text
stringlengths
8
6.05M
from database_connection import DatabaseConnection from validation import Validation from query import Queries conn = DatabaseConnection.dbconnection() cursor = conn.cursor() class Supervisor: def __init__(self, id): """ Initializing and to get the team no of a supervisor. :param id: """ self.id = id get_tid = "select Team_Number from Supervisors where id = ?" res = cursor.execute(get_tid, (self.id,)) for i in res: Supervisor.team_id = i[0] Supervisor.supervisor_tasks(self) def supervisor_tasks(self): """ Supervisor selects a task. :return: """ try: option = { "1": ("Show Complaint", Supervisor.show_complaint), "2": ("Create Reports", Supervisor.create_report), "3": ("Show Reports", Supervisor.show_reports) } ans = input("Choose:\n" "1.Show Complaint.\n" "2.Create Reports.\n" "3.Show Reports.\n") option.get(ans)[1](conn) except Exception as e: print("Invalid Choice. Please select again!") Supervisor.supervisor_tasks(self) def show_complaint(self): """ Shows list of all the complaints assigned to their team by admin. :return: """ try: sql = "select c.id,c.accident_name,c.comments from Complaints c where assigned_team = ?" result = cursor.execute(sql, (Supervisor.team_id,)) for i in result: print("Complaint_id : {}".format(i[0])) print("Accident Name : {}".format(i[1])) print("Comments : {}".format(i[2])) # print("Complaint Status : {}".format(i[3])) print("----------------------------") except Exception as e: print("Error in reading data") def create_report(self): """ Creating a report for a complaint assigned to them. :return: """ Supervisor.show_complaint(self) result = Supervisor.input_create_report_data(self) Queries.create(self, 'Report', (int(result[0]), Supervisor.team_id, result[1], result[2], int(result[3]), int(result[4])) ) Supervisor.supervisor_tasks(self) def input_create_report_data(self): """ Validating the inputs for creating a report. :return: """ complaint_no = Validation.input_int_for_create(self, "Enter Complaint id: ") root_cause = Validation.input_str_for_create(self, "Enter root cause: ") details = Validation.input_str_for_create(self, "Enter details: ") no_of_people_effected = Validation.input_int_for_create(self, "Enter total no of people effected: ") death_rate = Validation.input_int_for_create(self, "Enter number of deaths: ") return complaint_no, root_cause, details, no_of_people_effected,death_rate def show_reports(self): """ Shows the list of all the reports assigned to them. :return: """ try: sql = "select * from Report where team_no = ?" result = cursor.execute(sql, (Supervisor.team_id,)) for i in result: print("Report Id : {}".format(i[0])) print("Root Cause : {}".format(i[3])) print("Details : {}".format(i[4])) print("Status : {}".format(i[5])) print("Death Rate : {}".format(i[6])) print("----------------------------") except Exception as e: print("Error in reading data") finally: Supervisor.supervisor_tasks(self)
import time import dash_bootstrap_components as dbc from dash import Input, Output, html placeholder = html.Div( [ dbc.Button("Load", id="loading-placeholder-button", n_clicks=0), dbc.Placeholder( html.Div(id="loading-placeholder-output"), className="w-100", animation="wave", ), ], ) @app.callback( Output("loading-placeholder-output", "children"), [Input("loading-placeholder-button", "n_clicks")], ) def load_output(n): if n: time.sleep(2) return f"Output loaded {n} times" return "Output not reloaded yet"
from GF2 import one from itertools import chain, combinations def powerset(iterable): "powerset([1,2,3]) --> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)" s = list(iterable) return chain.from_iterable(combinations(s, r) for r in range(len(s)+1)) a=[one,one,one,0,0,0,0] b=[0,one,one,one,0,0,0] c=[0,0,one,one,one,0,0] d=[0,0,0,one,one,one,0] e=[0,0,0,0,one,one,one] f=[0,0,0,0,0,one,one] want=[0,one,0,0,0,one,0] #[sum(a) for a in zip(a,b)] #better way to produce an array with the result we want for subset in powerset([a,b,c,d,e,f]): if(([sum(a) for a in zip(*subset)])==want): print(subset)
# # Contains the FPSession class, which maintains an authenticated # session with the fadedpage server. # Need to install the requests package. # import requests import json from requests.exceptions import ConnectionError from os import mkdir, path, rmdir, listdir, remove import os class FPSession(object): #{ def __init__(self, user, password, sandbox=False): self.site = "https://www.sandbox.fadedpage.com/" if sandbox else \ "https://www.fadedpage.com/" print("Logging into " + self.site) self.session = requests.Session() content = self.request("login2.php", data = { 'myusername' : user, 'mypassword' : password }) # Result is english html saying whether we logged in or not if 'wrong' in str(content): raise Exception(content.decode('utf-8')) def __enter__(self): return self def __exit__(self, type, value, t): print("Logging out..."); try: self.request("logout.php", {}) except ConnectionError: print("Ignoring log out failure") print("closing..."); self.session.close() def request(self, page, data): r = self.session.post(self.site + page, data, headers = { 'user-agent' : 'Mozilla/5.0' }) r.raise_for_status() return r.content def requestStream(self, page, data): # Note that setting the agent is supposed to make apache not think # we are a bot, but it isn't working, the sleep(.5) below seems to work. r = self.session.post(self.site + page, data, stream=True, headers = { 'user-agent' : 'Mozilla/5.0' }) r.raise_for_status() #print(str(r)) #print(str(r.cookies)) #print(str(r.headers)) #print(str(r.content)) return r def writeFileJSON(self, filename, bytes): f = open(filename, 'wb') f.write(bytearray(bytes)) f.close() def writeFile(self, filename, response): print("Downloading: " + filename) with open(filename, 'wb') as f: for chunk in response.iter_content(chunk_size=8192): if chunk: f.write(chunk) # Next download fails with a 403 if we don't sleep # Apache thinks we are a bot import time time.sleep(1) def downloadSC(self, file): with self.requestStream("admin/file_rmi.php", { 'operation' : 'fetch-sc', 'file' : file }) as response: self.writeFile(file, response) def downloadHTML(self, bookid): with self.requestStream("admin/file_rmi.php", { 'operation' : 'fetch-html', 'bookid' : bookid }) as response: self.writeFile(bookid + ".html", response) formats = { 'mobi' : '.mobi', 'pdf' : '-a5.pdf', 'epub' : '.epub', } def downloadFormat(self, bookid, format): with self.requestStream("admin/file_rmi.php", { 'operation' : 'fetch-format', 'bookid' : bookid, 'format' : format }) as response: self.writeFile(bookid + self.formats[format], response) #results = json.loads(content) #print(results['msg'] + "\n") #for f, v in results.items(): # if bookid in f: # self.writeFile(f, v) # Download all image files. Deletes any current images directory # and rebuilds it! def downloadImages(self, bookid): content = self.request("admin/file_rmi.php", { 'operation' : 'fetch-images', 'bookid' : bookid }) results = json.loads(content) dir = results['dir'] if path.isdir('images'): for f in listdir('images'): remove("images/" + f) rmdir('images') mkdir('images') print("Image download:") for f in dir: print("\t" + f + ": " + str(len(dir[f]))) self.writeFileJSON("images/" + f, dir[f]) def uploadFormat(self, bookid, format): file = bookid + self.formats[format] print("Uploading: " + file) with open(file, 'rb') as f: r = self.session.post(self.site + "admin/file_rmi.php?operation=upload-format&bookid=" + bookid + "&format=" + format, f) r.raise_for_status() def uploadOne(self, bookid, file): print("Uploading: " + file) with open(file, 'rb') as f: r = self.session.post(self.site + "admin/file_rmi.php?operation=upload-file&bookid=" + bookid + "&file=" + file, f) r.raise_for_status() def uploadSC(self, file): print("Uploading to special collections: " + file) with open(file, 'rb') as f: r = self.session.post(self.site + "admin/file_rmi.php?operation=upload-sc&file=" + file, f) r.raise_for_status() #} if False: from http.client import HTTPConnection HTTPConnection.debuglevel = 1 import logging logging.basicConfig() logging.getLogger().setLevel(logging.DEBUG) requests_log = logging.getLogger('urllib3') requests_log.setLevel(logging.DEBUG) requests_log.propagate = True # Test code if False: with FPSession(os.environ['FPUSER'], os.environ['FPPASSWORD']) as fps: bookid = '20190750' if False: fps.downloadHTML(bookid) fps.downloadImages(bookid) print("Mobi...") fps.downloadFormat(bookid, 'mobi') print("Epub...") fps.downloadFormat(bookid, 'epub') print("PDF...") fps.downloadFormat(bookid, 'pdf') fps.uploadFormat(bookid, 'pdf')
# albus.db from .base_types import IntegerType, StringType __all__ = [ 'IntegerType', 'StringType', ]
# encoding: UTF-8 # Copyright 2017 Google.com # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import tensorflow as tf from tensorflow.contrib import layers from tensorflow.contrib import rnn # rnn stuff temporarily in contrib, moving back to code in TF 1.1 import sys import os import os.path import time import math import numpy as np import my_txtutils as txt tf.set_random_seed(0) # model parameters # # Usage: # Training only: # Leave all the parameters as they are # Disable validation to run a bit faster (set validation=False below) # You can follow progress in Tensorboard: tensorboard --log-dir=log # Training and experimentation (default): # Keep validation enabled # You can now play with the parameters anf follow the effects in Tensorboard # A good choice of parameters ensures that the testing and validation curves stay close # To see the curves drift apart ("overfitting") try to use an insufficient amount of # training data (shakedir = "shakespeare/t*.txt" for example) # FLAGS = None # SEQLEN = 30 # BATCHSIZE = 100 ALPHASIZE = txt.ALPHASIZE INTERNALSIZE = 512 NLAYERS = 3 # learning_rate = 0.001 # fixed learning rate # dropout_pkeep = 1.0 # no dropout def main(_): # load data, either shakespeare, or the Python source of Tensorflow itself shakedir = FLAGS.text_dir # shakedir = "../tensorflow/**/*.py" codetext, valitext, bookranges = txt.read_data_files(shakedir, validation=True) # display some stats on the data epoch_size = len(codetext) // (FLAGS.train_batch_size * FLAGS.seqlen) txt.print_data_stats(len(codetext), len(valitext), epoch_size) # # the model (see FAQ in README.md) # lr = tf.placeholder(tf.float32, name='lr') # learning rate pkeep = tf.placeholder(tf.float32, name='pkeep') # dropout parameter batchsize = tf.placeholder(tf.int32, name='batchsize') # inputs X = tf.placeholder(tf.uint8, [None, None], name='X') # [ BATCHSIZE, FLAGS.seqlen ] Xo = tf.one_hot(X, ALPHASIZE, 1.0, 0.0) # [ BATCHSIZE, FLAGS.seqlen, ALPHASIZE ] # expected outputs = same sequence shifted by 1 since we are trying to predict the next character Y_ = tf.placeholder(tf.uint8, [None, None], name='Y_') # [ BATCHSIZE, FLAGS.seqlen ] Yo_ = tf.one_hot(Y_, ALPHASIZE, 1.0, 0.0) # [ BATCHSIZE, FLAGS.seqlen, ALPHASIZE ] # input state Hin = tf.placeholder(tf.float32, [None, INTERNALSIZE*NLAYERS], name='Hin') # [ BATCHSIZE, INTERNALSIZE * NLAYERS] # using a NLAYERS=3 layers of GRU cells, unrolled FLAGS.seqlen=30 times # dynamic_rnn infers FLAGS.seqlen from the size of the inputs Xo onecell = rnn.GRUCell(INTERNALSIZE) dropcell = rnn.DropoutWrapper(onecell, input_keep_prob=pkeep) multicell = rnn.MultiRNNCell([dropcell]*NLAYERS, state_is_tuple=False) multicell = rnn.DropoutWrapper(multicell, output_keep_prob=pkeep) Yr, H = tf.nn.dynamic_rnn(multicell, Xo, dtype=tf.float32, initial_state=Hin) # Yr: [ BATCHSIZE, FLAGS.seqlen, INTERNALSIZE ] # H: [ BATCHSIZE, INTERNALSIZE*NLAYERS ] # this is the last state in the sequence H = tf.identity(H, name='H') # just to give it a name # Softmax layer implementation: # Flatten the first two dimension of the output [ BATCHSIZE, FLAGS.seqlen, ALPHASIZE ] => [ BATCHSIZE x FLAGS.seqlen, ALPHASIZE ] # then apply softmax readout layer. This way, the weights and biases are shared across unrolled time steps. # From the readout point of view, a value coming from a cell or a minibatch is the same thing Yflat = tf.reshape(Yr, [-1, INTERNALSIZE]) # [ BATCHSIZE x FLAGS.seqlen, INTERNALSIZE ] Ylogits = layers.linear(Yflat, ALPHASIZE) # [ BATCHSIZE x FLAGS.seqlen, ALPHASIZE ] Yflat_ = tf.reshape(Yo_, [-1, ALPHASIZE]) # [ BATCHSIZE x FLAGS.seqlen, ALPHASIZE ] loss = tf.nn.softmax_cross_entropy_with_logits(logits=Ylogits, labels=Yflat_) # [ BATCHSIZE x FLAGS.seqlen ] loss = tf.reshape(loss, [batchsize, -1]) # [ BATCHSIZE, FLAGS.seqlen ] Yo = tf.nn.softmax(Ylogits, name='Yo') # [ BATCHSIZE x FLAGS.seqlen, ALPHASIZE ] Y = tf.argmax(Yo, 1) # [ BATCHSIZE x FLAGS.seqlen ] Y = tf.reshape(Y, [batchsize, -1], name="Y") # [ BATCHSIZE, FLAGS.seqlen ] train_step = tf.train.AdamOptimizer(lr).minimize(loss) # stats for display seqloss = tf.reduce_mean(loss, 1) batchloss = tf.reduce_mean(seqloss) accuracy = tf.reduce_mean(tf.cast(tf.equal(Y_, tf.cast(Y, tf.uint8)), tf.float32)) loss_summary = tf.summary.scalar("batch_loss", batchloss) acc_summary = tf.summary.scalar("batch_accuracy", accuracy) summaries = tf.summary.merge([loss_summary, acc_summary]) # Init Tensorboard stuff. This will save Tensorboard information into a different # folder at each run named 'log/<timestamp>/'. Two sets of data are saved so that # you can compare training and validation curves visually in Tensorboard. timestamp = str(math.trunc(time.time())) summary_writer = tf.summary.FileWriter(os.path.join(FLAGS.summaries_dir, timestamp + "-training")) validation_writer = tf.summary.FileWriter(os.path.join(FLAGS.summaries_dir, timestamp + "-validation")) # Init for saving models. They will be saved into a directory named 'checkpoints'. # Only the last checkpoint is kept. if not os.path.exists(FLAGS.checkpoint_dir): os.mkdir(FLAGS.checkpoint_dir) saver = tf.train.Saver(max_to_keep=1) # for display: init the progress bar DISPLAY_FREQ = 50 _50_BATCHES = DISPLAY_FREQ * FLAGS.train_batch_size * FLAGS.seqlen progress = txt.Progress(DISPLAY_FREQ, size=111+2, msg="Training on next "+str(DISPLAY_FREQ)+" batches") # init istate = np.zeros([FLAGS.train_batch_size, INTERNALSIZE*NLAYERS]) # initial zero input state init = tf.global_variables_initializer() sess = tf.Session() sess.run(init) step = 0 # training loop for x, y_, epoch in txt.rnn_minibatch_sequencer(codetext, FLAGS.train_batch_size, FLAGS.seqlen, nb_epochs=1000): # train on one minibatch feed_dict = {X: x, Y_: y_, Hin: istate, lr: FLAGS.learning_rate, pkeep: FLAGS.dropout_pkeep, batchsize: FLAGS.train_batch_size} _, y, ostate, smm = sess.run([train_step, Y, H, summaries], feed_dict=feed_dict) # save training data for Tensorboard summary_writer.add_summary(smm, step) # display a visual validation of progress (every 50 batches) if step % _50_BATCHES == 0: feed_dict = {X: x, Y_: y_, Hin: istate, pkeep: 1.0, batchsize: FLAGS.train_batch_size} # no dropout for validation y, l, bl, acc = sess.run([Y, seqloss, batchloss, accuracy], feed_dict=feed_dict) txt.print_learning_learned_comparison(x, y, l, bookranges, bl, acc, epoch_size, step, epoch) # run a validation step every 50 batches # The validation text should be a single sequence but that's too slow (1s per 1024 chars!), # so we cut it up and batch the pieces (slightly inaccurate) # tested: validating with 5K sequences instead of 1K is only slightly more accurate, but a lot slower. if step % _50_BATCHES == 0 and len(valitext) > 0: VALI_SEQLEN = 1*1024 # Sequence length for validation. State will be wrong at the start of each sequence. bsize = len(valitext) // VALI_SEQLEN txt.print_validation_header(len(codetext), bookranges) vali_x, vali_y, _ = next(txt.rnn_minibatch_sequencer(valitext, bsize, VALI_SEQLEN, 1)) # all data in 1 batch vali_nullstate = np.zeros([bsize, INTERNALSIZE*NLAYERS]) feed_dict = {X: vali_x, Y_: vali_y, Hin: vali_nullstate, pkeep: 1.0, # no dropout for validation batchsize: bsize} ls, acc, smm = sess.run([batchloss, accuracy, summaries], feed_dict=feed_dict) txt.print_validation_stats(ls, acc) # save validation data for Tensorboard validation_writer.add_summary(smm, step) # display a short text generated with the current weights and biases (every 150 batches) if step // 3 % _50_BATCHES == 0: txt.print_text_generation_header() ry = np.array([[txt.convert_from_alphabet(ord("K"))]]) rh = np.zeros([1, INTERNALSIZE * NLAYERS]) for k in range(1000): ryo, rh = sess.run([Yo, H], feed_dict={X: ry, pkeep: 1.0, Hin: rh, batchsize: 1}) rc = txt.sample_from_probabilities(ryo, topn=10 if epoch <= 1 else 2) print(chr(txt.convert_to_alphabet(rc)), end="") ry = np.array([[rc]]) txt.print_text_generation_footer() # save a checkpoint (every 500 batches) if step // 10 % _50_BATCHES == 0: saver.save(sess, FLAGS.checkpoint_dir + '/rnn_train_' + timestamp, global_step=step) # display progress bar progress.step(reset=step % _50_BATCHES == 0) # loop state around istate = ostate step += FLAGS.train_batch_size * FLAGS.seqlen if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '--text_dir', type=str, default='shakespeare/*.txt', help='Path to input text files.' ) parser.add_argument( '--output_graph', type=str, default='/tmp/output_graph.pb', help='Where to save the trained graph.' ) parser.add_argument( '--summaries_dir', type=str, default='log', help='Where to save summary logs for TensorBoard.' ) parser.add_argument( '--how_many_training_steps', type=int, default=4000, help='How many training steps to run before ending.' ) parser.add_argument( '--seqlen', type=int, default=30, help='How long of a sequence to consider.' ) parser.add_argument( '--learning_rate', type=float, default=0.001, help='How large a learning rate to use when training.' ) parser.add_argument( '--dropout_pkeep', type=float, default=1.0, help='What pct to keep in the dropout layers.' ) parser.add_argument( '--testing_percentage', type=int, default=10, help='What percentage of images to use as a test set.' ) parser.add_argument( '--validation_percentage', type=int, default=10, help='What percentage of images to use as a validation set.' ) parser.add_argument( '--eval_step_interval', type=int, default=10, help='How often to evaluate the training results.' ) parser.add_argument( '--train_batch_size', type=int, default=50, help='How many text sequences to train on at a time.' ) parser.add_argument( '--test_batch_size', type=int, default=-1, help="""\ How many images to test on. This test set is only used once, to evaluate the final accuracy of the model after training completes. A value of -1 causes the entire test set to be used, which leads to more stable results across runs.\ """ ) parser.add_argument( '--validation_batch_size', type=int, default=100, help="""\ How many images to use in an evaluation batch. This validation set is used much more often than the test set, and is an early indicator of how accurate the model is during training. A value of -1 causes the entire validation set to be used, which leads to more stable results across training iterations, but may be slower on large training sets.\ """ ) parser.add_argument( '--print_misclassified_test_text', default=False, help="""\ Whether to print out a list of all misclassified test text.\ """, action='store_true' ) parser.add_argument( '--checkpoint_dir', type=str, default='checkpoints', help="""\ Path to keep model checkpoints.\ """ ) FLAGS, unparsed = parser.parse_known_args() tf.app.run(main=main, argv=[sys.argv[0]] + unparsed) # all runs: FLAGS.seqlen = 30, BATCHSIZE = 100, ALPHASIZE = 98, INTERNALSIZE = 512, NLAYERS = 3 # run 1477669632 decaying learning rate 0.001-0.0001-1e7 dropout 0.5: not good # run 1477670023 lr=0.001 no dropout: very good # Tensorflow runs: # 1485434262 # trained on shakespeare/t*.txt only. Validation on 1K sequences # validation loss goes up from step 5M # 1485436038 # trained on shakespeare/t*.txt only. Validation on 5K sequences # On 5K sequences validation accuracy is slightly higher and loss slightly lower # => sequence breaks do introduce inaccuracies but the effect is small # 1485437956 # Trained on shakespeare/*.txt only. Validation on 1K sequences # On this much larger dataset, validation loss still decreasing after 6 epochs (step 35M) # 1485440785 # Dropout = 0.5 - Trained on shakespeare/*.txt only. Validation on 1K sequences # Much worse than before. Not very surprising since overfitting was not apparent # on the validation curves before so there is nothing for dropout to fix.
#!/usr/bin/env python3 # Python 3.2.3 # Linux/Unix # James Jessen # 10918967 # CptS 355 #------------------------------------------------------------------------------- # Used this value because it's less than 80 and # aligns nicely with both the histogram and digraph output. _PRINT_WIDTH = 78 #debugging = True # view debugging output debugging = False # hide debugging output #================================= Test/Debug ================================== def debug(*s): """Print but only when debugging""" if debugging: print(*s) def test(function, outputs, *inputs): """Test function with inputs and compare actual outputs with expected""" result = True for o, i in zip(outputs, *inputs): actual = function(*i) if(actual != o): result = False # Create visual seperation between failures debug('=' * _PRINT_WIDTH) debug(function.__name__ + "(" + str(i).strip('[]()') + ")") debug('-' * _PRINT_WIDTH) debug("Actual:") debug(actual) debug('.' * _PRINT_WIDTH) debug("Expected:") debug(o) # Create visual seperation between tested functions, if there is need if(result == False): debug(('#' * _PRINT_WIDTH) + '\n') return result #================================ Translation ================================== # Assumes that the characters in s1 are unique and # that the two strings are the same length. def makettable(s1, s2): """Return a dictionary mapping each char in s1 to corresponding char in s2""" ttable = {} for c1, c2 in zip(s1, s2): debug(c1, c2) ttable[c1] = c2 return ttable # The translation table is a dictionary. # If a character is not in the translation table, it remains unchanged. def trans(ttable, s): """Translate string s using translation table ttable""" translation = "" for c in s: translation += ttable.get(c, c) return translation def testtrans(): """Test trans(), return false if there are any failures""" ttable = makettable('abc', 'xyz') revttable = makettable('xyz', 'abc') tests = "Now I know my abc's" answer = "Now I know my xyz's" inputs = [] outputs = [] inputs.append((ttable, tests)) outputs.append(answer) inputs.append((revttable, trans(ttable, tests))) outputs.append("Now I know mb abc's") inputs.append((ttable, '')) outputs.append('') inputs.append((makettable('', ''), "abc")) outputs.append('abc') return test(trans, outputs, inputs) #================================= Histogram =================================== def histo(s): """Return a histogram depicting the frequency of each char in string s""" D = {} for c in s: D[c] = D.get(c, 0) + 1 # Primarly sort by frequency (High->Low) # Secondarly sort alphabetically (A->Z) histogram = sorted(D.items(), key=lambda t: (-t[1], t[0])) return histogram def testhisto(): """Test histo(), return false if there are any failures""" inputs = [] outputs = [] inputs.append(('implemented',)) outputs.append([('e', 3), ('m', 2), ('d', 1), ('i', 1), ('l', 1), ('n', 1), ('p', 1), ('t', 1)]) inputs.append(('abbccddd',)) outputs.append([('d', 3), ('b', 2), ('c', 2), ('a', 1)]) inputs.append(('aaabbccd',)) outputs.append([('a', 3), ('b', 2), ('c', 2), ('d', 1)]) return test(histo, outputs, inputs) #================================== Digraphs =================================== def digraphs(s): """Return digraphs depicting the frequency of adjacent characters in s""" D = {} for i in range(len(s)-1): pair = '/' + s[i:i+2] + '/' D[pair] = D.get(pair, 0) + 1 # Primarly sort alphabetically (A->Z) # Secondarlyy sort by Frequency (High->Low) digraph = sorted(D.items(), key=lambda t : (t[0], -t[1])) return digraph def testdigraphs(): """Test digraphs(), return false if there are any failures""" inputs = [] outputs = [] inputs.append(('abbccddddab',)) outputs.append([('/ab/', 2), ('/bb/', 1), ('/bc/', 1), ('/cc/', 1), ('/cd/', 1), ('/da/', 1), ('/dd/', 3)]) inputs.append(('aaabbccd',)) outputs.append([('/aa/', 2), ('/ab/', 1), ('/bb/', 1), ('/bc/', 1), ('/cc/', 1), ('/cd/', 1)]) inputs.append(('dccbbaaa',)) outputs.append([('/aa/', 2), ('/ba/', 1), ('/bb/', 1), ('/cb/', 1), ('/cc/', 1), ('/dc/', 1)]) return test(digraphs, outputs, inputs) #==================================== Main ===================================== if __name__ == '__main__': # Saying a function failed testing is not helpful. # Failures are printed in detail upon discovery. # Conflicted on whether or not to include this if-statement. # It is used for debugging, but this program does nothing else! #if(debugging): print() # A function is considered OK if it passed every test. if(testtrans()): print("Translation...OK") if(testhisto()): print("Histogram.....OK") if(testdigraphs()): print("Digraphs......OK") print() #================================ Extra Credit ================================= # ZYX WVWUTSZRVQ VP OUNMXLX WKZYVQL WNXLXQZTK XLZSOTRLYXJ RQ # ZYX WSNI RL ZYX NXLUTZ VP SHHRJXQZST SQJ/VN RQZXQZRVQST NXTXSLXL OK # WXZ VGQXNL. ZYXLX RQZNVJUHZRVQL HSQ YSFX JXFSLZSZRQE HVQLXDUXQHXL ZV # VUN XHVLKLZXM. OUNMXLX WKZYVQL YSFX OXXQ PVUQJ ZV PXXJ VQ S GRJX # FSNRXZK VP MSMMSTL SQJ ORNJL RQ ZYX XFXNETSJXL-XFXQ ZYX VHHSLRVQST # STTRESZVN! OK WNXKRQE VQ QSZRFX GRTJTRPX, SQJ HVMWXZRQE GRZY VZYXN # QSZRFX WNXJSZVNL, WKZYVQL SNX LXNRVULTK RMWSHZRQE ZYX QSZUNST VNJXN # VP LVUZY PTVNRJS'L XHVTVERHST HVMMUQRZRXL. ZYX HVQZRQUXJ # WNVTRPXNSZRVQ VP OUNMXLX WKZYVQL-SQJ ZYX HVQZRQUXJ RQZNVJUHZRVQ VP # QXG PVNXREQ LWXHRXL-HSQ PUNZYXN ZYNXSZXQ MSQK VP ZYX XQJSQEXNXJ # WTSQZL SQJ SQRMSTL GX'NX GVNIRQE JRTREXQZTK # ZV WNVZXHZ. (GGG.QWL.EVF/XFXN/QSZUNXLHRXQHX/OUNMXLXWKZYVQLRQZNV.YZM) thisIsTheCryptogramAnswer = """ the population of burmese pythons presently established in the park is the result of accidental and/or intentional releases by pet owners. these introductions can have devastating consequences to our ecosystem. burmese pythons have been found to feed on a wide variety of mammals and birds in the everglades-even the occasional alligator! by preying on native wildlife, and competing with other native predators, pythons are seriously impacting the natural order of south florida's ecological communities. the continued proliferation of burmese pythons-and the continued introduction of new foreign species-can further threaten many of the endangered plants and animals we're working diligently to protect. (www.nps.gov/ever/naturescience/burmesepythonsintro.htm) """
#!/usr/bin/env python import math import random import csv VERBOSE = False def prob(r1, r2): return r1*(1.-r2)/(r1*(1.-r2)+r2*(1.-r1)) class Outcome(object): def __init__(self, name): self.name = name def __call__(self, team1, team2): return NotImplementedError class SeedOutcome(Outcome): def __init__(self): super(SeedOutcome, self).__init__('SeedOutcome') def __call__(self, team1, team2): return team1 if team1<team2 else team2 class RatingOutcome(Outcome): def __init__(self): super(RatingOutcome, self).__init__('RatingOutcome') def __call__(self, team1, team2): return team1 if team1.rating>team2.rating else team2 class RatingRandomOutcome(Outcome): def __init__(self, rng=None): super(RatingRandomOutcome, self).__init__('RatingRandomOutcome') self.rng = rng or random.Random() def __call__(self, team1, team2): p1 = team1.rating/10000. p2 = team2.rating/10000. p = (p1 - p1*p2)/(p1 + p2 - 2*p1*p2) if self.rng.random() <= p: return team1 else: return team2 class RandomOutcome(Outcome): def __init__(self, rng=None): super(RandomOutcome, self).__init__('RandomOutcome') self.rng = rng or random.Random() def __call__(self, team1, team2): if self.rng.random() <= 0.5: return team1 else: return team2 class Team(object): def __init__(self, name, region, seed, rating): self.name = name self.region = region self.seed = seed self.rating = rating self.initial_slot = None self.current_slot = None def __eq__(self, other): return (self.seed == other.seed) and (self.region == other.region) def __lt__(self, other): if self.seed == other.seed: if region_order[self.region] < region_order[other.region]: return True else: return False else: return self.seed < other.seed def __str__(self): return self.name def __repr__(self): return "%s(name=%s, region=%s, seed=%d, rating=%d)" % (self.__class__.__name__, self.name, self.region, self.seed, self.rating) class Bracket(object): def __init__(self, n_teams=128): self.n_teams = n_teams self.n_rounds = int(math.ceil(math.log(self.n_teams, 2))) self.n_slots = int(2*self.n_teams - 1) self.n_rounds = int(math.ceil(math.log(self.n_teams, 2))) self.slots = {} for i in range(self.n_slots): self.slots[i] = [] def fill_teams(self, filename='2014_KP_round3.csv'): self.teams = [None]*self.n_slots with open(filename, 'rU') as f: teams = csv.DictReader(f) for row in teams: if VERBOSE: print row team = Team(row['Team'], row['Region'], int(row['Seed']), int(row['Rating'])) self.teams[int(row['Slot'])-1] = team if VERBOSE: print self.teams def slot_range(self, round): return (int(self.n_teams/pow(2,round)), int(self.n_teams/pow(2,round-1)-1)) def parent_slot(self, slot): return slot/2 def child_slots(self, slot): return (2*slot, 2*slot+1) def round(self, slot): r = self.n_rounds + 1 for i in range(1,self.n_rounds+1): min_slot, max_slot = self.slot_range(i) if min_slot <= slot and max_slot >= slot: r = i break return r def cycle(self, n_sims=1, outcome=None): for i in range(n_sims): self.fill_teams() self.resolve(outcome) # print self.slots def resolve(self, outcome=None): current_slot = 2 while current_slot != 1: if VERBOSE: print "Current slot is %d" % current_slot current_round = self.round(current_slot) current_team = self.teams[current_slot-1] if current_team: if VERBOSE: print " %s is in this slot" % current_team opponent_slot = current_slot+1 if (current_slot%2 == 0) else current_slot-1 opponent_team = self.teams[opponent_slot-1] if opponent_team: # we have a game to resolve winner_team = current_team if outcome: winner_team = outcome(current_team, opponent_team) winner_slot = current_slot/2 self.teams[winner_slot-1] = winner_team self.slots[winner_slot-1].append(winner_team.name) current_slot = winner_slot if VERBOSE: print " Opponent slot is %d" % opponent_slot print " GAME: %s vs %s" % (current_team, opponent_team) print " %s wins and goes to slot %d" % (current_team, current_slot) else: # we do not have a game, need to go down the other branch if VERBOSE: print " No opponent in slot %d" % opponent_slot current_slot = opponent_slot else: if VERBOSE: print " No Team in this slot, going deeper" current_slot *= 2 # print self.slots if __name__ == '__main__': import doctest doctest.testmod() # outcome = SeedOutcome() # outcome = RatingOutcome() outcome = RatingRandomOutcome() # outcome = RandomOutcome() bracket = Bracket() nsim = 10000 bracket.cycle(nsim, outcome=outcome) slot_team_count = {} for s,ts in bracket.slots.iteritems(): for t in ts: if s not in slot_team_count: slot_team_count[s] = {} if t in slot_team_count[s]: slot_team_count[s][t] += 1 else: slot_team_count[s][t] = 1 for s,cs in slot_team_count.iteritems(): print "Slot " + str(s+1).zfill(2) + ":", for t,c in cs.iteritems(): slot_team_count[s][t] /= float(nsim) print sorted(cs.items(), reverse=True, key=lambda x:x[1])
#This code appears to work, but it's too slow for leetcode class ListNode(): def __init__(self, x): self.val = x self.next = None def insertionSortList(head): newHead = head if head == None or head.next==None: return head curr= head.next while curr != None: u=newHead v=None while curr.val > u.val: v=u u=u.next if u == newHead: newHead = curr if u == curr: curr=curr.next else: temp = curr.next curr.next = u if v != None: v.next = curr while u.next != curr: u=u.next u.next = temp curr = temp return newHead t=ListNode(3) t.next=ListNode(4) t.next.next=ListNode(1) t.next.next.next=ListNode(9) t.next.next.next.next=ListNode(8) s=insertionSortList(t)
from django.db import models class Artist(models.Model): artist = models.CharField(max_length=100, null=False) def __str__(self): return self.artist class Song(models.Model): id = models.AutoField(primary_key=True, null=False, verbose_name="ID") song = models.CharField(max_length=100, null=False) artist = models.ForeignKey(Artist, null=False, on_delete=models.PROTECT, related_name="songs") # models.PROTECT does not give you the option to delete a # father (artist in our case) before you remove its childrens from him because if you could delete the father # then its children will be deleted too # related_name="songs" means that if i would make it then i can use the name to call it, for example i could say # artist.song and get all the song of that artist def __str__(self): return f"{self.song} - {self.artist}" class Facts(models.Model): facts = models.TextField() song = models.ForeignKey(Song, null=False, on_delete=models.PROTECT, related_name="facts") author = models.CharField(max_length=100, null=False, default='none') def __str__(self): return (f"{self.facts}\n" f"נכתב עי: {self.author}")
from django.shortcuts import render_to_response from django.template.context import RequestContext from django.http.response import HttpResponse import json from jobs.dao import select_jobs from jobs.controller import JobCraw def into_jobs(req): return render_to_response('jobs.html',RequestContext(req)) def get_jobs(req): JobCraw() return HttpResponse(json.dumps(select_jobs()),content_type="application/json")
import subprocess import time directoryRoot = "/home/damianossotirakis/__Zallpy/__tlog/" directoryConfig = "portaloficinas-config/" directoryEureka = "portaloficinas-eureka/" directoryGateway = "portaloficinas-gateway/" directoryApiClient = "portaloficinas-api-client/" directoryApiAuth = "portaloficinas-api-auth/" directoryApiEstablishment = "portaloficinas-api-establishment/" directoryApiPromotion = "portaloficinas-api-promo/" print("init - Config") cmd = ['gnome-terminal'] cmd.extend(['-x', 'bash', '-c', (directoryRoot+directoryConfig)+'init.sh; exec $SHELL' ]) subprocess.Popen(cmd, stdout=subprocess.PIPE) time.sleep(15) print("init - Gatwey") cmd = ['gnome-terminal'] cmd.extend(['-x', 'bash', '-c', (directoryRoot+directoryGateway)+'init-gateway.sh; exec $SHELL' ]) subprocess.Popen(cmd, stdout=subprocess.PIPE) print("init - Eureka") cmd = ['gnome-terminal'] cmd.extend(['-x', 'bash', '-c', (directoryRoot+directoryEureka)+'init-eureka.sh; exec $SHELL' ]) subprocess.Popen(cmd, stdout=subprocess.PIPE) time.sleep(20) print("init - API Auth") cmd = ['gnome-terminal'] cmd.extend(['-x', 'bash', '-c', (directoryRoot+directoryApiAuth)+'init-gateway.sh; exec $SHELL' ]) subprocess.Popen(cmd, stdout=subprocess.PIPE) print("init - API Client") cmd = ['gnome-terminal'] cmd.extend(['-x', 'bash', '-c', (directoryRoot+directoryApiClient)+'init-eureka.sh; exec $SHELL' ]) subprocess.Popen(cmd, stdout=subprocess.PIPE) print("init - API Establishment") cmd = ['gnome-terminal'] cmd.extend(['-x', 'bash', '-c', (directoryRoot+directoryApiEstablishment)+'init-gateway.sh; exec $SHELL' ]) subprocess.Popen(cmd, stdout=subprocess.PIPE) print("init - API Promotion") cmd = ['gnome-terminal'] cmd.extend(['-x', 'bash', '-c', (directoryRoot+directoryApiPromotion)+'init-eureka.sh; exec $SHELL' ]) subprocess.Popen(cmd, stdout=subprocess.PIPE)
# A first Python script import sys # Load a library module print(sys.platform) print(2 ** 10) # Raise 2 to a power x = 'Spam!' print(x * 8) # String repetition nextInput=input(); # Take a input from the console print(nextInput); # print the input title="Welcome to the python world" author="Minhaz"
#!/usr/bin/env python # Copyright 2009-2014 Eucalyptus Systems, Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json class Namespace(object): """ Convert dict (if provided) into attributes and return a somewhat generic object """ def __init__(self, newdict=None): if newdict: for key in newdict: value = newdict[key] try: if isinstance(value, dict): setattr(self, Namespace(value), key) else: setattr(self, key, value) except: print '"{0}" ---> "{1}" , type: "{2}"'.format(key, value, type(value)) raise def _to_json(self): return json.dumps(self, default=lambda o: o.__dict__, sort_keys=True, indent=4)
# TUPLES # tup1 = ('MIT is the best!', 1, [], 'Yo!', 3) # NOTE they are immutable (can't change elements' values) # print(tup1) # print(tup1[0]) # print(tup1[0:1]) # tup2 = ((1,'one'), (2, 'two'), (3, 'three'), (2, 'two')) # def get_data(aTuple): # nums = () # words = () # for t in aTuple: # nums += (t[0],) # if t[1] not in words: # words += (t[1],) # minNum = min(nums) # maxNum = max(nums) # uniqueWords = len(words) # # NOTE you can return many objects using tuples # return (minNum, maxNum, uniqueWords) # (minNum, maxNum, uniqueWords) = get_data(tup2) # print('Your tuple\'s minimal and maximal numbers are',minNum,'and '+str(maxNum)+', also it has',\ # uniqueWords,'unique words') # LISTS # ls1 = [0,1] # ls2 = [3,4] # ls3 = ls1+ls2 # ls1.extend([2]) # print(ls1,ls2,ls3) # ls3.append(2) # print(ls3) # sorted Doesn't mutate # sort Mutates # ALIASES # warm = ['orange', 'red', 'yellow'] # hot = warm # hot.append('pink') # print(hot) # print(warm) # # NOTE side effect -> if you change one list the other one will change too # if you don't want a side effect you should clone a list # hot = warm[:] # hot.append('pink') # print(hot) # print(warm) def removeDups(ls1, ls2): for i in ls1.copy(): if i in ls2: ls1.remove(i) return sorted(ls1+ls2) print(removeDups([1,2,3,4,5,6,7,8], [1,2,3,4]))
from datetime import datetime from flask_sqlalchemy import SQLAlchemy from manage import app, db class ContactUsModel(db.Model): id = db.Column('id', db.Integer, primary_key=True) name = db.Column('name', db.String) email = db.Column(db.String, unique=True, nullable=False) creation_date = db.Column('creation_date', db.Date, default=datetime.utcnow)
a = [[10, 20], [30, 40], [50, 60]] print(a) a = [[10, 20], [30, 40], [50, 60]] #이차원리스트[행][열] a[0][0] = 1000 a[1][1] = 2000 a[2][1] = 3000 print(a) for i, j in a: print(i, j) for i in range(len(a)): #행의 개수 for j in range(len(a[i])): #열의 개수 print(a[i][j],end=" ") print() print("\n===2중 for문 리스트 초기화===") a = [] num = 10 for i in range(8): #행 line = [] #안쪽에 넣을 리스트 for j in range(8): #열 line.append(num) num += 10 a.append(line) print(a) print("\n===리스트 표현식===") #중급자용 문법 num_list = [num for num in range(1, 6)] print(num_list) num_list = [num for num in range(1, 11) if num % 2 == 0] print(num_list) num = 10 a = [[num for j in range(2)] for i in range(3)] print(a)
import numpy as np import math import os import h5py def ReadH5File(filename): # return the first h5 dataset from this file with h5py.File(filename, 'r') as hf: keys = [key for key in hf.keys()] data = np.array(hf[keys[0]]) return data def WriteH5File(data, filename, dataset): with h5py.File(filename, 'w') as hf: # should cover all cases of affinities/images hf.create_dataset(dataset, data=data, compression='gzip') dsp = 8 volumesz = (5700,5456,5332) all_blocksizes = [(128,1024,1024), (192,1536,1536), (256,2048,2048), (512,512,512), (768,768,768), (1024,1024,1024), (1536,1536,1536), (2048,2048,2048)] input_folder = "/Users/Tim/Documents/Code/detectSomae/somae_in/" output_folder = "/Users/Tim/Documents/Code/detectSomae/somae_blocks_out/" somae_dsp = ReadH5File(input_folder+"somae_filled.h5") os.mkdir(output_folder) for blocksz in all_blocksizes: blocksz_dsp = [int(blocksz[0]/dsp), int(blocksz[1]/dsp), int(blocksz[2]/dsp)] dir_name = output_folder + "somaeblocks-dsp{}-{}x{}x{}/".format(dsp,blocksz[2],blocksz[1],blocksz[0]) os.mkdir(dir_name) nb_z = math.ceil(volumesz[0]/blocksz[0]) nb_x = math.ceil(volumesz[1]/blocksz[1]) nb_y = math.ceil(volumesz[2]/blocksz[2]) print("blocksize: {},{},{}".format(blocksz[2],blocksz[1],blocksz[0])) print("nbz:{}, nby:{}, nbx:{}".format(nb_z,nb_y,nb_x)) for bz in range(nb_z): for by in range(nb_y): for bx in range(nb_x): labels_out = np.zeros((blocksz_dsp[0],blocksz_dsp[1],blocksz_dsp[2]),dtype=np.uint64) somae_block_dsp = somae_dsp[bz*blocksz_dsp[0]:(bz+1)*blocksz_dsp[0], by*blocksz_dsp[1]:(by+1)*blocksz_dsp[1], bx*blocksz_dsp[2]:(bx+1)*blocksz_dsp[2]] labels_out[:somae_block_dsp.shape[0],:somae_block_dsp.shape[1],:somae_block_dsp.shape[2]] = somae_block_dsp filename_dsp = dir_name+'Zebrafinch-somae_filled_refined_dsp{}-{:04d}z-{:04d}y-{:04d}x.h5'.format(dsp,bz,by,bx) WriteH5File(labels_out,filename_dsp, "main")
import pandas as pd import geopandas as gpd import os from shapely.geometry import Point, LineString, shape from geopandas.tools import sjoin import contextily as ctx import matplotlib.pyplot as plt import seaborn as sns import tqdm import geoplot # 0. A brief exploration of the data # Check date range, the distribution of the points, the number of unique device id # import data parentDirectory = os.path.abspath(os.path.join(os.getcwd(), os.pardir)) file_name=os.path.join(parentDirectory,'data','location_data.csv') location_data=pd.read_csv(file_name) # date range location_data['timestamp']=pd.to_datetime(location_data['timestamp'],unit='s') print(f"The range of the datetime of the data is from {location_data['timestamp'].min()} to {location_data['timestamp'].max()}") # distribution of the points location_data['geometry']=location_data.apply(lambda x: Point((float(x.longitude), float(x.latitude))), axis=1) location_data_gdf=gpd.GeoDataFrame(location_data, geometry='geometry') location_data_gdf=location_data_gdf.set_crs(epsg=4326) location_data_gdf=location_data_gdf.to_crs("EPSG:4398") fig, ax = plt.subplots(1, figsize=(10, 10)) location_data_gdf.plot(figsize=(10, 10), alpha=0.5, edgecolor='k',ax=ax) ctx.add_basemap(ax, crs="EPSG:4398", url=ctx.providers.OpenStreetMap.Mapnik,zoom=10) ax.set_axis_off() ax.set_title("Spatial Distribution of Devices in the Dataset", fontdict={"fontsize": "25", "fontweight" : "3"}) fig.savefig(os.path.join(parentDirectory,'output','point_distribution.png')) # the number of unique device id num_unique_device=len(location_data_gdf['device_id'].unique()) num_rows=len(location_data_gdf) print(f"There are {num_unique_device} unique device ids among {num_rows} observations") # 1. Create 500m buffers around the selected tourist points # create 100m buffer from Kuala Lumpur airport def create_point(df,crs): """ This function is used to create a point geo dataframe Input: - df: a pandas dataframe that contains the location information - crs: a string of target crs Output: - gdf: a geodataframe of the given point """ df['geometry']=df.apply(lambda x: Point((float(x.lon), float(x.lat))), axis=1) gdf=gpd.GeoDataFrame(df, geometry='geometry') gdf = gpd.GeoDataFrame(df) gdf=gdf.set_crs(epsg=4326) gdf=gdf.to_crs(crs) return gdf def create_buffer(gdf,buffer_distance): """ This function is used to create buffer around given geodataframe with a specified distance Input: - gdf: input geo dataframe Output: - buffer_poly: a buffer around the input gdf with the specified distance """ buffer_poly = gdf.copy() buffer_poly["geometry"]=gdf.geometry.buffer(buffer_distance) return buffer_poly # location of the selected points #df=pd.DataFrame(names=['name','lon','lat']) location_dict=dict() location_dict['perdona']=[101.6847, 3.1430] location_dict['chinatown']=[101.6969, 3.1428] location_dict['petronas']=[101.7120, 3.1579] df=pd.DataFrame.from_dict(location_dict,orient='index',columns=['lon','lat']). reset_index().rename(columns={'index':'name'}) crs="EPSG:4398" # create buffer distance=500 gdf=create_point(df,crs) buffer=create_buffer(gdf,distance) print(buffer.head()) # 2. Extract those points that intersect with the buffer # coduct spatial join to extract points that intersect with the 100m buffer joined_buffer = gpd.sjoin(location_data_gdf, buffer, how="left", op='intersects') print(joined_buffer.info()) # 3. Group by each device id to get first&last timestamp, duration, and distance moved # Here, I cannot detect if the device leaves the point area and come back again. # first & last timestamp & duration by tourist points time_visited_by_device=joined_buffer.groupby(['device_id','name']).agg(['min','max']) time_visited_by_device.columns = ['{}_{}'.format(x[0], x[1]) for x in time_visited_by_device.columns] time_visited_by_device=time_visited_by_device.reset_index() time_visited_by_device=time_visited_by_device[['device_id','name','timestamp_min','timestamp_max']] time_visited_by_device['duration']=time_visited_by_device['timestamp_max']-time_visited_by_device['timestamp_min'] print(time_visited_by_device) # plot first timestamp sns.set_style(style="whitegrid") time_visited_by_device['timestamp_min_hour']=time_visited_by_device['timestamp_min'].dt.hour fist_visit_bplot = sns.violinplot(y='timestamp_min_hour', x='name', data=time_visited_by_device, width=0.5, palette="colorblind") fist_visit_bplot.axes.set_title("Timestamp of First Visits by Tourist Point", fontsize=16) fist_visit_bplot.figure.savefig(os.path.join(parentDirectory,'output','first_visit_timestamp.png')) # plot last timestamp time_visited_by_device['timestamp_max_hour']=time_visited_by_device['timestamp_max'].dt.hour last_visit_bplot = sns.violinplot(y='timestamp_max_hour', x='name', data=time_visited_by_device, width=0.5, palette="colorblind") last_visit_bplot.axes.set_title("Timestamp of Last Visits by Tourist Point", fontsize=16) last_visit_bplot.figure.savefig(os.path.join(parentDirectory,'output','last_visit_timestamp.png')) # plot duration time_visited_by_device['duration_min']=time_visited_by_device['duration'].dt.total_seconds().div(60).astype(int) duration_bplot = sns.boxplot(y='duration_min', x='name', data=time_visited_by_device, width=0.5, palette="colorblind") duration_bplot.axes.set_title("Duration of Stays by Tourist Point", fontsize=16) duration_bplot.figure.savefig(os.path.join(parentDirectory,'output','duration.png')) # calculate the length of movements by each device result_df=pd.DataFrame() movements_gdf=gpd.GeoDataFrame() for index,row in tqdm.tqdm(time_visited_by_device.iterrows()): device_id=row[0] name=row[1] temp_gdf=joined_buffer.loc[(joined_buffer['name']==name)&(joined_buffer['device_id']==device_id)] try: movement=temp_gdf.groupby(['device_id', 'name'])['geometry'].apply(lambda x:LineString(x.tolist())) movement = gpd.GeoDataFrame(movement, geometry='geometry') movements_gdf=movements_gdf.append(movement) except ValueError: # when we cannot convert it to linestring continue try: length=movement['geometry'].length.tolist()[0] except IndexError: # when there is anything inside movement['geometry'].length continue temp_df = pd.DataFrame([[device_id,name,length]], columns=['device_id','name','length']) result_df=result_df.append(temp_df) movements_gdf=movements_gdf.reset_index() print(result_df) # plot distance travelled by each device distance_bplot = sns.boxplot(y='length', x='name', order=['perdona','petronas','chinatown'], data=result_df, width=0.5, palette="colorblind") distance_bplot.axes.set_title("Distance Travelled by Each Device (meters)", fontsize=16) distance_bplot.figure.savefig(os.path.join(parentDirectory,'output','distance.png')) # plot the movement in perdona on a map movements_perdona=movements_gdf.loc[movements_gdf['name']=='perdona'] fig, ax = plt.subplots(1, figsize=(10, 10)) movements_perdona.plot(figsize=(10, 10), alpha=0.2, color='blue',edgecolor='blue',ax=ax,markersize=5) ctx.add_basemap(ax, crs="EPSG:4398", url=ctx.providers.OpenStreetMap.Mapnik) ax.set_axis_off() ax.set_title("Movements of devices in Perdona", fontdict={"fontsize": "25", "fontweight" : "3"}) fig.savefig(os.path.join(parentDirectory,'output','movement_perdona.png')) # plot the movement in petronas on a map movements_petronas=movements_gdf.loc[movements_gdf['name']=='petronas'] fig, ax = plt.subplots(1, figsize=(10, 10)) movements_petronas.plot(figsize=(10, 10), alpha=0.1, color='blue',edgecolor='blue',ax=ax,markersize=1) ctx.add_basemap(ax, crs="EPSG:4398", url=ctx.providers.OpenStreetMap.Mapnik) ax.set_axis_off() ax.set_title("Movements of devices in petronas", fontdict={"fontsize": "25", "fontweight" : "3"}) fig.savefig(os.path.join(parentDirectory,'output','movement_petronas.png')) # plot the movement in chinatown on a map movements_chinatown=movements_gdf.loc[movements_gdf['name']=='chinatown'] fig, ax = plt.subplots(1, figsize=(10, 10)) movements_chinatown.plot(figsize=(10, 10), alpha=0.1, color='blue',edgecolor='blue',ax=ax,markersize=1) ctx.add_basemap(ax, crs="EPSG:4398", url=ctx.providers.OpenStreetMap.Mapnik) ax.set_axis_off() ax.set_title("Movements of devices in chinatown", fontdict={"fontsize": "25", "fontweight" : "3"}) fig.savefig(os.path.join(parentDirectory,'output','movement_chinatown.png')) # plot the cumulative total number of devices by hour device_in_points=joined_buffer.dropna(subset=['name']) device_in_points['timestamp_hour']=device_in_points['timestamp'].dt.hour device_in_points_count=device_in_points.groupby(['name','timestamp_hour']).agg(['count']) device_in_points_count.columns = ['{}_{}'.format(x[0], x[1]) for x in device_in_points_count.columns] device_in_points_count=device_in_points_count.reset_index() count_lplot=sns.lineplot(data=device_in_points_count, x="timestamp_hour", y="device_id_count", hue="name") count_lplot.axes.set_title("Cumulative Number of Devices by Hour", fontsize=16) count_lplot.figure.savefig(os.path.join(parentDirectory,'output','cumulative_devices.png')) # plot spatial distribution of devices name_list=['perdona','petronas','chinatown'] for name in name_list: devices=device_in_points.loc[device_in_points['name']==name] nrow=4 ncol=6 fig, axes = plt.subplots(nrow, ncol,figsize=(50, 50)) buffer_temp= buffer.loc[buffer['name']==name] xlim = ([buffer_temp.total_bounds[0], buffer_temp.total_bounds[2]]) ylim = ([buffer_temp.total_bounds[1], buffer_temp.total_bounds[3]]) # plot counter hour=0 for r in range(nrow): for c in range(ncol): devices_temp=devices.loc[devices['timestamp_hour']==hour] devices_temp.plot(alpha=0.5, color='blue',ax=axes[r,c],markersize=50) axes[r,c].set_xlim(xlim) axes[r,c].set_ylim(ylim) ctx.add_basemap(axes[r,c], crs="EPSG:4398", url=ctx.providers.Stamen.TonerLite) axes[r,c].set_axis_off() axes[r,c].set_title(f"Devices at {hour}", fontdict={"fontsize": "50", "fontweight" : "1"}) hour+=1 fig.tight_layout() fig.suptitle(f"Spatial Distribution of Devices by Hour in {name.capitalize()}", fontsize=100) fig.savefig(os.path.join(parentDirectory,'output',f'device_{name}_hour.png')) location_data_gdf['timestamp_hour']=location_data_gdf['timestamp'].dt.hour nrow=4 ncol=6 fig, axes = plt.subplots(nrow, ncol,figsize=(50, 50)) xlim = ([location_data_gdf.total_bounds[0], location_data_gdf.total_bounds[2]]) ylim = ([location_data_gdf.total_bounds[1], location_data_gdf.total_bounds[3]]) # plot counter hour=0 for r in range(nrow): for c in range(ncol): devices_temp=location_data_gdf.loc[location_data_gdf['timestamp_hour']==hour] devices_temp.plot(alpha=0.2, color='blue',ax=axes[r,c],markersize=20) axes[r,c].set_xlim(xlim) axes[r,c].set_ylim(ylim) ctx.add_basemap(axes[r,c], crs="EPSG:4398", url=ctx.providers.Stamen.TonerLite) axes[r,c].set_axis_off() axes[r,c].set_title(f"Devices at {hour}", fontdict={"fontsize": "50", "fontweight" : "1"}) hour+=1 fig.tight_layout(h_pad=100) fig.suptitle("Spatial Distribution of Devices by Hour in Kuala Lumpur", fontsize=100) fig.subplots_adjust(top=0.8) fig.savefig(os.path.join(parentDirectory,'output','device_hour.png'))
import asyncio from asyncio.exceptions import CancelledError async def producer(q): for i in range(10): await q.put(i) await asyncio.sleep(0.1) ## finishing await q.put(None) async def watcher(q, name): while True: task = await q.get() if task is not None: print(f"{name} got {task}") await asyncio.sleep(1) else: await q.put(None) break async def main(): q = asyncio.Queue() p = asyncio.create_task(producer(q)) watchers = asyncio.gather(*[watcher(q, f"{i}") for i in range(3)]) await p await watchers asyncio.run(main())
"""Main module of the Dota 2 subreddit Responses Bot. The main body of the script is running in this file. The comments are loaded from the subreddit and the script checks if the comment or submission is a response from Dota 2. If it is, a proper reply for response is prepared. The response is posted as a reply to the original comment/submission on Reddit. """ import time from praw.exceptions import APIException from praw.models import Comment from prawcore import ServerError import config from bot import account from util.caching import get_cache_api from util.database.database import db_api from util.logger import logger from util.response_info import ResponseInfo from util.str_utils import preprocess_text __author__ = 'Jonarzz' __maintainer__ = 'MePsyDuck' cache_api = get_cache_api() def work(): """Main method executing the script. It connects to an account, loads dictionaries from proper files (declared in config file). Afterwards it executes process_comments method with proper arguments passed. """ reddit = account.get_account() logger.info('Connected to Reddit account : ' + config.USERNAME) comment_stream, submission_stream = get_reddit_stream(reddit) while True: try: for comment in comment_stream: if comment is None: break process_replyable(reddit, comment) for submission in submission_stream: if submission is None: break process_replyable(reddit, submission) except ServerError as e: comment_stream, submission_stream = get_reddit_stream(reddit) logger.critical("Reddit server is down : " + str(e)) time.sleep(120) except APIException as e: comment_stream, submission_stream = get_reddit_stream(reddit) logger.critical("API Exception occurred : " + str(e)) time.sleep(60) def get_reddit_stream(reddit): """Returns the comment and submission stream. Streams need to be restarted/re-obtained when they throw exception. :param reddit: The reddit account instance :return: The comment and subreddit stream """ comment_stream = reddit.subreddit(config.SUBREDDIT).stream.comments(pause_after=-1) submission_stream = reddit.subreddit(config.SUBREDDIT).stream.submissions(pause_after=-1) return comment_stream, submission_stream def process_replyable(reddit, replyable): """Method used to check all the comments in a submission and add replies if they are responses. PRAW generates past ~100 comments/submissions on the first iteration. Then the loop only runs if there is a new comment/submission added to the stream. This also means that once PRAW is up and running, after the initial comments list it won't generate any duplicate comments. However, just as a safeguard, Caching is used to store replyable ids as they are processed for the first time. Otherwise, when the bot is restarted it might reply twice to same comments. If replyable id is in the already present in the cache_api, then it is ignored, else processed and added to the cache_api. * Self comments are ignored. * It is prepared for comparison to the responses in dictionary. * If the replyable is not on the excluded responses list (loaded from config) and if it is in the responses db or specific responses list, a reply replyable is prepared and posted. :param reddit: The reddit account instance :param replyable: comment or submission :return: None """ if cache_api.exists(thing_id=replyable.fullname): return # Ignore thyself if replyable.author == reddit.user.me(): return logger.info("Found new replyable: " + replyable.fullname) processed_text = process_text(replyable.body if isinstance(replyable, Comment) else replyable.title) # TODO make use of assignment expression for all below if is_excluded_response(processed_text): pass elif is_custom_response(processed_text): add_custom_reply(replyable, processed_text) elif (response_info := is_hero_specific_response(processed_text)) is not None: add_hero_specific_reply(replyable, response_info) elif (response_info := is_flair_specific_response(replyable, processed_text)) is not None: add_flair_specific_reply(replyable, response_info) elif (response_info := is_update_request(reddit, replyable, processed_text)) is not None: update_reply(replyable, response_info) elif (response_info := is_hero_response(processed_text)) is not None: add_regular_reply(replyable, response_info) def process_text(text): """Method used to clean the replyable body/title text. If text contains a quote, the first quote text is considered as the text. :param text: The replyable body/title text :return: Processed text """ hero_name = None if '>' in text: text = get_quoted_text(text) if '::' in text: hero_name, text = text.split('::', 1) hero_name = hero_name.strip() + '::' return (hero_name or '') + preprocess_text(text) def get_quoted_text(text): """Method used to get quoted text. If body/title text contains a quote, the first quote is considered as the text. :param text: The replyable text :return: The first quote in the text. If no quotes are found, then the entire text is returned """ lines = text.split('\n\n') for line in lines: if line.startswith('>'): return line[1:] return text def is_excluded_response(text): """Method to check if the given body/title is in excluded responses set. Also return False for single word text (they're mostly common phrases). :param text: The processed body/title text :return: True if text is an excluded response, else False """ return ' ' not in text or text in config.EXCLUDED_RESPONSES def is_custom_response(text): """Method to check if given body/title text is in custom response set. :param text: The body/title text :return: True if text is a custom response, else False """ return text in config.CUSTOM_RESPONSES def add_custom_reply(replyable, body): """Method to create a custom reply for specific cases that match the custom responses set. :param replyable: The comment/submission on reddit :param body: The processed body/title text :return: None """ custom_response = config.CUSTOM_RESPONSES[body] original_text = replyable.body if isinstance(replyable, Comment) else replyable.title reply = custom_response.format(original_text, config.COMMENT_ENDING) replyable.reply(reply) logger.info("Replied to: " + replyable.fullname) def is_hero_specific_response(text): """Method that checks if response for specified hero name and text exists. :param text: The processed body/title text :return: ResponseInfo containing hero_id and link for response if the response for specified hero was found, otherwise None """ if '::' in text: hero_name, text = text.split('::', 1) if not hero_name or not text: return None hero_id = db_api.get_hero_id_by_name(hero_name=hero_name) if hero_id: link, _ = db_api.get_link_for_response(processed_text=text, hero_id=hero_id) if link: return ResponseInfo(hero_id=hero_id, link=link) return None def add_hero_specific_reply(replyable, response_info): """Method to add a hero specific reply to the comment/submission. :param replyable: The comment/submission on reddit :param response_info: ResponseInfo containing hero_id and link for response :return: None """ create_and_add_reply(replyable=replyable, response_url=response_info.link, hero_id=response_info.hero_id) def is_flair_specific_response(replyable, text): """Method that checks if response for hero in author's flair and text exists. :param replyable: The comment/submission on reddit :param text: The processed body/title text :return: ResponseInfo containing hero_id and link for response if the response for author's flair's hero was found, otherwise None """ hero_id = db_api.get_hero_id_by_flair_css(flair_css=replyable.author_flair_css_class) if hero_id: link, _ = db_api.get_link_for_response(processed_text=text, hero_id=hero_id) if link: return ResponseInfo(hero_id=hero_id, link=link) return None def add_flair_specific_reply(replyable, response_info): """Method to add a author's flair specific reply to the comment/submission. :param replyable: The comment/submission on reddit :param response_info: ResponseInfo containing hero_id and link for response :return: None """ create_and_add_reply(replyable=replyable, response_url=response_info.link, hero_id=response_info.hero_id) def is_update_request(reddit, replyable, text): """Method to check whether the comment is a request to update existing response. Only works if * Comment begins with "try" * Comment ends with valid hero name * Given hero has the original response * Root/Original comment/submission was not hero specific response. Examples: "Try legion commander" : Valid "Try leGiOn ComManDer" : Valid - case does not matter "legion commander" : Invalid - does not begin with `try` "Try legion" : Invalid - invalid hero name :param reddit: The reddit account instance :param replyable: The comment/submission on reddit :param text: The processed body/title text :return: ResponseInfo containing hero_id and link for response if this is a valid update request, otherwise None """ if not text.startswith(config.UPDATE_REQUEST_KEYWORD): return None if not validate_update_request_comment_tree(reddit, replyable): return None hero_name = text.replace(config.UPDATE_REQUEST_KEYWORD, '', 1) hero_id = db_api.get_hero_id_by_name(hero_name=hero_name) if hero_id is None: return None root_replyable = replyable.parent().parent() processed_text = process_text(root_replyable.body if isinstance(root_replyable, Comment) else root_replyable.title) if is_hero_specific_response(processed_text): return None link, _ = db_api.get_link_for_response(processed_text=processed_text, hero_id=hero_id) if link is None: return None return ResponseInfo(hero_id=hero_id, link=link) def validate_update_request_comment_tree(reddit, replyable): """Method to check whether the comment in the request to update existing response is valid. A valid comment tree is when: * Comment was made as a reply to bot's comment * Comment was added by OP, who made the original request(Response/Comment) for the response. The comment tree should look something like below, where root(original) replyable can be Comment or Submission. Only valid case is c3. c1/s1 user: Foo c2 bot: "Foo" response by Bar hero c3 user: Try Bar2 c4 other_user: Try Bar2 :param reddit: The reddit account instance :param replyable: The comment/submission on reddit :return: True if this is a valid comment tree, else False """ if not isinstance(replyable, Comment): return False op = replyable.author parent_comment = replyable.parent() if not isinstance(parent_comment, Comment): return False if not parent_comment.author == reddit.user.me(): return False root_replyable = parent_comment.parent() if not root_replyable.author == op: return False return True def update_reply(replyable, response_info): """Method to edit and update existing response comment by the bot with a new hero as requested. :param replyable: The comment/submission on reddit :param response_info: ResponseInfo containing hero_id and link for response :return: None """ bot_comment = replyable.parent() root_replyable = bot_comment.parent() # TODO maybe get original text from bot's command, rather than the original post, as it might be edited by the time this command is called original_text = root_replyable.body if isinstance(root_replyable, Comment) else root_replyable.title original_text = original_text.strip() if '>' in original_text: original_text = get_quoted_text(original_text).strip() # Getting name with Proper formatting hero_name = db_api.get_hero_name(response_info.hero_id) reply = "[{}]({}) (sound warning: {}){}".format(original_text, response_info.link, hero_name, config.COMMENT_ENDING) bot_comment.edit(reply) logger.info("Updated Reply: " + replyable.fullname) def is_hero_response(text): """Method to create response for given replyable. In case of multiple matches, it used to sort responses in descending order of heroes and get the first one, but now it's random. :param text: The processed body/title text :return: ResponseInfo containing hero_id and link for response if this is a valid update request, otherwise None """ link, hero_id = db_api.get_link_for_response(processed_text=text) if link and hero_id: return ResponseInfo(hero_id=hero_id, link=link) return None def add_regular_reply(replyable, response_info): """Method to create response for given replyable. In case of multiple matches, it used to sort responses in descending order of heroes and get the first one, but now it's random. :param replyable: The comment/submission on reddit :param response_info: ResponseInfo containing hero_id and link for response :return: None """ create_and_add_reply(replyable=replyable, response_url=response_info.link, hero_id=response_info.hero_id) def create_and_add_reply(replyable, response_url, hero_id): """Method that creates a reply in reddit format and adds the reply to comment/submission. The reply consists of a link to the response audio file, the response itself, a warning about the sound and an ending added from the config file (post footer). Image is currently ignored due to new reddit redesign not rendering flairs properly. :param replyable: The comment/submission on reddit :param response_url: The url to the response audio file :param hero_id: The hero_id to which the response belongs to. :return: The text for the comment reply. """ original_text = replyable.body if isinstance(replyable, Comment) else replyable.title original_text = original_text.strip() if '>' in original_text: original_text = get_quoted_text(original_text).strip() if '::' in original_text: original_text = original_text.split('::', 1)[1].strip() hero_name = db_api.get_hero_name(hero_id) reply = "[{}]({}) (sound warning: {}){}".format(original_text, response_url, hero_name, config.COMMENT_ENDING) replyable.reply(reply) logger.info("Replied to: " + replyable.fullname)
# coding=latin1 print("¿") print("¿") print("abc")
# pylint: disable=C0111 from setuptools import setup with open("README.md", "r") as fh: README = fh.read() setup( name='oneforge', version='0.1.0', description='1Forge REST API wrapper', long_description=README, long_description_content_type='text/markdown', author='Renato Orgito', author_email='orgito@gmail.com', maintainer='Renato Orgito', maintainer_email='orgito@gmail.com', url='https://github.com/orgito/1forge-client', license='MIT', classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python :: 3.6', 'Topic :: Software Development :: Libraries', ], keywords='1forge forex', packages=['oneforge'], setup_requires=['setuptools>=38.6.0'], install_requires=['requests'], python_requires='>=3.6', project_urls={ 'Bug Reports': 'https://github.com/orgito/1forge-client/issues', 'Source': 'https://github.com/orgito/1forge-client', }, )
from django.db import models # Create your models here. class station(models.Model): sno = models.CharField(max_length=4) sna = models.CharField(max_length=128) sarea = models.CharField(max_length=128) lat = models.FloatField() lng = models.FloatField() ar = models.CharField(max_length=128) sareaen = models.CharField(max_length=256) snaen = models.CharField(max_length=256) aren = models.CharField(max_length=256) def __str__(self): return self.sno class info(models.Model): sno = models.CharField(max_length=4) tot = models.PositiveSmallIntegerField() sbi = models.PositiveSmallIntegerField() mday = models.DateTimeField() bemp = models.PositiveSmallIntegerField() act = models.BooleanField() def __str__(self): return self.sno def outdated(self): return datetime.datetime.now()-self.mday >= datetime.timedelta(days=1)
import os import glob import unittest from setuptools import setup, find_packages def read(fname): return open(os.path.join(os.path.dirname(__file__), fname)).read() def my_test_suite(): test_loader = unittest.TestLoader() test_suite = test_loader.discover('tests', pattern='*_test.py') return test_suite with open("README.md", "r") as fh: long_description = fh.read() setup( name='annonex2embl', version='1.0.3', author='Michael Gruenstaeudl, PhD', author_email='m.gruenstaeudl@fu-berlin.de', description='Converts an annotated DNA multi-sequence alignment (in NEXUS format) to an EMBL flatfile for submission to ENA via the Webin-CLI submission tool', long_description=long_description, long_description_content_type="text/markdown", url='https://github.com/michaelgruenstaeudl/annonex2embl', classifiers=[ 'Development Status :: 4 - Beta', 'License :: OSI Approved :: BSD License', 'Programming Language :: Python :: 3.7', 'Intended Audience :: Science/Research', 'Topic :: Scientific/Engineering :: Bio-Informatics' ], keywords='novel DNA sequences, public sequence databases, European Nucleotide Archive, file conversion, flatfile', license='BSD', entry_points={ 'console_scripts': [ 'annonex2embl = annonex2embl.CLIOps:start_annonex2embl' ], }, packages=['annonex2embl'], # So that the subfolder 'annonex2embl' is read immediately. #packages = find_packages(), install_requires=['biopython <= 1.77', 'argparse', 'requests', 'unidecode'], scripts=glob.glob('scripts/*'), test_suite='setup.my_test_suite', include_package_data=True, zip_safe=False )
#!/usr/bin/python # -*- coding: utf-8 -*- from flask import Flask,render_template,request,redirect,url_for from werkzeug.utils import secure_filename import os,time import base_func app = Flask(__name__) @app.route('/upload', methods=['POST', 'GET']) def upload(): if request.method == 'POST': base_func.base('service tomcat7 stop') base_func.base('rm -rf /var/lib/tomcat7/webapps/mianyang.war') base_func.base('rm -rf /var/lib/tomcat7/webapps/mianyang') f = request.files['file'] #basepath = os.path.dirname(__file__) # 当前文件所在路径 upload_path = os.path.join('/var/lib/tomcat7/webapps',secure_filename(f.filename)) f.save(upload_path) base_func.base('service tomcat7 restart') time.sleep(5) base_func.backup('/var/lib/tomcat7/webapps/mianyang','/home/anyuan/Backtomcat') base_func.backup('/var/lib/tomcat7/webapps/mianyang.war','/home/anyuan/Backtomcat') return redirect(url_for('upload')) return render_template('upload.html') if __name__ == '__main__': app.run(host='0.0.0.0',debug=True)
# Behold my beautifully inelegant solution to the Project euler 39 def pf(number): if number == 1: return [1] factors = [] subnumber = number divisor = 2 temp = subnumber/divisor while temp % 1 == 0: factors.append(divisor) subnumber = temp temp = subnumber / divisor divisor = 3 temp = subnumber / divisor while temp % 1 == 0: factors.append(divisor) subnumber = temp temp = subnumber / divisor divisor = 5 m = 2 while subnumber != 1: temp = subnumber / divisor if temp % 1 == 0: factors.append(divisor) subnumber = temp else: divisor += m m = 6 - m if divisor > number/2: return [number] return factors def group_factors(prime_factors): grouped = [] count = 1 value = prime_factors[0] for i in range(1, len(prime_factors)): if prime_factors[i] == value: count += 1 else: grouped.append([value, count]) value = prime_factors[i] count = 1 grouped.append([value, count]) return grouped def product(list): total = 1 for i in list: total *= i return total def generate_factors(prime_factors): if len(prime_factors) == 1: primes = [prime_factors[0][0]] count = [prime_factors[0][1]] else: primes, count = zip(*prime_factors) ccount = [0 for x in range(len(count))] factors = [] while ccount[-1] <= count[-1]: factors.append(product([primes[x] ** ccount[x] for x in range(len(ccount))])) ccount[0] += 1 for i in range(len(ccount)-1): if ccount[i] > count[i]: ccount[i] = 0 ccount[i+1] += 1 return factors max = 0 answer = 0 for i in range(2, 1002, 2): grouped = group_factors(pf(i/2)) if len(grouped) > 1: factors = generate_factors(grouped) total = 0 sides = set() for j in range(len(factors)): for k in range(j+1, len(factors)): a = factors[j] b = factors[k] k = factors[-1] / (a*b) if k >= 1 and k == int(k): k = int(k) if a < b: smallest = a biggest = b else: smallest = b biggest = a if (biggest / smallest) < 2: m = smallest n = biggest-smallest yeet = int(k*(m**2 - n**2)) boi = 2*k*m*n if yeet < boi: smallest = yeet biggest = boi else: smallest = boi biggest = yeet sides.add((smallest, biggest)) total = len(sides) if total > max: max = total answer = i print("The answer is {} with {} solutions".format(answer, max))
""" Hacked together router with Werkzeug because GCF does not support full Flask apps """ # hack together router with werkzeug because google cloud functions does not # support full flask apps from werkzeug.routing import Map, Rule, NotFound from werkzeug.exceptions import MethodNotAllowed, HTTPException import requests url_map = Map([]) def route(path, methods=("GET",)): def decorator(fn): def endpoint(req): if methods: if req.method not in methods: raise MethodNotAllowed(list(methods)) return fn(req) url_map.add(Rule(path, endpoint=endpoint)) return decorator def enter_router(request): urls = url_map.bind("localhost", path_info=request.path) try: endpoint, args = urls.match() return endpoint(request) except HTTPException as e: raise e
# Copyright 2020 Pulser Development Team # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from dataclasses import FrozenInstanceError, replace from unittest.mock import patch import numpy as np import pytest import pulser from pulser.channels import Microwave, Raman, Rydberg from pulser.channels.dmm import DMM from pulser.devices import Chadoq2, Device, VirtualDevice from pulser.register import Register, Register3D from pulser.register.register_layout import RegisterLayout from pulser.register.special_layouts import TriangularLatticeLayout @pytest.fixture def test_params(): return dict( name="Test", dimensions=2, rydberg_level=70, channel_ids=None, channel_objects=(), min_atom_distance=1, max_atom_num=None, max_radial_distance=None, ) @pytest.mark.parametrize( "param, value, msg", [ ("name", 1, None), ("supports_slm_mask", 0, None), ("reusable_channels", "true", None), ("max_atom_num", 1e9, None), ("max_radial_distance", 100.4, None), ("rydberg_level", 70.0, "Rydberg level has to be an int."), ( "channel_ids", {"fake_channel"}, "When defined, 'channel_ids' must be a tuple or a list " "of strings.", ), ( "channel_ids", ("ch1", 2), "When defined, 'channel_ids' must be a tuple or a list " "of strings.", ), ( "channel_objects", ("Rydberg.Global(None, None)",), "All channels must be of type 'Channel', not 'str'", ), ( "channel_objects", (Microwave.Global(None, None),), "When the device has a 'Microwave' channel, " "'interaction_coeff_xy' must be a 'float'," " not '<class 'NoneType'>'.", ), ( "dmm_objects", ("DMM(bottom_detuning=-1)",), "All DMM channels must be of type 'DMM', not 'str'", ), ("max_sequence_duration", 1.02, None), ("max_runs", 1e8, None), ], ) def test_post_init_type_checks(test_params, param, value, msg): test_params[param] = value error_msg = msg or f"{param} must be of type" with pytest.raises(TypeError, match=error_msg): VirtualDevice(**test_params) @pytest.mark.parametrize( "param, value, msg", [ ( "dimensions", 1, re.escape("'dimensions' must be one of (2, 3), not 1."), ), ("rydberg_level", 49, "Rydberg level should be between 50 and 100."), ("rydberg_level", 101, "Rydberg level should be between 50 and 100."), ( "min_atom_distance", -0.001, "'min_atom_distance' must be greater than or equal to zero", ), ("max_atom_num", 0, None), ("max_radial_distance", 0, None), ( "max_layout_filling", 0.0, "maximum layout filling fraction must be greater than 0. and" " less than or equal to 1.", ), ( "channel_ids", ("rydberg_global", "rydberg_global"), "When defined, 'channel_ids' can't have repeated elements.", ), ( "channel_ids", ("rydberg_global",), "When defined, the number of channel IDs must" " match the number of channel objects.", ), ("max_sequence_duration", 0, None), ("max_runs", 0, None), ], ) def test_post_init_value_errors(test_params, param, value, msg): test_params[param] = value error_msg = msg or f"When defined, '{param}' must be greater than zero" with pytest.raises(ValueError, match=error_msg): VirtualDevice(**test_params) # TODO: Add test of comptability SLM-DMM once DMM is added for serialization # def test_post_init_slm_dmm_compatibility(test_params): # test_params["supports_slm_mask"] = True # test_params["dmm_objects"] = () # with pytest.raises(ValueError, # match="One DMM object should be defined to support SLM mask." # ): # VirtualDevice(**test_params) potential_params = ["max_atom_num", "max_radial_distance"] always_none_allowed = ["max_sequence_duration", "max_runs"] @pytest.mark.parametrize("none_param", potential_params + always_none_allowed) def test_optional_parameters(test_params, none_param): test_params.update({p: 10 for p in potential_params}) test_params[none_param] = None if none_param not in always_none_allowed: with pytest.raises( TypeError, match=f"'{none_param}' can't be None in a 'Device' instance.", ): Device(**test_params) else: Device(**test_params) VirtualDevice(**test_params) # Valid as None on a VirtualDevice def test_default_channel_ids(test_params): # Needed because of the Microwave global channel test_params["interaction_coeff_xy"] = 10000.0 test_params["channel_objects"] = ( Rydberg.Local(None, None), Raman.Local(None, None), Rydberg.Local(None, None), Raman.Global(None, None), Microwave.Global(None, None), ) dev = VirtualDevice(**test_params) assert dev.channel_ids == ( "rydberg_local", "raman_local", "rydberg_local_2", "raman_global", "mw_global", ) def test_tuple_conversion(test_params): test_params["channel_objects"] = [Rydberg.Global(None, None)] test_params["channel_ids"] = ["custom_channel"] dev = VirtualDevice(**test_params) assert dev.channel_objects == (Rydberg.Global(None, None),) assert dev.channel_ids == ("custom_channel",) def test_valid_devices(): for dev in pulser.devices._valid_devices: assert dev.dimensions in (2, 3) assert dev.rydberg_level > 49 assert dev.rydberg_level < 101 assert dev.max_atom_num > 10 assert dev.max_radial_distance > 10 assert dev.min_atom_distance > 0 assert dev.interaction_coeff > 0 assert 0 < dev.max_layout_filling <= 1 assert isinstance(dev.channels, dict) with pytest.raises(FrozenInstanceError): dev.name = "something else" assert Chadoq2 in pulser.devices._valid_devices assert Chadoq2.supported_bases == {"digital", "ground-rydberg"} with patch("sys.stdout"): Chadoq2.print_specs() assert Chadoq2.__repr__() == "Chadoq2" def test_change_rydberg_level(): dev = pulser.devices.MockDevice dev.change_rydberg_level(60) assert dev.rydberg_level == 60 assert np.isclose(dev.interaction_coeff, 865723.02) with pytest.raises(TypeError, match="Rydberg level has to be an int."): dev.change_rydberg_level(70.5) with pytest.raises( ValueError, match="Rydberg level should be between 50 and 100." ): dev.change_rydberg_level(110) dev.change_rydberg_level(70) def test_rydberg_blockade(): dev = pulser.devices.MockDevice assert np.isclose(dev.rydberg_blockade_radius(3 * np.pi), 9.119201) assert np.isclose(dev.rabi_from_blockade(9), 10.198984) rand_omega = np.random.rand() * 2 * np.pi assert np.isclose( rand_omega, dev.rabi_from_blockade(dev.rydberg_blockade_radius(rand_omega)), ) def test_validate_register(): with pytest.raises(ValueError, match="The number of atoms"): Chadoq2.validate_register(Register.square(50)) coords = [(100, 0), (-100, 0)] with pytest.raises(TypeError): Chadoq2.validate_register(coords) with pytest.raises(ValueError, match="at most 50 μm away from the center"): Chadoq2.validate_register(Register.from_coordinates(coords)) with pytest.raises(ValueError, match="at most 2D vectors"): coords = [(-10, 4, 0), (0, 0, 0)] Chadoq2.validate_register(Register3D(dict(enumerate(coords)))) with pytest.raises(ValueError, match="The minimal distance between atoms"): Chadoq2.validate_register( Register.triangular_lattice(3, 4, spacing=3.9) ) with pytest.raises( ValueError, match="associated with an incompatible register layout" ): tri_layout = TriangularLatticeLayout(200, 20) Chadoq2.validate_register(tri_layout.hexagonal_register(10)) Chadoq2.validate_register(Register.rectangle(5, 10, spacing=5)) def test_validate_layout(): coords = [(100, 0), (-100, 0)] with pytest.raises(TypeError): Chadoq2.validate_layout(Register.from_coordinates(coords)) with pytest.raises(ValueError, match="at most 50 μm away from the center"): Chadoq2.validate_layout(RegisterLayout(coords)) with pytest.raises(ValueError, match="at most 2 dimensions"): coords = [(-10, 4, 0), (0, 0, 0)] Chadoq2.validate_layout(RegisterLayout(coords)) with pytest.raises(ValueError, match="The minimal distance between traps"): Chadoq2.validate_layout( TriangularLatticeLayout(12, Chadoq2.min_atom_distance - 1e-6) ) valid_layout = RegisterLayout( Register.square(int(np.sqrt(Chadoq2.max_atom_num * 2)))._coords ) Chadoq2.validate_layout(valid_layout) valid_tri_layout = TriangularLatticeLayout( Chadoq2.max_atom_num * 2, Chadoq2.min_atom_distance ) Chadoq2.validate_layout(valid_tri_layout) @pytest.mark.parametrize( "register", [ TriangularLatticeLayout(100, 5).hexagonal_register(80), TriangularLatticeLayout(100, 5).make_mappable_register(51), ], ) def test_layout_filling(register): assert Chadoq2.max_layout_filling == 0.5 assert register.layout.number_of_traps == 100 with pytest.raises( ValueError, match=re.escape( "the given register has too many qubits " f"({len(register.qubit_ids)}). " "On this device, this layout can hold at most 50 qubits." ), ): Chadoq2.validate_layout_filling(register) def test_layout_filling_fail(): with pytest.raises( TypeError, match="'validate_layout_filling' can only be called for" " registers with a register layout.", ): Chadoq2.validate_layout_filling(Register.square(5)) def test_calibrated_layouts(): with pytest.raises(ValueError, match="The minimal distance between traps"): Device( name="TestDevice", dimensions=2, rydberg_level=70, max_atom_num=100, max_radial_distance=50, min_atom_distance=4, channel_objects=(), pre_calibrated_layouts=(TriangularLatticeLayout(201, 3),), ) TestDevice = Device( name="TestDevice", dimensions=2, rydberg_level=70, max_atom_num=100, max_radial_distance=50, min_atom_distance=4, channel_objects=(), pre_calibrated_layouts=( TriangularLatticeLayout(100, 6.8), TriangularLatticeLayout(200, 5), ), ) assert TestDevice.calibrated_register_layouts.keys() == { "TriangularLatticeLayout(100, 6.8µm)", "TriangularLatticeLayout(200, 5.0µm)", } def test_device_with_virtual_channel(): with pytest.raises( ValueError, match="A 'Device' instance cannot contain virtual channels.", ): Device( name="TestDevice", dimensions=2, rydberg_level=70, max_atom_num=100, max_radial_distance=50, min_atom_distance=4, channel_objects=(Rydberg.Global(None, 10),), ) def test_convert_to_virtual(): params = dict( name="Test", dimensions=2, rydberg_level=80, min_atom_distance=1, max_atom_num=20, max_radial_distance=40, channel_objects=(Rydberg.Global(0, 10),), ) assert Device( pre_calibrated_layouts=(TriangularLatticeLayout(40, 2),), **params ).to_virtual() == VirtualDevice( supports_slm_mask=False, reusable_channels=False, **params ) def test_device_params(): all_params = Chadoq2._params() init_params = Chadoq2._params(init_only=True) assert set(all_params) - set(init_params) == {"reusable_channels"} virtual_chadoq2 = Chadoq2.to_virtual() all_virtual_params = virtual_chadoq2._params() init_virtual_params = virtual_chadoq2._params(init_only=True) assert all_virtual_params == init_virtual_params assert set(all_params) - set(all_virtual_params) == { "pre_calibrated_layouts" } def test_dmm_channels(): dmm = DMM( bottom_detuning=-1, clock_period=1, min_duration=1, max_duration=1e6, mod_bandwidth=20, ) device = replace(Chadoq2, dmm_objects=(dmm,)) assert len(device.dmm_channels) == 1 assert device.dmm_channels["dmm_0"] == dmm with pytest.raises( ValueError, match=( "When defined, the names of channel IDs must be different" " than the names of DMM channels 'dmm_0', 'dmm_1', ... ." ), ): device = replace( Chadoq2, dmm_objects=(dmm,), channel_objects=(Rydberg.Global(None, None),), channel_ids=("dmm_0",), ) assert not dmm.is_virtual() assert DMM().is_virtual()
"""relaydomains API v1 unit tests.""" import json from django.urls import reverse from modoboa.admin import factories as admin_factories, models as admin_models from modoboa.lib.tests import ModoAPITestCase from modoboa.transport import factories as tr_factories, models as tr_models class DataMixin(object): """A mixin to provide test data.""" @classmethod def setUpTestData(cls): # NOQA:N802 super(DataMixin, cls).setUpTestData() transport = tr_factories.TransportFactory( pattern="test.com", _settings={ "relay_target_host": "external.host.tld", "relay_target_port": 25, "relay_verify_recipients": False } ) cls.domain1 = admin_factories.DomainFactory( name="test.com", type="relaydomain", transport=transport) transport = tr_factories.TransportFactory( pattern="domain2.test", _settings={ "relay_target_host": "external.host.tld", "relay_target_port": 25, "relay_verify_recipients": True } ) cls.domain2 = admin_factories.DomainFactory( name="test2.com", type="relaydomain", transport=transport) class RelayDomainAPITestCase(DataMixin, ModoAPITestCase): """API test cases.""" def test_list(self): """Test list service.""" url = reverse("api:relaydomain-list") response = self.client.get(url) self.assertEqual(response.status_code, 200) self.assertEqual(len(response.data), 2) def test_create(self): """Test create service.""" url = reverse("api:relaydomain-list") settings = { "relay_target_host": "1.2.3.4" } data = { "name": "test3.com", "transport": { "service": "relay", "_settings": json.dumps(settings) } } response = self.client.post(url, data, format="json") self.assertEqual(response.status_code, 400) self.assertEqual( response.data["transport"]["_settings"], ["relay_target_port: This field is required"] ) settings.update({"relay_target_port": 25}) data["transport"]["_settings"] = json.dumps(settings) response = self.client.post(url, data, format="json") self.assertEqual(response.status_code, 201) domain = admin_models.Domain.objects.get(name="test3.com") self.assertEqual( domain.transport.next_hop, "[{}]:{}".format( settings["relay_target_host"], settings["relay_target_port"]) ) def test_update(self): """Test update service.""" url = reverse("api:relaydomain-detail", args=[self.domain1.pk]) settings = self.domain1.transport._settings.copy() settings.update({"relay_target_port": 1000}) data = { "name": "test3.com", "transport": { "service": "relay", "_settings": json.dumps(settings) } } response = self.client.put(url, data, format="json") self.assertEqual(response.status_code, 200) self.domain1.refresh_from_db() self.domain1.transport.refresh_from_db() self.assertEqual(self.domain1.name, data["name"]) self.assertEqual( self.domain1.transport.next_hop, "[{}]:{}".format( settings["relay_target_host"], settings["relay_target_port"]) ) def test_delete(self): """Test delete service.""" url = reverse("api:relaydomain-detail", args=[self.domain1.pk]) response = self.client.delete(url) self.assertEqual(response.status_code, 204) with self.assertRaises(admin_models.Domain.DoesNotExist): self.domain1.refresh_from_db() self.assertFalse( tr_models.Transport.objects.filter(pattern="test.com").exists())
from django.urls import re_path from elections.views.sync import get_election_fixture from .views import ( CONDITION_DICT, FORMS, AllElectionsView, ElectionTypesView, IDCreatorWizard, ReferenceDefinitionView, SingleElection, ) id_creator_wizard = IDCreatorWizard.as_view( FORMS, url_name="id_creator_step", done_step_name="home", condition_dict=CONDITION_DICT, ) urlpatterns = [ re_path( r"^election_types/$", ElectionTypesView.as_view(), name="election_types_view", ), re_path( r"^reference_definition/$", ReferenceDefinitionView.as_view(), name="reference_definition_view", ), re_path(r"^elections/$", AllElectionsView.as_view(), name="elections_view"), re_path( r"^elections/(?P<election_id>.+)/$", SingleElection.as_view(), name="single_election_view", ), re_path( r"^id_creator/(?P<step>.+)/$", id_creator_wizard, name="id_creator_step" ), re_path(r"^id_creator/$", id_creator_wizard, name="id_creator"), re_path(r"^sync/$", get_election_fixture), ]
# -*- coding: utf-8 -*- """ Created on Mon Dec 14 13:03:35 2020 @author: Ayax """ import pandas as pd import numpy as np datos = pd.read_csv('crx.data', sep=',',header=None) datos = datos.replace(np.nan, '0') datos = datos.replace('?', '10') print(datos) from sklearn.preprocessing import LabelEncoder encoder=LabelEncoder() datos['columna1']=encoder.fit_transform(datos[1].values) arreglo = np.array(datos[4]) datos[4] = np.where(arreglo == '10', 'g', arreglo) datos['columna4']=encoder.fit_transform(datos[4].values) datos['columna12']=encoder.fit_transform(datos[12].values) #print(datos.columna1.unique()) #print(datos.columna4.unique()) #print(datos.columna12.unique()) #Datos de entrada X=datos[['columna1','columna4','columna12']] #X=datos[['columna1','columna4']] #X=datos['columna1'] #print(X) #Datos de salida y=datos['columna12'] #y=datos['columna4'] #print(y) #Cuantos datos se necesitan para entrenamiento y cuantos para prueba 80-20 from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) from sklearn.preprocessing import StandardScaler scaler = StandardScaler() scaler.fit(X_train) X_train = scaler.transform(X_train) X_test = scaler.transform(X_test) #Red neuronal from sklearn.neural_network import MLPClassifier mlp = MLPClassifier(hidden_layer_sizes=(100,), max_iter=500, alpha=1e-5, solver='lbfgs', random_state=300,tol=1e-2) #Entrenamiento mlp.fit(X_train,y_train) predictions=mlp.predict(X_test) from sklearn.metrics import confusion_matrix matriz = confusion_matrix(y_test, predictions) print(matriz)
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from __future__ import absolute_import, division, print_function, unicode_literals import unittest from mock import patch from wadebug.wa_actions.curl_utils import ( CURLExitCode, CURLTestResult, https_get_request_from_container, ) class MockContainer: def exec_run(self): pass mock_container = MockContainer() class TestCurlUtils(unittest.TestCase): @patch.object(mock_container, "exec_run", return_value=(CURLExitCode.OK, b"404:1")) def test_request_should_return_non_http_ok_if_status_code_not_200(self, *_): result, response_time = https_get_request_from_container( mock_container, "url", "timeout" ) assert result == CURLTestResult.HTTP_STATUS_NOT_OK @patch.object(mock_container, "exec_run", return_value=(CURLExitCode.OK, b"200:1")) def test_request_should_return_ok_if_http_200_exit_code_0(self, *_): result, response_time = https_get_request_from_container( mock_container, "url", "timeout" ) assert result == CURLTestResult.OK @patch.object( mock_container, "exec_run", return_value=(CURLExitCode.TIMEOUT, b"200:1") ) def test_request_should_return_timeout_if_exit_code_28(self, *_): result, response_time = https_get_request_from_container( mock_container, "url", "timeout" ) assert result == CURLTestResult.CONNECTION_TIMEOUT @patch.object( mock_container, "exec_run", return_value=(CURLExitCode.SSL_CERT_UNKNOWN, b"200:1"), ) def test_request_should_return_cert_unknown_if_exit_code_60(self, *_): result, response_time = https_get_request_from_container( mock_container, "url", "timeout" ) assert result == CURLTestResult.SSL_CERT_UNKNOWN
#!/usr/bin/python3 #import main mongo connect class from joiningSegments.mongoConnect import mongoConn config = { "host" : "127.0.0.1", "port" : 27017, "db" : "testing" } print (config["db"]) if __name__ == "__main__": """make new monogo conn""" dbConn = mongoConn(config["host"], config["port"]) dbConn.getDbHandle(config["db"]) dbConn.selectDistinct("users")
# -*- coding: utf-8 -*- # Copyright (c) 2015, indictrans and contributors # For license information, please see license.txt from __future__ import unicode_literals import frappe from frappe.model.document import Document from frappe.utils import flt, getdate, nowdate, now_datetime from frappe import msgprint, _ from frappe.utils import flt, getdate, nowdate from datetime import date import json class SkillMapping(Document): def update_skill_mapping_details(self, args): self.set('skill_mapping_details', []) for data in args.get('data'): if data.get('industry')!=None: nl = self.append('skill_mapping_details',{}) nl.skill = data.get('master_industry') nl.sub_skill = data.get('industry') nl.beginner = data.get('beginner') nl.imtermediatory = data.get('imtermediatory') nl.expert = data.get('expert') nl.none_field = data.get('none_field') self.save() frappe.msgprint("Skill Mapping Details Saved") def validate(self): pass @frappe.whitelist() def get_sample_data(): return { "get_sample_data": frappe.db.sql("""select skill_matrix_18,sub_skill,1 from `tabSkill Matrix 120` order by skill_matrix_18 asc, sub_skill asc""", as_list=1) } @frappe.whitelist() def get_sample_data_from_table(doc_name): return { "get_sample_data": frappe.db.sql("""select skill,sub_skill,none_field,beginner,imtermediatory,expert from `tabSkill Mapping Details` where parent='%s' order by skill asc, sub_skill asc"""%doc_name, as_list=1) }
import os import tarfile from six.moves import urllib import pandas as pd from pandas.plotting import scatter_matrix import matplotlib import matplotlib.pyplot as plt import numpy as np import hashlib from sklearn.datasets import fetch_mldata from sklearn.model_selection import train_test_split, StratifiedShuffleSplit, cross_val_score, cross_val_predict from sklearn.preprocessing import Imputer, OneHotEncoder, MinMaxScaler, StandardScaler from sklearn.base import BaseEstimator, TransformerMixin from sklearn.pipeline import Pipeline, FeatureUnion, make_pipeline from sklearn.linear_model import LinearRegression, SGDClassifier from sklearn.metrics import mean_squared_error, confusion_matrix, precision_score, recall_score, f1_score, precision_recall_curve, roc_curve, roc_auc_score from sklearn.tree import DecisionTreeRegressor from sklearn.externals import joblib from sklearn.ensemble import RandomForestClassifier Download_root = "https://raw.githubusercontent.com/ageron/handson-ml/master/" Housing_path = os.path.join("datasets","housing") Housing_url = Download_root + "datasets/housing/housing.tgz" def fetch_housing__data(housing_url = Housing_url, housing_path = Housing_path): if not os.path.isdir(housing_path): # if the file doesnt exist os.makedirs(housing_path) print('creating the file datasets/housing') tgz_path = os.path.join(housing_path, "housing.tar") urllib.request.urlretrieve(housing_url,tgz_path) # download the zip file housing_tgz = tarfile.open(tgz_path) # go in the right directory housing_tgz.extractall(path=housing_path) # and extract the file in the new file housing_tgz.close() def load_housing_data(housing_path = Housing_path): csv_path = os.path.join(housing_path,"housing.csv") return pd.read_csv(csv_path) ######################## DATA ANALYSIS ##################################### housing = load_housing_data() ## QUICK LOOK housing.head() housing.info() housing.ocean_proximity.value_counts() housing.describe() housing.hist(bins=50) plt.show() ## CREATE A TEST SET #option 1 simple: mais a chaque fois different, a force l'algo ne sera entrainer sur tout le dataset def split_train_test(data, ratio): suffled_indices = np.random.permutation(len(data)) test_set_size = int(len(data)*ratio) test_indices = suffled_indices[:test_set_size] train_indices = suffled_indices[test_set_size:] return data.iloc[train_indices], data.iloc[test_indices] train_set, test_set = split_train_test(housing, 0.2) #option 2: complexe ---> hash ?? def test_set_check(identifier, ratio, hash): return hash(np.int64(identifier)).digest()[-1]< 256 * ratio # transform id in array def split_train_test_by_id(data, ratio, id_column, hash=hashlib.md5): ids = data[id_column] in_test_set = ids.apply(lambda id_: test_set_check(id_, ratio, hash)) print(in_test_set) return data.loc[~in_test_set], data[in_test_set] housing = housing.reset_index() # to add the index as the id column train_set, test_set = split_train_test_by_id(housing, 0.2, "index") print(str(len(train_set)) + " in the train set and " + str(len(test_set)) + " in the test set") # option 3 avec sklearn train_set, test_set = train_test_split(housing, test_size=0.2, random_state=42) # create a income category to check housing['income_cat'] = np.ceil(housing.median_income/1.5) housing.income_cat.unique() housing.income_cat.where(housing.income_cat < 5, 5, inplace=True) # bizareeeee housing.income_cat.unique() housing.income_cat.hist() plt.show() # option 2 avec sklearn split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=42) for train_index, test_index in split.split(housing, housing.income_cat): strat_train_set = housing.loc[train_index] strat_test_set = housing.loc[test_index] strat_test_set["income_cat"].value_counts() / len(strat_test_set) #remove the category to back to normal for set in (strat_test_set, strat_test_set): print(set) set.drop("income_cat", axis=1, inplace=True) ## DATA VIZUALISATION housing = test_set.copy() housing.plot(kind='scatter', x='longitude', y='latitude', alpha=0.4, s=housing.population/100, label='population', c='median_house_value', cmap=plt.get_cmap('jet'), colorbar=True) ## CORRELATION corr_matrix = housing.corr() corr_matrix.median_house_value.sort_values(ascending=False) attributes = ['median_house_value', 'mediam_income', 'total_rooms', 'housing_mediam_age'] scatter_matrix(housing[attributes], figsize =(2,8)) housing.plot(kind='scatter', x = 'median_income', y='median house value') # combinaison d'attributes housing['rooms_per_household'] = housing.total_rooms/housing.households corr_matrix = housing.corr() corr_matrix.median_house_value.sort_values(ascending=False) ## PREP FOR ML housing = strat_train_set.drop('median_house_value', axis=1) housing_label = strat_train_set['median_house_value'].copy() #Data cleaning # 3 way todeal with missing values housing.dropna(subset=["total_bedrooms"]) # get rid of lines with missing values housing.drop("total_bedrooms", axis=1) # get rif of the attribute mean = housing.total_bedrooms.mean() housing.total_bedrooms.fillna(mean, inplace=True) # replace with median # same with sk learn housing_num = housing.drop('ocean_proximity', axis=1) imputer =Imputer(strategy="median") imputer.fit(housing_num)# Imputer can only be run on numerical dataframe imputer.statistics_ housing_num.median().values X = imputer.transform(housing_num) # numpy housing_tr= pd.DataFrame(X, columns=housing_num.columns) # Text category housing_cat = housing.ocean_proximity encoder = OneHotEncoder() housing_cat_encoded, housing_categories = housing_cat.factorize() # convert categories into integers housing_cat_1hot = encoder.fit_transform(housing_cat_encoded.reshape(-1,1)) # -1 is the length of the 1D dimension given binarycat = pd.DataFrame(housing_cat_1hot.toarray(), columns=housing_categories) housing_notext = pd.concat([housing.drop('ocean_proximity', axis=1).reset_index(drop=True), binarycat], axis=1) housing = housing_notext # Custom Transformers room_ix, bedrooms_ix, population_ix, household_ix = 3, 4, 5, 6 class CombinedAttributesAdder(BaseEstimator, TransformerMixin): """Herite des 2 classes de sklearn""" def __init__(self, add_bedrooms_per_room = True): # no *argpr **kargs self.add_bedrooms_per_room = add_bedrooms_per_room def fit(self, X, y=None): return self # nothing else to do def transform(self, X, y=None): rooms_per_household = X[:, room_ix] / X[:, household_ix] population_per_household = X[:, population_ix]/ X[:, household_ix] if self.add_bedrooms_per_room: bedrooms_per_room= X[:, bedrooms_ix ] / X[:, room_ix] return np.c_[X, rooms_per_household, population_per_household, bedrooms_per_room] else: return np.c_[X, rooms_per_household, population_per_household] attr_adder = CombinedAttributesAdder(add_bedrooms_per_room=False) housing_extra_attribs = attr_adder.transform(housing.values) # Feature scaling of the training data # Normalization: (x-Min)/max #fit_transform(X[, y]) Fit to data, then transform it. scaler = MinMaxScaler() housing_norm = scaler.fit_transform(housing) housing_norm = pd.DataFrame(housing_norm, columns=housing.columns) print(scaler.data_max_) print(scaler.data_min_) housing_norm.max() # Standardize: (X-mean)/variance scaler = StandardScaler() housing_norm = scaler.fit_transform(housing) housing_norm = pd.DataFrame(housing_norm, columns=housing.columns) housing_norm.max() # not working with the binary variable scatter_matrix(housing_num) plt.style.use('seaborn-white') housing_norm.hist(bins=np.arange(0,1.2,0.2), ec='w') # Tranformation Pipelines class DataFrameSelector(BaseEstimator, TransformerMixin): def __init__(self, attribute_names): self.attribute_names = attribute_names def fit(self, X, y=None): return self def transform(self, X): return X[self.attribute_names].values ##################### SUM UP ############### housing = load_housing_data() train_set, test_set = train_test_split(housing, test_size=0.2, random_state=42) housing = train_set.drop('median_house_value', axis=1) housing_label = train_set['median_house_value'].copy() housing_num = housing.drop('ocean_proximity', axis=1) num_attribs = list(housing_num) cat_attribs = ["ocean_proximity"] num_pipeline = Pipeline([ ('selector', DataFrameSelector(num_attribs)), ('imputer', Imputer(strategy='median')), ('attributs_adder', CombinedAttributesAdder()), ('std_scaler', StandardScaler()), ]) cat_pipeline = Pipeline([ ('selector', DataFrameSelector(cat_attribs)), ('cat_encoder', OneHotEncoder()), ]) full_pipeline = FeatureUnion(transformer_list=[ ("num_pipeline", num_pipeline), ("cat_pipeline", cat_pipeline), ]) # # autre facond e faire un pipeline # model = make_pipeline(Imputer(strategy='mean'), # PolynomialFeatures(degree=2), # LinearRegression()) housing_prepared = full_pipeline.fit_transform(housing) col = list(housing.columns) + list(housing.ocean_proximity.unique()) housing_prepared_pd = pd.DataFrame(housing_prepared.toarray(), columns=col) ### SELECT AND TRAIN A MODEL lin_reg = LinearRegression() lin_reg.fit(housing_prepared, housing_label) housing_predictions = lin_reg.predict(housing_prepared) lin_mse = mean_squared_error(housing_label, housing_predictions) lin_rmse = np.sqrt(lin_mse) print(lin_rmse) # underfitting! # 2eme model: Decision Tree tree_reg = DecisionTreeRegressor() tree_reg.fit(housing_prepared, housing_label) housing_predictions = tree_reg.predict(housing_prepared) tree_mse = mean_squared_error(housing_label, housing_predictions) tree_rmse = np.sqrt(tree_mse) print(tree_rmse) # overfitting ! # Cross Validation #K-fold cross-validation scores = cross_val_score(tree_reg, housing_prepared, housing_label, scoring="neg_mean_squared_error", cv=10) tree_rmse_scores = np.sqrt(-scores) # utility function and not cost # Save your models joblib.dump(tree_reg, "treemodel.pkl") model = joblib.load("treemodel.pkl") # See where the model is wrong mat = confusion_matrix(housing) ## FINE TUNE YOUR MODELS # Grid search ## Once you selected the ifnal model, Evaluate model en test set X_test = test_set.drop("median_house_value", axis=1) y_test = test_set["median_house_value"].copy() X_test_prepared = full_pipeline.transform(X_test) # AND NOT FIT !! final_predictions = lin_reg.predict(X_test_prepared) final_mse = mean_squared_error(y_test, final_predictions) final_rmse = np.sqrt(final_mse)
from urllib.request import urlopen url = "http://olympus.realpython.org/profiles/aphrodite" page = urlopen(url) html_bytes = page.read() html = html_bytes.decode("utf-8") tag = {"title":"", "head":"", "html":"", "body":""} for i in tag: tag_startindex = html.find("<" + i + ">") + len("<" + i +">") tag_endindex = html.find("</" + i + ">") tag[i] = html[tag_startindex:tag_endindex] for i, j in tag.items(): print(i + " is " + j)
#!/usr/bin/env python # # Copyright (c) 2011 Polytechnic Institute of New York University # Author: Adrian Sai-wah Tam <adrian.sw.tam@gmail.com> # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, # INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND # FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR # OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; # OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR # OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # The views and conclusions contained in the software and documentation are # those of the authors and should not be interpreted as representing official # policies, either expressed or implied, of New York University. # # This program takes two input files: (1) a Rocketfuel format topology file and # (2) a flow file in the format of # <node> <node> <load> <begin> <end> # where the <node> is the code correspond to the topology file and the <load> # is a floating point number, <begin> and <end> are the time for this flow to # start and finish. # # The program place these flows into the network using flow-based ECMP, i.e. # each flow will only take one path, but the path is selected at random amongst # all equal-cost shortest paths. This program simulate the flows' # arrival/departure as discrete events and output the change of link loads # against time. # import getopt,sys,random,heapq ########################################################### # Global parameters topofile = 'topology.txt' # default topology file flowfile = 'flow.txt' # default flow specification file digraph = False # topology specification is a digraph #random.seed(1) # Debug use: Uncomment this line for repeatible random numbers optlist, userlist = getopt.getopt(sys.argv[1:], 't:f:dsh') for opt, optarg in optlist: if opt == '-t': topofile = optarg elif opt == '-f': flowfile = optarg elif opt == '-d': digraph = True else: # getopt will fault for other options print "Available options" print " -t file : The topology file in Rocketfuel format, default is topology.txt" print " -f file : The flow file, default is flow.txt" print " -d : Treat the topology file as digraph, i.e. each link is unidirectional" print " -h : This help message" sys.exit(1) ########################################################### # Helper functions def ReadInput(f1, f3): """ Read in a Rocketfuel format topology file, and then the flow specification. We assumed the link specification contains at least the two endpoints refered by the name of nodes. Optionally, the 3rd and 4th argument in the link specification are the length and capacity respectively. This optional part is not in the Rocketfuel file. The flow specification is in the following format: <source> <destination> <load> <begin> <end> To mean the flow from source to destination begins and ends at certain time (number of seconds since start) and it is of the size of certain load. The flow can only be routed in one path, no spliting allowed. """ print "Reading input file %s" % f1 topoFile = open(f1, "r") # Topology file nodes = [] # names of nodes links = [] # links as an ordered pair of node IDs length = [] # lengths of links capacity = [] # link capacities nodeDic = {} # reverse lookup for node ID for line in topoFile: token = line.split() if (len(token) < 2): continue if token[0] == "N": # specifying a node by its name nodeDic[token[1]] = len(nodes) - 1 nodes.append(token[1]) elif token[0] == "l": # specifying a link as a connection between two nodes e = (nodeDic[token[1]], nodeDic[token[2]]) links.append(e) length.append(1 if len(token) < 4 else token[3]) capacity.append(1 if len(token) < 5 else token[4]) if not digraph: links.append((e[1],e[0])) length.append(length[-1]) capacity.append(capacity[-1]) topoFile.close() print "Reading input file %s" % f3 flowFile = open(f3, "r") # Flow history file flows = [] # flow specs (src,dst,size,begin,end) events = [] # flow arrival/departure events (time, flowID, isArrival) for line in flowFile: token = line.split() if (len(token) != 5): continue # Not a flow specification begin, end = float(token[3]), float(token[4]) if end == begin: continue # Skip this malformed flow heapq.heappush(events, (begin, len(flows), True)) heapq.heappush(events, (end, len(flows), False)) spec = (nodeDic[token[0]], nodeDic[token[1]], float(token[2]), begin, end) flows.append(spec) flowFile.close() return nodes, links, length, capacity, flows, events class memoized(object): """ Copied from http://wiki.python.org/moin/PythonDecoratorLibrary Decorator that caches a function's return value each time it is called. If called later with the same arguments, the cached value is returned, and not re-evaluated. """ def __init__(self, func): self.func = func self.cache = {} def __call__(self, *args): try: return self.cache[args] except KeyError: value = self.func(*args) self.cache[args] = value return value except TypeError: # uncachable -- for instance, passing a list as an argument. # Better to not cache than to blow up entirely. return self.func(*args) def __repr__(self): """Return the function's docstring.""" return self.func.__doc__ def __get__(self, obj, objtype): """Support instance methods.""" return functools.partial(self.__call__, obj) @memoized def BellmanFord(t): """ Use Bellman-Ford to deduce the shortest path tree of any node to t """ d = [float('inf') for i in nodes] # Shortest distance to t n = [-1 for i in nodes] # Next hop toward t d[t] = 0 for i in range(len(nodes)-1): nochange = True for j,(u,v) in enumerate(links): if d[u] > d[v] + length[j]: nochange = False d[u] = d[v] + length[j] n[u] = v if nochange: break return n,d ########################################################### # Step 1: # Read in data nodes, links, length, capacity, flows, events = ReadInput(topofile, flowfile) ########################################################### # Step 2: # Exhaust the event list to establish/remove a flow on the network, and in # the meantime, print the link load if there is any change clock = 0.0 linkload = [0 for l in links] flowpaths = {} # Dictionary for flow:->set_of_links mapping for e,l in enumerate(linkload): # print initial link load print "%f\t%d\t%f" % (clock, e, l) while events: time, fid, arrival = heapq.heappop(events) if arrival: # Find a path for this flow on the tree generated by Bellman-Ford tree, dist = BellmanFord(flows[fid][1]) currentnode = flows[fid][0] path = [] clock = time while currentnode != flows[fid][1]: # Find a random next hop on the shortest paths neighbour = list(set(e[1] for e in links if e[0]==currentnode)) mindist = min(dist[i] for i in neighbour) minneighbour = [i for i in neighbour if dist[i] == mindist] nextnode = random.choice(minneighbour) # Then look up the link, and distribute traffic to it linkid = [i for i,e in enumerate(links) if e == (currentnode, nextnode)] path.append(linkid[0]) linkload[linkid[0]] += flows[fid][2] # Print the upated link load print "%f\t%d\t%f" % (clock, linkid[0], linkload[linkid[0]]) currentnode = nextnode # Remember the path flowpaths[fid] = path else: # Retrieve the path for this flow path = flowpaths.pop(fid) clock = time # For each link in the path, decrease the load for l in path: linkload[l] -= flows[fid][2] print "%f\t%d\t%f" % (clock, l, linkload[l]) sys.exit(1)
from turtle import* setup(800,800) pendown() seth(0) fd(150) seth(90) fd(150) seth(180) fd(150) seth(270) fd(150) done()
class Check: def __init__(self, item_name, location, email): self.item_name = item_name self.location = location self.email = email def dictify(self): return { 'item_name' : self.item_name, 'location' : self.location, 'email' : self.email } def adapt(self, li): self.item_name = li[0] self.location = li[1] self.email = li[2]
import re from datetime import timedelta from django import forms from django.db.models import Q, F from django.utils.translation import ugettext_lazy as _ from django.utils import timezone from django.contrib.postgres.search import SearchQuery, SearchRank from core.forms.widgets import (AutocompleteSelectMultiple, MultipleChoiceFilterWidget) from backers.models import Backer from geofr.models import Perimeter from geofr.forms.fields import PerimeterChoiceField from tags.models import Tag from tags.fields import TagChoiceField from aids.models import Aid AID_TYPES = ( (_('Financial aids'), ( ('grant', _('Grant')), ('loan', _('Loan')), ('recoverable_advance', _('Recoverable advance')), ('interest_subsidy', _('Interest subsidy')), )), (_('Technical and methodological aids'), ( ('guidance', _('Guidance')), ('networking', _('Networking')), ('valorisation', _('Valorisation')), )), ) class BaseAidForm(forms.ModelForm): tags = TagChoiceField( label=_('Tags'), choices=list, required=False) class Meta: widgets = { 'mobilization_steps': forms.CheckboxSelectMultiple, 'targeted_audiances': forms.CheckboxSelectMultiple, 'aid_types': forms.CheckboxSelectMultiple, 'destinations': forms.CheckboxSelectMultiple, } def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.fields['aid_types'].choices = AID_TYPES # We set the existing tags as the `choices` value so the existing # tags will be displayed in the widget all_tags = self.instance.tags if self.is_bound: if hasattr(self.data, 'getlist'): all_tags += self.data.getlist('tags') else: all_tags += self.data.get('tags', []) self.fields['tags'].choices = zip(all_tags, all_tags) custom_labels = { 'name': _('Aid title'), 'targeted_audiances': _('Who can apply to this aid?'), 'backers': _('Aid backers'), 'destinations': _('The aid is destined to…'), 'eligibility': _('Are the any other eligibility criterias?'), 'url': _('Link to a full description'), 'application_url': _('Link to an online application form'), 'contact_detail': _('Name of a contact in charge'), 'contact_email': _('E-mail address of a contact in charge'), 'contact_phone': _('Phone number of a contact in charge'), } for field, label in custom_labels.items(): self.fields[field].label = label custom_help_text = { 'tags': _('Add up to 16 keywords to describe your aid' ' (separated by ",")'), } for field, help_text in custom_help_text.items(): self.fields[field].help_text = help_text def _save_m2m(self): super()._save_m2m() self._save_tag_relations() def _save_tag_relations(self): """Updtate the m2m keys to tag objects. Tag that do not exist must be created. """ all_tag_names = self.instance.tags existing_tag_objects = Tag.objects.filter(name__in=all_tag_names) existing_tag_names = [tag.name for tag in existing_tag_objects] missing_tag_names = list(set(all_tag_names) - set(existing_tag_names)) new_tags = [Tag(name=tag) for tag in missing_tag_names] new_tag_objects = Tag.objects.bulk_create(new_tags) all_tag_objects = list(existing_tag_objects) + list(new_tag_objects) self.instance._tags_m2m.set(all_tag_objects, clear=True) class AidAdminForm(BaseAidForm): """Custom Aid edition admin form.""" class Media: js = ['admin/js/tags_autocomplete.js'] def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.fields['tags'].widget.attrs['class'] = 'admin-autocomplete' class AidSearchForm(forms.Form): """Main form for search engine.""" AID_CATEGORY_CHOICES = ( ('', ''), ('funding', _('Funding')), ('non-funding', _('Non-funding')), ) SCALES = ( (1, _('Commune')), (5, _('EPCI')), (10, _('Department')), (15, _('Region')), (20, _('France')), (25, _('Europe')), ) perimeter = PerimeterChoiceField( label=_('Perimeter'), required=False) text = forms.CharField( label=_('Text search'), required=False) # With use a multiple choice field so the filter rendering remains # consistent with the other filters recent_only = forms.MultipleChoiceField( label=_('Recent aids'), choices=( ('yes', _('Only display aids created less than 30 days ago')),), required=False, widget=MultipleChoiceFilterWidget) apply_before = forms.DateField( label=_('Apply before…'), required=False, widget=forms.TextInput( attrs={'type': 'date', 'placeholder': _('yyyy-mm-dd')})) aid_types = forms.MultipleChoiceField( label=_('Aid type'), required=False, choices=AID_TYPES, widget=MultipleChoiceFilterWidget) mobilization_step = forms.MultipleChoiceField( label=_('When to mobilize the aid?'), required=False, choices=Aid.STEPS, widget=MultipleChoiceFilterWidget) destinations = forms.MultipleChoiceField( label=_('Destinations'), required=False, choices=Aid.DESTINATIONS, widget=MultipleChoiceFilterWidget) scale = forms.MultipleChoiceField( label=_('Diffusion'), required=False, choices=SCALES, widget=MultipleChoiceFilterWidget) # This field is not related to the search, but is submitted # in views embedded through an iframe. integration = forms.CharField( required=False, widget=forms.HiddenInput) def clean_zipcode(self): zipcode = self.cleaned_data['zipcode'] if zipcode and re.match('\d{5}', zipcode) is None: msg = _('This zipcode seems invalid') raise forms.ValidationError(msg) return zipcode def filter_queryset(self, qs): """Filter querysets depending of input data.""" if not self.is_bound: return qs # Populate cleaned_data if self.errors: pass perimeter = self.cleaned_data.get('perimeter', None) if perimeter: qs = self.perimeter_filter(qs, perimeter) mobilization_steps = self.cleaned_data.get('mobilization_step', None) if mobilization_steps: qs = qs.filter(mobilization_steps__overlap=mobilization_steps) aid_types = self.cleaned_data.get('aid_types', None) if aid_types: qs = qs.filter(aid_types__overlap=aid_types) destinations = self.cleaned_data.get('destinations', None) if destinations: qs = qs.filter(destinations__overlap=destinations) scale = self.cleaned_data.get('scale', None) if scale: qs = qs.filter(perimeter__scale__in=scale) apply_before = self.cleaned_data.get('apply_before', None) if apply_before: qs = qs.filter(submission_deadline__lt=apply_before) text = self.cleaned_data.get('text', None) if text: query = SearchQuery(text, config='french') qs = qs \ .filter(search_vector=query) \ .annotate(rank=SearchRank(F('search_vector'), query)) recent_only = self.cleaned_data.get('recent_only', False) if recent_only: a_month_ago = timezone.now() - timedelta(days=30) qs = qs.filter(date_created__gte=a_month_ago.date()) return qs def order_queryset(self, qs): """Set the order value on the queryset. We scale results by perimeter scale, unless the user submitted a search query, then we sort by query relevance. """ text = self.cleaned_data.get('text', None) if text: qs = qs.order_by( '-rank', 'perimeter__scale', 'submission_deadline') else: qs = qs.order_by('perimeter__scale', 'submission_deadline') return qs def perimeter_filter(self, qs, perimeter): """Filter queryset depending on the given perimeter. When we search for a given perimeter, we must return all aids: - where the perimeter is wider and contains the searched perimeter ; - where the perimeter is smaller and contained by the search perimeter ; E.g if we search for aids in "Hérault (department), we must display all aids that are applicable to: - Hérault ; - Occitanie ; - France ; - Europe ; - M3M (and all other epcis in Hérault) ; - Montpellier (and all other communes in Hérault) ; """ # Since we only handle french aids, searching for european or # national aids will return all results if perimeter.scale in (Perimeter.TYPES.country, Perimeter.TYPES.continent): return qs # Exclude all other perimeters from the same scale. # E.g We search for aids in "Herault", exclude all aids from other # departments. q_same_scale = Q(perimeter__scale=perimeter.scale) q_different_code = ~Q(perimeter__code=perimeter.code) qs = qs.exclude(q_same_scale & q_different_code) # Exclude all perimeters that are more granular and that are not # contained in the search perimeter. # E.g we search for aids in "Hérault", exclude communes and epcis that # are not in Hérault. if perimeter.scale > Perimeter.TYPES.commune: q_smaller_scale = Q(perimeter__scale__lt=perimeter.scale) if perimeter.scale == Perimeter.TYPES.region: q_not_contained = ~Q( perimeter__regions__contains=[perimeter.code]) if perimeter.scale == Perimeter.TYPES.department: q_not_contained = ~Q( perimeter__departments__contains=[perimeter.code]) if perimeter.scale == Perimeter.TYPES.basin: # Edge case, when we search by drainage basins, don't # show aids from departments and regions, because that poorly # overlaps. qs = qs.exclude(perimeter__scale__in=( Perimeter.TYPES.department, Perimeter.TYPES.region)) q_not_contained = ~Q(perimeter__basin=perimeter.code) if perimeter.scale == Perimeter.TYPES.epci: q_not_contained = ~Q(perimeter__epci=perimeter.code) qs = qs.exclude(q_smaller_scale & q_not_contained) # Exclude all perimeters that are wider and that does not # contain our search perimeter. # E.g we search for aids in "Hérault", exclude regions that are not # Occitanie. if perimeter.regions: q_scale_region = Q(perimeter__scale=Perimeter.TYPES.region) q_different_region = ~Q(perimeter__code__in=perimeter.regions) qs = qs.exclude(q_scale_region & q_different_region) if perimeter.departments: q_scale_department = Q(perimeter__scale=Perimeter.TYPES.department) q_different_department = ~Q( perimeter__code__in=perimeter.departments) qs = qs.exclude(q_scale_department & q_different_department) if perimeter.basin: q_scale_basin = Q(perimeter__scale=Perimeter.TYPES.basin) q_different_basin = ~Q(perimeter__code=perimeter.basin) qs = qs.exclude(q_scale_basin & q_different_basin) if perimeter.epci: q_scale_epci = Q(perimeter__scale=Perimeter.TYPES.epci) q_different_epci = ~Q(perimeter__code=perimeter.epci) qs = qs.exclude(q_scale_epci & q_different_epci) return qs class AidEditForm(BaseAidForm): backers = forms.ModelMultipleChoiceField( label=_('Backers'), queryset=Backer.objects.all(), widget=AutocompleteSelectMultiple) perimeter = PerimeterChoiceField( label=_('Perimeter')) class Meta(BaseAidForm.Meta): model = Aid fields = [ 'name', 'description', 'tags', 'targeted_audiances', 'backers', 'recurrence', 'start_date', 'predeposit_date', 'submission_deadline', 'perimeter', 'aid_types', 'subvention_rate', 'mobilization_steps', 'destinations', 'eligibility', 'application_url', 'url', 'contact_detail', 'contact_email', 'contact_phone', ] widgets = { 'description': forms.Textarea(attrs={'rows': 3}), 'eligibility': forms.Textarea(attrs={'rows': 3}), 'mobilization_steps': MultipleChoiceFilterWidget, 'targeted_audiances': MultipleChoiceFilterWidget, 'aid_types': MultipleChoiceFilterWidget, 'destinations': MultipleChoiceFilterWidget, 'start_date': forms.TextInput( attrs={'type': 'date', 'placeholder': _('yyyy-mm-dd')}), 'predeposit_date': forms.TextInput( attrs={'type': 'date', 'placeholder': _('yyyy-mm-dd')}), 'submission_deadline': forms.TextInput( attrs={'type': 'date', 'placeholder': _('yyyy-mm-dd')}), }
x = float(input()) print((x % 1), "\n", int(x % 1 * 10))
# -*- coding: utf-8 -*- #十進位換算 a=int(input()) print(format(a,"X"))
# from nipype.interfaces import fsl from nipype.interfaces.fsl import (FLIRT, FAST, ConvertXFM, ImageMaths) import nibabel as nib import numpy as np from scipy.ndimage.morphology import binary_erosion as erode from nipype.pipeline import Node, Workflow from nipype.interfaces.utility import IdentityInterface, Function from nipype.interfaces.afni import Resample def get_wf_tissue_priors(name='wf_tissue_priors3'): ''' This Function gives a workflow that Resamples the tissue priors and then thresholds it at 0.5 ''' # csf_tissue_prior_path, gm_tissue_prior_path, wm_tissue_prior_path, # threshold = 0.5 wf_tissue_priors = Workflow(name=name) inputspec = Node(IdentityInterface(fields=['csf_tissue_prior_path', 'wm_tissue_prior_path', 'threshold','std2func_mat_path', 'reference_func_file_path']), name="inputspec") ''' # 'gm_tissue_prior_path', resample_tissue_prior_csf = Node(Resample(voxel_size=(3, 3, 3), resample_mode='Cu', # cubic interpolation outputtype='NIFTI'), name="resample_tissue_prior_csf") # resample_tissue_prior_gm = Node(Resample(voxel_size=(3, 3, 3), resample_mode='Cu', # cubic interpolation # outputtype='NIFTI'), # name="resample_tissue_prior_gm") resample_tissue_prior_wm = Node(Resample(voxel_size=(3, 3, 3), resample_mode='Cu', # cubic interpolation outputtype='NIFTI'), name="resample_tissue_prior_wm") wf_tissue_priors.connect(inputspec, 'csf_tissue_prior_path', resample_tissue_prior_csf, 'in_file' ) # wf_tissue_priors.connect(inputspec, 'gm_tissue_prior_path', resample_tissue_prior_gm, 'in_file' ) wf_tissue_priors.connect(inputspec, 'wm_tissue_prior_path', resample_tissue_prior_wm, 'in_file' ) ''' # # Invert the func2anat matrix to get anat2func # inv_mat = Node(ConvertXFM(invert_xfm=True), name='inv_mat') # wf_tissue_priors.connect(inputspec, 'func2anat_mat_path', inv_mat, 'in_file') # Transform the tissue priors to the functional space using the inverse matrix std2func_xform_csf_prior = Node(FLIRT(output_type='NIFTI', apply_xfm=True, interp='sinc'), name='std2func_xform_csf_prior') wf_tissue_priors.connect(inputspec, 'reference_func_file_path', std2func_xform_csf_prior, 'reference') wf_tissue_priors.connect(inputspec, 'std2func_mat_path', std2func_xform_csf_prior, 'in_matrix_file') std2func_xform_wm_prior = Node(FLIRT(output_type='NIFTI', apply_xfm=True, interp='sinc'), name='std2func_xform_wm_prior') wf_tissue_priors.connect(inputspec, 'reference_func_file_path', std2func_xform_wm_prior, 'reference') wf_tissue_priors.connect(inputspec, 'std2func_mat_path', std2func_xform_wm_prior, 'in_matrix_file') # Transformed the priors # Get the input in_file(s) of the std2func_xform_csf and std2func_xform_wm from the old workspace wf_tissue_priors.connect(inputspec, 'csf_tissue_prior_path', std2func_xform_csf_prior, 'in_file') wf_tissue_priors.connect(inputspec, 'wm_tissue_prior_path', std2func_xform_wm_prior, 'in_file') # Threshold def get_opstring(threshold, tissue_type): if tissue_type == 'csf': max = 216 # 216 is the highest intensity of the resampled afni output for CSF elif tissue_type == 'wm': max = 253 # 253 is the highest intensity of the resampled afni output for WM threshold = int(threshold * max) op = '-thr '+str(threshold)+' -bin' return op # ----- CSF ------ threshold_csf = Node(interface=ImageMaths(suffix='_thresh'), name='threshold_csf') wf_tissue_priors.connect(inputspec, ('threshold', get_opstring, 'csf'), threshold_csf, 'op_string' ) wf_tissue_priors.connect(std2func_xform_csf_prior, 'out_file', threshold_csf, 'in_file') # ------- GM -------- # threshold_gm = Node(interface=ImageMaths(suffix='_thresh'), # name='threshold_gm') # wf_tissue_priors.connect(inputspec, ('threshold', get_opstring), threshold_gm, 'op_string' ) # wf_tissue_priors.connect(resample_tissue_prior_gm, 'out_file', threshold_gm, 'in_file') # -------- WM -------- threshold_wm = Node(interface=ImageMaths(suffix='_thresh'), name='threshold_wm') wf_tissue_priors.connect(inputspec, ('threshold', get_opstring, 'wm'), threshold_wm, 'op_string' ) wf_tissue_priors.connect(std2func_xform_wm_prior, 'out_file', threshold_wm, 'in_file') # ------------------- outputspec = Node(IdentityInterface(fields=['csf_tissue_prior_path', 'wm_tissue_prior_path', 'threshold']), name="outputspec") # , 'gm_tissue_prior_path' wf_tissue_priors.connect(threshold_csf, 'out_file', outputspec, 'csf_tissue_prior_path') # wf_tissue_priors.connect(threshold_gm, 'out_file', outputspec, 'gm_tissue_prior_path') wf_tissue_priors.connect(threshold_wm, 'out_file', outputspec, 'wm_tissue_prior_path') return wf_tissue_priors if __name__ == "__main__": tissue_priors = get_wf_tissue_priors() tissue_priors.inputs.inputspec.csf_tissue_prior_path = '/mnt/project1/home1/varunk/fMRI/Autism-Connectome-Analysis/tissuepriors/avg152T1_csf.nii.gz' # tissue_priors.inputs.inputspec.gm_tissue_prior_path = '/mnt/project1/home1/varunk/fMRI/Autism-Connectome-Analysis/tissuepriors/avg152T1_brain.nii.gz' tissue_priors.inputs.inputspec.wm_tissue_prior_path = '/mnt/project1/home1/varunk/fMRI/Autism-Connectome-Analysis/tissuepriors/avg152T1_white.nii.gz' tissue_priors.inputs.inputspec.threshold = 0.5 # tissue_priors.inputs.inputspec.resampled_anat_file_path = \ # '/mnt/project1/home1/varunk/fMRI/testScripts/_subject_id_0050002/resample_anat/sub-0050002_T1w_brain_resample.nii' tissue_priors.inputs.inputspec.reference_func_file_path = \ '/mnt/project1/home1/varunk/fMRI/testScripts/func_subject_id_0050002/applyMask/sub-0050002_task-rest_run-1_bold_roi_st_mcf.nii_brain.nii.gz' tissue_priors.inputs.inputspec.std2func_mat_path = \ '/mnt/project1/home1/varunk/fMRI/results/resultsABIDE1/preprocess/'+\ 'motion_correction_bet/coreg_reg/atlas_resize_reg_directory/_subject_id_0050002/'+\ 'std2func_xform/fullbrain_atlas_thr0-2mm_resample_flirt.mat' tissue_priors.base_dir = 'results/' TEMP_DIR_FOR_STORAGE = 'crash_files/' tissue_priors.config = {"execution": {"crashdump_dir": TEMP_DIR_FOR_STORAGE}} tissue_priors.write_graph(graph2use='flat', format='png', simple_form=True) out = tissue_priors.run()
from django.conf import settings from django.shortcuts import redirect from django.urls import reverse from . import views as user_views from django.core.cache import cache from datetime import datetime from django.contrib import auth import time from django.contrib import messages from django.contrib.auth import logout from django.contrib.auth.views import redirect_to_login EXEMPT_URLS = [reverse(settings.LOGIN_URL)] if hasattr(settings, 'EXEMPT_URLS'): EXEMPT_URLS += [reverse(url) for url in settings.EXEMPT_URLS] class LoginRequiredMiddleware: def __init__(self, get_ressponse): self.get_ressponse = get_ressponse def __call__(self,request): response = self.get_ressponse(request) return response def process_view(self, request, view_func, view_args, view_kwargs): assert hasattr(request,'user') path = request.path_info url_is_exempt = any(url == path for url in EXEMPT_URLS) if request.user.is_authenticated and url_is_exempt: return redirect('users-home') try: from django.utils.deprecation import MiddlewareMixin except ImportError: MiddlewareMixin = object SESSION_TIMEOUT_KEY = "_session_init_timestamp_" class SessionTimeoutMiddleware(MiddlewareMixin): def process_request(self, request): if not hasattr(request, "session") or request.session.is_empty(): return init_time = request.session.setdefault(SESSION_TIMEOUT_KEY, time.time()) expire_seconds = getattr( settings, "SESSION_EXPIRE_SECONDS", settings.SESSION_COOKIE_AGE ) session_is_expired = time.time() - init_time > expire_seconds if session_is_expired: logout(request) request.session.flush() messages.info(request, "You have been logged out due to inactivity") return redirect_to_login(next=request.path) expire_since_last_activity = getattr( settings, "SESSION_EXPIRE_AFTER_LAST_ACTIVITY", True ) grace_period = getattr( settings, "SESSION_EXPIRE_AFTER_LAST_ACTIVITY_GRACE_PERIOD", 1 ) if expire_since_last_activity and time.time() - init_time > grace_period: request.session[SESSION_TIMEOUT_KEY] = time.time()
from operator import truediv def mean(arr): return truediv(sum(arr), len(arr)) def get_mean(arr, x, y): if min(x, y) < 2 or max(x, y) > len(arr): return -1 return truediv(mean(arr[:x]) + mean(arr[-y:]), 2) # # Python 3 # from statistics import mean # # # def get_mean(arr, x, y): # if min(x, y) < 2 or max(x, y) > len(arr): # return -1 # return (mean(arr[:x]) + mean(arr[-y:])) / 2
################################################################################ # \file SConstruct # \brief The SCons master build script for the persistent rnn kernels. ################################################################################ import os def mkdir(name): if not os.path.isdir(name): os.mkdir(name) if ARGUMENTS.get('mode', 'debug') == 'release': mkdir('.release_build') SConscript('SConscript', variant_dir='.release_build', duplicate=0, exports={'mode':'release'}) else: mkdir('.debug_build') SConscript('SConscript', variant_dir='.debug_build', duplicate=0, exports={'mode':'debug'})
import bitmex import settings as s client = bitmex.bitmex(api_key=s.API_KEY, api_secret=s.API_SECRET) data = client.Trade.Trade_getBucketed( binSize = '5m', symbol='XBTUSD', count=100, reverse=True ).result()
# Generated by Django 3.1.7 on 2021-03-25 14:02 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('audio', '0001_initial'), ] operations = [ migrations.AlterModelOptions( name='audiobook', options={'verbose_name': 'Audio Book', 'verbose_name_plural': 'Audio Books'}, ), migrations.AlterModelOptions( name='podcast', options={'verbose_name': 'Podcast', 'verbose_name_plural': 'Podcasts'}, ), migrations.AlterModelOptions( name='song', options={'verbose_name': 'Song', 'verbose_name_plural': 'Songs'}, ), ]
# -*- coding: utf-8 -*- """ Created on Wed Sep 20 15:52:06 2017 @author: Diabetes.co.uk """ #this module need to be used at the start, it will automatically extract all of the #entities and nouns of the questions and answer, from the question and answers with class file, #and append them to create the sampledatabsecsv file # #parsing the first sentence of the answer and store it as a dataframe #this step can be omitted once we have a database that is annotated, and their features extracted. #then it can be a sql query instead of a python query #but this can be done using python, as the module can initiate by loading the database as a dataframe locally. #the pograms below will be focusing on extracting the adjectives and nouns and entities, and use those as search and match. import pandas as pd import nltk import os import sys os.chdir(os.path.dirname(sys.argv[0])) import functions_for_extracting_pronouns_and_entities_using_api as extract ################################################################ ##Parsing the 1st sentence of the answer and extracting the adjectives and nouns ################################################################ Questions = pd.read_csv('CSVfiles\\QuestionsWithAnswersAndClassCSV.csv', index_col = 'ID', encoding = 'utf-8') Answers = Questions['ANSWER'] Questionsonly = Questions['QUESTION'] firstsent = [] for row in Answers: results = nltk.sent_tokenize(row) firstsent.append(results[0].lower()) Questions['Answerfirstsent'] = firstsent #Extracting the adjectives, nouns, named entities of the sentences and storing it in new columns: AnswerAdjectives = [] AnswerNouns = [] AnswerEntities = [] for rows in firstsent: tokens1 = extract.get_tokens(rows) aNOUN = extract.Nounswords(tokens1) AnswerNouns.append(aNOUN) #Adjectives aADJECTIVE = extract.Adjectivewords(tokens1) AnswerAdjectives.append(aADJECTIVE) #Named entities named_entities1 = extract.entities_name1(rows) AnswerEntities.append(named_entities1) QuestionsAdjectives = [] QuestionsNouns = [] QuestionsEntities = [] for rows in Questionsonly: tokens1 = extract.get_tokens(rows) aNOUN = extract.Nounswords(tokens1) QuestionsNouns.append(aNOUN) #Adjectives aADJECTIVE = extract.Adjectivewords(tokens1) QuestionsAdjectives.append(aADJECTIVE) #Named entities named_entities1 = extract.entities_name1(rows) QuestionsEntities.append(named_entities1) Questions['QuestionsAdjectives'] = QuestionsAdjectives Questions['QuestionsNouns'] = QuestionsNouns Questions['QuestionsEntities'] = QuestionsEntities Questions['AnswerAdjectives'] = AnswerAdjectives Questions['AnswerNouns'] = AnswerNouns Questions['AnswerEntities'] = AnswerEntities Questions.to_csv('CSVfiles\\sampledatabase.csv', encoding = 'utf-8') #this part will take a while, so ill omit those part of the code, and store and load the result as another csv file #can be implemented to parse a new annotated dataset
# ############################################################################ # # # # ::: :::::::: # # config.py :+: :+: :+: # # +:+ +:+ +:+ # # By: charles <me@cacharle.xyz> +#+ +:+ +#+ # # +#+#+#+#+#+ +#+ # # Created: 2020/09/27 11:05:38 by charles #+# #+# # # Updated: 2020/10/01 10:15:26 by cacharle ### ########.fr # # # # ############################################################################ # import os # Location of your project directory PROJECT_PATH = "../philosophers" # Build your project before the test if set to True BUILD_BEFORE = True # Command to run before the test to build your project # `{path}` is replaced by the philosophers directory (e.g `../philo_one` `../philo_two`) BUILD_CMD = "make --no-print-directory -C {path}" # Timeout for non infinite test TIMEOUT = 1.0 # Timeout for error test TIMEOUT_ERROR = 0.2 # Destination of the full summary of failed tests RESULT_FILE = "result.log" # Pager command PAGER_CMD = ["less"] ################################################################################ # Do not edit ################################################################################ PHILO_PATHS = [ os.path.join(PROJECT_PATH, "philo_one"), os.path.join(PROJECT_PATH, "philo_two"), os.path.join(PROJECT_PATH, "philo_three") ] PHILO_EXEC_PATHS = [ os.path.join(PHILO_PATHS[0], "philo_one"), os.path.join(PHILO_PATHS[1], "philo_two"), os.path.join(PHILO_PATHS[2], "philo_three") ] INT_MIN = -2147483648 INT_MAX = 2147483647 UINT_MAX = 4294967295 LONG_MIN = -9223372036854775808 LONG_MAX = 9223372036854775807 ULONG_MAX = 18446744073709551615
import sys input = sys.stdin.readline numbagoose = int(input()) point = (0, 0) dist = -1 for _ in range(numbagoose): x, y = [int(i) for i in input().split()] if (x ** 2 + y ** 2) ** 0.5 > dist: dist = (x ** 2 + y ** 2) ** 0.5 point = (x, y) print(point[0], point[1])
import poplib serv = poplib.POP3_SSL( 'tamdil.iitg.ernet.in' , '995' ) # replace tamdil with your IITG Webmail server serv.user( 'username' ) serv.pass_( 'password' )
''' Created on Dec 8, 2016 @author: micro ''' from skimage import feature
### python基础语法 ## 数据类型与变量 # print('I\'m ok.') # print('I\'m learning\nPython.') # print('\\\n\\') # print('\\\t\\') # # 用r''表示''内部的字符串默认不转义 # print(r'\\\t\\') # # 用'''...'''的格式表示多行内容 # print('''line1 # line2 # line3''') # print(True) # print(False) # print(3>2) # print(2<1) # # # 布尔值可以用and、or和not运算。 # # and运算是与运算,只有所有都为True,and运算结果才是True: # print(True and True) # print(True and False) # print(False and False) # # or运算是或运算,只要其中有一个为True,or运算结果就是True # print(True or True) # print(True or False) # print(False or False) # # not运算是非运算,它是一个单目运算符,把True变成False,False变成True # print(not True) # print(not False) # print(not 3>2) # age = 1 # if age >= 18: # print('adult') # else: # print('teenager') # # PI=3.14159265359 # print('PI=',PI) # print("10/3=",10/3) # print("10//3=",10//3) # print("9/3=",9/3) # print("9//3=",9//3) # print("9%3=",9%3) # print("10%3=",10%3) ## 字符串与编码 # print("囊中羞涩") # print(ord('囊')) # print(chr(22218)) # print(ord('A')) # print(chr(65)) # print("\u4e2d\u6587") # 中文 # print('ABC'.encode('ascii')) # print(b'ABC'.decode('ascii')) # print('中文'.encode('gb2312')) # print(b'\xd6\xd0\xce\xc4'.decode('gb2312')) # print('中文'.encode('UTF-8')) # # 如果bytes中只有一小部分无效的字节,可以传入errors='ignore'忽略错误的字节 # print(b'\xe4\xb8\xad\xe6\x96'.decode('UTF-8',errors='ignore')) #计算str包含多少个字符,可以用len()函数 # lens = len('ABC') # print(lens) # lens = len('中文') # print(lens) # lens = len('囊中羞涩') # print(lens) ## 占位符 # %d 整数 # %f 浮点数 # %s 字符串 # %x 十六进制整数 # print('Hello, %s' % 'world') # print('Hi, %s, you have $%d.' % ('Michael', 1000000)) # print('%2d-%02d' % (3, 1)) # print('%.2f' % 3.1415926) # test # s1=int(input('小明上学期期末成绩为:')) # s2=int(input('小明本学期期末成绩为:')) # r=((s2-s1)/s1*100) # print('小明本次成绩变化为 %.1f%%'%r) content = u'\xF0\xBC\x88\x99\xE4\xBB'; content = content.encode("latin1").decode("gbk"); print(content); content = u'\xF0\xB8\xA4\xA9\xE7\x94'; content = content.encode("latin1").decode("gbk"); print(content);
import uuid from django.db import models from django.utils.safestring import mark_safe from django.utils.translation import gettext_lazy as _ from ..common.models import Article from ..utils import upload_and_rename def upload_and_rename_product_detail(instance, filename): return upload_and_rename(instance.pk, filename) class Category(models.Model): id = models.AutoField(primary_key=True) create_at = models.DateTimeField(_('创建时间'), auto_now_add=True) update_at = models.DateTimeField(_('修改时间'), auto_now=True) name = models.CharField(_("名称"), max_length=80, unique=True) def __str__(self): return self.name class Meta: verbose_name = _('产品类型') verbose_name_plural = _('产品类型') class Product(models.Model): id = models.AutoField(primary_key=True) create_at = models.DateTimeField(_('创建时间'), auto_now_add=True) update_at = models.DateTimeField(_('修改时间'), auto_now=True) category = models.ForeignKey(Category, verbose_name=_('产品类型'), related_name='products', on_delete=models.SET_NULL, null=True) name = models.CharField(_("名称"), max_length=80) short_description = models.TextField(_('简介'), null=True, blank=True) def __str__(self): return '{}-{}'.format(self.category, self.name) class Meta: verbose_name = _('产品') verbose_name_plural = _('产品') class ProductPicture(models.Model): uuid = models.UUIDField(primary_key=True, default=uuid.uuid4, editable=False) create_at = models.DateTimeField(_('创建时间'), auto_now_add=True) update_at = models.DateTimeField(_('修改时间'), auto_now=True) product = models.ForeignKey(Product, verbose_name='产品', related_name='images', on_delete=models.SET_NULL, null=True) image = models.ImageField(upload_to=upload_and_rename_product_detail, verbose_name=_('图片')) description = models.CharField(_('描述'), max_length=80, null=True, blank=True) featured = models.BooleanField(_('是否首页展示'), default=False) cover = models.BooleanField(_('是否作为封面'), default=False) class Meta: verbose_name = _('产品图片') verbose_name_plural = _('产品图片') def image_tag(self): return mark_safe('<img src="%s" width="150" height="150" />' % (self.image.url)) image_tag.short_description = '图片预览' class ProductDetailedDescription(models.Model): id = models.AutoField(primary_key=True) product = models.OneToOneField(Product, on_delete=models.CASCADE) article = models.OneToOneField(Article, on_delete=models.CASCADE, null=True) class Meta: verbose_name = _('产品详情描述') verbose_name_plural = _('产品详情描述')
h = open('Day1/numbers.txt', 'r') # Reading from the file content = h.readlines() foundSum = False # Iterating through the content of the file for x in range(0, len(content)): for y in range(x+1, len(content)): sum2020 = int(content[x]) + int(content[y]) if sum2020 == 2020: foundSum = True print('First number: %d, second number: %d' % (int(content[x]), int(content[y]))) break if(foundSum): break h.close()
#!/usr/bin/python import sys, re pattern_reg = re.compile('^.+:(\d+):(\d+): (error|warning):') first_error = -1; msg_error = ""; first_warning = -1; msg_warning = ""; for line in sys.stdin: line = line.rstrip('\n') m = re.search(pattern_reg, line) if (m): # in the pattern, each set of parentheses represents a "group" line_number = int(m.group(1)) err = m.group(3) if err == "error" : if first_error < 0 or line_number < first_error : first_error = line_number msg_error = line else : if first_warning < 0 or line_number < first_warning : first_warning = line_number msg_warning = line if first_error >= 0 : print(msg_error) elif first_warning >= 0 : print(msg_warning) else : print("")
import os import pandas as pd from rdkit.Chem import Descriptors import rdkit.Chem as Chem import matplotlib.pyplot as plt import seaborn as sns def Nrot(row): """ Get number of rotatble bonds Parameters ---------- row: row of pandas.DataFrame containing SMILES field Returns ------- N_rot: int Number of rotatable bonds """ m = Chem.MolFromSmiles(row.SMILES) N_rot = Descriptors.NumRotatableBonds(m) return N_rot def heavy_atoms(row): """ Get number of Heavy atoms Parameters ---------- row: row of pandas.DataFrame containing SMILES field Returns ------- heavy_atom_count: int Number of heavy atoms """ m = Chem.MolFromSmiles(row.SMILES) heavy_atom_count = Descriptors.HeavyAtomCount(m) return heavy_atom_count def clogP(row): """ Get number of Heavy atoms Parameters ---------- row: row of pandas.DataFrame containing SMILES field Returns ------- cLogP: float Calculated partition coefficient of n-octonal and water """ m = Chem.MolFromSmiles(row.SMILES) clogp = Descriptors.MolLogP(m) return clogp def TPSA(row): """Get Total polar surface area Parameters ---------- row: row of pandas.DataFrame containing SMILES field Returns ------- total_polar_surface_area: float total polar surface area """ m = Chem.MolFromSmiles(row.SMILES) total_polar_surface_area = Descriptors.TPSA(m) return total_polar_surface_area def NDon(row): """Get Number of H-Bond Donors Parameters ---------- row: row of pandas.DataFrame containing SMILES field Returns ------- donors: int Number of Donors """ m = Chem.MolFromSmiles(row.SMILES) donors = Descriptors.NumHDonors(m) return donors def NDon(row): """Get Number of H-Bond Donors Parameters ---------- row: row of pandas.DataFrame containing SMILES field Returns ------- donors: int Number of Donors """ m = Chem.MolFromSmiles(row.SMILES) donors = Descriptors.NumHDonors(m) return donors def NAcc(row): """Get Number of H-Bond Acceptors Parameters ---------- row: row of pandas.DataFrame containing SMILES field Returns ------- Acceptors: int Number of Acceptors """ m = Chem.MolFromSmiles(row.SMILES) acceptors = Descriptors.NumHAcceptors(m) return acceptors def Fsp3(row): """Get Fraction of carbons that are sp3 Parameters ---------- row: row of pandas.DataFrame containing SMILES field Returns ------- FSP3: Fraction of carbons that are sp3 """ m = Chem.MolFromSmiles(row.SMILES) FSP3 = Descriptors.FractionCSP3(m) return FSP3 def add_properties_to_df(df): """ Add predicted properties to DataFrame with SMILES Adds new column for each of: N_rot: Number of rotatable bonds HAC: Heavy atom count cLogP: Calculated log partition coefficent TSPA: Total polar surface area NDON: number of Hbond donors NAcc: Number of Hbond Acceptors Fsp3: Fraction of sp3 carbons """ df['N_rot'] = df.apply(Nrot, axis=1) df['HAC'] = df.apply(heavy_atoms, axis=1) df['cLogP'] = df.apply(clogP, axis =1) df['TSPA'] = df.apply(TPSA, axis=1) df['NDon'] = df.apply(NDon, axis=1) df['NAcc'] = df.apply(NAcc, axis=1) df['Fsp3'] = df.apply(Fsp3, axis=1) return df def plot_histograms(df, library_name): properties = ['N_rot', 'HAC', 'cLogP', 'TSPA', 'NDon', 'NAcc', 'Fsp3'] for prop in properties: df.plot(y=prop, kind='hist', bins=40) plt.xlabel('{}'.format(prop)) plt.title('{}'.format(library_name)) plt.savefig('Output/{}_{}.png'.format(prop, library_name), dpi=300) plt.close() def plot_multiple_libraries(df_dict): properties = ['N_rot', 'HAC', 'cLogP', 'TSPA', 'NDon', 'NAcc', 'Fsp3'] for prop in properties: f, axes = plt.subplots(3, 1, figsize=(7, 7), sharex=True) sns.distplot(df_dict['FragLite'][prop], kde=False, ax=axes[0],label='FragLite') axes[0].set_title('FragLite') sns.distplot(df_dict['DSiP'][prop], kde=False, ax=axes[1], label='DSiP') axes[1].set_title('DSiP') sns.distplot(df_dict['Minifrag'][prop], kde=False, ax=axes[2], label='MiniFrag') axes[2].set_title('MiniFrag') plt.subplots_adjust(hspace=0.3) plt.xlabel('{}'.format(prop)) plt.savefig('Output/{}_all.png'.format(prop), dpi=300) plt.close() if __name__ == '__main__': dspi_df = pd.read_excel('DSPI.xlsx') dspi_df = add_properties_to_df(dspi_df) fraglite_df = pd.read_excel('ECHO_FragLiteSET1_EG.xlsx') fraglite_df = add_properties_to_df(fraglite_df) minifrag_df = pd.read_excel('MiniFrag.xlsx') minifrag_df = add_properties_to_df(minifrag_df) os.mkdir("Output") df_dict = {"DSiP":dspi_df, "FragLite":fraglite_df, "Minifrag":minifrag_df} plot_multiple_libraries(df_dict) print("DPSI") print(dspi_df.mean()) print(dspi_df.SMILES.nunique()) print("_-------------------------") plot_histograms(dspi_df,"DSPI") dspi_df.to_excel("Output/DSPI_with_properties.xlsx") print("MiniFrag") print(minifrag_df.mean()) print(minifrag_df.SMILES.nunique()) print("_-------------------------") plot_histograms(minifrag_df,"MiniFrag") print(minifrag_df) minifrag_df.to_excel("Output/minifrag_with_properties.xlsx")
# # spectral_sequence_class.py # import numpy as np from multiprocessing import Pool from functools import partial from ..simplicial_complexes.differentials import complex_differentials from ..gauss_mod_p.gauss_mod_p import gauss_col_rad, gauss_barcodes from ..persistence_algebra.barcode_bases import barcode_basis from .local_chains_class import local_chains class spectral_sequence(object): """Space and methods for Mayer-Vietoris spectral sequences Parameters ---------- nerve : :obj:`list(Numpy Array)` Simplicial complex storing the nerve of the covering. This is stored as a list, where the ith entry contains a :obj:`Numpy Array` storing all the ith simplices; a simplex for each row. nerve_point_cloud : :obj:`list(list(Numpy Array))` Point clouds indexed by nerve of the cover, see :mod:`permaviss.covers.cubical_cover` points_IN : :obj:`list(list(Numpy Array))` Point Identification Numbers (IN) indexed by nerve of the cover, see :mod:`permaviss.covers.cubical_cover` max_dim : int Maximum dimension of simplices. max_r : float Maximum persistence radius. no_pages : int Number of pages of the spectral sequence p : int(prime) The prime number so that our computations are mod p Attributes ---------- nerve, nerve_point_cloud, points_IN, max_dim, max_r, no_pages, p : as described above nerve_differentials : :obj:`list(Numpy Array)` Differentials of Nerve. Used for computing Cech Complex. no_rows, no_columns : int, int Number of rows and columns in each page nerve_differentials : :obj:`list(Numpy Array)` List storing the differentials of the Nerve. The ith entry stores the matrix of the ith differential. subcomplexes : :obj:`list(list(list(Numpy Array)))` List storing the simplicial complex on each cover element. For integers `n_dim`, `k` and `dim` the variable `subcomplexes[n_dim][k][dim]` stores the `dim`-simplices on the cover indexed by the `k` simplex of dimension `n_dim` in the nerve. zero_diff : :obj:`list(list(list(Numpy Array)))` List storing the vertical differential matrices on the 0 page of the spectral sequence. For integers `n_dim`, `k` and `dim` the variable `zero_diff[n_dim][k][dim]` stores the `dim` differential of the complex on the cover indexed by the `k` simplex of dimension `n_dim` in the nerve. cycle_dimensions : :obj:`list(list(list(int)))` List storing the number of bars on each local persistent homology. Given two integers `n_dim` and `dim`, the variable `cycle_dimensions[n_dim][dim]` contains a list where each entry corresponds to an `n_dim` simplex in the nerve. For each such entry, we store the number of nontrivial persistent homology classes of dimension `dim` in the corresponding cover. Hom : :obj:`list(...(list(barcode_basis)))` Homology for each page of the spectral sequence. Given three integers which we denote `n_dim`, `nerv_spx` and `deg` we have that `Hom[0][n_dim][nerv_spx][deg]` stores a :obj:`barcode_basis` with the `deg`-persistent homology of the covering indexed by `nerve[n_dim][nerv_spx]`. All these store the homology on the `0` page of the spectral sequence. Additionally, for integers `k > 0`, `n_dim` and `deg`, we store in `Hom[k][n_dim][deg]` the :obj:`barcode_basis` for the homology on the `(deg, n_dim)` entry in the `k` page of the spectral sequence. Im : :obj:`list(...(list(barcode_basis)))` Image for each page of the spectral sequence. Given three integers which we denote `n_dim`, `nerv_spx` and `deg` we have that `Im[0][n_dim][nerv_spx][deg]` stores a :obj:`barcode_basis` for the image of the `deg+1`-differential of the covering indexed by `nerve[n_dim][nerv_spx]`. All these store the images on the `0` page of the spectral sequence. Additionally, for integers `k > 0`, `n_dim` and `deg`, we store in `Im[k][n_dim][deg]` the :obj:`barcode_basis` for the image on the `(deg, n_dim)` entry in the `k` page of the spectral sequence. PreIm : :obj:`list(...(list(Numpy Array)))` Preimages for each page of the spectral sequence. Given three integers which we denote `n_dim`, `nerv_spx` and `deg` we have that `PreIm[0][n_dim][nerv_spx][deg]` stores a :obj:`Numpy Array` for the Preimage of the `deg+1`-differential of the covering indexed by `nerve[n_dim][nerv_spx]`. Additionally, for integers `k > 0`, `n_dim` and `deg`, we store in `PreIm[k][n_dim][deg]` a :obj:`Numpy Array` for the preimages of the differential images in the `(deg, n_dim)` entry in the `k` page of the spectral sequence. tot_complex_reps : :obj:`list(list(*))` The asterisc `*` on the type can be either [] or :obj:`list(Numpy Array)`. This is used for storing complex representatives for the cycles. page_dim_matrix : :obj:`Numpy Array(no_pages+1, max_dim, no_columns)` Array storing the dimensions of the entries in each page. Notice that the order in which we store columns and rows differs from all the previous attributes. persistent_homology : :obj:`list(barcode_basis)` List storing the persistent homology generated by the spectral sequence. The `i` entry contains the `i` dimensional persistent homology. order_diagonal_basis : `list` This intends to store the original order of `persistent_homology` before applying the standard order. extensions : :obj:`list(list(list(Numpy Array)))` Nested lists, where the first two indices are for the column and row. The last index indicates the corresponding extension matrix. Notes ----- The indexing on the 0 page is different from that of the next pages. This is because we do not want to store all the 0 page information on the same place. """ def __init__(self, nerve, nerve_point_cloud, points_IN, max_dim, max_r, no_pages, p): """Construction method """ # dimensions of spectral sequence self.no_pages = no_pages self.no_rows = max_dim self.no_columns = len(nerve) self.max_r = max_r self.p = p local_chains.p = p # add nerve_point_cloud to spectral_sequence info self.nerve_point_cloud = nerve_point_cloud # add points IN to support Cech Differential self.points_IN = points_IN # add nerve and compute nerve differentials self.nerve = nerve # count number of simplices in nerve self.nerve_spx_number = [] self.nerve_spx_number.append(self.nerve[0]) for nerve_simplices in nerve[1:self.no_columns]: self.nerve_spx_number.append(np.size(nerve_simplices, 0)) # end for self.nerve_spx_number self.nerve_differentials = complex_differentials(nerve, p) # list containing barcode bases for Hom, Im and PreIm # Hom and Im go through all pages, whereas # PreIm is only contained in the 0 page self.Hom = [[]] self.Im = [[]] self.PreIm = [[]] self.subcomplexes = [] self.zero_diff = [] self.cycle_dimensions = [] self.first_page_barcodes = [] # vectors that translate local indices to global self.tot_complex_reps = [] # higher page representatives self.Hom_reps = [[]] self.Im_reps = [[]] # store extension matrices self.extensions = [] for n_dim in range(len(nerve)): self.Hom[0].append([]) self.Im[0].append([]) self.PreIm[0].append([]) self.subcomplexes.append([]) self.zero_diff.append([]) self.cycle_dimensions.append([]) self.first_page_barcodes.append([]) self.tot_complex_reps.append([]) self.extensions.append([]) for deg in range(self.no_rows): self.first_page_barcodes[n_dim].append([]) self.tot_complex_reps[n_dim].append([]) self.extensions[n_dim].append([]) # make lists to store information in higher pages for k in range(1, no_pages): self.Hom.append([]) self.Im.append([]) self.PreIm.append([]) self.Hom_reps.append([]) self.Im_reps.append([]) for n_dim in range(self.no_columns): self.Hom[k].append([]) self.Im[k].append([]) self.PreIm[k].append([]) self.Hom_reps[k].append([[]]) self.Im_reps[k].append([[]]) for deg in range(self.no_rows): self.Hom[k][n_dim].append(barcode_basis([])) self.Im[k][n_dim].append([]) self.PreIm[k][n_dim].append([]) self.Hom_reps[k][n_dim].append([]) self.Im_reps[k][n_dim].append([]) # save space for dimension matrices for all pages # the order of variables is for printing the spectral sequence self.page_dim_matrix = np.zeros((no_pages+1, max_dim, self.no_columns)).astype(int) # define persistent homology and order of diagonal basis self.persistent_homology = [] self.order_diagonal_basis = [] ########################################################################### # add content to first page def add_output_first(self, output, n_dim): """Stores the 0 page data of `n_dim` column after it has been computed in parallel by `multiprocessing.pool` Parameters ---------- output : :obj:`list` Result after using `multiprocessing.pool` on :meth:`..local_persistent_homology` n_dim : int Column of `0`-page whose data has been computed. """ self.subcomplexes[n_dim] = [it[0] for it in output] self.zero_diff[n_dim] = [it[1] for it in output] self.Hom[0][n_dim] = [it[2] for it in output] self.Im[0][n_dim] = [it[3] for it in output] self.PreIm[0][n_dim] = [it[4] for it in output] # check that the level of intersection is not empty. if len(self.Hom[0][n_dim]) > 0: for deg in range(self.no_rows): no_cycles = 0 # cumulative dimensions self.cycle_dimensions[n_dim].append( np.zeros(self.nerve_spx_number[n_dim]+1).astype(int)) for k in range(self.nerve_spx_number[n_dim]): # Generate page dim matrix and local_coordinates info cycles_in_cover = self.Hom[0][n_dim][k][deg].dim no_cycles += cycles_in_cover self.cycle_dimensions[n_dim][deg][k] = no_cycles # end for self.page_dim_matrix[1, deg, n_dim] = no_cycles # put together first page barcodes if no_cycles == 0: self.first_page_barcodes[n_dim][deg] = [] else: self.first_page_barcodes[n_dim][deg] = np.zeros(( no_cycles, 2)) prev = 0 for k in range(self.nerve_spx_number[n_dim]): # Generate page dim matrix and local_coordinates info next = self.cycle_dimensions[n_dim][deg][k] if prev < next: self.first_page_barcodes[n_dim][deg][ prev:next] = self.Hom[0][n_dim][k][deg].barcode # end if prev = next # end for # end else # end for # end if ########################################################################### # self.first_differential(self, n_dim, deg): def first_differential(self, n_dim, deg): """ Compute differential on first page (n_dim, deg) --> (n_dim-1, deg) Parameters ---------- n_dim, deg : int, int Differential domain position on first page. Returns ------- Betas : np.array Coefficients of image of first page differentials. The image of each class from (n_dim, deg) is given as a row. """ # handle trivial cases if self.page_dim_matrix[1, deg, n_dim] == 0: return np.array([]) # generate chains for sending to cech_diff_and_lift domain_chains = local_chains(self.nerve_spx_number[n_dim]) # compute array of initial radii R = np.zeros(self.page_dim_matrix[1, deg, n_dim]) # birth radii and localized_coordinates for classes prev = 0 for nerve_spx_index, next in enumerate( self.cycle_dimensions[n_dim][deg][:-1]): if prev < next: domain_chains.add_entry( nerve_spx_index, np.array(range(prev, next)), (self.Hom[0][n_dim][nerve_spx_index][deg].coordinates).T) R[prev:next] = self.Hom[0][n_dim][nerve_spx_index][ deg].barcode[:, 0] prev = next # end for # call cech_diff_and_lift Betas, _ = self.cech_diff_and_lift(n_dim, deg, domain_chains, R) return Betas ########################################################################### # self.high_differential(self, n_dim, deg, current_page): def high_differential(self, n_dim, deg, current_page): """ Compute differential on `current-page` (n_dim, deg) --> (n_dim - current_page, deg + current_page - 1). Parameters ---------- n_dim, deg : int, int Differential domain position. Returns ------- Betas : np.array Coefficients of image of current_page differentials. The image of each class from (n_dim, deg) is given as a row. """ # handle trivial case if self.Hom[current_page-1][n_dim][deg].dim == 0: return np.array([]) # take last total complex entry of Hom reps chains = self.Hom_reps[current_page-1][n_dim][deg][current_page-1] Hom_barcode = self.Hom[current_page-1][n_dim][deg].barcode # codomain position Sn_dim = n_dim - current_page Sdeg = deg + current_page - 1 # differential (n_dim, deg) --> (Sn_dim, Sdeg) Betas, _ = self.cech_diff_and_lift(Sn_dim + 1, Sdeg, chains, Hom_barcode[:, 0]) Betas, _ = self.lift_to_page(Sn_dim, Sdeg, current_page, Betas, Hom_barcode) return Betas # end high_differential ########################################################################### # self.lift_to_page(self, n_dim, deg, page, chains): def lift_to_page(self, n_dim, deg, target_page, Betas, Beta_barcode): """ Lifts chains in position (n_dim, deg) from page 1 to target_page Returns Betas and image coordinates. Parameters ---------- n_dim, deg : int, int Differential domain position. target_page : int Lift classes up to this page. Betas : np.array Coordinates of classes on first page. Betas_barcode : np.array Barcodes of classes to be lifted. Returns ------- Betas.T : np.array Coefficients of image of current_page differentials. The image of each class from (n_dim, deg) is given as a row. Gammas.T : np.array Coefficients of added differentials of (current_page - 1) page. This is such that the sum of differentials using Gammas, plus adding classes using target_betas leads to the original Betas. """ Betas = Betas.T # lift up to target_page for k in range(1, target_page): Im = self.Im[k][n_dim][deg] Hom = self.Hom[k][n_dim][deg] if Hom.dim > 0: if Im.dim > 0: Im_Hom = np.append(Im.coordinates, Hom.coordinates, axis=1) barcode_col = np.append(Im.barcode, Hom.barcode, axis=0) else: Im_Hom = Hom.coordinates barcode_col = Hom.barcode else: Betas = np.array([]) Gammas = np.array([]) break start_index = Im.dim + Hom.dim # add radii coordinates and radii barcode_col = np.append(barcode_col, Beta_barcode, axis=0) A = np.append(Im_Hom, Betas, axis=1) # barcodes of rows barcode_row = self.Hom[k][n_dim][deg].prev_basis.barcode # gaussian reduction on matrix between persistence modules # order here barcode_row rows_basis = barcode_basis(barcode_row) order = rows_basis.sort(send_order=True) # order row barcodes as well ordered_barcode_row = barcode_row[order] A = A[order] coefficients = gauss_barcodes( A, ordered_barcode_row, barcode_col, start_index, self.p) # next page coefficients Gammas = coefficients[:Im.dim] Betas = coefficients[Im.dim:] # end for return Betas.T, Gammas.T # end lift_to_page ########################################################################### # self.cech_diff_and_lift def cech_diff_and_lift(self, n_dim, deg, start_chains, R): """Given chains in position (n_dim, deg), computes horizontal differential followed by lift by vertical differential. Procedure: (1) take chains in position (n_dim, deg) (2) compute the Cech differential of these chains. We do this in parallel over the covers in (n_dim-1, deg) (3) Lift locally. Steps (2) and (3) are parallelized at the same time. Parameters ---------- n_dim, deg, current_page : int, int, int Postition on spectral sequence and current page. chains : :obj:`list(list(Numpy Array))` Returns ------- betas : coordinates on first pages [lift_references, lift_coordinates]: local coordinates lifted by vertical differential. """ # store space for coordinates in first page Betas_1_page = np.zeros(( len(R), self.page_dim_matrix[1, deg, n_dim-1] )) # store space for preimages lift_chains = local_chains(self.nerve_spx_number[n_dim-1]) if len(R) > 0: partial_cech_diff_and_lift_local = partial( self.cech_diff_and_lift_local, R, start_chains, n_dim - 1, deg) # map reduce local cech differential and lifts workers_pool = Pool() output = workers_pool.map( partial_cech_diff_and_lift_local, range(self.nerve_spx_number[n_dim-1])) workers_pool.close() workers_pool.join() # output = [] # for j in range(self.nerve_spx_number[n_dim-1]): # output.append(partial_cech_diff_and_lift_local(j)) prev = 0 # store results for nerve_spx_index, next in enumerate( self.cycle_dimensions[n_dim-1][deg][:-1]): if output[nerve_spx_index] is not None: Betas_1_page[:, prev:next] = output[nerve_spx_index][0] lift_chains.add_entry( nerve_spx_index, output[nerve_spx_index][1], output[nerve_spx_index][2]) prev = next # end for return Betas_1_page, lift_chains # end cech_diff_and_lift ########################################################################### # self.cech_diff def cech_diff(self, n_dim, deg, start_chains): """ Given chains in (n_dim + 1, deg), compute Cech differential. Parameters ---------- n_dim, deg: int, int Codomain position in spectral sequence. chains : :class:`local_chains` object Chains on (n_dim+1, deg) that are stored as references in chains[0] and local coordinates as rows in chains[1]. Returns ------- image_chains : :obj:`Local Coordinates` Image coordinates of Cech differential. """ image_chains = local_chains(self.nerve_spx_number[n_dim]) # CECH DIFFERENTIAL for nerve_spx_index in range(self.nerve_spx_number[n_dim]): loc_im_ref, loc_im_coord = self.cech_diff_local( start_chains, n_dim, deg, nerve_spx_index) image_chains.add_entry(nerve_spx_index, loc_im_ref, loc_im_coord) # end for return image_chains ####################################################################### # Cech chain plus lift of preimage def cech_diff_and_lift_local( self, R, start_chains, n_dim, deg, nerve_spx_index): """ Takes some chains in position (n_dim+1, deg) and computes Cech diff followed by a lift by vertical differential. This is done locally at cover information in (n_dim, deg). This method is meant to be run in parallel. Parameters ---------- R : :obj:`list` Vector of radii start_chains : :class:`local_chains` object Chains in position (n_dim + 1, deg) n_dim, deg, nerve_spx_index : int, int, int Position in spectral sequence and local index. Returns ------- betas_1_page : :obj:`Numpy Array` Coefficients of lift to 1st page on position (n_dim, deg) local_lift_references : :obj:`list` List of local references of lift. local_lift_coordinates : :obj:`Numpy Array` Local coordinates of lift. """ # if nerve_spx_index==0, then prev=0 prev = self.cycle_dimensions[n_dim][deg][nerve_spx_index-1] next = self.cycle_dimensions[n_dim][deg][nerve_spx_index] # if trivial cover skip if prev == next: return # CECH DIFFERENTIAL generators, local_chains = self.cech_diff_local( start_chains, n_dim, deg, nerve_spx_index) # if there are no images to compute, return if len(generators) == 0: return # LOCAL LIFT TO FIRST PAGE gammas, betas = self.first_page_local_lift( n_dim, deg, local_chains, R[generators], nerve_spx_index) # store first page coefficients betas_1_page = np.zeros((len(R), next - prev)) betas_1_page[generators] = np.transpose(betas) # compute vertical preimage and store preimages = np.matmul(self.PreIm[0][n_dim][nerve_spx_index][deg+1], gammas).T # look for indices of nonzero columns nonzero_idx = np.where(gammas.any(axis=0))[0] if len(nonzero_idx) > 0: local_lift_ref = generators[nonzero_idx] # correct sign local_lift_coord = -preimages[nonzero_idx] % self.p else: local_lift_ref, local_lift_coord = [], [] # end if else return betas_1_page, local_lift_ref, local_lift_coord # end cech_diff_and_lift_local ########################################################################### # self.cech_diff_local def cech_diff_local( self, start_chains, n_dim, deg, nerve_spx_index): """ Local Cech differential, starting from chains in (n_dim + 1, deg). Parameters ---------- start_chains : :class:`local_chains` object Chains to compute Cech differential from. n_dim, deg, nerve_spx_index : int, int, int Position in spectral sequence and local index. Returns ------- local_image_ref : :obj:`list` List of local references of image. local_image_coord.T : :obj:`Numpy Array` Local coordinates of image. Expressions correspond to rows while local simplices correspond to columns. """ coboundary = self.nerve_differentials[n_dim + 1][nerve_spx_index] # cofaces and coefficients on cech differential cofaces = np.nonzero(coboundary)[0] coefficients = coboundary[cofaces] # indices of generators that are nontrivial by cech diff generators = start_chains.ref[cofaces[0]] for coface_index in cofaces[1:]: generators = np.append(generators, start_chains.ref[ coface_index]).astype(int) # end for local_image_ref = np.unique(generators) # if there are no images to compute, return if len(local_image_ref) == 0: return [], [] # size of local complex if deg == 0: cpx_size = self.subcomplexes[n_dim][nerve_spx_index][0] else: cpx_size = len(self.subcomplexes[n_dim][nerve_spx_index][deg]) local_image_coord = np.zeros((cpx_size, len(local_image_ref))) # IMAGE OF CECH DIFFERENTIAL ############################# for coface_index, nerve_coeff in zip(cofaces, coefficients): # check that there are some local coordinates if len(start_chains.ref[coface_index]) > 0: # generate boundary matrix cech_local = self.local_cech_matrix( n_dim+1, deg, coface_index, nerve_spx_index, nerve_coeff) active_generators = np.where(np.in1d( local_image_ref, start_chains.ref[coface_index]) )[0] # image of cech complex local_image_coord[:, active_generators] += np.matmul( cech_local, start_chains.coord[coface_index].T ) # end if # end for local_image_coord %= self.p return local_image_ref, local_image_coord.T ########################################################################### # local boundary matrix def local_cech_matrix(self, n_dim, deg, nerve_spx_index, nerve_face_index, nerve_coeff): """Returns matrix of Cech differential in (n_dim, deg) restricted on component (nerve_face_index, nerve_spx_index). Parameters ---------- n_dim, deg: int, int Position in spectral sequence. nerve_spx_index, nerve_face_index : int, int Local indices in domain and codomain respectively. nerve_coeff : int Coefficient in nerve differential determined by the pair nerve_spx_index and nerve_face_index. Returns ------- boundary : :obj:`Numpy Array` Matrix of size (subcpx[n_dim-1][nerve_face_index][deg], subcpx[n_dim][nerve_spx_index][deg]) that represents the local cech differential. """ deg_sign = (-1)**deg if deg == 0: # save space for boundary matrix boundary = np.zeros(( self.subcomplexes[n_dim-1][nerve_face_index][deg], self.subcomplexes[n_dim][nerve_spx_index][deg])) # inclusions for points for point_idx in range( self.subcomplexes[n_dim][nerve_spx_index][0]): face_point_idx = np.argmax(self.points_IN[ n_dim-1][nerve_face_index] == self.points_IN[n_dim][ nerve_spx_index][point_idx]) boundary[face_point_idx, point_idx] = nerve_coeff * deg_sign boundary[face_point_idx, point_idx] %= self.p # end for else: # save space for boundary matrix boundary = np.zeros(( len(self.subcomplexes[n_dim-1][nerve_face_index][deg]), len(self.subcomplexes[n_dim][nerve_spx_index][deg]))) # inclusions for edges, 2-simplices and higher # Iterate over nontrivial local simplices in domain for spx_index, simplex in enumerate( self.subcomplexes[n_dim][nerve_spx_index][deg]): # Obtain IN for vertices of simplex vertices_spx = self.points_IN[n_dim][nerve_spx_index][simplex] for im_index, im_spx in enumerate( self.subcomplexes[n_dim-1][ nerve_face_index][deg]): vertices_face = self.points_IN[n_dim-1][ nerve_face_index][im_spx.astype(int)] # When the vertices coincide, break the loop if len(np.intersect1d( vertices_spx, vertices_face)) == deg + 1: boundary[im_index, spx_index] = nerve_coeff * deg_sign boundary[im_index, spx_index] %= self.p break # end if # end for # end for # end else return boundary # end local_cech_matrix ########################################################################### # self.first_page_local_lift def first_page_local_lift( self, n_dim, deg, local_coord, lift_radii, nerve_spx_index): """ Lift to first page on a given open cover. Parameters ---------- n_dim, deg : int, int Position on spectral sequence. local_coord : :obj:`Numpy Array` Local coordinates to be lifted to first page and vertical differential. Rows are expressions while columns correspond to local simplices. lift_radi : :obj:`list` Values at which we want to lift `start_chains` by the vertical differential. nerve_spx_inex : int Local index. This function is meant to be parallelized over this. Returns ------- gammas : :obj:`Numpy Array` 2D Matrix expressing coefficients of lift. Each expression corresponds to a column, while image generators correspond to rows. betas : :obj:`Numpy Array` 2D Matrix expressing coefficients in terms of homology classes on page 1. Expressions correspond to columns, while homology classes correspond to rows. """ # take care of case when local_coord is a `local_chains` object if isinstance(local_coord, local_chains): if len(local_coord.ref[nerve_spx_index]) > 0: lift_radii = lift_radii[local_coord.ref[nerve_spx_index]] local_coord = local_coord.coord[nerve_spx_index] else: return [], [] # return if nothing to lift if len(lift_radii) == 0: return [], [] # R_M : vector of birth radii of columns in M # distinguish from trivial case where images are zero if self.Im[0][n_dim][nerve_spx_index][deg].dim > 0 and self.Hom[0][ n_dim][nerve_spx_index][deg].dim > 0: Im_Hom = np.append( self.Im[0][n_dim][nerve_spx_index][deg].coordinates, self.Hom[0][n_dim][nerve_spx_index][deg].coordinates, axis=1) R_M = self.Im[0][n_dim][nerve_spx_index][deg].barcode[:, 0] R_M = np.concatenate([ R_M, self.Hom[0][n_dim][nerve_spx_index][deg].barcode[:, 0]], axis=None) elif self.Hom[0][n_dim][nerve_spx_index][deg].dim > 0: Im_Hom = self.Hom[0][n_dim][nerve_spx_index][deg].coordinates R_M = self.Hom[0][n_dim][nerve_spx_index][deg].barcode[:, 0] elif self.Im[0][n_dim][nerve_spx_index][deg].dim > 0: Im_Hom = self.Im[0][n_dim][nerve_spx_index][deg].coordinates R_M = self.Im[0][n_dim][nerve_spx_index][deg].barcode[:, 0] else: return [], [] R_M = np.concatenate([R_M, lift_radii], axis=None) start_index = np.size(Im_Hom, 1) # Gaussian elimination of M = (Im | Hom | start_chains (local)) M = np.append(Im_Hom, local_coord.T, axis=1) _, T = gauss_col_rad(M, R_M, start_index, self.p) # look at reductions on generators and correct sign T = -T[:, start_index:] % self.p gammas = T[0:self.Im[0][n_dim][nerve_spx_index][deg].dim] betas = T[self.Im[0][n_dim][nerve_spx_index][deg].dim:start_index] # return preimage coordinates and beta coordinates return gammas, betas # end first_page_local_lift ########################################################################### # self.first_page_lift def first_page_lift(self, n_dim, deg, start_chains, R): """Given some chains in position (n_dim, deg), lift to first page accross several covers. Parameters ---------- n_dim, deg, current_page : int, int, int Postition on spectral sequence and current page. start_chains : :class:`local_chains` object Chains in position (n_dim, deg) that we lift to first page. R : :obj:`list` Values at which we lift `start_chains` Returns ------- Betas_1_page : :obj:`Numpy Array` Coordinates on first page. Rows correspond to expressions and columns to homology classes. lift_chains : :class:`local_coord` object Chains after lifting vertically by horizontal differential. """ # store space for preimages lift_chains = local_chains(self.nerve_spx_number[n_dim]) # coordinates in first page Betas_1_page = np.zeros(( len(R), self.page_dim_matrix[1, deg, n_dim])) # return if trivial if len(R) == 0: return Betas_1_page, lift_chains # compute vertical lifts in parallel partial_first_page_local_lift = partial( self.first_page_local_lift, n_dim, deg, start_chains, R) workers_pool = Pool() output = workers_pool.map( partial_first_page_local_lift, range(self.nerve_spx_number[n_dim])) workers_pool.close() workers_pool.join() # proceed to store the result prev = 0 for nerve_spx_index, next in enumerate( self.cycle_dimensions[n_dim][deg][:-1]): gammas, betas = output[nerve_spx_index] # save betas if len(betas) > 0: Betas_aux = np.zeros((len(R), next-prev)) Betas_aux[start_chains.ref[nerve_spx_index]] = betas.T Betas_1_page[:, prev:next] = Betas_aux # save lifts if len(gammas) > 0: lift_chains.add_entry( nerve_spx_index, start_chains.ref[nerve_spx_index], (np.matmul(self.PreIm[ 0][n_dim][nerve_spx_index][deg+1], gammas)).T) # end if prev = next # end for return Betas_1_page, lift_chains ########################################################################### # add higher page contents def add_output_higher(self, Hom, Im, PreIm, end_n_dim, end_deg, current_page): """Stores higher page data that has been computed along a sequence of consecutive differentials. The studied sequence of differentials ends in `(end_n_dim, end_deg)` coming from `(end_n_dim + current_page, end_deg - current_page + 1)` and continuing until reaching an integer `r > 0` such that either end_n_dim + r * current_page > self.no_columns or end_deg - r * current_page + 1 > 0 Parameters ---------- Hom : :obj:`list(barcode_basis)` Homology of a sequence of differentials in the spectral sequence. This is computed using :mod:`permaviss.persistence_algebra.module_persistence_homology`. Im : :obj:`list(barcode_basis)` Images of a sequence of differentials in the spectral sequence. PreIm : :obj:`list(Numpy Array)` Preimages of a sequence of differentials in the spectral sequence. end_n_dim : int Integer specifying the column position where the sequence of differentials ends. end_deg : int Integer specifying the row position where the sequence of differentials ends. current_page : int Current page of the spectral sequence. """ n_dim = end_n_dim deg = end_deg for i, h in enumerate(Hom): self.PreIm[current_page][n_dim][deg] = PreIm[i] self.Hom[current_page][n_dim][deg] = h self.page_dim_matrix[current_page+1, deg, n_dim] = h.dim self.Im[current_page][n_dim][deg] = Im[i] deg = deg - current_page + 1 n_dim += current_page ########################################################################### # compute_two_page_representatives def compute_two_page_representatives(self, n_dim, deg): """ Computes total complex representatives for second page classes in position (n_dim, deg). Resulting representatives are written in self.Hom_reps[1][n_dim][deg] Parameters ---------- n_dim, deg : int, int These specify the position on the spectral sequence where we want to compute and store the second page representatives. """ # return if nothing to compute if self.Hom[1][n_dim][deg].dim == 0: return coordinates_hom = self.Hom[1][n_dim][deg].coordinates rep_chains = [local_chains(self.nerve_spx_number[n_dim])] prev = 0 # localized_format for first page info for nerv_idx, next in enumerate(self.cycle_dimensions[ n_dim][deg][:-1]): if prev < next: rep_chains[0].add_entry( nerv_idx, range(self.Hom[1][n_dim][deg].dim), np.matmul(self.Hom[0][n_dim][ nerv_idx][deg].coordinates, coordinates_hom[prev:next] ).T) # end if prev = next # end for # add extra entries when possible if n_dim > 0: # birth values classes R = self.Hom[1][n_dim][deg].barcode[:, 0] # cech_diff_and_lift betas, lift = self.cech_diff_and_lift(n_dim, deg, rep_chains[0], R) if np.any(betas): raise(ValueError) # vertical lift written on total_complex_reps rep_chains.append(lift) # end if # store on allocated space for second page representatives self.Hom_reps[1][n_dim][deg] = rep_chains # end def ########################################################################### # compute_higher_representatives def compute_higher_representatives(self, n_dim, deg, current_page): """ Computes total complex representatives for current_page classes in position (n_dim, deg). Resulting representatives written in `self.Hom_reps[current_page][n_dim][deg]` Parameters ---------- n_dim, deg, current_page : int, int, int Position on the spectral sequence and current page. """ # handle trivial cases if self.Hom[current_page][n_dim][deg].dim == 0: self.Hom_reps[current_page][n_dim][deg] = [] return # lift image to page hom_barcode = self.Hom[current_page][n_dim][deg].barcode hom_sums = (self.Hom[current_page][n_dim][deg].coordinates).T # create total complex reps up to last entry by using coefficients and # total complex representatives on previous page total_complex_reps = [] # compute for chains in self.Hom_reps[current_page - 1][n_dim][deg]: total_complex_reps.append(local_chains.sums(chains, hom_sums)) # end for # (n_dim, deg) --> (Sn_dim, Sdeg) Sn_dim = n_dim - current_page Sdeg = deg + current_page - 1 # if differential is trivial, no need to compute cech differential if Sn_dim < 0: self.Hom_reps[current_page][n_dim][deg] = total_complex_reps return for target_page in range(current_page, 1, -1): Betas, _ = self.cech_diff_and_lift( Sn_dim + 1, Sdeg, total_complex_reps[-1], hom_barcode[:, 0]) # go up to target_page and modify total_complex_reps Betas, Gammas = self.lift_to_page( Sn_dim, Sdeg, target_page, Betas, hom_barcode) # modify reps # from im_coord obtain total cpx chains Tn_dim = Sn_dim + target_page - 1 Tdeg = Sdeg - target_page + 2 preimage_reps = [] # obtain preimage_coefficients from expressions in -Gammas preimage_coefficients = np.matmul( self.PreIm[target_page - 1][Tn_dim][Tdeg], -Gammas.T ) # case of target_page is special due to local coordinates if np.any(Gammas) and target_page == 2: prev = 0 for spx_idx, next in enumerate( self.cycle_dimensions[Sn_dim + 1][Sdeg]): if prev < next: local_preimage = (np.matmul( self.Hom[0][Sn_dim + 1][spx_idx][Sdeg].coordinates, preimage_coefficients[prev:next])).T # if non empby, add if len(total_complex_reps[-1].ref[spx_idx]) > 0: total_complex_reps[-1].coord[ spx_idx] += local_preimage else: total_complex_reps[-1].add_entry( spx_idx, range(np.size(local_preimage, 0)), local_preimage) prev = next # end for elif np.any(Gammas): for chains in self.Hom_reps[target_page][Tn_dim][Tdeg]: preimage_reps.append(local_chains.sums( chains, preimage_coefficients)) # add preimage reps to current tot_complex reps for idx, chains in enumerate(preimage_reps): total_complex_reps[ current_page - target_page + 1 + idx] += chains # end for # end elif # end for Betas, lift = self.cech_diff_and_lift( Sn_dim + 1, Sdeg, total_complex_reps[-1], hom_barcode[:, 0]) # check that there are no problems if np.any(Betas): raise RuntimeError # add vertical lift to reps total_complex_reps.append(lift) # store modified total complex reps self.Hom_reps[current_page][n_dim][deg] = total_complex_reps # end compute_total_representatives ########################################################################### # extension def extension(self, start_n_dim, start_deg): """ Take information from spectral sequence class, and calculate extension coefficients for a given position (start_deg, start_n_dim). """ death_radii = self.Hom[self.no_pages-1][start_n_dim][ start_deg].barcode[:, 1] Hom_reps = local_chains.copy_seq( self.Hom_reps[self.no_pages - 1][start_n_dim][start_deg]) # bars for extension problem of infty page classes barcode_extension = np.ones((len(death_radii), 2)) barcode_extension[:, 0] = death_radii barcode_extension[:, 1] *= self.max_r # if death_radii is equal to max_r, no need to compute ext coefficients ext_bool = death_radii < self.max_r # initialize extension matrices as zero matrices Sdeg = start_deg Sn_dim = start_n_dim for chains in Hom_reps: self.extensions[start_n_dim][start_deg].append(np.zeros(( self.Hom[self.no_pages-1][Sn_dim][Sdeg].dim, len(death_radii)))) Sdeg += 1 Sn_dim -= 1 # end for # if there are no extension coefficients to compute, return if not np.any(ext_bool): return # zero out representatives not in ext_bool for chains in Hom_reps: for k, local_ref in enumerate(chains.ref): if len(local_ref) > 0 and np.any( np.invert(ext_bool[local_ref])): chains.coord[k][np.invert(ext_bool[local_ref])] *= 0 # end if # end for # end for # COMPUTE EXTENSION COEFFICIENTS # go through all diagonal Sdeg = start_deg Sn_dim = start_n_dim for idx, chains in enumerate(Hom_reps): # lift to infinity page and substract betas Betas, _ = self.first_page_lift(Sn_dim, Sdeg, chains, death_radii) # go up to target_page Betas, _ = self.lift_to_page(Sn_dim, Sdeg, self.no_pages, Betas, barcode_extension) # STORE EXTENSION COEFFICIENTS self.extensions[start_n_dim][start_deg][idx] = Betas.T # MODIFY TOTAL COMPLEX REPS using BETAS if np.any(Betas): for ext_deg, Schains in enumerate( self.Hom_reps[self.no_pages - 1][Sn_dim][Sdeg]): # compute chains using betas and substract to reps # problem with local sums!!! local_chains_beta = local_chains.sums(Schains, -Betas) for k, local_coord in enumerate( Hom_reps[ext_deg + idx].coord): local_ref = Hom_reps[ext_deg + idx].ref[k] if (len(local_ref)) > 0 and ( len(local_chains_beta.ref[k]) > 0): if not np.array_equal( local_ref, local_chains_beta.ref[k]): raise ValueError Hom_reps[ext_deg + idx].coord[k] = ( local_coord + local_chains_beta.coord[k] ) % self.p elif len(local_chains_beta.ref[k]) > 0: Hom_reps[ext_deg + idx].ref[ k] = local_chains_beta.ref[k] Hom_reps[ext_deg + idx].coord[ k] = local_chains_beta.coord[k] # end elif # end for # end for # end if # reduce up to 1st page using gammas for target_page in range(self.no_pages, 1, -1): # get coefficients on first page Betas, _ = self.first_page_lift(Sn_dim, Sdeg, chains, death_radii) # go up to target_page Betas, Gammas = self.lift_to_page( Sn_dim, Sdeg, target_page, Betas, barcode_extension) # if lift target_page is nonzero, raise an error if np.any(Betas): raise(RuntimeError) # MODIFY TOTAL COMPLEX REPS using GAMMAS if np.any(Gammas): # compute coefficients of Gammas in 1st page image_classes = np.matmul( self.Im[target_page-1][Sn_dim][Sdeg].coordinates, -Gammas.T) # look for bars that might be already zero if target_page == 2: # obtain coefficients for gammas image_chains = local_chains( self.nerve_spx_number[Sn_dim]) prev = 0 for nerv_idx, next in enumerate(self.cycle_dimensions[ Sn_dim][Sdeg]): if prev < next: image_chains.add_entry( nerv_idx, range(np.size(Gammas, 0)), np.matmul( image_classes[prev:next].T, self.Hom[0][Sn_dim][nerv_idx][ Sdeg].coordinates.T) ) prev = next # end for else: image_chains = local_chains.sums( self.Hom_reps[target_page-2][Sn_dim][Sdeg][0], image_classes.T ) # end else chains += image_chains # end if # end for # lift to first page Betas, lift_coord = self.first_page_lift(Sn_dim, Sdeg, chains, death_radii) # correct sign of lift_coord and trivialise references lift_coord.minus() # end for # if lift to first page is nonzero, raise an error if np.any(Betas): raise(RuntimeError) if Sn_dim > 0: # compute Cech differential of lift_coord # and add to current reps image_chains = self.cech_diff(Sn_dim - 1, Sdeg + 1, lift_coord) Hom_reps[idx+1] = Hom_reps[idx + 1] + image_chains # advance reduction position Sdeg += 1 Sn_dim -= 1 # end for # end def # end spectral_sequence class #################################################
#!/usr/bin/python import time, imaplib, getpass, socket missing_libs = [] # Try to import pynotify try: import pynotify except ImportError: missing_libs.append('python-notify') # Try to import gnomekeyring try: import gnomekeyring as gk except ImportError: missing_libs.append('python-gnomekeyring') # Print error message and exit if a library is missing if len(missing_libs) is not 0: print 'You\'re missing libraries!\napt-get install', " ".join(missing_libs) exit(0) # Which keyring and key to use to store login information KEYRING_NAME = 'important' KEY_NAME = 'Gmail Watcher Login' # Clear old login entry and create a new one from user input def new_auth(): # Clear all old entries try: for item in gk.find_items_sync(gk.ITEM_GENERIC_SECRET, {'application': KEY_NAME}): gk.item_delete_sync(KEYRING_NAME, item.item_id) except gk.NoMatchError: pass # Read in username and password user = raw_input('User: ') passwd = getpass.getpass() # Save the user as an attribute, set application to make this easier to iterate through attrs = {'user': user, 'application': KEY_NAME} gk.item_create_sync(KEYRING_NAME, gk.ITEM_GENERIC_SECRET, KEY_NAME, attrs, passwd, True) return user,passwd def start_session(): try: return imaplib.IMAP4_SSL('imap.gmail.com','993') except (socket.error, imaplib.IMAP4.error): return None def login(user,passwd): # Start the IMAP session with gmail print 'Starting SSL IMAP session, could take a minute' session = start_session() if session is None: print 'What is gmail? (your connection or dns may be down)' print 'Trying until I succeed!' while session is None: time.sleep(5) session = start_session() logged_in = False # Try to log in until it succeeds, try new login information if it fails while not logged_in: try: print 'Trying to log in...' session.login(user,passwd) print 'Successfully authenticated!' logged_in = True except (socket.error, imaplib.IMAP4.error): print 'Could not authenticate! ' user,passwd = new_auth() return session def get_unread(session): # Get the initial list of unread emails read_in = False while not read_in: try: session.select() unread = session.search(None,'UNSEEN')[1][0].split(' ') read_in = True except (socket.error, imaplib.IMAP4.error): print 'Disconnected! Trying to reconnect' session = login(user,passwd) return unread, session if __name__ == "__main__": # See if previous login information exists in the keyring try: info = gk.find_items_sync(gk.ITEM_GENERIC_SECRET, {'application': KEY_NAME}) user = info[0].attributes['user'] passwd = info[0].secret # If not, read in and store new login information except gk.NoMatchError: user,passwd = new_auth() session = login(user,passwd) try: # Get the initial number of unread emails unread, session = get_unread(session) count = 0 if unread[0] == '' else len(unread) pynotify.init('Gmail Watcher') # Display initial number of unread emails if count is 1: n = pynotify.Notification('Successfully Authenticated!', '1 unread email', 'gmail') else: n = pynotify.Notification('Successfully Authenticated!', "%d unread emails" % count, 'gmail') n.show() # Main loop: watch for new emails while True: prev = unread # Get a list of unread emails unread, session = get_unread(session) new = [email for email in unread if email not in prev] # For each new email, show the subject and body if new != [] and new != ['']: try: content = session.fetch(','.join(new), '(BODY.PEEK[1] BODY.PEEK[HEADER.FIELDS (SUBJECT)])') except (socket.error, imaplib.IMAP4.error): print 'Disconnected! Trying to reconnect' session = login(user,passwd) # Repeat this loop unread = prev continue # Display a separate notification for each new email for i in range(0,len(new)): subj = content[1][3*i][1].strip() msg = content[1][3*i+1][1][0:200] n = pynotify.Notification(subj, msg, 'gmail') n.show() time.sleep(5) except KeyboardInterrupt: print 'Logging out' session.logout()
# Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of NVIDIA CORPORATION nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY # OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from threading import Thread import time, sys import numpy as np from Config import Config class ThreadPredictor(Thread): def __init__(self, server, id): super(ThreadPredictor, self).__init__() self.setDaemon(True) self.id = id self.server = server self.exit_flag = False def run(self): if Config.LOCAL_QUEUE: data_queue = self.server.local_prediction_q else: data_queue = self.server.prediction_q total_time = 0 collect_time = 0 predict_time = 0 step = 0 acc_batch_size = 0.0 ids = np.zeros(Config.PREDICTION_BATCH_SIZE, dtype=np.uint16) episode_ids = np.zeros(Config.PREDICTION_BATCH_SIZE, dtype = np.uint16) states = np.zeros( (Config.PREDICTION_BATCH_SIZE, Config.IMAGE_HEIGHT, Config.IMAGE_WIDTH, Config.STACKED_FRAMES), dtype=np.float32) while not self.exit_flag: step += 1 s0 = time.time() size = 0 states[0], ids[0], episode_ids[0] = data_queue.get() size = 1 while size < Config.PREDICTION_BATCH_SIZE and not data_queue.empty(): # while size < Config.PREDICTION_BATCH_SIZE: states[size], ids[size], episode_ids[size] = data_queue.get() size += 1 s1 = time.time() batch = states[:size] p, v = self.server.model.predict_p_and_v(batch) s2 = time.time() for i in range(size): if ids[i] < len(self.server.agents): self.server.agents[ids[i]].wait_q.put((episode_ids[i], p[i], v[i])) s3 = time.time() total_time += s3 - s0 collect_time += s1 - s0 predict_time += s2 - s1 acc_batch_size += size if self.id == 0 and step % 1000 == 0: print("[predictor %d] collect: %.1f %.1f%%, predict: %.1f %.1f%%, total: %.1f, batch: %d, local_q: %d, remote_q: %d" % (step, collect_time, collect_time / total_time * 100, predict_time, predict_time / total_time * 100, total_time, acc_batch_size / step, self.server.local_prediction_q.qsize(), self.server.prediction_q.qsize())) sys.stdout.flush()
class Student: def __init__(self,name,years): self.__name = name self.__years = years def set_weight(self,weight): self.__weight = weight def get_weight(self): return self.__weight stu = Student('Eason',21) stu.set_weight(125) print(stu.get_weight())
# 標準入力を受け付ける。 N = int(input()) A = list(map(int, input().split())) # 数字の出現回数を配列でメモしておく。 # num_cnt_list[0]の要素は利用しない。 num_cnt_list = [] for _ in range(N + 1): # 数字の出現回数の初期値を0としておく。 num_cnt_list.append(0) for i in range(N): num_cnt_list[A[i]] += 1 # 一度でも2回以上同じ数字が出現したら`No`, そうでなければ`Yes`を出力する。 if num_cnt_list[A[i]] > 1: print('No') exit() print('Yes')
# -*- coding: utf-8 -*- """ Created on Mon Dec 2 18:42:52 2019 @author: SMA """ ### load modules import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt import os from collections import defaultdict import missingno pd.set_option('display.float_format', lambda x: '%.5f' % x) ### load data os.chdir("C:/Users/SMA/Desktop/DataScienceSpringboard/Capstone1/santander-product-recommendation") df = pd.read_csv("train_ver2.csv",parse_dates=["fecha_dato","fecha_alta"]) df.columns =["Date","id","EmployeeBank","ResidenceCountry","Sex","Age","first_contract_date","new_customer", "seniority_time","primary_cust_in_month","last_date_as_primary","cust_type","cust_relation_type", "residence_index","foreigner_birth","spouse_with_employee","channel_used","deceased","address_type", "province_code","province_name","activity_index","gross_income","customer_segment","Saving_Account", "Guarantees","Current_Account","Derivada_Account","Payroll_Account","Junior_Account","MP_Account", "P_Accouont","PP_Account","St_deposit","MT_deposit","LT_deposit","e_account","Funds","Mortage", "Pensions","Loans","Taxes","Credit_Card","Securities","Home_Account","Payroll","Pension","Direct_Debit"] df.info() ### reduce size of sparse matrix colS = df.loc[:,"Saving_Account":].columns for k in colS: df[k] = pd.to_numeric(df[k],downcast="unsigned") df.Date.value_counts().plot(kind="bar") df.id.value_counts().size df.groupby("Date").id.nunique().plot(kind="bar") df["EmployeeBank"] = df["EmployeeBank"].astype("category") def cleanString(x): if isinstance(x,int): return(x) elif isinstance(x,str): vor = x.rsplit(" ") if "n" in x.lower(): return(np.nan) else: return([int(s) for s in vor if s!=""][0]) df.ResidenceCountry.value_counts() df.groupby("Date").ResidenceCountry.nunique() df["ResidenceCountry"] = df["ResidenceCountry"].astype("category") df.Sex.value_counts() df["Sex"].replace({"V":"W","H":"M"},inplace=True) df.groupby("Date").Sex.value_counts(normalize=True).plot(kind="bar",stacked=True) df["Sex"] = df["Sex"].astype("category") df["Age"] = df["Age"].apply(cleanString) df.Age.describe() ### replace date feature to time differences df.first_contract_date.value_counts() df.first_contract_date.isna().sum() delta_t = (df.Date - df.first_contract_date)/np.timedelta64(1,"D") df["first_contract_date"]= delta_t df[df["first_contract_date"]<0] = np.nan df.new_customer.value_counts(normalize=True) df.groupby("Date").new_customer.value_counts(normalize=True).plot(kind="bar",stacked=True) df["new_customer"] = df.new_customer.astype("category") df["seniority_time"]= df.seniority_time.apply(cleanString) df["seniority_time"] = df.seniority_time.replace({-999999.0:np.nan}) df.primary_cust_in_month = df.primary_cust_in_month.astype("category") df.last_date_as_primary df.cust_type.value_counts() df["cust_type"] = df.cust_type.replace({"P":5}).astype(float) df["cust_type"] = df.cust_type.astype("category") df.cust_relation_type.value_counts() df["cust_relation_type"] = df["cust_relation_type"].replace({"N":np.nan}) df.groupby("Date").cust_relation_type.value_counts() df["cust_relation_type"] = df["cust_relation_type"].astype("category") df["residence_index"].value_counts() df.residence_index.isna().sum() df["residence_index"]= df.residence_index.replace({"S":"Y"}).astype("category") df.foreigner_birth.value_counts() df["foreigner_birth"] = df.foreigner_birth.replace({"S":"Y"}).astype("category") df.spouse_with_employee.isna().sum() df["spouse_with_employee"] = df.spouse_with_employee.replace({"S":"Y"}).astype("category") df.channel_used.value_counts() df.channel_used.unique() df["channel_used"] = df.channel_used.astype("category") df["deceased"].value_counts() df["deceased"] = df.deceased.replace({"S":"Y"}).astype("category") df.address_type.value_counts() df["address_type"] = df.address_type.astype("category") df["province_code"].value_counts() df.province_name.value_counts() df["province_name"] = df.province_name.astype("category") df.activity_index.value_counts() df["activity_index"] = df.activity_index.astype("category") df["customer_segment"].value_counts() df["customer_segment"].replace({"02 - PARTICULARES":2,"03 - UNIVERSITARIO":3,"01 - TOP":1},inplace=True) df["customer_segment"] = df["customer_segment"].astype("category") df.gross_income.describe() ### screen for outliers out = defaultdict(list) cols = df.columns[2:19] for col in cols: mcol = df[col] if df.dtypes[col] =="float64": dev = mcol.mean() + 3*mcol.std() ixx_to = np.where(mcol>dev)[0].tolist() out[col].extend([len(ixx_to)/len(mcol),ixx_to]) else: dev = mcol.value_counts(normalize=True) ixm = dev[dev< 0.015].index ixx_to = [] for i in ixm: ixx_to.extend(np.where(i==mcol)[0]) out[col].extend([len(ixx_to)/len(mcol),ixx_to]) nameS = list();values=list() for k in out.keys(): if out[k][0]>0: values.append(out[k][0]) nameS.append(k) outliers = pd.Series(values,index=nameS) ### Age and Gross Income is checked manually ### Age: most people's age is limited and children are not likely to take responsibility over an account age = df.Age.copy() age[age >110]= np.nan age[age <12]= np.nan ### very unlikely that people are having more than 2.5 million gross income.. gI = df.gross_income.copy() gI[gI>2500000] = np.nan df["Age"]=age df["gross_income"]=gI ## now calculate target values, i.e. sparse matrix of products that will be added the next month ### separate sparse matrix and sort values accoding to client id and Date ### drop unique id entries: there is nothing they will add sparse = df.loc[:,"Saving_Account":"Direct_Debit"].copy() sparse["Date"] = df["Date"] sparse["id"] = df["id"] su = sparse[sparse.id.duplicated(False)].copy() su.sort_values(["id","Date"],inplace=True) su_date_id = su[["Date","id"]] su.drop(columns= ["Date","id"],inplace=True) ### calculate product migration over whole matrix; therefore identification of last entries along customer ids is necessary ### then simple boolean comparision last_one = np.where(su_date_id["id"] != su_date_id["id"].shift(-1))[0] a = su.to_numpy() ref = su.to_numpy() comp = su.shift(-1).to_numpy() boolS = (ref!= comp) & (comp==1) new_boolS = np.delete(boolS,last_one,axis=0) #### give back indices where changes in product basket occurred and transform to sparse matrix output x,y = np.where(new_boolS ==True) s1 = su_date_id["id"].to_numpy() s1 =np.delete(s1,last_one,axis=0) s2 = su_date_id["Date"].to_numpy() s2 = np.delete(s2,last_one,axis=0) data_sp = {"ids":s1[x],"Dates":s2[x],"values_":y.tolist()} sp_target = pd.DataFrame(data_sp) sp_target["ik"]= 1 spx = sp_target.pivot_table(index=["Dates","ids"],columns="values_",values="ik") spx.fillna(0,inplace=True) ### concatenate sparse target matrix with frame spx.sort_index(level=[0,1],inplace=True) spx.columns = df.columns[24:] + "_target" spx.index.names =["Date","id"] df.set_index(["Date","id"],inplace=True) df.sort_index(level=[0,1],inplace=True) nd = pd.concat([df,spx],axis=1,ignore_index=False) #### fill Na with zero; i.e. Na result from those who did not have any change in basket and those who were unique repl = nd.loc[:,"Saving_Account_target":].copy() repl.fillna(0,inplace=True) nd.loc[:,"Saving_Account_target":] = repl.to_numpy() ### generate additional features: a) how many products has a client purchased in comparsion to the month before ### b) how many products has a client sold off before first_one = np.where(su_date_id["id"]!= su_date_id["id"].shift(1))[0] compp = su.shift(1).to_numpy() boolSN = (ref==1) & (compp != ref) boolSL = (ref==0) & (compp != ref) boolSN = np.delete(boolSN,first_one,axis=0) boolSL = np.delete(boolSL,first_one,axis=0) s_1 = np.delete(su_date_id["id"].to_numpy(),first_one,axis=0) s_2 = np.delete(su_date_id["Date"].to_numpy(),first_one,axis=0) switching = {"id":s_1,"Date":s_2,"new_ones":boolSN.sum(axis=1),"leave_ones":boolSL.sum(axis=1)} switching = pd.DataFrame(switching) switching.set_index(["Date","id"],inplace=True) switching.sort_index(level=[0,1],inplace=True) #### merge an fill missings with 0 nd = pd.concat([nd,switching],axis=1,ignore_index=False) ndex = nd[["new_ones","leave_ones"]].copy() ndex.fillna(0,inplace=True) nd.loc[:,["new_ones","leave_ones"]] = ndex.to_numpy() ### clean up for i in nd.loc[:,"Saving_Account_target":].columns: nd[i] = pd.to_numeric(nd[i],downcast="unsigned") df = nd.copy() del(nd) os.chdir("...") df.to_pickle("df_targets.pkl") #### NA visualization df.loc[:,:"customer_segment"].isna().sum().plot(kind="bar") ### na frequency per rows df.loc[:,:"customer_segment"].isna().sum(axis=1).hist() ### is there a systematic dependence between NA values? missingno.heatmap(df.loc[:,:"customer_segment"]) #### first removals: ### spouse_with_employee, last_date_as_primary, ### desceased ones True // we cannot predict anything on deceased ones ### province_code// same info as province_name ### drop na values in basket as well df.drop(["spouse_with_employee","last_date_as_primary","province_code"],axis=1,inplace=True) mask = (df["Payroll"].isna()) | (df["Pension"].isna()) df = df[~mask].copy() mask = df.deceased=="Y" df = df[~mask] df.drop("deceased",inplace=True,axis=1) cols = ["Sex","Age","seniority_time","cust_type","cust_relation_type","channel_used","province_name", "gross_income","customer_segment"] for col in cols: df[col] = replace_NA_Persons(df,col) df.isna().sum()[:19] df.isna().sum(axis=1).value_counts() #### #### there are 11255 rows which are full of NA readings in their clients' features ### moreover, there are 89K wih 5 NA readings ### it is fairly difficult to find a proper reasoning to replace these values with lookup tables rem_mask = df.isna().sum(axis=1) >10 df = df[~rem_mask.to_numpy()] df.isna().sum()[:19] (df.cust_relation_type.isna() & df.cust_type.isna()).sum() nacols = ["Sex","Age","seniority_time","cust_type","cust_relation_type","channel_used","province_name","gross_income","customer_segment", "first_contract_date"] for ff in nacols: df[ff] = lookuptable(ff,df) df.isna().sum()[:20] ## A couple of NA values have not been replaced possibly due to ambiguities in the lookup frame ## they will be removed; moreover, the column deceased is getting removed as well due unique values df.dropna(axis=0,inplace=True) ######plottings ##### 4 plots are generated: distributional with and without correction; plot in relation to target and time dependence ### first: number of targets and binary Target is calculated num_targets = df.loc[:,"Saving_Account_target":"Direct_Debit_target"].copy().sum(axis=1).to_numpy() df["Number_targets"] =num_targets num_targets[num_targets > 0] = 1 df["Target"] = num_targets ### due to high number of labels in channel_used, province_name, ResidenceCountry an overwrite is done, i.e. creation of a ### a fake dataset for plotting def overwrite(x,vals): if x not in vals: return ("O") else: return(x) cor_ch = df.channel_used.copy() cor_ch = cor_ch.apply(overwrite,vals=["KHE","KAT","KFC"]).astype("category") cor_ch2 = df.province_name.copy() cor_ch2 = cor_ch2.apply(overwrite,vals=df.province_name.value_counts().iloc[0:6].index.values).astype("category") cor_ch3 = df.ResidenceCountry.copy() cor_ch3 = cor_ch3.apply(overwrite,vals=df.ResidenceCountry.value_counts().iloc[0:6].index.values).astype("category") fake_da = df.copy() fake_da["province_name"] = cor_ch2.to_numpy() fake_da["channel_used"] = cor_ch.to_numpy() fake_da["ResidenceCountry"] = cor_ch3.to_numpy() cols = df.columns[:17].tolist() cols.extend(["new_ones","leave_ones"]) mask = (df["Target"] ==1).to_numpy() #os.chdir("D:/Project_II/plots2") for col in cols: colS = fake_da[col].copy() fig,axS = plt.subplots(2,2,figsize=(10,10),constrained_layout=True) #fig.tight_layout() if fake_da.dtypes[col].name =="category": if col =="province_name": colS = cor_ch2 if col =="channel_used": colS = cor_ch oS =colS.value_counts(normalize=True).reset_index() sns.barplot(x="index",y=col,data=oS,ax=axS[0,0]) axS[0,0].set_title("Proportions",loc="left") colS= colS.reset_index(level=1) colS.drop_duplicates(subset="id",keep="first",inplace=True) oS = colS[col].value_counts(normalize=True).reset_index() sns.barplot(x="index",y=col,data=oS,ax=axS[0,1]) axS[0,1].set_title("Proportions with corrections",loc="left") # wT = fake_da[mask][col] nT = fake_da[~mask][col] bf = pd.concat([wT.value_counts(normalize="True"),nT.value_counts(normalize=True)],axis=1,ignore_index=False) bf.columns= ["purchase","no_purchase"] bf.T.plot(kind="bar",stacked=True,ax=axS[1,0]) axS[1,0].set_title("Proportoins separated by target",loc="left") # hh = fake_da[col].groupby(level=0).value_counts(normalize=True) hh.unstack().plot(kind="bar",stacked=True,ax=axS[1,1]) axS[1,1].set_title("Proportions over time",loc="left") else: sns.distplot(colS,ax =axS[0,0]) axS[0,0].set_title(label="Histogram",loc="left") colS = colS.reset_index(level=1) colS.drop_duplicates("id",inplace=True) sns.distplot(colS[col],ax=axS[0,1]) axS[0,1].set_title("Histogram with correction",loc="left") co =fake_da[[col,"Target"]] sns.boxplot(x="Target",y=col,data=co,ax=axS[1,0]) axS[1,0].set_title("boxplot separate by target",loc="left") fake_da[col].groupby(level=0).mean().plot(ax=axS[1,1]) axS[1,1].set_title(label="Median over time",loc="left") fig.suptitle("{} : desciptive graphs".format(col),fontsize=20) #plt.savefig(col+".png") ### graphing the product basket product_basket = mm.loc[:,"Saving_Account":"Direct_Debit"] perc_av = product_basket.sum(axis=0) perc_av = perc_av/perc_av.sum() plt.figure(figsize=(10,10)) perc_av.plot(kind="bar") plt.title("Percentage of products") plt.figure(figsize=(10,10)) product_basket.sum(axis=1).hist() plt.title("Frequency of Basket Size") ### statistic CramersV and heatmap from itertools import permutations import researchpy cols = df.columns[:19] perm = permutations(cols,2) outP = {"indeX":list(),"colS":list(),"valueS":list()} ii = 0 for hh in list(perm)[67:]: col1 = mm[hh[0]] col2 = mm[hh[1]] if mm.dtypes[hh[0]].name =="float64": col1 =pd.qcut(col1,5) if mm.dtypes[hh[1]].name =="float64": col2 = pd.qcut(col2,5) a,b = researchpy.crosstab(col1,col2,test="chi-square") outP["valueS"].append(b.iloc[2,1]) outP["indeX"].append(hh[0]) outP["colS"].append(hh[1]) ii+=1 print(ii) rouP = pd.DataFrame(outP) mmK = rouP.pivot_table(index="indeX",columns="colS",values="valueS") mmK.fillna(1,inplace=True) mmK.to_pickle("heatmap.pkl") fig=plt.figure(figsize=(10,10)) sns.heatmap(mmK,cmap="BuPu") plt.savefig("heatmap_1.png") ##chi square over samples ok = {"feature":list(),"p-value":list(),"Cramers":list()} for hh in cols: col1 = mm[hh] col2 = mm["Target"] if mm.dtypes[hh].name =="float64": col1 =binarize(mm,hh,q=5) a,b = researchpy.crosstab(col2,col1,test="chi-square") ok["Cramers"].append(b.iloc[2,1]) ok["p-value"].append(b.iloc[1,1]) ok["feature"].append(hh)
class MockSocket(object): def __init__(self): self.connected = False self.timeout = 0 self.ipaddr = None self.ipport = None self.buffer = [] self.request = [] def settimeout(self, timeout): self.timeout = timeout def connect(self, ipaddrAndipportTup): self.connected = True self.ipaddr = ipaddrAndipportTup[0] self.ipport = ipaddrAndipportTup[1] def close(self): self.connected = False def recv(self, size): return self.buffer.pop(0) def sendall(self, data): self.request.append(data) def _set_buffer(self, resp_list): for bs in resp_list: self.buffer.append(bs) def clear_buffer(self): self.buffer = [] def mock_socket(AF_INET, SOCK_STREAM): return MockSocket()
from django.db import models from product.models import Item class Cart(models.Model): code = models.CharField(max_length=10) ship_value = models.DecimalField(max_digits=6, decimal_places=2) total = models.DecimalField(max_digits=100, decimal_places=2, default=0.00) timestamp = models.DateTimeField(auto_now_add=True, auto_now=False) def __unicode__(self): return str(self.cart.id) class CartItem(models.Model): item = models.ForeignKey(Item, on_delete=models.CASCADE) cart = models.ForeignKey(Cart, on_delete=models.CASCADE) def __unicode__(self): return "Cart id: %s" % (self.id) @staticmethod def add_item_on_cart(item, cart): CartItem.objects.create(item=item, cart=cart)
# 用try--except捕获断言异常 res1 = {'code': 1, 'msg': '登陆成功'} res2 = {'code': 0, 'msg': '登陆失败'} try: assert res1 == res2 except AssertionError as e: print("编号A1用例不通过!") raise e # 处理异常后,抛出异常 else: print("编号A1用例通过!")
# -*- coding: utf-8 -*- """API endpoints for CRUD operations.""" from django.contrib.auth.models import User from django.core.urlresolvers import reverse from django.shortcuts import redirect from django.utils.functional import cached_property from django.http import Http404 from rest_framework.decorators import list_route from rest_framework.exceptions import NotAuthenticated from rest_framework.mixins import UpdateModelMixin from rest_framework.viewsets import ModelViewSet as BaseModelViewSet from rest_framework.viewsets import ReadOnlyModelViewSet as BaseROModelViewSet from drf_cached_instances.mixins import CachedViewMixin as BaseCacheViewMixin from .cache import Cache from .history import Changeset from .mixins import PartialPutMixin from .models import ( Browser, Feature, Maturity, Reference, Section, Specification, Support, Version) from .serializers import ( BrowserSerializer, FeatureSerializer, MaturitySerializer, ReferenceSerializer, SectionSerializer, SpecificationSerializer, SupportSerializer, VersionSerializer, ChangesetSerializer, UserSerializer, HistoricalBrowserSerializer, HistoricalFeatureSerializer, HistoricalMaturitySerializer, HistoricalReferenceSerializer, HistoricalSectionSerializer, HistoricalSpecificationSerializer, HistoricalSupportSerializer, HistoricalVersionSerializer) from .view_serializers import ( ViewFeatureListSerializer, ViewFeatureSerializer, ViewFeatureRowChildrenSerializer) # # Base classes # class CachedViewMixin(BaseCacheViewMixin): cache_class = Cache def perform_create(self, serializer): kwargs = {} if getattr(self.request, 'delay_cache', False): kwargs['_delay_cache'] = True serializer.save(**kwargs) def perform_update(self, serializer): kwargs = {} if getattr(self.request, 'delay_cache', False): kwargs['_delay_cache'] = True serializer.save(**kwargs) def perform_destroy(self, instance): if getattr(self.request, 'delay_cache', False): instance._delay_cache = True instance.delete() class FieldsExtraMixin(object): def initialize_request(self, request, *args, **kwargs): irequest = super(FieldsExtraMixin, self).initialize_request( request, *args, **kwargs) self.request = irequest irequest.parser_context['fields_extra'] = self.get_fields_extra() return irequest def get_renderer_context(self): context = super(FieldsExtraMixin, self).get_renderer_context() context['fields_extra'] = self.get_fields_extra() return context def get_fields_extra(self): serializer_cls = self.get_serializer_class() return serializer_cls.get_fields_extra() class GroupRouterMixin(object): """Extra parameters used by the GroupedRouter.""" lookup_value_regex = r'\d+' alt_lookup_field = None alt_lookup_value_regex = None class ModelViewSet( PartialPutMixin, CachedViewMixin, FieldsExtraMixin, GroupRouterMixin, BaseModelViewSet): """Base class for ViewSets supporting CRUD operations on models.""" class ReadOnlyModelViewSet( FieldsExtraMixin, GroupRouterMixin, BaseROModelViewSet): """Base class for ViewSets supporting read operations on models.""" class ReadUpdateModelViewSet( PartialPutMixin, CachedViewMixin, FieldsExtraMixin, UpdateModelMixin, GroupRouterMixin, BaseROModelViewSet): """Base class for ViewSets supporting read and update operations.""" pass # # 'Regular' viewsets # class BrowserBaseViewSet(ModelViewSet): queryset = Browser.objects.order_by('id') serializer_class = BrowserSerializer class FeatureBaseViewSet(ModelViewSet): queryset = Feature.objects.order_by('id') serializer_class = FeatureSerializer class MaturityBaseViewSet(ModelViewSet): queryset = Maturity.objects.order_by('id') serializer_class = MaturitySerializer class ReferenceBaseViewSet(ModelViewSet): queryset = Reference.objects.order_by('id') serializer_class = ReferenceSerializer class SectionBaseViewSet(ModelViewSet): queryset = Section.objects.order_by('id') serializer_class = SectionSerializer class SpecificationBaseViewSet(ModelViewSet): queryset = Specification.objects.order_by('id') serializer_class = SpecificationSerializer class SupportBaseViewSet(ModelViewSet): queryset = Support.objects.order_by('id') serializer_class = SupportSerializer class VersionBaseViewSet(ModelViewSet): queryset = Version.objects.order_by('id') serializer_class = VersionSerializer # # Change control viewsets # class ChangesetBaseViewSet(ModelViewSet): queryset = Changeset.objects.order_by('id') serializer_class = ChangesetSerializer class UserBaseViewSet(CachedViewMixin, ReadOnlyModelViewSet): queryset = User.objects.order_by('id') serializer_class = UserSerializer @list_route() def me(self, request, **extra_kwargs): """Redirect to the authenticated user's resource.""" if request.user.is_anonymous(): raise NotAuthenticated() else: kwargs = {'pk': request.user.pk} kwargs.update(extra_kwargs) url = reverse('%s:user-detail' % self.namespace, kwargs=kwargs) return redirect(url) # # Historical object viewsets # class HistoricalBrowserBaseViewSet(ReadOnlyModelViewSet): queryset = Browser.history.model.objects.order_by('id') serializer_class = HistoricalBrowserSerializer class HistoricalFeatureBaseViewSet(ReadOnlyModelViewSet): queryset = Feature.history.model.objects.order_by('id') serializer_class = HistoricalFeatureSerializer class HistoricalMaturityBaseViewSet(ReadOnlyModelViewSet): queryset = Maturity.history.model.objects.order_by('id') serializer_class = HistoricalMaturitySerializer class HistoricalReferenceBaseViewSet(ReadOnlyModelViewSet): queryset = Reference.history.model.objects.order_by('id') serializer_class = HistoricalReferenceSerializer class HistoricalSectionBaseViewSet(ReadOnlyModelViewSet): queryset = Section.history.model.objects.order_by('id') serializer_class = HistoricalSectionSerializer class HistoricalSpecificationBaseViewSet(ReadOnlyModelViewSet): queryset = Specification.history.model.objects.order_by('id') serializer_class = HistoricalSpecificationSerializer class HistoricalSupportBaseViewSet(ReadOnlyModelViewSet): queryset = Support.history.model.objects.order_by('id') serializer_class = HistoricalSupportSerializer class HistoricalVersionBaseViewSet(ReadOnlyModelViewSet): queryset = Version.history.model.objects.order_by('id') serializer_class = HistoricalVersionSerializer # # Views # class ViewFeaturesBaseViewSet(ReadUpdateModelViewSet): queryset = Feature.objects.order_by('id') format_suffixes = ('api', 'json', 'html') alt_lookup_field = 'slug' alt_lookup_value_regex = r'[-a-zA-Z0-9_]+' def get_serializer_class(self): """Return the serializer to use based on action and query.""" if self.action == 'list': return ViewFeatureListSerializer else: if self.include_child_pages: return ViewFeatureSerializer else: return ViewFeatureRowChildrenSerializer def get_serializer_context(self): """Add include_child_pages to context.""" context = super(ViewFeaturesBaseViewSet, self).get_serializer_context() context['include_child_pages'] = self.include_child_pages return context @cached_property def include_child_pages(self): """Return True if the response should include paginated child pages. The default is exclude paginated child pages, and only include row children that detail the subject feature. This matches the expectations of most writers - the table on: /Web/JavaScript/Reference/Global_Objects/Object should only include a "Basic Support" row, not the 30+ pages under Object, such as: /Web/JavaScript/Reference/Global_Objects/Object/toString However, if they do want a table summarizing the entire page heirarchy, they can add a query parameter such as: ?child_pages=1 These (and variants with capital letters) are synonyms for the default of excluding paginated child pages: ?child_pages=0 ?child_pages=false ?child_pages=no ?child_pages=NO and anything else will include them: ?child_pages ?child_pages=yes ?child_pages=Please%20let%20me%20have%20them """ if self.action != 'retrieve': return True child_pages = self.request.query_params.get('child_pages', '0') falsy = ('0', 'false', 'no') return bool(child_pages.lower() not in falsy) def alternate_lookup(self, request, slug, **extra_kwargs): """Lookup features by slug.""" try: pk = Feature.objects.only('pk').get(slug=slug).pk except Feature.DoesNotExist: raise Http404('No feature has the requested slug.') kwargs = {'pk': pk} kwargs.update(extra_kwargs) url = reverse('%s:viewfeatures-detail' % self.namespace, kwargs=kwargs) return redirect(url)
from spack import * import sys,os sys.path.append(os.path.join(os.path.dirname(__file__), '../../common')) from scrampackage import write_scram_toolfile class EigenToolfile(Package): url = 'file://' + os.path.dirname(__file__) + '/../../common/junk.xml' version('1.0', '68841b7dcbd130afd7d236afe8fd5b949f017615', expand=False) depends_on('eigen') def install(self, spec, prefix): values = {} values['VER'] = spec['eigen'].version values['PFX'] = spec['eigen'].prefix fname = 'eigen3.xml' contents = str(""" <tool name="eigen" version="${VER}"> <client> <environment name="EIGEN_BASE" default="${PFX}"/> <environment name="INCLUDE" default="$$EIGEN_BASE/include/eigen3"/> </client> <flags CPPDEFINES="EIGEN_DONT_PARALLELIZE"/> </tool> """) write_scram_toolfile(contents, values, fname, prefix)
import json import logging import time from functools import wraps, partial from flask import Flask, Response, request from flask_cors import CORS from requests import RequestException from api.douban import DoubanAPI from api.weibo import WeiboAPI logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(module)s - %(levelname)s - %(message)s') app = Flask(__name__) CORS(app, supports_credentials=True) def _is_ok(value): return (value is not None) and (value is not False) def _error_resp(err): return Response(json.dumps({"ok": False, "error": err, "result": None}), mimetype='application/json') def _ok_resp(result): return Response(json.dumps({"ok": _is_ok(result), "result": result}), mimetype='application/json') PARAMS_ERROR_RESP = _error_resp("Invalid parameter.") def api_wrapper(f=None, *, err_resp=None): if f is None: return partial(api_wrapper, err_resp=err_resp) if err_resp is None: err_resp = Response('{"ok": false, "error": "some internal error.", "result": []}', mimetype='application/json') @wraps(f) def decorated_function(*args, **kwargs): try: start = time.time() resp = f(*args, **kwargs) cost = (time.time() - start) * 1000 logging.info('%s cost %.3f millseconds', f.__name__, cost) return resp except Exception: logging.exception('%s failed.', f.__name__) return err_resp return decorated_function @app.route('/hz') @api_wrapper def is_alive(): """ 存活确认。 """ return 'well' @app.route("/weibo/user/info", methods=["GET"]) @api_wrapper def weibo_user_info(): data = request.values uid = data['uid'] raw = data.get("raw", False) if uid: try: result = WeiboAPI.get_user_info(uid, raw) return _ok_resp(result) except RequestException as e: return _error_resp(e.args[0]) return PARAMS_ERROR_RESP @app.route("/weibo/user/following", methods=["GET"]) @api_wrapper def weibo_user_following(): data = request.values uid = data['uid'] if uid: try: result = WeiboAPI.get_user_following(uid) return _ok_resp(result) except RequestException as e: return _error_resp(e.args[0]) return PARAMS_ERROR_RESP @app.route('/weibo/user/blogs', methods=['GET']) @api_wrapper def weibo_user_blogs(): data = request.values uid = data['uid'] raw = data.get("raw", False) if uid: try: result = WeiboAPI.get_user_blogs(uid, raw) return _ok_resp(result) except RequestException as e: return _error_resp(e.args[0]) return PARAMS_ERROR_RESP @app.route('/weibo/user/likes', methods=['GET']) @api_wrapper def weibo_user_likes(): data = request.values uid = data['uid'] raw = data.get("raw", False) if uid: try: result = WeiboAPI.get_user_likes(uid, raw) return _ok_resp(result) except RequestException as e: return _error_resp(e.args[0]) return PARAMS_ERROR_RESP @app.route('/weibo/blog/detail', methods=['GET']) @api_wrapper def weibo_blog_detail(): data = request.values weibo_id = data['id'] raw = data.get("raw", False) if weibo_id: try: result = WeiboAPI.get_blog_detail(weibo_id, raw) return _ok_resp(result) except RequestException as e: return _error_resp(e.args[0]) return PARAMS_ERROR_RESP @app.route('/weibo/blog/comments', methods=['GET']) @api_wrapper def weibo_blog_comments(): data = request.values weibo_id = data['id'] raw = data.get("raw", False) if weibo_id: try: result = WeiboAPI.get_blog_comments(weibo_id, raw) return _ok_resp(result) except RequestException as e: return _error_resp(e.args[0]) return PARAMS_ERROR_RESP @app.route('/weibo/blog/likes', methods=['GET']) @api_wrapper def weibo_blog_likes(): data = request.values weibo_id = data['id'] raw = data.get("raw", False) if weibo_id: try: result = WeiboAPI.get_blog_likes(weibo_id, raw) return _ok_resp(result) except RequestException as e: return _error_resp(e.args[0]) return PARAMS_ERROR_RESP @app.route('/weibo/blog/reposts', methods=['GET']) @api_wrapper def weibo_blog_reposts(): data = request.values weibo_id = data['id'] raw = data.get("raw", False) if weibo_id: try: result = WeiboAPI.get_blog_reposts(weibo_id, raw) return _ok_resp(result) except RequestException as e: return _error_resp(e.args[0]) return PARAMS_ERROR_RESP @app.route('/douban/user/info', methods=['GET']) @api_wrapper def douban_user_info(): data = request.values uid = data['uid'] if uid: try: result = DoubanAPI.get_user_info(uid) return _ok_resp(result) except RequestException as e: return _error_resp(e.args[0]) return PARAMS_ERROR_RESP @app.route('/douban/user/life', methods=['GET']) @api_wrapper def douban_user_life(): data = request.values uid = data['uid'] raw = data.get("raw", False) if uid: try: result = DoubanAPI.get_life_stream(uid, raw=raw) return _ok_resp(result) except RequestException as e: return _error_resp(e.args[0]) return PARAMS_ERROR_RESP
__author__ = 'Elisabetta Ronchieri' import unittest from tstorm.tests.atomic import atomics from tstorm.tests import utilities def ts_dcache_ping(conf, ifn, dfn, bifn, uid, lfn): s = unittest.TestSuite() s.addTest(atomics.AtomicsTest('test_dcache_ping',conf, ifn, dfn, bifn, uid, lfn)) return s def ts_storm_ping(conf, ifn, dfn, bifn, uid, lfn): s = unittest.TestSuite() s.addTest(atomics.AtomicsTest('test_storm_ping',conf, ifn, dfn, bifn, uid, lfn)) return s def ts_storm_ping_wo(conf, ifn, dfn, bifn, uid, lfn): s = unittest.TestSuite() s.addTest(atomics.AtomicsTest('test_storm_ping_wo',conf, ifn, dfn, bifn, uid, lfn)) return s def ts_storm_gtp(conf, ifn, dfn, bifn, uid, lfn): s = unittest.TestSuite() s.addTest(atomics.AtomicsTest('test_storm_gtp',conf, ifn, dfn, bifn, uid, lfn)) return s def ts_storm_gtp_wo(conf, ifn, dfn, bifn, uid, lfn): s = unittest.TestSuite() s.addTest(atomics.AtomicsTest('test_storm_gtp_wo',conf, ifn, dfn, bifn, uid, lfn)) return s def ts_lcg_ls_unexist_file(conf, ifn, dfn, bifn, uid, lfn): s = unittest.TestSuite() s.addTest(atomics.AtomicsTest('test_lcg_ls_unexist_file',conf, ifn, dfn, bifn, uid, lfn)) return s def ts_lcg_ls_unexist_dir(conf, ifn, dfn, bifn, uid, lfn): s = unittest.TestSuite() s.addTest(atomics.AtomicsTest('test_lcg_ls_unexist_dir',conf, ifn, dfn, bifn, uid, lfn)) return s def ts_dcache_mkdir(conf, ifn, dfn, bifn, uid, lfn): s = unittest.TestSuite() s.addTest(atomics.AtomicsTest('test_dcache_mkdir',conf, ifn, dfn, bifn, uid, lfn)) s.addTest(atomics.AtomicsTest('test_dcache_rm_dir',conf, ifn, dfn, bifn, uid, lfn)) return s def ts_dcache_mkdir_exist(conf, ifn, dfn, bifn, uid, lfn): s = unittest.TestSuite() s.addTest(atomics.AtomicsTest('test_dcache_mkdir',conf, ifn, dfn, bifn, uid, lfn)) s.addTest(atomics.AtomicsTest('test_dcache_mkdir_exist_dir',conf, ifn, dfn, bifn, uid, lfn)) s.addTest(atomics.AtomicsTest('test_dcache_rm_dir',conf, ifn, dfn, bifn, uid, lfn)) return s def ts_dcache_rm_dir(conf, ifn, dfn, bifn, uid, lfn): s = unittest.TestSuite() s.addTest(atomics.AtomicsTest('test_dcache_mkdir',conf, ifn, dfn, bifn, uid, lfn)) s.addTest(atomics.AtomicsTest('test_dcache_mkdir_exist_dir',conf, ifn, dfn, bifn, uid, lfn)) s.addTest(atomics.AtomicsTest('test_dcache_rm_dir',conf, ifn, dfn, bifn, uid, lfn)) return s def ts_lcg_ls_dir(conf, ifn, dfn, bifn, uid, lfn): s = unittest.TestSuite() s.addTest(atomics.AtomicsTest('test_dcache_mkdir',conf, ifn, dfn, bifn, uid, lfn)) s.addTest(atomics.AtomicsTest('test_dcache_mkdir_exist_dir',conf, ifn, dfn, bifn, uid, lfn)) s.addTest(atomics.AtomicsTest('test_lcg_ls_dir',conf, ifn, dfn, bifn, uid, lfn)) s.addTest(atomics.AtomicsTest('test_dcache_rm_dir',conf, ifn, dfn, bifn, uid, lfn)) return s def ts_lcg_cp_out(conf, ifn, dfn, bifn, uid, lfn): s = unittest.TestSuite() s.addTest(utilities.UtilitiesTest('test_dd',conf, ifn, bifn, uid, lfn)) s.addTest(atomics.AtomicsTest('test_lcg_ls_unexist_file',conf, ifn, dfn, bifn, uid, lfn)) s.addTest(atomics.AtomicsTest('test_lcg_cp_out',conf, ifn, dfn, bifn, uid, lfn)) s.addTest(atomics.AtomicsTest('test_lcg_ls_file',conf, ifn, dfn, bifn, uid, lfn)) s.addTest(atomics.AtomicsTest('test_dcache_rm_file',conf, ifn, dfn, bifn, uid, lfn)) s.addTest(atomics.AtomicsTest('test_dcache_rm_dir',conf, ifn, dfn, bifn, uid, lfn)) s.addTest(utilities.UtilitiesTest('test_rm_lf',conf, ifn, bifn, uid, lfn)) return s def ts_lcg_ls_file(conf, ifn, dfn, bifn, uid, lfn): s = unittest.TestSuite() s.addTest(utilities.UtilitiesTest('test_dd',conf, ifn, bifn, uid, lfn)) s.addTest(atomics.AtomicsTest('test_lcg_ls_unexist_file',conf, ifn, dfn, bifn, uid, lfn)) s.addTest(atomics.AtomicsTest('test_lcg_cp_out',conf, ifn, dfn, bifn, uid, lfn)) s.addTest(atomics.AtomicsTest('test_lcg_ls_file',conf, ifn, dfn, bifn, uid, lfn)) s.addTest(atomics.AtomicsTest('test_dcache_rm_file',conf, ifn, dfn, bifn, uid, lfn)) s.addTest(atomics.AtomicsTest('test_dcache_rm_dir',conf, ifn, dfn, bifn, uid, lfn)) s.addTest(utilities.UtilitiesTest('test_rm_lf',conf, ifn, bifn, uid, lfn)) return s def ts_dcache_rm_file(conf, ifn, dfn, bifn, uid, lfn): s = unittest.TestSuite() s.addTest(utilities.UtilitiesTest('test_dd',conf, ifn, bifn, uid, lfn)) s.addTest(atomics.AtomicsTest('test_lcg_ls_unexist_file',conf, ifn, dfn, bifn, uid, lfn)) s.addTest(atomics.AtomicsTest('test_lcg_cp_out',conf, ifn, dfn, bifn, uid, lfn)) s.addTest(atomics.AtomicsTest('test_lcg_ls_file',conf, ifn, dfn, bifn, uid, lfn)) s.addTest(atomics.AtomicsTest('test_dcache_rm_file',conf, ifn, dfn, bifn, uid, lfn)) s.addTest(atomics.AtomicsTest('test_dcache_rm_dir',conf, ifn, dfn, bifn, uid, lfn)) s.addTest(utilities.UtilitiesTest('test_rm_lf',conf, ifn, bifn, uid, lfn)) return s def ts_dcache_rm_unexist_file(conf, ifn, dfn, bifn, uid, lfn): s = unittest.TestSuite() #s.addTest(utilities.UtilitiesTest('test_dd',conf, ifn, bifn, lfn)) s.addTest(atomics.AtomicsTest('test_dcache_rm_unexist_file',conf, ifn, dfn, bifn, uid, lfn)) #s.addTest(utilities.UtilitiesTest('test_rm_lf',conf, ifn, bifn, lfn)) return s def ts_dcache_rm_unexist_dir(conf, ifn, dfn, bifn, uid, lfn): s = unittest.TestSuite() #s.addTest(utilities.UtilitiesTest('test_dd',conf, ifn, bifn, lfn)) s.addTest(atomics.AtomicsTest('test_dcache_rm_unexist_dir',conf, ifn, dfn, bifn, uid, lfn)) #s.addTest(utilities.UtilitiesTest('test_rm_lf',conf, ifn, bifn, lfn)) return s def ts_lcg_cp_in(conf, ifn, dfn, bifn, uid, lfn): s = unittest.TestSuite() s.addTest(utilities.UtilitiesTest('test_dd',conf, ifn, bifn, uid, lfn)) s.addTest(atomics.AtomicsTest('test_lcg_ls_unexist_file',conf, ifn, dfn, bifn, uid, lfn)) s.addTest(atomics.AtomicsTest('test_lcg_cp_out',conf, ifn, dfn, bifn, uid, lfn)) s.addTest(atomics.AtomicsTest('test_lcg_cp_in',conf, ifn, dfn, bifn, uid, lfn)) s.addTest(atomics.AtomicsTest('test_dcache_rm_file',conf, ifn, dfn, bifn, uid, lfn)) s.addTest(atomics.AtomicsTest('test_dcache_rm_dir',conf, ifn, dfn, bifn, uid, lfn)) s.addTest(utilities.UtilitiesTest('test_rm_lf',conf, ifn, bifn, uid, lfn)) return s
from __future__ import division from collections import defaultdict from math import * from random import sample import csv from operator import itemgetter import matplotlib as mpl import matplotlib.pyplot as plt import random class BaseAlgorithm(): #def __init__(self): # self.update_data() def update_data(self,a,b,c): filename = "data3.csv" """ self.cities = [] #self.size = len(self.cities) self.coords = [] with open(filename, 'r') as csvfile: csvreader = csv.reader(csvfile) for row in csvreader: self.coords.append([float(row[0]),float(row[1])]) self.cities = range(0,len(self.coords)) """ self.cities=[] self.coords=[[-a/2,-a/2],[-a/2,a/2],[a/2,a/2],[a/2,-a/2]] for i in range(1,int(ceil(a/c))): self.coords.append([0-a/2,c*i-a/2]) self.coords.append([c*i-a/2,0-a/2]) self.coords.append([c*i-a/2,a/2]) self.coords.append([a/2,c*i-a/2]) self.denum = len(self.coords) print self.coords,self.denum #random.shuffle(self.coords) for i in range(0,int((a/b))): for j in range(0,int((a/b))): self.coords.append([-a/2+b/2+(b*j),a/2-b/2-(b*i)]) #print self.coords,len(self.coords) self.cities=range(0,len(self.coords)) #random.shuffle(self.coords[7:]) print self.coords,len(self.coords) self.size = len(self.cities) self.distances = self.compute_distances() def haversine_distance(self, cityA, cityB): coord1 = self.coords[cityA] coord2= self.coords[cityB] a = (coord1[0]-coord2[0])**2+(coord1[1]-coord2[1])**2 c = sqrt(a) return c def compute_distances(self): self.distances = defaultdict(dict) for cityA in self.cities: for cityB in self.cities: if cityB not in self.distances[cityA]: distance = self.haversine_distance(cityA, cityB) self.distances[cityA][cityB] = distance self.distances[cityB][cityA] = distance return self.distances # add node k between node i and node j def add(self, i, j, k): return self.distances[i][k] + self.distances[k][j] - self.distances[i][j] class TourConstructionHeuristics(BaseAlgorithm): # find the neighbor k closest to the tour, i.e such that # cik + ckj - cij is minimized with (i, j) an edge of the tour # add k between the edge (i, j), resulting in a tour with subtour (i, k, j) # used for the cheapest insertion algorithm def __init__(self,dist,grid,comm,Q): self.update_data(dist,grid,comm) self.Q=Q self.comm=comm self.sqr=dist self.grid=grid ##print self.cities def closest_neighbor(self, tour, node, in_tour=False, farthest=False): neighbors = self.distances[node] ##print node ##print neighbors.items() ##print tour current_dist = [(c, d) for c, d in neighbors.items() if (c in tour)] return sorted(current_dist, key=itemgetter(1))[-farthest] def add_closest_to_tour(self, tours,tourslength,unass,depot_dist): #print tours,tourslength,depot_dist best_ratio,best_dist, new_tour = float('inf'),float('inf'), None ##print vehlengths ##print veh ##print tourslength ##print tours t=1 tour_index = None city1 = None c=0.55 d=0.45 for city in unass: ##print city for tour in tours: a=abs(self.coords[tour[0]][0]-self.coords[city][0]) b=abs(self.coords[tour[0]][1]-self.coords[city][1]) x=abs(self.coords[tour[-1]][0]-self.coords[city][0]) y=abs(self.coords[tour[-1]][1]-self.coords[city][1]) ##print tour for index in range(len(tour) - 1): dist = self.add(tour[index], tour[index + 1], city) #print unass ##print dist ##print vehlengths[tours.index(tour)] if len(tour)!=2: ratio = c*dist+d*depot_dist[tours.index(tour)] else: ratio = c*(dist+tourslength[tours.index(tour)])+d*depot_dist[tours.index(tour)] if ratio < best_ratio and (tourslength[tours.index(tour)]+dist)<self.Q and a<=self.comm and b<=self.comm and x<=self.comm and y<=self.comm: best_dist = dist best_ratio = ratio new_tour = tour[:index + 1] + [city] + tour[index + 1:] tour_index = tours.index(tour) city1 = city ##print best_dist ##print city1 return best_dist, new_tour, tour_index,city1 ##print unass def samedis(self,tours,tourslength,veh,vehlength): c=0.5 d=0.5 t=1 for tour1 in tours: if len(tour1)!=2: i=1 while (i<len(tour1)-1): ##print(len(tour1)) ##print("!@#!") for j in range(0,t): if tour1 in veh[j]: o=j p=veh[j].index(tour1) b=vehlength[j] ##print veh ##print b,"s" best_dist = self.add(tour1[i-1], tour1[i+1], tour1[i]) h=best_dist best_ratio = c*best_dist + d*(b) #print best_dist,best_ratio,"sss" #print "ddd" ##print("!!!!") for tour in tours: for j in range(0,t): if tour in veh[j]: a=vehlength[j] w=j s=veh[j].index(tour) ##print("******") if tour != tour1 and len(tour)!=2 : ##print a for index in range(len(tour) - 1): ##print tour ##print index dist = self.add(tour[index], tour[index + 1], tour1[i]) #print dist ##print dist ratio = c*dist + d*(a+dist) if ratio < best_ratio and (tourslength[tours.index(tour)]+dist)<self.Q: best_dist = dist w1=w s1=s new_tour = tour[:index + 1] + [tour1[i]] + tour[index + 1:] tour_index = tours.index(tour) best_ratio = c*best_dist + d*(a+dist) #print best_dist,"fff" #print new_tour,best_ratio #print c*best_dist + d*(b) if best_ratio < c*h + d*(b): ##print veh tours[tour_index]=new_tour #print tours[tour_index] tourslength[tour_index]+= best_dist veh[w1][s1]=new_tour vehlength[w1]+=best_dist ##print veh tourslength[tours.index(tour1)]-=self.add(tour1[i-1], tour1[i + 1], tour1[i]) ##print o,i ##print vehlength[o] vehlength[o]-=self.add(tour1[i-1], tour1[i + 1], tour1[i]) #print veh #print tour1 veh[o][p].remove(tour1[i]) #print tour1 #print veh if (len(tour1)==2): vehlength[o]-=self.distances[tour1[0]][tour1[1]] #tour1.remove(tour1[i]) #print veh else: i+=1 ##print self.distances ##print(i) return tours, tourslength,veh,vehlength def perp_dist(self,a,b): dist = abs(self.coords[a][0]-self.coords[b][0])+abs(self.coords[a][1]-self.coords[b][1]) return dist def depot_array(self,denum,unass): depot=[] x=self.comm for i in range(0,len(unass)): depot.append([]) for i in range(0,denum): for f in range(0,len(unass)): k=0 for j in unass[f]: if abs(self.coords[i][0]-self.coords[j][0])<=x and abs(self.coords[i][1]-self.coords[j][1])<=x: k+=1 print(j,i,"ss",k) if k==len(unass[f]): depot[f].append(i) return depot def depot_path(self,depot1,depot2,depot3,depot4): depot_path=[] depot_insec=[] depot=[depot1,depot2,depot3,depot4] for i in range(0,len(depot)-1): b=float('inf') for j in range(0,len(depot[i])): for k in range(0,len(depot[i+1])): a=self.perp_dist(depot[i][j],depot[i+1][k]) if a==0: g=depot[i][j] elif a<b: b=a f=depot[i][j] if i==0: depot_path.append(g) depot_insec.append(g) if i!=0: depot_path.append(f) depot_path.append(g) depot_insec.append(g) return depot_path,depot_insec def closest_city(self,unass,city): best_dist=float('inf') closest=None for x in unass: dist=self.distances[city][x] #print dist,x if dist<best_dist: best_dist=dist #print "s" closest=x return closest,best_dist def intersection(self,a,b): for i in a: for j in b: if i==j: x=i return x def cheapest_insertion(self): denum=self.denum comm=self.comm dist=self.sqr grid=self.grid #c=1 g=None ##print a #tour = [0,a] c=[] d=[] depot_dist=[] gr=4 depot_insec=[] total_len=0 prevcdep=None same_y=[] l=len(self.coords) tourslength=[] tours=[] unass2=[] #tourslength.append(0) qqq=[] ppp= self.cities[denum:l] for i in range(0,int (ceil(dist/comm)**2)): unass2.append([]) for i in range(0,int(ceil(dist/comm))): if i%2==0: for j in range(0,int(ceil(dist/comm))): qqq.append([i,j]) else: for j in range(0,int (ceil(dist/comm))): qqq.append([i,int (ceil(dist/comm))-j-1]) print qqq for k in self.cities[denum:l]: a=self.coords[k][0] b=self.coords[k][1] #print k,a,b for i in range(0,int(ceil(dist/comm))): for j in range(0,int(ceil(dist/comm))): print k,a,b,comm*i-(dist/2), comm*(i+1)-(dist/2) if b>=comm*i-(dist/2) and b<=comm*(i+1)-(dist/2): if a>=comm*j-(dist/2) and a<=comm*(j+1)-(dist/2): if k in ppp: #print "s" unass2[qqq.index([i,j])].append(k) ppp.remove(k) print unass2 print ppp #print unass4,"4" #unass2=[unass1,unass22,unass3,unass4] depot=self.depot_array(denum,unass2) depot1=depot[0] depot2=depot[1] depot3=depot[2] depot4=depot[3] #depot=[depot1,depot2,depot3,depot4] print depot depot_insec.append(self.intersection(depot1,depot2)) depot_insec.append(self.intersection(depot2,depot3)) depot_insec.append(self.intersection(depot3,depot4)) depot_insec.append(self.intersection(depot4,depot1)) dep=[] for i in depot: dep.append([]) for j in i: for k in i: dep[-1].append([j,k]) tours.append([j,k]) c.append(self.distances[k][depot_insec[depot.index(i)]]) d.append(self.distances[k][depot_insec[depot.index(i)-1]]) tourslength.append(self.distances[j][k]) unass=self.cities[denum:l] tours2=tours[:] for i in range(0,len(tours)): depot_dist.append(min(c[i],d[i])) f=0 while len(unass)!=0: length, tour, index, city1 = self.add_closest_to_tour(tours,tourslength,unass,depot_dist) print tours,depot_dist,index,len(unass) if f==0 : for i in depot: if tour[0] in i and tour[-1] in i: x=depot_insec[depot.index(i)] y=depot_insec[depot.index(i)-1] break if tour[-1] not in depot_insec: if c[index]<d[index]: depot_dist=c[:] #print c p=x g=True else: depot_dist=d[:] p=y g=False tours[index]=tour tourslength[index]+=length unass.remove(city1) a=tourslength o=depot_dist ##print tours i=0 while i<len(tours): tour2=tours[i] ##print tour2 i+=1 if (len(tour2)==2): del depot_dist[tours.index(tour2)] #print c tourslength.remove(a[tours.index(tour2)]) tours.remove(tour2) i-=1 #print c #print d if c[index]<d[index]: p=x tours.append([tour[-1],p]) depot_dist.append(c[tours2.index(tours[-1])]) tourslength.append(self.distances[tour[-1]][p]) tours.append([tour[-1],tour[-1]]) tourslength.append(self.distances[tour[-1]][tour[-1]]) depot_dist.append(c[tours2.index(tours[-1])]) else: p=y tours.append([tour[-1],p]) tourslength.append(self.distances[tour[-1]][p]) depot_dist.append(d[tours2.index(tours[-1])]) tours.append([tour[-1],tour[-1]]) tourslength.append(self.distances[tour[-1]][tour[-1]]) depot_dist.append(d[tours2.index(tours[-1])]) else: for i in unass2: if tour[1] in i: unindex=unass2.index(i) #print unindex,unass2[unindex] if unindex==depot_insec.index(tour[-1]): depot_dist=c[:] g = True p=x else: depot_dist=d[:] g = False p=y tours[index]=tour tourslength[index]+=length unass.remove(city1) a=tourslength o=depot_dist ##print tours i=0 while i<len(tours): tour2=tours[i] ##print tour2 i+=1 if (len(tour2)==2): del depot_dist[tours.index(tour2)] #print c tourslength.remove(a[tours.index(tour2)]) tours.remove(tour2) i-=1 """ if g is True: p=x tours.append([tour[-1],p]) depot_dist.append(c[tours2.index(tours[-1])]) tourslength.append(self.distances[tour[-1]][p]) tours.append([tour[-1],tour[-1]]) tourslength.append(self.distances[tour[-1]][tour[-1]]) depot_dist.append(c[tours2.index(tours[-1])]) else: p=y tours.append([tour[-1],p]) tourslength.append(self.distances[tour[-1]][p]) depot_dist.append(d[tours2.index(tours[-1])]) tours.append([tour[-1],tour[-1]]) tourslength.append(self.distances[tour[-1]][tour[-1]]) depot_dist.append(d[tours2.index(tours[-1])]) #print depot_dist """ if g is True: for i in range(0,len(depot_dist)): depot_dist[i]=self.distances[tours[i][-1]][depot_insec[unindex+1]] j=tour[-1] for k in depot[unindex+1]: tours.append([j,k]) tourslength.append(self.distances[j][k]) depot_dist.append(self.distances[k][depot_insec[unindex+1]]) if g is False: for i in range(0,len(depot_dist)): depot_dist[i]=self.distances[tours[i][-1]][depot_insec[unindex-2]] j=tour[-1] for k in depot[unindex-1]: tours.append([j,k]) tourslength.append(self.distances[j][k]) depot_dist.append(self.distances[k][depot_insec[unindex-2]]) #print depot_dist,tours,g if index!=None and f>0 : #print tours tours[index]=tour tourslength[index]+=length if len(tour)==3: if tours[-1]!=tour: tours.insert(index+1,[tour[0],tour[-1]]) depot_dist.insert(index+1,depot_dist[index]) tourslength.insert(index+1,self.distances[tour[0]][tour[-1]]) c=tour[0] d=tour[-1] print c,d for j in depot: if c in j and d in j : u=depot.index(j) break print depot[u] for i in depot[u]: if [c,i] in tours and i!=c: del tourslength[tours.index([c,i])] del depot_dist[tours.index([c,i])] #print vehlengths tours.remove([c,i]) unass.remove(city1) jj=0 if index==None: jj+=1 if jj==2: break a=tourslength o=depot_dist ##print tours i=0 while i<len(tours): tour2=tours[i] ##print tour2 i+=1 if (len(tour2)==2): del depot_dist[tours.index(tour2)] tourslength.remove(a[tours.index(tour2)]) tours.remove(tour2) i-=1 if g is True: for i in tours: if i[0]!=i[-1]: b=i[-1] for h in depot_insec: if b==h: q=depot_insec.index(h) break f=q+1 if q==3: f=0 for k in depot[f]: tours.append([b,k]) tourslength.append(self.distances[k][b]) depot_dist.append(self.distances[k][depot_insec[f]]) if g is False: for i in tours: if i[0]!=i[-1]: b=i[-1] for h in depot_insec: if b==h: q=depot_insec.index(h) break for k in depot[q]: tours.append([b,k]) tourslength.append(self.distances[k][b]) depot_dist.append(self.distances[k][depot_insec[q-1]]) f+=2 for i in tours: if len(i)==2: del tourslength[tours.index(i)] tours.remove(i) total=0 totaltour=0 for i in range(0,len(tourslength)): totaltour+=tourslength[i] total=totaltour for i in range(0,len(tours)-1): if tours[i+1][0]==tours[i][-1]: total+=self.perp_dist(tours[i][0],tours[i][-1]) xx=[] yy=[] for i in self.cities: xx.append(self.coords[i][0]+dist/2) yy.append(self.coords[i][1]+dist/2) return tours,tourslength,totaltour,total,depot_dist,xx,yy def plot (self,tours): b = ['r','b','g','c'] j=0 for tour in tours: if len(tour)!=2: for i in range (0,len(tour)-1): if i != len(self.coords)-1: plt.plot([self.coords[tour[i]][0], self.coords[tour[i+1]][0]],[self.coords[tour[i]][1],self.coords[tour[i+1]][1]], b[j]) #plt.show(block=False) if j<3: j+=1 else: j=0 x=[] y=[] c=['bs','rs','gs','cs','ms'] for i in range(0,len(self.coords)): x.append(self.coords[i][0]) y.append(self.coords[i][1]) plt.plot(self.coords[i][0],self.coords[i][1],'rs') #plt.show() #r= BaseAlgorithm() xxx= 'QGC WPL 110\r\n' import utm #from math import * import numpy as np file = open("mission.txt","r") a=file.readlines() file.close() lat=[] lon=[] #xx+=a[2] if a[1][1]=='\t': print "s" j=0 print a index=None for k in a: if a.index(k)!=0: j=0 lat1='s' lon1='s' for i in range (0,len(k)): if k[i]=='\t': j+=1 print j if j==8: index=i break for i in range(index+1,len(k)): if k[i]=='\t': index=i break lat1+=k[i] for i in range(index+1,len(k)): if k[i]=='\t': #index=i break lon1+=k[i] print k print index lat.append(float(lat1[1:])) lon.append(float(lon1[1:])) print lat print lon e2,n2,aa,bb = utm.from_latlon(lat[1],lon[1]) e1,n1,_,_ = utm.from_latlon(lat[0],lon[0]) angle= atan2(n2-n1,e2-e1) dist=np.hypot(e2-e1,n2-n1) def takeoff(lat,lon): return '\t0\t3\t22\t0\t5\t0\t0\t' + str(lat) +'\t'+ str(lon) + '\t20\t1\r\n' def waypoint(lat,lon): return '\t0\t3\t16\t0\t5\t0\t0\t' + str(lat) +'\t'+ str(lon) + '\t20\t1\r\n' def land(lat,lon): return '\t0\t3\t21\t0\t5\t0\t0\t' + str(lat) +'\t'+ str(lon) + '\t20\t1\r\n' def utm1(x,y,e1,n1,angle): x1=x*cos(angle)-y*sin(angle) y1=x*sin(angle)+y*cos(angle) x1+=e1 y1+=n1 #print x1,y1 lat,lon= utm.to_latlon(x1,y1,aa,bb) return lat,lon print dist x= TourConstructionHeuristics(dist=dist,grid=20,comm=dist/2,Q=300) tours,lengths,totaltour,total,depot_dist,xx,yy=x.cheapest_insertion() print tours print lengths print totaltour print total print depot_dist x.plot(tours) plt.show() totaltour=[totaltour] veh=[tours] tours1, lengths1,veh1,vehlength1 = x.samedis(tours,lengths,veh,totaltour) print tours1 print lengths1 print veh1 print vehlength1 b = ['r','b','g','c','m','y'] for i in range(0,1): x.plot(veh1[i]) plt.show() tours1, lengths1,veh1,vehlength1 = x.samedis(tours1,lengths1,veh1,vehlength1) print tours1 print lengths1 print veh1 print vehlength1 b = ['r','b','g','c','m','y'] for i in range(0,1): x.plot(veh1[i]) plt.show() k=0 for i in tours1: for j in range(0,len(i)): if j==0: lat,lon=utm1(xx[i[j]],yy[i[j]],e1,n1,angle) xxx+=str(k)+takeoff(lat,lon) k+=1 elif j== len(i)-1: lat,lon=utm1(xx[i[j]],yy[i[j]],e1,n1,angle) xxx+=str(k)+land(lat,lon) k+=1 else: lat,lon=utm1(xx[i[j]],yy[i[j]],e1,n1,angle) xxx+=str(k)+waypoint(lat,lon) k+=1 file=open("mission1.txt","w") file.write(xxx) file.close() """ tours,lengths,total=x.greedy2() print tours print lengths print total total=[total] veh=[tours] x.plot(tours) plt.show() tours1, lengths1,veh1,vehlength1 = x.samedis(tours,lengths,veh,total) print tours1 print lengths1 print veh1 print vehlength1 b = ['r','b','g','c','m','y'] for i in range(0,1): x.plot(veh1[i]) plt.show() """ """mission planer qground control dronecode for i in range(0,denum): for j in range(0,denum): if ([i,j]in tours or [j,i]in tours): continue else: tours.append([i,j]) tourslength.append(self.distances[i][j]) vehlengths.append(0)"""
import re as regex from PyInquirer import style_from_dict, Token, ValidationError, Validator CUSTOM_STYLE = style_from_dict({ Token.Separator: '#6C6C6C', Token.QuestionMark: '#FF9D00 bold', Token.Selected: '#5F819D', Token.Pointer: '#FF9D00 bold', Token.Answer: '#5F819D bold', }) STATES_LIST = ['AL', 'AK', 'AS', 'AZ', 'AR', 'CA', 'CO', 'CT', 'DE', 'DC', 'FL', 'GA', 'GU', 'HI', 'ID', 'IL', 'IN', 'IA', 'KS', 'KY', 'LA', 'ME', 'MD', 'MA', 'MI', 'MN', 'MS', 'MO', 'MT', 'NE', 'NV', 'NH', 'NJ', 'NM', 'NY', 'NC', 'ND', 'MP', 'OH', 'OK', 'OR', 'PA', 'PR', 'RI', 'SC', 'SD', 'TN', 'TX', 'UT', 'VT', 'VI', 'VA', 'WA', 'WV', 'WI', 'WY'] class PhoneNumberValidator(Validator): def validate(self, document): ok = regex.match( r'^([01]{1})?[-.\s]?\(?(\d{3})\)?[-.\s]?(\d{3})[-.\s]?(\d{4})\s?((?:#|ext\.?\s?|x\.?\s?){1}(?:\d+)?)?$', document.text) if not ok: raise ValidationError( message='Please enter a valid phone number', cursor_position=len(document.text)) # Move cursor to end class EmailValidator(Validator): def validate(self, document): ok = "@" in document.text if not ok: raise ValidationError( message='Please enter a valid email', cursor_position=len(document.text)) # Move cursor to end class NotBlankValidator(Validator): def validate(self, document): ok = len(document.text) > 0 if not ok: raise ValidationError( message='Please do not enter a null field.', cursor_position=len(document.text)) # Move cursor to end class ZipCodeValidator(Validator): def validate(self, document): ok = regex.match(r'^[\d]{5}(?:-[\d]{4})?$', document.text) if not ok: raise ValidationError( message='Please do not enter a null field.', cursor_position=len(document.text)) # Move cursor to end class StateValidator(Validator): def validate(self, document): ok = document.text in STATES_LIST if not ok: raise ValidationError( message='Please do not enter a null field.', cursor_position=len(document.text)) # Move cursor to end LOAD_SETTINGS = [ { 'type': 'confirm', 'name': 'useSaved', 'message': 'Do you have settings saved here?' }, { 'type': 'input', 'name': 'loadFile', 'message': 'Enter a filename to load settings from:', 'when': lambda answers: answers['useSaved'] == True, 'validate': NotBlankValidator }, { 'type': 'input', 'name': 'quantity', 'message': 'How many times do you want to run the script?', 'validate': NotBlankValidator } ] QUESTIONS = [ { 'type': 'list', 'name': 'cardProvider', 'message': 'Export Privacy, Stripe or your own cards?', 'choices': ['Privacy', 'Stripe', 'Own'], 'filter': lambda val: val.lower() }, { 'type': 'input', 'name': 'ownImport', 'message': 'What is the filename of the csv import?', 'when': lambda answers: answers['cardProvider'] == 'own' }, { 'type': 'input', 'name': 'privacyEmail', 'message': 'What is your Privacy email?', 'validate': EmailValidator, 'when': lambda answers: answers['cardProvider'] == 'privacy' }, { 'type': 'password', 'name': 'privacyPassword', 'message': 'What is your Privacy password?', 'when': lambda answers: answers['cardProvider'] == 'privacy', 'validate': NotBlankValidator }, { 'type': 'list', 'name': 'privacyUnused', 'message': 'Would you like to get only unused Privacy cards, or all?', 'choices': ['Unused', 'All'], 'filter': lambda val: val.lower(), 'when': lambda answers: answers['cardProvider'] == 'privacy' }, { 'type': 'input', 'name': 'stripeToken', 'message': 'What is your Stripe secret token?', 'when': lambda answers: answers['cardProvider'] == 'stripe', 'validate': NotBlankValidator }, { 'type': 'list', 'name': 'stripeNewCards', 'message': 'Would you like to create new Stripe cards, or just get the existing ones?', 'choices': ['New', 'Preexisting'], 'filter': lambda val: val.lower(), 'when': lambda answers: answers['cardProvider'] == 'stripe' }, { 'type': 'input', 'name': 'stripeCardholderPreexisting', 'message': 'Enter a cardholder id for the cards you want to get. (or leave blank for all)', 'when': lambda answers: answers.get('stripeNewCards', "") == 'preexisting' }, { 'type': 'input', 'name': 'stripeValue', 'message': 'How many Stripe cards would you like to create?', 'when': lambda answers: answers.get('stripeNewCards', "") == 'new', 'validate': NotBlankValidator }, { 'type': 'input', 'name': 'stripeCardholder', 'message': 'Enter a cardholder id which you would like to create new cards under. (or leave blank for new cardholders)', 'when': lambda answers: answers.get('stripeNewCards', "") == 'new' }, { 'type': 'list', 'name': 'export', 'message': 'Which style would you like the cards exported in?', 'choices': ['EzMode', 'Wop', 'Hayha'], 'filter': lambda val: val.lower() }, { 'type': 'input', 'name': 'wopWebhook', 'message': 'Enter a webhook to use for tasks (or leave blank)', 'when': lambda answers: answers.get('export', "") == 'wop' }, { 'type': 'input', 'name': 'wopProxy', 'message': 'Enter a proxy to use for tasks (or leave blank)', 'when': lambda answers: answers.get('export', "") == 'wop' }, { 'type': 'input', 'name': 'hayhaGroupID', 'message': 'Enter a group ID from the Hayha Export', 'when': lambda answers: answers.get('export', "") == 'hayha' }, { 'type': 'input', 'name': 'email', 'message': 'Enter an email (or catchall with @catchall.com) to use for creating profiles.', 'validate': EmailValidator }, { 'type': 'input', 'name': 'emailPrefix', 'message': 'Enter an email prefix for your catchall, otherwise leave blank and one will be generated randomly.', 'when': lambda answers: answers['email'][0] == "@" }, { 'type': 'confirm', 'name': 'addressJig', 'message': 'Do you need address line 1 jigging?', }, { 'type': 'confirm', 'name': 'addressJig2', 'message': 'Do you need address line 2 jigging?', }, { 'type': 'confirm', 'name': 'phoneJig', 'message': 'Do you need phone jigging?' }, { 'type': 'input', 'name': 'firstNames', 'message': 'Enter a comma separated list of first names to use for jigging. (alternatively, enter 1 name for no jigging.)', 'validate': NotBlankValidator }, { 'type': 'input', 'name': 'lastNames', 'message': 'Enter a comma separated list of last names to use for jigging. (alternatively, enter 1 name for no jigging.)', 'validate': NotBlankValidator }, { 'type': 'input', 'name': 'addressLine1', 'message': 'Enter line 1 of an address to use for creating profiles.', 'validate': NotBlankValidator }, { 'type': 'input', 'name': 'addressLine2', 'message': 'Enter line 2 of an address to use for creating profiles. (Leave blank for none)', }, { 'type': 'input', 'name': 'city', 'message': 'Enter a city to use for profiles.', 'validate': NotBlankValidator }, { 'type': 'input', 'name': 'state', 'message': 'Enter a state to use for profiles (two letter code)', 'validate': StateValidator }, { 'type': 'input', 'name': 'zipCode', 'message': 'Enter a zip code to use for profiles.', 'validate': ZipCodeValidator }, { 'type': 'input', 'name': 'phoneNumber', 'message': 'Enter a phone number to use for profiles.', 'validate': PhoneNumberValidator } ] CHECK_SETTINGS = [ { 'type': 'confirm', 'name': 'settingsOkay', 'message': 'Do these settings look good?', } ] SAVE_SETTINGS = [ { 'type': 'confirm', 'name': 'saveSettings', 'message': 'Would you like to save these settings for future use?', }, { 'type': 'input', 'name': 'saveFile', 'message': 'Enter a filename to save settings to:', 'when': lambda answers: answers['saveSettings'] == True } ]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import random random.seed(42) import numpy as np np.random.seed(42) import matplotlib.pyplot as plt import cvxpy as cp from sklearn_lvq import GmlvqModel, LgmlvqModel from sklearn.metrics import roc_auc_score from sklearn.model_selection import train_test_split from sklearn.preprocessing import OneHotEncoder from plotting import plot_distmat, plot_distmats_boxplot def encode_labels(y_test, y_pred): enc = OneHotEncoder(categories="auto") enc.fit(y_test) return enc.transform(y_test).toarray(), enc.transform(y_pred).toarray() def compute_change_in_distmat_gmlvq(model, x_orig, y_target): # Compute change of metric Omega = np.dot(model.omega_.T, model.omega_) o_new = None o_new_dist = float("inf") n_dim = x_orig.shape[0] X = cp.Variable((n_dim, n_dim), PSD=True) # Search for suitable prototypes target_prototypes = [] other_prototypes = [] for p, l in zip(model.w_, model.c_w_): if l == y_target: target_prototypes.append(p) else: other_prototypes.append(p) # For each target prototype: Construct a mathematical program for p_i in target_prototypes: # Build constraints constraints = [] for p_j in other_prototypes: constraints.append(-2. * x_orig.T @ X @ (p_i - p_j) + p_i.T @ X @ p_i - p_j.T @ X @ p_j <= 0) # Build costfunction f = cp.Minimize(cp.norm1(X - Omega)) #f = cp.Minimize(cp.norm2(X - Omega)) prob = cp.Problem(f, constraints) # Solve problem prob.solve(solver=cp.SCS, verbose=False) Omega_new = X.value # Validate distance matrix y_pred = None min_dist = float("inf") for p, l in zip(model.w_, model.c_w_): d = np.dot((p - x_orig), np.dot(Omega_new, (p - x_orig))) if d < min_dist: min_dist = d y_pred = l if y_pred == y_target: d = np.linalg.norm(Omega - Omega_new, 1) if d < o_new_dist: o_new_dist = d o_new = Omega_new if o_new is not None: return [o_new] else: #print("Did not find a counterfactual metric") return [] def compute_change_in_distmat_lgmlvq(model, x_orig, y_target): # Compute change of metric epsilon = 1e-5 Omegas = [] n_dim = x_orig.shape[0] X = cp.Variable((n_dim, n_dim), PSD=True) # Search for suitable prototypes model_omegas = [np.dot(o.T, o) for o in model.omegas_] target_prototypes = [] target_omegas = [] other_prototypes = [] other_omegas = [] for p, l, o in zip(model.w_, model.c_w_, model_omegas): if l == y_target: target_prototypes.append(p) target_omegas.append(o) else: other_prototypes.append(p) other_omegas.append(o) # For each target prototype: Construct a mathematical program for p_i, o_i in zip(target_prototypes, target_omegas): # Build constraints constraints = [] for p_j, o_j in zip(other_prototypes, other_omegas): constraints.append(x_orig @ X @ x_orig - 2. * x_orig.T @ X @ p_i + p_i.T @ X @ p_i - x_orig.T @ o_j @ x_orig + 2. * x_orig.T @ o_j @ p_j - p_j.T @ o_j @ p_j + epsilon <= 0) # Build costfunction f = cp.Minimize(cp.norm1(X - o_i)) #f = cp.Minimize(cp.norm2(X - o_i)) prob = cp.Problem(f, constraints) # Solve problem prob.solve(solver=cp.MOSEK, verbose=False) Omega_new = X.value # Validate distance matrix y_pred = None min_dist = float("inf") for p, l, o in zip(model.w_, model.c_w_, model_omegas): d = np.dot((p - x_orig), np.dot(o, (p - x_orig))) if np.array_equal(p, p_i): d = np.dot((p - x_orig), np.dot(Omega_new, (p - x_orig))) if d < min_dist: min_dist = d y_pred = l print("Prediction under new distance matrix: {0}".format(y_pred)) if y_pred == y_target: Omegas.append((Omega_new, o_i)) # Plot matrices for o_new, o in Omegas: print(o) print(o_new) print("L1-distance to original matrix: {0}".format(np.linalg.norm(o - o_new, 1))) plot_distmat(o - o_new) if __name__ == "__main__": ############################################################################################################################################### # TOY-DATASET: An unimportant feature becomes important! # Create data set n_samples = 50 X = np.hstack((np.random.uniform(0, 5, n_samples).reshape(-1, 1), np.array([0 for _ in range(n_samples)]).reshape(-1, 1))) y = [0 for _ in range(n_samples)] X = np.vstack((X, np.hstack((np.random.uniform(7, 12, n_samples).reshape(-1, 1), np.array([5 for _ in range(n_samples)]).reshape(-1, 1))))) y += [1 for _ in range(n_samples)] y = np.array(y) from plotting import plot_classification_dataset, export_as_png plot_classification_dataset(X, y, show=False) export_as_png("toydata.png") # Fit model model = GmlvqModel(prototypes_per_class=1, random_state=4242) model.fit(X, y) # Evaluate y_pred = model.predict(X) y_, y_pred_ = encode_labels(y.reshape(-1, 1), y_pred.reshape(-1, 1)) print("ROC-AUC: {0}".format(roc_auc_score(y_, y_pred_, average="weighted"))) print("Omega\n{0}".format(np.dot(model.omega_.T, model.omega_))) print() # Compute counterfactual metric x_orig = np.array([10.0, 0]) y_target = 1 Omega_cf = compute_change_in_distmat_gmlvq(model, x_orig, y_target)[0] print("Omega_cf\n{0}".format(Omega_cf)) plot_distmat(np.abs(np.dot(model.omega_.T, model.omega_)), show=False) export_as_png("omega.png") plot_distmat(np.abs(Omega_cf), show=False) export_as_png("omegacf.png") #plot_distmats_boxplot(np.abs(np.dot(model.omega_.T, model.omega_))) #plot_distmats_boxplot(np.abs(Omega_cf)) ##################################################################################################################################################
site_configuration = { 'systems': [ { 'name': 'dt', 'descr': 'Dardel test nodes', 'hostnames': ['dt\d.pdc.kth.se'], 'modules_system': 'lmod', 'partitions': [ { 'name': 'cpu', 'descr': 'CPU on dt0', 'scheduler': 'squeue', 'launcher': 'srun', 'access': ['-w dt0', '--exclusive'], 'environs': ['PrgEnv-cray'], 'processor': { 'num_cpus': 256, 'num_cpus_per_core': 2, 'num_cpus_per_socket': 128, 'num_sockets': 2 } }, { 'name': 'gpu', 'descr': 'GPUs on dt2', 'scheduler': 'squeue', 'launcher': 'srun', 'access': ['-w dt2', '--exclusive'], 'environs': ['PrgEnv-cray'], 'modules': ['rocm/rocm', 'craype-accel-amd-gfx908'], 'devices': [ { 'type': 'gpu', 'arch': 'amd', 'num_devices': 2 } ], 'extras': { 'select_device': './rocm_select_gpu_device' }, 'variables': [ ['MPICH_GPU_SUPPORT_ENABLED', '1'] ] } ], 'prefix': '/dt1/${USER}/reframe' }, { 'name': 'github-actions', 'descr': 'Github Actions runner', 'hostnames': ['*'], 'partitions': [ { 'name': 'cpu', 'scheduler': 'local', 'launcher': 'mpirun', 'max_jobs': 1, 'processor': { 'num_cpus': 2, 'num_cpus_per_core': 1, 'num_cpus_per_socket': 2, 'num_sockets': 1 }, 'environs': ['default'] } ] }, ], 'environments': [ { 'name': 'PrgEnv-cray', 'modules': ['PrgEnv-cray'], 'cc': 'cc', 'cxx': 'CC', 'ftn': 'ftn', 'target_systems': ['dt'] }, { 'name': 'default', 'cc': 'mpicc', 'cxx': 'mpicxx', 'ftn': 'mpif90' }, ], 'logging': [ { 'handlers': [ { 'type': 'stream', 'name': 'stdout', 'level': 'info', 'format': '%(message)s' }, { 'type': 'file', 'level': 'debug', 'format': '[%(asctime)s] %(levelname)s: %(check_info)s: %(message)s', 'append': False } ], 'handlers_perflog': [ { 'type': 'filelog', 'prefix': '%(check_system)s/%(check_partition)s', 'level': 'info', 'format': ( '%(check_job_completion_time)s|reframe %(version)s|' '%(check_info)s|jobid=%(check_jobid)s|' '%(check_perf_var)s=%(check_perf_value)s|' 'ref=%(check_perf_ref)s ' '(l=%(check_perf_lower_thres)s, ' 'u=%(check_perf_upper_thres)s)|' '%(check_perf_unit)s' ), 'append': True } ] } ], 'general': [ { 'timestamp_dirs': '%FT%T', } ], }
import random name_list = input("Names Seperated by comma. \n").split(", ") print(f"{name_list[random.randint(0, len(name_list) - 1)]}")
import ete3 import sys import os sys.path.insert(0, os.path.join("tools", "msa_edition")) import read_msa random_alignment_format = "fasta" def create_random_tree(msa_file, output_file): global random_alignment_format msa = read_msa.read_msa(msa_file) tree = ete3.Tree() tree.populate(len(msa.get_entries())) leaves = tree.get_leaves() index = 0 for entry in msa.get_entries(): leaves[index].add_feature("name", entry[0]) index += 1 tree.write(outfile=output_file, format=1) def create_random_tree_from_species(species): tree = ete3.Tree() tree.populate(len(species)) leaves = tree.get_leaves() index = 0 for s in species: leaves[index].name = s index += 1 return tree def create_random_tree_from_tree(tree_file, output_file = None): tree = ete3.Tree(tree_file) species = tree.get_leaf_names() random_tree = create_random_tree_from_species(species) if (None != output_file): random_tree.write(outfile = output_file) return random_tree def create_random_tree_taxa_number(taxa_number): species = [] for i in range(0, taxa_number): species.append("hCoV-19/Australia/NSW14/2020|EPI_ISL_" + str(i) + "|2020-03-03") #species.append("HCOV-19_CHINA_2020012" + str(i) + "_EPI_ISL_" + str(i) ) return create_random_tree_from_species(species) if (__name__ == "__main__"): if (len(sys.argv) != 3): print("Syntax: python create_random_tree.py msa output_random_tree") sys.exit(1) msa_file = sys.argv[1] output_file = sys.argv[2] create_random_tree(msa_file, output_file)
""" FENICS script for solving the thermal Biot system using mixed elements with monolithic solver Author: Mats K. Brun """ #from fenics import * #from dolfin.cpp.mesh import * #from dolfin.cpp.io import * from dolfin import * import numpy as np import sympy as sy # <editor-fold desc="Parameters"> dim = 2 # spatial dimension eps = 10.0E-6 # error tolerance T_final = 1. # final time number_of_steps = 10 # number of steps dt = T_final / number_of_steps # time step alpha = 1. # Biot's coeff beta = 1. # thermal coeff c0 = 1. # Biot modulus a0 = 1. # thermal coeff2 b0 = 1. # coupling coeff K = 1. # permeability Th = 1. # th conductivity lambd = 1. # Lame param 1 mu = 1. # Lame param 2 cr = alpha**2/(mu + lambd) ar = beta**2/(mu + lambd) br = alpha*beta/(mu + lambd) # </editor-fold> # <editor-fold desc="Exact solutions and RHS"> # Define variables used by sympy x0, x1, ti = sy.symbols('x[0], x[1], t') # Exact solutions pres = ti*x0*(1. - x0)*x1*(1. - x1) # pressure temp = ti*x0*(1. - x0)*x1*(1. - x1) # temperature disp1 = ti*x0*(1. - x0)*x1*(1. - x1) # displacement comp 1 disp2 = ti*x0*(1. - x0)*x1*(1. - x1) # displacement comp 2 pres_x = sy.diff(pres, x0) pres_y = sy.diff(pres, x1) df1 = - K*pres_x # Darcy flux comp 1 df2 = - K*pres_y # Darcy flux comp 2 temp_x = sy.diff(temp, x0) temp_y = sy.diff(temp, x1) hf1 = - Th*temp_x # heat flux comp 1 hf2 = - Th*temp_y # heat flux comp 2 # partial derivatives disp1_x = sy.diff(disp1, x0) disp1_y = sy.diff(disp1, x1) disp1_xx = sy.diff(disp1, x0, x0) disp1_yy = sy.diff(disp1, x1, x1) disp1_xy = sy.diff(disp1, x0, x1) disp2_x = sy.diff(disp2, x0) disp2_y = sy.diff(disp2, x1) disp2_xx = sy.diff(disp2, x0, x0) disp2_yy = sy.diff(disp2, x1, x1) disp2_xy = sy.diff(disp2, x0, x1) df1_x = sy.diff(df1, x0) df2_y = sy.diff(df2, x1) hf1_x = sy.diff(hf1, x0) hf2_y = sy.diff(hf2, x1) # stress sig11 = 2.*mu*disp1_x + lambd*(disp1_x + disp2_y) - alpha*pres - beta*temp sig12 = mu*(disp1_y + disp2_x) sig21 = mu*(disp2_x + disp1_y) sig22 = 2.*mu*disp2_y + lambd*(disp1_x + disp2_y) - alpha*pres - beta*temp # right hand sides F1 = - 2.*mu*(disp1_xx + .5*(disp2_xy + disp1_yy)) \ - lambd*(disp1_xx + disp2_xy) + alpha*pres_x + beta*temp_x F2 = - 2.*mu*(disp2_yy + .5*(disp1_xy + disp2_xx)) \ - lambd*(disp1_xy + disp2_yy) + alpha*pres_y + beta*temp_y h = sy.diff(c0*pres - b0*temp + alpha*(disp1_x + disp2_y), ti) + df1_x + df2_y f = sy.diff(a0*temp - b0*pres + beta*(disp1_x + disp2_y), ti) + hf1_x + hf2_y # simplify expressions pres = sy.simplify(pres) temp = sy.simplify(temp) disp1 = sy.simplify(disp1) disp2 = sy.simplify(disp2) df1 = sy.simplify(df1) df2 = sy.simplify(df2) hf1 = sy.simplify(hf1) hf2 = sy.simplify(hf2) sig11 = sy.simplify(sig11) sig12 = sy.simplify(sig12) sig21 = sy.simplify(sig21) sig22 = sy.simplify(sig22) F1 = sy.simplify(F1) F2 = sy.simplify(F2) h = sy.simplify(h) f = sy.simplify(f) # convert expressions to C++ syntax pres_cc = sy.printing.ccode(pres) temp_cc = sy.printing.ccode(temp) disp1_cc = sy.printing.ccode(disp1) disp2_cc = sy.printing.ccode(disp2) df1_cc = sy.printing.ccode(df1) df2_cc = sy.printing.ccode(df2) hf1_cc = sy.printing.ccode(hf1) hf2_cc = sy.printing.ccode(hf2) sig11_cc = sy.printing.ccode(sig11) sig12_cc = sy.printing.ccode(sig12) sig21_cc = sy.printing.ccode(sig21) sig22_cc = sy.printing.ccode(sig22) F1_cc = sy.printing.ccode(F1) F2_cc = sy.printing.ccode(F2) h_cc = sy.printing.ccode(h) f_cc = sy.printing.ccode(f) # print the exact solutions and RHS print """ Exact solutions as ccode: p = \t %r T = \t %r u1 = \t %r u2 = \t %r w1 = \t %r w2 = \t %r r1 = \t %r r2 = \t %r F1 = \t %r F2 = \t %r h = \t %r f = \t %r """ % (pres_cc, temp_cc, disp1_cc, disp2_cc, df1_cc, df2_cc, hf1_cc, hf2_cc, F1_cc, F2_cc, h_cc, f_cc) # </editor-fold> # <editor-fold desc="Mesh and function spaces"> # generate unit square mesh mesh = UnitSquareMesh(4, 4) mesh_size = mesh.hmax() # finite element space DGxDG = VectorElement('DG', mesh.ufl_cell(), 0) # displacement DG = FiniteElement('DG', mesh.ufl_cell(), 0) # pres and temp BDMxBDM = VectorElement('BDM', mesh.ufl_cell(), 1) # stress RT = FiniteElement('RT', mesh.ufl_cell(), 1) # fluxes # mixed space X = FunctionSpace(mesh, MixedElement(DGxDG, BDMxBDM, DG, RT, DG, RT, DG)) # exact solutions and RHS p_ex = Expression(pres_cc, degree=5, t=0) T_ex = Expression(temp_cc, degree=5, t=0) u_ex = Expression((disp1_cc, disp2_cc), degree=5, t=0) w_ex = Expression((df1_cc, df2_cc), degree=5, t=0) r_ex = Expression((hf1_cc, hf2_cc), degree=5, t=0) sig_ex = Expression(((sig11_cc, sig12_cc), (sig21_cc, sig22_cc)), degree=5, t=0) F = Expression((F1_cc, F2_cc), degree=1, t=0) h = Expression(h_cc, degree=1, t=0) f = Expression(f_cc, degree=1, t=0) #F = Constant((0.0, 1.0)) #h = Constant(1.0) #f = Constant(1.0) # </editor-fold> # <editor-fold desc="BC and IC"> # Define boundary points def boundary(x, on_boundary): return on_boundary # Dirichlet BC for displacement and pressure #bc_su = DirichletBC(X.sub(0), Constant((0.0, 0.0)), boundary) #bc_wp = DirichletBC(X.sub(2), Constant(0.0), boundary) #bc_rt = DirichletBC(X.sub(4), Constant(0.0), boundary) #bcs = [bc_su, bc_wp, bc_rt] # trial and test functions v, tau, q, z, S, y, e = TestFunctions(X) u, sig, p, w, T, r, x = TrialFunctions(X) # initial conditions (homogenous) and previous time-step mf_n = Function(X) u_n, sig_n, p_n, w_n, T_n, r_n, x_n = split(mf_n) # </editor-fold> # <editor-fold desc="Variational form"> # ID matrix Id = Identity(dim) # define symmetric gradient def epsilon(u): return sym(nabla_grad(u)) #return 0.5*(nabla_grad(u) + nabla_grad(u).T) # define compliance tensor def compl(s): return 1/(2*mu)*(s - lambd/2/(mu + lambd)*tr(s)*Id) # skew matrix determined by scalar def skw(r): return as_matrix([[0, r], [-r, 0]]) # Constants for use in var form #dt = Constant(dt) #alpha = Constant(alpha) #beta = Constant(beta) #c0 = Constant(c0) #a0 = Constant(a0) #cr = Constant(cr) #ar = Constant(ar) #b0 = Constant(b0) #br = Constant(br) #K = Constant(K) #Th = Constant(Th) #lambd = Constant(lambd) #mu = Constant(mu) A1 = inner(compl(sig),tau)*dx + dot(u, div(tau))*dx \ + cr/(2*alpha)*p*tr(tau)*dx + ar/(2*beta)*T*tr(tau)*dx A2 = - dot(div(sig), v)*dx A3 = (c0 + cr)*p*q*dx - (b0 - br)*T*q*dx + cr/(2*alpha)*tr(sig)*q*dx + dt*div(w)*q*dx A4 = 1/K*dot(w,z)*dx - p*div(z)*dx A5 = (a0 + ar)*T*S*dx - (b0 - br)*p*S*dx + ar/(2*beta)*tr(sig)*S*dx + dt*div(r)*S*dx A6 = 1/Th*dot(r,y)*dx - T*div(y)*dx A7 = inner(skw(x), tau)*dx + inner(sig, skw(e))*dx L1 = dot(F,v)*dx + h*q*dx + f*S*dx L2 = (c0 + cr)*p_n*q*dx - (b0 - br)*T_n*q*dx + cr/(2*alpha)*tr(sig_n)*q*dx \ + (a0 + ar)*T_n*S*dx - (b0 - br)*p_n*S*dx + ar/(2*beta)*tr(sig_n)*S*dx A = dt*A1 + dt*A2 + A3 + dt*A4 + A5 + dt*A6 + dt*A7 L = dt*L1 + L2 mf = Function(X) # </editor-fold> # Create VTK file for saving solution, .pvd or .xdmf vtkfile_u = File('ThBiot_monolithic/displacement.pvd') vtkfile_s = File('ThBiot_monolithic/stress.pvd') vtkfile_p = File('ThBiot_monolithic/pressure.pvd') vtkfile_w = File('ThBiot_monolithic/darcyFlux.pvd') vtkfile_T = File('ThBiot_monolithic/temp.pvd') vtkfile_r = File('ThBiot_monolithic/energyFlux.pvd') # initialize time t = 0.0 # start computation for i in range(number_of_steps): # update time t += float(dt) p_ex.t = t T_ex.t = t u_ex.t = t w_ex.t = t r_ex.t = t sig_ex.t = t F.t = t h.t = t f.t = t # solve linear system #solve(F == 0, wpu, bcs) #solve(A == L, mf, bcs) solve(A == L, mf) _u_, _sig_, _p_, _w_, _T_, _r_, _x_ = mf.split() # update previous time step mf_n.assign(mf) # Compute errors in L2 norm p_L2 = errornorm(p_ex, _p_, 'L2') T_L2 = errornorm(T_ex, _T_, 'L2') u_L2 = errornorm(u_ex, _u_, 'L2') w_L2 = errornorm(w_ex, _w_, 'L2') r_L2 = errornorm(r_ex, _r_, 'L2') sig_L2 = errornorm(sig_ex, _sig_, 'L2') # print errors print """ \n Errors in L2 norm: \n \t Pressure: \t \t %r \n \t Temperature: \t \t %r \n \t Displacement: \t \t %r \n \t Darcy flux: \t \t %r \n \t Heat flux: \t \t %r \n \t Stress: \t \t %r """ % (p_L2, T_L2, u_L2, w_L2, r_L2, sig_L2) # save to file vtkfile_u << _u_, t vtkfile_s << _sig_, t vtkfile_p << _p_, t vtkfile_w << _w_, t vtkfile_T << _T_, t vtkfile_r << _r_, t # print mesh size print """ \n Mesh size: \n \t %r \n Time step: \n \t %r """ % (mesh_size, dt)
from django.http import HttpResponse, JsonResponse from django.views.decorators.csrf import csrf_protect import numpy as np np.set_printoptions(suppress=True) import pandas as pd from sklearn.cluster import KMeans import json @csrf_protect def predicted(request): if request.method == 'POST': n_clusters = request.GET['n_clusters'] iterate = request.GET['iterate'] tolerance = request.GET['tolerance'] random_state = request.GET['random_state'] trainFile = request.FILES['trainFile'] testFile = request.FILES['testFile'] trainData = pd.read_csv(trainFile).replace(np.nan, 0) kmeans = KMeans(n_clusters=int(n_clusters), init='random', max_iter=int(iterate), tol=float(tolerance), random_state=int(random_state)).fit(trainData) testdata = pd.read_csv(testFile).replace(np.nan, 0) testdata.index.name = 'id' predicted = kmeans.predict(testdata) predicteddf = pd.DataFrame(data=predicted.flatten()) predicteddf.index.name = 'id' final = pd.merge(predicteddf, testdata, on='id') column = list(final.columns) # final.to_csv("E:\\ShivSirProject\\Files\\Predicted.csv") df = pd.DataFrame(final) result = df.to_json(orient="values") parsed = json.loads(result) json_data = [] json_data.append(column) data = [] for row in parsed: data.append(dict(zip(column, row))) json_data.append(data) return JsonResponse(json_data, safe=False)
#!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = 'Hanzhiyun' import functools def log(*arg): def decorator(func): @functools.wraps(func) def wrapper(*args, **kw): if not arg: print('Begin call %s():' % func.__name__) func(*args, **kw) print('End call %s()!' % func.__name__) else: print('%s %s():' % (arg[0], func.__name__)) return func(*args, **kw) return wrapper return decorator @log() def hello(): print('Hello,World!') hello()
# -*- coding: utf-8 -*- """This filters the bookcrossing data http://www.informatik.uni-freiburg.de/~cziegler/BX/ prerequisite: the data is in the folder /BX-SQL-Dump excludes all implicit ratings excludes all users having < 20 ratings writes the dump to .dat files (same format as in the MovieLens files) To use this, import the Bookcrossing data set into MySQL first mysql -u root -p books < BX-Users.sql mysql -u root -p books < BX-Books.sql mysql -u root -p books < BX-Book-Ratings.sql Before doing this, add 'SET autocommit=0;' to the beginnen and 'COMMIT;' to the end of the files to massively speed up importing. Should this not work, try importing the CSV dump as follows: LOAD DATA INFILE "C:\\PhD\\...\\BX-SQL-Dump\\test.csv" IGNORE INTO TABLE `bx-books` COLUMNS TERMINATED BY ';' OPTIONALLY ENCLOSED BY '"' LINES TERMINATED BY '\r\n' IGNORE 1 LINES (`ISBN`, `Book-Title`, `Book-Author`, `Year-of-Publication`, @dummy, @dummy, @dummy, @dummy); """ from __future__ import division, unicode_literals, print_function import collections from BeautifulSoup import BeautifulSoup import urllib import HTMLParser import io import MySQLdb as mdb import operator import os import pandas as pd import pdb from pijnu.library.error import IncompleteParse import random import re import sqlite3 import time import urllib import urllib2 import xml.etree.cElementTree as etree from mediawiki_parser.preprocessor import make_parser as make_prep_parser from mediawiki_parser.text import make_parser def prepare_data(): print('getting ratings...') user, isbn, rating = [], [], [] with open('BX-SQL-Dump/BX-Book-Ratings.csv') as infile: for line in infile: try: line = line.encode('utf-8', 'ignore') except UnicodeDecodeError: # skip ratings with garbage bytes in the ISBN continue parts = line.strip().split(';') parts = [p.strip('"') for p in parts] if parts[-1] == '0': # TODO test run continue user.append(parts[0]) isbn.append(parts[1]) rating.append(parts[2]) # rating.append(1) # TODO test run df_ratings = pd.DataFrame(data=zip(user, isbn, rating), columns=['user', 'isbn', 'rating']) print('getting books...') isbn, title, author, year = [], [], [], [] with open('BX-SQL-Dump/BX-Books.csv') as infile: for line in infile: try: line = line.rsplit('";"', 4)[0].encode('utf-8', 'ignore') except UnicodeDecodeError: continue parts = line.strip().split('";"') parts = [p.strip('"') for p in parts] isbn.append(parts[0]) title.append(parts[1]) author.append(parts[2]) year.append(parts[3]) df_books = pd.DataFrame(data=zip(isbn, title, author, year), columns=['isbn', 'title', 'author', 'year']) print('saving...') df_ratings[['user', 'rating']] = df_ratings[['user', 'rating']].astype(int) df_books['year'] = df_books['year'].astype(int) df_ratings.to_pickle('df_ratings.obj') df_books.to_pickle('df_books.obj') def eliminate_duplicates(): df_ratings = pd.read_pickle('df_ratings.obj') df_books = pd.read_pickle('df_books.obj') print(df_ratings.shape, df_books.shape) # elminate all users with < 5 ratings agg = df_ratings.groupby('user').count() users_to_keep = set(agg[agg['isbn'] >= 5].index) df_ratings = df_ratings[df_ratings['user'].isin(users_to_keep)] # eliminate all books with 0 ratings isbns = set(df_ratings['isbn']) df_books = df_books[df_books['isbn'].isin(isbns)] df_books.index = range(0, df_books.shape[0]) print(df_ratings.shape, df_books.shape) # compute Jaccard distances between titles # df_books = df_books.iloc[:2500] # titles_original = df_books['title'].tolist() # authors = df_books['author'].tolist() # isbns = df_books['isbn'].tolist() # years = df_books['year'].tolist() # titles = [frozenset(t.lower().split(' ')) for t in titles_original] # titles = [t - {'the', 'a', 'an'} for t in titles] # idx2title = {t: i for t, i in enumerate(titles_original)} # idx2author = {t: i for t, i in enumerate(authors)} # idx2isbn = {t: i for t, i in enumerate(isbns)} # idx2year = {t: i for t, i in enumerate(years)} # # merges = collections.defaultdict(list) # for idx1, t1 in enumerate(titles): # print('\r', idx1, '/', len(titles), end=' | ') # for idx2, t2 in enumerate(titles): # if idx2 >= idx1: # continue # jcd = (len(t1 & t2) / len(t1 | t2)) # if jcd >= 0.8: # if idx2year[idx1] != idx2year[idx2]: # continue # merges[idx2isbn[idx1]].append(idx2isbn[idx2]) # if 0.8 <= jcd < 1: # print('%.2f %d %d\n%s (%s)\n%s (%s)\n' % # (jcd, idx1, idx2, idx2title[idx1], idx2author[idx1], # idx2title[idx2], idx2author[idx2])) # duplicates = [[[k] + v] for k, v in merges.items()] # print('\nfound %d duplicates' % len(duplicates)) # # merge all books with identical titles and authors # title_author2isbn = collections.defaultdict(list) # print('finding duplicates...') # for ridx, row in df_books.iterrows(): # print('\r', ridx+1, '/', df_books.shape[0], end='') # key = (row['title'].lower(), row['author'].lower()) # title_author2isbn[key].append(row['isbn']) # print() # duplicates = [sorted(v) for v in title_author2isbn.values() if len(v) > 1] # merge all books with identical titles # df_books = df_books.iloc[:2500] title2isbn = collections.defaultdict(list) print('finding duplicates...') titles = df_books['title'].tolist() titles = [re.sub(r'[\(\),!\.\?\-]', '', t.lower()) for t in titles] titles = [frozenset(t.split(' ')) for t in titles] stopwords = {'the', 'a', 'an', ' ', 'unabridged', 'paperback', 'hardcover'} titles = [t - stopwords for t in titles] for ridx, row in df_books.iterrows(): print('\r', ridx+1, '/', df_books.shape[0], end='') key = titles[ridx] title2isbn[key].append(row['isbn']) print() duplicates = [sorted(v) for v in title2isbn.values() if len(v) > 1] print('merging duplicates...') to_drop = set() for dsidx, ds in enumerate(duplicates): print('\r', dsidx+1, '/', len(duplicates), end='') isbn_keep = ds[0] for d in ds[1:]: df_ratings['isbn'].replace(d, isbn_keep, inplace=True) to_drop.add(d) print() df_books = df_books[~df_books['isbn'].isin(to_drop)] df_ratings.to_pickle('df_ratings_merged.obj') df_books.to_pickle('df_books_merged.obj') def condense_data(user_ratings=5, book_ratings=20): df_ratings = pd.read_pickle('df_ratings_merged.obj') df_books = pd.read_pickle('df_books_merged.obj') df_books = df_books[df_books['year'] > 1500] valid_isbns = set(df_books['isbn']) df_ratings = df_ratings[df_ratings['isbn'].isin(valid_isbns)] old_shape = (0, 0) books_to_keep = 0 while old_shape != df_ratings.shape: print(df_ratings.shape) old_shape = df_ratings.shape agg = df_ratings.groupby('isbn').count() books_to_keep = set(agg[agg['user'] > book_ratings].index) agg = df_ratings.groupby('user').count() users_to_keep = set(agg[agg['isbn'] > user_ratings].index) df_ratings = df_ratings[df_ratings['isbn'].isin(books_to_keep)] df_ratings = df_ratings[df_ratings['user'].isin(users_to_keep)] df_books = df_books[df_books['isbn'].isin(books_to_keep)] print('%d/%d: found %d books with %d ratings' % (user_ratings, book_ratings, len(books_to_keep), df_ratings.shape[0])) df_ratings.to_pickle('df_ratings_condensed.obj') df_books.to_pickle('df_books_condensed.obj') def export_data(): df_ratings = pd.read_pickle('df_ratings_condensed.obj') df_books = pd.read_pickle('df_books_condensed.obj') with open('books.dat', 'w') as outfile: for ridx, row in df_books.iterrows(): outfile.write(row['isbn'] + '::' + row['title'] + ' (' + str(row['year']) + ')::' + row['author'] + '\n') with open('ratings.dat', 'w') as outfile: for ridx, row in df_ratings.iterrows(): outfile.write(str(row['user']) + '::' + row['isbn'] + '::') outfile.write(str(row['rating']) + '\n') def create_database(): """set up the database scheme (SQLITE)""" db_file = '../database_new.db' try: os.remove(db_file) except OSError: pass conn = sqlite3.connect(db_file) cursor = conn.cursor() label = 'books' # create item table if label == 'movies': pkey = 'id INTEGER PRIMARY KEY, ' else: pkey = 'id VARCHAR(13) PRIMARY KEY, ' create_stmt = """CREATE TABLE """ + label + """ (""" + \ pkey + \ """original_title TEXT, cf_title TEXT, wp_title TEXT, wp_text TEXT, wp_id INT)""" cursor.execute(create_stmt) conn.commit() # create category table cursor.execute(""" PRAGMA foreign_keys = ON;""") pkey = 'id INTEGER PRIMARY KEY,' create_stmt = """CREATE TABLE categories (""" + \ pkey + \ """name TEXT)""" cursor.execute(create_stmt) conn.commit() # create item-category relation table pkey = 'id INTEGER PRIMARY KEY, ' if label == 'movies': item_id = 'item_id INTEGER, ' else: item_id = 'item_id VARCHAR(13),' create_stmt = """CREATE TABLE item_cat (""" + \ pkey + \ item_id + \ """cat_id INTEGER, FOREIGN KEY(item_id) REFERENCES """ + label + \ """(id), FOREIGN KEY (cat_id) REFERENCES categories(id))""" cursor.execute(create_stmt) conn.commit() def prune_database(): df_books = pd.read_pickle('df_books_condensed.obj') df_ids = set(df_books['isbn']) db_file = 'database_new_full.db' conn = sqlite3.connect(db_file) cursor = conn.cursor() # get items already in the database stmt = 'SELECT id FROM books ORDER BY id ASC' cursor.execute(stmt) response = cursor.fetchall() db_ids = set([i[0] for i in response]) ids_to_delete = db_ids - (df_ids & db_ids) for isbn in ids_to_delete: stmt = 'DELETE FROM books WHERE id=?;' data = (isbn.strip(),) cursor.execute(stmt, data) conn.commit() def populate_database(wp_text=False): df_books = pd.read_pickle('df_books_condensed.obj') db_file = '../database_new.db' conn = sqlite3.connect(db_file) cursor = conn.cursor() # get items already in the database stmt = 'SELECT id, wp_id FROM books ORDER BY id ASC' cursor.execute(stmt) response = cursor.fetchall() db_ids = set([i[0] for i in response]) wp_ids = set([i[1] for i in response]) df_books.index = range(0, df_books.shape[0]) max_counter = -1 for db_id in db_ids: idx = df_books[df_books['isbn'] == db_id].index.tolist()[0] if idx > max_counter: max_counter = idx counter = max_counter if max_counter > 0 else 0 print('starting at id', counter) if wp_text: for ridx, row in df_books.iloc[counter:].iterrows(): counter += 1 print(counter, '/', df_books.shape[0], row['title'], '|', row['author']) if row['isbn'] in db_ids: print(' already in database') continue if row['year'] < 1000: print(' no year present') continue # year of publication must be present it = Book(row['title'] + ' (' + str(row['year']) + ')', row['isbn'], row['author']) it.generate_title_candidates() it.get_wiki_texts() it.select_title() if it.wp_id in wp_ids: it.wikipedia_text = '' print('item already in database') # if it.wikipedia_text: # it.categories = it.obtain_categories() if it.wikipedia_text: it.write_to_database(db_file) print('YES -', end='') wp_ids.add(it.wp_id) else: print('NO -', end='') print(it.wikipedia_title) it.wikipedia_text = '' print('----------------') else: for ridx, row in df_books.iloc[counter:].iterrows(): print('\r', ridx+1, '/', df_books.shape[0], end='') stmt = 'INSERT OR REPLACE INTO books' +\ '(id, cf_title, original_title)' +\ 'VALUES (?, ?, ?)' data = (row['isbn'], row['title'], row['title'] + ' (' + str(row['year']) + ')') cursor.execute(stmt, data) if (ridx % 100) == 0: conn.commit() conn.commit() def add_genres(): db_file = os.path.join('..', 'database_new.db') conn = sqlite3.connect(db_file) cursor = conn.cursor() # get items already in the database stmt = '''SELECT id, wp_id, original_title, wp_text FROM books ORDER BY id ASC''' cursor.execute(stmt) response = cursor.fetchall() df = pd.DataFrame(data=response, columns=['isbn', 'wp_id', 'original_title', 'wp_text']) stmt = """SELECT id, name from categories""" cursor.execute(stmt) db_cat2id = {c[1]: c[0] for c in cursor.fetchall()} # get items already in the item_cat database stmt = 'SELECT item_id FROM item_cat' cursor.execute(stmt) response = cursor.fetchall() categories_present = set(r[0] for r in response) item_count = df.shape[0] df = df[~df['isbn'].isin(categories_present)] for ridx, row in df.iterrows(): print(ridx, '/', item_count, row['original_title']) if DEBUG: t = 1 print(' DEBUG') else: t = random.randint(2, 10) print(' sleeping for', t, 'seconds') time.sleep(t) url = u'http://www.goodreads.com/search?q=' + row['isbn'] try: request = urllib2.Request(url) # choose a random user agent ua = random.choice(Item.url_headers) request.add_header('User-agent', ua) data = Item.url_opener.open(request).read() data = data.decode('utf-8') except (urllib2.HTTPError, urllib2.URLError) as e: print(' !+!+!+!+!+!+!+!+ URLLIB ERROR !+!+!+!+!+!+!+!+') print(' URLError', e) pdb.set_trace() rexes = [ r'bookPageGenreLink"\s*href="[^"]+">([^<]+)', ] re_cat = re.compile('|'.join(rexes)) cats = [e for e in re.findall(re_cat, data)] # remove duplicates from e.g., "A > AB" and "A" both being present cats = list(set(cats)) print(' ', row['original_title']) print(' ', cats) if not cats: # mark item to delete from books table print(' no cats found for', row['isbn']) with open('books_to_delete.txt', 'a') as outfile: outfile.write(row['isbn'] + '\n') else: # write categories to databse for c in cats: if c not in db_cat2id: # insert category if not yet present stmt = """INSERT INTO categories(id, name) VALUES (?, ?)""" i = len(db_cat2id) data = (i, c) cursor.execute(stmt, data) conn.commit() db_cat2id[c] = i # insert item-category relation stmt = """INSERT INTO item_cat(item_id, cat_id) VALUES (?, ?)""" data = (row['isbn'], db_cat2id[c]) cursor.execute(stmt, data) conn.commit() def delete_genreless(): with open('books_to_delete.txt') as infile: isbns = infile.readlines() db_file = os.path.join('..', 'database_new.db') conn = sqlite3.connect(db_file) cursor = conn.cursor() for isbn in isbns: print(isbn) stmt = 'DELETE FROM books WHERE id=?;' data = (isbn.strip(),) cursor.execute(stmt, data) conn.commit() def delete_yearless(): isbns = [u'0571197639', u'0349101779', u'0099771519', u'0330312367', u'0450411435', u'0316639842', u'0099521016', u'0099993805', u'0330306839', u'0330262130', u'0330267388', u'0451082028', u'0316095133', u'0006480764', u'0140276904', u'0099478110', u'0553107003', u'0330282565', u'0553227041', u'0330294008', u'0330305735', u'0553100777', u'0439078415', u'0002242591', u'0330330276', u'0099479419', u'0099760118', u'0571173004', u'0140048332', u'0006548539', u'0330345605', u'0001046438', u'0099201410', u'0002558122', u'014026583X', u'0006546684', u'0451110129', u'0099288559', u'0440846536', u'059044168X', u'0590433180', u'0002243962', u'034068478X', u'0684174693', u'0440118697', u'0140118365', u'0099268817', u'0099283417', u'0099750813', u'0445002972', u'0006716652', u'0590479865', u'0553200674', u'0340128720', u'0425043657', u'0739413317', u'0340546727', u'0140037896'] db_file = '../database_new.db' conn = sqlite3.connect(db_file) cursor = conn.cursor() for isbn in isbns: stmt = 'DELETE FROM books WHERE id=?;' data = (isbn.strip(),) cursor.execute(stmt, data) conn.commit() def add_text(): db_file = os.path.join('..', 'database_new.db') conn = sqlite3.connect(db_file) cursor = conn.cursor() # get items already in the database stmt = '''SELECT id, wp_id, original_title, wp_text FROM books ORDER BY id ASC''' cursor.execute(stmt) response = cursor.fetchall() df = pd.DataFrame(data=response, columns=['isbn', 'wp_id', 'original_title', 'wp_text']) item_count = df.shape[0] df = df[pd.isnull(df['wp_text'])] for ridx, row in df.iterrows(): print(ridx+1, '/', item_count, row['original_title'], row['isbn']) if DEBUG: t = 1 print(' DEBUG') else: t = random.randint(2, 10) print(' sleeping for', t, 'seconds') time.sleep(t) url = u'http://www.goodreads.com/search?q=' + row['isbn'] data = '' trials = 0 while not data: try: request = urllib2.Request(url) # choose a random user agent ua = random.choice(Item.url_headers) request.add_header('User-agent', ua) data = Item.url_opener.open(request).read() data = data.decode('utf-8') except (urllib2.HTTPError, urllib2.URLError) as e: print(' !+!+!+!+!+!+!+!+ URLLIB ERROR !+!+!+!+!+!+!+!+') print(' URLError', e) if trials > 5: pdb.set_trace() re_text = r'<div id="descriptionContainer">(.+?)(?:</div>|<a)' text = re.findall(re_text, data, flags=re.DOTALL)[0] # remove HTML tags text = re.sub(r'<[^>]+>', '', text) text = text.strip('\n ') text = text.replace('\n', '') # write to database stmt = 'UPDATE books SET wp_text = ? WHERE id = ?' data = (text, row['isbn']) cursor.execute(stmt, data) conn.commit() def add_title_to_text(): db_file = os.path.join('..', 'database_new.db') conn = sqlite3.connect(db_file) cursor = conn.cursor() # get items already in the database stmt = '''SELECT id, wp_id, cf_title, wp_text FROM books ORDER BY id ASC''' cursor.execute(stmt) response = cursor.fetchall() df = pd.DataFrame(data=response, columns=['isbn', 'wp_id', 'cf_title', 'wp_text']) item_count = df.shape[0] for ridx, row in df.iterrows(): print(ridx+1, '/', item_count, row['cf_title'], row['isbn']) # write to database stmt = 'UPDATE books SET wp_text = ? WHERE id = ?' data = (row['wp_text'] + ' ' + row['cf_title'], row['isbn']) cursor.execute(stmt, data) conn.commit() def delete_textless(): pdb.set_trace() class Item(object): # init static members preprocessor = make_prep_parser({}) parser = make_parser() html_parser = HTMLParser.HTMLParser() url_opener = urllib2.build_opener() with io.open('user_agents.txt', encoding='utf-8-sig') as infile: url_headers = infile.readlines() url_headers = [u.strip('"\n') for u in url_headers] # url_headers = ['Mozilla/5.0 (Windows NT 6.1; Win64; x64; rv:25.0) Gecko/20100101 Firefox/25.0', # 'Mozilla/5.0 (Windows NT 6.1; rv:21.0) Gecko/20130328 Firefox/21.0', # 'Mozilla/5.0 (Windows NT 6.2; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/32.0.1667.0 Safari/537.36', # 'Mozilla/5.0 (X11; CrOS i686 4319.74.0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/29.0.1547.57 Safari/537.36', # 'Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.1; Trident/6.0)', # 'Mozilla/5.0 (compatible; MSIE 8.0; Windows NT 5.0; Trident/4.0; InfoPath.1; SV1; .NET CLR 3.0.4506.2152; .NET CLR 3.5.30729; .NET CLR 3.0.04506.30)', # 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_6_8) AppleWebKit/537.13+ (KHTML, like Gecko) Version/5.1.7 Safari/534.57.2', # 'Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_6_5; ar) AppleWebKit/533.19.4 (KHTML, like Gecko) Version/5.0.3 Safari/533.19.4', # 'Opera/9.80 (Windows NT 6.0; U; pl) Presto/2.10.229 Version/11.62', # 'Opera/9.80 (Windows NT 5.1; U; zh-tw) Presto/2.8.131 Version/11.10'] db_cat2id = {} # holds the list of categories present in the database def __init__(self, cf_title): self.cf_title = cf_title self.original_title = cf_title self.wikipedia_title = '' self.title_candidates = {} self.wikipedia_text = '' self.id = -1 self.wp_id = -1 self.categories = [] def get_wiki_text(self, title): """download a Wikipedia article for a given title and resolve any redirects""" t = BeautifulSoup(title, convertEntities=BeautifulSoup.HTML_ENTITIES) title = t.contents[0] title = title.replace(' ', '_') title = urllib.quote(urllib.unquote(title.encode('utf-8'))) if 'disambig' in title: return '', title url = 'http://en.wikipedia.org/wiki/Special:Export/' + title data = None trials = 0 while True: try: trials += 1 request = urllib2.Request(url) request.add_header('User-agent', random.choice(Item.url_headers)) data = Item.url_opener.open(request).read() data = data.decode('utf-8', 'ignore') data_l = data.lower() if not '<text' in data_l or '{{disambig}}' in data_l or\ '{{ disambig }}' in data_l or\ '{{ disambiguation }}' in data_l or\ '{{disambiguation}}' in data_l: data = '' break except (urllib2.HTTPError, urllib2.URLError) as e: print('!+!+!+!+!+!+!+!+ URLLIB ERROR !+!+!+!+!+!+!+!+') print('URLError', e) if trials >= 5: # avoid endless repetition pdb.set_trace() print(title) if '#redirect' in data.lower() and len(data) < 5000: data = Item.html_parser.unescape(data) data = data[data.find('<text'):] r_pos = data.lower().find('#redirect') r_offset = data[r_pos:].find('[[') close_pos = data[r_pos:].find(']]') link = data[r_pos + r_offset + 2:r_pos + close_pos] data, title = self.get_wiki_text(link.encode('utf-8')) title = urllib.unquote(title.encode('utf-8')).decode('utf-8') return data, title def get_wiki_texts(self): """download the Wikipedia pages corresponding to the title candidates""" new_title_candidates = {} for t in self.title_candidates: text, title = self.get_wiki_text(t.encode('utf-8')) new_title_candidates[title] = text self.title_candidates = new_title_candidates def strip_text(self, text): """strip the Wikipedia article export (XML) from tags and Wiki markup return only the plain article text """ root = etree.fromstring(text.encode('utf-8')) for child in root[1]: if 'export-0.10/}id' in child.tag: self.wp_id = int(child.text) elif 'export-0.10/}revision' in child.tag: for child2 in child: if '/export-0.10/}text' in child2.tag: text = child2.text # heuristics to remove parts that are not relevant but hard to parse rx = re.compile(r'<!--.*?-->', flags=re.DOTALL) text = re.sub(rx, r'', text) for headline in ['References', 'External links', 'Further reading']: text = text.split('==' + headline + '==')[0] text = text.split('== ' + headline + ' ==')[0] text = re.sub(r'<ref[^/]*?/>', r'', text) rx = re.compile(r'<ref[^<]*?/>|<ref.*?</ref>', flags=re.DOTALL) text = re.sub(rx, r'', text) rx = re.compile(r'<gallery.*?</gallery>', flags=re.DOTALL) text = re.sub(rx, r'', text) text = text.replace('<', '') text = text.replace('>', '') # parse the text from Wikipedia markup to plain text trials = 0 try: trials += 1 preprocessed_text = Item.preprocessor.parse(text + '\n') output = Item.parser.parse(preprocessed_text.leaves()) except (AttributeError, IncompleteParse), e: print('!+!+!+!+!+!+!+!+ PARSER ERROR !+!+!+!+!+!+!+!+') print(self.wikipedia_title) print(e) if trials >= 5: # avoid endless repetition pdb.set_trace() output = unicode(output).replace('Category:', ' Category: ') output = unicode(output).replace('Template:', ' Template: ') return output def select_title(self, relevant_categories): """select a title among the candidates, based on the obtained Wikipedia text. If several articles exist, choose the one with most relevant categories """ def extract_categories(title, relevant_categories): """ extract all categories from a given article""" regex = re.compile('\[\[Category:([^#\|\]]+)', flags=re.IGNORECASE) categories = ' '.join(regex.findall(self.title_candidates[title])) occurrences = 0 for c in relevant_categories: occurrences += categories.lower().count(c) return occurrences titles = [t for t in self.title_candidates if self.title_candidates[t]] if len(titles) == 0: self.wikipedia_title = '' elif len(titles) == 1: self.wikipedia_title = titles[0] elif len(titles) > 1: categories = {t: extract_categories(t, relevant_categories) for t in titles} ranked = sorted(categories.items(), key=operator.itemgetter(1), reverse=True) if ranked[0][1] == ranked[1][1]: if ranked[1] in ranked[0]: self.wikipedia_title = ranked[0][1] self.wikipedia_title = ranked[0][0] if self.wikipedia_title: self.wikipedia_text = self.title_candidates[self.wikipedia_title] self.wikipedia_text = self.strip_text(self.wikipedia_text) print('selected', self.wikipedia_title) def write_to_database(self, table, db_file): """write this object to the database""" conn = sqlite3.connect(db_file) cursor = conn.cursor() # create row for category, if required if not Item.db_cat2id: stmt = """SELECT id, name from categories""" cursor.execute(stmt) Item.db_cat2id = {c[1]: c[0] for c in cursor.fetchall()} for c in self.categories: if c not in Item.db_cat2id: # insert category if not yet present stmt = """INSERT INTO categories(id, name) VALUES (?, ?)""" i = len(Item.db_cat2id) data = (i, c) cursor.execute(stmt, data) conn.commit() Item.db_cat2id[c] = i # insert item-category relation stmt = """INSERT INTO item_cat(item_id, cat_id) VALUES (?, ?)""" data = (self.id, Item.db_cat2id[c]) cursor.execute(stmt, data) conn.commit() # write item stmt = """INSERT OR REPLACE INTO """ + table +\ """(id, wp_id, cf_title, original_title, wp_title, wp_text) VALUES (?, ?, ?, ?, ?, ?)""" data = (self.id, self.wp_id, self.cf_title, self.original_title, self.wikipedia_title, self.wikipedia_text) cursor.execute(stmt, data) conn.commit() class Book(Item): def __init__(self, cf_title, bid, author): super(Book, self).__init__(cf_title) self.id = bid self.author = author def generate_title_candidates(self): """ generate title candidates for books""" for c in '{}[]\n.': self.cf_title = self.cf_title.replace(c, '') self.cf_title = self.cf_title.split(':')[0] self.cf_title = self.cf_title.split('(')[0] if len(self.cf_title) > 1: if self.cf_title[0] != self.cf_title[0].upper() or \ self.cf_title[1] != self.cf_title[1].lower(): self.cf_title = self.cf_title[0].upper() +\ self.cf_title[1:].lower() ce = BeautifulSoup.HTML_ENTITIES self.cf_title = BeautifulSoup(self.cf_title, convertEntities=ce) self.cf_title = self.cf_title.contents[0] self.cf_title = self.cf_title.replace('reg;', '') self.cf_title = self.cf_title.replace(';', '') self.cf_title = self.cf_title.replace('(R)', '') self.cf_title = self.cf_title.replace('(r)', '') keys = {self.cf_title.strip()} # handle prefix/suffix swaps, e.g., "Haine, La" prefixes = {'The', 'A', 'An', 'La', 'Le', 'Les', 'Die', 'Das', 'Der', 'Ein', 'Il', "L'", 'Lo', 'Le', 'I', 'El', 'Los', 'Las', 'O'} new_keys = set() for k in keys: parts = k.split(' ') if len(parts) > 1 and parts[0].strip() in prefixes: new_keys.add(' '.join(parts[1:])) keys |= new_keys # add "The" to the beginning, if it is not already there new_keys = set() for k in keys: p = k.split(' ')[0] if p not in prefixes: new_keys.add('The ' + k) keys |= new_keys # adapt captialization to the Wikipedia Manual of Style # (this is only a heuristic) new_keys = set() minuscles = {'a', 'an', 'the', 'and', 'but', 'or', 'nor', 'for', 'yet', 'of', 'to', 'in', 'for', 'on', 'with'} for k in keys: parts = k.split(' ') parts = [p for p in parts if p] parts_new = [parts[0]] for p in parts[1:]: if p.lower() not in minuscles: parts_new.append(p[0].upper() + p[1:]) else: parts_new.append(p) new_keys.add(' '.join(parts_new)) keys |= new_keys author_last = self.author.rsplit(' ', 1)[-1] book = [k + ' (' + author_last + ' book)' for k in keys] booka = [k + ' (book)' for k in keys] novel = [k + ' (novel)' for k in keys] novela = [k + ' (' + author_last + ' novel)' for k in keys] keys.update(set(book), set(novel), set(booka), set(novela)) self.title_candidates = {k: '' for k in keys} def select_title(self): """ select the title among the candidates and check if it's actually a book """ super(Book, self).select_title(['books', 'novels', 'plays']) # sanity check - is this really a relevant article? if self.wikipedia_text: regex = re.compile('\[\[Category:([^#\|\]]+)', flags=re.IGNORECASE) data = self.title_candidates[self.wikipedia_title] categories = ' '.join(regex.findall(data)) occurrences = categories.lower().count('books') occurrences += categories.lower().count('novels') occurrences += categories.lower().count('plays') occurrences += categories.lower().count('short story') if not occurrences: self.wikipedia_text = '' print('did not pass sanity check') if not self.author.split()[-1].lower() in self.wikipedia_text.lower(): if DEBUG: pdb.set_trace() self.wikipedia_text = '' print('author not in text') del self.title_candidates def obtain_categories(self): """scrape book categories from Google""" # sleep in-between to not get banned for too frequent requests if DEBUG: t = 1 else: t = random.randint(10, 19) print('DEBUG') print('sleeping for', t, 'seconds') time.sleep(t) title = urllib.quote(urllib.unquote(self.wikipedia_title.encode())) query = '"' + title.replace('_', '+') + '"+' + 'genre' url = u"https://www.google.com/search?hl=en&biw=1195&bih=918" +\ u"&sclient=psy-ab&q=" + query + u"&btnG=&oq=&gs_l=&pbx=1" try: request = urllib2.Request(url) # choose a random user agent ua = random.choice(Item.url_headers) request.add_header('User-agent', ua) data = Item.url_opener.open(request).read() data = data.decode('utf-8') if self.author.split()[-1].lower() not in data.lower(): # sanity check self.wikipedia_text = '' return [] except (urllib2.HTTPError, urllib2.URLError) as e: print('!+!+!+!+!+!+!+!+ URLLIB ERROR !+!+!+!+!+!+!+!+') print('URLError', e) pdb.set_trace() rexes = [ # r'<span class="kno-a-v">([^</]+)', # r'<span class="answer_slist_item_title nonrich">([^</]+)', # r'<span class="answer_slist_item_title">([^</]+)', r'Genres\s*(?:</span>)?(?:</a>)?:\s*(?:</span>)?\s*<span class="[-\_\sa-zA-Z]+">([^</]+)', r'Genre</td><td(?:[^</]*)>([^</]+)', r'Genre</th></tr><td(?:[^</]*)>([^</]+)', ] re_cat = re.compile('|'.join(rexes)) cats = [e for g in re.findall(re_cat, data) for e in g if e] # cats = [g for g in re.findall(re_cat, data) if g] print(self.wikipedia_title) print(cats) if DEBUG: pdb.set_trace() cats = list(set(cats)) if not cats: # sanity check self.wikipedia_text = '' return cats def write_to_database(self, db_file): super(Book, self).write_to_database('books', db_file) DEBUG = False # TODO if __name__ == '__main__': from datetime import datetime start_time = datetime.now() # prepare_data() # eliminate_duplicates() # condense_data(user_ratings=20, book_ratings=5) # prune_database() # export_data() # create_database() # populate_database(wp_text=False) # add_genres() # delete_genreless() # delete_yearless() # add_text() add_title_to_text() # delete_textless() end_time = datetime.now() print('Duration: {}'.format(end_time - start_time))
from django.db import models from datetime import timedelta class User(models.Model): name = models.CharField(max_length=150) def __str__(self): return self.name class Blog(models.Model): title = models.CharField(max_length=150) body = models.TextField() created = models.DateTimeField(auto_now_add=True) updated = models.DateTimeField(auto_now=True) user = models.ForeignKey(User, on_delete=models.CASCADE) def __str__(self): return self.title def created_at(self): return self.created + timedelta(minutes=45, hours=5) def updated_at(self): return self.updated + timedelta(minutes=45, hours=5)
from django.urls import path, include from rest_framework import routers from bandas.models import * from webservices.views import * router = routers.DefaultRouter() router.register(r'bandas', banda_viewset) router.register(r'roles', rol_viewset) router.register(r'integrantes', integrante_viewset) router.register(r'nacionalidades', nacionalidad_viewset) urlpatterns = [ path('api/', include(router.urls)), path('api-auth/', include('rest_framework.urls', namespace='rest_framework')), ]
# Class definition of a linked list class Node: def __init__(self, data, next=None): self.data=data self.next=next # Reverse a linked list def reverse_linked_list(node): prev_node = None curr_node = node while curr_node != None: next_node = curr_node.next curr_node.next = prev_node prev_node = curr_node curr_node = next_node return prev_node
import os import re from django.db import models from Portal.ConfigParser.ConfigParser import ConfigParser # Create your models here. configParser = ConfigParser(os.path.dirname(os.path.realpath(__file__))+"/createForm.cfg") admissionDetailsInfo = configParser.getAdmissionDetails() class PersonalDetails(models.Model): personalDetailsInfo = configParser.getPersonalDetailsInfo() UUID = models.CharField(max_length=255,null=False) for personalAttr in personalDetailsInfo.listOfPersonalAttr: for subAttr in personalAttr.ListOfSubAttr: columnName = personalAttr.PersonalAttrName + "_" + subAttr.SubAttrName dbType = None if (subAttr.IsTypeString): dbType = subAttr.StringConstraints['DBType'] maxLength = int(re.findall(r'\d+', dbType)[0]) locals()[columnName] = models.CharField(max_length=maxLength,null=True) elif (subAttr.IsTypeInteger): dbType = subAttr.IntegerConstraints['DBType'] if (dbType.lower() == "smallint" or dbType.lower()=="integer"): locals()[columnName] = models.IntegerField(null=True, blank=True) elif (dbType.lower() == "bigint"): locals()[columnName] = models.BigIntegerField(null=True, blank=True) elif (subAttr.IsTypeFloat): dbType = subAttr.FPConstraints['DBType'] locals()[columnName] = models.FloatField(null=True, blank=True) elif (subAttr.IsTypeDate): dbType = subAttr.DateConstraints['DBType'] locals()[columnName] = models.DateField(null=True) elif (subAttr.IsTypeBoolean): dbType = subAttr.BooleanConstraints['DBType'] locals()[columnName] = models.BooleanField(null=True) else: pass class Meta: db_table = str(admissionDetailsInfo.AdmissionType + '_' + admissionDetailsInfo.AdmissionDegree + '_' + admissionDetailsInfo.AdmissionMonth + \ '_' + admissionDetailsInfo.AdmissionYear + '_' + 'PersonalDetails').replace(" ", "") pass class EducationalQualifications(models.Model): educationalQualificationsInfo = configParser.getEducationalQualificationsInfo() UUID = models.CharField(max_length=255,null=False) for eduAttr in educationalQualificationsInfo.listOfEduAttr: for subAttr in eduAttr.ListOfSubAttr: columnName = eduAttr.EduAttrName + "_" + subAttr.SubAttrName dbType = None if (subAttr.IsTypeString): dbType = subAttr.StringConstraints['DBType'] maxLength = int(re.findall(r'\d+', dbType)[0]) locals()[columnName] = models.CharField(max_length=maxLength,null=True) elif (subAttr.IsTypeInteger): dbType = subAttr.IntegerConstraints['DBType'] if (dbType.lower() == "smallint" or dbType.lower()=="integer"): locals()[columnName] = models.IntegerField(null=True, blank=True) elif (dbType.lower() == "bigint"): locals()[columnName] = models.BigIntegerField(null=True, blank=True) elif (subAttr.IsTypeFloat): dbType = subAttr.FPConstraints['DBType'] locals()[columnName] = models.FloatField(null=True, blank=True) elif (subAttr.IsTypeDate): dbType = subAttr.DateConstraints['DBType'] locals()[columnName] = models.DateField(null=True) elif (subAttr.IsTypeBoolean): dbType = subAttr.BooleanConstraints['DBType'] locals()[columnName] = models.BooleanField(null=True) else: pass class Meta: db_table = str(admissionDetailsInfo.AdmissionType + '_' + admissionDetailsInfo.AdmissionDegree + '_' + admissionDetailsInfo.AdmissionMonth + \ '_' + admissionDetailsInfo.AdmissionYear + '_' + 'EducationalQualifications').replace(" ", "") class WorkExperience(models.Model): workExperienceInfo = configParser.getWorkExperienceInfo() UUID = models.CharField(max_length=255,null=False) for subAttr in workExperienceInfo.ListOfSubAttr: columnName = subAttr.SubAttrName dbType = None if (subAttr.IsTypeString): dbType = subAttr.StringConstraints['DBType'] maxLength = int(re.findall(r'\d+', dbType)[0]) locals()[columnName] = models.CharField(max_length=maxLength,null=True) elif (subAttr.IsTypeInteger): dbType = subAttr.IntegerConstraints['DBType'] if (dbType.lower() == "smallint" or dbType.lower()=="integer"): locals()[columnName] = models.IntegerField(null=True, blank=True) elif (dbType.lower() == "bigint"): locals()[columnName] = models.BigIntegerField(null=True, blank=True) elif (subAttr.IsTypeFloat): dbType = subAttr.FPConstraints['DBType'] locals()[columnName] = models.FloatField(null=True, blank=True) elif (subAttr.IsTypeDate): dbType = subAttr.DateConstraints['DBType'] locals()[columnName] = models.DateField(null=True) elif (subAttr.IsTypeBoolean): dbType = subAttr.BooleanConstraints['DBType'] locals()[columnName] = models.BooleanField(null=True) else: pass class Meta: db_table = str(admissionDetailsInfo.AdmissionType + '_' + admissionDetailsInfo.AdmissionDegree + '_' + admissionDetailsInfo.AdmissionMonth + \ '_' + admissionDetailsInfo.AdmissionYear + '_' + 'WorkExperience').replace(" ", "") class Attachments(models.Model): attachmentsInfo = configParser.getAttachmentsInfo() UUID = models.CharField(max_length=255,null=False) for attachmentInfo in attachmentsInfo.listOfAttachmentInfo: for attachment in attachmentInfo.ListOfAttachment: columnName = attachmentInfo.AttachmentInfoName + "_" + attachment.AttachmentName dbType = None if (attachment.IsTypeFile): maxLength = 255 locals()[columnName] = models.CharField(max_length=maxLength,null=True) else: pass class Meta: db_table = str(admissionDetailsInfo.AdmissionType + '_' + admissionDetailsInfo.AdmissionDegree + '_' + admissionDetailsInfo.AdmissionMonth + \ '_' + admissionDetailsInfo.AdmissionYear + '_' + 'Attachments').replace(" ", "")
#!/usr/bin/env python from helpers.string import uppercase, lowercase # 1) importing specifics thing i.e. function from helpers import variable # 2) importing a specific module import helpers # 3) importing the entire package print(f"Uppercase Letter: {uppercase(variable.name)}") print(f"Lowercase Letter: {lowercase(variable.name)}") print(f"From packaged helpers: {helpers.string.lowercase(helpers.variable.name)}")
#Python Program to Find the Largest Number in a List List = [1,2,4,5,7,9,10,11,15,20,] print(List) List = max(List) print("The Largest Number is",List)
L = ["alen","unix","windows"] for n in L : print ("hello,%s!"%n)
import socket # Create a server socket serverSocket = socket.socket() print("Server socket created") # Associate the server socket with the IP and Port ip = "192.168.0.101" port = 5000 serverSocket.bind((ip, port)) print("Server socket bound with with ip {} port {}".format(ip, port)) # Make the server listen for incoming connections serverSocket.listen(5) # Server incoming connections "one by one" count = 0 while(True): (clientConnection, clientAddress) = serverSocket.accept() count = count + 1 print("Accepted {} connections so far".format(count)) # read from client connection while(True): data = clientConnection.recv(1024) print(data) if(data!=b''): msg1 = "Hi Client! Read everything you sent" msg1Bytes = str.encode(msg1) msg2 = "Now I will close your connection" msg2Bytes = str.encode(msg2) clientConnection.send(msg1Bytes) clientConnection.send(msg2Bytes) clientConnection.close() print("Connection closed") break serverSocket.close()
from django.db import models from phonenumber_field.modelfields import PhoneNumberField # We can extent existing user model to consider team member from django.contrib.auth.models import AbstractUser # # # class User(AbstractUser): # phone_number = PhoneNumberField() # role = models.PositiveSmallIntegerField(choices=ROLE_CHOICES, default=ROLE_REGULAR) # Considering team member as separate entity from User model class TeamMember(models.Model): ROLE_ADMIN = 1 ROLE_REGULAR = 2 ROLE_CHOICES = [ (ROLE_ADMIN, 'admin'), (ROLE_REGULAR, 'regular') ] email = models.EmailField(unique=True, null=False, blank=False) first_name = models.CharField(max_length=50, blank=False) last_name = models.CharField(max_length=50, blank=False) phone_number = PhoneNumberField() role = models.PositiveSmallIntegerField(choices=ROLE_CHOICES, default=ROLE_REGULAR)
from django import forms from .models import Choice, Question from django.forms import ModelForm, formset_factory from django.forms.widgets import RadioSelect class ChoiceForm(ModelForm): EXCELLENT, GOOD, MEDIUM, BAD = 'EX', 'GO', 'ME', 'BA' question_choices = ( (EXCELLENT, 'عالی'), (GOOD, 'خوب'), (MEDIUM, 'متوسط'), (BAD, 'ضعیف') ) choice_text = forms.ChoiceField(choices=question_choices, widget=RadioSelect(attrs={"required":"required"}), required=True) class Meta: model = Choice fields = ['choice_text'] ChoiceFormset = formset_factory(ChoiceForm, extra=Question.objects.count())
# -*- encoding:utf-8 -*- '''Android 代码中的接口搜索''' import os #androidCode = "D:\\Code\\Android\\app\\src" class searchAndroidInterface: def __init__(self, codePath, resPath): '''CodePath: Android code path; resPath: save result of search ''' self.androidCodePath = codePath self.resultPath = resPath def searchJavaFile(self): javaFile = [] for root, dirs, files in os.walk(self.androidCodePath): for file in files: javaFilePath = os.path.join(root, file) if os.path.splitext(javaFilePath)[1] in [".java"]: javaFile.append(javaFilePath) return javaFile def readFile(self, java_file): Final_interface = [] interface_start_keyword = ["String URL_", '"/'] interface_end_keyword = ['";', '")', '",', '" +'] with open(java_file, 'r', encoding="utf-8") as f: for line in f: if interface_start_keyword[0] in line: interface = line.split("=")[1].lstrip(";") # print(interface) Final_interface.append(interface) elif interface_start_keyword[1] in line: getinterface = line.split('"/')[1] for i in interface_end_keyword: if i in getinterface: interface = getinterface.split(i)[0] Final_interface.append(interface) break return Final_interface def run(self): result_path = self.resultPath + "\\androidInterfaceRes.txt" result = [] java_path = self.searchJavaFile() for i in range(len(java_path)): print(java_path[i]) get_interface = self.readFile(java_path[i]) if get_interface: result.append(get_interface) else: pass # new_result = set(result) print(result) for j in range(len(result)): for h in range(len(result[j])): if result[j][h]: with open(result_path, 'a', encoding="utf-8") as f: f.write(result[j][h] + "\n") print("\n + Result of interface in the code by search save to {}".format(result_path)) # if __name__ == "__main__": # android = "D:\\Code\\Android\\app\\src" # res = "D:\\ddd" # a = searchAndroidInterface(codePath=android, resPath=res) # a.run()
import random # my_list = [] # length = 0 # with open("sowpods.txt", "r") as open_file: # # line = open_file.readline() # my_list.append(line) # while line: # length += 1 # my_list.append(line) # line = open_file.readline() with open("sowpods.txt", "r") as open_file: lines = open_file.readlines() index = random.randint(0, len(lines) + 1) print(lines[index])
import requests for i in range(1,10): print(i) image_name_dir = 'images/' + str(i) + '.png' f = open(image_name_dir,'wb') request_url = 'https://static-nft.pancakeswap.com/mainnet/0x0a8901b0E25DEb55A87524f0cC164E9644020EBA/pancake-squad-' + str(i) + '-1000.png' r = requests.get(request_url) if r.status_code == 200: f.write(requests.get(request_url).content) f.close() print(image_name_dir + ' is successfully downloaded.') else: print('Error. Image cannot be retrieved.')
# -*- coding: utf-8 -*- import json from django.test import TestCase from zipcodes.factories.zipcode import ZipCodeFactory from zipcodes.models import ZipCode class ZipCodeResourceTest(TestCase): def setUp(self): self.ribeirao = ZipCodeFactory.create( address='Avenida Presidente Vargas', neighborhood='Jardim América', city='Ribeirão Preto', state='SP', zip_code='14020260' ) self.bonfim = ZipCodeFactory.create( city='Bonfim Paulista (Ribeirão Preto)', state='SP', zip_code='14110000' ) def test_list(self): response = self.client.get('/zipcodes/') expected_json = {u"objects": [ { u"zip_code": u"14110000", u"address": u"", u"neighborhood": u"", u"city": u"Bonfim Paulista (Ribeirão Preto)", u"state": u"SP", }, { u"zip_code": u"14020260", u"address": u"Avenida Presidente Vargas", u"neighborhood": u"Jardim América", u"city": u"Ribeirão Preto", u"state": u"SP", } ]} self.assertEqual(response.status_code, 200) self.assertEqual(response.json(), expected_json) def test_list_limited(self): response = self.client.get('/zipcodes/?limit=1') expected_json = {u"objects": [ { u"zip_code": u"14110000", u"address": u"", u"neighborhood": u"", u"city": u"Bonfim Paulista (Ribeirão Preto)", u"state": u"SP", } ]} self.assertEqual(response.status_code, 200) self.assertEqual(response.json(), expected_json) self.assertEqual(len(response.json()['objects']), 1) def test_create(self): response = self.client.post( '/zipcodes/', data=json.dumps({'zip_code': '14093010'}), content_type='application/json' ) new_element = ZipCode.objects.all()[0] self.assertEqual(response.status_code, 201) self.assertEqual(new_element.zip_code, '14093010') self.assertEqual(new_element.address, 'Rua Zilda de Souza Rizzi') self.assertEqual(new_element.neighborhood, 'Jardim Interlagos') self.assertEqual(new_element.city, u'Ribeirão Preto') self.assertEqual(new_element.state, 'SP') def test_create_zip_code_without_address_and_neighborhood(self): response = self.client.post( '/zipcodes/', data=json.dumps({'zip_code': '14150000'}), content_type='application/json' ) new_element = ZipCode.objects.all()[0] self.assertEqual(response.status_code, 201) self.assertEqual(new_element.zip_code, '14150000') self.assertEqual(new_element.city, 'Serrana') self.assertEqual(new_element.state, 'SP') def test_create_zip_code_already_created(self): response = self.client.post( '/zipcodes/', data=json.dumps({'zip_code': '14020260'}), content_type='application/json' ) error_msg = response.json()['error'] self.assertEqual(response.status_code, 400) self.assertEqual(error_msg, 'Zip code already created') def test_create_invalid_zip_code(self): response = self.client.post( '/zipcodes/', data=json.dumps({'zip_code': '1402026'}), content_type='application/json' ) error_msg = response.json()['error'] self.assertEqual(response.status_code, 400) self.assertEqual(error_msg, 'Incorrect zip code format') def test_deleta_existed_zip_code(self): response = self.client.delete('/zipcodes/14020260/') self.assertEqual(response.status_code, 204) def test_delete_non_existent_zip_code(self): response = self.client.delete('/zipcodes/14093010/') error_msg = response.json()['error'] self.assertEqual(response.status_code, 404) self.assertEqual(error_msg, 'ZipCode matching query does not exist.') def test_detail_ribeirao(self): response = self.client.get('/zipcodes/14020260/') expected_json = { u"zip_code": u"14020260", u"address": u"Avenida Presidente Vargas", u"neighborhood": u"Jardim América", u"city": u"Ribeirão Preto", u"state": u"SP" } self.assertEqual(response.status_code, 200) self.assertEqual(response.json(), expected_json) def test_detail_bonfim(self): response = self.client.get('/zipcodes/14110000/') expected_json = { u"zip_code": u"14110000", u"address": u"", u"neighborhood": u"", u"city": u"Bonfim Paulista (Ribeirão Preto)", u"state": u"SP" } self.assertEqual(response.status_code, 200) self.assertEqual(response.json(), expected_json) def test_detail_zip_code_invalid(self): response = self.client.get('/zipcodes/1402026/') error_msg = response.json()['error'] self.assertEqual(response.status_code, 404) self.assertEqual(error_msg, 'ZipCode matching query does not exist.')
import pandas as pd import os import scipy.stats import numpy as np import json import h5py import tensorflow as tf import chrombpnet.training.utils.argmanager as argmanager import chrombpnet.training.utils.losses as losses import chrombpnet.training.metrics as metrics import chrombpnet.training.data_generators.initializers as initializers from tensorflow.keras.utils import get_custom_objects from tensorflow.keras.models import load_model from scipy import nanmean, nanstd def write_predictions_h5py(output_prefix, profile, logcts, coords): # open h5 file for writing predictions output_h5_fname = "{}_predictions.h5".format(output_prefix) h5_file = h5py.File(output_h5_fname, "w") # create groups coord_group = h5_file.create_group("coords") pred_group = h5_file.create_group("predictions") num_examples=len(coords) coords_chrom_dset = [str(coords[i][0]) for i in range(num_examples)] coords_center_dset = [int(coords[i][1]) for i in range(num_examples)] coords_peak_dset = [int(coords[i][3]) for i in range(num_examples)] dt = h5py.special_dtype(vlen=str) # create the "coords" group datasets coords_chrom_dset = coord_group.create_dataset( "coords_chrom", data=np.array(coords_chrom_dset, dtype=dt), dtype=dt, compression="gzip") coords_start_dset = coord_group.create_dataset( "coords_center", data=coords_center_dset, dtype=int, compression="gzip") coords_end_dset = coord_group.create_dataset( "coords_peak", data=coords_peak_dset, dtype=int, compression="gzip") # create the "predictions" group datasets profs_dset = pred_group.create_dataset( "profs", data=profile, dtype=float, compression="gzip") logcounts_dset = pred_group.create_dataset( "logcounts", data=logcts, dtype=float, compression="gzip") # close hdf5 file h5_file.close() def load_model_wrapper(args): # read .h5 model custom_objects={"tf": tf, "multinomial_nll":losses.multinomial_nll} get_custom_objects().update(custom_objects) model=load_model(args.model_h5, compile=False) print("got the model") #model.summary() return model def softmax(x, temp=1): norm_x = x - np.mean(x,axis=1, keepdims=True) return np.exp(temp*norm_x)/np.sum(np.exp(temp*norm_x), axis=1, keepdims=True) def predict_on_batch_wrapper(model,test_generator): num_batches=len(test_generator) profile_probs_predictions = [] true_counts = [] counts_sum_predictions = [] true_counts_sum = [] coordinates = [] for idx in range(num_batches): if idx%100==0: print(str(idx)+'/'+str(num_batches)) X,y,coords=test_generator[idx] #get the model predictions preds=model.predict_on_batch(X) # get counts predictions true_counts.extend(y[0]) profile_probs_predictions.extend(softmax(preds[0])) # get profile predictions true_counts_sum.extend(y[1][:,0]) counts_sum_predictions.extend(preds[1][:,0]) coordinates.extend(coords) return np.array(true_counts), np.array(profile_probs_predictions), np.array(true_counts_sum), np.array(counts_sum_predictions), np.array(coordinates) def main(args): metrics_dictionary = {"counts_metrics":{}, "profile_metrics":{}} # get model architecture to load - can load .hdf5 and .weights/.arch model=load_model_wrapper(args) test_generator = initializers.initialize_generators(args, mode="test", parameters=None, return_coords=True) true_counts, profile_probs_predictions, true_counts_sum, counts_sum_predictions, coordinates = predict_on_batch_wrapper(model, test_generator) # generate prediction on test set and store metrics write_predictions_h5py(args.output_prefix, profile_probs_predictions, counts_sum_predictions, coordinates) # store regions, their predictions and corresponding pointwise metrics mnll_pw, mnll_norm, jsd_pw, jsd_norm, jsd_rnd, jsd_rnd_norm, mnll_rnd, mnll_rnd_norm = metrics.profile_metrics(true_counts,profile_probs_predictions) # including both metrics if args.peaks != "None" and args.nonpeaks != "None": spearman_cor, pearson_cor, mse = metrics.counts_metrics(true_counts_sum, counts_sum_predictions,args.output_prefix+"_peaks_and_nonpeaks", "Both peaks and non peaks") metrics_dictionary["counts_metrics"]["peaks_and_nonpeaks"] = {} metrics_dictionary["counts_metrics"]["peaks_and_nonpeaks"]["spearmanr"] = spearman_cor metrics_dictionary["counts_metrics"]["peaks_and_nonpeaks"]["pearsonr"] = pearson_cor metrics_dictionary["counts_metrics"]["peaks_and_nonpeaks"]["mse"] = mse metrics_dictionary["profile_metrics"]["peaks_and_nonpeaks"] = {} metrics_dictionary["profile_metrics"]["peaks_and_nonpeaks"]["median_jsd"] = np.nanmedian(jsd_pw) metrics_dictionary["profile_metrics"]["peaks_and_nonpeaks"]["median_norm_jsd"] = np.nanmedian(jsd_norm) metrics.plot_histogram(jsd_pw, jsd_rnd, args.output_prefix+"_peaks_and_nonpeaks", "Both peaks and non peaks") # including only nonpeak metrics if args.nonpeaks != "None": non_peaks_idx = coordinates[:,3] == '0' spearman_cor, pearson_cor, mse = metrics.counts_metrics(true_counts_sum[non_peaks_idx], counts_sum_predictions[non_peaks_idx],args.output_prefix+"_only_nonpeaks", "Only non peaks") metrics_dictionary["counts_metrics"]["nonpeaks"] = {} metrics_dictionary["counts_metrics"]["nonpeaks"]["spearmanr"] = spearman_cor metrics_dictionary["counts_metrics"]["nonpeaks"]["pearsonr"] = pearson_cor metrics_dictionary["counts_metrics"]["nonpeaks"]["mse"] = mse metrics_dictionary["profile_metrics"]["nonpeaks"] = {} metrics_dictionary["profile_metrics"]["nonpeaks"]["median_jsd"] = np.nanmedian(jsd_pw[non_peaks_idx]) metrics_dictionary["profile_metrics"]["nonpeaks"]["median_norm_jsd"] = np.nanmedian(jsd_norm[non_peaks_idx]) metrics.plot_histogram(jsd_pw[non_peaks_idx], jsd_rnd[non_peaks_idx], args.output_prefix+"_only_nonpeaks", "Only non peaks") # including only peak metrics if args.peaks != "None": peaks_idx = coordinates[:,3] == '1' spearman_cor, pearson_cor, mse = metrics.counts_metrics(true_counts_sum[peaks_idx], counts_sum_predictions[peaks_idx],args.output_prefix+"_only_peaks", "Only peaks") metrics_dictionary["counts_metrics"]["peaks"] = {} metrics_dictionary["counts_metrics"]["peaks"]["spearmanr"] = spearman_cor metrics_dictionary["counts_metrics"]["peaks"]["pearsonr"] = pearson_cor metrics_dictionary["counts_metrics"]["peaks"]["mse"] = mse metrics_dictionary["profile_metrics"]["peaks"] = {} metrics_dictionary["profile_metrics"]["peaks"]["median_jsd"] = np.nanmedian(jsd_pw[peaks_idx]) metrics_dictionary["profile_metrics"]["peaks"]["median_norm_jsd"] = np.nanmedian(jsd_norm[peaks_idx]) metrics.plot_histogram(jsd_pw[peaks_idx], jsd_rnd[peaks_idx], args.output_prefix+"_only_peaks", "Only peaks") #ofile = open(args.output_prefix+"_pearson_cor.txt","w") #ofile.write(str(round(pearson_cor,2))) #ofile.close() #ofile = open(args.output_prefix+"_norm_jsd.txt","w") #ofile.write(str(round(metrics_dictionary["profile_metrics"]["peaks"]["median_norm_jsd"],2))) #ofile.close() # store dictionary with open(args.output_prefix+'_metrics.json', 'w') as fp: json.dump(metrics_dictionary, fp, indent=4) if __name__=="__main__": # read arguments args=argmanager.fetch_predict_args() main(args)
import os import sys import json import re import requests from flask import Flask, request app = Flask(__name__) from flaskext.mysql import MySQL mysql = MySQL() app.config['MYSQL_DATABASE_USER'] = 'XXX' app.config['MYSQL_DATABASE_PASSWORD'] = 'XXX' app.config['MYSQL_DATABASE_DB'] = 'XXX' app.config['MYSQL_DATABASE_HOST'] = 'XXX' mysql.init_app(app) def stripUserID(userID): chars = "1234567890abcdefghijklmnopqrstuvwxyz.!()%,@[]" newStr = '' for c in userID: if c.lower() in chars: newStr += c return newStr def insertHomework(userID, toAdd): d = getAllData(userID) if not d: return "Error, it wasn't added" toAdd = stripUserID(toAdd) if not toAdd: return "Please enter a description" currentExtra = d["extra"] if currentExtra: toAdd = currentExtra+"|"+toAdd else: toAdd += "|" connection = mysql.get_db() cursor = mysql.get_db().cursor() query = """UPDATE users SET extra="{0}" where users.userID="{1}" ;""".format(toAdd, stripUserID(userID)) cursor.execute(query) connection.commit() return "Homework successfully added" def removeHomework(userID, toRemoveNumber): d = getAllData(userID) try: toRemoveNumber = int(toRemoveNumber.encode("ascii", "ignore")) except: return "Sorry, something went wrong" if not d: return "Error, it wasn't removed" currentExtra = d["extra"] dLi = currentExtra.split("|") temp = str(dLi) if len(dLi) == 0: return "You've no homework left. Woop woop" if toRemoveNumber-1>len(dLi) or toRemoveNumber-1<0: return "Sorry, that number doesn't work" if len(dLi)==1: toAdd = "" else: del dLi[toRemoveNumber-1] toAdd = "|".join([i for i in dLi]) connection = mysql.get_db() cursor = mysql.get_db().cursor() query = """UPDATE users SET extra="{0}" where users.userID="{1}" ;""".format(toAdd, stripUserID(userID)) cursor.execute(query) connection.commit() return "Successfully removed" def formatHomework(extra): if not extra: return "No homework. Congrats" dLi = extra.split("|") newStr = "\n".join([str(dLi.index(i)+1)+ ": " + i for i in dLi]) return newStr+"\n" def getAllData(userID): try: cursor = mysql.get_db().cursor() cursor.execute("SELECT * from users where userID='"+stripUserID(userID)+"';") returned = cursor.fetchone() except: return [] if returned == None: return [] data = {} data["UserID"] = userID.encode("ascii", "ignore") data["email"] = returned[1].encode("ascii", "ignore") data["gAccess"] = returned[2].encode("ascii", "ignore") data["timetable"] = returned[3].encode("ascii", "ignore") data["extra"] = returned[4].encode("ascii", "ignore") return data def sendEmail(message): import smtplib server = smtplib.SMTP('XXX', 587) server.starttls() server.login("XXX", "XXX") msg = message server.sendmail("XXX", "XXX", msg) server.quit() @app.route('/', methods=['GET', 'POST']) def welcome(): return "Welcome to Erasmus Technologies, making the world a better place one soul at a time." @app.route('/listen', methods=['GET']) def googleCallback(): log(request.args) return "Heard", 200 @app.route('/webhook', methods=['GET']) def verify(): log("Webhook called - verify GET") # when the endpoint is registered as a webhook, it must echo back # the 'hub.challenge' value it receives in the query arguments if request.args.get("hub.mode") == "subscribe" and request.args.get("hub.challenge"): if not request.args.get("hub.verify_token") == "erasmus": log("Tokens didn't match") return "Verification token mismatch", 403 log("returning hub.challenge") return request.args["hub.challenge"], 200 log("didn't have the args") return "Hello world", 200 @app.route('/webhook', methods=['POST']) def webhook(): data = request.get_json() if data["object"] == "page": for entry in data["entry"]: for messaging_event in entry["messaging"]: if messaging_event.get("message"): # someone sent us a message sender_id = messaging_event["sender"]["id"] # the facebook ID of the person sending you the message if sender_id == messaging_event["recipient"]["id"]: break recipient_id = messaging_event["recipient"]["id"] # the recipient's ID, which should be your page's facebook ID message_text = messaging_event["message"]["text"] # the message's text safeUserID = stripUserID(sender_id) d = getAllData(safeUserID) #handle user not existing if d == []: messageToSend = "Sorry, we don't have any data for you" else: if "help" in message_text.lower(): messageToSend = "Hi welcome to ErasmusBot.Enter 'show' to see all you work.\n Enter 'add' followed by homework to add it.\n Enter 'remove', followed by it's number to remove it\nEnter 'timetable' to see what you've got on today\nenter google to see task set on 'google'" elif "timetable" in message_text.lower(): messageToSend = d["timetable"] elif "google" in message_text.lower(): messageToSend = d["gAccess"] elif "email" in message_text.lower(): messageToSend = d["email"] elif "extra" in message_text.lower(): messageToSend = d["extra"] elif "add" in message_text.lower(): new = message_text.lower().replace("add homework","") messageToSend = insertHomework(safeUserID, new) elif "show" in message_text.lower(): messageToSend = formatHomework(d["extra"]) elif "remove" in message_text.lower(): homeworkNum = re.sub("[^0-9]", "", message_text.lower()) messageToSend = removeHomework(safeUserID, homeworkNum) else: messageToSend = "Sorry, unrecognised command" #Actually sending the message send_message(sender_id, messageToSend) if messaging_event.get("delivery"): # delivery confirmation pass if messaging_event.get("optin"): # optin confirmation pass if messaging_event.get("postback"): # user clicked/tapped "postback" button in earlier message pass return "ok", 200 def send_message(recipient_id, message_text): params = { "access_token": "XXX" } headers = { "Content-Type": "application/json" } data = json.dumps({ "recipient": { "id": recipient_id }, "message": { "text": message_text } }) r = requests.post("https://graph.facebook.com/v2.6/me/messages", params=params, headers=headers, data=data) def log(message): # simple wrapper for logging to stdout on heroku sendEmail(message) if __name__ == '__main__': app.run(debug=True)
from Interfaz.Window import Window import os #class starting the program class Init(): def __init__(self): Window() def __readFile(self, path_file): with open(path_file, encoding="utf-8") as f: fileContents = f.read() # Get all the text from file. # Return text to file contents return fileContents return "" #method main for init program if __name__ == "__main__": Init() #pass
from abc import abstractmethod import warnings warnings.filterwarnings('ignore') import numpy as np import pandas as pd import sklearn from sklearn.svm import SVR from sklearn.model_selection import KFold import xgboost as xgb import optuna class BaseModelCV(object): model_cls = None def __init__(self, n_trials=300): self.n_trials = n_trials def fit(self, X, y): if isinstance(X, np.ndarray): X = pd.DataFrame(X) y = pd.DataFrame(y) elif isinstance(X, pd.DataFrame): X = X.reset_index(drop=True) y = y.reset_index(drop=True) self.X = X self.y = y study = optuna.create_study(direction='maximize') study.optimize(self, n_trials=self.n_trials) self.best_trial = study.best_trial print() print("Best score:", round(self.best_trial.value, 2)) print("Best params:", self.best_trial.params) print() self.best_model = self.model_cls(**self.best_trial.params) self.best_model.fit(self.X, self.y) def predict(self, X): if isinstance(X, pd.Series): X = pd.DataFrame(X.values.reshape(1, -1)) elif isinstance(X, np.ndarray): X = pd.DataFrame(X) return self.best_model.predict(X) def score(self, X, y): if isinstance(X, np.ndarray): X = pd.DataFrame(X) y = pd.DataFrame(y) return self.best_model.score(X, y) def kfold_cv(self, model, splits=5): scores = [] kf = KFold(n_splits=splits, shuffle=True) for train_index, test_index in kf.split(self.X): X_train, X_test = self.X.iloc[train_index], self.X.iloc[test_index] y_train, y_test = self.y.iloc[train_index], self.y.iloc[test_index] model.fit(X_train, y_train) scores.append(model.score(X_test, y_test)) score = np.array(scores).mean() return score @abstractmethod def __call__(self, trial): raise NotImplementedError() class SVRCV(BaseModelCV): model_cls = SVR def __call__(self, trial): kernel = trial.suggest_categorical('kernel', ['rbf', 'linear']) C = trial.suggest_loguniform('C', 1e-2, 1e2) epsilon = trial.suggest_loguniform('epsilon', 1e-3, 1e1) gamma = trial.suggest_loguniform('gamma', 1e-3, 1e3) model = self.model_cls(kernel=kernel, C=C, epsilon=epsilon, gamma=gamma) score = self.kfold_cv(model) return score class XGBRCV(BaseModelCV): model_cls = xgb.XGBRegressor def __call__(self, trial): booster = trial.suggest_categorical('booster', ['gbtree', 'dart']) alpha = trial.suggest_loguniform('alpha', 1e-8, 1.0) max_depth = trial.suggest_int('max_depth', 1, 9) eta = trial.suggest_loguniform('eta', 1e-8, 1.0) gamma = trial.suggest_loguniform('gamma', 1e-8, 1.0) grow_policy = trial.suggest_categorical( 'grow_policy', ['depthwise', 'lossguide']) if booster == 'gbtree': model = self.model_cls(silent=1, booster=booster, alpha=alpha, max_depth=max_depth, eta=eta, gamma=gamma, grow_policy=grow_policy) elif booster == 'dart': sample_type = trial.suggest_categorical('sample_type', ['uniform', 'weighted']) normalize_type = trial.suggest_categorical('normalize_type', ['tree', 'forest']) rate_drop = trial.suggest_loguniform('rate_drop', 1e-8, 1.0) skip_drop = trial.suggest_loguniform('skip_drop', 1e-8, 1.0) model = self.model_cls(silent=1, booster=booster, alpha=alpha, max_depth=max_depth, eta=eta, gamma=gamma, grow_policy=grow_policy, sample_type=sample_type, normalize_type=normalize_type, rate_drop=rate_drop, skip_drop=skip_drop) score = self.kfold_cv(model) return score if __name__ == '__main__': import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler df = pd.read_csv('sample/boston.csv') y = df['Price'] X = df.drop(['Price'], 1) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3) scaler = StandardScaler() scaler.fit(X_train) X_train = scaler.transform(X_train) X_test = scaler.transform(X_test) model = SVRCV(n_trials=300) model.fit(X_train, y_train) print(model.score(X_test, y_test)) print(model.predict(X.iloc[1]))