label"]) df = df.drop(columns="iter") df["qid"] = df["qid"].astype(str) df["docno"] = df["docno"].astype(str) return df @staticmethod def convert_qrels_to_dict(df): """ Convert a qrels dataframe to dictionary for use in pytrec_eval Args: df(pandas.Dataframe): The dataframe to convert Returns: dict: {qid:{docno:label,},} """ run_dict_pytrec_eval = defaultdict(dict) for index, row in df.iterrows(): run_dict_pytrec_eval[row['qid']][row['docno']] = int(row['label']) return(run_dict_pytrec_eval) @staticmethod def convert_res_to_dict(df): """ Convert a result dataframe to dictionary for use in pytrec_eval Args: df(pandas.Dataframe): The dataframe to convert Returns: dict: {qid:{docno:score,},} """ run_dict_pytrec_eval = defaultdict(dict) for index, row in df.iterrows(): run_dict_pytrec_eval[row['qid']][row['docno']] = float(row['score']) return(run_dict_pytrec_eval) @staticmethod def evaluate(res, qrels, metrics=['map', 'ndcg'], perquery=False): """ Evaluate the result dataframe with the given qrels Args: res: Either a dataframe with columns=['qid', 'docno', 'score'] or a dict {qid:{docno:score,},} qrels: Either a dataframe with columns=['qid','docno', 'label'] or a dict {qid:{docno:label,},} metrics(list): A list of strings specifying which evaluation metrics to use. Default=['map', 'ndcg'] perquery(bool): If true return each metric for each query, else return mean metrics. Default=False """ if isinstance(res, pd.DataFrame): batch_retrieve_results_dict = Utils.convert_res_to_dict(res) else: batch_retrieve_results_dict = res if isinstance(qrels, pd.DataFrame): qrels_dic = Utils.convert_qrels_to_dict(qrels) else: qrels_dic = qrels evaluator = pytrec_eval.RelevanceEvaluator(qrels_dic, set(metrics)) result = evaluator.evaluate(batch_retrieve_results_dict) if perquery: return result else: measures_sum = {} mean_dict = {} for val in result.values(): for measure, measure_val in val.items(): measures_sum[measure] = measures_sum.get(measure, 0.0) + measure_val for measure, value in measures_sum.items(): mean_dict[measure] = value / len(result.values()) return mean_dict # create a dataframe of string of queries or a list or tuple of strings of queries @staticmethod def form_dataframe(query): """ Convert either a string or a list of strings to a dataframe for use as topics in retrieval. Args: query: Either a string or a list of strings Returns: dataframe with columns=['qid','query'] """ if isinstance(query, pd.DataFrame): return query elif isinstance(query, str): return pd.DataFrame([["1", query]], columns=['qid', 'query']) # if queries is a list or tuple elif isinstance(query, list) or isinstance(query, tuple): # if the list or tuple is made of strings if query != [] and isinstance(query[0], str): indexed_query = [] for i, item in enumerate(query): # all elements must be of same type assert isinstance(item, str), f"{item} is not a string" indexed_query.append([str(i + 1), item]) return pd.DataFrame(indexed_query, columns=['qid', 'query']) @staticmethod def get_files_in_dir(dir): """ Returns all the files present in a directory and its subdirectories Args: dir(str): The directory containing the files Returns: paths(list): A list of the paths to the files """ lst = [] zip_paths = [] for (dirpath, dirnames, filenames) in os.walk(dir): lst.append([dirpath, filenames]) for sublist in lst: for zip in sublist[1]: zip_paths.append(os.path.join(sublist[0], zip)) return zip_paths
def add_menu(): pass def default_menu(): pass def update_menu(): pass
#some manual formatting required import csv with open('levelTemp.js', 'w') as the_file: #change this for different output levels with open('level/Whale Defense Force Level - Sheet1(1).csv', 'rb') as f: reader = csv.reader(f) the_file.write('var GAME_LEVELS = [\n [\n') for row in reader: the_file.write('"') for character in row: char = character if len(character) is 0: char = " " the_file.write(char) the_file.write('",\n') the_file.write(']\n];\n') the_file.write('if (typeof module != "undefined" && module.exports)') the_file.write('module.exports = GAME_LEVELS;')
# test 1 # 使用json存储运行过程中产生的数据 # 使用json.dump(date,file)存储数据 import json num = ['1','2','3','4'] with open("num.json", 'w') as file: json.dump(num, file) # 使用json.load(file)加载json中的数据 with open('num.json') as file: number = json.load(file) print(number)
# Generated by Django 3.0.3 on 2020-03-01 15:55 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('main_app', '0001_initial'), ] operations = [ migrations.AlterModelOptions( name='livre', options={'ordering': ['titre']}, ), migrations.AddField( model_name='livre', name='slug_title', field=models.SlugField(default=''), ), ]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Jul 1 12:46:45 2019 @author: thomas """ import os, shutil import pandas as pd import numpy as np import random import zipfile import matplotlib import matplotlib.pyplot as plt from shutil import copyfile import pathlib #Script will generate randomly placed circles in a 2D plane #Script will then CheckCircleBounds #If circles overlap, then they will move apart from one another in opposite directions #Continue above (2,3) until no circle overlaps #When circles collide, they will try to push off like a collision cwd_PYTHON = os.getcwd() #CONSTANTS GRID PLACEMENT RADIUSLARGE = 0.002 #CONSTANTS SPHEROBOT RList = [3.0,4.0,5.0] structureNames = ['skeletonES','botupES','botlowES'] def MakeDirectory(directory,seed): if not os.path.exists(directory+'/'+str(seed)): os.makedirs(directory+'/'+str(seed)) return def zipFiles(src,dst): zf = zipfile.ZipFile('%s.zip' % (dst), 'w', zipfile.ZIP_DEFLATED) abs_src = os.path.abspath(src) for dirname, subdirs, files in os.walk(src): for filename in files: absname = os.path.abspath(os.path.join(dirname, filename)) arcname = absname[len(abs_src) + 1:] print('zipping %s as %s' % (os.path.join(dirname, filename), arcname)) zf.write(absname, arcname) zf.close() def StoreVertexInfo(): #BOTUP #Read vertex file line by line and save the values in a list using the \n delimiter linesup = [line.strip() for line in open('botupES.vertex')] #Break each list element into an array of numbers using the space delimiter linesup = [line.split() for line in linesup] nvertup = int(linesup[0][0]) #Allocate Array for Large Sphere Vertex Positions vertUp = np.zeros((2,nvertup)) #Store Vertices for i in range(1,nvertup+1): vertUp[0,i-1] = float(linesup[i][0]) vertUp[1,i-1] = float(linesup[i][1]) #BOTLOW #Read vertex file line by line and save the values in a list using the \n delimiter lineslow = [line.strip() for line in open('botlowES.vertex')] #Break each list element into an array of numbers using the space delimiter lineslow = [line.split() for line in lineslow] nvertlow = int(lineslow[0][0]) #Allocate Array for Small Sphere Vertex Positions vertLow = np.zeros((2,nvertlow)) #Store Vertices for i in range(1,nvertlow+1): vertLow[0,i-1] = float(lineslow[i][0]) vertLow[1,i-1] = float(lineslow[i][1]) #Read vertex file line by line and save the values in a list using the \n delimiter linesskel = [line.strip() for line in open('skeletonES.vertex')] #Break each list element into an array of numbers using the space delimiter linesskel = [line.split() for line in linesskel] nvertskel = int(linesskel[0][0]) #Allocate Array for Skeleton Vertex Positions vertSkel = np.zeros((2,nvertskel)) #Store Vertices for i in range(1,nvertskel+1): vertSkel[0,i-1] = float(linesskel[i][0]) vertSkel[1,i-1] = float(linesskel[i][1]) nvert = [nvertskel,nvertup,nvertlow] vertList = [vertSkel,vertUp,vertLow] return (vertList,nvert) def DisplaceSpherobots(vertList, nvert, structureNames, R, Theta, idxT, idxConfig): #First Rotate based on idxConfig #Allocate Arrays rotationMatrix = np.zeros((2,2)) if(idxConfig == 1): theta = np.pi/2.0 else: theta = 0.0 #rotatedPosition = np.zeros((Nbots,2,nvert)) #Generate Random Angles #print('theta[%i] = %.3e' %(i,theta[i])) rotationMatrix[0,0] = np.cos(theta) rotationMatrix[0,1] = -1.0*np.sin(theta) rotationMatrix[1,0] = np.sin(theta) rotationMatrix[1,1] = np.cos(theta) #Displaces the spheres where they are a distance R apart at an angle Theta #x1 and x2 x1Arr = np.zeros(2) x1Arr[0], x1Arr[1] = -0.5*R*RADIUSLARGE*np.cos(Theta), 0.0025 #print(np.sin(Theta)) x2Arr = np.zeros(2) x2Arr[0], x2Arr[1] = 0.5*R*RADIUSLARGE*np.cos(Theta), R*RADIUSLARGE*np.sin(Theta)+0.0025 #Account for CM xList = [x1Arr, x2Arr] if(idxConfig == 0): pathlib.Path('../../Structures/Periodic/EqualSpheres/'+str(int(R))+'/PI'+str(idxT)+'/Parallel/').mkdir(parents=True, exist_ok=True) cwd_PARALLEL = cwd_PYTHON + '/../../Structures/Periodic/EqualSpheres/'+str(int(R))+'/PI'+str(idxT)+'/Parallel/' else: pathlib.Path('../../Structures/Periodic/EqualSpheres/'+str(int(R))+'/PI'+str(idxT)+'/Perp/').mkdir(parents=True, exist_ok=True) cwd_PERP = cwd_PYTHON + '/../../Structures/Periodic/EqualSpheres/'+str(int(R))+'/PI'+str(idxT)+'/Perp/' #Generate Figure to show Pairwise Placement fig = plt.figure(num=0,figsize=(4,4),dpi=120) ax = fig.add_subplot(111) ax.set_title('Pairwise Init Config: ES: \nR = %.4f m Theta = PI*%.2f m'%(R*0.002,Theta/np.pi)) ax.axis([-0.05,0.05,-0.05,0.05]) #Displace Spherobots for idxBot in range(2): dispArr = xList[idxBot] #print(dispArr) for idxName in range(len(vertList)): name = structureNames[idxName] vertPos = vertList[idxName].copy() if(idxConfig == 0): f = open(cwd_PARALLEL+name+str(idxBot+1)+'.vertex','w') #Copy spring/beam files for 'name' copyfile(name+'.spring',cwd_PARALLEL+name+str(idxBot+1)+'.spring') else: f = open(cwd_PERP+name+str(idxBot+1)+'.vertex','w') #Copy spring/beam files for a'name' copyfile(name+'.spring',cwd_PERP+name+str(idxBot+1)+'.spring') f.write('%i\n'%nvert[idxName]) for idxVert in range(nvert[idxName]): #Rotate Skeleton2 by Theta given idxConfig if(idxName == 0 and idxBot == 1): #print('b4: idxVert = %i: xPos = %.5e: yPos = %.5e'%(idxVert,vertPos[0,idxVert],vertPos[1,idxVert])) if(idxVert <= 12): CM = np.array([0.0,0.0025]) vertPos[:,idxVert] = rotationMatrix.dot(vertPos[:,idxVert] - CM) vertPos[:,idxVert] += CM else: CM = np.array([0.000,-0.0025]) vertPos[:,idxVert] = rotationMatrix.dot(vertPos[:,idxVert].copy() - CM) vertPos[:,idxVert] += CM #print('a4: idxVert = %i: xPos = %.5e: yPos = %.5e'%(idxVert,vertPos[0,idxVert],vertPos[1,idxVert])) #Displace Spherobot by xList[idxBot] vertPos[:,idxVert] += dispArr[:] #Rotate 90 degrees if Perp if(idxConfig == 1 and idxBot == 1): if(idxName == 0): #Skeleton if(idxVert <=12): vertPos[0,idxVert] -= 0.005 vertPos[1,idxVert] -= 0.005 else: vertPos[0,idxVert] += 0.00 vertPos[1,idxVert] += 0.00 elif(idxName == 1): #Upper Sphere vertPos[0,idxVert] -= 0.0025 vertPos[1,idxVert] -= 0.0025 elif(idxName == 2): #Lower Sphere vertPos[0,idxVert] += 0.0025 vertPos[1,idxVert] += 0.0025 #Write vertex coordinates down in .vertex file if(idxVert == nvert[idxName] - 1): f.write('%.5e %.5e'%(vertPos[0,idxVert],vertPos[1,idxVert])) else: f.write('%.5e %.5e\n' %(vertPos[0,idxVert],vertPos[1,idxVert])) f.close() #Plot Displaced Spherobots if(idxName == 0): #Skeleton ax.plot(vertPos[0,:],vertPos[1,:],'ro',zorder=5,markersize=2) ax.plot(vertPos[0,13],vertPos[1,13],'bo',zorder=6,markersize=2) ax.plot(vertPos[0,0],vertPos[1,0],'bo',zorder=6,markersize=2) else: #Large and Small Spheres ax.plot(vertPos[0,:],vertPos[1,:],'ko',zorder=1,markersize=2) ax.axis([-4.5*R*0.002,4.5*R*0.002,-4.5*R*0.002,4.5*R*0.002]) fig.tight_layout() if(idxConfig == 0): #Parallel Configuration fig.savefig(cwd_PARALLEL+'InitConfig.png') else: #PerpS Configuration fig.savefig(cwd_PERP+'InitConfig.png') fig.clf() plt.close() return if __name__ == '__main__': #Generate Placement for Pairwise Configurations: Parallel and Anti-Parallel #1) Read in .vertex files #2) Store Vertices in array (vertexPos array) #3) Loop over R and Theta #4) Displace spherobot 1 by x1 and spherobot2 by x2 #5) x1 = (-1.0*Lcos(theta),0.0); x2 = (Lcos(theta),Lsin(theta)) #6) If Antiparallel, switch ind sphere locations: LS -= 0.005; SS += 0.005 #7) Write new vertex positions to new .vertex file #8) copy .beam and .spring files over to same dir as new .vertex files #9) Zip newly created files #1)Read in .vertex files #2)Store Vertices in array vertList, nvert = StoreVertexInfo() nvertskel, nvertup, nvertlow = nvert[0], nvert[1], nvert[2] vertSkel, vertUp, vertLow = vertList[0], vertList[1], vertList[2] #3)Loop over R and Theta (Parallel, Anti-Parallel, PerpL, and PerpS) for idxConfig in range(2): #for idxR in range(0,3): for idxR in range(len(RList)): #R = 5.0 + 2.5*idxR #R = 5.0 + 1.0*idxR R = RList[idxR] for idxT in range(4): Theta = -1.0*np.pi/2.0 + idxT*np.pi/4.0 #4) Displace spherobot by x1 and x2 DisplaceSpherobots(vertList, nvert, structureNames, R, Theta, idxT,idxConfig)
"""Git specific support and addon.""" import argparse import os import pickle import shlex import subprocess import sys from collections import UserDict from contextlib import AbstractContextManager from functools import partial from pathspec import PathSpec from pkgcore.ebuild import cpv from pkgcore.ebuild.atom import MalformedAtom from pkgcore.ebuild.atom import atom as atom_cls from pkgcore.repository import multiplex from pkgcore.repository.util import SimpleTree from pkgcore.restrictions import packages, values from snakeoil.cli.exceptions import UserException from snakeoil.demandload import demand_compile_regexp from snakeoil.fileutils import AtomicWriteFile from snakeoil.iterables import partition from snakeoil.klass import jit_attr from snakeoil.osutils import pjoin from snakeoil.process import CommandNotFound, find_binary from snakeoil.process.spawn import spawn_get_output from snakeoil.strings import pluralism from . import base, caches, objects from .checks import GitCheck from .log import logger # hacky path regexes for git log parsing, proper validation is handled later _ebuild_path_regex_raw = '([^/]+)/([^/]+)/([^/]+)\\.ebuild' _ebuild_path_regex = '(?P<category>[^/]+)/(?P<PN>[^/]+)/(?P<P>[^/]+)\\.ebuild' demand_compile_regexp('ebuild_ADM_regex', fr'^(?P<status>[ADM])\t{_ebuild_path_regex}$') demand_compile_regexp('ebuild_R_regex', fr'^(?P<status>R)\d+\t{_ebuild_path_regex}\t{_ebuild_path_regex_raw}$') demand_compile_regexp('eclass_regex', r'^eclass/(?P<eclass>\S+)\.eclass$') class GitCommit: """Git commit objects.""" def __init__(self, hash, commit_date, author, committer, message): self.hash = hash self.commit_date = commit_date self.author = author self.committer = committer self.message = message def __str__(self): return self.hash def __eq__(self, other): return self.hash == other.hash class GitPkgChange: """Git package change objects.""" def __init__(self, atom, status, commit): self.atom = atom self.status = status self.commit = commit class ParsedGitRepo(UserDict, caches.Cache): """Parse repository git logs.""" # git command to run on the targeted repo _git_cmd = 'git log --name-status --date=short --diff-filter=ARMD' def __init__(self, repo, commit=None, **kwargs): super().__init__() self.location = repo.location self._cache = GitAddon.cache if commit is None: self.commit = 'origin/HEAD..master' self._pkg_changes(commit=self.commit, **kwargs) else: self.commit = commit self._pkg_changes(**kwargs) def update(self, commit, **kwargs): """Update an existing repo starting at a given commit hash.""" self._pkg_changes(commit=self.commit, **kwargs) self.commit = commit @staticmethod def _parse_file_line(line): """Pull atoms and status from file change lines.""" # match initially added ebuilds match = ebuild_ADM_regex.match(line) if match: status = match.group('status') category = match.group('category') pkg = match.group('P') try: return atom_cls(f'={category}/{pkg}'), status except MalformedAtom: return None # match renamed ebuilds match = ebuild_R_regex.match(line) if match: status = match.group('status') category = match.group('category') pkg = match.group('P') try: return atom_cls(f'={category}/{pkg}'), status except MalformedAtom: return None @classmethod def parse_git_log(cls, repo_path, commit=None, pkgs=False, verbosity=-1): """Parse git log output.""" cmd = shlex.split(cls._git_cmd) # custom git log format, see the "PRETTY FORMATS" section of the git # log man page for details format_lines = [ '# BEGIN COMMIT', '%h', # abbreviated commit hash '%cd', # commit date '%an <%ae>', # Author Name <author@email.com> '%cn <%ce>', # Committer Name <committer@email.com> '%B', # commit message '# END MESSAGE BODY', ] format_str = '%n'.join(format_lines) cmd.append(f'--pretty=tformat:{format_str}') if commit: if '..' in commit: cmd.append(commit) else: cmd.append(f'{commit}..origin/HEAD') else: cmd.append('origin/HEAD') git_log = subprocess.Popen( cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, cwd=repo_path) line = git_log.stdout.readline().decode().strip() if git_log.poll(): error = git_log.stderr.read().decode().strip() logger.warning('skipping git checks: %s', error) return count = 1 with base.ProgressManager(verbosity=verbosity) as progress: while line: hash = git_log.stdout.readline().decode().strip() commit_date = git_log.stdout.readline().decode().strip() author = git_log.stdout.readline().decode('utf-8', 'replace').strip() committer = git_log.stdout.readline().decode('utf-8', 'replace').strip() message = [] while True: line = git_log.stdout.readline().decode('utf-8', 'replace').strip('\n') if line == '# END MESSAGE BODY': # drop trailing newline if it exists if not message[-1]: message.pop() break message.append(line) # update progress output progress(f'{hash} commit #{count}, {commit_date}') count += 1 commit = GitCommit(hash, commit_date, author, committer, message) if not pkgs: yield commit # file changes while True: line = git_log.stdout.readline().decode() if line == '# BEGIN COMMIT\n' or not line: break if pkgs: parsed = cls._parse_file_line(line.strip()) if parsed is not None: atom, status = parsed yield GitPkgChange(atom, status, commit) def _pkg_changes(self, local=False, **kwargs): """Parse package changes from git log output.""" seen = set() for pkg in self.parse_git_log(self.location, pkgs=True, **kwargs): atom = pkg.atom key = (atom, pkg.status) if key not in seen: seen.add(key) self.data.setdefault(atom.category, {}).setdefault( atom.package, {}).setdefault(pkg.status, []).append(( atom.fullver, pkg.commit.commit_date, pkg.commit.hash if not local else pkg.commit, )) class _GitCommitPkg(cpv.VersionedCPV): """Fake packages encapsulating commits parsed from git log.""" def __init__(self, category, package, status, version, date, commit): super().__init__(category, package, version) # add additional attrs sf = object.__setattr__ sf(self, 'date', date) sf(self, 'status', status) sf(self, 'commit', commit) class _HistoricalRepo(SimpleTree): """Repository encapsulating historical git data.""" # selected pkg status filter _status_filter = {'A', 'R', 'M', 'D'} def __init__(self, *args, **kwargs): kwargs.setdefault('pkg_klass', _GitCommitPkg) super().__init__(*args, **kwargs) def _get_versions(self, cp): versions = [] for status, data in self.cpv_dict[cp[0]][cp[1]].items(): if status in self._status_filter: versions.append((status, data)) return versions def _internal_gen_candidates(self, candidates, sorter, raw_pkg_cls, **kwargs): for cp in sorter(candidates): yield from sorter( raw_pkg_cls(cp[0], cp[1], status, *commit) for status, data in self.versions.get(cp, ()) for commit in data) class GitChangedRepo(_HistoricalRepo): """Historical git repo consisting of the latest changed packages.""" class GitModifiedRepo(_HistoricalRepo): """Historical git repo consisting of the latest modified packages.""" _status_filter = {'A', 'R', 'M'} class GitAddedRepo(_HistoricalRepo): """Historical git repo consisting of added packages.""" _status_filter = {'A', 'R'} class GitRemovedRepo(_HistoricalRepo): """Historical git repo consisting of removed packages.""" _status_filter = {'D'} class _ScanCommits(argparse.Action): """Argparse action that enables git commit checks.""" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def __call__(self, parser, namespace, value, option_string=None): namespace.forced_checks.extend( name for name, cls in objects.CHECKS.items() if issubclass(cls, GitCheck)) setattr(namespace, self.dest, value) class GitStash(AbstractContextManager): """Context manager for stashing untracked or modified/uncommitted files. This assumes that no git actions are performed on the repo while a scan is underway otherwise `git stash` usage may cause issues. """ def __init__(self, parser, repo): self.parser = parser self.repo = repo self._stashed = False def __enter__(self): # check for untracked or modified/uncommitted files p = subprocess.run( ['git', 'ls-files', '-mo', '--exclude-standard'], stdout=subprocess.PIPE, stderr=subprocess.DEVNULL, cwd=self.repo.location, encoding='utf8') if p.returncode != 0 or not p.stdout: return # stash all existing untracked or modified/uncommitted files p = subprocess.run( ['git', 'stash', 'push', '-u', '-m', 'pkgcheck scan --commits'], stdout=subprocess.DEVNULL, stderr=subprocess.PIPE, cwd=self.repo.location, encoding='utf8') if p.returncode != 0: error = p.stderr.splitlines()[0] self.parser.error(f'git failed stashing files: {error}') self._stashed = True def __exit__(self, _exc_type, _exc_value, _traceback): if self._stashed: # apply previously stashed files back to the working tree p = subprocess.run( ['git', 'stash', 'pop'], stdout=subprocess.DEVNULL, stderr=subprocess.PIPE, cwd=self.repo.location, encoding='utf8') if p.returncode != 0: error = p.stderr.splitlines()[0] self.parser.error(f'git failed applying stash: {error}') class GitAddon(base.Addon, caches.CachedAddon): """Git repo support for various checks. Pkgcheck can create virtual package repos from a given git repo's history in order to provide more info for checks relating to stable requests, outdated blockers, or local commits. These virtual repos are cached and updated every run if new commits are detected. Git repos must have a supported config in order to work properly. Specifically, pkgcheck assumes that both origin and master branches exist and relate to the upstream and local development states, respectively. Additionally, the origin/HEAD ref must exist. If it doesn't, running ``git fetch origin`` should create it. Otherwise, using ``git remote set-head origin master`` or similar will also create the reference. """ # cache registry cache = caches.CacheData(type='git', file='git.pickle', version=4) @classmethod def mangle_argparser(cls, parser): group = parser.add_argument_group('git', docs=cls.__doc__) group.add_argument( '--commits', action=_ScanCommits, nargs='?', metavar='COMMIT', const='origin', default=None, help="determine scan targets from local git repo commits", docs=""" For a local git repo, pkgcheck will determine targets to scan from the committed changes compared to a given reference that defaults to the repo's origin. For example, to scan all the packages that have been changed in the current branch compared to the branch named 'old' use ``pkgcheck scan --commits old``. For two separate branches named 'old' and 'new' use ``pkgcheck scan --commits old..new``. Note that will also enable eclass-specific checks if it determines any commits have been made to eclasses. """) @staticmethod def _committed_eclass(committed, eclass): """Stub method for matching eclasses against commits.""" return eclass in committed @staticmethod def _pkg_atoms(paths): """Filter package atoms from commit paths.""" for x in paths: try: yield atom_cls(os.sep.join(x.split(os.sep, 2)[:2])) except MalformedAtom: continue @classmethod def check_args(cls, parser, namespace): if namespace.commits: if namespace.targets: targets = ' '.join(namespace.targets) s = pluralism(namespace.targets) parser.error(f'--commits is mutually exclusive with target{s}: {targets}') ref = namespace.commits repo = namespace.target_repo targets = list(repo.category_dirs) if os.path.isdir(pjoin(repo.location, 'eclass')): targets.append('eclass') try: p = subprocess.run( ['git', 'diff', '--cached', ref, '--name-only'] + targets, stdout=subprocess.PIPE, stderr=subprocess.PIPE, cwd=repo.location, encoding='utf8') except FileNotFoundError: parser.error('git not available to determine targets for --commits') if p.returncode != 0: error = p.stderr.splitlines()[0] parser.error(f'failed running git: {error}') elif not p.stdout: # no changes exist, exit early parser.exit() pkgs, eclasses = partition( p.stdout.splitlines(), predicate=lambda x: x.startswith('eclass/')) pkgs = sorted(cls._pkg_atoms(pkgs)) eclasses = filter(None, (eclass_regex.match(x) for x in eclasses)) eclasses = sorted(x.group('eclass') for x in eclasses) restrictions = [] if pkgs: restrict = packages.OrRestriction(*pkgs) restrictions.append((base.package_scope, restrict)) if eclasses: func = partial(cls._committed_eclass, frozenset(eclasses)) restrict = values.AnyMatch(values.FunctionRestriction(func)) restrictions.append((base.eclass_scope, restrict)) # no pkgs or eclasses to check, exit early if not restrictions: parser.exit() namespace.contexts.append(GitStash(parser, repo)) namespace.restrictions = restrictions def __init__(self, *args): super().__init__(*args) # disable git support if git isn't installed if self.options.cache['git']: try: find_binary('git') except CommandNotFound: self.options.cache['git'] = False # mapping of repo locations to their corresponding git repo caches self._cached_repos = {} @jit_attr def gitignore(self): """Load a repo's .gitignore and .git/info/exclude files for path matching.""" patterns = [] for path in ('.gitignore', '.git/info/exclude'): try: with open(pjoin(self.options.target_repo.location, path)) as f: patterns.extend(f) except FileNotFoundError: pass except IOError as e: logger.warning(f'failed reading {path!r}: {e}') return PathSpec.from_lines('gitwildmatch', patterns) def gitignored(self, path): """Determine if a given path in a repository is matched by .gitignore settings.""" if path.startswith(self.options.target_repo.location): repo_prefix_len = len(self.options.target_repo.location) + 1 path = path[repo_prefix_len:] return self.gitignore.match_file(path) @staticmethod def get_commit_hash(repo_location, commit='origin/HEAD'): """Retrieve a git repo's commit hash for a specific commit object.""" if not os.path.exists(pjoin(repo_location, '.git')): raise ValueError ret, out = spawn_get_output( ['git', 'rev-parse', commit], cwd=repo_location) if ret != 0: raise ValueError( f'failed retrieving {commit} commit hash ' f'for git repo: {repo_location}') return out[0].strip() def update_cache(self, force=False): """Update related cache and push updates to disk.""" try: # running from scan subcommand repos = self.options.target_repo.trees except AttributeError: # running from cache subcommand repos = self.options.domain.ebuild_repos if self.options.cache['git']: for repo in repos: try: commit = self.get_commit_hash(repo.location) except ValueError: continue # initialize cache file location cache_file = self.cache_file(repo) git_repo = None cache_repo = True if not force: # try loading cached, historical repo data try: with open(cache_file, 'rb') as f: git_repo = pickle.load(f) if git_repo.version != self.cache.version: logger.debug('forcing git repo cache regen due to outdated version') os.remove(cache_file) git_repo = None except FileNotFoundError: pass except (AttributeError, EOFError, ImportError, IndexError) as e: logger.debug('forcing git repo cache regen: %s', e) os.remove(cache_file) git_repo = None if (git_repo is not None and repo.location == getattr(git_repo, 'location', None)): if commit != git_repo.commit: old, new = git_repo.commit[:13], commit[:13] print( f'updating {repo} git repo cache: {old} -> {new}', file=sys.stderr, ) git_repo.update(commit, verbosity=self.options.verbosity) else: cache_repo = False else: print( f'creating {repo} git repo cache: {commit[:13]}', file=sys.stderr, ) git_repo = ParsedGitRepo(repo, commit, verbosity=self.options.verbosity) if git_repo: self._cached_repos[repo.location] = git_repo # push repo to disk if it was created or updated if cache_repo: try: os.makedirs(os.path.dirname(cache_file), exist_ok=True) f = AtomicWriteFile(cache_file, binary=True) f.write(pickle.dumps(git_repo)) f.close() except IOError as e: msg = f'failed dumping git pkg repo: {cache_file!r}: {e.strerror}' raise UserException(msg) def cached_repo(self, repo_cls, target_repo=None): cached_repo = None if target_repo is None: target_repo = self.options.target_repo if self.options.cache['git']: git_repos = [] for repo in target_repo.trees: git_repo = self._cached_repos.get(repo.location, None) # only enable repo queries if history was found, e.g. a # shallow clone with a depth of 1 won't have any history if git_repo: git_repos.append(repo_cls(git_repo, repo_id=f'{repo.repo_id}-history')) else: logger.warning('skipping git checks for %s repo', repo) break else: if len(git_repos) > 1: cached_repo = multiplex.tree(*git_repos) elif len(git_repos) == 1: cached_repo = git_repos[0] return cached_repo def commits_repo(self, repo_cls, target_repo=None, options=None): options = options if options is not None else self.options if target_repo is None: target_repo = options.target_repo git_repo = {} repo_id = f'{target_repo.repo_id}-commits' if options.cache['git']: try: origin = self.get_commit_hash(target_repo.location) master = self.get_commit_hash(target_repo.location, commit='master') if origin != master: git_repo = ParsedGitRepo(target_repo, local=True) except ValueError as e: if str(e): logger.warning('skipping git commit checks: %s', e) return repo_cls(git_repo, repo_id=repo_id) def commits(self, repo=None): path = repo.location if repo is not None else self.options.target_repo.location commits = iter(()) if self.options.cache['git']: try: origin = self.get_commit_hash(path) master = self.get_commit_hash(path, commit='master') if origin != master: commits = ParsedGitRepo.parse_git_log(path, commit='origin/HEAD..master') except ValueError as e: if str(e): logger.warning('skipping git commit checks: %s', e) return commits
from django.test import SimpleTestCase from django.test.utils import override_settings from ..checks import settings_checks class CheckSessionCookieSecureTest(SimpleTestCase): @override_settings(USE_TZ=False) def test_use_tz_false(self): """If USE_TZ is off provide one warning.""" self.assertEqual( settings_checks.check_use_tz_enabled(None), [settings_checks.W001] ) @override_settings(USE_TZ=True) def test_use_tz_true(self): """If USE_TZ is on, there's no warning about it.""" self.assertEqual(settings_checks.check_use_tz_enabled(None), [])
r = request.get("https://api.")
import tensorflow as tf a = tf.placeholder(tf.float32, name='a') b = tf.placeholder(tf.float32, name='b') adder_node = tf.add(a, b, name='add') sess = tf.Session() print(sess.run(adder_node, {a: 3, b: 4.5})) print(sess.run(adder_node, {a: [1, 3], b: [2, 4]})) writer = tf.summary.FileWriter('placeholder_add', sess.graph) writer.close()
# Faça um Programa que peça a temperatura em graus Farenheit, # transforme e mostre a temperatura em graus Celsius. # C = (5 * (F-32) / 9). # entrada de dados farenheit = float(input('Informe a temperatura em graus Farenheit: ')) # processamento celsius = 5 * (farenheit - 32) / 9 mensagem = '{} farenheit equivalem a {:.0f} celsius'.format(farenheit, celsius) # saída de dados print(mensagem)