text
stringlengths
8
6.05M
import time, sys from random import randint # this will allow the user to enter in X and O into the grid spaces grid = {1:' ', 2:' ', 3:' ', 4:' ', 5:' ', 6:' ', 7:' ', 8:' ', 9:' '} # if player has three X's in a row haveWonX will become true triggering the if statement at the bottom of the code haveWonO = False haveWonX = False counter = 0 # the counter counts how many moves there have been. If there has been 9 moves it has to be a tie. choice = 'Y' def gameAI(): '''this checks where Ai moves''' if ((grid[2] == 'X' and grid[3] == 'X') or (grid[4] == 'X' and grid[7] == 'X') or (grid[5] == 'X' and grid[9] == 'X')) and grid[1] != 'O': return 1 elif ((grid[1] == 'X' and grid[3] == 'X') or (grid[5] == 'X' and grid[8] == 'X')) and grid[2] != 'O': return 2 elif ((grid[1] == 'X' and grid[2] == 'X') or (grid[6] == 'X' and grid[9] == 'X') or (grid[5] == 'X' and grid[7] == 'X')) and grid[3] != 'O': return 3 elif ((grid[1] == 'X' and grid[7] == 'X') or (grid[5] == 'X' and grid[6] == 'X')) and grid[4] != 'O': return 4 elif ((grid[1] == 'X' and grid[9] == 'X') or (grid[2] == 'X' and grid[8] == 'X') or (grid[3] == 'X' and grid[7] == 'X') or (grid[4] == 'X' and grid[6] == 'X')) and grid[5] != 'O': return 5 elif ((grid[3] == 'X' and grid[9] == 'X') or (grid[4] == 'X' and grid[5] == 'X')) and grid[6] != 'O': return 6 elif ((grid[1] == 'X' and grid[4] == 'X') or (grid[3] == 'X' and grid[5] == 'X') or (grid[8] == 'X' and grid[9] == 'X')) and grid[7] != 'O': return 7 elif ((grid[2] == 'X' and grid[5] == 'X') or (grid[7] == 'X' and grid[9] == 'X')) and grid[8] != 'O': return 8 elif ((grid[1] == 'X' and grid[5] == 'X') or (grid[3] == 'X' and grid[6] == 'X') or (grid[7] == 'X' and grid[8] == 'X')) and grid[9] != 'O': return 9 while True: randInt = randint(1, 9) if grid[randInt] == 'X' or grid[randInt] == 'O': continue else: grid[randInt] = 'O' break def drawGrid(): print('\t') print(' ║ ║ ') print(' %s ║ %s ║ %s ' % (' ' + grid[1], grid[2] + ' ', grid[3] + ' ')) print(' ║ ║ ') print(' ══════╬═══════╬═══════') print(' ║ ║ ') print(' %s ║ %s ║ %s ' % (' ' + grid[4], grid[5] + ' ', grid[6] + ' ')) print(' ║ ║ ') print(' ══════╬═══════╬═══════') print(' ║ ║ ') print(' %s ║ %s ║ %s ' % (' ' + grid[7], grid[8] + ' ', grid[9] + ' ')) print(' ║ ║ ' + '\n') while choice[0] != 'N': print ('\n' + 'This is how the Tic-Tac-Toe grid looks like (starting from position 1 [top-left] all the way to position 9 [bottom-right]):') drawGrid() while haveWonO == False or haveWonX == False: if counter > 8: break else: player = int(input("Player 1's turn. Please input where you want to place the 'X': ")) grid[player] = 'X' drawGrid() if ((grid[1] == 'X' and grid[2] == 'X' and grid[3] == 'X') or (grid[1] == 'X' and grid[4] == 'X' and grid[7] == 'X') or (grid[1] == 'X' and grid[5] == 'X' and grid[9] == 'X') or (grid[2] == 'X' and grid[5] == 'X' and grid[8] == 'X') or (grid[3] == 'X' and grid[6] == 'X' and grid[9] == 'X') or (grid[3] == 'X' and grid[5] == 'X' and grid[7] == 'X') or (grid[4] == 'X' and grid[5] == 'X' and grid[6] == 'X') or (grid[7] == 'X' and grid[8] == 'X' and grid[9] == 'X')): haveWonX = True break counter += 1 if counter > 8: break else: print ("This is the computer's turn.") print ('\n') time.sleep(0.3) sys.stdout.write('Thinking') time.sleep(0.1) sys.stdout.write('.') time.sleep(0.1) sys.stdout.write('.') time.sleep(0.1) sys.stdout.write('.') time.sleep(0.1) sys.stdout.write('.') time.sleep(0.1) sys.stdout.write('.') print ('\n') computer = gameAI() grid[computer] = 'O' drawGrid() if ((grid[1] == 'O' and grid[2] == 'O' and grid[3] == 'O') or (grid[1] == 'O' and grid[4] == 'O' and grid[7] == 'O') or (grid[1] == 'O' and grid[5] == 'O' and grid[9] == 'O') or (grid[2] == 'O' and grid[5] == 'O' and grid[8] == 'O') or (grid[3] == 'O' and grid[6] == 'O' and grid[9] == 'O') or (grid[3] == 'O' and grid[5] == 'O' and grid[7] == 'O') or (grid[4] == 'O' and grid[5] == 'O' and grid[6] == 'O') or (grid[7] == 'O' and grid[8] == 'O' and grid[9] == 'O')): haveWonO = True break counter += 1 if haveWonO == True: print ('O has won!') elif haveWonX == True: print ('X has won!') elif counter == 9: print('It\'s a tie!') choice = input('Try Again? (Y/N): ').upper() if choice[0] == 'Y': haveWonO = False haveWonX = False counter = 0 grid = {1:' ', 2:' ', 3:' ', 4:' ', 5:' ', 6:' ', 7:' ', 8:' ', 9:' '}
import numpy as np from sklearn.metrics import roc_auc_score from scipy.signal import hilbert from scipy.ndimage.filters import gaussian_filter from scipy.stats import pearsonr class CorrCoeffIntervalOptimizer(object): def __init__(self, max_score_fraction=0.8, use_abs_for_threshold=True): self.use_abs_for_threshold = use_abs_for_threshold self.max_score_fraction = max_score_fraction def optimize(self, epo): return optimize_segment_ival(epo, max_score_fraction=self.max_score_fraction, use_abs_for_threshold=self.use_abs_for_threshold, mode="corrcoeff") class AucIntervalOptimizer(object): def __init__(self, max_score_fraction=0.8, use_abs_for_threshold=True): self.use_abs_for_threshold = use_abs_for_threshold self.max_score_fraction = max_score_fraction def optimize(self, epo): return optimize_segment_ival(epo, max_score_fraction=self.max_score_fraction, use_abs_for_threshold=self.use_abs_for_threshold, mode="auc") def optimize_segment_ival(epo, max_score_fraction=0.8, use_abs_for_threshold=True, mode="auc"): """ Optimizing segment ival following http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4408441#app3 (but using auc instead of corrcoef)""" epo_envelope = np.abs(hilbert(epo.data, axis=1)) epo_smoothed = gaussian_filter(epo_envelope, (0,15,0), order=0, mode='reflect') labels = epo.axes[0] # labels should be 0,1 for auc but they may be 1,3 or anything else.. # so convert them to 0/1 assert len(np.unique(labels)) == 2 binary_labels = np.int32(labels == np.max(labels)) # Create blocks of 100 ms length (divided by 10 is same as *100(ms)/1000(ms)) assert epo.fs % 10 == 0 n_samples_per_block = epo.fs / 10 n_samples = len(epo.axes[1]) assert n_samples % n_samples_per_block == 0 n_time_blocks = n_samples // n_samples_per_block n_chans = len(epo.axes[2]) auc_scores = np.ones((n_time_blocks, n_chans)) * np.nan for i_time_block in range(n_time_blocks): for i_chan in range(n_chans): start_sample = i_time_block * n_samples_per_block epo_part = epo_smoothed[:,start_sample: start_sample + n_samples_per_block,i_chan] # auc values indicate good separability if they are close to 0 or close to 1 # subtracting 0.5 transforms them to mean better separability more far away from 0 # this makes later computations easier if mode =='auc': score = roc_auc_score(binary_labels, np.sum(epo_part, axis=(1))) - 0.5 else: assert mode == 'corrcoeff' score = pearsonr(binary_labels, np.sum(epo_part, axis=(1)))[0] auc_scores[i_time_block, i_chan] = score auc_score_chan = np.sum(np.abs(auc_scores), axis=1) # sort time ivals so that best ival across chans is first time_blocks_sorted = np.argsort(auc_score_chan)[::-1] i_best_block = time_blocks_sorted[0] chan_above_zero = auc_scores[i_best_block, :] > 0 chan_sign = 1 * chan_above_zero + -1 * np.logical_not(chan_above_zero) sign_adapted_scores = auc_scores * chan_sign chan_meaned_scores = np.sum(sign_adapted_scores, axis=1) best_meaned_block = np.argsort(chan_meaned_scores)[::-1][0] if use_abs_for_threshold: threshold = (np.sum(chan_meaned_scores[chan_meaned_scores > 0]) * max_score_fraction) else: threshold = np.sum(chan_meaned_scores) * max_score_fraction t0 = best_meaned_block t1 = best_meaned_block # stop if either above threshold or # there are no timeblocks with positive values left to add # (this also implies stopping if both indices are at the borders) while (np.sum(chan_meaned_scores[t0:t1+1]) < threshold and (np.sum(chan_meaned_scores[:t0] * (chan_meaned_scores[:t0] > 0) + np.sum(chan_meaned_scores[t1+1:] * (chan_meaned_scores[t1+1:]> 0))) > 0)): if ((np.sum(chan_meaned_scores[:t0]) > np.sum(chan_meaned_scores[t1+1:]) and t0 > 0) or t1 == n_time_blocks - 1): t0 = t0 - 1 else: t1 = t1 + 1 start_sample = t0 * n_samples_per_block end_sample = (t1 + 1) * n_samples_per_block start_ms = start_sample * 1000.0 / epo.fs end_ms = end_sample * 1000.0 / epo.fs # adjust in case trial was already cut out in some way # assuming axis 1 is timeaxis start_ms += epo.axes[1][0] end_ms += epo.axes[1][0] return start_ms, end_ms
import sqlite3 conn = sqlite3.connect('pakdet.db') c2 = conn.cursor() for row in c2.execute("SELECT * FROM PAKDET"): print(row) conn.close()
from flask import request from werkzeug.urls import url_encode def apply_template_globals(app): @app.template_global() def modify_query(**new_values): args = request.args.copy() for key, value in new_values.items(): if key.endswith('_in_list'): old_list = args.get(key, '').split(',') new_list = old_list + value.split(',') args[key] = ','.join(set([s for s in new_list if s])) else: args[key] = value return '{}?{}'.format(request.path, url_encode(args))
#%% from sklearn.metrics import classification_report, confusion_matrix from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn import tree from IPython.display import Image import pandas as pd import numpy as np import pydotplus import os tennis_data = pd.read_csv('playtennis.csv') # print(tennis_data) tennis_data.Outlook = tennis_data.Outlook.replace('Sunny',0) tennis_data.Outlook = tennis_data.Outlook.replace('Overcast',1) tennis_data.Outlook = tennis_data.Outlook.replace('Rain',2) tennis_data.Temperature = tennis_data.Temperature.replace('Hot',3) tennis_data.Temperature = tennis_data.Temperature.replace('Mild',4) tennis_data.Temperature = tennis_data.Temperature.replace('Cool',5) tennis_data.Humidity = tennis_data.Humidity.replace('High',6) tennis_data.Humidity = tennis_data.Humidity.replace('Normal',7) tennis_data.Wind = tennis_data.Wind.replace('Weak',8) tennis_data.Wind = tennis_data.Wind.replace('Strong',9) tennis_data.PlayTennis = tennis_data.PlayTennis.replace('No',10) tennis_data.PlayTennis = tennis_data.PlayTennis.replace('Yes',11) # print(tennis_data) X = np.array(pd.DataFrame(tennis_data, columns=['Outlook','Temperature','Humidity','Wind'])) y = np.array(pd.DataFrame(tennis_data, columns=['PlayTennis'])) X_train, X_test, y_train, y_test = train_test_split(X,y) dt_clf = DecisionTreeClassifier() #의사결정 트리함수 생성 dt_clf = dt_clf.fit(X_train, y_train) #모델에 변수 입력 dt_prediction = dt_clf.predict(X_test) # X테스트값 예측 # print(confusion_matrix(y_test, dt_prediction)) #오차행렬 계산 # print(classification_report(y_test, dt_prediction)) #분류 측정항목 os.environ['PATH'] += os.pathsep + 'C:/Program Files (x86)/Graphviz2.38/bin/' feature_names = tennis_data.columns.tolist() feature_names = feature_names[0:4] target_name = np.array(['Play No', 'Play Yes']) dt_dot_data = tree.export_graphviz(dt_clf, out_file = None, feature_names= feature_names, class_names = target_name, filled= True, rounded=True, special_characters=True) dt_graph = pydotplus.graph_from_dot_data(dt_dot_data) Image(dt_graph.create_png()) #%%
##encoding=utf-8 """ usage: cd to this directory, run cmd (crawl death record in year 2000): python dev01_taskplan.py 2 2000 """ from archives.database import client, task from archives.metadata import lastname_dict from archives.urlencoder import urlencoder from archives.htmlparser import htmlparser from archives.spider import spider from archives.fingerprint import fingerprint import math import sys def taskplan(record_type, year): """For 18800+ lastnames, get results number for each query of: {record_type: #record_type, year: #year, lastname: #lastname} For example: if there are 25000 records for: record_type = death, year = 2000, lastname = smith, since the webpage display 1000 records per page, so we create pagenumber from 1 to 25 for this query. and save it in mongodb database (db = archives, collection = task) like this: {_id: md5 string, type: 2, lastname_id: 0, year: 2000, nth: 1, flag: false} ... nth + 1 Afterwards, the crawler gonna go through all these pages, once it's done with one page, then it gonna change the flag to true, so the crawler are never gonna crawl that again. For more information about task plan data model, see archives.database.py [args] ------ record_type: 1. birth record 2. death record 3. marriage record 4. divorce record year: 4 digits year """ for lastname_id, lastname in lastname_dict.items(): # check if we did this record_type, lastname_id, year combination before _id = fingerprint.of_text("%s_%s_%s_%s" % (record_type, lastname_id, year, 1) ) if task.find({"_id": _id}).count() == 0: # only do it when we never do it print("processing type=%s, lastname=%s in %s ..." % (record_type, lastname, year)) if record_type == 1: url = urlencoder.url_birth_record(lastname, year, 10, 1) elif record_type == 2: url = urlencoder.url_death_record(lastname, year, 10, 1) elif record_type == 3: url = urlencoder.url_marriage_record(lastname, year, 10, 1) elif record_type == 4: url = urlencoder.url_divorce_record(lastname, year, 10, 1) html = spider.html(url) if html: try: num_of_records = htmlparser.get_total_number_of_records(html) max_pagenum = int(math.ceil(float(num_of_records)/1000)) # calculate how many page we should crawl print("\tWe got %s pages to crawl" % max_pagenum) for pagenum in range(1, max_pagenum+1): doc = {"_id": fingerprint.of_text("%s_%s_%s_%s" % (record_type, lastname_id, year, pagenum) ), "type": record_type, "lastname_id": lastname_id, "year": year, "nth": pagenum, "flag": False} try: task.insert(doc) except: pass except: pass else: print("\tFailed to get html") if __name__ == "__main__": # record_type, year = int(sys.argv[1]), int(sys.argv[2]) # record_type, year = 2, 2007 for record_type in [1,2,3,4]: taskplan(record_type, 2014) # client.close()
# Author: ambiguoustexture # Date: 2020-03-11 file_result_w2v = './stuffs_92/result_w2v.txt' file_result_PC = './stuffs_92/result_PC.txt' with open(file_result_w2v) as result_w2v: count, total = 0, 0 for line in result_w2v: cols = line.split(' ') total += 1 if cols[3] == cols[4]: count += 1 print('Accuracy of word2vec model:', count / total) with open(file_result_PC) as result_PC: count, total = 0, 0 for line in result_PC: cols = line.split(' ') total += 1 if cols[3] == cols[4]: count += 1 print('Accuracy of PCA model:', count / total)
#!/usr/bin/env python """ See cubeplt.py for 3d plotting of the cubes """ import numpy as np def make_pyvista_indices(indices): """ :param indices: (nface,3) triangles OR (nface,4) quads :return ii: vista type list """ sh = list(indices.shape) last = sh[-1] assert last in (3,4) sh[-1] = last+1 ii = np.zeros(sh, dtype=np.int32) ii[:,1:] = indices ii[:,0] = last return ii def make_cube_oxyz(oxyz): """ :param oxyz: (4,3) : origin and orthogonal surrounding points nominally assumed in +X,+Y,+Z directions relative to first point (YZ) (XYZ) 6.........7 /. /| / . / | / . / | 3.........5 | | . | | | 2.....|...4 Z | / | / | / Y | / |/ |/ 0---------1 X """ o = oxyz[0] v = oxyz[1:] - o # three : assumed orthogonal base vectors verts = np.zeros([8,3], dtype=np.float32) verts[:4] = oxyz verts[4] = o + v[0] + v[1] # XY verts[5] = o + v[0] + v[2] # XZ verts[6] = o + v[1] + v[2] # YZ verts[7] = o + v[0] + v[1] + v[2] # XYZ indices = np.array([ [0,1,5,3], # thumb-out (outwards normal) [1,4,7,5], # thumb-right (outwards normal) [4,2,6,7], # thumb-back (outwards normal) [0,3,6,2], # thumb-left (outwards normal) [0,2,4,1], # thumb-down (outwards normal) [5,7,6,3]], # thumb-up (outwards normal) dtype=np.int32) pv_indices = make_pyvista_indices(indices) faces = verts[indices] assert verts.shape == (8,3) assert indices.shape == (6,4) assert pv_indices.shape == (6,5) assert faces.shape == (6,4,3) return verts, faces, pv_indices def make_cube_bbox(bbox): """ :param bbox: (2,3) mi,mx mx (YZ) (XYZ) 6.........7 /. /| / . / | / . / | 3.........5 | | . | | | 2.....|...4 Z | / | / | / Y | / |/ |/ 0---------1 mi X """ assert bbox.shape == (2,3) mi, mx = bbox verts = np.zeros([8,3], dtype=np.float32) verts[0] = [mi[0], mi[1], mi[2]] # --- verts[1] = [mx[0], mi[1], mi[2]] # X-- verts[2] = [mi[0], mx[1], mi[2]] # -Y- verts[3] = [mi[0], mi[1], mx[2]] # --Z verts[4] = [mx[0], mx[1], mi[2]] # XY- verts[5] = [mx[0], mi[1], mx[2]] # X-Z verts[6] = [mi[0], mx[1], mx[2]] # -YZ verts[7] = [mx[0], mx[1], mx[2]] # XYZ indices = np.array([ [0,1,5,3], # thumb-out (outwards normal) [1,4,7,5], # thumb-right (outwards normal) [4,2,6,7], # thumb-back (outwards normal) [0,3,6,2], # thumb-left (outwards normal) [0,2,4,1], # thumb-down (outwards normal) [5,7,6,3]], # thumb-up (outwards normal) dtype=np.int32) pv_indices = make_pyvista_indices(indices) faces = verts[indices] assert verts.shape == (8,3) assert indices.shape == (6,4) assert pv_indices.shape == (6,5) assert faces.shape == (6,4,3) return verts, faces, pv_indices def make_cube(cube): """ :param cube: shape of either (4,3) or (2,3) """ if cube.shape == (4,3): return make_cube_oxyz(cube) elif cube.shape == (2,3): return make_cube_bbox(cube) else: assert 0, ("cube specification array not handled", cube.shape) pass if __name__ == '__main__': oxyz = np.array([(0,0,0), (100,0,0), (0,100,0), (0,0,100)], dtype=np.float32) bbox = np.array([(0,0,0),(100,100,100)], dtype=np.float32) points0, faces0, indices0 = make_cube(oxyz) points1, faces1, indices1 = make_cube(bbox) assert np.all( points0 == points1 ) assert np.all( faces0 == faces1 )
import pandas as pd from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression import numpy as np import zipcodes from make_data import * from train_model import * from predict import * from decrease_price import * import pickle inputs1 = { 'price': [221900, 538000, 180000, 604000, 510000], 'city': ['phx', 'phx', 'phx', 'phx', 'phx'], 'bedrooms': [2,2,3,3,2], 'bathrooms': [2, 2, 3, 2, 1], 'floors': [1, 2, 1, 2, 3], 'waterfront': [0, 0, 0, 0, 1], 'condition': [2, 3, 4, 1, 4], 'sqft_basement': [1, 0,1, 0, 1], 'yr_built': [1990, 1934, 1955, 1920, 2005], 'yr_renovated': [0,0,0,1,1], 'lot_log': [5650, 7242, 6000, 9780, 9500], } inputs2 = { 'price': [257500, 310000, 485000, 385000, 233000], 'city': ['hou', 'hou', 'hou', 'hou', 'hou'], 'bedrooms': [2,1,3,2,3], 'bathrooms': [1, 2, 2, 3, 2], 'floors': [3, 1, 2, 3, 1], 'waterfront': [0, 1, 0, 0, 1], 'condition': [3,4, 5, 2, 3], 'sqft_basement': [1,0,0,1,0], 'yr_built': [2007, 2012, 2001, 1999, 2000], 'yr_renovated': [0,1,0,1,1], 'lot_log': [5000, 6500, 3300, 2300, 5400], } df1= pd.DataFrame(data=inputs1) df2= pd.DataFrame(data=inputs2) final = df1.append(df2) yDict = [df1['price'], df2['price']] #dictionary of y xDict = [df1[['bedrooms', 'bathrooms',"floors", "waterfront", "condition", "sqft_basement", "yr_built", "yr_renovated", "lot_log"]],df2[['bedrooms', 'bathrooms',"floors", "waterfront", "condition", "sqft_basement", "yr_built", "yr_renovated", "lot_log"]]] #dictionary of X #tests for make_data def test_append_cityNames(): """Tests the append_cityNames function in make_data to ensure cities are properly appended.""" zip_data = pd.DataFrame(columns=['price', 'zipcode']) prices = [1,2,3] zipcodes1 = [85258, 60201, 93953] zip_data['price'] = prices zip_data['zipcode'] = zipcodes1 city_result = append_cityNames(zip_data, 'zipcode', 'city') assert type(city_result) is pd.core.frame.DataFrame assert city_result.shape == (3,3) def test_choose_features(): """Tests the choose_features function in make_data to ensure subsetting of dataframe is correct.""" #city_result = append_cityNames(data, 'zipcode', 'city') columns = ["bedrooms", "bathrooms", "city"] feature_result = choose_features(final, columns) assert type(feature_result) is pd.core.frame.DataFrame assert feature_result.shape == (10, 3) def test_log_variable(): """Tests the log_variable function in make_data to ensure variables are correctly being logged.""" df = pd.DataFrame(columns=['col1']) list1 = [1,2,3] df['col1'] = list1 list2 = [np.log(1), np.log(2), np.log(3)] log_result = log_variable(df, 'logged', 'col1') print(log_result) assert log_result['logged'].tolist() == list2 def test_binary_var(): """Tests the binary_var function in make_data to ensure variables are correctly being turned into binary variables""" df = pd.DataFrame(columns=['price', 'pools']) list1 = [1, 6, 4, 2.4, 0] list2 = [0, 4.5, 0, 1, 6] df['price']= list1 df['pools']=list2 results_binary = create_binary_var(df, 'pools') assert sum(((df['pools']==1) | (df['pools']==0))) == len(results_binary['pools']) #tests for train_model def test_splitDF_cities(): """Tests the splitDF_cities function to make sure the dataframe is being split by city name.""" #feature_result = choose_features(data, columns) cities = ['phx', 'hou'] x = final[['bedrooms', 'bathrooms', 'city']] split_result = splitDF_cities(x, cities) assert type(split_result) is list assert len(split_result) == len(cities) def test_get_target(): """Tests the get_target function to make sure the correct target is being returned.""" #feature_result = choose_features(data, columns) #split_result = splitDF_cities(feature_result, cities) cities = ['phx', 'hou'] split_result = [df1, df2] target_result = get_target(split_result, 'price') assert type(target_result) is list assert len(target_result) == len(cities) def test_split_data(): cities = ['phx', 'hou'] split_result = split_data(xDict, yDict) assert type(split_result) is tuple assert len(split_result) == len(cities) #has city lengh lists assert len(split_result[0]) == 2 #has test and train def test_model_train(): cities = ['phx', 'hou'] d = {'model_train': { 'choose_features': { #'num_years': final, 'columns': ["city", "bedrooms", "bathrooms","floors", "waterfront", "condition", "sqft_basement", "yr_built", "yr_renovated", "lot_log"]}, 'split_data':{ 'train_size': 0.7, 'test_size': 0.3 } }} models, finalxDict, finalyDict = model_train(xDict, yDict,**d['model_train']) with open('unitTest_model.pkl', "wb") as f: pickle.dump(models, f) assert len(models) == len(cities) assert type(models[0]) is sklearn.linear_model.base.LinearRegression def test_model_score(): with open('unitTest_model.pkl', 'rb') as f: models = pickle.load(f) cities = ['phx', 'hou'] x, y = split_data(xDict, yDict) scoring = model_score (models, x, y, cities) assert type(scoring) is pd.core.frame.DataFrame assert scoring.shape == (len(cities), 2) def test_format_coefs(): cities = ['phx', 'hou'] columns = ["bedrooms", "bathrooms", "floors", "waterfront", "condition", "sqft_basement", "yr_built", "yr_renovated", "lot_log"] with open('unitTest_model.pkl', 'rb') as f: models = pickle.load(f) coefs = format_coefs(models, columns, cities) assert type(coefs) is pd.core.frame.DataFrame assert coefs.shape == (len(cities), len(columns)) ## tests for application scripts def test_input_prediction(): """ Tests the prediction function from app.predict.py to ensure user inputs are predicted correctly""" with open('unitTest_model.pkl', 'rb') as f: models = pickle.load(f) predict_result= prediction(models, 0, 4, 5, 3, 0, 4, 0, 1950, 0, 10000) assert type(predict_result) is str def test_dec_price(): """ Tests the decrease price function from app.decrease_price.py to ensure the correct output is being made""" with open('unitTest_model.pkl', 'rb') as f: models = pickle.load(f) test_items, test_prices = dec_price(models, 0, 4, 5, 3, 0, 4, 0, 1950, 0, 10000) assert type(test_items) is list assert type(test_prices) is list assert len(test_items) == 2 assert len(test_prices) == 8
from spack import * import sys,os sys.path.append(os.path.join(os.path.dirname(__file__), '../../common')) from scrampackage import write_scram_toolfile class EvtgenToolfile(Package): url = 'file://' + os.path.dirname(__file__) + '/../../common/junk.xml' version('1.0', '68841b7dcbd130afd7d236afe8fd5b949f017615', expand=False) depends_on('evtgen') def install(self, spec, prefix): values = {} values['VER'] = spec['evtgen'].version values['PFX'] = spec['evtgen'].prefix fname = 'evtgen.xml' contents = str(""" <tool name="evtgen" version="${VER}"> <lib name="EvtGen"/> <lib name="EvtGenExternal"/> <client> <environment name="EVTGEN_BASE" default="${PFX}"/> <environment name="LIBDIR" default="$$EVTGEN_BASE/lib"/> <environment name="INCLUDE" default="$$EVTGEN_BASE/include"/> </client> <runtime name="EVTGENDATA" value="$$EVTGEN_BASE/share"/> <use name="hepmc"/> <use name="pythia8"/> <use name="tauolapp"/> <use name="photospp"/> </tool> """) write_scram_toolfile(contents, values, fname, prefix)
import json import csv import numpy as np import matplotlib.pyplot as plt import os import argparse #parser for trails #use --trial trial_() to run it parser = argparse.ArgumentParser(description='Read Trial') parser.add_argument('--trial', type=str, help='Trial Number') args = parser.parse_args() #different condition of images condition = ['big_', 'small_', 'light_', 'dark_'] #classes of product classList = ['bubly', 'clinique', 'echo', 'lotion', 'micellar', 'parm', 'protein', 'redbull', 'shade', 'skin', 'tory' ] trial = args.trial """ Configure Paths""" #to generate test_image.txt and calcualte the percentage of the indicated condition dir_path = os.path.dirname(os.path.realpath("./*")) def gentestList(con): tot_cnt = 0 con_cnt =0 labelpath = dir_path+"/dataset_eval/" imgpath = dir_path+"/dataset_eval/" txt_list = os.listdir(imgpath) for txt_name in txt_list: if not("jpg" in txt_name): continue tot_cnt+=1 if not(con in txt_name): continue con_cnt+=1 img_filename = txt_name img_path = imgpath + img_filename iopen = open(dir_path+"/test_images.txt", "a") iopen.write(img_path+"\n") return con_cnt/tot_cnt, tot_cnt #calaulate the perventahe of each class def count(con): tot_cnt = 0 con_cnt =0 labelpath = dir_path+"/dataset_eval/" imgpath = dir_path+"/dataset_eval/" txt_list = os.listdir(imgpath) for txt_name in txt_list: if not("jpg" in txt_name): continue tot_cnt+=1 if not(con in txt_name): continue con_cnt+=1 return con_cnt/tot_cnt #for con in condition: #Open txt def mAPList(condition, p): mAPlist = [] perclist = [] for con in condition: #create test image list for this condition if os.path.isfile('test_images.txt'): os.remove('test_images.txt') perc, _ =gentestList(con) #run darknet under this conditions and p value os.system(dir_path+'/darknet detector map dataset_eval.data /home/vickicv/Desktop/Versioning_test/Trials/{}/yolov4-tiny-vicki-1.cfg /home/vickicv/Desktop/Versioning_test/Trials/{}/weights/yolov4-tiny-vicki-1_best.weights -iou_thresh 0.{} ->result.txt'.format(trial,trial,p)) f = open ('result.txt','r') m = f.readlines() for line in m: if ('mean average precision (mAP@0.'+ p + ')') in line: first = line.split("=")[1] mAP = float(first.split(',')[0])*100 mAPlist.append(mAP) perclist.append(perc) return mAPlist,perclist def mAPList_class(condition, p): mAPlist = [] perclist = [] #create test image list for this condition if os.path.isfile('test_images.txt'): os.remove('test_images.txt') _, tot_cnt =gentestList("") os.system(dir_path+'/darknet detector map dataset_eval.data /home/vickicv/Desktop/Versioning_test/Trials/{}/yolov4-tiny-vicki-1.cfg /home/vickicv/Desktop/Versioning_test/Trials/{}/weights/yolov4-tiny-vicki-1_best.weights -iou_thresh 0.{} ->result.txt'.format(trial,trial,p)) #run darknet under this conditions and p value f = open ('result.txt','r') m = f.readlines() for line in m: if 'class_id' in line: for i in range(len(condition)): if condition[i] in line: mAP = float(line.split('=')[3].split('%')[0]) #print(mAP) mAPlist.append(mAP) for i in range(len(condition)): perclist.append(count(condition[i])) return mAPlist,perclist def mAP_all(p): mAP = 0 #create test image list for this condition if os.path.isfile('test_images.txt'): os.remove('test_images.txt') _, _ =gentestList("") #run darknet under this conditions and p value os.system(dir_path+'/darknet detector map dataset_eval.data /home/vickicv/Desktop/Versioning_test/Trials/{}/yolov4-tiny-vicki-1.cfg /home/vickicv/Desktop/Versioning_test/Trials/{}/weights/yolov4-tiny-vicki-1_best.weights -iou_thresh 0.{} ->result.txt'.format(trial,trial,p)) f = open ('result.txt','r') m = f.readlines() for line in m: if ('mean average precision (mAP@0.'+ p + ')') in line: first = line.split("=")[1] mAP = float(first.split(',')[0])*100 return mAP #extract mAP from result.txt for each condition mAP25,perclist = mAPList(condition, '25') mAP50,_ = mAPList(condition, '50') mAP75,_ = mAPList(condition, '75') #extract mAP from result.txt for each class mAP_class_25, perclist_class = mAPList_class(classList, '25') mAP_class_50, _ = mAPList_class(classList, '50') mAP_class_75, _ = mAPList_class(classList, '75') path = dir_path+'/output_{}.csv'.format(trial) #write CSV file with open(path, 'w', newline = '') as csvfile: writer = csv.writer(csvfile) writer.writerow(['condition', 'percentage', 'mAP@25' , 'mAP@50', 'mAP@75']) writer.writerow(['all', '100', mAP_all('25') , mAP_all('50'), mAP_all('75')]) for i in range(len(condition)): writer.writerow([condition[i], perclist[i] , mAP25[i], mAP50[i], mAP75[i]]) for i in range(len(classList)): writer.writerow([classList[i], perclist_class[i], mAP_class_25[i], mAP_class_50[i], mAP_class_75[i]])
"""inventoryproject URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path,include from user import views as user_view from django.contrib.auth import views as auth_views from django.conf.urls.static import static from django.conf import * urlpatterns = [ path('admin/', admin.site.urls), path('',include('dashboardapp.urls')), path('register/',user_view.register,name='user-register'), path('',auth_views.LoginView.as_view(template_name='user/login.html'),name="user-login"), # here we get LoginView Class from view package and make our own template means login.html and #in this {{form}} means form django-admin path('profile/',user_view.profile,name='user-profile'), path('logout/',auth_views.LogoutView.as_view(template_name='user/logout.html'),name="user-logout"), path('password_reset/',auth_views.PasswordResetView.as_view(template_name='user/password_reset.html'),name='password_reset'), #here password_reset is my own customize template path('password_reset_done/',auth_views.PasswordResetDoneView.as_view(template_name='user/password_reset_done.html'),name='password_reset_done'), path('password_reset_confirm/<uidb64>/<token>/',auth_views.PasswordResetConfirmView.as_view(template_name='user/password_reset_confirm.html'),name="password_reset_confirm"), path('password_reset_complete/',auth_views.PasswordResetCompleteView.as_view(template_name='user/password_reset_complete.html'),name="password_reset_complete") #here PasswordResetView is an built in class django-admin #if you use password resset of django admin then PasswordResetView,PasswordResetDoneView,PasswordResetConfirmView,PasswordResetCompleteView compulsory required ]+ static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
from models.DiscordExtension import DiscordExtension from models.ExecutionContext import ExecutionContext from player import Player import asyncio import discord import logging class AliasExtension(DiscordExtension): def __init__(self, configRepo): self.configRepo = configRepo super().__init__() @property def name(self): return 'Aliases' def isserving(self, ctx: ExecutionContext): return ctx.cmd in ['alias', 'alias-remove'] async def execute(self, ctx: ExecutionContext): cmd = ctx.cmd arg = ctx.arg if (cmd == 'alias'): separator = arg.find(' ') if (separator == -1): await ctx.send_message('Wrong alias syntax. Use "alias <alias> <replacer>"') return alias = arg[:separator].strip() replacer = arg[separator + 1:].strip() self.configRepo.add_alias(alias, replacer) await ctx.send_message(f'Alias "{alias}" has been successfully added') else: if (ctx.isadmin): self.configRepo.remove_alias(arg) await ctx.send_message(f'Alias "{ctx.arg}" was successfully removed') else: await ctx.send_message('Only admin users can remove aliases') def list_commands(self, ctx: ExecutionContext): array = ['alias <alias> <replacer>'] aliases = 'list: ' for alias in self.configRepo.get_aliases(): aliases += f' {alias[0]}' array.append(aliases) array.append('alias-remove <alias>') return array def list_emojis(self): return [] def emoji_to_command(self, emoji: str): return None async def initialize(self, bot): pass def dispose(self): pass
from ..FeatureExtractor import FeatureExtractor from numpy import median as med from common_functions.plot_methods import plot_horizontal_line class medianextractor(plot_horizontal_line,FeatureExtractor): active = True extname = 'median' #extractor's name def extract(self): try: median = float(med(self.flux_data)) except: self.ex_error("EXCEPT in medianextractor() most likely flux_data=[]") return(median)
"""relaydomains unit tests.""" from django.core.files.base import ContentFile from django.test import TestCase from django.urls import reverse from modoboa.admin import factories as admin_factories, models as admin_models from modoboa.core.factories import UserFactory from modoboa.lib.test_utils import MapFilesTestCaseMixin from modoboa.lib.tests import ModoTestCase from modoboa.limits import utils as limits_utils from modoboa.transport import factories as tr_factories, models as tr_models from . import models class Operations(object): def _create_relay_domain(self, name, status=200, **kwargs): values = { "name": name, "create_dom_admin": False, "type": "relaydomain", "service": "relay", "relay_target_host": "external.host.tld", "relay_target_port": 25, "enabled": True, "stepid": "step3", "quota": 0, "default_mailbox_quota": 0 } values.update(kwargs) return self.ajax_post( reverse("admin:domain_add"), values, status ) def _relay_domain_alias_operation(self, optype, domain, name, status=200): transport = tr_models.Transport.objects.get(pattern=domain.name) values = { "name": domain.name, "service": "relay", "relay_target_host": transport._settings["relay_target_host"], "relay_target_port": transport._settings["relay_target_port"], "type": "relaydomain", "quota": domain.quota, "default_mailbox_quota": domain.default_mailbox_quota } aliases = [alias.name for alias in domain.domainalias_set.all()] if optype == "add": aliases.append(name) else: aliases.remove(name) for cpt, alias in enumerate(aliases): fname = "aliases" if not cpt else "aliases_%d" % cpt values[fname] = alias return self.ajax_post( reverse("admin:domain_change", args=[domain.id]), values, status ) def _check_limit(self, name, curvalue, maxvalue): limit = self.user.userobjectlimit_set.get(name=name) self.assertEqual(limit.current_value, curvalue) self.assertEqual(limit.max_value, maxvalue) class RelayDomainsTestCase(ModoTestCase, Operations): @classmethod def setUpTestData(cls): # NOQA:N802 """Create test data.""" super(RelayDomainsTestCase, cls).setUpTestData() admin_factories.populate_database() cls.transport = tr_factories.TransportFactory( pattern="relaydomain.tld", service="relay", _settings={ "relay_target_host": "external.host.tld", "relay_target_port": "25", "relay_verify_recipients": False } ) cls.dom = admin_factories.DomainFactory( name="relaydomain.tld", type="relaydomain", transport=cls.transport) admin_factories.DomainAliasFactory( name="relaydomainalias.tld", target=cls.dom) admin_factories.MailboxFactory( domain=cls.dom, address="local", user__username="local@relaydomain.tld", user__groups=("SimpleUsers", ) ) def test_domain_list_view(self): """Make sure relaydomain is listed.""" url = reverse("admin:_domain_list") response = self.client.get(url) self.assertEqual(response.status_code, 200) content = response.json() self.assertIn("relaydomain.tld", content["rows"]) self.assertIn("Relay domain", content["rows"]) def test_create_relaydomain(self): """Test the creation of a relay domain. We also check that unique constraints are respected: domain, relay domain alias. FIXME: add a check for domain alias. """ self._create_relay_domain("relaydomain1.tld") transport = tr_models.Transport.objects.get(pattern="relaydomain1.tld") self.assertEqual( transport._settings["relay_target_host"], "external.host.tld") self.assertEqual( transport._settings["relay_verify_recipients"], False) resp = self._create_relay_domain("test.com", 400) self.assertEqual(resp["form_errors"]["name"][0], "Domain with this Name already exists.") resp = self._create_relay_domain("relaydomainalias.tld", 400) self.assertEqual( resp["form_errors"]["name"][0], "A domain alias with this name already exists" ) def test_create_relaydomainalias(self): """Test the creation of a relay domain alias. We also check that unique constraints are respected: domain, relay domain. FIXME: add a check for domain alias. """ self._relay_domain_alias_operation( "add", self.dom, "relaydomainalias1.tld" ) resp = self._relay_domain_alias_operation( "add", self.dom, "test.com", 400 ) self.assertEqual( resp["form_errors"]["aliases_2"][0], "A domain with this name already exists" ) resp = self._relay_domain_alias_operation( "add", self.dom, self.dom.name, 400 ) self.assertEqual( resp["form_errors"]["aliases_2"][0], "A domain with this name already exists" ) def test_edit_relaydomain(self): """Test the modification of a relay domain. Rename 'relaydomain.tld' domain to 'relaydomain.org' """ values = { "name": "relaydomain.org", "service": "relay", "relay_target_host": self.transport._settings["relay_target_host"], "relay_target_port": 4040, "relay_verify_recipients": True, "type": "relaydomain", "enabled": True, "quota": 0, "default_mailbox_quota": 0 } self.ajax_post( reverse("admin:domain_change", args=[self.dom.id]), values ) self.transport.refresh_from_db() self.assertEqual( self.transport._settings["relay_target_port"], 4040) self.assertTrue( models.RecipientAccess.objects.filter( pattern=values["name"]).exists()) values["relay_verify_recipients"] = False self.ajax_post( reverse("admin:domain_change", args=[self.dom.id]), values ) self.assertFalse( models.RecipientAccess.objects.filter( pattern=values["name"]).exists()) def test_relaydomain_domain_switch(self): """Check domain <-> relaydomain transitions.""" domain_pk = self.dom.pk values = { "name": "relaydomain.tld", "type": "domain", "quota": 0, "default_mailbox_quota": 0, "enabled": True, "service": "relay", "relay_target_host": self.transport._settings["relay_target_host"], "relay_target_port": self.transport._settings["relay_target_port"] } self.ajax_post( reverse("admin:domain_change", args=[domain_pk]), values) with self.assertRaises(tr_models.Transport.DoesNotExist): self.transport.refresh_from_db() self.dom.refresh_from_db() self.assertEqual(self.dom.type, "domain") values = { "name": "relaydomain.tld", "type": "relaydomain", "enabled": True, "quota": 0, "default_mailbox_quota": 0 } self.ajax_post( reverse("admin:domain_change", args=[domain_pk]), values) self.assertEqual( admin_models.Domain.objects.get(name="relaydomain.tld").type, "relaydomain") def test_edit_relaydomainalias(self): """Test the modification of a relay domain alias. Rename 'relaydomainalias.tld' domain to 'relaydomainalias.net' """ values = { "name": "relaydomain.org", "service": "relay", "relay_target_host": self.transport._settings["relay_target_host"], "relay_target_port": self.transport._settings["relay_target_port"], "type": "relaydomain", "aliases": "relaydomainalias.net", "quota": 0, "default_mailbox_quota": 0 } self.ajax_post( reverse("admin:domain_change", args=[self.dom.id]), values ) admin_models.DomainAlias.objects.get(name="relaydomainalias.net") with self.assertRaises(admin_models.DomainAlias.DoesNotExist): admin_models.DomainAlias.objects.get(name="relaydomainalias.tld") def test_delete_relaydomain(self): """Test the removal of a relay domain.""" self.ajax_post( reverse("admin:domain_delete", args=[self.dom.id]), {} ) with self.assertRaises(tr_models.Transport.DoesNotExist): self.transport.refresh_from_db() def test_delete_recipientaccess(self): """Test the removal of a recipient access.""" self.transport._settings["relay_verify_recipients"] = True self.transport.save() self.ajax_post( reverse("admin:domain_delete", args=[self.dom.id]), {} ) self.assertFalse( models.RecipientAccess.objects.filter( pattern=self.transport.pattern).exists()) def test_alias_on_relaydomain(self): """Create an alias on a relay domain.""" values = { "address": "alias@relaydomain.tld", "recipients": "recipient@relaydomain.tld", "enabled": True } self.ajax_post(reverse("admin:alias_add"), values) self.assertTrue( admin_models.Alias.objects.filter( address="alias@relaydomain.tld").exists()) values = { "address": "alias2@relaydomain.tld", "recipients": "local@relaydomain.tld", "enabled": True } self.ajax_post(reverse("admin:alias_add"), values) self.assertTrue( admin_models.Alias.objects.filter( address="alias2@relaydomain.tld").exists()) class ImportTestCase(ModoTestCase): """Test import.""" def test_webui_import(self): """Check if import from webui works.""" f = ContentFile("relaydomain;relay.com;127.0.0.1;25;relay;True;True", name="domains.csv") self.client.post( reverse("admin:domain_import"), { "sourcefile": f } ) self.assertTrue( admin_models.Domain.objects.filter( name="relay.com", type="relaydomain").exists()) class LimitsTestCase(ModoTestCase, Operations): @classmethod def setUpTestData(cls): # NOQA:N802 """Create test data.""" super(LimitsTestCase, cls).setUpTestData() for name, _definition in limits_utils.get_user_limit_templates(): cls.localconfig.parameters.set_value( "deflt_user_{0}_limit".format(name), 2, app="limits") cls.localconfig.save() cls.user = UserFactory.create( username="reseller", groups=("Resellers",) ) def setUp(self): """Initialize test.""" super(LimitsTestCase, self).setUp() self.client.force_login(self.user) def test_relay_domains_limit(self): self._create_relay_domain( "relaydomain1.tld", quota=1, default_mailbox_quota=1) self._check_limit("domains", 1, 2) self._create_relay_domain( "relaydomain2.tld", quota=1, default_mailbox_quota=1) self._check_limit("domains", 2, 2) self._create_relay_domain("relaydomain3.tld", 403) self._check_limit("domains", 2, 2) domid = admin_models.Domain.objects.get(name="relaydomain2.tld").id self.ajax_post( reverse("admin:domain_delete", args=[domid]), {}) self._check_limit("domains", 1, 2) def test_relay_domain_aliases_limit(self): self._create_relay_domain( "relaydomain1.tld", quota=1, default_mailbox_quota=1) domain = admin_models.Domain.objects.get(name="relaydomain1.tld") self._relay_domain_alias_operation( "add", domain, "relay-domain-alias1.tld" ) self._check_limit("domain_aliases", 1, 2) self._relay_domain_alias_operation( "add", domain, "relay-domain-alias2.tld" ) self._check_limit("domain_aliases", 2, 2) self._relay_domain_alias_operation( "add", domain, "relay-domain-alias3.tld", 403 ) self._check_limit("domain_aliases", 2, 2) self._relay_domain_alias_operation( "delete", domain, "relay-domain-alias2.tld" ) self._check_limit("domain_aliases", 1, 2) class MapFilesTestCase(MapFilesTestCaseMixin, TestCase): """Test case for relaydomains.""" MAP_FILES = [ "sql-relaydomains.cf", "sql-relay-recipient-verification.cf" ]
import pykitti from .data import Downloader from .kitti_cameras_calibration_factory import KittyCamerasCalibrationFactory from .poses_dataset_adapter import PosesDatasetAdapter from .video_dataset_adapter import VideoDatasetAdapter from ..concat_dataset import ConcatDataset from ..data_transform_manager import DataTransformManager from ..unsupervised_depth_data_module import UnsupervisedDepthDataModule from ..video_dataset import VideoDataset class KittiDataModuleFactory(): def __init__(self, frames, sequences="08", directory="datasets"): if type(sequences) != list: sequences = [sequences] self._kitti_datasets = [self.make_kitti_dataset(directory, x, frames) for x in sequences] @staticmethod def make_kitti_dataset(directory, sequence, frames): sequence = Downloader(sequence, directory) return pykitti.odometry(sequence.main_dir, sequence.sequence_id, frames=frames) @staticmethod def make_video_dataset(kitti_dataset): return VideoDataset( VideoDatasetAdapter(kitti_dataset, 0), VideoDatasetAdapter(kitti_dataset, 1), PosesDatasetAdapter(kitti_dataset) ) def make_dataset_manager(self, final_image_size, transform_manager_parameters, batch_size=64, split=(80, 10, 10), num_workers=4, device="cpu"): original_image_size = self._kitti_datasets[0].get_rgb(0)[0].size[::-1] transform_manager = DataTransformManager( original_image_size, final_image_size, transform_manager_parameters ) dataset = ConcatDataset([self.make_video_dataset(x) for x in self._kitti_datasets]) cameras_calibration = KittyCamerasCalibrationFactory().make_cameras_calibration( original_image_size, final_image_size, device ) return UnsupervisedDepthDataModule(dataset, transform_manager, cameras_calibration, batch_size, num_workers=num_workers, split=split) def make_data_module_from_params(self, params): transform_manager_parameters = { "filters": params.transform_filters } return self.make_dataset_manager(params.image_size, transform_manager_parameters, params.batch_size, params.split, params.num_workers)
from flask import Response from flask.blueprints import Blueprint import logging from flask_login import login_required, current_user from flask.templating import render_template from flask.globals import request from flask.helpers import flash, url_for, make_response from waitlist.blueprints.settings import add_menu_entry from waitlist.permissions import perm_manager from waitlist.storage.database import Ticket from waitlist.base import db import flask from datetime import datetime, timedelta from sqlalchemy.sql.expression import desc from flask_babel import gettext, lazy_gettext logger = logging.getLogger(__name__) feedback = Blueprint('feedback', __name__) perm_manager.define_permission('feedback_view') perm_manager.define_permission('feedback_edit') perm_view = perm_manager.get_permission('feedback_view') perm_edit = perm_manager.get_permission('feedback_edit') @feedback.route("/", methods=["GET"]) @login_required def index() -> Response: # get old feedback and input data back char_id = current_user.get_eve_id() tickets = db.session.query(Ticket).filter(Ticket.characterID == char_id).all() return render_template("feedback/index.html", tickets=tickets) @feedback.route("/", methods=["POST"]) @login_required def submit() -> Response: title = request.form['title'] if title is None or len(title) > 50: return flask.abort(400, "Title is to long (max 50)") message = request.form['message'] if message is None: return flask.abort(400) char_id = current_user.get_eve_id() if message != "": ticket = Ticket( title=title, characterID=char_id, message=message, state="new" ) db.session.add(ticket) db.session.commit() flash(gettext("Thank You for your feedback!"), "info") return flask.redirect(url_for('.index')) @feedback.route("/settings", methods=["GET"]) @perm_view.require(http_exception=401) def settings() -> Response: # only give tickets that are not "closed" and not older then 90 days time_90days_ago = datetime.utcnow() - timedelta(90) tickets = db.session.query(Ticket).filter((Ticket.time > time_90days_ago) & (Ticket.state == "new"))\ .order_by(desc(Ticket.time)).all() return render_template("feedback/settings.html", tickets=tickets) @feedback.route("/settings", methods=["POST"]) @perm_edit.require(http_exception=401) def change_status() -> Response: ticket_id = int(request.form.get('ticketID')) new_status = request.form.get('ticketStatus') ticket = db.session.query(Ticket).get(ticket_id) ticket.state = new_status db.session.commit() return make_response("OK") add_menu_entry('feedback.settings', lazy_gettext('Feedback'), perm_view.can)
""" Created by Alex Wang On 2018-07-30 Model: https://github.com/yule-li/CosFace [Configurations]: lfw_pairs: data/pairs.txt embedding_size: 1024 model_def: models.inception_resnet_v1 save_model: False do_flip: False image_width: 112 lfw_dir: dataset/lfw-112x96 prewhiten: False lfw_nrof_folds: 10 image_height: 112 lfw_batch_size: 200 image_size: 224 fc_bn: True model: models/model-20180626-205832.ckpt-60000 network_type: sphere_network lfw_file_ext: jpg [End of configuration] """ import tensorflow as tf import tensorflow.contrib.slim as slim import cv2 import numpy as np import sphere_network import utils image_width = 112 image_height = 112 embedding_size = 1024 # face_threshold = 1.49 # face_threshold = 1.54 face_threshold = 0.95 face_combine_threshold = 0.7 save_threshold_min = 0.5 save_threshold_max = 0.7 class CosFace(object): """ """ def __init__(self, weight_file): config = tf.ConfigProto(log_device_placement=False) config.gpu_options.allow_growth = True self.__graph = tf.Graph() with self.__graph.as_default(): self.__session = tf.Session(config=config, graph=self.__graph) self.images_placeholder = tf.placeholder(tf.float32, shape=( None, image_height, image_width, 3), name='image') self.phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train') prelogits = sphere_network.infer(self.images_placeholder, embedding_size) prelogits = slim.batch_norm(prelogits, is_training=self.phase_train_placeholder, epsilon=1e-5, scale=True, scope='softmax_bn') self.embeddings = tf.identity(prelogits) saver = tf.train.Saver(tf.global_variables(), max_to_keep=3) saver.restore(self.__session, weight_file) def infer(self, images, do_flip=False): """ :param images: utils.py-->load_data rgb format resize to (image_height, image_width, 3) img = img - 127.5 img = img / 128. :return: """ feed_dict = {self.images_placeholder: images, self.phase_train_placeholder: False} feats = self.__session.run(self.embeddings, feed_dict=feed_dict) if do_flip: images_flip = [np.fliplr(image) for image in images] feed_dict_flip = {self.images_placeholder: images_flip, self.phase_train_placeholder: False} feats_flip = self.__session.run(self.embeddings, feed_dict=feed_dict_flip) feats = np.concatenate((feats, feats_flip), axis=1) feats = utils.l2_normalize(feats) return feats def data_preprocess(self, image): """ :param image: opencv bgr image :return: """ img_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) height, width = img_rgb.shape[0:2] img_new = np.zeros((image_height, image_width, 3), dtype=np.float64) ratio = min(image_height * 1.0 / height, image_width * 1.0 / width) new_height, new_width = int(height * ratio), int(width * ratio) height_offset, width_offset = (image_height - new_height) //2, (image_width - new_width) // 2 img_rgb = cv2.resize(img_rgb, (new_width, new_height), interpolation=cv2.INTER_CUBIC) img_rgb = img_rgb.astype(np.float64) img_new[height_offset: height_offset + new_height, width_offset: width_offset + new_width, :] = img_rgb # img_new = cv2.resize(img_rgb, (image_height, image_width), interpolation=cv2.INTER_CUBIC) # img_new = img_new.astype(np.float64) img_new -= 127.5 img_new /= 128. return img_new def face_dist(self, embedding_one, embedding_two): diff = np.subtract(embedding_one, embedding_two) dist = np.sum(np.square(diff)) return dist def face_dist_multiple(self, embeddings_one, embeddings_two): diff = np.subtract(embeddings_one, embeddings_two) dist = np.sum(np.square(diff), 1) return dist def __del__(self): self.__session.close()
"""NUI Galway CT5132/CT5148 Programming and Tools for AI (James McDermott) Skeleton/solution for Assignment 1: Numerical Integration By writing my name below and submitting this file, I/we declare that all additions to the provided skeleton file are my/our own work, and that I/we have not seen any work on this assignment by another student/group. Student name(s): Philip O' Connor Student ID(s): 21249304 """ import numpy as np import sympy import itertools import math def numint_py(f, a, b, n): """Numerical integration. For a function f, calculate the definite integral of f from a to b by approximating with n "slices" and the "left" scheme. This function must use pure Python, no Numpy. >>> round(numint_py(math.sin, 0, 1, 100), 5) 0.45549 >>> round(numint_py(lambda x: x, 0, 1, 100000), 3 ) 0.5 >>> round(numint_py(lambda x: x, 0, 1, 6), 5) 0.41667 >>> round(numint_py(lambda x: 1, 0, 1, 100), 5) 1.0 >>> round(numint_py(lambda x: -1, 0, 1, 100), 5) -1.0 >>> round(numint_py(math.exp, 1, 2, 100), 5) 4.64746 """ A = 0 w = (b - a) / float(n) # width of one slice # STUDENTS ADD CODE FROM HERE TO END OF FUNCTION integral = 0 # initialise the intergral variable x=a # Start at with the initial position of the integral for i in range(n): # For each of slice of the integral except the final slice (following left rectangular scheme) integral= (f(x)*w)+ integral # Calculate the area of the new slice and add it to the previous slices x+=w # Increment x by slice size w return(integral) def numint(f, a, b, n, scheme="left"): """Numerical integration. For a function f, calculate the definite integral of f from a to b by approximating with n "slices" and the given scheme. This function should use Numpy, and no for-loop. Eg np.linspace() will be useful. >>> round(numint(np.sin, 0, 1, 100, 'left'), 5) 0.45549 >>> round(numint(lambda x: np.ones_like(x), 0, 1, 100, 'left'), 5) 1.0 >>> round(numint(np.exp, 1, 2, 100, 'left'), 5) 4.64746 >>> round(numint(np.exp, 1, 2, 100, 'midpoint'), 5) 4.67075 >>> round(numint(np.sin, 0, 1, 100, 'midpoint'), 5) 0.4597 >>> round(numint(np.exp, 1, 2, 100, 'right'), 5) 4.69417 """ # STUDENTS ADD CODE FROM HERE TO END OF FUNCTION step =(b - a) / float(n) xrange = np.linspace(a,b-step,n) # Create the linear range for values to be used for x #step = abs(a-xrange[1]) # Determine the step size in the linear space if scheme =='left': return (f(xrange)*step).sum() # Multiply f(x) by the step size to give the area per slice and sum it together excluding the final point as this is the left rectangular scheme elif scheme == 'midpoint': xrange2 = np.linspace(a+step,b,n) # Create a new linear space with the step size offset midpoint = (xrange+xrange2)/2 # Sum the two ranges together elementwise and divide by two to get the mean value return (f(midpoint)*step).sum() # Multiply f(x) by the step size to give the area per slice and sum it together elif scheme == 'right': xrange_right = np.linspace(a+step,b,n) return (f(xrange_right)*step).sum() # Multiply f(x) by the step size to give the area per slice and sum it together excluding the first point as this is the right rectangular schem def true_integral(fstr, a, b): """Using Sympy, calculate the definite integral of f from a to b and return as a float. Here fstr is an expression in x, as a str. It should use eg "np.sin" for the sin function. This function is quite tricky, so you are not expected to understand it or change it! However, you should understand how to use it. See the doctest example. >>> true_integral("np.sin(x)", 0, 2 * np.pi) 0.0 >>> true_integral("x**2", 0, 1) 0.3333333333333333 """ x = sympy.symbols("x") # make fsym, a Sympy expression in x, now using eg "sympy.sin" fsym = eval(fstr.replace("np", "sympy")) A = sympy.integrate(fsym, (x, a, b)) # definite integral A = float(A.evalf()) # convert to float return A def numint_err(fstr, a, b, n, scheme): """For a given function fstr and bounds a, b, evaluate the error achieved by numerical integration on n points with the given scheme. Return the true value (given by true_integral), absolute error, and relative error, as a tuple. Notice that the absolute error and relative error must both be positive. Notice that the relative error will be infinity when the true value is zero. None of the examples in our assignment will have a true value of zero. >>> print("%.4f %.4f %.4f" % numint_err("x**2", 0, 1, 10, 'left')) 0.3333 0.0483 0.1450 >>> print("%.4f %.4f %.4f" % numint_err("-x**2", 0, 1, 10, 'left')) -0.3333 0.0483 0.1450 >>> print("%.4f %.4f %.4f" % numint_err("x**2", 0, 1, 10, 'left')) 0.3333 0.0483 0.1450 """ f = eval("lambda x: " + fstr) # f is a Python function A = true_integral(fstr, a, b) # STUDENTS ADD CODE FROM HERE TO END OF FUNCTION integ = numint(f, a,b, n, scheme) try: return(A,abs(A-integ), abs((A-integ)/A )) # Calculations for absolute and relative error except ZeroDivisionError: print("Curve defined has 0 area - cannot calculate relative error") def make_table(f_ab_s, ns, schemes): """For each function f with associated bounds (a, b), and each value of n and each scheme, calculate the absolute and relative error of numerical integration and print out one line of a table. This function doesn't need to return anything, just print. Each function and bounds will be a tuple (f, a, b), so the argument f_ab_s is a list of tuples. Hint: use print() with the format string "%s,%.2f,%.2f,%d,%s,%.4g,%.4g,%.4g". Hint 2: consider itertools. >>> make_table([("x**2", 0, 1), ("np.sin(x)", 0, 1)], [10, 100], ['left', 'midpoint']) x**2,0.00,1.00,10,left,0.3333,0.04833,0.145 x**2,0.00,1.00,10,midpoint,0.3333,0.0008333,0.0025 x**2,0.00,1.00,100,left,0.3333,0.004983,0.01495 x**2,0.00,1.00,100,midpoint,0.3333,8.333e-06,2.5e-05 np.sin(x),0.00,1.00,10,left,0.4597,0.04246,0.09236 np.sin(x),0.00,1.00,10,midpoint,0.4597,0.0001916,0.0004168 np.sin(x),0.00,1.00,100,left,0.4597,0.004211,0.009161 np.sin(x),0.00,1.00,100,midpoint,0.4597,1.915e-06,4.167e-06 """ # STUDENTS ADD CODE FROM HERE TO END OF FUNCTION for (fstr, a, b), n, scheme in itertools.product(f_ab_s, ns, schemes): # Unpack the inputs given and assign to their respective variables. error = numint_err(fstr, a, b, n, scheme) print(f"{fstr:s},{a:0.2f},{b:0.2f},{n:d},{scheme:s},{error[0]:.4g},{error[1]:0.4g},{error[2]:0.4g}") # Print the output in the format requested def main(): """Call make_table() as specified in the pdf.""" # STUDENTS ADD CODE FROM HERE TO END OF FUNCTION make_table([("np.cos(x)", 0, math.pi), ("np.sin(2*x)", 0, 1), ('np.exp(x)', 0, 1)], [10, 100, 1000], ['left', 'midpoint']) """ INTERPRETATION: STUDENTS ADD TEXT HERE TO INTERPRET main() results. Results from main() show that the midpoint solutions consistently gave the closest aproximations of the true integral across all f(). With all functions ran, and minimum relative errors compared for each function, midpoint is at least 3 orders of magnitude lower than the left method with the largest delta being 13 orders of magniude lower. As n increases for sin(x) and exp(x) there is a non-linear decrease in observed absolute error. Cos(x) actually has an increase in absolute error at n=100 with the midpoint method, this increase in error declines at n=1000. """ if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
from django.urls import path from .views import QuestionsList,QuestionDetailView urlpatterns = [ path("",QuestionsList.as_view()), path("<int:pk>/",QuestionDetailView.as_view()), ]
from django.conf.urls.defaults import patterns, include, url from tastypie.api import Api from api import * from django.contrib import admin admin.autodiscover() v1_api = Api(api_name='v1') v1_api.register(UserResource()) v1_api.register(CurrentAccountResource()) urlpatterns = patterns('', url(r'^$', include('currentaccount.urls')), url(r'^current_account/', include('currentaccount.urls')), url(r'^admin/', include(admin.site.urls)), url(r'^api/', include(v1_api.urls)), url(r'^accounts/login/', 'django.contrib.auth.views.login', { 'template_name' : 'currentaccount/login.html'} ), )
"""possys URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.urls import path from rest_framework import routers from . import views as possys_views urlpatterns = [ path('', possys_views.StoreView.as_view(), name="store"), path('history/', possys_views.HistoryView.as_view(), name="history"), path('api/add_transaction/<idm>/<int:product_id>/', possys_views.add_transaction_with_product), path('api/add_transaction/<idm>/<int:price>/', possys_views.add_transaction_without_product), ] router = routers.SimpleRouter() router.register(r'possys/products', possys_views.ProductViewSet) router.register(r'possys/categories', possys_views.CategoryViewSet)
#!/usr/bin/python -tt # # Copyright (c) 2011 Intel, Inc. # # This program is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by the Free # Software Foundation; version 2 of the License # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY # or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License # for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., 59 # Temple Place - Suite 330, Boston, MA 02111-1307, USA. import os, sys import msger import pluginbase from mic.conf import configmgr from mic.utils import errors __ALL__ = ['PluginMgr', 'pluginmgr'] PLUGIN_TYPES = ["imager", "backend"] # TODO "hook" class PluginMgr(object): plugin_dirs = {} # make the manager class as singleton _instance = None def __new__(cls, *args, **kwargs): if not cls._instance: cls._instance = super(PluginMgr, cls).__new__(cls, *args, **kwargs) return cls._instance def __init__(self): self.plugin_dir = configmgr.common['plugin_dir'] def append_dirs(self, dirs): for path in dirs: self._add_plugindir(path) # load all the plugins AGAIN self._load_all() def _add_plugindir(self, path): path = os.path.abspath(os.path.expanduser(path)) if not os.path.isdir(path): msger.warning("Plugin dir is not a directory or does not exist: %s"\ % path) return if path not in self.plugin_dirs: self.plugin_dirs[path] = False # the value True/False means "loaded" def _load_all(self): for (pdir, loaded) in self.plugin_dirs.iteritems(): if loaded: continue sys.path.insert(0, pdir) for mod in [x[:-3] for x in os.listdir(pdir) if x.endswith(".py")]: if mod and mod != '__init__': if mod in sys.modules: #self.plugin_dirs[pdir] = True msger.warning("Module %s already exists, skip" % mod) else: try: pymod = __import__(mod) self.plugin_dirs[pdir] = True msger.debug("Plugin module %s:%s imported"\ % (mod, pymod.__file__)) except ImportError, e: msger.warning('Loading failed, skip plugin %s/%s'\ % (os.path.basename(pdir), mod)) del(sys.path[0]) def get_plugins(self, ptype): """ the return value is dict of name:class pairs """ if ptype not in PLUGIN_TYPES: raise errors.CreatorError('%s is not valid plugin type' % ptype) self._add_plugindir(os.path.join(self.plugin_dir, ptype)) self._load_all() return pluginbase.get_plugins(ptype) pluginmgr = PluginMgr()
from django.shortcuts import render # Create your views here. from rest_framework.views import APIView from rest_framework.response import Response from rest_framework.permissions import IsAuthenticated from django.contrib.auth.models import User from rest_framework_simplejwt.tokens import RefreshToken from rest_framework import status from .serializers import RegisterSerializer,ChangePasswordSerializer from rest_framework import generics, permissions from django.http import JsonResponse from django.core.exceptions import ObjectDoesNotExist class RegisterView(generics.GenericAPIView): serializer_class = RegisterSerializer def post(self, request): serializer = self.get_serializer(data=request.data) serializer.is_valid(raise_exception=True) if (serializer.is_valid()): user = serializer.save() # id = '1236' # username = 'abd' # email = 'abd@gmail.com' # password = request.data['password'] # user = User(id=id,username=username,email=email) # user.set_password(password) # user.save() refresh = RefreshToken.for_user(user) return JsonResponse( { "status": "success", 'user_id': user.id, 'refresh': str(refresh), 'access': str(refresh.access_token) }) class ChangePasswordView(generics.UpdateAPIView): queryset = User.objects.all() permission_classes = (IsAuthenticated,) serializer_class = ChangePasswordSerializer #@detail_route(methods='PUT') # def perform_update(self, serializer): # try: # if request.method == "PUT": # serializer.save(user=self.request.user.id) # except film.DoesNotExist: # return Response(status=status.HTTP_404_NOT_FOUND) class personalInfo(APIView): def get(self, request): token = request.META.get('HTTP_AUTHORIZATION', " ").split(' ')[1] data = request.data user={'id':request.user.id,'username':request.user.username,'email':request.user.email} return Response(user) #
import sys d =dict() for line in open(sys.argv[1]): sp = line.strip().split(" ") d[sp[2]] = d.get(sp[2], list()) d[sp[2]].append((int(sp[0]), sp[1])) for key in d.keys(): d[key] = sorted(d[key], key=lambda x:-x[0]) for i in range(0, max([len(x) for x in d.values()])): for key in d.keys(): if len(d[key]) <= i: continue print d[key][i][0], d[key][i][1], key
# https://splinter.readthedocs.io/en/latest/drivers/chrome.html from splinter import Browser from bs4 import BeautifulSoup executable_path = {'executable_path': 'chromedriver'} browser = Browser('chrome', **executable_path, headless=True) url = 'http://quotes.toscrape.com/' browser.visit(url) for x in range(1, 6): html = browser.html soup = BeautifulSoup(html, 'html.parser') quotes = soup.find_all('span', class_='text') for quote in quotes: print('page:', x, '-------------') print(quote.text) browser.click_link_by_partial_text('Next')
import sys sys.path.append('C:\\Users\\nikit\\AppData\\Local\\Programs\\Python\\python38\\lib\\site-packages') import NBodyPlotter as nbp from NBodyPlotter import NBodySolver from NBodyPlotter import Body import matplotlib.pyplot as plt import numpy as np #Define scale values to keep close to unity mass_scale = 1e30 #Kg dist_scale = 1e11 #m vel_scal = 1000 #m/s (such that inputted units are in Km/s) orbit_period = 356*24*60*60 #s solver = NBodySolver() solver.SetSolverRelativeValues(mass_scale, dist_scale, vel_scal, orbit_period) #Create figures fig = plt.figure(figsize=(20,8)) ax1 = fig.add_subplot(151, projection='3d') ax2 = fig.add_subplot(152, projection='3d') ax3 = fig.add_subplot(153, projection='3d') ax4 = fig.add_subplot(154, projection='3d') ax5 = fig.add_subplot(155, projection='3d') t = 10 time_span=np.linspace(0,t,t*10000) ip1 = np.array([-1,0,0]) ip2 = -ip1 ip3 = np.array([0,0,0]) vx1 = 0.30689 * 10 vy1 = 0.12551 * 10 iv1 = np.array([vx1,vy1, 0]) iv2 = np.array([vx1, vy1, 0]) iv3 = np.array([-2*vx1, -2*vy1, 0]) solver.AddBody(Body("1", 0.1, ip1, iv1)) solver.AddBody(Body("2", 0.1, ip2, iv2)) solver.AddBody(Body("3", 0.1, ip3, iv3)) solver.SolveNBodyProblem(time_span) solver.PlotNBodySolution(ax=ax1, show=False) ax1.set_title("Stable butterfly system (" + str(t) + " years)") solver.bodies.clear() solver.AddBody(Body("1", 0.1, ip1, iv1*1.5)) solver.AddBody(Body("2", 0.1, ip2, iv2)) solver.AddBody(Body("3", 0.1, ip3, iv3)) solver.SolveNBodyProblem(time_span) solver.PlotNBodySolution(ax=ax2, show=False, legend=False) ax2.set_title(r"$v_{1_{new}}=1.5v_1$ - Stable (" + str(t) + " years)") solver.bodies.clear() solver.AddBody(Body("1", 0.1, ip1, iv1*3)) solver.AddBody(Body("2", 0.1, ip2, iv2)) solver.AddBody(Body("3", 0.1, ip3, iv3)) solver.SolveNBodyProblem(time_span) solver.PlotNBodySolution(ax=ax3, show=False, legend=False) ax3.set_title(r"$v_{1_{new}}=3v_1$ - Chaotic (" + str(t) + " years)") t = 30 time_span=np.linspace(0,t,t*10000) solver.bodies.clear() solver.AddBody(Body("1", 0.15, ip1, iv1)) solver.AddBody(Body("2", 0.1, ip2, iv2)) solver.AddBody(Body("3", 0.1, ip3, iv3)) solver.SolveNBodyProblem(time_span) solver.PlotNBodySolution(ax=ax4, show=False, legend=False) ax4.set_title(r"$m_{1_{new}}=1.5m_1$ - Stable (" + str(t) + " years)") solver.bodies.clear() t = 10 time_span=np.linspace(0,t,t*10000) solver.AddBody(Body("1", 0.18, ip1, iv1)) solver.AddBody(Body("2", 0.1, ip2, iv2)) solver.AddBody(Body("3", 0.1, ip3, iv3)) solver.SolveNBodyProblem(time_span) solver.PlotNBodySolution(ax=ax5, show=False, legend=False) ax5.set_title(r"$m_{1_{new}}=1.8m_1$ - Chaotic (" + str(t) + " years)") fig.suptitle("Butterfly system with varying initial velocities and masses") fig.savefig("butterfly_varying_mass_vel.png", dpi = fig.dpi) plt.show()
# # This file is part of LUNA. # # Copyright (c) 2020 Great Scott Gadgets <info@greatscottgadgets.com> # SPDX-License-Identifier: BSD-3-Clause """ Low-level USB transciever gateware -- control request components. """ import unittest import functools import operator from amaranth import Signal, Module, Elaboratable, Cat from amaranth.hdl.rec import Record, DIR_FANOUT from . import USBSpeed from .packet import USBTokenDetector, USBDataPacketDeserializer, USBPacketizerTest from .packet import DataCRCInterface, USBInterpacketTimer, TokenDetectorInterface from .packet import InterpacketTimerInterface, HandshakeExchangeInterface from ..stream import USBInStreamInterface, USBOutStreamInterface from ..request import SetupPacket from ...utils.bus import OneHotMultiplexer from ...test import usb_domain_test_case class RequestHandlerInterface: """ Record representing a connection between a control endpoint and a request handler. Components (I = input to request handler; O = output to control interface): *: setup -- Carries the most recent setup request to the handler. *: tokenizer -- Carries information about any incoming token packets. # Control request status signals. I: data_requested -- Pulsed to indicate that a data-phase IN token has been issued, and it's now time to respond (post-inter-packet delay). I: status_requested -- Pulsed to indicate that a response to our status phase has been requested. # Address / configuration connections. O: address_changed -- Strobe; pulses high when the device's address should be changed. O: new_address[7] -- When `address_changed` is high, this field contains the address that should be adopted. I: active_config -- The configuration number of the active configuration. O: config_changed -- Strobe; pulses high when the device's configuration should be changed. O: new_config[8] -- When `config_changed` is high, this field contains the configuration that should be applied. # Data rx signals. *: rx -- The receive stream for any data packets received. I: handshakes_in -- Inputs that indicate when handshakes are detected from the host. I: rx_ready_for_response -- Strobe that indicates that we're ready to respond to a complete transmission. Indicates that an interpacket delay has passed after an `rx_complete` strobe. I: rx_invalid: -- Strobe that indicates an invalid data receipt. Indicates that the most recently received packet was corrupted; and should be discarded as invalid. # Data tx signals. *: tx -- The transmit stream for any packets generated by the handler. O: handshakes_out -- Carries handshake generation requests. """ def __init__(self): self.setup = SetupPacket() self.tokenizer = TokenDetectorInterface() self.data_requested = Signal() self.status_requested = Signal() self.address_changed = Signal() self.new_address = Signal(7) self.active_config = Signal(8) self.config_changed = Signal() self.new_config = Signal(8) self.rx = USBOutStreamInterface() self.rx_expected = Signal() self.rx_ready_for_response = Signal() self.rx_invalid = Signal() self.tx = USBInStreamInterface() self.handshakes_out = HandshakeExchangeInterface(is_detector=True) self.handshakes_in = HandshakeExchangeInterface(is_detector=False) self.tx_data_pid = Signal(reset=1) class USBRequestHandler(Elaboratable): """ Base class for USB request handler modules. I/O port: *: interface -- The RequestHandlerInterface we'll use. """ def __init__(self): # # I/O port: # self.interface = RequestHandlerInterface() def send_zlp(self): """ Returns the statements necessary to send a zero-length packet.""" tx = self.interface.tx # Send a ZLP along our transmit interface. # Our interface accepts 'valid' and 'last' without 'first' as a ZLP. return [ tx.valid .eq(1), tx.last .eq(1) ] class USBSetupDecoder(Elaboratable): """ Gateware responsible for detecting Setup transactions. I/O port: *: data_crc -- Interface to the device's data-CRC generator. *: tokenizer -- Interface to the device's token detector. *: timer -- Interface to the device's interpacket timer. I: speed -- The device's current operating speed. Should be a USBSpeed enumeration value -- 0 for high, 1 for full, 2 for low. *: packet -- The SetupPacket record carrying our parsed output. I: ack -- True when we're requesting that an ACK be generated. """ SETUP_PID = 0b1101 def __init__(self, *, utmi, standalone=False): """ Paremeters: utmi -- The UTMI bus we'll monitor for data. We'll consider this read-only. standalone -- Debug parameter. If true, this module will operate without external components; i.e. without an internal data-CRC generator, or tokenizer. In this case, tokenizer and timer should be set to None; and will be ignored. """ self.utmi = utmi self.standalone = standalone # # I/O port. # self.data_crc = DataCRCInterface() self.tokenizer = TokenDetectorInterface() self.timer = InterpacketTimerInterface() self.speed = Signal(2) self.packet = SetupPacket() self.ack = Signal() def elaborate(self, platform): m = Module() # If we're standalone, generate the things we need. if self.standalone: # Create our tokenizer... m.submodules.tokenizer = tokenizer = USBTokenDetector(utmi=self.utmi) m.d.comb += tokenizer.interface.connect(self.tokenizer) # ... and our timer. m.submodules.timer = timer = USBInterpacketTimer() timer.add_interface(self.timer) m.d.comb += timer.speed.eq(self.speed) # Create a data-packet-deserializer, which we'll use to capture the # contents of the setup data packets. m.submodules.data_handler = data_handler = \ USBDataPacketDeserializer(utmi=self.utmi, max_packet_size=8, create_crc_generator=self.standalone) m.d.comb += self.data_crc.connect(data_handler.data_crc) # Instruct our interpacket timer to begin counting when we complete receiving # our setup packet. This will allow us to track interpacket delays. m.d.comb += self.timer.start.eq(data_handler.new_packet) # Keep our output signals de-asserted unless specified. m.d.usb += [ self.packet.received .eq(0), ] with m.FSM(domain="usb"): # IDLE -- we haven't yet detected a SETUP transaction directed at us with m.State('IDLE'): pid_matches = (self.tokenizer.pid == self.SETUP_PID) # If we're just received a new SETUP token addressed to us, # the next data packet is going to be for us. with m.If(pid_matches & self.tokenizer.new_token): m.next = 'READ_DATA' # READ_DATA -- we've just seen a SETUP token, and are waiting for the # data payload of the transaction, which contains the setup packet. with m.State('READ_DATA'): # If we receive a token packet before we receive a DATA packet, # this is a PID mismatch. Bail out and start over. with m.If(self.tokenizer.new_token): m.next = 'IDLE' # If we have a new packet, parse it as setup data. with m.If(data_handler.new_packet): # If we got exactly eight bytes, this is a valid setup packet. with m.If(data_handler.length == 8): # Collect the signals that make up our bmRequestType [USB2, 9.3]. request_type = Cat(self.packet.recipient, self.packet.type, self.packet.is_in_request) m.d.usb += [ # Parse the setup data itself... request_type .eq(data_handler.packet[0]), self.packet.request .eq(data_handler.packet[1]), self.packet.value .eq(Cat(data_handler.packet[2], data_handler.packet[3])), self.packet.index .eq(Cat(data_handler.packet[4], data_handler.packet[5])), self.packet.length .eq(Cat(data_handler.packet[6], data_handler.packet[7])), # ... and indicate that we have new data. self.packet.received .eq(1), ] # We'll now need to wait a receive-transmit delay before initiating our ACK. # Per the USB 2.0 and ULPI 1.1 specifications: # - A HS device needs to wait 8 HS bit periods before transmitting [USB2, 7.1.18.2]. # Each ULPI cycle is 8 HS bit periods, so we'll only need to wait one cycle. # - We'll use our interpacket delay timer for everything else. with m.If(self.timer.tx_allowed | (self.speed == USBSpeed.HIGH)): # If we're a high speed device, we only need to wait for a single ULPI cycle. # Processing delays mean we've already met our interpacket delay; and we can ACK # immediately. m.d.comb += self.ack.eq(1) m.next = "IDLE" # For other cases, handle the interpacket delay by waiting. with m.Else(): m.next = "INTERPACKET_DELAY" # Otherwise, this isn't; and we should ignore it. [USB2, 8.5.3] with m.Else(): m.next = "IDLE" # INTERPACKET -- wait for an inter-packet delay before responding with m.State('INTERPACKET_DELAY'): # ... and once it equals zero, ACK and return to idle. with m.If(self.timer.tx_allowed): m.d.comb += self.ack.eq(1) m.next = "IDLE" return m class USBSetupDecoderTest(USBPacketizerTest): FRAGMENT_UNDER_TEST = USBSetupDecoder FRAGMENT_ARGUMENTS = {'standalone': True} def initialize_signals(self): # Assume high speed. yield self.dut.speed.eq(USBSpeed.HIGH) def provide_reference_setup_transaction(self): """ Provide a reference SETUP transaction. """ # Provide our setup packet. yield from self.provide_packet( 0b00101101, # PID: SETUP token. 0b00000000, 0b00010000 # Address 0, endpoint 0, CRC ) # Provide our data packet. yield from self.provide_packet( 0b11000011, # PID: DATA0 0b0_10_00010, # out vendor request to endpoint 12, # request number 12 0xcd, 0xab, # value 0xABCD (little endian) 0x23, 0x01, # index 0x0123 0x78, 0x56, # length 0x5678 0x3b, 0xa2, # CRC ) @usb_domain_test_case def test_valid_sequence_receive(self): dut = self.dut # Before we receive anything, we shouldn't have a new packet. self.assertEqual((yield dut.packet.received), 0) # Simulate the host sending basic setup data. yield from self.provide_reference_setup_transaction() # We're high speed, so we should be ACK'ing immediately. self.assertEqual((yield dut.ack), 1) # We now should have received a new setup request. yield self.assertEqual((yield dut.packet.received), 1) # Validate that its values are as we expect. self.assertEqual((yield dut.packet.is_in_request), 0 ) self.assertEqual((yield dut.packet.type), 0b10 ) self.assertEqual((yield dut.packet.recipient), 0b00010 ) self.assertEqual((yield dut.packet.request), 12 ) self.assertEqual((yield dut.packet.value), 0xabcd ) self.assertEqual((yield dut.packet.index), 0x0123 ) self.assertEqual((yield dut.packet.length), 0x5678 ) @usb_domain_test_case def test_fs_interpacket_delay(self): dut = self.dut # Place our DUT into full speed mode. yield dut.speed.eq(USBSpeed.FULL) # Before we receive anything, we shouldn't have a new packet. self.assertEqual((yield dut.packet.received), 0) # Simulate the host sending basic setup data. yield from self.provide_reference_setup_transaction() # We shouldn't ACK immediately; we'll need to wait our interpacket delay. yield self.assertEqual((yield dut.ack), 0) # After our minimum interpacket delay, we should see an ACK. yield from self.advance_cycles(10) self.assertEqual((yield dut.ack), 1) @usb_domain_test_case def test_short_setup_packet(self): dut = self.dut # Before we receive anything, we shouldn't have a new packet. self.assertEqual((yield dut.packet.received), 0) # Provide our setup packet. yield from self.provide_packet( 0b00101101, # PID: SETUP token. 0b00000000, 0b00010000 # Address 0, endpoint 0, CRC ) # Provide our data packet; but shorter than expected. yield from self.provide_packet( 0b11000011, # PID: DATA0 0b00100011, 0b01000101, 0b01100111, 0b10001001, # DATA 0b00011100, 0b00001110 # CRC ) # This shouldn't count as a valid setup packet. yield self.assertEqual((yield dut.packet.received), 0) class USBRequestHandlerMultiplexer(Elaboratable): """ Multiplexes multiple RequestHandlers down to a single interface. Interfaces are added using .add_interface(). I/O port: *: shared -- The post-multiplexer RequestHandler interface. """ def __init__(self): # # I/O port # self.shared = RequestHandlerInterface() # # Internals # self._interfaces = [] def add_interface(self, interface: RequestHandlerInterface): """ Adds a RequestHandlerInterface to the multiplexer. Arbitration is not performed; it's expected only one handler will be driving requests at a time. """ self._interfaces.append(interface) def _multiplex_signals(self, m, *, when, multiplex, sub_bus=None): """ Helper that creates a simple priority-encoder multiplexer. Parmeters: when -- The name of the interface signal that indicates that the `multiplex` signals should be selected for output. If this signals should be multiplex, it should be included in `multiplex`. multiplex -- The names of the interface signals to be multiplexed. """ def get_signal(interface, name): """ Fetches an interface signal by name / sub_bus. """ if sub_bus: bus = getattr(interface, sub_bus) return getattr(bus, name) else: return getattr(interface, name) # We're building an if-elif tree; so we should start with an If entry. conditional = m.If for interface in self._interfaces: condition = get_signal(interface, when) with conditional(condition): # Connect up each of our signals. for signal_name in multiplex: # Get the actual signals for our input and output... driving_signal = get_signal(interface, signal_name) target_signal = get_signal(self.shared, signal_name) # ... and connect them. m.d.comb += target_signal .eq(driving_signal) # After the first element, all other entries should be created with Elif. conditional = m.Elif def elaborate(self, platform): m = Module() shared = self.shared # # Pass through signals being routed -to- our pre-mux interfaces. # for interface in self._interfaces: m.d.comb += [ shared.setup .connect(interface.setup), shared.tokenizer .connect(interface.tokenizer), interface.data_requested .eq(shared.data_requested), interface.status_requested .eq(shared.status_requested), shared.handshakes_in .connect(interface.handshakes_in), interface.active_config .eq(shared.active_config), shared.rx .connect(interface.rx), interface.rx_ready_for_response .eq(shared.rx_ready_for_response), interface.rx_invalid .eq(shared.rx_invalid), ] # # Multiplex the signals being routed -from- our pre-mux interface. # self._multiplex_signals(m, when='address_changed', multiplex=['address_changed', 'new_address'] ) self._multiplex_signals(m, when='config_changed', multiplex=['config_changed', 'new_config'] ) # Connect up our transmit interface. m.submodules.tx_mux = tx_mux = OneHotMultiplexer( interface_type=USBInStreamInterface, mux_signals=('payload',), or_signals=('valid', 'first', 'last'), pass_signals=('ready',) ) tx_mux.add_interfaces(i.tx for i in self._interfaces) m.d.comb += self.shared.tx.stream_eq(tx_mux.output) # Pass through the relevant PID from our data source. for i in self._interfaces: with m.If(i.tx.valid): m.d.comb += self.shared.tx_data_pid.eq(i.tx_data_pid) # OR together all of our handshake-generation requests. any_ack = functools.reduce(operator.__or__, (i.handshakes_out.ack for i in self._interfaces)) any_nak = functools.reduce(operator.__or__, (i.handshakes_out.nak for i in self._interfaces)) any_stall = functools.reduce(operator.__or__, (i.handshakes_out.stall for i in self._interfaces)) m.d.comb += [ shared.handshakes_out.ack .eq(any_ack), shared.handshakes_out.nak .eq(any_nak), shared.handshakes_out.stall .eq(any_stall), ] return m class StallOnlyRequestHandler(Elaboratable): """ Simple gateware request handler that only conditionally stalls requests. I/O port: *: interface -- The RequestHandlerInterface used to handle requests. See its record definition for signal definitions. """ def __init__(self, stall_condition): """ Parameters: stall_condition -- A function that accepts a SetupRequest packet, and returns an Amaranth conditional indicating whether we should stall. """ self.condition = stall_condition # # I/O port # self.interface = RequestHandlerInterface() def elaborate(self, platform): m = Module() # If we have an opportunity to stall... with m.If(self.interface.data_requested | self.interface.status_requested): # ... and our stall condition is met ... with m.If(self.condition(self.interface.setup)): # ... do so. m.d.comb += self.interface.handshakes_out.stall.eq(1) return m if __name__ == "__main__": unittest.main(warnings="ignore")
# Copyright 2017 The Forseti Security Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Forwarding Rules Rule Scanner Test""" import mock from tests.unittest_utils import ForsetiTestCase from google.cloud.security.scanner.scanners import forwarding_rule_scanner from google.cloud.security.scanner.audit import forwarding_rule_rules_engine as fre from tests.unittest_utils import get_datafile_path from google.cloud.security.common.gcp_type import forwarding_rule as fr class ForwardingRule(object): """Represents ForwardRule resource.""" class ForwardingRuleScannerTest(ForsetiTestCase): def test_forwarding_rules_scanner_all_match(self): rules_local_path = get_datafile_path(__file__, 'forward_rule_test_1.yaml') scanner = forwarding_rule_scanner.ForwardingRuleScanner({}, {}, '', rules_local_path) gcp_forwarding_rules_resource_data = [ { "project_id": "abc-123", "resource_id": "46", "creation_timestamp": "2017-06-01 04:19:37", "name": "abc-123", "description": "", "region": "https://www.googleapis.com/compute/v1/projects/abc-123/regions/asia-east1", "ip_address": "198.51.100.99", "ip_protocol": "UDP", "port_range": "4500-4500", "ports": "[]", "target": "https://www.googleapis.com/compute/v1/projects/abc-123/regions/asia-east1/abc-123/abc-123", "load_balancing_scheme": "EXTERNAL", }, { "project_id": "abc-123", "resource_id": "23", "creation_timestamp": "2017-06-01 04:19:37", "name": "abc-123", "description": "", "region": "https://www.googleapis.com/compute/v1/projects/abc-123/regions/asia-east1", "ip_address": "198.51.100.23", "ip_protocol": "TCP", "ports": "[8080]", "target": "https://www.googleapis.com/compute/v1/projects/abc-123/regions/asia-east1/abc-123/abc-123", "load_balancing_scheme": "INTERNAL", }, { "project_id": "abc-123", "resource_id": "46", "creation_timestamp": "2017-06-01 04:19:37", "name": "abc-123", "description": "", "region": "https://www.googleapis.com/compute/v1/projects/abc-123/regions/asia-east1", "ip_address": "198.51.100.46", "ip_protocol": "ESP", "ports": "[]", "target": "https://www.googleapis.com/compute/v1/projects/abc-123/regions/asia-east1/abc-123/abc-123", "load_balancing_scheme": "EXTERNAL", }, { "project_id": "abc-123", "resource_id": "46", "creation_timestamp": "2017-06-01 04:19:37", "name": "abc-123", "description": "", "region": "https://www.googleapis.com/compute/v1/projects/abc-123/regions/asia-east1", "ip_address": "198.51.100.35", "ip_protocol": "TCP", "port_range": "4500-4500", "target": "https://www.googleapis.com/compute/v1/projects/abc-123/regions/asia-east1/abc-123/abc-123", "load_balancing_scheme": "EXTERNAL", } ] gcp_forwarding_rules_resource_objs = [] for gcp_forwarding_rule_resource_data in gcp_forwarding_rules_resource_data: gcp_forwarding_rules_resource_objs.append( fr.ForwardingRule(**gcp_forwarding_rule_resource_data) ) violations = scanner._find_violations(gcp_forwarding_rules_resource_objs) self.assertEqual(0, len(violations)) def test_forwarding_rules_scanner_no_match(self): rules_local_path = get_datafile_path(__file__, 'forward_rule_test_1.yaml') scanner = forwarding_rule_scanner.ForwardingRuleScanner({}, {}, '', rules_local_path) gcp_forwarding_rules_resource_data = [ { "project_id": "abc-123", "resource_id": "46", "creation_timestamp": "2017-06-01 04:19:37", "name": "abc-123", "description": "", "region": "https://www.googleapis.com/compute/v1/projects/abc-123/regions/asia-east1", "ip_address": "198.51.100.99", "ip_protocol": "TCP", "port_range": "4500-4500", "ports": "[]", "target": "https://www.googleapis.com/compute/v1/projects/abc-123/regions/asia-east1/abc-123/abc-123", "load_balancing_scheme": "EXTERNAL", }, { "project_id": "abc-123", "resource_id": "23", "creation_timestamp": "2017-06-01 04:19:37", "name": "abc-123", "description": "", "region": "https://www.googleapis.com/compute/v1/projects/abc-123/regions/asia-east1", "ip_address": "198.51.100.23", "ip_protocol": "TCP", "ports": "[8081]", "target": "https://www.googleapis.com/compute/v1/projects/abc-123/regions/asia-east1/abc-123/abc-123", "load_balancing_scheme": "INTERNAL", }, { "project_id": "abc-123", "resource_id": "46", "creation_timestamp": "2017-06-01 04:19:37", "name": "abc-123", "description": "", "region": "https://www.googleapis.com/compute/v1/projects/abc-123/regions/asia-east1", "ip_address": "198.51.101.46", "ip_protocol": "ESP", "ports": "[]", "target": "https://www.googleapis.com/compute/v1/projects/abc-123/regions/asia-east1/abc-123/abc-123", "load_balancing_scheme": "EXTERNAL", }, { "project_id": "abc-123", "resource_id": "46", "creation_timestamp": "2017-06-01 04:19:37", "name": "abc-123", "description": "", "region": "https://www.googleapis.com/compute/v1/projects/abc-123/regions/asia-east1", "ip_address": "198.51.100.35", "ip_protocol": "TCP", "port_range": "4400-4500", "target": "https://www.googleapis.com/compute/v1/projects/abc-123/regions/asia-east1/abc-123/abc-123", "load_balancing_scheme": "EXTERNAL", } ] gcp_forwarding_rules_resource_objs = [] for gcp_forwarding_rule_resource_data in gcp_forwarding_rules_resource_data: gcp_forwarding_rules_resource_objs.append( fr.ForwardingRule(**gcp_forwarding_rule_resource_data) ) violations = scanner._find_violations(gcp_forwarding_rules_resource_objs) self.assertEqual(4, len(violations)) if __name__ == '__main__': unittest.main()
import save import yande_re import log import phttp import time import datetime class Download: def do_download(self,pic_size: {}, page, max_page, pic_type, path): # 默认'C:/Yandere/' wr = save.Save(path) yande = yande_re.Yande() lg = log.Log() resp = phttp.Http() wr.create_folder() flag_id = int(wr.get('flag_id.data')) # 上次开始爬取时第一张图片ID。爬到此ID则终止此次爬取 i = 0 # 当前第几张 end = False # 爬取是否已结束 while True: # 终止页码为0 或 未到达终止页码时 才进行爬取 if max_page == 0 or page <= max_page: # 获取页面内容 lg.add('正在读取第' + str(page) + '页……') html = yande.get_html(page) # 获取每个li的内容 for li in yande.get_li(html): i += 1 info = yande.get_info(li)[0] # (id, img_url, width, height) width = int(info[2]) height = int(info[3]) # 存储last_start_id if i == 1: if len(info) == 4: wr.clog('flag_id.data', info[0], True) else: # 第一张个li就出现了问题,这就无法存储last_start_id了 exit() # 数据结构是否错误? if len(info) != 4: lg.add(str(i) + ' 错误,跳过') continue # 已经爬到上次开始爬的地方了 且 终止页码为0 本次爬取结束 if int(info[0]) == flag_id and max_page == 0: end = True break download = False # 是否下载此图? # 判断图片类型(不想写一长串……只好如此了) if pic_type == 0: download = True elif pic_type == 1 and width > height: download = True elif pic_type == 2 and width < height: download = True elif pic_type == 3 and width == height: download = True else: lg.add('图片类型不符,跳过') continue # 判断图片尺寸 if width >= pic_size['min']['width'] and height >= pic_size['min']['height']: if pic_size['max']['width'] and width > pic_size['max']['width']: download = False if pic_size['max']['height'] and height > pic_size['max']['height']: download = False else: download = False # 判断图片宽高比 proportion = width / height if proportion < pic_size['min']['proportion'] or ( pic_size['max']['proportion'] and proportion > pic_size['max']['proportion']): download = False if not download: lg.add('图片尺寸不符,跳过') continue if download: # 获取文件名 # 此处不进行URL解码,因为有些文件名神TM带*之类的 file_name = info[1].split('/')[-1] # 提供时间戳命名格式 但可能会影响判断文件是否存在 # file_name = datetime.datetime.now().strftime('%Y%m%d') + "-" + info[0] + "-" + file_name # 文件是否已存在? if wr.exists(file_name): lg.add(info[0] + ' 已存在,跳过') continue lg.add(str(i) + ' - ' + info[0] + ' 开始下载……') ts = time.time() img = resp.get(info[1], {'Host': 'files.yande.re', 'Referer': 'https://yande.re/post/show/' + info[0]}).content lg.add('下载完毕。耗时:' + str(int(time.time() - ts)) + 's') wr.write(file_name, img) if end: break else: break page += 1 lg.add('爬取结束') wr.clog('log_' + str(int(time.time())) + '.txt', lg.get()) exit(200)
# r mean read # a means adding # w means overwrite everything in the file # r+ means modify the file employee_file = open("employee.txt","r") print(employee_file.readable()) print(" ") print(employee_file.read()) print(" ") print(employee_file.readline()) print(" ") print(employee_file.readlines()) print(" ") for employee in employee_file.readlines(): print(employee) employee_file.close()
import os import sys ## if you got module not found errors, uncomment these. PyCharm IDE does not need it. # add .. and . to path, depending on what cwd was when python process was created, one of these might help find librf sys.path.insert(0, os.path.abspath('..')) sys.path.insert(0, os.path.abspath('.')) #print sys.path import os import unittest from testutils import get_file_hash, make_file_with_random_content from librf import estream class TestEscapeStream(unittest.TestCase): # This will run once for all tests in this class, setUp will run once before every testcase @classmethod def setUpClass(cls): super(TestEscapeStream, cls).setUpClass() # cls.static_resource = get_some_resource() print "---------------------- setUpClass() called" make_file_with_random_content('1k.rand_bin', 1024) make_file_with_random_content('1MB.rand_bin', 1024 * 1024) make_file_with_random_content('10MB.rand_bin', 10 * 1024 * 1024) # print get_file_hash('1k.rand_bin') @classmethod def tearDownClass(cls): super(TestEscapeStream, cls).tearDownClass() print "---------------------- tearDownClass() called" files = ['1k.rand_bin', '1k.rand_bin.escaped', '1k.rand_bin.escaped.unescaped', '1MB.rand_bin', '1MB.rand_bin.escaped', '1MB.rand_bin.escaped.unescaped', '10MB.rand_bin', '10MB.rand_bin.escaped', '10MB.rand_bin.escaped.unescaped'] for file in files: try: os.remove(file) except OSError: pass def setUp(self): pass def tearDown(self): pass def test_1k(self): rand_filename = '1k.rand_bin' rand_filename_esc = rand_filename + '.escaped' rand_filename_unesc = rand_filename_esc + '.unescaped' print " ------------------------------------------------ testing " + rand_filename orig_hash = get_file_hash(rand_filename) esc_filesz = 0 unesc_filesz = 0 es = estream.EscapeStream() esc_filesz = es.escape_and_save(rand_filename, rand_filename_esc ) unesc_filesz = es.unescape_and_save(rand_filename_esc, rand_filename_unesc) escaped_then_unescaped = get_file_hash(rand_filename_unesc) self.assertEqual(orig_hash, escaped_then_unescaped) self.assertTrue(esc_filesz >= unesc_filesz) print "esc_filesz: " + str(esc_filesz) print "unesc_filesz: " + str(unesc_filesz) def test_1M(self): rand_filename = '1MB.rand_bin' rand_filename_esc = rand_filename + '.escaped' rand_filename_unesc = rand_filename_esc + '.unescaped' print " ------------------------------------------------ testing " + rand_filename orig_hash = get_file_hash(rand_filename) es = estream.EscapeStream() es.escape_and_save(rand_filename, rand_filename_esc ) es.unescape_and_save(rand_filename_esc, rand_filename_unesc) escaped_then_unescaped = get_file_hash(rand_filename_unesc) self.assertEqual(orig_hash, escaped_then_unescaped) def test_10M(self): rand_filename = '10MB.rand_bin' rand_filename_esc = rand_filename + '.escaped' rand_filename_unesc = rand_filename_esc + '.unescaped' print " ------------------------------------------------ testing " + rand_filename orig_hash = get_file_hash(rand_filename) es = estream.EscapeStream() es.escape_and_save(rand_filename, rand_filename_esc ) es.unescape_and_save(rand_filename_esc, rand_filename_unesc) escaped_then_unescaped = get_file_hash(rand_filename_unesc) self.assertEqual(orig_hash, escaped_then_unescaped) def test_flag_byte_should_not_exist_in_escaped_file(self): print " ------------------------------------------------ testing flag byte existence in escaped file" rand_filename = '1k.rand_bin' rand_filename_esc = rand_filename + '.escaped' es = estream.EscapeStream() es.escape_and_save(rand_filename, rand_filename_esc) with open(rand_filename_esc, 'rb') as fin: src_br = bytearray(fin.read(es.READ_SIZE)) while len(src_br) > 0: for b in src_br: self.assertNotEqual(b, es.FLAG_BYTE, "flag byte found in escaped file") src_br = bytearray(fin.read(es.READ_SIZE)) def test_3(self): self.assertTrue(True, "hi") if __name__ == '__main__': unittest.main()
from django import forms from .models import Article, Category choices = Category.objects.all().values_list('name', 'name') choice_list = [] for item in choices: choice_list.append(item) class ArticleForm(forms.ModelForm): class Meta: model = Article fields = ('title', 'title_tag', 'image', 'author', 'category', 'content') widgets = { 'title': forms.TextInput(attrs={'class': 'form-control'}), 'title_tag': forms.TextInput(attrs={'class': 'form-control'}), 'category': forms.Select(choices = choice_list, attrs={'class': 'form-control'}), 'author': forms.Select(attrs={'class': 'form-control'}), 'content': forms.Textarea(attrs={'class': 'form-control'}), } class EditArticleForm(forms.ModelForm): class Meta: model = Article fields = ('title', 'title_tag', 'content') widgets = { 'title': forms.TextInput(attrs={'class': 'form-control'}), 'title_tag': forms.TextInput(attrs={'class': 'form-control'}), 'content': forms.Textarea(attrs={'class': 'form-control'}), }
#!/usr/bin/env python3 # coding: utf-8 import math class MaxProbCut: def __init__(self,word_count_path,word_trans_path): self.word_dict = {} # 记录概率,1-gram self.word_dict_count = {} # 记录词频,1-gram self.trans_dict = {} # 记录概率,2-gram self.trans_dict_count = {} # 记录词频,2-gram self.max_wordlen = 0 #词的最长长度 self.all_freq = 0 # 所有词的词频总和,1-gram word_count_path = word_count_path word_trans_path = word_trans_path self.init(word_count_path, word_trans_path) # 加载词典 def init(self, word_count_path, word_trans_path): self.word_dict_count = self.load_model(word_count_path) self.all_freq = sum(self.word_dict_count.values()) # 所有词的词频 self.max_wordlen = max(len(key) for key in self.word_dict_count.keys()) for key in self.word_dict_count: self.word_dict[key] = math.log(self.word_dict_count[key] / self.all_freq) #计算转移概率 Trans_dict = self.load_model(word_trans_path) for pre_word, post_info in Trans_dict.items(): for post_word, count in post_info.items(): word_pair = pre_word + ' ' + post_word self.trans_dict_count[word_pair] = float(count) if pre_word in self.word_dict_count.keys(): self.trans_dict[key] = math.log(count / self.word_dict_count[pre_word]) # 取自然对数,归一化 else: self.trans_dict[key] = self.word_dict[post_word] #加载预训练模型 def load_model(self, model_path): f = open(model_path, 'r') a = f.read() word_dict = eval(a) f.close() return word_dict # 估算未出现的词的概率,根据beautiful data里面的方法估算,平滑算法 def get_unknow_word_prob(self, word): return math.log(1.0 / (self.all_freq ** len(word))) # 获取候选词的概率 def get_word_prob(self, word): if word in self.word_dict.keys(): # 如果字典包含这个词 prob = self.word_dict[word] else: prob = self.get_unknow_word_prob(word) return prob #获取转移概率 def get_word_trans_prob(self, pre_word, post_word): trans_word = pre_word + " " + post_word if trans_word in self.trans_dict_count.keys(): trans_prob = math.log(self.trans_dict_count[trans_word] / self.word_dict_count[pre_word]) else: trans_prob = self.get_word_prob(post_word) return trans_prob # 寻找node的最佳前驱节点,方法为寻找所有可能的前驱片段 def get_best_pre_node(self, sentence, node, node_state_list): # 如果node比最大词长小,取的片段长度以node的长度为限 max_seg_length = min([node, self.max_wordlen]) pre_node_list = [] # 前驱节点列表 # 获得所有的前驱片段,并记录累加概率 for segment_length in range(1, max_seg_length + 1): segment_start_node = node - segment_length segment = sentence[segment_start_node:node] # 获取片段 pre_node = segment_start_node # 取该片段,则记录对应的前驱节点 if pre_node == 0: # 如果前驱片段开始节点是序列的开始节点, # 则概率为<S>转移到当前词的概率 segment_prob = self.get_word_trans_prob("<BEG>", segment) else: # 如果不是序列开始节点,按照二元概率计算 # 获得前驱片段的前一个词 pre_pre_node = node_state_list[pre_node]["pre_node"] pre_pre_word = sentence[pre_pre_node:pre_node] segment_prob = self.get_word_trans_prob(pre_pre_word, segment) pre_node_prob_sum = node_state_list[pre_node]["prob_sum"] # 前驱节点的概率的累加值 # 当前node一个候选的累加概率值 candidate_prob_sum = pre_node_prob_sum + segment_prob pre_node_list.append((pre_node, candidate_prob_sum)) # 找到最大的候选概率值 (best_pre_node, best_prob_sum) = max(pre_node_list, key=lambda d: d[1]) return best_pre_node, best_prob_sum #切词主函数 def cut_main(self, sentence): sentence = sentence.strip() # 初始化 node_state_list = [] # 记录节点的最佳前驱,index就是位置信息 # 初始节点,也就是0节点信息 ini_state = {} ini_state["pre_node"] = -1 # 前一个节点 ini_state["prob_sum"] = 0 # 当前的概率总和 node_state_list.append(ini_state) # 字符串概率为2元概率, P(a b c) = P(a|<S>)P(b|a)P(c|b) # 逐个节点寻找最佳前驱节点 for node in range(1, len(sentence) + 1): # 寻找最佳前驱,并记录当前最大的概率累加值 (best_pre_node, best_prob_sum) = self.get_best_pre_node(sentence, node, node_state_list) # 添加到队列 cur_node = {} cur_node["pre_node"] = best_pre_node cur_node["prob_sum"] = best_prob_sum node_state_list.append(cur_node) # print "cur node list",node_state_list # step 2, 获得最优路径,从后到前 best_path = [] node = len(sentence) # 最后一个点 best_path.append(node) while True: pre_node = node_state_list[node]["pre_node"] if pre_node == -1: break node = pre_node best_path.append(node) best_path.reverse() # step 3, 构建切分 word_list = [] for i in range(len(best_path) - 1): left = best_path[i] right = best_path[i + 1] word = sentence[left:right] word_list.append(word) return word_list #测试接口 def cut(self, sentence): return self.cut_main(sentence) if __name__ == "__main__": cuter = MaxProbCut("./word_dict.model",'./trans_dict.model') sentence = "今天我不知道你为什么会这个样子" seg_sentence = cuter.cut(sentence) print("original sentence: ", sentence) print("segment result: ", seg_sentence)
# -*- coding=utf-8 -*- import os import subprocess import sys import string import csv cloudfront_domain = "dusqglx8g3hsd.cloudfront.net" trailers_cloudfront_domain = 'd14q6vju7s12ir.cloudfront.net' s3_destination_bucket = 'adso-vod-workflow-template-destination-d25pp6byo9pp' PROFILE_STREAMS = ( { 'bitrate': '7800k', 'bitrate_max': '7820k', 'audio_bitrate': '128k', 'buffer_size': '7800k', 'resolution_16_9': '1920x1080', 'resolution_4_3': '1440x1080', 'profile': 'high -bsf:v h264_mp4toannexb -preset slow', 'video_codec': 'libx264', 'name_append': '_1080p' }, { 'bitrate': '4500k', 'bitrate_max': '4510k', 'audio_bitrate': '128k', 'buffer_size': '4500k', 'resolution_16_9': '1280x720', 'resolution_4_3': '960x720', 'profile': 'high -level:v 4.0 -preset slow', 'video_codec': 'libx264', 'name_append': '_720p' }, { 'bitrate': '2000k', 'bitrate_max': '2240k', 'audio_bitrate': '96k', 'buffer_size': '2000k', 'resolution_16_9': '1024x576', 'resolution_4_3': '720x576', 'profile': 'main -level:v 4.0 -preset slow', 'video_codec': 'libx264', 'name_append': '_576' }, { 'bitrate': '700k', 'bitrate_max': '840k', 'audio_bitrate': '64k', 'buffer_size': '700k', 'resolution_16_9': '640x360', 'resolution_4_3': '512x384', 'profile': 'main -level:v 4.0 -preset slow', 'video_codec': 'libx264', 'name_append': '_360' }, { 'bitrate': '365k', 'bitrate_max': '400k', 'audio_bitrate': '64k', 'buffer_size': '365k', 'resolution_16_9': '480x272', 'resolution_4_3': '480x250', 'profile': 'main -level:v 4.0 -preset slow', 'video_codec': 'libx264', 'name_append': '_272' } ) variants = ['365k', '700k', '2000k', '4500k', '7800k'] def main(): #below lines need to be fixed # with open('out_urls.csv', 'wb') as f: # added_scenes = csv.writer(f) # added_scenes.writerow( # ['nombre', 'url_master.m3u8', 'duration']) for subdir, dirs, files in os.walk('./'): for file in files: filepath = subdir + os.sep + file if filepath.endswith(".mp4"): format_filename(file) hls_encode(file) def format_filename(s): """ Take a string and return a valid filename constructed from the string. Uses a whitelist approach: any characters not present in valid_chars are removed. Also spaces are replaced with underscores. Note: this method may produce invalid filenames such as ``, `.` or `..` When I use this method I prepend a date string like '2009_01_15_19_46_32_' and append a file extension like '.txt', so I avoid the potential of using an invalid filename. Instead of returning the filename is modified for renaming the file """ valid_chars = "-_.() %s%s" % (string.ascii_letters, string.digits) filename = ''.join(c for c in s if c in valid_chars) filename = filename.replace(' ', '_') os.rename(s, filename) def hls_encode(file): base = os.path.basename(file) out_name = os.path.splitext(base)[0] directory = os.path.abspath(os.getcwd()) + '/' + out_name thumbs_out = os.path.join(directory, 'thumbnails') trailer_out = os.path.join('trailer') try: aspect_ratio = mediainfo_get_prop_value( file, 'Video', 'DisplayAspectRatio_Original/String') if not aspect_ratio: aspect_ratio = mediainfo_get_prop_value( file, "Video", "DisplayAspectRatio/String") except ValueError as e: raise ValueError(e) try: width = mediainfo_get_prop_value(file, "Video", "Width") except ValueError as e: raise ValueError(e) try: duration = mediainfo_get_prop_value(file, "Video", "Duration") except ValueError as e: raise ValueError(e) try: duration_TC = mediainfo_get_prop_value( file, "Video", "Duration/String3") except ValueError as e: raise ValueError(e) def thumbnails_time_divider(duration, jumps, jump_miliseconds): jump_size = int(duration)/jumps pointer = 0 points = [] for i in range(jumps): try: points.append(pointer) pointer += jump_size - jump_miliseconds except: pass return points def trailer_cmd(times, file, scene_duration): ''' Returns this ffmpeg command that will create a mini trailer of the input video file # 'ffmpeg -i multi_audio_test_no_audio.mp4 -vf "select='between(t, 4, 6.5)+between(t, 17, 26)+between(t, 74, 91)', setpts=N/FRAME_RATE/TB" tes.mp4' The number of seconds of each scene can be changed in the ''' cmd = 'ffmpeg -i {} -an '.format(file) cmd += "-vf " cmd += '"select=' cmd += "'" counter = 0 scene_number_of_seconds = scene_duration for time in times: if counter == 0: cmd += 'between(t,{},{})'.format(time/1000, time/1000 + scene_number_of_seconds) else: cmd += '+between(t,{},{})'.format(time/1000, time/1000 + scene_number_of_seconds) counter += 1 cmd += "'" cmd += ', setpts=N/FRAME_RATE/TB" ' cmd += "-s {} ".format("426x240") cmd += "{}/{}_trailer.mp4".format(trailer_out, out_name) return cmd def get_profile(variant, aspect_ratio, PROFILE_STREAMS): for profile in PROFILE_STREAMS: if aspect_ratio == '4:3': profile_resol = profile['resolution_4_3'] profile_width = profile_resol.split("x") if int(width) >= int(profile_width[0]) and profile['bitrate'] == variant: return profile else: profile_resol = profile['resolution_16_9'] profile_width = profile_resol.split("x") if int(width) >= int(profile_width[0]) and profile['bitrate'] == variant: return profile, profile_resol def create_command(directory, file, stream): """ Creates the ffmpeg single pass commands to generate the variants before creating the .m3u8 master playlist. :param args: :param kwargs: :return: the cmd as string """ output_name = out_name + stream[0]['name_append'] + '.mp4' output = os.path.join(directory, output_name) cmd = 'ffmpeg -y ' cmd += '-i {} -c:v libx264 -profile:v {} -s {} '.format( file, stream[0]['profile'], stream[1]) cmd += '-g 50 -keyint_min 50 -sc_threshold 0 -bf 3 -b_strategy 2 -refs 2 -coder 0 ' cmd += '-b:v {} -maxrate {} -bufsize {} -pix_fmt yuv420p '.format( stream[0]['bitrate'], stream[0]['bitrate_max'], stream[0]['buffer_size']) cmd += '-c:a aac -b:a {} -ar 44100 -movflags faststart -map 0:v -map 0:a {}'.format( stream[0]['audio_bitrate'], output) return cmd def create_master_playlist(): """ Create the command to generate the master playlist (master.m3u8) for the profile. Run the 'mp4-hls.py' script :param args: :param kwargs: :return: """ mezzanines = [] for subdir, dirs, files in os.walk(directory): for file in files: filepath = subdir + os.sep + file if filepath.endswith(".mp4"): if not filepath.endswith("trailer.mp4"): mezza = ''.join(file) mezzanines.append("'%s/%s' " % (directory, mezza)) cmd = "python3 scripts/utils/mp4-hls.py -o '{outputs}' -f {mezzanines}".format( outputs=directory, mezzanines=''.join(mezzanines) ) return cmd def aes_128_key(): try: os.remove('enc.key') except OSError: print('KEY_ERROR:', OSError) pass cmd='openssl rand 16 > enc.key' return cmd def create_master_playlist_with_subtitles_and_encryption(): """ mp4-hls.py command with subtitles and encryption """ mezzanines = [] subtitles = [] current_file_name = "" # generate key run(aes_128_key()) for subdir, dirs, files in os.walk(directory): for file in files: filepath = subdir + os.sep + file if filepath.endswith(".mp4"): if not filepath.endswith("trailer.mp4"): current_file_name = file[:-8] # print("FILE:", current_file_name) # print("*"*50) mezza = ''.join(file) mezzanines.append("'%s/%s' " % (directory, mezza)) for subdir, dirs, files in os.walk(os.getcwd()): for file in files: filepath = subdir + os.sep + file if filepath.endswith(".srt") and file[:-7] == current_file_name : subtitles.append(subtitles_assembler(file)) cmd = 'python scripts/utils/mp4-hls.py --encryption-key=$(hexdump -e {x} enc.key) --output-encryption-key {mezzanines} {subtitles}'.format( x="""'"%x"'""", mezzanines=''.join(mezzanines), subtitles=''.join(subtitles) ) return cmd def move_bento4_output_into_movie_folder(): cmd = 'mv output {directory}'.format( directory=directory ) run(cmd) def create_output_folders(directory): if not os.path.exists(directory): os.makedirs(directory) if len(sys.argv)>1: if sys.argv[2] == 'trailer': trailer = os.path.join(directory, "trailer") os.makedirs(trailer) def run(cmd, shell=False): print("cmd START:", cmd) p = subprocess.check_output(cmd, shell=True) print("cmd finished") selected_streams = [] commands = [] create_output_folders(directory) def subtitles_assembler(in_file): """ looks for srt subtitles with same name as file is being processed. Extract two-letter iso code. Convert them into vtt and returns the subtitle string needed on mp4-hls.py script" """ base_name = os.path.splitext(in_file)[0] subtitle_string_for_mp42hls = "" filepath = os.path.join(os.getcwd(),in_file) file_base = os.path.splitext(in_file)[0] size = len(file_base) if base_name == file_base: output_vtt = os.path.join(os.getcwd() , os.path.splitext(os.path.basename(filepath))[0] + '.vtt') language = os.path.splitext(os.path.basename(filepath))[0][-2:] # convert srt into vtt cmd = 'ffmpeg -y -i {filepath} {output}'.format( filepath=filepath, output=output_vtt ) run(cmd) single_subt_string = '[+format=webvtt,+language={language}]{output_vtt} '.format( language=language, output_vtt=output_vtt ) subtitle_string_for_mp42hls += single_subt_string return subtitle_string_for_mp42hls def s3_upload(): """ Upload output folder into aws s3 bucket using sync command """ cmd = 'aws s3 sync {variants_folder}/output/ s3://{destination_bucket}/{out_name}'.format( variants_folder=directory, destination_bucket=s3_destination_bucket, out_name=out_name ) print ('SYNC_COMMAND:', cmd) return cmd # add trailer support on arguments # if len(sys.argv)>1: # if sys.argv[2] == 'trailer': # times = thumbnails_time_divider(duration, 12, 1000) # trailer = trailer_cmd(times, file, 0.8) # run(trailer) for variant in variants: stream = get_profile(variant, aspect_ratio, PROFILE_STREAMS) if stream: selected_streams.append(stream) for stream in selected_streams: commands.append(create_command(directory, file, stream)) for cmd in commands: run(cmd) m3u8_cmd = create_master_playlist_with_subtitles_and_encryption() try: run(m3u8_cmd) except subprocess.CalledProcessError as e: print("ERROR:",e.output) try: os.rmdir("output") run(m3u8_cmd) except subprocess.CalledProcessError as e: print("ERROR_2:",e.output) pass move_bento4_output_into_movie_folder() #upload output folder into s3 bucket if len(sys.argv)>1: if sys.argv[1] == 'sync_bucket': sync_cmd = s3_upload() run(sync_cmd) # fill csv with master and trailer url cloudfront_url = os.path.join(cloudfront_domain, out_name, 'master.m3u8') with open('out_urls.csv', 'a') as f: added_scenes = csv.writer(f) added_scenes.writerow( [out_name, cloudfront_url, duration_TC]) def mediainfo_get_prop_value(fq_file_name, ptype, prop_name): """ Get the value of a single mediainfo property. Run 'mediainfo --Info-Parameters' to get an exhaustive list. Example: 'mediainfo --Inform=Video;%Duration% /home/myuser/test_file.avi' :param fq_file_name: :ptype: mediainfo property type (e.g. 'Video', 'Audio',...) :param prop_name: mediainfo property name (e.g. 'Count', 'Title, 'Language',...) :return: """ cmd = ['mediainfo', '--Inform=%s;%%%s%%\\n' % (ptype, prop_name), fq_file_name] pout = subprocess.Popen(cmd, stdout=subprocess.PIPE) prop_value = pout.communicate()[0].strip() return prop_value if __name__ == "__main__": main() # %%
""" Functions for converting coordinates """ import utm from pyproj import CRS def utm_crs_from_latlon(lat, lon): """ Determines the UTM CRS from a given lat lon point :param lat: The latitude :type lat: float :param lon: The longitude :type lon: float :return: A coordinate system for the associated UTM zone :rtype: class:`pyroj.CRS` """ _, _, zone, _ = utm.from_latlon(lat, lon) if lat >= 0: epsg = '326' + str(zone) else: epsg = '327' + str(zone) return CRS.from_user_input(int(epsg))
txt1 = 'A tale that was not right' txt2 = '이 또한 지나가리라.' print(txt1[24]) print(txt2[-2])
#!/usr/bin/env python # -*- coding: utf-8 -*- # # otra_app56.py # from Tkinter import * def Call(): # Definimos la funcion lab= Label(root, text = 'Usted presiono\nel boton') lab.pack() boton['bg'] = 'blue' # Al presionar queda azul boton['fg'] = 'white' # Si pasamos el Mouse queda blanco root = Tk() # Ventana de fondo root.geometry('100x110+350+70') # Geometría de la ventana boton = Button(root, text = 'Presionar', command = Call) boton.pack() root.mainloop()
#!/usr/bin/env python # # Copyright (c) 2007-2008, Corey Goldberg (corey@goldb.org) # # license: GNU LGPL # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. #Note: The code was adjusted to always extract the stock price of any given date between 1995-2016 and the stock prices of the two previous days. (the end_date is the chosen date) #from pandas.tseries.holiday import get_calendar, HolidayCalendarFactory, GoodFriday import urllib ''' This is the "ystockquote" module. This module provides a Python API for retrieving stock data from Yahoo Finance. This module contains the following functions: get_all(symbol) get_price(symbol) get_change(symbol) get_volume(symbol) get_avg_daily_volume(symbol) get_stock_exchange(symbol) get_market_cap(symbol) get_book_value(symbol) get_ebitda(symbol) get_dividend_per_share(symbol) get_dividend_yield(symbol) get_earnings_per_share(symbol) get_52_week_high(symbol) get_52_week_low(symbol) get_50day_moving_avg(symbol) get_200day_moving_avg(symbol) get_price_earnings_ratio(symbol) get_price_earnings_growth_ratio(symbol) get_price_sales_ratio(symbol) get_price_book_ratio(symbol) get_short_ratio(symbol) get_historical_prices(symbol, start_yyyymmdd, end_yyyymmdd) sample usage: >>> import ystockquote >>> print ystockquote.get_price('GOOG') 529.46 ''' def __request(symbol, stat): url = 'http://finance.yahoo.com/d/quotes.csv?s=%s&f=%s' % (symbol, stat) return urllib.urlopen(url).read().strip().strip('"') def get_all(symbol): """ Get all available quote data for the given ticker symbol. Returns a dictionary. """ values = __request(symbol, 'l1c1va2xj1b4j4dyekjm3m4rr5p5p6s7').split(',') data = {} data['price'] = values[0] data['change'] = values[1] data['volume'] = values[2] data['avg_daily_volume'] = values[3] data['stock_exchange'] = values[4] data['market_cap'] = values[5] data['book_value'] = values[6] data['ebitda'] = values[7] data['dividend_per_share'] = values[8] data['dividend_yield'] = values[9] data['earnings_per_share'] = values[10] data['52_week_high'] = values[11] data['52_week_low'] = values[12] data['50day_moving_avg'] = values[13] data['200day_moving_avg'] = values[14] data['price_earnings_ratio'] = values[15] data['price_earnings_growth_ratio'] = values[16] data['price_sales_ratio'] = values[17] data['price_book_ratio'] = values[18] data['short_ratio'] = values[19] def get_price(symbol): return __request(symbol, 'l1') def get_change(symbol): return __request(symbol, 'c1') def get_volume(symbol): return __request(symbol, 'v') def get_avg_daily_volume(symbol): return __request(symbol, 'a2') def get_stock_exchange(symbol): return __request(symbol, 'x') def get_market_cap(symbol): return __request(symbol, 'j1') def get_book_value(symbol): return __request(symbol, 'b4') def get_ebitda(symbol): return __request(symbol, 'j4') def get_dividend_per_share(symbol): return __request(symbol, 'd') def get_dividend_yield(symbol): return __request(symbol, 'y') def get_earnings_per_share(symbol): return __request(symbol, 'e') def get_52_week_high(symbol): return __request(symbol, 'k') def get_52_week_low(symbol): return __request(symbol, 'j') def get_50day_moving_avg(symbol): return __request(symbol, 'm3') def get_200day_moving_avg(symbol): return __request(symbol, 'm4') def get_price_earnings_ratio(symbol): return __request(symbol, 'r') def get_price_earnings_growth_ratio(symbol): return __request(symbol, 'r5') def get_price_sales_ratio(symbol): return __request(symbol, 'p5') def get_price_book_ratio(symbol): return __request(symbol, 'p6') def get_short_ratio(symbol): return __request(symbol, 's7') #Adjusted to receive two inputs: symbol and chosen_date instead of symbol, start_date, end_date def get_historical_prices(symbol, chosen_date): """ Get historical prices for the given ticker symbol. Date format is 'YYYY-MM-DD' Returns a nested list. """ import datetime from datetime import date from datetime import timedelta #Test # >>> chosen_date = '2016-05-10' # >>> year = int(chosen_date[:4]) # >>> month = int(chosen_date[5:7]) # >>> day = int(chosen_date[8:]) # >>> end_date = datetime.date(year, month, day) # >>> start_date = str(end_date - datetime.timedelta(days=2)) past_n_days = 10 #fixed because we only care about the stock price of the chosen day and the stock prices of the two previous days year = int(chosen_date[:4]) month = int(chosen_date[5:7]) day = int(chosen_date[8:]) end_date = datetime.date(year, month, day) if end_date > datetime.date.today(): statement = "Choose any date before today: " + str(datetime.date.today()) d0 = end_date d1 = datetime.date.today() delta = d0 - d1 past_n_days += delta.days # from datetime import date # d0 = date(2008, 8, 18) # d1 = date(2008, 9, 26) # delta = d0 - d1 # print delta.days if end_date == datetime.date.today(): past_n_days += 1 #assert end_date < datetime.date.today(), "chosen date must be any previous day from today: %r" % end_date #assert num == 4, "len of set is not 4: %r" % num #example #List of dates: date_list = [end_date - datetime.timedelta(days=x) for x in range(0, 3)] # >>> date_list = [end_date - datetime.timedelta(days=x) for x in range(0, 3)] # >>> print date_list # [datetime.date(2016, 5, 10), datetime.date(2016, 5, 9), datetime.date(2016, 5, 8)] #start_date = str(end_date - datetime.timedelta(days=past_n_days)) #doesn't work when we previously put from datetime import datetime start_date = str(end_date - timedelta(days=past_n_days)) #code is always functional end_date = chosen_date # #month, day and year url = 'http://ichart.yahoo.com/table.csv?s=%s&' % symbol + \ 'd=%s&' % str(int(end_date[5:7]) - 1) + \ 'e=%s&' % str(int(end_date[8:10])) + \ 'f=%s&' % str(int(end_date[0:4])) + \ 'g=d&' + \ 'a=%s&' % str(int(start_date[5:7]) - 1) + \ 'b=%s&' % str(int(start_date[8:10])) + \ 'c=%s&' % str(int(start_date[0:4])) + \ 'ignore=.csv' print "url" print url days = urllib.urlopen(url).readlines() data = [day[:-2].split(',') for day in days] return data if __name__ == "__main__": print get_historical_prices('GOOG', '2016-05-30') #output ##if __name__ == "__main__": ## print get_historical_prices('GOOG', '2016-05-30') # Andreas-MacBook-Pro-2:StockPredictor andreamelendezcuesta$ python ystockquote_edited.py # url # http://ichart.yahoo.com/table.csv?s=GOOG&d=4&e=30&f=2016&g=d&a=4&b=16&c=2016&ignore=.csv # [['Date', 'Open', 'High', 'Low', 'Close', 'Volume', 'Adj Clos'], # ['2016-05-25', '720.76001', '727.51001', '719.705017', '725.27002', '1629200', '725.2700'], # ['2016-05-24', '706.859985', '720.969971', '706.859985', '720.090027', '1920400', '720.09002'], # ['2016-05-23', '706.530029', '711.478027', '704.179993', '704.23999', '1320900', '704.2399'], # ['2016-05-20', '701.619995', '714.580017', '700.52002', '709.73999', '1816000', '709.7399'], # ['2016-05-19', '702.359985', '706.00', '696.799988', '700.320007', '1656300', '700.32000'], # ['2016-05-18', '703.669983', '711.599976', '700.630005', '706.630005', '1763400', '706.63000'], # ['2016-05-17', '715.98999', '721.52002', '704.109985', '706.22998', '1999500', '706.2299'], # ['2016-05-16', '709.130005', '718.47998', '705.650024', '716.48999', '1316200', '716.4899']] ## if __name__ == "__main__": ## print get_historical_prices('GOOG', '2016-05-26') # Andreas-MacBook-Pro-2:StockPredictor andreamelendezcuesta$ python ystockquote_edited.py # url # http://ichart.yahoo.com/table.csv?s=GOOG&d=4&e=26&f=2016&g=d&a=4&b=15&c=2016&ignore=.csv # [['Date', 'Open', 'High', 'Low', 'Close', 'Volume', 'Adj Clos'], # ['2016-05-25', '720.76001', '727.51001', '719.705017', '725.27002', '1629200', '725.2700'], # ['2016-05-24', '706.859985', '720.969971', '706.859985', '720.090027', '1920400', '720.09002'], # ['2016-05-23', '706.530029', '711.478027', '704.179993', '704.23999', '1320900', '704.2399'], # ['2016-05-20', '701.619995', '714.580017', '700.52002', '709.73999', '1816000', '709.7399'], # ['2016-05-19', '702.359985', '706.00', '696.799988', '700.320007', '1656300', '700.32000'], # ['2016-05-18', '703.669983', '711.599976', '700.630005', '706.630005', '1763400', '706.63000'], # ['2016-05-17', '715.98999', '721.52002', '704.109985', '706.22998', '1999500', '706.2299'], # ['2016-05-16', '709.130005', '718.47998', '705.650024', '716.48999', '1316200', '716.4899']] ##if __name__ == "__main__": ## print get_historical_prices('GOOG', '2016-05-10') # Andreas-MacBook-Pro-2:StockPredictor andreamelendezcuesta$ python ystockquote_edited.py # url # http://ichart.yahoo.com/table.csv?s=GOOG&d=4&e=10&f=2016&g=d&a=3&b=30&c=2016&ignore=.csv # [['Date', 'Open', 'High', 'Low', 'Close', 'Volume', 'Adj Clos'], # ['2016-05-10', '716.75', '723.50', '715.719971', '723.179993', '1563100', '723.17999'], # ['2016-05-09', '712.00', '718.710022', '710.00', '712.900024', '1508400', '712.90002'], # ['2016-05-06', '698.380005', '711.859985', '698.106995', '711.119995', '1826100', '711.11999'], # ['2016-05-05', '697.700012', '702.320007', '695.719971', '701.429993', '1677400', '701.42999'], # ['2016-05-04', '690.48999', '699.75', '689.01001', '695.700012', '1688600', '695.70001'], # ['2016-05-03', '696.869995', '697.840027', '692.00', '692.359985', '1531000', '692.35998'], # ['2016-05-02', '697.630005', '700.640015', '691.00', '698.210022', '1644100', '698.21002']] #original function ######################################## # def get_historical_prices(symbol, start_date, end_date): # """ # Get historical prices for the given ticker symbol. # Date format is 'YYYYMMDD' # Returns a nested list. # """ # url = 'http://ichart.yahoo.com/table.csv?s=%s&' % symbol + \ # 'd=%s&' % str(int(end_date[4:6]) - 1) + \ # 'e=%s&' % str(int(end_date[6:8])) + \ # 'f=%s&' % str(int(end_date[0:4])) + \ # 'g=d&' + \ # 'a=%s&' % str(int(start_date[4:6]) - 1) + \ # 'b=%s&' % str(int(start_date[6:8])) + \ # 'c=%s&' % str(int(start_date[0:4])) + \ # 'ignore=.csv' # print "url" # print url # days = urllib.urlopen(url).readlines() # data = [day[:-2].split(',') for day in days] # #print data # return data # if __name__ == "__main__": # print get_historical_prices('GOOG', '20160321', '20160323') # Andreas-MBP-2:StockPredictor andreamelendezcuesta$ python ystockquote.py # url # http://ichart.yahoo.com/table.csv?s=GOOG&d=2&e=23&f=2016&g=d&a=2&b=21&c=2016&ignore=.csv # [['Date', 'Open', 'High', 'Low', 'Close', 'Volume', 'Adj Clos'], # ['2016-03-23', '742.359985', '745.719971', '736.150024', '738.059998', '1421900', '738.05999'], # ['2016-03-22', '737.460022', '745.00', '737.460022', '740.75', '1264400', '740.7'], # ['2016-03-21', '736.50', '742.50', '733.515991', '742.090027', '1831800', '742.09002']] #######Alternative function, argument: past_n_days ################### # from datetime import datetime, timedelta # def get_historical_prices(symbol, past_n_days): # """ # Get historical prices for the given ticker symbol. # Date format is 'YYYY-MM-DD' # Returns a nested list. # """ # end_date = str(datetime.now())[:10] # start_date= str(datetime.now() - timedelta(days=past_n_days))[:10] # # #month, day and year # url = 'http://ichart.yahoo.com/table.csv?s=%s&' % symbol + \ # 'd=%s&' % str(int(end_date[5:7]) - 1) + \ # 'e=%s&' % str(int(end_date[8:10])) + \ # 'f=%s&' % str(int(end_date[0:4])) + \ # 'g=d&' + \ # 'a=%s&' % str(int(start_date[5:7]) - 1) + \ # 'b=%s&' % str(int(start_date[8:10])) + \ # 'c=%s&' % str(int(start_date[0:4])) + \ # 'ignore=.csv' # print "url" # print url # days = urllib.urlopen(url).readlines() # data = [day[:-2].split(',') for day in days] # return data # if __name__ == "__main__": # print get_historical_prices('GOOG', 2) # Andreas-MacBook-Pro-2:StockPredictor andreamelendezcuesta$ python ystockquote_prev.py # url # http://ichart.yahoo.com/table.csv?s=GOOG&d=2&e=16&f=2016&g=d&a=2&b=14&c=2016&ignore=.csv # [['Date', 'Open', 'High', 'Low', 'Close', 'Volume', 'Adj Clos'], # ['2016-03-16', '726.369995', '737.469971', '724.51001', '736.090027', '1572300', '736.09002'], # ['2016-03-15', '726.919983', '732.289978', '724.77002', '728.330017', '1720100', '728.33001'], # ['2016-03-14', '726.809998', '735.50', '725.150024', '730.48999', '1716900', '730.4899']]
''' inherit ParmEd' Structure class ''' from parmed import Structure as _Structure import parmed as pmd import numpy as np def load_file(*args, **kwd): p_struct = pmd.load_file(*args, **kwd) new_struct = Structure() new_struct.atoms = p_struct.atoms new_struct.residues = p_struct.residues new_struct.bonds = p_struct.bonds new_struct.angles = p_struct.angles new_struct.dihedrals = p_struct.dihedrals new_struct.rb_torsions = p_struct.rb_torsions new_struct.urey_bradleys = p_struct.urey_bradleys new_struct.impropers = p_struct.impropers new_struct.cmaps = p_struct.cmaps new_struct.trigonal_angles = p_struct.trigonal_angles new_struct.out_of_plane_bends = p_struct.out_of_plane_bends new_struct.pi_torsions = p_struct.pi_torsions new_struct.stretch_bends = p_struct.stretch_bends new_struct.torsion_torsions = p_struct.torsion_torsions new_struct.chiral_frames = p_struct.chiral_frames new_struct.multipole_frames = p_struct.multipole_frames new_struct.adjusts = p_struct.adjusts new_struct.acceptors = p_struct.acceptors new_struct.donors = p_struct.donors return new_struct class Structure(_Structure): @property def charge(self): return np.array([atom.charge for atom in self.atoms]) @charge.setter def charge(self, values): for atom, c in zip(self.atoms, values): atom.charge = c @property def mass(self): return np.array([atom.mass for atom in self.atoms]) @charge.setter def mass(self, values): for atom, m in zip(self.atoms, values): atom.mass = m
import os, sys, csv import numpy as np data = [] with open("wifiscan_1.csv", "rt") as csvfile: reader = csv.reader(csvfile, delimiter=";") for row in reader: data.append(row[1:-1]) data = np.asarray(data).astype(np.float) print( data.shape ) #print data[0, :] mean = np.mean(data, axis=0) print( "mean=", mean.shape ) #max = np.max(data, axis=0) #min = np.min(data, axis=0) std = np.std(data, axis=0) + 1e-10 #print "std=", std.shape normalized = (data - mean)/std print( "normalized max", np.min(normalized,axis=0)) np.save("mean", mean) np.save("std", std) np.save("points", normalized)
import subprocess import os import shutil from subprocess import call, check_output, Popen, PIPE import json from os.path import join as pjoin from micompy.common.tools.tool import Tool class BBmap(Tool): def __init__(self, executable = "bbmap.sh", jni=True , kmer = 13): Tool.__init__(self, name = "BBMap", executable = executable) self.jni = "jni=t" if jni else "jni=f" self.kmer = "k=%d" % (kmer) def make_index(self, genome): with open(os.devnull, 'w') as handle: call([self.executable, "ref="+genome.genome, "path="+genome.path, self.kmer], stdout=handle, stderr=handle) def get_ANI(self, genome, reads, target_id = 0.1): FNULL = open(os.devnull, 'w') cmd = Popen([self.executable, "ref="+genome.genome, "path="+genome.path, "in="+reads, "out=/dev/null", "minid=" +str(target_id), self.jni, self.kmer], stderr = PIPE, stdout=PIPE) out_lines = cmd.stderr.readlines() FNULL.close() coverage = [float(l.split("\t")[1].replace("%","")) for l in out_lines if "mapped:" in l][0] ANI = [float(l.split("\t")[3].replace("%","")) for l in out_lines if "Match Rate:" in l][0] return {'ANI' : ANI, 'coverage' : coverage}
#coding:utf-8 import cv2 as cv import numpy as np def video_demo(): capture = cv.VideoCapture(0) while(True): ret,frame = capture.read() frame = cv.flip(frame,1) cv.imshow('video',frame) c = cv.waitKey(50) if c == 27: break def get_image_info(image): print(type(image)) print(image.shape) print(image.size) print(image.dtype) pixel_data = np.array(image) print(pixel_data) src = cv.imread("D:\python_file\Opencv3_study_file\images\!face.png") cv.namedWindow("NO.1 image",cv.WINDOW_AUTOSIZE) cv.imshow("NO.1 image",src) gray = cv.cvtColor(src,cv.COLOR_BGR2GRAY) #注意千万不要选择中文目录,否则无法保存 cv.imwrite("D:/python_file/Opencv3_study_file/images/face_gray.png",gray) cv.waitKey(0) cv.destroyAllWindows() print("Hi,Python!")
import logging import simpy class Restaurant: def __init__(self, env, id, kitchencount, x, y): self.id = id self.env = env self.name = "RE-%d" % id self.x = x self.y = y self.orderStore = simpy.FilterStore(env) self.kitchen = simpy.Resource(env, kitchencount) logging.debug("%s: Setup at X:%d,Y:%d" % (self.name, x, y)) def prepare_food(self, order): logging.debug("%s (O%d): RECEIVED at %s" % (self.name, order.id, self.env.now)) with self.kitchen.request() as req: yield req logging.info("%s (O%d): PREP_STARTED at %s" % (self.name, order.id, self.env.now)) yield self.env.timeout(order.dish.prep_time()) yield self.orderStore.put(order) logging.info("%s (O%d): #COOKED# at %s" % (self.name, order.id, self.env.now)) def handover_food(self, order): yield self.orderStore.get(lambda o: o.id == order.id) logging.debug("%s (O%d): HANDED_OVER at %s" % (self.name, order.id, self.env.now))
def solution(n): Fibo = [0, 1] for i in range(2, n + 1): Fibo.append(Fibo[i - 1] + Fibo[i - 2]) return Fibo[n] % 1234567
"""" Soumil Nitin Shah Bachelor in Electronic Engineering Master in Electrical Engineering Master in Computer Engineering Graduate Teaching/Research Assistant Python Developer soushah@my.bridgeport.edu """ import sqlite3 def my_database(): """ :return: Nothing """ # define the connection conn = sqlite3.connect("eg1.db") #define the cursor cursor = conn.cursor() # create Tables cursor.execute(""" CREATE TABLE IF NOT EXISTS my_table (id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL, temperature TEXT, humidity TEXT)""") # Add data to database cursor.execute(""" INSERT INTO my_table (temperature,humidity) VALUES (4,3)""") # perform 3C #COMMIT, CLOSE CLOSE conn.commit() cursor.close() conn.close() if __name__ == '__main__': my_database()
class MyChatRole: def __init__(self, role_name: str, msg_header: str = None): self.__role_name = role_name self.__msg_header = role_name if msg_header is None else msg_header @property def role_name(self): return self.__role_name @property def msg_header(self): return self.__msg_header def role_msg(self, msg: str, end: str = '\n'): return f'{self.__msg_header} : {msg}{end}' role_sys = MyChatRole('system', 'sys') role_user = MyChatRole('user', 'usr') role_anonym = MyChatRole('matrix', 'neo')
# keeping bot alive on repl.it https://www.codementor.io/@garethdwyer/building-a-discord-bot-with-python-and-repl-it-miblcwejz from flask import Flask, request from threading import Thread import json app = Flask('') @app.route('/') def home(): return "I'm alive" @app.route('/refresh', methods = ['POST']) def refresh(): print(f"repl.deploy{json.loads(request.get_data())}{request.headers.get('Signature')}") deploy = input() print("repl.deploy-success") return json.loads(deploy) def run(): app.run(host='0.0.0.0',port=8080) def keep_alive(): t = Thread(target=run) t.start()
''' Retrieve REST API endpoints for different services ''' from . import credentials def get(service_type, endpoint_type='publicURL'): """ Retrieve the service endpoint URL """ ks = credentials.keystone() return ks.service_catalog.url_for(service_type=service_type, endpoint_type=endpoint_type) def image(): """ Retrieve the image service (glance) endpoint """ return get('image') def identity(): """ Retrieve the identity service (keystone) endpoint """ return get('identity') def compute(): """ Retrieve the compute service (nova) endpoint """ return get('compute') def network(): """ Retrieve the network service (neutron) endpoint """ return get('network') def volume(): """ Retrieve the volume service (cinder) endpoint """ return get('volume') def object_store(): """ Retrieve the object store (swift) endpoint """ return get('object-store')
# Generated by Django 3.0.2 on 2020-02-01 14:40 import django.contrib.postgres.fields.jsonb from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('osmcal', '0013_remove_event_created_by'), ] operations = [ migrations.AlterField( model_name='event', name='description', field=models.TextField(blank=True, help_text='Tell people what the event is about and what they can expect. You may use Markdown in this field.', null=True), ), migrations.CreateModel( name='ParticipationQuestion', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('question_text', models.CharField(max_length=200)), ('answer_type', models.CharField(choices=[('TEXT', 'Text Field'), ('CHOI', 'Choice'), ('BOOL', 'Boolean')], max_length=4)), ('mandatory', models.BooleanField(default=True)), ('quota', models.PositiveIntegerField(blank=True, null=True)), ('choices', django.contrib.postgres.fields.jsonb.JSONField(blank=True, null=True)), ('event', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='questions', to='osmcal.Event')), ], ), ]
import os import sqlite3 import uuid import config def CreateDatasetExportDatabse(datasetId: str): filename = datasetId + ".sqlite" dbpath = os.path.join(config.ExportDatasetPath, filename) conn = sqlite3.connect(dbpath) cur = conn.cursor() create_table_schema = """CREATE TABLE IF NOT EXISTS DOMO_Schema ( Id text PRIMARY KEY, CreatedDate text);""" create_table_schema_detail = """CREATE TABLE IF NOT EXISTS DOMO_Schema_Detail ( Id text PRIMARY KEY, Schema_Id text, Label text, Type text, FOREIGN KEY (Schema_Id) REFERENCES DOMO_Schema(Id));""" create_table_data = """CREATE TABLE IF NOT EXISTS DOMO_Data ( Id text PRIMARY KEY, Import_Date text, Row_Id text, Col_Id text, Value text, FOREIGN KEY(Col_Id) REFERENCES DOMO_Schema_Detail(Id));""" if conn is not None: cur.execute(create_table_schema) cur.execute(create_table_schema_detail) cur.execute(create_table_data) else: print("Cannot connect to sqlite database at: " + dbpath)
# 1+11+111+1111+11111+...的和 def fun(n): sum = 0 x = 0 for i in range(1, n): x = x*10 +1 sum += x print(sum) fun(6)
import numpy as np def numpy_vstack_2d_default(array1, array2, default_value=np.nan): if len(array1) == 0: return array2 if len(array2) == 0: return array1 if np.ndim(array1) == 1: array1 = np.reshape(array1, (1,len(array1))) if np.ndim(array2) == 1: array2 = np.reshape(array2, (1,len(array2))) shape1 = np.shape(array1) shape2 = np.shape(array2) if shape1[1] == shape2[1]: return np.vstack((array1, array2)) elif shape1[1] > shape2[1]: # add default values to array1 new_values = np.ones((shape2[0], shape1[1] - shape2[1])) new_values[:] = default_value return np.vstack((array1, np.hstack((array2, new_values)))) else: # add default values to array2 new_values = np.ones((shape1[0], shape2[1] - shape1[1])) new_values[:] = default_value return np.vstack((np.hstack((array1, new_values)), array2))
import sys import sdl2.ext RESOURCES = sdl2.ext.Resources(__file__, "resources") sdl2.ext.init() window = sdl2.ext.Window("Hello World!", size=(640, 480)) window.show() factory = sdl2.ext.SpriteFactory(sdl2.ext.SOFTWARE) sprite = factory.from_image(RESOURCES.get_path("hello.bmp")) spriterenderer = factory.create_sprite_render_system(window) spriterenderer.render(sprite)
import pymongo from menu import Menu from models.post import Post from models.blog import Blog from database import Database Database.initialize() menu = Menu() menu.run_menu()
# -*- coding: utf-8 -*- try: import pycurl222 from cStringIO import StringIO curl = True except Exception, e: import urllib2 curl = False def request(url): """蜘蛛抓取""" if curl: return _curlRequest(url) else: return _urllibRequest(url) def _curlRequest(url): """curl下载函数""" c = pycurl.Curl() c.setopt(pycurl.URL, url) sio = StringIO() c.setopt(pycurl.WRITEFUNCTION, sio.write) c.setopt(pycurl.FOLLOWLOCATION, 1) c.setopt(pycurl.MAXREDIRS, 5) # c.setopt(pycurl.ENCODING, '') c.setopt(pycurl.USERAGENT, 'Mozilla/5.0 (Windows; U; Windows NT 5.1; zh-CN; rv:1.9.0.7) Gecko/2009021910 Firefox/3.0.7') # c.setopt(pycurl.PROXY, '192.168.0.138:8888') # c.setopt(pycurl.PROXY, '127.0.0.1:9050') # c.setopt(pycurl.PROXYTYPE, pycurl.PROXYTYPE_SOCKS5) c.perform() c.close() return sio.getvalue() def _urllibRequest(url): """urllib下载函数""" req = urllib2.Request(url) req.add_header('User-Agent', 'Mozilla/5.0 (Windows; U; Windows NT 5.1; zh-CN; rv:1.9.0.7) Gecko/2009021910 Firefox/3.0.7') return urllib2.build_opener().open(req).read()
# dp[i]表示前i个石头先手能不能赢 # 如果i是平方数,显示先手必赢 # 如果dp[i - j*j]必输,那么此时先手也必赢 class Solution: def winnerSquareGame(self, n: int) -> bool: sq, dp = sqrt(n), [False] * (n+1) for i in range(0, n+1): if not dp[i]: for j in range(1, int(sq) + 1): if i + j*j <= n: dp[i + j*j] = True return dp[n]
'''API wrapper class''' # pylint: disable=I0011,C0103 import json import os import pprint import requests class WeatherAPI(object): """docstring for WeatherAPI""" @staticmethod def get_weather(apikey, location): '''Wrapper function for getting weather by zipcode''' # OpenWeatherMap call # uri = "http://api.openweathermap.org/data/2.5/weather?zip={},us{}".format(location, apikey) # Wunderground call # uri = "http://api.wunderground.com/api/{}/conditions/q/{}.json".format(apikey, location) # OpenWeatherMap 2020 call uri = "https://community-open-weather-map.p.rapidapi.com/weather" callback = "test" # print("WeatherAPI uri: ", uri) # querystring = {"lat":"0","lon":"0","callback":"test","id":"2172797","lang":"null","units":"imperial","q":"London,uk"} querystring = {"lat":"0","lon":"0","callback":callback,"id":"2172797","lang":"null","units":"imperial","q":location} headers = { 'x-rapidapi-host': "community-open-weather-map.p.rapidapi.com", 'x-rapidapi-key': apikey } resp = requests.request("GET", uri, headers=headers, params=querystring) return json.loads(resp.text.strip(callback).strip('(').rstrip(')')) #resp = resp.strip([''.join(callback,'(')]) #resp = resp.rstrip(')') # Function stub for testing # This is a hardcoded sample json response from the API endpoint # response = 'test({"coord":{"lon":-0.13,"lat":51.51},"weather":[{"id":804,"main":"Clouds","description":"overcast clouds","icon":"04n"}],"base":"stations","main":{"temp":62.26,"feels_like":54.03,"temp_min":61,"temp_max":64.4,"pressure":1000,"humidity":82},"visibility":10000,"wind":{"speed":18.34,"deg":230},"clouds":{"all":90},"dt":1604270626,"sys":{"type":1,"id":1414,"country":"GB","sunrise":1604213674,"sunset":1604248411},"timezone":0,"id":2643743,"name":"London","cod":200})' # pp.pprint(type(response)) # pp.pprint(response) # return json.loads(resp) if __name__ == '__main__': apikey = os.environ.get("OPENWEATHER_API_KEY","") pp = pprint.PrettyPrinter() # resp = WeatherAPI.get_weather(apikey,'Palo Alto, ca, usa') # pp.pprint(resp) # resp = WeatherAPI.get_weather(apikey,'Alameda,ca,usa') # pp.pprint(resp) resp = WeatherAPI.get_weather(apikey,'london, uk') pp.pprint(type(resp)) pp.pprint(resp) pp.pprint(resp["main"]["feels_like"])
from __future__ import absolute_import, division, print_function from math import sqrt, log import pygame import random import copy import heapq #Feel free to add extra classes and functions class State: # State constructor to initialize grid, player, parent, current coordinate, and # options def __init__(self, grid, player, parent, coord, options): self.grid = grid self.player = player self.parent = parent self.children = [] self.Q = 0 self.N = 0 self.coord = coord self.counter = 0 self.grid_count = 11 self.options = options if(coord is None): self.terminalVal = False else: val = self.check_win() self.terminalVal = val # Adds child to states children def add_child(self, child): self.children.append(child) # Gets continuous count in a specific direction def get_continuous_count(self, r, c, dr, dc): piece = self.grid[r][c] result = 0 i = 1 while True: new_r = r + dr * i new_c = c + dc * i if 0 <= new_r < self.grid_count and 0 <= new_c < self.grid_count: if self.grid[new_r][new_c] == piece: result += 1 else: break else: break i += 1 return result # Check if this current board is a winner def check_win(self): grid = self.grid r, c = self.coord n_count = self.get_continuous_count(r, c, -1, 0) s_count = self.get_continuous_count(r, c, 1, 0) e_count = self.get_continuous_count(r, c, 0, 1) w_count = self.get_continuous_count(r, c, 0, -1) se_count = self.get_continuous_count(r, c, 1, 1) nw_count = self.get_continuous_count(r, c, -1, -1) ne_count = self.get_continuous_count(r, c, -1, 1) sw_count = self.get_continuous_count(r, c, 1, -1) if (n_count + s_count + 1 >= 5) or (e_count + w_count + 1 >= 5) or \ (se_count + nw_count + 1 >= 5) or (ne_count + sw_count + 1 >= 5): return True return False class MCTS: # Constructor for MCTS def __init__(self, grid, player, r, c, first): self.first = first self.grid = grid self.game_over = False self.player = player self.maxrc = len(grid)-1 self.winner = None self.winner_m = None self.piece = player self.grid_count = 11 self.root = State(grid, player, None, (r, c), self.get_options_ibounds(grid, r, c)) self.root.counter = 1 self.grid_size = 46 self.start_x, self.start_y = 38, 55 self.edge_size = self.grid_size // 2 self.counter = 1 def uct_search(self): i = 0 # Computational budget 8000 loops while i < 800: s = self.selection(self.root) # Retrieve simulation for current board winner = self.simulation(s) # Backpropogate to root self.backpropagation(s, winner) i += 1 if(self.first and i > 5): break max = 0 maxNode = None # Retrieve node with max Q/N for node in self.root.children: val = node.Q/node.N if(val > max): max = val maxNode = node return maxNode.coord def selection(self, state): # Go down to terminal val while not state.terminalVal: # Check whether state is expanded expanded = self.isFullyExpanded(state) if not expanded: return self.expansion(state) else: # If not fully expanded then return the best child newChild = self.best_child(state) if(newChild is None): return state state = newChild return state # Every node knows its available options so if a node has 0 options then # it must not have any children def isFullyExpanded(self, state): return len(state.options) == 0 # Expand one node def expansion(self, state): newGrid = copy.deepcopy(state.grid) # Pop the option with the highest get_continuous value opt = heapq.heappop(state.options) r, c = opt[1] playerVal = '' if state.player == 'b': playerVal = 'w' else: playerVal = 'b' if newGrid[r][c] == '.': newGrid[r][c] = state.player # Create a child with new options newChildOptions = self.get_options_ibounds(newGrid, r, c) newChild = State(newGrid, playerVal, state, (r,c), newChildOptions) newChild.counter = self.counter self.counter += 1 state.add_child(newChild) return newChild else: # Create a child with new options newChildOptions = self.get_options_ibounds(newGrid, r, c) newChild = State(newGrid, playerVal, state, (r,c), newChildOptions) newChild.counter = self.counter self.counter += 1 # Set terminal val to true since this game results in a tie. newChild.terminalVal = True state.add_child(newChild) return newChild def best_child(self, state): maxNode = None maxVal = 0 # Choose the child with the greatest Q'/N' + sqrt(log(N)/N') for child in state.children: tmp = child.Q/child.N + 2.0*sqrt(log(state.N)/child.N) if(tmp > maxVal): maxNode = child maxVal = tmp return maxNode # Simulate a game until it finishes def simulation(self, state): return self.rollout_m(copy.deepcopy(state.grid)) # Set a particular piece to the current player def set_piece(self, state, r, c): grid = state.grid if grid[r][c] == '.': grid[r][c] = state.player if state.player == 'b': state.player = 'w' else: state.player = 'b' return True return False # Get best white piece, has most consecutive in a line def get_best_white(self, grid): maxWhite = 0 whitePos = 5, 5 for r in range(len(grid)): for c in range(len(grid)): if(grid[r][c] == 'w'): # For every white piece find the max in-a-row value n_count = self.get_continuous_count_m(grid, r, c, -1, 0) s_count = self.get_continuous_count_m(grid, r, c, 1, 0) e_count = self.get_continuous_count_m(grid, r, c, 0, 1) w_count = self.get_continuous_count_m(grid, r, c, 0, -1) se_count = self.get_continuous_count_m(grid, r, c, 1, 1) nw_count = self.get_continuous_count_m(grid, r, c, -1, -1) ne_count = self.get_continuous_count_m(grid, r, c, -1, 1) sw_count = self.get_continuous_count_m(grid, r, c, 1, -1) maxCount = max((n_count + s_count), (e_count + w_count), (se_count + nw_count), (ne_count + sw_count)) # If you found a white piece that has more in-a-row pieces then update your whitePos piece if(maxCount > maxWhite): maxWhite = maxCount whitePos = (r, c) return whitePos def get_options_ibounds(self, grid, row, col): # Create a bounding box around the best white piece row, col = self.get_best_white(grid) current_pcs = [] optimal_pcs = [] bottom = 0 top = 0 left = 0 right = 0 if(row - 2 < 0): # If box hits bottom bottom = 0 top = 5 elif(row + 3 > len(grid)): # If box hits top top = len(grid) - 1 bottom = len(grid) - 6 else: # Otherwise can set upper and lower bounds normally bottom = row - 2 top = row + 2 if(col - 2 < 0): # If box hits left wall left = 0 right = 5 elif(col + 3 > len(grid)): # If box hits right wall right = len(grid) - 1 left = len(grid) - 6 else: # Otherwise can set left and right bounds normally left = col - 2 right = col + 2 for r in range(bottom, top): for c in range(left, right): if(grid[r][c] == '.'): # For each option in the bounding box see which option would give you the max in-a-row pieces grid[r][c] = 'w' n_count = self.get_continuous_count_m(grid, r, c, -1, 0) s_count = self.get_continuous_count_m(grid, r, c, 1, 0) e_count = self.get_continuous_count_m(grid, r, c, 0, 1) w_count = self.get_continuous_count_m(grid, r, c, 0, -1) se_count = self.get_continuous_count_m(grid, r, c, 1, 1) nw_count = self.get_continuous_count_m(grid, r, c, -1, -1) ne_count = self.get_continuous_count_m(grid, r, c, -1, 1) sw_count = self.get_continuous_count_m(grid, r, c, 1, -1) maxCount = max((n_count + s_count), (e_count + w_count), (se_count + nw_count), (ne_count + sw_count)) grid[r][c] = '.' # Add the option to the priority queue, with the priority value being the negative of the in-a-row count current_pcs.append((-maxCount, (r, c))) # If at least one piece next to it add to optimal pieces if(maxCount > 2): optimal_pcs.append((-maxCount, (r, c))) # If there were any pieces next to one another return those if(len(optimal_pcs) > 0): heapq.heapify(optimal_pcs) current_pcs = optimal_pcs else: # Otherwise just return the options heapq.heapify(current_pcs) return current_pcs def get_options(self, grid): #Collect all occupied spots current_pcs = [] for r in range(len(grid)): for c in range(len(grid)): if not grid[r][c] == '.': current_pcs.append((r,c)) #At the beginning of the game, curernt_pcs is empty if not current_pcs: return [(self.maxrc//2, self.maxrc//2)] #Reasonable moves should be close to where the current pieces are #Think about what these calculations are doing #Note: min(list, key=lambda x: x[0]) picks the element with the min value on the first dimension min_r = max(0, min(current_pcs, key=lambda x: x[0])[0]-1) max_r = min(self.maxrc, max(current_pcs, key=lambda x: x[0])[0]+1) min_c = max(0, min(current_pcs, key=lambda x: x[1])[1]-1) max_c = min(self.maxrc, max(current_pcs, key=lambda x: x[1])[1]+1) #Options of reasonable next step moves options = [] for i in range(min_r, max_r+1): for j in range(min_c, max_c+1): if not (i, j) in current_pcs: options.append((i,j)) if len(options) == 0: #In the unlikely event that no one wins before board is filled #Make white win since black moved first self.game_over = True self.winner = 'w' return options # Gets continuous count in a specific direction def get_continuous_count(self, grid, r, c, dr, dc): piece = grid[r][c] result = 0 i = 1 while True: new_r = r + dr * i new_c = c + dc * i if 0 <= new_r < self.grid_count and 0 <= new_c < self.grid_count: if self.grid[new_r][new_c] == piece: result += 1 else: break else: break i += 1 return result # Backpropogate and update parent nodes def backpropagation(self, state, result): while state is not None: if(len(result) == 0): state.Q += 0.5 elif result[state.player] == 0: state.Q += 1 state.N += 1 state = state.parent def rollout_m(self, grid): self.game_over = False simReward = {} while not self.game_over: r,c = self.make_move_m(grid) self.set_piece_m(grid,r,c) self.check_win_m(grid,r,c) #assign rewards if self.winner_m == 'b': simReward['b'] = 0 simReward['w'] = 1 elif self.winner_m == 'w': simReward['b'] = 1 simReward['w'] = 0 return simReward def get_continuous_count_m(self, grid, r, c, dr, dc): piece = grid[r][c] result = 0 i = 1 while True: new_r = r + dr * i new_c = c + dc * i if 0 <= new_r < self.grid_count and 0 <= new_c < self.grid_count: if grid[new_r][new_c] == piece: result += 1 else: break else: break i += 1 return result def set_piece_m(self, grid, r, c): if grid[r][c] == '.': grid[r][c] = self.piece if self.piece == 'b': self.piece = 'w' else: self.piece = 'b' return True return False def check_win_m(self, grid, r, c): n_count = self.get_continuous_count_m(grid, r, c, -1, 0) s_count = self.get_continuous_count_m(grid, r, c, 1, 0) e_count = self.get_continuous_count_m(grid, r, c, 0, 1) w_count = self.get_continuous_count_m(grid, r, c, 0, -1) se_count = self.get_continuous_count_m(grid, r, c, 1, 1) nw_count = self.get_continuous_count_m(grid, r, c, -1, -1) ne_count = self.get_continuous_count_m(grid, r, c, -1, 1) sw_count = self.get_continuous_count_m(grid, r, c, 1, -1) if (n_count + s_count + 1 >= 5) or (e_count + w_count + 1 >= 5) or \ (se_count + nw_count + 1 >= 5) or (ne_count + sw_count + 1 >= 5): self.winner_m = grid[r][c] self.game_over = True def make_move_m(self, grid): options = self.get_options(grid) if len(options) == 0: return -1, -1 return random.choice(options)
import io import os from tqdm import tqdm class ProgressReportingReader(io.BufferedReader): def __init__(self, file_path, *, tqdm_instance=None): super().__init__(open(file_path, 'rb')) self._filename = os.path.basename(file_path) if tqdm_instance is None: self._owns_tqdm = True self.tqdm = tqdm( unit='bytes', unit_scale=True, total=os.path.getsize(file_path), ) else: self._owns_tqdm = False self.tqdm = tqdm_instance def __enter__(self): return self def __exit__(self, exc_type, exc_value, exc_traceback): if self._owns_tqdm: self.tqdm.close() self.close() def read(self, *args, **kwargs): chunk = super().read(*args, **kwargs) self.tqdm.set_postfix(file=self._filename, refresh=False) self.tqdm.update(len(chunk)) return chunk def read1(self, *args, **kwargs): chunk = super().read1(*args, **kwargs) self.tqdm.set_postfix(file=self._filename, refresh=False) self.tqdm.update(len(chunk)) return chunk def readinto(self, *args, **kwargs): count = super().readinto(*args, **kwargs) self.tqdm.set_postfix(file=self._filename, refresh=False) self.tqdm.update(count) def readinto1(self, *args, **kwargs): count = super().readinto1(*args, **kwargs) self.tqdm.set_postfix(file=self._filename, refresh=False) self.tqdm.update(count)
''' CSCI 677 Homework 2-b) Watershed Segmentor Dixith Reddy Gomari 3098766483 gomari@usc.edu References: Double click function: http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_gui/py_mouse_handling/py_mouse_handling.html ''' import cv2 import numpy as np from matplotlib import pyplot as plt img = cv2.imread('img3.jpg') h,w,r=img.shape # Dimensions of the source image markers = np.zeros((h,w), np.int32) # Markers image to use it in watershed with same size as the image # Double click left button for marker location print("Double click for giving the markers") print("Press 'Esc' once done giving the marker loction") def double_click(event,x,y,flags,param): if event == cv2.EVENT_LBUTTONDBLCLK: markers[y][x] = np.random.randint(0,1000) # Storing a andom number for every marker location to assign a random color for segmentation print("Marker location: "+str(y)+","+str(x)) cv2.namedWindow('Image') cv2.setMouseCallback('Image',double_click) while(1): cv2.imshow('Image',img) if cv2.waitKey(20) & 0xFF == 27: break markers = cv2.watershed(img, markers) # Assigns random colors to the markers for segmentation for i in range(0,1000): img[markers == i] = [np.random.randint(0,255), np.random.randint(0,255),np.random.randint(0,255)] cv2.imshow('Segmented Image', img) cv2.imwrite('Segmented_Image.png', img) cv2.waitKey(0) cv2.destroyAllWindows()
class Direction(): North = 0 East = 1 South = 2 West = 3 class Board(): def __init__(self, maxx, maxy, obstacles=list()): self.maxx = maxx self.maxy = maxy self.obstacles = dict() for x,y in obstacles: if x not in self.obstacles: self.obstacles[x] = dict() self.obstacles[x][y] = True def checkObstacle(self, x,y): if x not in self.obstacles: return False if y not in self.obstacles[x]: return False return True class Rover(): dx = [0, 1, 0, -1] dy = [1, 0, -1, 0] def __init__(self, board, x, y, direction): self.board = board self.x, self.y = x, y self.direction = direction def handleCommands(self, commands): print(commands) for cmd in commands: newx, newy = self.x, self.y if cmd == "F": newx = (newx + Rover.dx[ self.direction ]) % self.board.maxx newy = (newy + Rover.dy[ self.direction ]) % self.board.maxy elif cmd == "B": newx = (newx - Rover.dx[ self.direction ]) % self.board.maxx newy = (newy - Rover.dy[ self.direction ]) % self.board.maxy elif cmd == "L": self.direction = (self.direction -1) % 4 elif cmd == "R": self.direction = (self.direction +1) % 4 if self.board.checkObstacle(newx, newy): print("ERROR", self.x, self.y) break self.x = newx self.y = newy print(cmd, self.x, self.y, self.direction)
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # import logging import sys from gbpclient.gbp.v2_0 import groupbasedpolicy as gbp from gbpclient.tests.unit import test_cli20 class CLITestV20ExternalPolicyJSON(test_cli20.CLITestV20Base): LOG = logging.getLogger(__name__) def setUp(self): super(CLITestV20ExternalPolicyJSON, self).setUp() def test_create_external_policy_with_mandatory_params(self): """external-policy-create with all mandatory params.""" resource = 'external_policy' cmd = gbp.CreateExternalPolicy(test_cli20.MyApp(sys.stdout), None) name = 'my-name' tenant_id = 'my-tenant' my_id = 'my-id' args = ['--tenant-id', tenant_id, name] position_names = ['name', ] position_values = [name, ] self._test_create_resource(resource, cmd, name, my_id, args, position_names, position_values, tenant_id=tenant_id) def test_create_external_policy_with_all_params(self): """external-policy-create with all params.""" resource = 'external_policy' cmd = gbp.CreateExternalPolicy(test_cli20.MyApp(sys.stdout), None) name = 'myname' tenant_id = 'mytenant' description = 'My External Policy' my_id = 'someid' provided_policy_rule_sets = "prs1=true,prs2=true" consumed_policy_rule_sets = "prs3=true,prs4=true" external_segments = "ES1,ES2" shared = 'true' args = ['--tenant-id', tenant_id, '--description', description, '--provided-policy-rule-sets', provided_policy_rule_sets, '--consumed-policy-rule-sets', consumed_policy_rule_sets, '--external-segments', external_segments, '--shared', shared, name] position_names = ['name', ] position_values = [name, ] self._test_create_resource(resource, cmd, name, my_id, args, position_names, position_values, tenant_id=tenant_id, description=description, provided_policy_rule_sets= {'prs1': 'true', 'prs2': 'true'}, consumed_policy_rule_sets= {'prs3': 'true', 'prs4': 'true'}, external_segments= ['ES1', 'ES2'], shared=shared) def test_list_external_policies(self): """external-policy-list.""" resource = 'external_policies' cmd = gbp.ListExternalPolicy(test_cli20.MyApp(sys.stdout), None) self._test_list_resources(resource, cmd, True) def test_show_external_policy_name(self): """external-policy-show.""" resource = 'external_policy' cmd = gbp.ShowExternalPolicy(test_cli20.MyApp(sys.stdout), None) args = ['--fields', 'id', self.test_id] self._test_show_resource(resource, cmd, self.test_id, args, ['id']) def test_update_external_policy(self): "external-policy-update myid --name myname --tags a b." resource = 'external_policy' cmd = gbp.UpdateExternalPolicy(test_cli20.MyApp(sys.stdout), None) self._test_update_resource(resource, cmd, 'myid', ['myid', '--name', 'myname', '--tags', 'a', 'b'], {'name': 'myname', 'tags': ['a', 'b'], }) def test_update_external_policy_with_all_params(self): resource = 'external_policy' cmd = gbp.UpdateExternalPolicy(test_cli20.MyApp(sys.stdout), None) name = 'myname' description = 'My External Policy' my_id = 'someid' provided_policy_rule_sets = "prs1=true,prs2=true" consumed_policy_rule_sets = "prs3=true,prs4=true" external_segments = "ES1,ES2" shared = 'true' args = ['--name', name, '--description', description, '--provided-policy-rule-sets', provided_policy_rule_sets, '--consumed-policy-rule-sets', consumed_policy_rule_sets, '--external-segments', external_segments, '--shared', shared, my_id] params = { 'name': name, 'description': description, 'provided_policy_rule_sets': {'prs1': 'true', 'prs2': 'true'}, 'consumed_policy_rule_sets': {'prs3': 'true', 'prs4': 'true'}, 'external_segments': ['ES1', 'ES2'], 'shared': shared } self._test_update_resource(resource, cmd, my_id, args, params) def test_update_external_policy_unset_external_segment(self): resource = 'external_policy' cmd = gbp.UpdateExternalPolicy(test_cli20.MyApp(sys.stdout), None) my_id = 'someid' external_segments = "" args = ['--external-segments', external_segments, my_id] params = {'external_segments': []} self._test_update_resource(resource, cmd, my_id, args, params) def test_update_external_policy_unset_prs(self): resource = 'external_policy' cmd = gbp.UpdateExternalPolicy(test_cli20.MyApp(sys.stdout), None) my_id = 'someid' provided_policy_rule_sets = "" consumed_policy_rule_sets = "" args = ['--provided-policy-rule-sets', provided_policy_rule_sets, '--consumed-policy-rule-sets', consumed_policy_rule_sets, my_id] params = { 'provided_policy_rule_sets': {}, 'consumed_policy_rule_sets': {}, } self._test_update_resource(resource, cmd, my_id, args, params) def test_delete_external_policy_name(self): """external-policy-delete.""" resource = 'external_policy' cmd = gbp.DeleteExternalPolicy(test_cli20.MyApp(sys.stdout), None) my_id = 'my-id' args = [my_id] self._test_delete_resource(resource, cmd, my_id, args)
class A: def __init__(self, a): self._x = a self.y = self._x
#----------------------------------------------------------------------------- # Copyright (c) 2012 - 2015, Continuum Analytics, Inc. All rights reserved. # # Powered by the Bokeh Development Team. # # The full license is in the file LICENSE.txt, distributed with this software. #----------------------------------------------------------------------------- ''' Functions for configuring Bokeh output. ''' #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- from __future__ import absolute_import # Stdlib imports import logging logger = logging.getLogger(__name__) import io import json import os import warnings import tempfile import uuid # Bokeh imports from .core.state import State from .document import Document from .embed import autoload_server, notebook_div, file_html from .layouts import gridplot, GridSpec ; gridplot, GridSpec from .resources import INLINE import bokeh.util.browser as browserlib # full import needed for test mocking to work from .util.dependencies import import_required, detect_phantomjs from .util.deprecation import deprecated from .util.notebook import get_comms, load_notebook, publish_display_data, watch_server_cells from .util.string import decode_utf8 from .util.serialization import make_id #----------------------------------------------------------------------------- # Globals and constants #----------------------------------------------------------------------------- _new_param = {'tab': 2, 'window': 1} _state = State() #----------------------------------------------------------------------------- # Local utilities #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Classes and functions #----------------------------------------------------------------------------- class _CommsHandle(object): _json = {} def __init__(self, comms, doc, json): self._cellno = None try: from IPython import get_ipython ip = get_ipython() hm = ip.history_manager p_prompt = list(hm.get_tail(1, include_latest=True))[0][1] self._cellno = p_prompt except Exception as e: logger.debug("Could not get Notebook cell number, reason: %s", e) self._comms = comms self._doc = doc self._json[doc] = json def _repr_html_(self): if self._cellno is not None: return "<p><code>&lt;Bokeh Notebook handle for <strong>In[%s]</strong>&gt;</code></p>" % str(self._cellno) else: return "<p><code>&lt;Bokeh Notebook handle&gt;</code></p>" @property def comms(self): return self._comms @property def doc(self): return self._doc @property def json(self): return self._json[self._doc] def update(self, doc, json): self._doc = doc self._json[doc] = json def output_file(filename, title="Bokeh Plot", mode="cdn", root_dir=None): '''Configure the default output state to generate output saved to a file when :func:`show` is called. Does not change the current Document from curdoc(). File and notebook output may be active at the same time, so e.g., this does not clear the effects of ``output_notebook()``. Args: filename (str) : a filename for saving the HTML document title (str, optional) : a title for the HTML document (default: "Bokeh Plot") mode (str, optional) : how to include BokehJS (default: ``'cdn'``) One of: ``'inline'``, ``'cdn'``, ``'relative(-dev)'`` or ``'absolute(-dev)'``. See :class:`bokeh.resources.Resources` for more details. root_dir (str, optional) : root directory to use for 'absolute' resources. (default: None) This value is ignored for other resource types, e.g. ``INLINE`` or ``CDN``. Returns: None .. note:: Generally, this should be called at the beginning of an interactive session or the top of a script. .. warning:: This output file will be overwritten on every save, e.g., each time show() or save() is invoked. ''' _state.output_file( filename, title=title, mode=mode, root_dir=root_dir ) def output_notebook(resources=None, verbose=False, hide_banner=False, load_timeout=5000, notebook_type='jupyter'): ''' Configure the default output state to generate output in Jupyter/Zeppelin notebook cells when :func:`show` is called. Args: resources (Resource, optional) : How and where to load BokehJS from (default: CDN) verbose (bool, optional) : whether to display detailed BokehJS banner (default: False) hide_banner (bool, optional): whether to hide the Bokeh banner (default: False) load_timeout (int, optional) : Timeout in milliseconds when plots assume load timed out (default: 5000) notebook_type (string, optional): Notebook type (default: jupyter) Returns: None .. note:: Generally, this should be called at the beginning of an interactive session or the top of a script. ''' # verify notebook_type first in _state.output_notebook _state.output_notebook(notebook_type) load_notebook(resources, verbose, hide_banner, load_timeout, notebook_type) def set_curdoc(doc): '''Configure the current document (returned by curdoc()). Args: doc (Document) : Document we will output. Returns: None .. warning:: Calling this function will replace any existing document. ''' _state.document = doc def curdoc(): ''' Return the document for the current default state. Returns: Document : the current default document object. ''' return _state.document def curstate(): ''' Return the current State object Returns: State : the current default State object ''' return _state def show(obj, browser=None, new="tab", notebook_handle=False, notebook_url="localhost:8888"): ''' Immediately display a Bokeh object or application. Args: obj (LayoutDOM or Application) : A Bokeh object to display. Bokeh plots, widgets, layouts (i.e. rows and columns) may be passed to ``show`` in order to display them. When ``output_file`` has been called, the output will be to an HTML file, which is also opened in a new browser window or tab. When ``output_notebook`` has been called in a Jupyter notebook, the output will be inline in the associated notebook output cell. In a Jupyter notebook, a Bokeh application may also be passed. The application will be run and displayed inline in the associated notebook output cell. browser (str, optional) : Specify the browser to use to open output files(default: None) For file output, the **browser** argument allows for specifying which browser to display in, e.g. "safari", "firefox", "opera", "windows-default". Not all platforms may support this option, see the documentation for the standard library webbrowser_ module for more information new (str, optional) : Specify the browser mode to use for output files (default: "tab") For file output, opens or raises the browser window showing the current output file. If **new** is 'tab', then opens a new tab. If **new** is 'window', then opens a new window. notebook_handle (bool, optional) : Whether to create a notebook interaction handle (default: False) For notebook output, toggles whether a handle which can be used with ``push_notebook`` is returned. Note that notebook handles only apply to standalone plots, layouts, etc. They do not apply when showing Applications in the notebook. notebook_url (URL, optional) : Location of the Jupyter notebook page (default: "localhost:8888") When showing Bokeh applications, the Bokeh server must be explicitly configured to allow connections originating from different URLs. This parameter defaults to the standard notebook host and port. If you are running on a differnet location, you will need to supply this value for the application to display properly. It is also possible to pass ``notebook_url="*"`` to disable the standard checks, so that applications will display regardless of the current notebook location, however a warning will appear. Some parameters are only useful when certain output modes are active: * The ``browser`` and ``new`` parameters only apply when ``output_file`` is active. * The ``notebook_handle`` parameter only applies when ``output_notebook`` is active, and non-Application objects are being shown. It is only supported to Jupyter notebook, raise exception for other notebook types when it is True. * The ``notebook_url`` parameter only applies when showing Bokeh Applications in a Jupyter notebook. Returns: When in a Jupyter notebook (with ``output_notebook`` enabled) and ``notebook_handle=True``, returns a handle that can be used by ``push_notebook``, None otherwise. .. _webbrowser: https://docs.python.org/2/library/webbrowser.html ''' # This ugliness is to prevent importing bokeh.application (which would bring # in Tornado) just in order to show a non-server object if getattr(obj, '_is_a_bokeh_application_class', False): return _show_notebook_app_with_state(obj, _state, "/", notebook_url) if obj not in _state.document.roots: _state.document.add_root(obj) return _show_with_state(obj, _state, browser, new, notebook_handle=notebook_handle) def _show_notebook_app_with_state(app, state, app_path, notebook_url): if state.notebook_type == 'zeppelin': raise ValueError("Zeppelin doesn't support show bokeh app.") if not state.watching_cells: watch_server_cells(_destroy_server_js) state.watching_cells = True logging.basicConfig() from IPython.display import HTML, display from tornado.ioloop import IOLoop from .server.server import Server loop = IOLoop.current() server = Server({app_path: app}, io_loop=loop, port=0, allow_websocket_origin=[notebook_url]) server.start() script = autoload_server(url='http://127.0.0.1:%d%s' % (server.port, app_path)) display(HTML(_server_cell(server, script))) def _show_with_state(obj, state, browser, new, notebook_handle=False): controller = browserlib.get_browser_controller(browser=browser) comms_handle = None shown = False if state.notebook: if state.notebook_type == 'jupyter': comms_handle = _show_jupyter_with_state(obj, state, notebook_handle) else: comms_handle = _show_zeppelin_with_state(obj, state, notebook_handle) shown = True if state.file or not shown: _show_file_with_state(obj, state, new, controller) return comms_handle def _show_file_with_state(obj, state, new, controller): filename = save(obj, state=state) controller.open("file://" + filename, new=_new_param[new]) def _show_jupyter_with_state(obj, state, notebook_handle): comms_target = make_id() if notebook_handle else None publish_display_data({'text/html': notebook_div(obj, comms_target)}) if comms_target: handle = _CommsHandle(get_comms(comms_target), state.document, state.document.to_json()) state.last_comms_handle = handle return handle def _show_zeppelin_with_state(obj, state, notebook_handle): if notebook_handle: raise ValueError("Zeppelin doesn't support notebook_handle.") print("%html " + notebook_div(obj)) return None def save(obj, filename=None, resources=None, title=None, state=None, **kwargs): ''' Save an HTML file with the data for the current document. Will fall back to the default output state (or an explicitly provided :class:`State` object) for ``filename``, ``resources``, or ``title`` if they are not provided. If the filename is not given and not provided via output state, it is derived from the script name (e.g. ``/foo/myplot.py`` will create ``/foo/myplot.html``) Args: obj (LayoutDOM object) : a Layout (Row/Column), Plot or Widget object to display filename (str, optional) : filename to save document under (default: None) If None, use the default state configuration. resources (Resources, optional) : A Resources config to use (default: None) If None, use the default state configuration, if there is one. otherwise use ``resources.INLINE``. title (str, optional) : a title for the HTML document (default: None) If None, use the default state title value, if there is one. Otherwise, use "Bokeh Plot" state (State, optional) : A :class:`State` object. If None, then the current default implicit state is used. (default: None). Returns: str: the filename where the HTML file is saved. ''' if 'validate' in kwargs: deprecated((0, 12, 5), 'The `validate` keyword argument', 'None', """ The keyword argument has been removed and the document will always be validated.""") if state is None: state = _state filename, resources, title = _get_save_args(state, filename, resources, title) _save_helper(obj, filename, resources, title) return os.path.abspath(filename) def _detect_filename(ext): """ Detect filename from the name of the script being run. Returns temporary file if the script could not be found or the location of the script does not have write permission (e.g. interactive mode). """ import inspect from os.path import dirname, basename, splitext, join, curdir frame = inspect.currentframe() while frame.f_back and frame.f_globals.get('name') != '__main__': frame = frame.f_back filename = frame.f_globals.get('__file__') if filename is None or not os.access(dirname(filename) or curdir, os.W_OK | os.X_OK): return tempfile.NamedTemporaryFile(suffix="." + ext).name name, _ = splitext(basename(filename)) return join(dirname(filename), name + "." + ext) def _get_save_args(state, filename, resources, title): warn = True if filename is None and state.file: filename = state.file['filename'] if filename is None: warn = False filename = _detect_filename("html") if resources is None and state.file: resources = state.file['resources'] if resources is None: if warn: warnings.warn("save() called but no resources were supplied and output_file(...) was never called, defaulting to resources.CDN") from .resources import CDN resources = CDN if title is None and state.file: title = state.file['title'] if title is None: if warn: warnings.warn("save() called but no title was supplied and output_file(...) was never called, using default title 'Bokeh Plot'") title = "Bokeh Plot" return filename, resources, title def _save_helper(obj, filename, resources, title): html = file_html(obj, resources, title=title) with io.open(filename, mode="w", encoding="utf-8") as f: f.write(decode_utf8(html)) def push_notebook(document=None, state=None, handle=None): ''' Update Bokeh plots in a Jupyter notebook output cells with new data or property values. When working the the notebook, the ``show`` function can be passed the argument ``notebook_handle=True``, which will cause it to return a handle object that can be used to update the Bokeh output later. When ``push_notebook`` is called, any property updates (e.g. plot titles or data source values, etc.) since the last call to ``push_notebook`` or the original ``show`` call are applied to the Bokeh output in the previously rendered Jupyter output cell. Several example notebooks can be found in the GitHub repository in the :bokeh-tree:`examples/howto/notebook_comms` directory. Args: document (Document, optional) : A :class:`~bokeh.document.Document` to push from. If None, uses ``curdoc()``. (default: None) state (State, optional) : A :class:`State` object. If None, then the current default state (set by ``output_file``, etc.) is used. (default: None) Returns: None Examples: Typical usage is typically similar to this: .. code-block:: python from bokeh.plotting import figure from bokeh.io import output_notebook, push_notebook, show output_notebook() plot = figure() plot.circle([1,2,3], [4,6,5]) handle = show(plot, notebook_handle=True) # Update the plot title in the earlier cell plot.title = "New Title" push_notebook(handle=handle) ''' if state is None: state = _state if not document: document = state.document if not document: warnings.warn("No document to push") return if handle is None: handle = state.last_comms_handle if not handle: warnings.warn("Cannot find a last shown plot to update. Call output_notebook() and show(..., notebook_handle=True) before push_notebook()") return to_json = document.to_json() if handle.doc is not document: msg = dict(doc=to_json) else: msg = Document._compute_patch_between_json(handle.json, to_json) handle.comms.send(json.dumps(msg)) handle.update(document, to_json) def reset_output(state=None): ''' Clear the default state of all output modes. Returns: None ''' _state.reset() def _remove_roots(subplots): doc = _state.document for sub in subplots: if sub in doc.roots: doc.remove_root(sub) def _server_cell(server, script): ''' Wrap a script returned by ``autoload_server`` in a div that allows cell destruction/replacement to be detected. ''' divid = uuid.uuid4().hex _state.uuid_to_server[divid] = server div_html = "<div class='bokeh_class' id='{divid}'>{script}</div>" return div_html.format(script=script, divid=divid) _destroy_server_js = """ var cmd = "from bokeh import io; io._destroy_server('<%= destroyed_id %>')"; var command = _.template(cmd)({destroyed_id:destroyed_id}); Jupyter.notebook.kernel.execute(command); """ def _destroy_server(div_id): ''' Given a UUID id of a div removed or replaced in the Jupyter notebook, destroy the corresponding server sessions and stop it. ''' server = _state.uuid_to_server.get(div_id, None) if server is None: logger.debug("No server instance found for uuid: %r" % div_id) return try: for session in server.get_sessions(): session.destroy() except Exception as e: logger.debug("Could not destroy server for id %r: %s" % (div_id, e)) def _wait_until_render_complete(driver): from selenium.webdriver.support.ui import WebDriverWait from selenium.common.exceptions import TimeoutException script = """ // add private window prop to check that render is complete window._bokeh_render_complete = false; function done() { window._bokeh_render_complete = true; } var doc = window.Bokeh.documents[0]; if (doc.is_idle) done(); else doc.idle.connect(done); """ driver.execute_script(script) def is_bokeh_render_complete(driver): return driver.execute_script('return window._bokeh_render_complete;') try: WebDriverWait(driver, 5, poll_frequency=0.1).until(is_bokeh_render_complete) except TimeoutException: logger.warn("The webdriver raised a TimeoutException while waiting for \ a 'bokeh:idle' event to signify that the layout has rendered. \ Something may have gone wrong.") finally: browser_logs = driver.get_log('browser') severe_errors = [l for l in browser_logs if l.get('level') == 'SEVERE'] if len(severe_errors) > 0: logger.warn("There were severe browser errors that may have affected your export: {}".format(severe_errors)) def _crop_image(image, left=0, top=0, right=0, bottom=0, **kwargs): '''Crop the border from the layout''' cropped_image = image.crop((left, top, right, bottom)) return cropped_image def _get_screenshot_as_png(obj): webdriver = import_required('selenium.webdriver', 'To use bokeh.io.export_png you need selenium ' + '("conda install -c bokeh selenium" or "pip install selenium")') Image = import_required('PIL.Image', 'To use bokeh.io.export_png you need pillow ' + '("conda install pillow" or "pip install pillow")') # assert that phantomjs is in path for webdriver detect_phantomjs() html_path = tempfile.NamedTemporaryFile(suffix=".html").name save(obj, filename=html_path, resources=INLINE, title="") driver = webdriver.PhantomJS() driver.get("file:///" + html_path) ## resize for PhantomJS compat driver.execute_script("document.body.style.width = '100%';") _wait_until_render_complete(driver) png = driver.get_screenshot_as_png() bounding_rect_script = "return document.getElementsByClassName('bk-root')[0].children[0].getBoundingClientRect()" b_rect = driver.execute_script(bounding_rect_script) driver.quit() image = Image.open(io.BytesIO(png)) cropped_image = _crop_image(image, **b_rect) return cropped_image def export_png(obj, filename=None): ''' Export the LayoutDOM object as a PNG. If the filename is not given, it is derived from the script name (e.g. ``/foo/myplot.py`` will create ``/foo/myplot.png``) Args: obj (LayoutDOM object) : a Layout (Row/Column), Plot or Widget object to display filename (str, optional) : filename to save document under (default: None) If None, infer from the filename. Returns: filename (str) : the filename where the static file is saved. .. warning:: Responsive sizing_modes may generate layouts with unexpected size and aspect ratios. It is recommended to use the default ``fixed`` sizing mode. .. warning:: Glyphs that are rendered via webgl won't be included in the generated PNG. ''' image = _get_screenshot_as_png(obj) if filename is None: filename = _detect_filename("png") image.save(filename) return os.path.abspath(filename) def _get_svgs(obj): webdriver = import_required('selenium.webdriver', 'To use bokeh.io.export_svgs you need selenium ' + '("conda install -c bokeh selenium" or "pip install selenium")') # assert that phantomjs is in path for webdriver detect_phantomjs() html_path = tempfile.NamedTemporaryFile(suffix=".html").name save(obj, filename=html_path, resources=INLINE, title="") driver = webdriver.PhantomJS() driver.get("file:///" + html_path) _wait_until_render_complete(driver) svg_script = """ var serialized_svgs = []; var svgs = document.getElementsByClassName('bk-root')[0].getElementsByTagName("svg"); for (var i = 0; i < svgs.length; i++) { var source = (new XMLSerializer()).serializeToString(svgs[i]); serialized_svgs.push(source); }; return serialized_svgs """ svgs = driver.execute_script(svg_script) driver.quit() return svgs def export_svgs(obj, filename=None): ''' Export the SVG-enabled plots within a layout. Each plot will result in a distinct SVG file. If the filename is not given, it is derived from the script name (e.g. ``/foo/myplot.py`` will create ``/foo/myplot.svg``) Args: obj (LayoutDOM object) : a Layout (Row/Column), Plot or Widget object to display filename (str, optional) : filename to save document under (default: None) If None, infer from the filename. Returns: filenames (list(str)) : the list of filenames where the SVGs files are saved. .. warning:: Responsive sizing_modes may generate layouts with unexpected size and aspect ratios. It is recommended to use the default ``fixed`` sizing mode. ''' svgs = _get_svgs(obj) if len(svgs) == 0: logger.warn("No SVG Plots were found.") return if filename is None: filename = _detect_filename("svg") filenames = [] for i, svg in enumerate(svgs): if i == 0: filename = filename else: idx = filename.find(".svg") filename = filename[:idx] + "_{}".format(i) + filename[idx:] with io.open(filename, mode="w", encoding="utf-8") as f: f.write(svg) filenames.append(filename) return filenames
#!/proj/sot/ska3/flight/bin/python ############################################################################################# # # # run_glimmon_trend_data_update.py: update trend data with limits in glimmon database # # # # author: t. isobe (tisobe@cfa.harvard.edu) # # # # last update: Feb 01, 2021 # # # ############################################################################################# import os import sys import re import string import time import numpy import argparse import getpass import astropy.io.fits as pyfits from astropy.io.fits import Column import Ska.engarchive.fetch as fetch import Chandra.Time # #--- reading directory list # path = '/data/mta/Script/MTA_limit_trends/Scripts/house_keeping/dir_list' with open(path, 'r') as f: data = [line.strip() for line in f.readlines()] for ent in data: atemp = re.split(':', ent) var = atemp[1].strip() line = atemp[0].strip() exec("%s = %s" %(var, line)) # #--- append path to a private folder # sys.path.append(bin_dir) sys.path.append("/data/mta4/Script/Python3.10/MTA") # #--- import several functions # import mta_common_functions as mcf #---- contains other functions commonly used in MTA scripts import envelope_common_function as ecf #---- contains other functions commonly used in envelope import fits_operation as mfo #---- fits operation collection import read_limit_table as rlt #---- read limit table and create msid<--> limit dict # #--- other path setting # #limit_dir = '/data/mta/Script/MSID_limit/Trend_limit_data/' limit_dir = '/data/mta/Script/MSID_limit/Trend_limit_data/' # #--- fits generation related lists # col_names = ['time', 'msid', 'med', 'std', 'min', 'max', 'ylower', 'yupper', 'rlower', 'rupper', 'dcount', 'ylimlower', 'ylimupper', 'rlimlower', 'rlimupper', 'state'] col_format = ['D', '20A', 'D', 'D','D','D','D','D','D','D', 'I', 'D', 'D', 'D', 'D', '10A'] a_month = 86400 * 30 #-------------------------------------------------------------------------------- #-- run_glimmon_trend_data_update: update trend data with limits in glimmon database #-------------------------------------------------------------------------------- def run_glimmon_trend_data_update(): """ update trend data with limits in glimmon database input: none output: <data_dir>/<cateogry>/<msid>_<dtype>_data.fits """ # #--- create msid <---> category dict # catg_dict = create_category_dict() # #--- multi state data --- no more distinction (Jan 22, 2020) # run_data_update('m', catg_dict) # #--- no state data # # run_data_update('n', catg_dict) #-------------------------------------------------------------------------------- #-- run_data_update: extract data for the specified limit category type --- #-------------------------------------------------------------------------------- def run_data_update(mtype, catg_dict): """ extract data for the specified limit category type input: mtype --- limit state type; m: multi state/n: no state catg_dict --- a dictionary of msid <---> cateogry output: updated data fits files """ [lim_dict, cnd_dict] = rlt.get_limit_table() # if mtype == 'm': # ifile = limit_dir + 'Limit_data/multi_switch_limit' # else: # ifile = limit_dir + 'Limit_data/trend_limit' ifile = limit_dir + 'Limit_data/op_limits_new.db' # #--- first find which msids are in that category, and extract data # data = mcf.read_data_file(ifile) for ent in data: if ent[0] == '#': continue atemp = re.split('\s+', ent) msid = atemp[0] catg = catg_dict[msid] # #--- just in a case the data category directory does not exist # cmd = 'mkdir -p ' + data_dir + atemp[1] os.system(cmd) print("MSID: " + catg + '/' + msid) # #--- three different data length # for dtype in ['week', 'short', 'long']: # #--- set data period # [dfile, start, stop] = find_data_collection_period(msid, catg, dtype) # #--- extract new data part; saved as a local fits file # alimit = lim_dict[msid] cnd_msid = cnd_dict[msid] out = extract_data_from_ska(msid, start, stop, dtype, alimit, cnd_msid) # #--- update the main fits file, either move the local file or append the new part # if out == True: update_data_file(dfile, msid, dtype) #-------------------------------------------------------------------------------- #-- run_for_msid_list: extract data from ska database for a given msid_list --- #-------------------------------------------------------------------------------- def run_for_msid_list(msid_list, dtype): """ extract data from ska database for a given msid_list input: misd_list --- the file name of the msid_list dtype --- data type , week, short, or long output: updated data fits files """ [lim_dict, cnd_dict] = rlt.get_limit_table() ifile = house_keeping + msid_list data = mcf.read_data_file(ifile) for ent in data: if ent[0] == '#': continue elif ent.strip() == '': continue atemp = re.split('\s+', ent) msid = atemp[0].strip() catg = atemp[1].strip() print("MSID: " + catg + '/' + msid) # #--- just in a case the data category directory does not exist # cmd = 'mkdir -p ' + data_dir + atemp[1] os.system(cmd) # #--- set data period # [dfile, start, stop] = find_data_collection_period(msid, catg, dtype) # #--- extract new data part; saved as a local fits file # try: alimit = lim_dict[msid] cnd_msid = cnd_dict[msid] # #--- if the collection time is larger than a month, extract data for 30 day chunk # diff = stop - start if diff > a_month: mcnt = int(diff / a_month) for m in range(0, mcnt): mstart = start + a_month * m mstop = mstart + a_month lstart = "%4.2f" % mcf.chandratime_to_fraq_year(mstart) lstop = "%4.2f" % mcf.chandratime_to_fraq_year(mstop) print("Computing: " + str(lstart) + '<-->' + str(lstop)) # #--- extract data and make a local fits file # out = extract_data_from_ska(msid, mstart, mstop, dtype, alimit, cnd_msid) # #--- update the main fits file, either move the local file or append the new part # if out == True: update_data_file(dfile, msid, dtype) out = extract_data_from_ska(msid, mstop, stop, dtype, alimit, cnd_msid) if out == True: update_data_file(dfile, msid, dtype) # #--- the data collection period is < 30 days # else: out = extract_data_from_ska(msid, start, stop, dtype, alimit, cnd_msid) if out == True: update_data_file(dfile, msid, dtype) except: #print(msid + ' is not in glimmon database') print(msid + ' is not in ska fetch database') continue #-------------------------------------------------------------------------------- #-- find_data_collection_period: set start and stop time of data collection period #-------------------------------------------------------------------------------- def find_data_collection_period(msid, catg, dtype): """ set start and stop time of data collection period input: msid --- msid catg --- category name of the msid dtype --- data type: week, short, long output: dfile --- data file name stime --- starting time in seconds from 1998.1.1 etime --- stopping time in seconds from 1998.1.1 """ # #--- set today's date as the ending time # etime = today_date_chandra() # #--- week data are always extracted from two weeks ago up to today # if dtype == 'week': dfile = data_dir + catg + '/' + msid + '_week_data.fits' stime = etime - 86400 * 14 # #--- for others, find the last entry time from the exisiting fits data file # elif dtype == 'short': dfile = data_dir + catg + '/' + msid + '_short_data.fits' stime = find_last_entry_time(dfile, dtype, etime) else: dfile = data_dir + catg + '/' + msid + '_data.fits' stime = find_last_entry_time(dfile, dtype, etime) return [dfile, stime, etime] #-------------------------------------------------------------------------------- #-- today_date_chandra: get today's time (0 hr) in seconds from 1998.1.1 --- #-------------------------------------------------------------------------------- def today_date_chandra(): """ get today's time (0 hr) in seconds from 1998.1.1 input: none output: stime --- today's date (0 hr) in seconds from 1998.1.1 """ today = time.strftime('%Y:%j:00:00:00', time.gmtime()) stime = Chandra.Time.DateTime(today).secs return stime #-------------------------------------------------------------------------------- #-- find_last_entry_time: find the last entry time -- #-------------------------------------------------------------------------------- def find_last_entry_time(dfile, dtype, today): """ find the last entry time input: dfile --- fits data file name dtype --- data type: week, short, long today --- today's time in seconds from 1998.1.1 output: tend --- the last entry time in seconds from 1998.1.1 if the past file does not exist, a standard time is given (two week for week data, two years for short, and 1998.201 for the long) """ # #--- check the previous fits data file exists. if it does, find the last entry time # if os.path.isfile(dfile): hdout = pyfits.open(dfile) data = hdout[1].data dtime = data['time'] tend = dtime[-1] hdout.close() # #--- otherwise, set a standard starting time # else: if dtype == 'week': tend = today - 86400 * 14 #--- two weeks ago elif dtype == 'short': tend = today - 86400 * 548 #--- 1.5 years ago else: tend = 48815999.0 #--- 1999.201 return tend #-------------------------------------------------------------------------------- #-- update_data_file: update data file --- #-------------------------------------------------------------------------------- def update_data_file(dfile, msid, dtype): """ update data file input: dfile --- fits data file name msid --- msid dtype --- data type: week, short or long output: dfile --- updated fits data file """ # #--- the name of the fits file containing the new data section # if dtype == 'week': lfile = msid + '_week_data.fits' elif dtype == 'short': lfile = msid + '_short_data.fits' # #--- for the short time data, remove data older than 1.5 years #--- before appending the new data # if os.path.isfile(dfile): today = today_date_chandra() cut = today - 86400 * 548 remove_old_data_from_fits(dfile, cut) else: lfile = msid + '_data.fits' # #--- week data is just replaced, but others are appended if the past data exists # if (dtype != 'week') and os.path.isfile(dfile): mcf.rm_files('./ztemp.fits') mfo.appendFitsTable(dfile, lfile, './ztemp.fits') cmd = 'mv -f ./ztemp.fits ' + dfile os.system(cmd) mcf.rm_files(lfile) else: cmd = 'mv ' + lfile + ' ' + dfile os.system(cmd) #-------------------------------------------------------------------------------- #-- extract_data_from_ska: extract data from ska database and created data fits file #-------------------------------------------------------------------------------- def extract_data_from_ska(msid, start, stop, dtype, alimit, cnd_msid): """ extract data from ska database and created data fits file input: msid --- msid start --- period starting time in seconds from 1998.1.1 stop --- period ending time in seconds from 1998.1.1 dtype --- data type: week, short or long (blank is fine) output: <msid>_<dtye>_data.fits """ period = dtype_to_period(dtype) fdata = run_condtion_msid(msid, start, stop, period, alimit, cnd_msid) if fdata != []: create_fits_file(msid, fdata, dtype) return True else: return False #-------------------------------------------------------------------------------- #-- dtype_to_period: set data average interval period for a given data type -- #-------------------------------------------------------------------------------- def dtype_to_period(dtype): """ set data average interval period for a given data type input: dtype --- data type: week, short or others output: peiod --- time period in seconds """ if dtype == 'week': period = 300.0 elif dtype == 'short': period = 3600.0 else: period = 86400.0 return period #-------------------------------------------------------------------------------- #-- run_condtion_msid: extract data from ska database and analyze data -- #-------------------------------------------------------------------------------- def run_condtion_msid(msid, start, stop, period, alimit, cnd_msid): """ extract data from ska database and analyze data input: msid --- msid start --- starting time in seconds from 1998.1.1 stop --- stopping time in seconds from 1998.1.1 period --- data collection interval in seconds (e.g. 300, 3600, or 86400) alimit --- a list of lists of limits cnd_msid ---- msid which tells which limit set to use for given time output: save --- a list of list of data: time, average, median, std, min, max, ratio of yellow lower violation, ratio of yellow upper violation, ratio of rd lower violation, ratio of red upper violation, total data in the period, yellow lower limit, yellow upper limit, red lower limit, red upper limit state """ # #--- extract data with ska fetch for the given time period # out = fetch.MSID(msid, start, stop) ok = ~out.bads dtime = out.times[ok] if len(dtime) < 1: return [] tdata = out.vals[ok] tmax = dtime[-1] # #--- for the case this is multi limit case # if cnd_msid != 'none': out = fetch.MSID(cnd_msid, start, stop) mtime = out.times mdata = out.vals mlen = len(mdata) # #--- for the case this is single limit case # else: mdata = ['none'] * len(dtime) # #--- there are 15 elements to keep in the output data # save = [] for k in range(0, 16): save.append([]) # #--- compute how many data collection periods exist for a given data period # n_period = int((stop - start) / period) + 1 # #--- collect data in each time period and compute statistics # for k in range(0, n_period): begin = start + k * period end = begin + period ctime = begin + 0.5 * period # #--- find the state of condition msid for this period of time # if cnd_msid == 'none': mkey = 'none' else: pos = int(mlen * begin /tmax) - 1 if pos < 0: pos = 0 if pos >= mlen: pos = mlen -1 mkey = mdata[pos].lower() # #--- set limit range only once at the beginning of each data collection period # try: limit_table = find_limits(begin, mkey, alimit) [y_low, y_top, r_low, r_top] = limit_table except: limit_table = [-9999998.0, 9999998.0, -9999999.0, 9999999.0] [y_low, y_top, r_low, r_top] = [-9999998.0, 9999998.0, -9999999.0, 9999999.0] # #--- select data between the period # ind = dtime >= begin btemp = dtime[ind] sdata = tdata[ind] ind = btemp < end sdata = sdata[ind] dcnt = len(sdata) if dcnt < 1: continue # #--- get stats # dmin = min(sdata) dmax = max(sdata) avg = numpy.mean(sdata) # #--- if the value is too large something is wrong: so skip it # if abs(avg) > 100000000.0: continue med = numpy.median(sdata) std = numpy.std(sdata) # #--- count number of violations # [y_lc, y_uc, r_lc, r_uc] = find_limit_violatons(sdata, limit_table) # #--- save the resuts # save[0].append(float(int(ctime))) save[1].append(float("%3.2f" % avg)) save[2].append(float("%3.2f" % med)) save[3].append(float("%3.2f" % std)) save[4].append(float("%3.2f" % dmin)) save[5].append(float("%3.2f" % dmax)) save[6].append(float("%1.3f" % (y_lc /dcnt))) save[7].append(float("%1.3f" % (y_uc /dcnt))) save[8].append(float("%1.3f" % (r_lc /dcnt))) save[9].append(float("%1.3f" % (r_uc /dcnt))) save[10].append(dcnt) save[11].append(float("%3.2f" % y_low)) save[12].append(float("%3.2f" % y_top)) save[13].append(float("%3.2f" % r_low)) save[14].append(float("%3.2f" % r_top)) save[15].append(mkey) return save #-------------------------------------------------------------------------------- #-- find_limit_violatons: count numbers of yellow/red violation in the given data set #-------------------------------------------------------------------------------- def find_limit_violatons(sdata, limit_table): """ count numbers of yellow/red violation in the given data set input: sdata --- a list of data limit_table --- a list of limit values this could contain two set of limit values output: [y_lc, y_uc, r_lc, r_uc] """ # #--- count number of violations: multi limit set case # if isinstance(limit_table[0], list): y_lc = 0 y_uc = 0 r_lc = 0 r_uc = 0 for val in sdata: # #--- no violation # for ltable in limit_table: if (val > ltable[0]) and (val < ltable[1]): continue for ltable in limit_table: # #--- yellow violation # if (val >ltable[2]) and (val <= ltable[0]): y_lc += 1 continue if( val < ltable[3]) and (val >= ltable[1]): y_uc += 1 continue # #--- red violation # if (val < ltable[2]): r_lc += 1 continue if (val > ltable[3]): r_uc += 1 continue # #--- single set of limit case # else: [y_low, y_top, r_low, r_top] = limit_table ind = sdata < r_low r_lc = len(sdata[ind]) #--- red lower violation ind = sdata < y_low y_lc = len(sdata[ind]) - r_lc #--- yellow lower violation ind = sdata > r_top r_uc = len(sdata[ind]) #--- red upper violation ind = sdata > y_top y_uc = len(sdata[ind]) - r_uc #--- yellow upper violation return [y_lc, y_uc, r_lc, r_uc] #-------------------------------------------------------------------------------- #-- find_limits: find a set of limit for the given time and what condition msid indicates #-------------------------------------------------------------------------------- def find_limits(stime, mkey, alimit): """ find a set of limit for the given time and what condition msid indicates input: stime --- tine in seconds from 1998.1.1 mkey --- condtion given by condtion msid alimit --- a full limit table the structure of alimit is: [ [<start>,<stop>,<switch value list>, <limit dictionary with the switch as key> ] ] output: [y_low, y_top, r_low, r_top] """ stime = int(stime) mkey = mkey.strip() ltable = [] for k in range(0, len(alimit)): begin = alimit[k][0] end = alimit[k][1] if (stime >= begin) and (stime < end): try: ltable = alimit[k][3][mkey] except: ltable = alimit[k][3]['none'] break if ltable == []: ltable = [-9999998.0, 9999998.0, -9999999.0, 9999999.0] return ltable #-------------------------------------------------------------------------------- #-- create_fits_file: create a fits file -- #-------------------------------------------------------------------------------- def create_fits_file(msid, data, dtype): """ create a fits file input: msid --- msid data --- a list of list of data dtype --- data type (week, short, or others) output: ./<msid>_<dtype>_data.fits """ cols = col_names cols[1] = msid c1 = Column(name=cols[0], format=col_format[0], array = data[0]) c2 = Column(name=cols[1], format=col_format[1], array = data[1]) c3 = Column(name=cols[2], format=col_format[2], array = data[2]) c4 = Column(name=cols[3], format=col_format[3], array = data[3]) c5 = Column(name=cols[4], format=col_format[4], array = data[4]) c6 = Column(name=cols[5], format=col_format[5], array = data[5]) c7 = Column(name=cols[6], format=col_format[6], array = data[6]) c8 = Column(name=cols[7], format=col_format[7], array = data[7]) c9 = Column(name=cols[8], format=col_format[8], array = data[8]) c10 = Column(name=cols[9], format=col_format[9], array = data[9]) c11 = Column(name=cols[10], format=col_format[10], array = data[10]) c12 = Column(name=cols[11], format=col_format[11], array = data[11]) c13 = Column(name=cols[12], format=col_format[12], array = data[12]) c14 = Column(name=cols[13], format=col_format[13], array = data[13]) c15 = Column(name=cols[14], format=col_format[14], array = data[14]) c16 = Column(name=cols[15], format=col_format[15], array = data[15]) coldefs = pyfits.ColDefs([c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16]) tbhdu = pyfits.BinTableHDU.from_columns(coldefs) if dtype == 'week': ofits = msid + '_week_data.fits' elif dtype == 'short': ofits = msid + '_short_data.fits' else: ofits = msid + '_data.fits' mcf.rm_files(ofits) tbhdu.writeto(ofits) #-------------------------------------------------------------------------------- #-- remove_old_data_from_fits: remove old part of the data from fits file -- #-------------------------------------------------------------------------------- def remove_old_data_from_fits(fits, cut): """ remove old part of the data from fits file input: fits --- fits file name cut --- cut date in seconds from 1998.1.1 output: fits --- updated fits file """ # #--- open the fits file # hbdata = pyfits.open(fits) data = hbdata[1].data cols = hbdata[1].columns col_list = cols.names hbdata.close() # #--- create a mask # dtime = data['time'] index = dtime > cut # #--- using the mask get only data > cut # udata = [] for col in col_list: out = data[col] nout = out[index] udata.append(list(nout)) # #--- update the data and save then in the fits file # sfits = fits + '~' cmd = 'mv ' + fits + ' ' + sfits os.system(cmd) try: ecf.create_fits_file(fits, cols, udata) mcf.rm_file(sfits) except: cmd = 'mv ' + sfits + ' ' + fits os.system(cmd) #-------------------------------------------------------------------------------- #-- create_category_dict: create msid <---> category dict -- #-------------------------------------------------------------------------------- def create_category_dict(): """ create msid <---> category dict input: none but read from <house_keeping>/msid_list output: catg_dict """ ifile = limit_dir + 'house_keeping/msid_list' data = mcf.read_data_file(ifile) catg_dict = {} for ent in data: atemp = re.split('\s+', ent) catg_dict[atemp[0]] = atemp[1] return catg_dict #-------------------------------------------------------------------------------- if __name__ == "__main__": # #--- Create a lock file and exit strategy in case of race conditions # name = os.path.basename(__file__).split(".")[0] user = getpass.getuser() if os.path.isfile(f"/tmp/{user}/{name}.lock"): sys.exit(f"Lock file exists as /tmp/{user}/{name}.lock. Process already running/errored out. Check calling scripts/cronjob/cronlog.") else: os.system(f"mkdir -p /tmp/mta; touch /tmp/{user}/{name}.lock") parser = argparse.ArgumentParser() parser.add_argument('-p','--period',help='Process specific time length. Choices are last two weeks, 1.5 years, or since 1999:201 respectively', \ action="extend",nargs='*',type=str, choices=["week","short","long"]) parser.add_argument("-m","--msid_list",help="File name of msid list to use from housekeeping",type=str) parser.add_argument("--msid", help="Process specific MSID",type=str) parser.add_argument("--start", help="Start time in seconds from 1998.1.1",type=float) parser.add_argument("--stop", help="Stop time in seconds from 1998.1.1",type=float) args = parser.parse_args() if args.msid is not None: [lim_dict, cnd_dict] = rlt.get_limit_table() alimit = lim_dict[args.msid] cnd_msid = cnd_dict[args.msid] if args.period is not None: for dtype in args.period: if args.msid is not None: extract_data_from_ska(args.msid, args.start, args.stop, dtype, alimit, cnd_msid) elif args.msid_list is not None: run_for_msid_list(args.msid_list, dtype) else: run_glimmon_trend_data_update() # #--- Remove lock file once process is completed # os.system(f"rm /tmp/{user}/{name}.lock")
import cv2 import numpy as np import matplotlib import matplotlib.pyplot as plt import math import pywt import pywt.data denoised_level = 3 def sgn(num): if(num > 0.0): return 1.0 elif(num == 0.0): return 0.0 else: return -1.0 # Construct Gabor filter def build_filters(): filters = [] ksize = [7,9,11,13,15,17] # 6 gabor scales lamda = np.pi/2.0 # wave length for theta in np.arange(0, np.pi, np.pi / 4): #gabor direction,0°,45°,90°,135°,共四个 for K in range(6): kern = cv2.getGaborKernel((ksize[K], ksize[K]), 1.0, theta, lamda, 0.5, 0, ktype=cv2.CV_32F) kern /= 1.5*kern.sum() filters.append(kern) plt.figure(1) # plot gabor filters for temp in range(len(filters)): plt.subplot(4, 6, temp + 1) plt.imshow(filters[temp]) plt.show() return filters # Gabor filtering process def process(img, filters): accum = np.zeros_like(img) for kern in filters: fimg = cv2.filter2D(img, cv2.CV_8UC1,kern) np.maximum(accum, fimg, accum) return accum # Gabor features extraction def getGabor(img,filters): res = [] # filter result for i in range(len(filters)): res1 = process(img, filters[i]) res.append(np.asarray(res1)) # Demonstrate filter result plt.figure(2) for temp in range(len(res)): plt.subplot(4,6,temp+1) plt.imshow(res[temp], cmap='gray' ) plt.show() return res def denoise(original_img,lev): # Wavelet transform of image coeffs2 = pywt.wavedec2(original_img, 'bior3.5', level = denoised_level) ###'a' parameter in eclectic function of hard and soft threshold a = 0.5 ##################Denoise######################### thcoeffs2 =[] for t in range(1, len(coeffs2)): tempcoeffs2 = [] for i in range(0,3): tmp = coeffs2[t][i].copy() Sum = 0.0 for j in coeffs2[t][i]: for x in j: Sum = Sum + abs(x) N = coeffs2[t][i].size Sum = (1.0 / float(N)) * Sum sigma = (1.0 / 0.6745) * Sum lamda = sigma * math.sqrt(2.0 * math.log(float(N), math.e)) for x in tmp: for y in x: if(abs(y) >= lamda): y = sgn(y) * (abs(y) - a * lamda) else: y = 0.0 tempcoeffs2.append(tmp) thcoeffs2.append(tempcoeffs2) usecoeffs2 = [] usecoeffs2.append(coeffs2[0]) usecoeffs2.extend(thcoeffs2) #denoised_img correspond to denoised image denoised_img = pywt.waverec2(usecoeffs2, 'bior3.5') ##################Display######################### titles = ['Initial Image', ' Denoised Image'] fig = plt.figure(figsize=(12, 3)) #Display the original image ax = fig.add_subplot(1, 2, 1) ax.imshow(original_img, interpolation="nearest", cmap=plt.cm.gray) ax.set_title(titles[0], fontsize=10) ax.set_xticks([]) ax.set_yticks([]) #Display the denoised image ax = fig.add_subplot(1, 2, 2) ax.imshow(denoised_img, interpolation="nearest", cmap=plt.cm.gray) ax.set_title(titles[1], fontsize=10) ax.set_xticks([]) ax.set_yticks([]) fig.tight_layout() plt.show() return denoised_img def get_glgcm_features(mat): '''We base on Gray Level-Gradient Co-occurrence Matrix to calculate texture features,which includes small gradients dominance, big gradients dominance, gray level asymmetry, gradients asymmetry, energy, gray level mean, gradients mean, gray level variance, gradients variance, correlation, gray level entropy, gradients entropy, mixed entropy, inertia and inverse difference moment''' sum_mat = mat.sum() small_grads_dominance = big_grads_dominance = gray_asymmetry = grads_asymmetry = energy = gray_mean = grads_mean = 0 gray_variance = grads_variance = corelation = gray_entropy = grads_entropy = entropy = inertia = differ_moment = 0 sum_of_squares = 0 for i in range(mat.shape[0]): gray_variance_temp = 0 for j in range(mat.shape[1]): small_grads_dominance += mat[i][j] / ((j + 1) ** 2) big_grads_dominance += mat[i][j] * j ** 2 energy += mat[i][j] ** 2 if mat[i].sum() != 0: gray_entropy -= mat[i][j] * np.log(mat[i].sum()) if mat[:, j].sum() != 0: grads_entropy -= mat[i][j] * np.log(mat[:, j].sum()) if mat[i][j] != 0: entropy -= mat[i][j] * np.log(mat[i][j]) inertia += (i - j) ** 2 * np.log(mat[i][j]) differ_moment += mat[i][j] / (1 + (i - j) ** 2) gray_variance_temp += mat[i][j] ** 0.5 gray_asymmetry += mat[i].sum() ** 2 gray_mean += i * mat[i].sum() ** 2 gray_variance += (i - gray_mean) ** 2 * gray_variance_temp for j in range(mat.shape[1]): grads_variance_temp = 0 for i in range(mat.shape[0]): grads_variance_temp += mat[i][j] ** 0.5 grads_asymmetry += mat[:, j].sum() ** 2 grads_mean += j * mat[:, j].sum() ** 2 grads_variance += (j - grads_mean) ** 2 * grads_variance_temp small_grads_dominance /= sum_mat big_grads_dominance /= sum_mat gray_asymmetry /= sum_mat grads_asymmetry /= sum_mat gray_variance = gray_variance ** 0.5 grads_variance = grads_variance ** 0.5 for i in range(mat.shape[0]): for j in range(mat.shape[1]): corelation += (i - gray_mean) * (j - grads_mean) * mat[i][j] glgcm_features = [small_grads_dominance, big_grads_dominance, gray_asymmetry, grads_asymmetry, energy, gray_mean, grads_mean, gray_variance, grads_variance, corelation, gray_entropy, grads_entropy, entropy, inertia, differ_moment] return np.round(glgcm_features, 4) def glgcm(original_img, ngrad=16, ngray=16): '''Gray Level-Gradient Co-occurrence Matrix,after normalization,set both gray level value and gradients value to 16''' img_gray = denoise(original_img,denoised_level) # utilize sobel operator to calculate gradients value on x-y directons each gsx = cv2.Sobel(img_gray, cv2.CV_64F, 1, 0, ksize=3) gsy = cv2.Sobel(img_gray, cv2.CV_64F, 0, 1, ksize=3) height, width = img_gray.shape grad = (gsx ** 2 + gsy ** 2) ** 0.5 # Calculate gradients grad = np.asarray(1.0 * grad * (ngrad-1) / grad.max(), dtype=np.int16) gray = np.asarray(1.0 * img_gray * (ngray-1) / img_gray.max(), dtype=np.int16) # range 0-255 transformed into 0-15 gray_grad = np.zeros([ngray, ngrad]) # Gray Level-Gradient Co-occurrence Matrix for i in range(height): for j in range(width): gray_value = gray[i][j] grad_value = grad[i][j] gray_grad[gray_value][grad_value] += 1 gray_grad = 1.0 * gray_grad / (height * width) # Normalize gray level-gradient co-occurrence matrix to reduce the amount of calculation glgcm_features = get_glgcm_features(gray_grad) return list(glgcm_features) def features(img): features = glgcm(img, ngrad=16, ngray=16) coeffs2 = pywt.wavedec2(img, 'coif5') # utilize 2D discrete wavelet transform to derive approximation and detail coefficients on every scales within the limits of maximum decomposition level #coeffs2 = getGabor(img, build_filters()) energy_wav = [] tmp = coeffs2[0].copy() Sum = 0 tmp = 1.0 * tmp / (tmp.size) # normalize coefficient array for x in tmp: for y in x: Sum += pow(y,2) # calculate energy of each coefficient component energy_wav.append(Sum) for t in range(1, len(coeffs2)): for i in range(0,3): tmp = coeffs2[t][i].copy() tmp = 1.0 * tmp / (tmp.size) Sum = 0 for x in tmp: for y in x: Sum += pow(y,2) # calculate energy of each coefficient component energy_wav.append(Sum) # select inverse difference moment,sum of squares of gray level-gradients co-occurence matrix and energy approximation after 2D DWT to form the finalized features vector vector = [features[4],features[14]] vector.extend(energy_wav) return vector
import numpy as np import cv2 import matplotlib.pyplot as plt import matplotlib.image as mpimg from radius_curve import measure_curvature_real from curve_pixels import measure_curvature_pixels from prev_poly import fit_poly, search_around_poly from sliding_window import find_lane_pixels, fit_polynomial from GradientHelpers import dir_threshold, mag_thresh from process_image import process_image from HelperFunctions import weighted_img, draw_lines, extrapolateLine plt.ion() image = mpimg.imread('../images/bridge_shadow.jpg') # Edit this function to create your own pipeline. def pipeline(img, s_thresh=(170, 255), sx_thresh=(15, 100)): img = np.copy(img) # Convert to HLS color space and separate the V channel hls = cv2.cvtColor(img, cv2.COLOR_RGB2HLS) h_channel = hls[:,:,0] h_thresh = (20,35) sy_thresh = (0,100) l_channel = hls[:,:,1] s_channel = hls[:,:,2] mag_binary = mag_thresh(image, sobel_kernel=9, mag_thresh=(10, 255)) # Sobel x sobelx = cv2.Sobel(l_channel, cv2.CV_64F, 1, 0) # Take the derivative in x abs_sobelx = np.absolute(sobelx) # Absolute x derivative to accentuate lines away from horizontal scaled_sobel_x = np.uint8(255*abs_sobelx/np.max(abs_sobelx)) # Sobel y sobely = cv2.Sobel(l_channel, cv2.CV_64F, 1, 0) # Take the derivative in x abs_sobely = np.absolute(sobely) # Absolute x derivative to accentuate lines away from horizontal scaled_sobel_y = np.uint8(255*abs_sobely/np.max(abs_sobely)) # Threshold x gradient sxbinary = np.zeros_like(scaled_sobel_x) sxbinary[(scaled_sobel_x >= sx_thresh[0]) & (scaled_sobel_x <= sx_thresh[1])] = 1 # Threshold y gradient sybinary = np.zeros_like(scaled_sobel_y) sybinary[(scaled_sobel_y >= sy_thresh[0]) & (scaled_sobel_y <= sy_thresh[1])] = 1 # Threshold s-color channel s_binary = np.zeros_like(s_channel) s_binary[(s_channel >= s_thresh[0]) & (s_channel <= s_thresh[1])] = 1 # Threshold h-color channel h_binary = np.zeros_like(h_channel) h_binary[(h_channel >= h_thresh[0]) & (h_channel <= h_thresh[1])] = 1 # Stack each channel color_binary = np.dstack(( np.zeros_like(sxbinary), sxbinary, s_binary)) * 255 dir_binary = dir_threshold(image, sobel_kernel=9, thresh=(0.7, 1.3)) # Combine the two binary thresholds combined_binary = np.zeros_like(dir_binary) # combined_binary[((s_binary == 1) & (h_binary == 1)) | (sxbinary == 1)] = 1 # combined_binary[(( (sxbinary == 1)) | (dir_binary==1)) | ((s_binary==1) )] = 1 # combined_binary[(h_binary==1)] = 1 combined_binary[(((s_binary == 1) & (dir_binary==1)) | ((sxbinary == 1))) | ((h_binary==1))] = 1 return combined_binary combined_binary = pipeline(image) combined_binary = np.uint8(255*combined_binary/np.max(combined_binary)) # This time we are defining a four sided polygon to mask imshape = combined_binary.shape imageHeight = imshape[0] imageWidth = imshape[1] img_size = (imageWidth, imageHeight) upperLeftVertex = imageWidth/2 - imageWidth/34, imageHeight/1.8 upperRightVertex = imageWidth/2 + imageWidth/34, imageHeight/1.8 lowerRightVertex = imageWidth*0.925, imageHeight lowerLeftVertex = imageWidth*0.075, imageHeight # plt.imshow(combined_binary) # plt.plot(720, 450, '.') # plt.plot(1100, 700, '.') # plt.plot(200, 700, '.') # plt.plot(600, 450, '.') src = np.float32([[720,450], [1100,700], [200,700], [600,450]]) dst = np.float32([[1000,200], [1000,700], [200,700], [200,200]]) # For source points I'm grabbing the outer four detected corners # src = np.float32([upperRightVertex, lowerRightVertex, lowerLeftVertex, upperLeftVertex]) # # For destination points, I'm arbitrarily choosing some points to be # # a nice fit for displaying our warped result # # again, not exact, but close enough for our purposes # dst = np.float32([[700,400],[700,700],[400,700],[500,400]]) # Given src and dst points, calculate the perspective transform matrix M = cv2.getPerspectiveTransform(src, dst) # Warp the image using OpenCV warpPerspective() warped = cv2.warpPerspective(combined_binary, M, img_size) def hist(img): # Grab only the bottom half of the image # Lane lines are likely to be mostly vertical nearest to the car bottom_half = img[img.shape[0]//2:,:] # Sum across image pixels vertically - make sure to set an `axis` # i.e. the highest areas of vertical lines should be larger values histogram = np.sum(bottom_half, axis=0) return histogram # Create histogram of image binary activations # histogram = hist(warped) # Visualize the resulting histogram # plt.plot(histogram) # Run image through the pipeline # Note that in your project, you'll also want to feed in the previous fits result = search_around_poly(warped) # View your output plt.imshow(result) # Calculate the radius of curvature in meters for both lane lines left_curverad, right_curverad = measure_curvature_real() print(left_curverad, 'm', right_curverad, 'm') # Should see values of 533.75 and 648.16 here, if using # the default `generate_data` function with given seed number # processed_image = process_image(warped) # color=[int(255),int(0),int(0)] # cv2.line(combined_binary, lowerRightVertex, upperRightVertex, color) # cv2.line(combined_binary, lowerLeftVertex, upperLeftVertex, color) # Plot the result # f, (ax1, ax2) = plt.subplots(1, 2, figsize=(24, 9)) # f.tight_layout() # ax1.imshow(image) # ax1.set_title('Original Image', fontsize=40) # ax2.imshow(warped) # ax2.set_title('Combined', fontsize=40) # plt.subplots_adjust(left=0., right=1, top=0.9, bottom=0.) plt.savefig('../images/pipeline_output.jpg')
from selenium import webdriver from selenium.webdriver import ActionChains driver = webdriver.Ie() driver.get("https://pan.baidu.com/") driver.find_element_by_xpath("//*/div[@class='account-title']/a").click() driver.find_element_by_xpath("//*/input[@id='TANGRAM__PSP_4__userName']").clear() driver.find_element_by_xpath("//*/input[@id='TANGRAM__PSP_4__userName']").send_keys('13072723917') driver.find_element_by_xpath("//*/input[@id='TANGRAM__PSP_4__password']").send_keys('xs3652302') driver.find_element_by_xpath("//*/input[@id='TANGRAM__PSP_4__submit']").click() ebook = driver.find_element_by_xpath('//*[@id="layoutMain"]/div/div[2]/div/div[3]/div/div/dd[3]/div[2]/div[1]/a') #dd.g-clearfix:nth-child(3) > div:nth-child(3) > div:nth-child(1) > a:nth-child(1) #dd.g-clearfix:nth-child(2) > div:nth-child(3) > div:nth-child(1) > a:nth-child(1) #//*[@id="layoutMain"]/div/div/div[2]/div/div/div[3]/div/div/dd[3]/div[2]/div[1]/a #/html/body/div[1]/div[2]/div[2]/div/div/div/div/div/div[2]/div/div/div[3]/div/div/dd[3]/div[2]/div[1]/a #<a href="javascript:void(0);" class="avr1JMg" title="电子书">电子书</a> ActionChains(driver).context_click(ebook).perform()
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import unicode_literals from django.contrib import admin from paypal.pro.models import PayPalNVP class PayPalNVPAdmin(admin.ModelAdmin): list_display = ('user', 'ipaddress', 'method', 'flag', 'flag_code', 'created_at') list_filter = ('flag', 'created_at') search_fields = ('user__email', 'ipaddress', 'flag', 'firstname', 'lastname') admin.site.register(PayPalNVP, PayPalNVPAdmin)
import sched, time import requests import json import random temp = 70 hum = 50 s = sched.scheduler(time.time, time.sleep) print 'Start' def fakeData(data): data += random.randrange(-3,3) def send_info(sc): temp = fakeData(temp) hum = fakeData(hum) payload = {'temp': temp, 'hum': hum} r = requests.post("http://localhost:8000/", data=json.dumps(payload)) print(r.text) s.enter(1, 1, send_info, (sc,)) s.enter(1, 1, send_info , (s,)) s.run()
#region Import Modules from fluid_properties import * from auxiliary_functions import * import numpy as np import pandas as pd import math from scipy import interpolate from pyXSteam.XSteam import XSteam import matplotlib.pyplot as plt import pprint #endregion case = {'material': ['air'], 'environment_conditions': ['case_1'], 'L': [0.4], 'W': [0.7], 'H': [2], 'epsilon': [0.94], 'H_rad': [0.6], 'L_rad':[0.3]} df_case = pd.DataFrame(case) case_nr=0 f_veq=0.7; T_on=0 T_off=10 Q_resistance=1000; environment_xls = pd.ExcelFile('environment_conditions.xlsx') df_environment = environment_xls.parse(df_case['environment_conditions'].loc[case_nr]) material=df_case['material'].loc[case_nr] H=df_case['H'].loc[case_nr] L=df_case['L'].loc[case_nr] W=df_case['W'].loc[case_nr] L_rad=df_case['L_rad'].loc[case_nr] H_rad=df_case['L_rad'].loc[case_nr] epsilon=df_case['epsilon'].loc[case_nr] V=L*W*H*f_veq #row = [1.4, 1.01, 0.4,0.7,2] #adding new row to dataframe #df_case.loc[len(df_case)] = row #inputs: t_step=60*10; #[s] t_total=24; #[h] t=np.arange(0, t_total*3600,t_step) T=np.zeros((math.ceil(t_total*3600/t_step),1)) rho=np.zeros((math.ceil(t_total*3600/t_step),1)) cp=np.zeros((math.ceil(t_total*3600/t_step),1)) Q_rad=np.zeros((math.ceil(t_total*3600/t_step),1)) Q_rademit=np.zeros((math.ceil(t_total*3600/t_step),1)) Q_loss=np.zeros((math.ceil(t_total*3600/t_step),1)) Q_diss=np.zeros((math.ceil(t_total*3600/t_step),1)) Q_heating=np.zeros((math.ceil(t_total*3600/t_step),1)) T_amb=np.zeros((math.ceil(t_total*3600/t_step),1)) I_rad=np.zeros((math.ceil(t_total*3600/t_step),1)) v_wind=np.zeros((math.ceil(t_total*3600/t_step),1)) fi_tamb=interpolate.interp1d(df_environment['t']*3600, df_environment['T_amb']) T_amb[:,0]=fi_tamb(t) fi_irad=interpolate.interp1d(df_environment['t']*3600, df_environment['I_rad']) I_rad[:,0]=fi_irad(t) fi_vwind=interpolate.interp1d(df_environment['t']*3600, df_environment['v_wind']) v_wind[:,0]=fi_vwind(t) T[0]=T_amb[0] #Cabinet is in thermal equilibrium with environment A_ht = 2 * ( L * W + L * H + W * H) #[m^2] A_rad=H_rad*L_rad L_characteristic=H for i in range(1,len(t)): cp[i-1]=thermal_properties('cp', material, T[i-1]) rho[i - 1] = thermal_properties('rho', material, T[i - 1]) cp[i-1]=1005 rho[i-1]=1.2 Q_heating[i]=heating_resistance(T[i-1],Q_resistance,T_on,T_off) #Q_loss[i]=external_natural_convection(T[i-1], T_amb[i], material, L_characteristic, A_ht) Q_loss[i]=external_forced_convection(T[i-1],T_amb[i],material,v_wind[i],L,W,H) Q_rademit[i]=epsilon * (5.67 * 10 ** (-8)) * A_ht * ((T_amb[i]+273.15) ** 4 - (T[i - 1]+273.15) ** 4) #Q_rad[i] = I_rad[i] * A_rad T[i]=T[i-1]+((Q_rad[i]+Q_loss[i]+Q_rademit[i]+Q_diss[i]+Q_heating[i])*((t[i]-t[i-1])/(rho[i-1]*V*cp[i-1]*1000))) if i % 360 == 0: print('Iteration: ' + str(i) + '; T= ' + str(T[i])) #region Plots fig, (ax1, ax2) = plt.subplots(2, sharex=True) fig.suptitle('1-D Transient Model') ax1.plot(t, T,'b-') ax1.plot(t, T_amb,'k-') ax2.plot(t, Q_heating,'r') #endregion
import torch from torch.utils import benchmark from .modules import MSA batch, seqlen, dmodel, h = 2, 9, 512, 8 x = torch.randn(batch, seqlen, dmodel) msa = MSA(dmodel, h) t_cpu = benchmark.Timer( stmt="with torch.no_grad(): msa.forward_einsum(x)", globals={"x": x, "msa": msa} ) print(t_cpu.timeit(100)) msa = MSA(dmodel, h).cuda() x = torch.randn(batch, seqlen, dmodel).cuda() t_gpu = benchmark.Timer( stmt="with torch.no_grad(): msa.forward_einsum(x)", globals={"x": x, "msa": msa} ) print(t_gpu.timeit(100)) """ <torch.utils.benchmark.utils.common.Measurement object at 0x000001C2BAA16730> with torch.no_grad(): msa.forward_einsum(x) 585.25 us 1 measurement, 100 runs , 1 thread <torch.utils.benchmark.utils.common.Measurement object at 0x000001C2BAA16760> with torch.no_grad(): msa.forward_einsum(x) 308.52 us 1 measurement, 100 runs , 1 thread """
def re_ordering(text): output = text.split() for x in text.split(): if x[0].isupper(): output.remove(x) output.insert(0, x) return " ".join(output) ''' There is a sentence which has a mistake in it's ordering. The part with a capital letter should be the first word. Please build a function for re-ordering Examples >>> re_ordering('ming Yao') 'Yao ming' >>> re_ordering('Mano donowana') 'Mano donowana' >>> re_ordering('wario LoBan hello') 'LoBan wario hello' >>> re_ordering('bull color pig Patrick') 'Patrick bull color pig' '''
from django.views.generic import TemplateView, FormView from django.core.urlresolvers import reverse from django.conf import settings from kazoo.client import KazooClient from bees.forms import CreateNodeForm, EditNodeForm, DeleteNodeForm ZK_CLIENT = KazooClient(hosts=settings.ZOOKEEPER_HOSTS) ZK_CLIENT.start() class ZookeeperClientMixin(object): @property def zk_client(self): if hasattr(self, "_zk_client"): return self._zk_client self._zk_client = ZK_CLIENT return self._zk_client class PathMixin(object): @property def node_path(self): return self.kwargs.get('path') def get_initial(self): result = super(PathMixin, self).get_initial() result['path'] = self.node_path return result def get_context_data(self, **kwargs): context_data = super(PathMixin, self).get_context_data(**kwargs) context_data['node_path'] = self.node_path return context_data class NodeValueMixin(object): """Needs the ZookeeperClientMixin""" _node_value = None @property def node_info(self): return self.zk_client.get(self.node_path) @property def node_value(self): if not self._node_value: value, stats = self.zk_client.get(self.node_path) self._node_value = value return self._node_value def get_initial(self): result = super(NodeValueMixin, self).get_initial() result['value'] = self.node_value return result def get_context_data(self, **kwargs): context_data = super(NodeValueMixin, self).get_context_data(**kwargs) value, stats = self.zk_client.get(self.node_path) context_data['value'] = value context_data['stats'] = stats return context_data class SetActiveViewMixin(object): def get_context_data(self, **kwargs): context = super(SetActiveViewMixin, self).get_context_data(**kwargs) context['active_nav_menu'] = { self.request.resolver_match.url_name: ' class="active"' } return context class DirectoryListingMixin(object): """Needs the ZookeeperClientMixin""" def get_context_data(self, **kwargs): context_data = super(DirectoryListingMixin, self).get_context_data(**kwargs) context_data['directories'] = self.zk_client.get_children(self.node_path) return context_data class BrowseNodeView(SetActiveViewMixin, DirectoryListingMixin, NodeValueMixin, PathMixin, ZookeeperClientMixin, TemplateView): template_name = 'bees/browse_node.html' class DeleteNodeView(SetActiveViewMixin, PathMixin, ZookeeperClientMixin, FormView): template_name = 'bees/delete_node.html' form_class = DeleteNodeForm def form_valid(self, form): result = super(DeleteNodeView, self).form_valid(form) self.zk_client.delete(form.cleaned_data.get('path')) return result @property def formated_parent_path(self): return '/' + '/'.join([x for x in self.node_path.split('/') if x][:-1]) + '/' def get_success_url(self): return reverse('bees:browse_node', kwargs={'path': self.formated_parent_path}) class EditNodeView(SetActiveViewMixin, NodeValueMixin, PathMixin, ZookeeperClientMixin, FormView): template_name = 'bees/edit_node.html' form_class = EditNodeForm def form_valid(self, form): result = super(EditNodeView, self).form_valid(form) zk_upload_value = str(form.cleaned_data.get('value')) self.zk_client.set(form.cleaned_data.get('path'), zk_upload_value) return result def get_success_url(self): return reverse('bees:browse_node', kwargs={'path': self.node_path}) class CreateNodeView(SetActiveViewMixin, PathMixin, ZookeeperClientMixin, FormView): template_name = 'bees/create_node.html' form_class = CreateNodeForm def form_valid(self, form): result = super(CreateNodeView, self).form_valid(form) new_node_path = form.cleaned_data.get('path') + form.cleaned_data.get('node_name') self.zk_client.ensure_path(new_node_path) value = form.cleaned_data.get('value', '') if value: self.zk_client.set(new_node_path, value.encode()) return result def get_success_url(self): return reverse('bees:browse_node', kwargs={'path': self.node_path})
# Copyright 2022 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import annotations from dataclasses import dataclass from string import Template from textwrap import indent DEFAULT_TEMPLATE = """ def make_exe(): dist = default_python_distribution() policy = dist.make_python_packaging_policy() policy.extension_module_filter = "no-copyleft" # Note: Adding this for pydanic and libs that have the "unable to load from memory" error # https://github.com/indygreg/PyOxidizer/issues/438 policy.resources_location_fallback = "filesystem-relative:lib" python_config = dist.make_python_interpreter_config() $RUN_MODULE exe = dist.to_python_executable( name="$NAME", packaging_policy=policy, config=python_config, ) exe.add_python_resources(exe.pip_install($WHEELS)) $UNCLASSIFIED_RESOURCE_INSTALLATION return exe def make_embedded_resources(exe): return exe.to_embedded_resources() def make_install(exe): # Create an object that represents our installed application file layout. files = FileManifest() # Add the generated executable to our install layout in the root directory. files.add_python_resource(".", exe) return files register_target("exe", make_exe) register_target("resources", make_embedded_resources, depends=["exe"], default_build_script=True) register_target("install", make_install, depends=["exe"], default=True) resolve_targets() """ UNCLASSIFIED_RESOURCES_TEMPLATE = """ for resource in exe.pip_install($UNCLASSIFIED_RESOURCES): resource.add_location = "filesystem-relative:lib" exe.add_python_resource(resource) """ @dataclass(frozen=True) class PyOxidizerConfig: executable_name: str wheels: list[str] entry_point: str | None = None template: str | None = None unclassified_resources: list[str] | None = None @property def run_module(self) -> str: return ( f"python_config.run_module = '{self.entry_point}'" if self.entry_point is not None else "" ) def render(self) -> str: unclassified_resource_snippet = "" if self.unclassified_resources is not None: unclassified_resource_snippet = Template( UNCLASSIFIED_RESOURCES_TEMPLATE ).safe_substitute(UNCLASSIFIED_RESOURCES=self.unclassified_resources) unclassified_resource_snippet = indent(unclassified_resource_snippet, " ") template = Template(self.template or DEFAULT_TEMPLATE) return template.safe_substitute( NAME=self.executable_name, WHEELS=self.wheels, RUN_MODULE=self.run_module, UNCLASSIFIED_RESOURCE_INSTALLATION=unclassified_resource_snippet, )
# -*- coding: utf-8 -*- # !/usr/bin/env python """ ------------------------------------------------- File Name: proxy.py Description: 自动从大象代理获得代理IP Author: Dexter Chen Date:2017-09-16 ------------------------------------------------- """ import os import requests import utilities as ut import config def retrieve_proxy(proxy_number): api_url = "http://vtp.daxiangdaili.com/ip/?tid=559131754091145&num=" + \ str(proxy_number) + "&delay=1&sortby=time" proxies = requests.get(api_url, timeout=10).text proxy_pool = [] for proxy in proxies.split("\n"): proxy_record = ut.time_str("full"), proxy, 0, 0, 0 proxy_pool.append(proxy_record) return proxy_pool def is_usable(proxy_record): # 检测是否还能那个用 if int(proxy_record[2]) < config.proxy_max_used and int(proxy_record[3]) < config.proxy_max_fail and proxy_record[4] < config.proxy_max_c_fail: # 超出最大量、连续最多失败次、失败总次数都要了 return True else: return False def update_pool(proxy_pool): if len(proxy_pool): proxy_pool = filter(is_usable, proxy_pool) if len(proxy_pool) < config.proxy_pool_size: retrieve_proxy(proxy_pool_size - len(proxy_pool)) # 缺多少,补多少 proxy_pool = sorted(proxy_pool, key=lambda x: x[2]) # 按照使用次数排序,用的最少的最先用 return proxy_pool def is_online(): status = os.system("ping -c 1 www.163.com") if status == 0: return True else: return False def get_proxy(): # 这里是在程序中获得proxy proxy_pool = update_pool(proxy_pool) proxy_pool[0][2] += 1 # 增加用了1次 return proxy_pool[0][1] if __name__ == '__main__': print retrieve_proxy(1)
import re import sys import json import codecs from ..feature_extractors import normalizer from ..feature_extractors import tokenizer input_filename = 'comments.json' output_filename = 'comment_text.txt' with codecs.open(input_filename, 'r', encoding='utf-8') as input_file: lines = input_file.readlines() body_count = 0 with codecs.open(output_filename, 'w', encoding='utf-8') as output_file: body_count = 0 for line in lines: parts = re.split('^data: ', line) if len(parts) > 1: text = parts[1] try: data = json.loads(text, encoding='utf-8') if 'body' in data: body = data['body'] body = body.encode('ascii', 'ignore') body = re.sub('\n', ' ', body) body = normalizer.fix_basic_punctuation(body) tokens = [] sentences = tokenizer.split_sentences(body) for s in sentences: sent_tokens = tokenizer.make_ngrams(s, 1, reattach=True, split_off_quotes=True) tokens = tokens + sent_tokens output_file.write(' '.join(tokens) + "\n") body_count += 1 except: #e = sys.exc_info()[0] #print e pass print("body count =", body_count) print("total count =", len(lines))
from fabric.api import run, task, sudo, settings, env from fabric.tasks import execute from fabric.contrib.console import confirm from fabric.contrib.files import exists from dateutil.parser import parse from appconfig import APPS from appconfig.config import App from appconfig.tasks.deployment import pip_freeze env.hosts = APPS.hostnames ACC = [] # A global accumulator to store results across tasks from appconfig.tasks import letsencrypt @task def ls(): """list installed clld apps""" sudo('supervisorctl avail') sudo('psql -l', user='postgres') @task def renew_certs(): if confirm("Renew certificates: " + env.host_string + "?", default=False): letsencrypt.require_certbot() if exists('/etc/letsencrypt/live'): certs = set(sudo('ls -1 /etc/letsencrypt/live').split()) else: certs = set() apps = set(a.domain for a in APPS.values() if a.production == env['host']) apps.add(env['host']) for cert in certs - apps: # Obsolete certificate! The app is no longer deployed on this host. letsencrypt.delete(cert) for app in apps - certs: letsencrypt.require_cert(app) with settings(warn_only=True): letsencrypt.renew() @task def last_deploy(): global ACC with settings(warn_only=True): for a in APPS.values(): if a.production == env.host and exists(str(a.config)): res = parse(run('stat -c "%y" {0}'.format(a.config))) ACC.append((a.name, res)) if env.host == env.hosts[-1]: maxname = max(len(t[0]) for t in ACC) for a, dt in sorted(ACC, key=lambda t: t[1], reverse=True): print('{0}{1}'.format( a.ljust(maxname + 1), dt.isoformat().replace('T', ' ').split('.')[0])) @task def pip_freeze_all(): """ Attempts to write requirements.txt files for all apps in apps.ini into their respective apps folder. """ def helper(app): if type(app) is App: execute(pip_freeze, app, host=app.production) with settings(warn_only=True): for a in APPS.values(): helper(a)
from rest_framework import serializers from photos.models import Photo, Comment from users.serializers import UserSerializer, PhotoShowSerializer class PhotoSerializer(serializers.ModelSerializer): user = PhotoShowSerializer(read_only=True) class Meta: model = Photo fields = ['id', 'image', 'caption', 'posted_at', 'user'] class CommentSerializer(serializers.ModelSerializer): user = PhotoShowSerializer(read_only=True) photo = PhotoSerializer(read_only=True) class Meta: model = Comment fields = ['id', 'photo', 'user', 'description', 'commented_at', ]
import numpy as np import tensorflow as tf from sklearn import model_selection from tensorflow.keras.layers import Dense from tensorflow.keras import Sequential from tensorflow.keras.optimizers import Adam from tensorflow.keras.callbacks import EarlyStopping import warnings warnings.filterwarnings('ignore') data = np.loadtxt("../../../data/sonar.csv", dtype=np.str, delimiter=",") y_data = data[:, -1:] y_data_list = list() for n in y_data: if n == 'R': y_data_list.append(0) else: y_data_list.append(1) # m = map(lambda n: 0 if n == "R" else 1, data[:, -1]) x_data = np.float32(data[:, :-1]) y_data = np.array(y_data_list, dtype=np.float32).reshape(len(y_data_list), 1) # print(y_data) x_train, x_test, y_train, y_test = model_selection.train_test_split(x_data, y_data, test_size=0.3) # print(x_train) # print(x_test) print(y_train.shape) print(y_test.shape) IO = Dense(units=1, input_shape=[60], activation="sigmoid") model = Sequential([IO]) model.compile(loss="binary_crossentropy", optimizer="adam", metrics=["accuracy"]) earlyStop = EarlyStopping(monitor="loss", patience=20, min_delta=0.001) hisotry = model.fit(x_train, y_train, epochs=10000, callbacks=[earlyStop]) # sigmoid를 적용한 후 cast까지 완료해서 결과 전달 predict = model.predict_classes(x_test) print(predict) model.evaluate(x_test, y_test)
"""secret_messages Class for the Affine Cipher""" import string from ciphers import Cipher class AffineCipher(Cipher): """Class to encrypt/decrypt text with the Affine Cipher Keyword Arguments: Cipher = Top-level class that raises NotImplementedError if run Methods: __init__ encrypt decrypt """ def __init__(self, a, b): """Method to create instance of the Affine cipher. Description: Maps every letter in string.printable to a number 0-94 Keyword Arguments: key = key entered by user, must be longer than user_text """ self.a = a self.b = b self.ALPHA = string.printable[:95] self.mapping = list(zip(self.ALPHA, range(95))) def encrypt(self, text): """Method to encrypt text with the Affine cipher instance Description: Plug a and b into the ciphernum formula, add the result to the output list and return Return: String version of the output list joined by ''. Keyword Arguments: user_text = text entered by user, to be converted into padded output """ output = [] # text = text.upper() x_list = [] mods = [] for char in text: for pair in self.mapping: if char in pair: x_list.append(pair[1]) for x in x_list: ciphernum = (self.a * x + self.b) % 95 mods.append(ciphernum) for num in mods: for pair in self.mapping: if num in pair: output.append(pair[0]) return ''.join(output) def decrypt(self, text): """Method to decrypt text with the Affine cipher instance Description: Reverse of the (a*x + b) % 95 formula Return: String version of the output list joined by ''. Keyword Arguments: text = text entered by user, to be converted into padded output """ output = [] # text = text.upper() a1_list = [] x_list = [] mods = [] for num in list(range(200)): if (self.a * num) % 95 == 1: a1_list.append(num) for char in text: for pair in self.mapping: if char in pair: x_list.append(pair[1]) for x in x_list: deciphernum = a1_list[0]*(x - self.b) % 95 mods.append(deciphernum) for num in mods: for pair in self.mapping: if num in pair: output.append(pair[0]) return ''.join(output)
n = int(input()) string = input() curr_pos = sub_len = 0 length = [] temp = 0 for i in range(n): if string[i] == 'x': sub_len += 1 if string[i] != 'x' or i == n - 1: length.append(sub_len) sub_len = 0 # print(string[i], sub_len) print(sum([i-2 for i in length if i > 2]))
from users import Users, Logs, DB_PATH from users import Interface if __name__ == "__main__": users = Users(db_path=DB_PATH) logs = Logs(db_path=DB_PATH) menu = Interface(users=users, logs=logs) print("\nAll Users:") print("pkey, user_email, pw, register_date, locked_until") for i in users.read_all(): print(i) print("\nAll logs:") print("pkey, access_attempt_time, success, user_id") for i in logs.read_all(): print(i)
import os import cfg def calc_dice(test_names, results_dir): for p_name in test_names: # TODO: feature: ori data required to be process truth = str(cfg.seg_dir.joinpath(f'{p_name}_seg.mha')) predict = str(results_dir.joinpath(f'{p_name}_prd_bin.png')) output_xml = str(results_dir.joinpath(f'{p_name}.xml')) cli = f'{cfg.evaluator} {truth} {predict} -use all -xml {output_xml}' print(f'excute command: {cli}') os.system(cli)
import logging class Response(object): """The object sent back to the callback Contains methods for calling senders and responders on Espresso """ def __init__(self, robot, msg, match): self.robot = robot self.msg = msg self.match = match def send(self, message, channel=None): """Sends a message to the messaging system.""" channel = self.msg.channel.name or channel self.robot.send(message, channel) def reply(self, user, message, channel=None): """Sends a message to the messaging system which is a reply to a user.""" channel = self.msg.channel.name or channel logging.debug("message %s on channel #%s to user @%s", message, channel, user.name) self.robot.send("@{}: {}".format(user.name, message), channel)
#coding: utf-8 print 'Bem vindo ao sistema de rotatividade de snapshots na aws' print '' print 'Opção 1 - Cadastrar volume para ser deletado' print 'Opção 2 - Listar volumes cadastrados atualmente' option = str(raw_input("Digite qual a opção desejada: 1 ou 2: ")) if option == '1': volumes = open("volumes.txt", "a") vol = str(raw_input("Insira o nome do volume: ")) desc = str(raw_input("Insira a descricao do volume: ")) ret = int(raw_input("Insira a qtde de dias de retenção: ")) volumes.write("%s:%s:%s:\n" %(vol, desc, ret)) volumes.close() if option == '2': volumes = open("volumes.txt", "r") line = volumes.read() print line
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Date : 2020-04-25 12:05:34 # @Author : Fallen (xdd043@qq.com) # @Link : https://github.com/fallencrasher/python-learning # @Version : $Id$ ''' 文件存储格式如下: id,name,age,phone,job 1,Alex,22,13651054608,IT 2,Egon,23,13304320533,Tearcher 3,nezha,25,1333235322,IT 现在需要对这个员工信息文件进行增删改查。 基础必做: a.可以进行查询,支持三种语法: select 列名1,列名2,… where 列名条件 支持:大于小于等于,还要支持模糊查找。 示例: select name, age where age>22 select * where job=IT select * where phone like 133 # select 查询这个文件 # select name,age where age>20 # select age,name,job where age > 20 # select age,name,job where age < 22 # select age,name,job where age = 22 # select age,name,job where name = 'alex' # select age,name,job where job = 'IT' # select age,name,job where phone like '133' # select * where phone like '133' 进阶选做: b.可创建新员工记录,id要顺序增加c.可删除指定员工记录,直接输入员工id即可 d.修改员工信息 语法:set 列名=“新的值” where 条件 #先用where查找对应人的信息,再使用set来修改列名对应的值为“新的值” 注意:要想操作员工信息表,必须先登录,登陆认证需要用装饰器完成 其他需求尽量用函数实现 ''' import sys import re def auth(f): def inner(*args,**kwargs): ret = f(*args,**kwargs) return ret return inner l = [] with open('staff_info.txt',encoding='utf-8') as f: for i in f: temp = i.strip().split(',',i.strip().count(',')) if temp[0].isdigit(): l.append({'id':temp[0],'name':temp[1],'age':temp[2],'phone':temp[3],'job':temp[4]}) # print(l) def search(select,column,where,condition): if select=='select': tp = column.strip().split(',',column.strip().count(',')) #l2 = [{age:22,name:alex,job:it},{}] l2 = [] for i in l: for key,value in i.items(): def run(): pass if __name__ == '__main__': run()
from flask_marshmallow import Marshmallow from .model import Book ma = Marshmallow() def configure(app): ma.init_app(app) class BookSchema(ma.SQLAlchemyAutoSchema): class Meta: model = Book include_relationships = True load_instance = True
import requests import json import datetime class Guild: def __init__(self, playerName: str = None, playeruuid: str = None): self.playerName = playerName self.playeruuid = playeruuid if self.playerName == None and self.playeruuid == None: raise AttributeError('You need to fill in either playerName or playeruuid') if self.playerName != None and self.playeruuid != None: raise AttributeError("You can't fill in both playerName or playeruuid") self.nameValue = self.playerName if not playeruuid else playeruuid self.get_stats_link = requests.get(f'https://api.slothpixel.me/api/guilds/{self.nameValue}') self.stats_data = json.loads(self.get_stats_link.text) def get_stats(self, item): """ To get the guild stats of a user's guild. The user does not have to be on Hypixel for this to work. However, they must belong in a guild. https://docs.slothpixel.me/#operation/getGuildFromPlayer Items: - :name:`string` - :id:`string` - :created`string` - :tag:`string` - :tag color:`string` - :tag formatted:`string` - :exp:`integer` - :level:`integer` - :exp by game:`integer` - :description:`object` - :preferred games:`list` - :legacy_ranking:`integer` (LEGACY) Params: :item:`string` `versionadded`: 1.0 """ self.item = item self.item = str(self.item).replace(" ", "_") if self.item == 'created': return datetime.datetime.fromtimestamp(round(self.stats_data[self.item]/1000)) elif self.item == 'preferred_games': return list(self.stats_data[self.item]) return self.stats_data[self.item] def get_exp_history(self, date: str): """ To get the guild exp history of a user. The user does not have to be on Hypixel for this to work. https://docs.slothpixel.me/#operation/getGuildFromPlayer Params: - :date:`string` (e.g YYYY-MM-DD, 2020-01-26) `versionadded`: 1.0 """ self.date = date return self.stats_data['exp_history'][self.date]
listt=[] def countd(a): for m in range(a,0,-1): listt.append(m) return listt b=countd(5) print(b) #2 print and return def printre(lis): for i in range(0,2): print(lis[0]) return lis[1] print(printre([2,5])) #3 First plus length sum=0 def first_len(lis): sum =lis[0]+len(lis) return sum print(first_len([4,5,6,8,1,2,3])) #Values Greater than Second lisNew=[] def greater_than(lis): for i in range(len(lis)): if lis[i]>lis[1]: lisNew.append(lis[i]) print(len(lisNew)) return lisNew print(greater_than([3,2,5,6,7,9,1,0])) #This Length, That Value lis=[] def this_that(a,b): for i in range(a): lis.append(b) return lis print(this_that(4, 5))
def esrever(s): return s[:-1][::-1] + s[-1] if s else ''
#import mysql import sqlite3 """This program uses the Table and Query classes to generate the SQL to create the groceries database described in the Facade chapter.""" class Database(): def __init__(self, *args): #self._db = MySQLdb.connect(args[0], args[1], args[2]) self.host=args[0] self.userid=args[1] self.pwd = args[2] self._cursor = self._db.cursor() def commit(self): self._db.commit() def create(self, dbname): self.cursor.execute("drop database if exists "+dbname) self._cursor.execute("Create database "+ dbname) self._dbname = dbname #self._db=MySQLdb.connect(self.host, self.userid, self.pwd, dbname) self.cursor.execute("use "+dbname) self._cursor= self._db.cursor() def getName(self): return self._dbname @property def cursor(self): return self._cursor def getTables(self): self._cursor.execute("show tables") # create array of table objects self.tables = [] rows = self._cursor.fetchall() for r in rows: self.tables.append(Table(self._cursor, r)) return self.tables class ColumnNames(): def __init__(self, query): self.query = query def getColumnNames(self): # make list of tokens qlist = self.query.lower().split(' ') # remove trailing commas and stop at first SQL keyword newq = [] i = 0 quit = False while i < len(qlist) and not quit: ql = qlist[i].strip().removesuffix(',') #remove trailing commas if ql in {'from', 'join', 'where', 'inner'}: #stop on SQL keyword quit = True else: if ql not in { 'distinct', 'select'}: newq.append(ql) #insert name in column list i += 1 # now remove leading table names # and split where there was a comma but no space newq2 = [] for ql in newq: if '.' in ql: qa = ql.split('.') # remove table name ql = qa[1] if ',' in ql: qa = ql.split(',') # split at comma newq2.append(qa[0]) # when there is no space newq2.append(qa[1]) # between column names else: newq2.append(ql) return newq2 # return the column name array # Query object makes queries and returns Results class Query(): def __init__(self, cursor, *qstring): self.qstring = qstring[0] self.multiple=False if len(qstring) >1: self.vals = qstring[1] self.multiple = True self.cursor = cursor def setMultiple(self, mult): self.multiple = mult # executes the query and returns all the results def execute(self): #print (self.qstring) self.getCols = ColumnNames(self.qstring) self.colNames = self.getCols.getColumnNames() if not self.multiple: self.cursor.execute(self.qstring) rows = self.cursor.fetchall() return Results(rows, self.colNames) else: self.cursor.executemany(self.qstring, self.vals) def executeMultiple(self, vals): #print (self.qstring, vals) self.cursor.executemany(self.qstring, vals) # Mediator used by columns and Table class to keep # the primary key string used in creating the SQL class Mediator() : def __init__(self, db): self.db = db self.filename = "" def setPrimaryString(self, prims): self.pstring = prims def getPrimaryString(self): return self.pstring # base class Column class Column(): def __init__(self, name): self._name=name self._primary = False def isPrimary(self): return self._primary @property def name(self): return self._name # Integer column- may be a primary key class Intcol(Column) : def __init__(self, name, med:Mediator): super().__init__(name) self.med = med def getName(self): idname = self.name+" INT NOT NULL " return idname class PrimaryCol(Intcol): def __init__(self, name, autoInc, med: Mediator): super().__init__(name, med) self.med = med self.autoInc = autoInc def getName(self): idname = self.name + " INT NOT NULL " if self.autoInc: idname += "AUTO_INCREMENT " self.med.setPrimaryString("PRIMARY KEY (" + self.name + ")") return idname # Float col class Floatcol(Column): def __init__(self, name): super().__init__(name) def getName(self): idname = self.name + " FLOAT NOT NULL " return idname # character column - length is the 2nd argument class Charcol(Column): def __init__(self, name, width:int): super().__init__(name) self.width=width def getName(self): idname = self.name + " VARCHAR("+str(self.width)+") NULL " return idname # Table class used to create all the table class Table(): def __init__(self, db, name, med:Mediator): self.cursor = db.cursor self.db = db self.tname = name # first of tuple self.colList=[] # list of column names generated self._primarystring = "" self.med = med @property def name(self): # gets table name return self.tname # add a column def addColumn(self, column): self.colList.append(column) # creates the sql to make the columns def addRow(self, varnames): qry = "insert into " + self.tname + "(" i = 0 for i in range(1, len(self.colList) - 1): c = self.colList[i] # if type(c)==PrimaryCol: qry += c.name + "," qry += self.colList[-1].name + ") VALUES " #for i in range(1, len(self.colList) - 1): # qry += "\'%s\'," # qry += "\'%s\') " #qry += " , " qry += varnames query = Query(self.cursor, qry, "") query.setMultiple(False) query.execute() self.db.commit() # creates the sql to make the columns def addRows(self, varnames): qry = "insert into "+self.tname +"(" i = 0 for i in range(1, len(self.colList)-1): c = self.colList[i] #if type(c)==PrimaryCol: qry += c.name + "," qry += self.colList[-1].name+") VALUES (" for i in range(1, len(self.colList) - 1): qry += "\'%s\'," qry +="\'%s\') " query = Query(self.cursor, qry, varnames) query.execute() self.db.commit() #deletes a row def deleteRow(self, colname, key): querytxt= "delete from "+self.tname+" where "+colname+ "="+key #print(querytxt) query = Query(querytxt) # query.execute() # self.db.commit() # creates the table and columns def create(self): sql = "create table "+self.db.getName()+"."+ self.name+" (" for col in self.colList: sql += col.getName()+"," sql += self.med.getPrimaryString() sql +=")" #print (sql) self.cursor.execute(sql) # returns a list of columns def getColumns(self): self.cursor.execute("show columns from " + self.tname) self.columns = self.cursor.fetchall() return self.columns # contains the result of a query class Results(): def __init__(self, rows, colNames): self.rows = rows self.cnames = colNames self.makeDict() def makeDict(self): self.dictRows = [] #print(self.rows, self.cnames) for r in self.rows: self.makeDictRow(r) #print(self.dictRows) def makeDictRow(self, row): niter = iter(self.cnames) dict = {} for r in row: dict[next(niter)] = r self.dictRows.append(dict) def getRows(self): return self.rows def getDictRows(self): return self.dictRows # holds primary key string as table is created class Primary() : primaryString = "" # Table class used to create all the table class SqltTable(Table): def __init__(self, db, name): self.cursor = db.cursor() self.db = db self.tname = name # first of tuple self.colList=[] # list of column names generated self._primarystring = "" # creates the sql to make the columns--Sqlite differs slightly def addRows(self, varnames): qry = "insert into "+self.tname +"(" i = 0 for i in range(0, len(self.colList)-1): c = self.colList[i] qry += c.name + "," qry += self.colList[-1].name+") values (" for i in range(0, len(self.colList) - 1): qry += "?," qry +="?);" query = Query(self.cursor, qry, varnames) #print(qry+"\n", varnames) query.execute() self.db.commit() # creates the table and columns def create(self): sql = "create table " + self.name + " (" for col in self.colList: sql += col.getName()+"," sql += Primary.primaryString sql +=");" #print (sql) self.cursor.execute(sql) def getColumns(self): tn = self.tname[0] #print(self.tname) sql="select name from pragma_table_info('"+tn+"')" #print(sql) self.cursor.execute(sql) self.columns = self.cursor.fetchall() return self.columns class SqltDatabase(Database): def __init__(self, *args): self._db = sqlite3.connect(args[0]) self._dbname = args[0] self._cursor = self._db.cursor() def create(self, dbname): pass def getTables(self): self._cursor.execute("select name from sqlite_master where type='table'") # create array of table objects self.tables = [] rows = self._cursor.fetchall() for r in rows: self.tables.append(SqltTable(self._db, r)) return self.tables
#Sidharth Peri #10/22/20 #Honor Code: i pledge in my honor that I have abided by the Stevens Honor System #A program that opens a text file formats the strings and then writes #the reformatted strings in a new text file def main(): print("This program takes a text file with lower case names and writes them into a new") print("text file with all uppercase letters") #get file names beforeFile = input("What is the name of the file? ") afterFile = input("Place names in this file: ") #open files before = open(beforeFile, 'r') after = open(afterFile, 'w') #for loop to split first and last name into separate strings and use upper function to #create a new string with uppercase names for i in before: first, last = i.split() new_name= first.upper() + " " + last.upper() print(new_name,file=after) #close files before.close() after.close() print("Names have been printed to", afterFile) main()
from math import sqrt n = int(input()) f = (((1 + sqrt(5)) / 2) ** n - ((1 - sqrt(5)) / 2) ** n) / sqrt(5) print('{:.1f}'.format(f))
class MetaOne(type): def __new__(meta, classname, supers, classdict): # Redefine type method print('In MetaOne.new:', classname) return type.__new__(meta, classname, supers, classdict) def __init__(cls, classname, supers, classdict): print('In MetaOne.init:', cls, classname) def toast(self): print('toast') class Super(metaclass=MetaOne): # Metaclass inherited by subs too def spam(self): # MetaOne run twice for two classes print('spam') class Sub(Super): # Superclass: inheritance versus instance def eggs(self): # Classes inherit from superclasses print('eggs')# But not from metaclasses print(dir(Super)) print(dir(Sub)) X = Sub() X.eggs() X.spam() Sub.eggs(X) Sub.spam(X) Sub.toast() MetaOne.toast(Sub) MetaOne.toast(Super)
""" PRACTICE Test 3, problem 4. Authors: David Mutchler, Valerie Galluzzi, Mark Hays, Amanda Stouder, their colleagues and Muqing Zheng. October 2015. """ # TODO: 1. PUT YOUR NAME IN THE ABOVE LINE. def main(): """ Calls the TEST functions in this module. """ test_doubler() def test_doubler(): """ Tests the doubler function. """ # ------------------------------------------------------------------ # TODO: 2. Implement this TEST function. # It TESTS the doubler function defined below. # Include at least ** 2 ** tests (we wrote 1 for you). # ------------------------------------------------------------------ print() print('--------------------------------------------------') print('Testing the doubler function:') print('--------------------------------------------------') # Test 1: arg1 = [10, -3, 20, 4] arg2 = [5, 0, 8] correct_arg1_after = [20, -6, 40, 8] correct_arg2_after = [5, 0, 8] expected = [10, 0, 16] print() print('BEFORE the function call:') print(' Argument 1 is:', arg1) print(' Argument 2 is:', arg2) answer = doubler(arg1, arg2) print('AFTER the function call:') print(' Argument 1 is: ', arg1) print(' Argument 1 should be:', correct_arg1_after) print(' Argument 2 is: ', arg2) print(' Argument 2 should be:', correct_arg2_after) print('The returned value is: ', answer) print('The returned value should be:', expected) # ------------------------------------------------------------------ # TODO 2 (continued): Add your ADDITIONAL test(s) here: # ------------------------------------------------------------------ arg1 = [1, 0, 22, 4] arg2 = [25, 10, 14] correct_arg1_after = [2, 0, 44, 8] correct_arg2_after = [25, 10, 14] expected = [50, 20, 28] print() print('BEFORE the function call:') print(' Argument 1 is:', arg1) print(' Argument 2 is:', arg2) answer = doubler(arg1, arg2) print('AFTER the function call:') print(' Argument 1 is: ', arg1) print(' Argument 1 should be:', correct_arg1_after) print(' Argument 2 is: ', arg2) print(' Argument 2 should be:', correct_arg2_after) print('The returned value is: ', answer) print('The returned value should be:', expected) def doubler(list1, list2): """ Both arguments are lists of integers. This function: -- MUTATEs the first list by doubling each number in the list and -- RETURNs a new list that is the same as list2 but with each number in the list doubled. For example, if the two arguments are: [10, -3, 20, 4] and [5, 0, 8] then this method MUTATEs the first argument to [20, -6, 40, 8] and RETURNs the list [10, 0, 16] Preconditions: :type list1: list of integers :type list2: list of integers """ # ------------------------------------------------------------------ # TODO: 3. Implement and test this function. # Note that you should write its TEST function first (above). # ------------------------------------------------------------------ list = [] for k in range(len(list1)): list1[k] = list1[k] * 2 for k in list2: list += [k * 2] return list # ---------------------------------------------------------------------- # Calls main to start the ball rolling. # ---------------------------------------------------------------------- main()
import unittest from katas.kyu_7.numbers_with_this_digit_inside import \ numbers_with_digit_inside class DigitInsideTestCase(unittest.TestCase): def test_equal_1(self): self.assertEqual(numbers_with_digit_inside(5, 6), [0, 0, 0]) def test_equal_2(self): self.assertEqual(numbers_with_digit_inside(7, 6), [1, 6, 6]) def test_equal_3(self): self.assertEqual(numbers_with_digit_inside(11, 1), [3, 22, 110]) def test_equal_4(self): self.assertEqual(numbers_with_digit_inside(20, 0), [2, 30, 200]) def test_equal_5(self): self.assertEqual(numbers_with_digit_inside(44, 4), [9, 286, 5955146588160])
import torch import torch.nn as nn import torch.nn.functional as F class Planar(nn.Module): def __init__(self): super(Planar, self).__init__() self.h = nn.Tanh() def forward(self, z, u, w, b): """ Computes the following transformation: z' = z + u h( w^T z + b) Input shapes: shape u = (batch_size, z_size, 1) shape w = (batch_size, 1, z_size) shape b = (batch_size, 1, 1) shape z = (batch_size, z_size). """ # Equation (10) z = z.unsqueeze(2) prod = torch.bmm(w, z) + b f_z = z + u * self.h(prod) # this is a 3d vector f_z = f_z.squeeze(2) # this is a 2d vector # compute logdetJ # Equation (11) psi = w * (1 - self.h(prod) ** 2) # w * h'(prod) # Equation (12) log_det_jacobian = torch.log(torch.abs(1 + torch.bmm(psi, u))) log_det_jacobian = log_det_jacobian.squeeze(2).squeeze(1) return f_z, log_det_jacobian class Coupling(nn.Module): def __init__(self, in_out_dim, mid_dim, hidden): """Initialize a coupling layer. Args: in_out_dim: input/output dimensions. mid_dim: number of units in a hidden layer. hidden: number of hidden layers. """ super(Coupling, self).__init__() self.in_block = nn.Sequential( nn.Linear(in_out_dim//2, mid_dim), nn.ReLU()) self.mid_block = nn.ModuleList([ nn.Sequential( nn.Linear(mid_dim, mid_dim), nn.ReLU()) for _ in range(hidden - 1)]) self.out_block = nn.Linear(mid_dim, in_out_dim//2) perm = torch.randperm(in_out_dim) eye = torch.eye(in_out_dim) self.P = eye[perm, :].cuda() self.PT = self.P.t() def forward(self, x): """Forward pass. Args: x: input tensor. Returns: transformed tensor. """ [B, W] = list(x.size()) # Random permutation x = x @ self.P x = x.reshape((B, W//2, 2)) on, off = x[:, :, 0], x[:, :, 1] off_ = self.in_block(off) for i in range(len(self.mid_block)): off_ = self.mid_block[i](off_) shift = self.out_block(off_) on = on + shift x = torch.stack((on, off), dim=2) x = x.reshape((B, W)) x = x @ self.PT return x class Scaling(nn.Module): """ Log-scaling layer. """ def __init__(self, dim): """Initialize a (log-)scaling layer. Args: dim: input/output dimensions. """ super(Scaling, self).__init__() self.scale = nn.Parameter( torch.zeros((1, dim)), requires_grad=True) def forward(self, x): """Forward pass. Args: x: input tensor. Returns: transformed tensor and log-determinant of Jacobian. """ log_det_J = torch.sum(self.scale, dim=1) x = x * torch.exp(self.scale) return x, log_det_J class Coupling_amor(nn.Module): def __init__(self, input_dim): """Initialize a coupling layer. Args: Coupling with only 1 hidden layer input_dim: input dimensions """ super(Coupling_amor, self).__init__() self.h = nn.Tanh() perm = torch.randperm(input_dim) eye = torch.eye(input_dim) self.P = eye[perm, :].cuda() self.PT = self.P.t() def forward(self, x, u, w, b): """Forward pass. Args: x: input tensor. Returns: transformed tensor. """ [B, W] = list(x.size()) x = x @ self.P x = x.reshape((B, W//2, 2)) on, off = x[:, :, 0], x[:, :, 1] off_ = off.unsqueeze(2) prod = torch.bmm(w, off_) + b shift = u * self.h(prod) shift = shift.squeeze(2) on = on + shift # Additive coupling layer x = torch.stack((on, off), dim=2) x = x.reshape((B, W)) x = x @ self.PT return x class Scaling_amor(nn.Module): """ Log-scaling layer. """ def __init__(self): """Initialize a (log-)scaling layer. """ super(Scaling_amor, self).__init__() # self.scale = nn.Parameter( # torch.zeros((1, dim)), requires_grad=True) def forward(self, x, scale): """Forward pass. Args: x: input tensor. scale: scaling tensor Returns: transformed tensor and log-determinant of Jacobian. """ log_det_J = torch.sum(scale, dim=1) x = x * torch.exp(scale) return x, log_det_J class Sylvester(nn.Module): """ Sylvester normalizing flow. """ def __init__(self, M): super(Sylvester, self).__init__() self.h = nn.Tanh() def forward(self, z, Q, R, R_tilde, b): """ Computes the transformation of Equation (13): z' = z + QR h(R_tilde Q^T z + b) Input shapes: shape z = (batch_size, z_size) shape R = (batch_size, M, M) shape R_tilde = (batch_size, M, M) shape Q = (batch_size, z_size , M) shape b = (batch_size, M) """ ##Computations for Equation (13) z = z.unsqueeze(2) b = b.unsqueeze(2) RQ = torch.bmm(R_tilde, Q.transpose(2, 1)) prod = torch.bmm(RQ, z) + b QR = torch.bmm(Q, R) #Equation (13) f_z = z + torch.bmm(QR, self.h(prod)) f_z = f_z.squeeze(2) ##Computations for Equation (14) R_diag = torch.diagonal(R, dim1=1, dim2=2) R_tidle_diag = torch.diagonal(R_tilde, dim1=1, dim2=2) RR_diag = R_diag * R_tidle_diag #RR_diag.shape = [batch_size, M] h_der = (1 - self.h(prod) ** 2).squeeze(2) #h'(R_tidle Q^T z + b) #diagonal of the argument of det in Equation (14) det_J_diag = 1 + h_der * RR_diag log_det_J_diag = det_J_diag.abs().log() log_det_jacobian = log_det_J_diag.sum(-1) #det of diagonal matrix return f_z, log_det_jacobian # Random Permutation # class AffineCoupling(torch.nn.Module): # """ # Input: # - input_output_dim, mid_dim, hidden_dim=1 # Output: # - Transformed x->z # - Log-determinant of Jacobian # """ # def __init__(self, input_output_dim, mid_dim, hidden_dim=1): # super(AffineCoupling, self).__init__() # self.input_output_dim = input_output_dim # self.mid_dim = mid_dim # self.hidden_dim = hidden_dim # self.s = nn.Sequential(nn.Linear(input_output_dim//2, mid_dim), nn.Tanh(), nn.Linear(mid_dim, mid_dim), nn.Tanh(), nn.Linear(mid_dim, input_output_dim//2)) # self.t = nn.Sequential(nn.Linear(input_output_dim//2, mid_dim), nn.Tanh(), nn.Linear(mid_dim, mid_dim), nn.Tanh(), nn.Linear(mid_dim, input_output_dim//2)) # perm = torch.randperm(self.input_output_dim) # eye = torch.eye(self.input_output_dim) # self.P = eye[perm, :] # self.PT = self.P.t() # def forward(self, x): # d = self.input_output_dim//2 # x = x @ self.P # x1, x2 = x[:, :d], x[:, d:] # scale = self.s(x1) # translate = self.t(x1) # z1 = x1 # z2 = x2 * torch.exp(scale) # z3 = translate # z4 = z2 + z3 # z = torch.cat((z1, z4), dim=1) # z = z @ self.PT # log_det_j = scale.sum(-1) # return z, log_det_j # alternate couplings with mask class AffineCoupling(torch.nn.Module): """ Input: - input_output_dim, mid_dim, hidden_dim=1 Output: - Transformed x->z - Log-determinant of Jacobian """ def __init__(self, input_output_dim, mid_dim, hidden_dim, mask): super(AffineCoupling, self).__init__() self.input_output_dim = input_output_dim self.mid_dim = mid_dim self.hidden_dim = hidden_dim self.mask = mask self.s = nn.Sequential(nn.Linear(input_output_dim//2, mid_dim), nn.Tanh(), nn.Linear(mid_dim, mid_dim), nn.Tanh(), nn.Linear(mid_dim, input_output_dim//2)) self.t = nn.Sequential(nn.Linear(input_output_dim//2, mid_dim), nn.Tanh(), nn.Linear(mid_dim, mid_dim), nn.Tanh(), nn.Linear(mid_dim, input_output_dim//2)) def forward(self, x): d = self.input_output_dim//2 x1, x2 = x[:, ::2], x[:, 1::2] # skipping 2 elements x1 becomes values at 0,2,4 and x2 becomes 1,5,7..checkerboard masking if self.mask: x1, x2 = x2, x1 scale = self.s(x1) translate = self.t(x1) z1 = x1 z2 = x2 * torch.exp(scale) z3 = translate z4 = z2 + z3 if self.mask: z1, z4 = z4, z1 z = torch.cat((z1, z4), dim=1) log_det_j = scale.sum(-1) return z, log_det_j
from django.contrib import admin from todo.models import StaffProfile admin.site.register(StaffProfile)