text
stringlengths
8
6.05M
def dig_sum(n): return sum([int(i) for i in str(n)]) s_lst = [] for a in range(100): for b in range(100): s_lst.append(dig_sum(a**b)) def main(): print(max(s_lst)) if __name__=='__main__': main()
# ๅญ—็ฌฆไธฒ str = 'hello' # ๅฎšไน‰ๆ–นๆณ• def function(arg): return arg + arg #่พ“ๅ…ฅ user_input = raw_input() #่พ“ๅ‡บ print user_output # ๆ–‡ไปถๆ“ไฝœ
from django.db import models # __all__ : ์™ธ๋ถ€์—์„œ ๋ชจ๋“ˆ import * ํ•  ๋•Œ *์˜ ๋Œ€์ƒ์ด ๋˜๋Š” ๋ชฉ๋ก. __all__ = ( 'InstagramUser', ) class InstagramUser(models.Model): name = models.CharField( max_length=50, ) # ๋‚ด๊ฐ€ ํŒ”๋กœ์šฐํ•˜๋Š” ์œ ์ € : following # ๋‚˜๋ฅผ ํŒ”๋กœ์šฐํ•˜๋Š” ์œ ์ € : follower # following ํ•„๋“œ๋Š” ๋‚ด๊ฐ€ ํŒ”๋กœ์šฐ ํ•˜๋Š” ์‚ฌ๋žŒ์„ ๋‚˜ํƒ€๋ƒ„. # ํŒ”๋กœ์šฐ ๋‹นํ•˜๋Š” ์ž…์žฅ์—์„œ ๊ฐ์ฒด๋Š” ์ž๊ธฐ์˜ followers์— ์ ‘๊ทผํ•˜๋ ค๋ฉด related_name์œผ๋กœ ์ ‘๊ทผํ•œ๋‹ค. # symmetrical : ๋ฆด๋ ˆ์ด์…˜ ํ…Œ์ด๋ธ”์—์„œ ๋น„๋Œ€์นญ/๋Œ€์นญ๊ด€๊ณ„ ์„ค์ •. following = models.ManyToManyField( 'self', symmetrical=False, related_name='followers', ) def __str__(self): return self.name
import logging import socket import datetime import time import os import threading import pdb import sys import bisect import traceback """ sys.path.insert(0, "./netfilterlib/") from netfilterqueue import NetfilterQueue sys.path.append("scapy") logging.getLogger("scapy.runtime").setLevel(logging.ERROR) from scapy.all import * """ FORMAT = "[%(filename)s:%(lineno)s - %(threadName)s %(funcName)10s] %(levelname)7s %(message)s" class SingleLevelFilter(logging.Filter): def __init__(self, passlevel, reject): self.passlevel = passlevel self.reject = reject def filter(self, record): if self.reject: return (record.levelno != self.passlevel) else: return (record.levelno == self.passlevel) logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) filelog = logging.FileHandler(filename='debug.out',mode='w') filelog.setFormatter(logging.Formatter(FORMAT)) filelog.setLevel(logging.DEBUG) logger.addHandler(filelog) console = logging.StreamHandler(sys.__stdout__) console.addFilter(SingleLevelFilter(logging.DEBUG,False)) console.setFormatter(logging.Formatter(FORMAT)) logger.addHandler(console) # Table = ({rules:actions}, {statistics:value}) ## rules = (string,list) -> ip.src, ['if','>','128.114.*.*'] # Rules = (pkt value) (conditional) ## pkt value: header field value, special value for statistics ## conditional: contains the logic, if ip.src == 128.114.62.150 # Actions = Drop, Accept, Cache, Forward class Table: table = ({},[]) def __init__(self): stats = {} ## create stats entry for the 5 NICs for i in xrange(0,5): stra = "eth" stats[stra+str(i)] = {} ## create each of the statistics to track per NIC for i in xrange(0,5): stats[stra+str(i)]['count'] = 0 stats[stra+str(i)]['loss'] = 0 stats[stra+str(i)]['bytes'] = 0 ## key = pkt header ## value = [ conditional + action ] rules = {} self.table = (rules,stats) ## create a new rule/action in the flow table ## -1 if the rule is already in place even if the action is different. def add_rule(self, key,rule,action): if key in self.table[0]: for rule_entry in self.table[0][key]: if rule_entry[0] == rule: ## same rule already in place return -1 self.table[0][key].append((rule,action)) return 0 else: self.table[0][key] = [(rule,action)] return 0 def update_rule(self, key, rule, action): if key in self.table[0]: for rule_entry in self.table[0][key]: if rule_entry[0] == rule: index = self.table[0][key].index(rule_entry) self.table[0][key][index] = (rule,action) return 0 ## rule not found return -1 ## key not found else: return -2 def delete_rule(self, key, rule): if key in self.table[0]: for rule_entry in self.table[0][key]: if rule_entry[0] == rule: index = self.table[0][key].index(rule_entry) del self.table[0][key][index] ## rule not found return -1 ## key not found else: return -2 def __str__(self): rstr = "\nStatistics:\n" t = self.table for entry in t[1]: rstr += "\t"+entry+":\n" for value in t[1][entry]: rstr += "\t\t"+value+":\t"+str(t[1][entry][value])+"\n" rstr += "Rules:\n" for entry in t[0]: rstr += "\t"+entry+":\n" for value in t[0][entry]: rstr += "\t\t"+value[0]+":\t"+value[1]+"\n" #i = 0 #rstr = "" #t = self.table #for entry in t: # rstr += "# %s: rule: (%s)\t\taction: (%s)\n" % (i,entry[0], entry[1]) #return rstr return rstr ## need to allow compound and disjoint statements such as ip == X and port == Y or port == Z flowTable = Table() flowTable.add_rule("ip.addr","ip.addr == 128.114.58.12","A") logger.debug(flowTable) # seqnum = int(sp["TCP"].getfieldval('seq')) # acknum = int(sp["TCP"].getfieldval('ack')) # ips = (sp["IP"].getfieldval('src'),sp["IP"].getfieldval('dst')) def match(sp): global flowTable # create a list of each key value stored in the packet that can be pulled out # iterate over that list and the flowTable list # if a header and a rule match, select it #XXX def openflow(pkt): logger.debug("Handling data packet") sp = IP(pkt.get_payload()) #if match(sp): try: except Exception, e: logger.error("error handling packet") logger.error(str(e)) logger.error(traceback.format_exc()) pkt.accept() """ def print_and_accept(packet): print packet sp = IP(packet.get_payload()) logger.debug("%s:%s -> %s:%s" % (sp[IP].src,sp[TCP].sport,sp[IP].dst,sp[TCP].dport)) packet.accept() def start_openflow(ilist,qname="NFQUEUE",qval=1): for interface in ilist: ## if the host is the destination (to forward above ip) subprocess.call("sudo iptables -I INPUT -i eth%s -j %s --queue-num %s"\ % (interface,qname,int(qval))) ## our base station should use this subprocess.call("sudo iptables -I FORWARD -i eth%s -j %s --queue-num %s"\ % (interface,qname,int(qval))) nfqueue = NetfilterQueue() nfqueue.bind(qval, openflow) try: nfqueue.run() except Exception,e: logger.error("Error in Snoop start: %s" % str(e)) except KeyboardInterrupt: return def debug(): nfqueue = NetfilterQueue() #nfqueue.bind(1, print_and_accept) nfqueue.bind(1, openflow) try: nfqueue.run() except Exception,e: logger.error("Error in Snoop start: %s" % str(e)) logger.error(traceback.format_exc()) logger.info("stopped.") debug() """
import Chapter3.BinaryClassifier_2 def evaluation(sgd_clf): from sklearn.model_selection import cross_val_score result = cross_val_score(sgd_clf, Chapter3.BinaryClassifier_2.X_train, Chapter3.BinaryClassifier_2.y_train_5, #kํด๋“œ ๊ต์ฐจ ๊ฒ€์ฆ ์‚ฌ์šฉ cv=3, scoring="accuracy") #3๊ฐœ์˜ ์„œ๋ธŒ์…‹์œผ๋กœ ๋‚˜๋ˆ”, ์ •ํ™•๋„๋ฅผ ๊ณ„์‚ฐํ•จ(accuracy), ํ™•๋ฅ ์ ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ• ์ ์šฉ print(result) #[0.96135 0.96385 0.9533 ], ์ •ํ™•๋„๋ฅผ ์„ฑ๋Šฅ์ง€ํ‘œ๋กœ ์‚ฌ์šฉํ•˜๋Š” ๊ฒƒ์€ ๋ถˆ๊ท ํ˜•ํ•œ ๋ฐ์ดํ„ฐ์…‹(์–ด๋–ค ํด๋ž˜์Šค๊ฐ€ ๋‹ค๋ฅธ ๊ฒƒ๋ณด๋‹ค ์›”๋“ฑํžˆ ๋งŽ์Œ)์—์„œ ๋ถ€์ •ํ™• def confusionMatrix(sgd_clf): from sklearn.model_selection import cross_val_predict y_train_ped = cross_val_predict(sgd_clf, Chapter3.BinaryClassifier_2.X_train, #๊ฐ ํ…Œ์ŠคํŠธ ํด๋“œ์—์„œ ์–ป์€ ์˜ˆ์ธก ๋ฐ˜ํ™˜ Chapter3.BinaryClassifier_2.y_train_5, cv=3) from sklearn.metrics import confusion_matrix confusion_result = confusion_matrix(Chapter3.BinaryClassifier_2.y_train_5, y_train_ped) #์˜ค์ฐจ ํ–‰๋ ฌ ์ƒ์„ฑ print(confusion_result) #[[53670 909][ 1146 4275]], ์˜ค์ฐจ ํ–‰๋ ฌ ์ถœ๋ ฅ def precisionANDrecall(sgd_clf): from sklearn.model_selection import cross_val_predict y_train_ped = cross_val_predict(sgd_clf, Chapter3.BinaryClassifier_2.X_train, #๊ฐ ํ…Œ์ŠคํŠธ ํด๋“œ์—์„œ ์–ป์€ ์˜ˆ์ธก ๋ฐ˜ํ™˜ Chapter3.BinaryClassifier_2.y_train_5, cv=3) from sklearn.metrics import precision_score, recall_score print("์ •๋ฐ€๋„ :", precision_score(Chapter3.BinaryClassifier_2.y_train_5, y_train_ped)) #์ •๋ฐ€๋„ ์ถœ๋ ฅ print("์žฌํ˜„์œจ :", recall_score(Chapter3.BinaryClassifier_2.y_train_5, y_train_ped)) #์žฌํ˜„์œจ ์ถœ๋ ฅ from sklearn.metrics import f1_score print("f1์ ์ˆ˜ :", f1_score(Chapter3.BinaryClassifier_2.y_train_5, y_train_ped)) #f1์ ์ˆ˜ ์ถœ๋ ฅ #f1์ ์ˆ˜ : F = 1 / ((a/์ •๋ฐ€๋„) + ((1-a)/์žฌํ˜„์œจ)) = (b**2 + 1) * (์ •๋ฐ€๋„ * ์žฌํ˜„์œจ / ((b**2 * ์ •๋ฐ€๋„) + ์žฌํ˜„์œจ)), b**2 = (1-a) / a #b๊ฐ€ 1๋ณด๋‹คํฌ๋ฉด ์žฌํ˜„์œจ์ด ๊ฐ•์กฐ, 1๋ณด๋‹ค ์ž‘์œผ๋ฉด ์ •๋ฐ€๋„๊ฐ€ ๊ฐ•์กฐ, b๊ฐ€ 1์ผ๋•Œ ์ ์ˆ˜๋ฅผ f1์ ์ˆ˜๋ผ๊ณ  ํ•จ def tradeoff(sgd_clf): y_scores = sgd_clf.decision_function(Chapter3.BinaryClassifier_2.X_train[0].reshape(1,-1)) #์ƒ˜ํ”Œ์˜ ์ ์ˆ˜๋ฅผ ๋ฐ˜ํ™˜ print(Chapter3.BinaryClassifier_2.y_train[0], "์˜ ์ ์ˆ˜ :", y_scores) #์ƒ˜ํ”Œ์ ์ˆ˜ ์ถœ๋ ฅ threshhold = 0 y_some_digit_pred = (y_scores > threshhold) print(y_some_digit_pred) #์ž„๊ณ„๊ฐ’๋ณด๋‹ค ๋†’์œผ๋ฉด true, ์ž‘์œผ๋ฉด false threshhold = 20000 #์ž„๊ณ„๊ฐ’ ์ฆ๊ฐ€ y_some_digit_pred = (y_scores > threshhold) print(y_some_digit_pred) # ์ž„๊ณ„๊ฐ’๋ณด๋‹ค ๋†’์œผ๋ฉด true, ์ž‘์œผ๋ฉด false from sklearn.model_selection import cross_val_predict y_scores = cross_val_predict(sgd_clf, Chapter3.BinaryClassifier_2.X_train, Chapter3.BinaryClassifier_2.y_train_5, cv=3, method="decision_function") #ํ›ˆ๋ จ์„ธํŠธ์— ์žˆ๋Š” ๋ชจ๋“  ์ƒ˜ํ”Œ์˜ ์ ์ˆ˜๋ฅผ ๊ตฌํ•จ from sklearn.metrics import precision_recall_curve precisions, recalls, thresholds = precision_recall_curve(Chapter3.BinaryClassifier_2.y_train_5, y_scores) #๊ฐ€๋Šฅํ•œ ๋ชจ๋“  ์ž„๊ณ—๊ฐ’์— ๋Œ€ํ•œ ์ •๋ฐ€๋„์™€ ์žฌํ˜„์œจ ๊ณ„์‚ฐ def plot_precision_recall_vs_threshold(precisions, recalls, thresholds): #์ž„๊ณ„๊ฐ’์— ๋Œ€ํ•œ ์ •๋ฐ€๋„์™€ ์žฌํ˜„์œจ ์‹œ๊ฐํ™” import matplotlib.pyplot as plt plt.plot(thresholds, precisions[:-1], "b--", label="precision") plt.plot(thresholds, recalls[:-1], "g--", label="recalls") plt.xlabel("thresholds") plt.legend(loc="center left") plt.ylim([0, 1]) plt.show() plot_precision_recall_vs_threshold(precisions, recalls, thresholds) def plot_precision_recall_and_threshold(precisions, recalls): #์ •๋ฐ€๋„์™€ ์žฌํ˜„์œจ์˜ ๊ด€๊ณ„๋ฅผ ์‹œ๊ฐํ™” import matplotlib.pyplot as plt #์žฌํ˜„์œจ์ด ๋ณ€ํ™”ํ• ๋•Œ ์ •๋ฐ€๋„์˜ ๋ณ€ํ™” ํ™•์ธ plt.title("Relation between precision and recall") plt.plot(recalls[:-1], precisions[:-1], "b--", label="precision") plt.xlabel("recalls") plt.ylabel("precisions") plt.ylim([0, 1]) plt.xlim([0, 1]) plt.show() plot_precision_recall_and_threshold(precisions, recalls) y_train_90 = (y_scores > 3000) #์ •๋ฐ€๋„๊ฐ€ 90์ด์ƒ์ด ๋˜๋ ค๋ฉด ์ž„๊ณ„๊ฐ’์ด 5000์ด์ƒ์ด์—ฌ์•ผ ํ•จ from sklearn.metrics import precision_score, recall_score #์žฌํ˜„์œจ์ด ๋„ˆ๋ฌด ๋‚ฎ์œผ๋ฉด ์ •๋ฐ€๋„๊ฐ€ ๋†’์•„๋„ ์œ ์šฉํ•˜์ง€ ์•Š์Œ print("์ •๋ฐ€๋„ :", precision_score(Chapter3.BinaryClassifier_2.y_train_5, y_train_90)) # ์ •๋ฐ€๋„ ์ถœ๋ ฅ print("์žฌํ˜„์œจ :", recall_score(Chapter3.BinaryClassifier_2.y_train_5, y_train_90)) # ์žฌํ˜„์œจ ์ถœ๋ ฅ ### PR๊ณก์„ ์„ ์‚ฌ์šฉํ•˜๋Š” ๊ฒฝ์šฐ ### # 1. ์–‘์„ฑ ํด๋ž˜์Šค๊ฐ€ ๋“œ๋ญ„ # 2. ๊ฑฐ์ง“ ์Œ์„ฑ๋ณด๋‹ค ๊ฑฐ์ง“ ์–‘์„ฑ์ด ๋‹ค ์ค‘์š” def rocCurve(sgd_clf): from sklearn.model_selection import cross_val_predict y_scores = cross_val_predict(sgd_clf, Chapter3.BinaryClassifier_2.X_train, Chapter3.BinaryClassifier_2.y_train_5, cv=3, method="decision_function") # ํ›ˆ๋ จ์„ธํŠธ์— ์žˆ๋Š” ๋ชจ๋“  ์ƒ˜ํ”Œ์˜ ์ ์ˆ˜๋ฅผ ๊ตฌํ•จ from sklearn.metrics import roc_curve fpr, tpr, thresholds = roc_curve(Chapter3.BinaryClassifier_2.y_train_5, y_scores) #๊ฑฐ์ง“์–‘์„ฑ๋น„์œจ, ์ง„์งœ์–‘์„ฑ๋น„์œจ, ์ž„๊ณ„๊ฐ’ ๊ณ„์‚ฐ def plot_roc_curve(fpr, tpr, label=None): #roc๊ณก์„  ์‹œ๊ฐํ™” from matplotlib import pyplot as plt #roc๊ณก์„ ์•„๋ž˜ ๋„“์ด(AUC)๊ฐ€ 1์— ๊ฐ€๊นŒ์šธ์ˆ˜๋ก ์ข‹์€ ๊ณก์„  plt.plot(fpr, tpr, linewidth=2, label=label) plt.plot([0, 1], [0, 1], "k--") #์™„์ „ํ•œ ๋žœ๋ค๋ถ„๋ฅ˜๊ธฐ(์ฐ์–ด๋งž์ถ”๊ธฐ)์˜ roc๊ณก์„  ์˜๋ฏธ, ์ข‹์€ ๋ถ„๋ฅ˜๊ธฐ๋Š” ์ด ์ง์„ ์œผ๋กœ๋ถ€ํ„ฐ ์ตœ๋Œ€ํ•œ ๋ฉ€๋ฆฌ ๋–จ์–ด์ ธ์•ผํ•จ plt.axis([0, 1, 0, 1]) #x, y์ถ•์˜ ๋ฒ”์œ„์„ค์ •, axis([xmin, xmax, ymin, ymax]) plt.xlabel("False positive rate") plt.ylabel("True positive rate") compareRndForest(fpr, tpr, "RandomForest") plt.legend(loc="lower right") plt.show() def compareRndForest(fpr, tpr, label=None): #๋žœ๋คํฌ๋ ˆ์ŠคํŠธ์˜ ROC ์‹œ๊ฐํ™” from sklearn.ensemble import RandomForestClassifier forest_clf = RandomForestClassifier(random_state=42) y_probas_forest = cross_val_predict(forest_clf, Chapter3.BinaryClassifier_2.X_train, Chapter3.BinaryClassifier_2.y_train_5, cv=3, method="predict_proba") #๋žœ๋คํฌ๋ ˆ์ŠคํŠธ๋ถ„๋ฅ˜๊ธฐ๋Š” decision_function๋Œ€์‹  ์ƒ˜ํ”Œ์ด ์ฃผ์–ด์ง„ ํด๋ž˜์Šค์— ์žˆ์„ ํ™•๋ฅ ์„ ๋ฐ˜ํ™˜ํ•˜๋Š” predict_proba ์‚ฌ์šฉ y_scores_forest = y_probas_forest[:, 1] #์–‘์„ฑ ํด๋ž˜์Šค์— ๋Œ€ํ•œ ํ™•๋ฅ ์„ ์ ์ˆ˜๋กœ ์‚ฌ์šฉ fpr_forest, tpr_forest, thresholds_forest = roc_curve(Chapter3.BinaryClassifier_2.y_train_5, y_scores_forest) from matplotlib import pyplot as plt plt.plot(fpr_forest, tpr_forest, label=label) from sklearn.metrics import roc_auc_score print("RandomForest's AUC :", roc_auc_score(Chapter3.BinaryClassifier_2.y_train_5, y_scores_forest)) # Roc์˜ AUC๋ฐ˜ํ™˜ plot_roc_curve(fpr, tpr, "SGD") from sklearn.metrics import roc_auc_score print("SGD's AUC :", roc_auc_score(Chapter3.BinaryClassifier_2.y_train_5, y_scores)) #Roc์˜ AUC๋ฐ˜ํ™˜ if __name__ == '__main__': sgd_clf = Chapter3.BinaryClassifier_2.getBinaryClassifier() #evaluation(sgd_clf) #confusionMatrix(sgd_clf) #precisionANDrecall(sgd_clf) #tradeoff(sgd_clf) rocCurve(sgd_clf)
# Date: 10/09/2020 # Author: rohith mulumudy # Description: manages the file structure import os class Files: def __init__(self, directory): self.directory = directory def create_file_structure(self, round_num): if not os.path.isdir(self.directory): os.mkdir(self.directory) if not os.path.isdir("{}/{:02d}-round".format(self.directory,round_num)): os.mkdir("{}/{:02d}-round".format(self.directory,round_num)) if not os.path.isdir("{}/{:02d}-round/redirection_domains".format(self.directory,round_num)): os.mkdir("{}/{:02d}-round/redirection_domains".format(self.directory,round_num)) if not os.path.isdir("{}/{:02d}-round/unreachable_domains".format(self.directory,round_num)): os.mkdir("{}/{:02d}-round/unreachable_domains".format(self.directory,round_num)) if not os.path.isdir("{}/{:02d}-round/san_domains".format(self.directory,round_num)): os.mkdir("{}/{:02d}-round/san_domains".format(self.directory,round_num)) if not os.path.isdir("{}/{:02d}-round/input".format(self.directory,round_num)): os.mkdir("{}/{:02d}-round/input".format(self.directory,round_num)) open("{}/{:02d}-round/redirection_domains/status_redirection.txt".format(self.directory,round_num),'w').close() open("{}/{:02d}-round/status_code_200.txt".format(self.directory,round_num),'w').close() open("{}/{:02d}-round/unreachable_domains/status_code_404.txt".format(self.directory,round_num),'w').close() open("{}/{:02d}-round/unreachable_domains/status_others.txt".format(self.directory,round_num),'w').close() open("{}/{:02d}-round/unreachable_domains/status_errors.txt".format(self.directory,round_num),'w').close() def copy_input_file(self, in_file, round_num): os.system("cp {} {}/{:02d}-round/input/hosts.txt".format(in_file,self.directory,round_num))
import argparse from datetime import datetime import torch from torch.optim import Adam from torchsummary import summary # pip install torchsummary from nn import BengaliNet, CrossEntropySumLoss, LabelSmoothingLoss from optim import optimize, ReduceLROnPlateau from utils.data import load_data from utils.tensorboard import MetricWriter def handle_arguments(): """Handles console arguments. `python main.py --help` gives an overview. Returns [Namespace]: images = [str] path to images .npy file labels = [str] path to labels CSV file test_ratio = [float] proportion of data for testing seed = [int] seed used for data splitting data_augmentation = [bool] whether to augment the training images drop_info_fn = [str] which info dropping algorithm to use class_balancing = [bool] whether to perform class balancing batch_size = [int] number of images in a batch label_smoothing = [bool] whether to use soft targets for the loss epochs = [int] number of iterations over the training data model = [str] path to save the trained model """ # process the command options parser = argparse.ArgumentParser() parser.add_argument('images', type=str, help='provide path in style: ' r'"kaggle\input\bengaliai-cv19\images.npy"') parser.add_argument('labels', type=str, help='provide path in style: ' r'"kaggle\input\bengaliai-cv19\labels.csv"') parser.add_argument('-t', '--test_ratio', type=float, default=0.2, help='proportion of data for testing, default: 0.2') parser.add_argument('-s', '--seed', type=int, default=None, help='seed ' 'used for consistent data splitting, default: None') parser.add_argument('-a', '--data_augmentation', action='store_true', help='switch to augment the images') drop_info_fns = ['cutout', 'gridmask', 'None'] # info dropping algorithms parser.add_argument('-d', '--drop_info_fn', type=str, choices=drop_info_fns, default=None, help='whether cutout, GridMask, or no ' 'information dropping algorithm is used, default: None') parser.add_argument('-c', '--class_balancing', action='store_true', help='switch to perform class balancing') parser.add_argument('-b', '--batch_size', type=int, default=32, help='batch size of DataLoader objects, default: 32') parser.add_argument('-l', '--label_smoothing', action='store_true', help='switch to use soft targets in loss computation') parser.add_argument('-e', '--epochs', type=int, default=50, help='number ' 'of iterations over training data, default: 50') parser.add_argument('-m', '--model', type=str, default='model.pt', help='path to save trained model, default: "model.pt"') # parse and print arguments args = parser.parse_args() for arg in vars(args): print(f'{arg.upper()}: {getattr(args, arg)}') return args if __name__ == '__main__': # get console arguments args = handle_arguments() # load training and validation data data = load_data(args.images, args.labels, args.test_ratio, args.seed, args.data_augmentation, args.drop_info_fn, args.class_balancing, args.batch_size) train_dataset, train_loader, val_loader, image_size = data # use GPU if available device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') print('DEVICE:', device) # initialize network and show summary model = BengaliNet(device).train() summary(model, input_size=(1, image_size, image_size), device=str(device)) # initialize optimizer, scheduler, and criterion optimizer = Adam([ {'params': list(model.parameters())[-6:-4], 'lr': 0.001}, {'params': list(model.parameters())[-4:-2], 'lr': 0.001}, {'params': list(model.parameters())[-2:], 'lr': 0.001}, {'params': list(model.parameters())[:-6], 'lr': 0.001}, ]) scheduler = ReduceLROnPlateau(optimizer) if args.label_smoothing: criterion = LabelSmoothingLoss(device, 0.1) else: criterion = CrossEntropySumLoss(device) # TensorBoard writers current_time = datetime.now().strftime("%Y-%m-%d/%H'%M'%S") train_writer = MetricWriter(device, f'runs/{current_time}/train') train_writer.add_graph(model, next(iter(train_loader))[0]) # show model val_writer = MetricWriter(device, f'runs/{current_time}/validation') # train and validate model optimize(model, train_dataset, train_loader, train_writer, val_loader, val_writer, optimizer, scheduler, criterion, args.epochs, args.model) # close TensorBoard writers to flush communication train_writer.close() val_writer.close()
import numpy as np import pytest import math from sklearn.base import clone from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor import doubleml as dml from ._utils import draw_smpls from ._utils_iivm_manual import fit_iivm, boot_iivm @pytest.fixture(scope='module', params=[[RandomForestRegressor(max_depth=2, n_estimators=10), RandomForestClassifier(max_depth=2, n_estimators=10)]]) def learner(request): return request.param @pytest.fixture(scope='module', params=['LATE']) def score(request): return request.param @pytest.fixture(scope='module', params=[1, 2]) def n_folds(request): return request.param @pytest.fixture(scope="module") def dml_iivm_no_cross_fit_fixture(generate_data_iivm, learner, score, n_folds): boot_methods = ['normal'] n_rep_boot = 491 dml_procedure = 'dml1' # collect data data = generate_data_iivm x_cols = data.columns[data.columns.str.startswith('X')].tolist() # Set machine learning methods for m & g ml_g = clone(learner[0]) ml_m = clone(learner[1]) ml_r = clone(learner[1]) np.random.seed(3141) obj_dml_data = dml.DoubleMLData(data, 'y', ['d'], x_cols, 'z') dml_iivm_obj = dml.DoubleMLIIVM(obj_dml_data, ml_g, ml_m, ml_r, n_folds, dml_procedure=dml_procedure, apply_cross_fitting=False) dml_iivm_obj.fit() np.random.seed(3141) y = data['y'].values x = data.loc[:, x_cols].values d = data['d'].values z = data['z'].values if n_folds == 1: smpls = [(np.arange(len(y)), np.arange(len(y)))] else: n_obs = len(y) all_smpls = draw_smpls(n_obs, n_folds) smpls = all_smpls[0] smpls = [smpls[0]] res_manual = fit_iivm(y, x, d, z, clone(learner[0]), clone(learner[1]), clone(learner[1]), [smpls], dml_procedure, score) res_dict = {'coef': dml_iivm_obj.coef, 'coef_manual': res_manual['theta'], 'se': dml_iivm_obj.se, 'se_manual': res_manual['se'], 'boot_methods': boot_methods} for bootstrap in boot_methods: np.random.seed(3141) boot_theta, boot_t_stat = boot_iivm(y, d, z, res_manual['thetas'], res_manual['ses'], res_manual['all_g_hat0'], res_manual['all_g_hat1'], res_manual['all_m_hat'], res_manual['all_r_hat0'], res_manual['all_r_hat1'], [smpls], score, bootstrap, n_rep_boot, apply_cross_fitting=False) np.random.seed(3141) dml_iivm_obj.bootstrap(method=bootstrap, n_rep_boot=n_rep_boot) res_dict['boot_coef' + bootstrap] = dml_iivm_obj.boot_coef res_dict['boot_t_stat' + bootstrap] = dml_iivm_obj.boot_t_stat res_dict['boot_coef' + bootstrap + '_manual'] = boot_theta res_dict['boot_t_stat' + bootstrap + '_manual'] = boot_t_stat return res_dict @pytest.mark.ci def test_dml_iivm_no_cross_fit_coef(dml_iivm_no_cross_fit_fixture): assert math.isclose(dml_iivm_no_cross_fit_fixture['coef'], dml_iivm_no_cross_fit_fixture['coef_manual'], rel_tol=1e-9, abs_tol=1e-4) @pytest.mark.ci def test_dml_iivm_no_cross_fit_se(dml_iivm_no_cross_fit_fixture): assert math.isclose(dml_iivm_no_cross_fit_fixture['se'], dml_iivm_no_cross_fit_fixture['se_manual'], rel_tol=1e-9, abs_tol=1e-4) @pytest.mark.ci def test_dml_iivm_no_cross_fit_boot(dml_iivm_no_cross_fit_fixture): for bootstrap in dml_iivm_no_cross_fit_fixture['boot_methods']: assert np.allclose(dml_iivm_no_cross_fit_fixture['boot_coef' + bootstrap], dml_iivm_no_cross_fit_fixture['boot_coef' + bootstrap + '_manual'], rtol=1e-9, atol=1e-4) assert np.allclose(dml_iivm_no_cross_fit_fixture['boot_t_stat' + bootstrap], dml_iivm_no_cross_fit_fixture['boot_t_stat' + bootstrap + '_manual'], rtol=1e-9, atol=1e-4)
import tensorflow as tf import numpy as np import os import sys from PIL import Image, ImageOps path = '/content/base/' def image_preprocessing(filename, x_size, y_size): im = Image.open(filename) if filename.endswith('.png'): im = im.convert('RGB') downsampled_im = ImageOps.fit(im, (x_size, y_size), method=Image.LANCZOS) norm_im = np.array(downsampled_im, dtype=np.float32)/255. downsampled_im.close() im.close() return norm_im if __name__ == '__main__': names = [] for name in os.listdir(path): if name.endswith('.jpg'): names.append(name[:-4]) dataset_X = np.zeros((len(names), 256, 256, 3)) dataset_Y = np.zeros((len(names), 256, 256, 3)) for i in range(len(names)): print(names[i]) dataset_X[i] = image_preprocessing(os.path.join(path, names[i] + '.jpg'), 256, 256) dataset_Y[i] = image_preprocessing(os.path.join(path, names[i] + '.png'), 256, 256) np.save('dataset_X.npy', dataset_X) np.save('dataset_Y.npy', dataset_Y)
import numpy as np from rpy2.robjects import numpy2ri numpy2ri.activate() from rpy2.robjects.packages import importr stepR = importr('stepR') # x : np.ndarray # t : np.ndarray # alpha : float # -> ([x.dtype], [t.dtype], [(t.dtype, t.dtype)]) def smuce_r(x, t, alpha): res = stepR.stepFit(x, x=t, alpha=alpha, jumpint=True) return list(res.rx2('value')), list(res.rx2('leftEnd')), list(zip(res.rx2('leftEndLeftBound'), res.rx2('leftEndRightBound')))
๏ปฟ# coding: utf-8 #################################### #ๆœ€ๅˆใฎไพ‹(MyButtonใ‚’Globalใงๅ…ฑๆœ‰) #################################### if "IronPythonใŒๅ‹•ใใพใ—ใŸ" == MyButton.Parent.Text: MyButton.Text = "Globalsใฎๅˆฉ็”จ ๏ผˆ1st.py๏ผ‰" MyButton.Parent.Text = "IronPython" elif "IronPython" == MyButton.Parent.Text: MyButton.Text = "ใ‚นใ‚ฏใƒชใƒ—ใƒˆใ‚’ๅฎŸ่กŒใ—ใพใ—ใŸ" MyButton.Parent.Text = "IronPythonใŒๅ‹•ใใพใ—ใŸ"
import pandas as pd import numpy as np import glob import datetime sonde = pd.read_csv('All Sonde Output.csv', header=0) GPS = pd.read_csv('Final out.csv', header=0) CO2 = pd.read_csv('Final CO2.csv', header=0) sondeCO2 = pd.merge(sonde, CO2, on='time') print(sondeCO2)
from keras.preprocessing.sequence import pad_sequences from keras.preprocessing.text import Tokenizer from keras.layers.merge import concatenate from keras.models import Sequential, Model from keras.layers import Dense, Embedding, Activation, merge, Input, Lambda, Reshape from keras.layers import Convolution1D, Flatten, Dropout, MaxPool1D, GlobalAveragePooling1D, BatchNormalization from keras.layers import LSTM, GRU, TimeDistributed, Bidirectional, SpatialDropout1D from keras.utils.np_utils import to_categorical from keras import initializers from keras import backend as K from keras.engine.topology import Layer from keras.optimizers import Adam from keras import callbacks from keras.models import load_model from keras.utils import Sequence import numpy as np from gensim.models import word2vec import random import os import sys import pandas as pd import csv import jieba jieba.set_dictionary(sys.argv[4]) wordlist_path = "x_word.txt" x_word = open(wordlist_path, "wb") # training data df = pd.read_csv(sys.argv[1]) for sentence in df["comment"]: seg_list = jieba.cut(sentence.replace(" ", ""), cut_all=False) x_word.write( " ".join(seg_list).encode('utf-8') ) x_word.write(b'\n') # testing data df = pd.read_csv(sys.argv[3]) for sentence in df["comment"]: seg_list = jieba.cut(sentence.replace(" ", ""), cut_all=False) x_word.write( " ".join(seg_list).encode('utf-8') ) x_word.write(b'\n') x_word.close() x_word = list() f = open(wordlist_path, "r") for line in f: x_word.append(line[:-1]) MAX_SEQUENCE_LENGTH = 100 tokenizer = Tokenizer(num_words=None) tokenizer.fit_on_texts(x_word) word_index = tokenizer.word_index print('Found %s unique tokens.' % len(word_index)) count_thres = 3 low_count_words = [w for w,c in tokenizer.word_counts.items() if c < count_thres] for w in low_count_words: del tokenizer.word_index[w] del tokenizer.word_docs[w] del tokenizer.word_counts[w] sequences = tokenizer.texts_to_sequences(x_word) word_index = tokenizer.word_index print('Found %s unique tokens.' % len(word_index)) data = pad_sequences(sequences, maxlen=MAX_SEQUENCE_LENGTH) print('Shape of data tensor:', data.shape) yf = pd.read_csv(sys.argv[2]) raw_y = yf["label"] train_y = to_categorical(raw_y) MAX_NB_WORDS = len(word_index) + 1 EMBEDDING_DIM = 300 wordlist = word2vec.LineSentence(wordlist_path) model = word2vec.Word2Vec( wordlist, size=EMBEDDING_DIM, window=3, min_count=3, workers=8) model.train(wordlist, total_examples=len(x_word), epochs=30) weight_matrix = np.zeros((MAX_NB_WORDS, EMBEDDING_DIM)) vocab = tokenizer.word_index for word, i in vocab.items(): try: weight_matrix[i] = model.wv[word] except KeyError: np.random.seed(66) # fixed seed for unknown weight_matrix[i]=np.random.normal(0,np.sqrt(0.25),EMBEDDING_DIM) del model class Attention(Layer): def __init__(self, attention_size, **kwargs): self.attention_size = attention_size super(Attention, self).__init__(**kwargs) def build(self, input_shape): # W: (EMBED_SIZE, ATTENTION_SIZE) # b: (ATTENTION_SIZE, 1) # u: (ATTENTION_SIZE, 1) self.W = self.add_weight(name="W_{:s}".format(self.name), shape=(input_shape[-1], self.attention_size), initializer="glorot_normal", trainable=True) self.b = self.add_weight(name="b_{:s}".format(self.name), shape=(input_shape[1], 1), initializer="zeros", trainable=True) self.u = self.add_weight(name="u_{:s}".format(self.name), shape=(self.attention_size, 1), initializer="glorot_normal", trainable=True) super(Attention, self).build(input_shape) def call(self, x, mask=None): # input: (BATCH_SIZE, MAX_TIMESTEPS, EMBED_SIZE) # et: (BATCH_SIZE, MAX_TIMESTEPS, ATTENTION_SIZE) et = K.tanh(K.dot(x, self.W) + self.b) # at: (BATCH_SIZE, MAX_TIMESTEPS) at = K.softmax(K.squeeze(K.dot(et, self.u), axis=-1)) if mask is not None: at *= K.cast(mask, K.floatx()) # ot: (BATCH_SIZE, MAX_TIMESTEPS, EMBED_SIZE) atx = K.expand_dims(at, axis=-1) ot = atx * x # output: (BATCH_SIZE, EMBED_SIZE) output = K.sum(ot, axis=1) return output def compute_mask(self, input, input_mask=None): return None def compute_output_shape(self, input_shape): return (input_shape[0], input_shape[-1]) def get_config(self): base_config = super(Attention, self).get_config() base_config["attention_size"] = self.attention_size return base_config def get_model(seed): random.seed(seed) lr = random.uniform(0.0001, 0.00005) CNN = random.choice([True, False]) Conv_size = random.choice([64, 128, 256, 512]) LSTM_size = random.choice([128, 256, 512, 1024]) Dense_size = random.choice([128, 256, 512, 1024]) drop1 = random.uniform(0.1, 0.3) drop2 = random.uniform(0.1, 0.3) drop3 = random.uniform(0.2, 0.5) recur_drop = random.uniform(0.1, 0.3) adam = Adam(lr=lr, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False) model = Sequential() model.add(Embedding(MAX_NB_WORDS, EMBEDDING_DIM, weights=[weight_matrix], input_length=data.shape[1], trainable=True)) if CNN == True: model.add(Convolution1D(Conv_size, 3, padding='same', strides = 1)) model.add(Activation('relu')) model.add(MaxPool1D(pool_size=2)) model.add(Dropout(drop1)) model.add(Bidirectional(LSTM(LSTM_size, dropout=drop2, recurrent_dropout=recur_drop, return_sequences=True))) model.add(Attention(100)) model.add(Dense(Dense_size, activation='relu')) model.add(Dropout(drop3)) model.add(Dense(2, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer=adam, metrics=['accuracy']) return model epochs = 20 batch_size = 64 model = get_model(11) filepath = "models/{epoch:02d}-{acc:.4f}-{val_acc:.4f}.h5" earlystop = callbacks.EarlyStopping(monitor='val_acc', min_delta=0, patience=2, verbose=0, mode='auto', baseline=None, restore_best_weights=False) history = model.fit(data[:119018,:], train_y[:119018,:], epochs=epochs, batch_size=batch_size,validation_split=0.1, callbacks=[earlystop])
""" realizar la multiplicacion de numeros de una lista Tarea 17 """ def multiplicacion(lista): res = 1 for i in range(len(lista)): res = res * lista[i] return res prueba1 = [1,2,3,4]#24 prueba2 = [1,2]#2 print(multiplicacion(prueba1)) print(multiplicacion(prueba2))
from server import app from flask import jsonify from api.model.signboard import Signboard @app.route('/signboards') def get_signboard(): r = Signboard.query.all() return jsonify({"data": r}) @app.route('/signboard/<string:customer_code>/<string:signboard_code>', methods=['PUT']) def put_signboard(customer_code, signboard_code): # the signboard to update signboard = Signboard.query().filter_by(signboard_code= signboard_code).first() # the date to put on the signboard data = data = request.get_json(); # saving in database
import os from sendgrid import SendGridAPIClient from sendgrid.helpers.mail import Mail def sendEmail(body): message = Mail( from_email='jhalv001@ucr.edu', to_emails='jhalvorson6687@gmail.com', subject='RMailbox Package Notification ', html_content= body) try: sg = SendGridAPIClient(os.environ.get('SENDGRID_API_KEY')) response = sg.send(message) print(response.status_code, response.body, response.headers) except Exception as e: print(e)
import sys import scikit_posthocs as sp import re import scipy.stats as ss from scipy import stats from numpy import * alpha=0.05 def check_means(file1, file2): mean1 = mean(file1) mean2 = mean(file2) if mean1 > mean2: return 1 elif mean1 < mean2: return -1 else: return 0 def process_instance(list_files): ##Load all the algoritms in a different class.. Wins=[0]*len(list_files) Losts=[0]*len(list_files) Ties=[0]*len(list_files) data = list() for i, val1 in enumerate(list_files): data.append(loadtxt(val1)) ##Run kruskal test, a p-value > 0.05 accepts the null hypothesis T, p = ss.kruskal(*data) ##null hypothesis is rejected, try a post-hoc analyzes with a correction procedure if p < alpha: ptable = sp.posthoc_dunn(data, p_adjust = 'hommel') for i in range(0,len(list_files)): val1=list_files[i] for j in range(0, i): val2=list_files[j] if ptable.iat[i,j] > alpha: Ties[i]+=1 Ties[j]+=1 else: if check_means(loadtxt(val1),loadtxt(val2)) == 1: Wins[i]+=1 Losts[j]+=1 elif check_means(loadtxt(val1),loadtxt(val2)) == -1: Wins[j]+=1 Losts[i]+=1 else: Ties[i] +=1 Ties[j] +=1 else: Ties[0:len(list_files)] += ones(len(list_files))*(len(list_files)-1) for i, val1 in enumerate(list_files): sys.stdout.write(" "+str(Wins[i])+" "+str(Losts[i])+" "+str(Ties[i])) sys.stdout.flush() print("") def process_instance_info(list_files): ##Load all the algoritms in a different class.. Wins=[0]*len(list_files) Losts=[0]*len(list_files) Ties=[0]*len(list_files) data = list() for i, val1 in enumerate(list_files): data.append(loadtxt(val1)) ##Run kruskal test, a p-value > 0.05 accepts the null hypothesis T, p = ss.kruskal(*data) bestv=-100000 #bestv=100000 for i, val1 in enumerate(list_files): #bestv = min(bestv, median(loadtxt(val1))) bestv = max(bestv, median(loadtxt(val1))) for i, val1 in enumerate(list_files): sys.stdout.write(" "+str(abs(bestv-median(loadtxt(val1))))) sys.stdout.flush() print("") def Kruskal_Posthoc_MannWhitney_score(): list_files = open(sys.argv[1], "r") for inst in list_files.read().split('\n'): if len(inst) == 0: print(inst) continue problem = inst.split(' ')[0] algorithms = inst.split(' ')[1:] while("" in algorithms): algorithms.remove("") ##remove empty elements sys.stdout.write(problem) sys.stdout.flush() process_instance(algorithms) def Kruskal_Posthoc_MannWhitney_info(): print("Kruskal test with posthoc MannWhitney and holm correction") list_files = open(sys.argv[1], "r") for inst in list_files.read().split('\n'): if len(inst)==0: continue problem = inst.split(' ')[0] algorithms = inst.split(' ')[1:] while("" in algorithms): algorithms.remove("") ##remove empty elements sys.stdout.write(problem) sys.stdout.flush() process_instance_info(algorithms) #####################################MAIN#################### ##Load the entire file Kruskal_Posthoc_MannWhitney_score() Kruskal_Posthoc_MannWhitney_info()
a = input("ะ’ะฒะตะดะธ ัั‚ั€ะพะบัƒ:") if len(a) % 2: a1 = a[len(a) // 2 + 1:] + a[:len(a) // 2 + 1] else: a1 = a[len(a) // 2:] + a[:len(a) // 2] print(a1)
#!/bin/python2.7 # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # author: fmount <francesco.pantano@linux.com> from keystoneauth1.identity import v2 from keystoneauth1 import session from keystoneclient.v2_0 import client from prettytable import PrettyTable from user import User class Wkeystone(): # Just to make sure there is only one client __instance = None def __init__(self, u, debug): if Wkeystone.__instance: raise Exception("Just one client per session allowed!") Wkeystone.__instance = self self.user = u self.debug = debug auth = v2.Password(username=u.name, password=u.password, \ tenant_name=u.tenant_name, auth_url=u.endpoint) self.s = session.Session(auth=auth) self.keystone = client.Client(session=self.s) def __str__(self): print(self.keystone) def saysomething(self): print "I exist" def print_tenant_list(self): print(self.keystone.tenants.list())
import os import re import random import math import torch import torch.nn as nn import numpy as np from torch.autograd.function import Function import cv2 INTER_MODE = {'NEAREST': cv2.INTER_NEAREST, 'BILINEAR': cv2.INTER_LINEAR, 'BICUBIC': cv2.INTER_CUBIC} class CenterLoss(nn.Module): def __init__(self, num_classes, feat_dim, size_average=True): super(CenterLoss, self).__init__() self.centers = nn.Parameter(torch.randn(num_classes, feat_dim)) self.centerlossfunc = CenterlossFunc.apply self.feat_dim = feat_dim self.size_average = size_average def forward(self, label, feat): batch_size = feat.size(0) feat = feat.view(batch_size, -1) # To check the dim of centers and features if feat.size(1) != self.feat_dim: raise ValueError("Center's dim: {0} should be equal to input feature's \ dim: {1}".format(self.feat_dim,feat.size(1))) batch_size_tensor = feat.new_empty(1).fill_(batch_size if self.size_average else 1) loss = self.centerlossfunc(feat, label, self.centers, batch_size_tensor) return loss class CenterlossFunc(Function): @staticmethod def forward(ctx, feature, label, centers, batch_size): ctx.save_for_backward(feature, label, centers, batch_size) centers_batch = centers.index_select(0, label.long()) return (feature - centers_batch).pow(2).sum() / 2.0 / batch_size @staticmethod def backward(ctx, grad_output): feature, label, centers, batch_size = ctx.saved_tensors centers_batch = centers.index_select(0, label.long()) diff = centers_batch - feature # init every iteration counts = centers.new_ones(centers.size(0)) ones = centers.new_ones(label.size(0)) grad_centers = centers.new_zeros(centers.size()) counts = counts.scatter_add_(0, label.long(), ones) grad_centers.scatter_add_(0, label.unsqueeze(1).expand(feature.size()).long(), diff) grad_centers = grad_centers/counts.view(-1, 1) return - grad_output * diff / batch_size, None, grad_centers / batch_size, None class CrossEntropyLabelSmooth(nn.Module): def __init__(self, num_classes, epsilon,ss): super(CrossEntropyLabelSmooth, self).__init__() self.num_classes = num_classes self.epsilon = epsilon self.logsoftmax = nn.LogSoftmax(dim=1) def forward(self, inputs, targets): log_probs = self.logsoftmax(inputs) targets = torch.zeros_like(log_probs).scatter_(1, targets.unsqueeze(1), 1) targets = (1 - self.epsilon) * targets + self.epsilon / self.num_classes loss = (-targets * log_probs).mean(0).sum() return loss def mixup_data(x, y, alpha=0.2, use_cuda=True): '''Returns mixed inputs, pairs of targets, and lambda''' if alpha > 0: lam = np.random.beta(alpha, alpha) else: lam = 1 batch_size = x.size()[0] if use_cuda: index = torch.randperm(batch_size).cuda() else: index = torch.randperm(batch_size) mixed_x = lam * x + (1 - lam) * x[index, :] y_a, y_b = y, y[index] return mixed_x, y_a, y_b, lam def mixup_criterion(criterion, pred, y_a, y_b, lam): return lam * criterion(pred, y_a) + (1 - lam) * criterion(pred, y_b) class RandomErasing: """Random erasing the an rectangle region in Image. Class that performs Random Erasing in Random Erasing Data Augmentation by Zhong et al. Args: sl: min erasing area region sh: max erasing area region r1: min aspect ratio range of earsing region p: probability of performing random erasing """ def __init__(self, p=0.5, sl=0.02, sh=0.4, r1=0.3): self.p = p self.s = (sl, sh) self.r = (r1, 1/r1) def __call__(self, img): """ perform random erasing Args: img: opencv numpy array in form of [w, h, c] range from [0, 255] Returns: erased img """ assert len(img.shape) == 3, 'image should be a 3 dimension numpy array' if random.random() > self.p: return img else: while True: Se = random.uniform(*self.s) * img.shape[0] * img.shape[1] re = random.uniform(*self.r) He = int(round(math.sqrt(Se * re))) We = int(round(math.sqrt(Se / re))) xe = random.randint(0, img.shape[1]) ye = random.randint(0, img.shape[0]) if xe + We <= img.shape[1] and ye + He <= img.shape[0]: img[ye : ye + He, xe : xe + We, :] = np.random.randint(low=0, high=255, size=(He, We, img.shape[2])) return img if __name__ == "__main__": img = cv2.imread("test.jpg") RE = RandomErasing(p=0.5) for i in range(20): img1 = RE(img.copy()) cv2.imshow("test", img1) cv2.waitKey(1000)
# This file is part of beets. # Copyright 2016, Fabrice Laporte # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. """Abstraction layer to resize images using PIL, ImageMagick, or a public resizing proxy if neither is available. """ from itertools import chain import subprocess import os import os.path import platform import re from tempfile import NamedTemporaryFile from urllib.parse import urlencode from beets import logging from beets import util from beets.util import bytestring_path, displayable_path, py3_path, syspath PROXY_URL = 'https://images.weserv.nl/' log = logging.getLogger('beets') def resize_url(url, maxwidth, quality=0): """Return a proxied image URL that resizes the original image to maxwidth (preserving aspect ratio). """ params = { 'url': url.replace('http://', ''), 'w': maxwidth, } if quality > 0: params['q'] = quality return '{}?{}'.format(PROXY_URL, urlencode(params)) def temp_file_for(path): """Return an unused filename with the same extension as the specified path. """ ext = os.path.splitext(path)[1] with NamedTemporaryFile(suffix=py3_path(ext), delete=False) as f: return bytestring_path(f.name) class LocalBackendNotAvailableError(Exception): pass _NOT_AVAILABLE = object() class LocalBackend: @classmethod def available(cls): try: cls.version() return True except LocalBackendNotAvailableError: return False class IMBackend(LocalBackend): NAME = "ImageMagick" # These fields are used as a cache for `version()`. `_legacy` indicates # whether the modern `magick` binary is available or whether to fall back # to the old-style `convert`, `identify`, etc. commands. _version = None _legacy = None @classmethod def version(cls): """Obtain and cache ImageMagick version. Raises `LocalBackendNotAvailableError` if not available. """ if cls._version is None: for cmd_name, legacy in (('magick', False), ('convert', True)): try: out = util.command_output([cmd_name, "--version"]).stdout except (subprocess.CalledProcessError, OSError) as exc: log.debug('ImageMagick version check failed: {}', exc) cls._version = _NOT_AVAILABLE else: if b'imagemagick' in out.lower(): pattern = br".+ (\d+)\.(\d+)\.(\d+).*" match = re.search(pattern, out) if match: cls._version = (int(match.group(1)), int(match.group(2)), int(match.group(3))) cls._legacy = legacy if cls._version is _NOT_AVAILABLE: raise LocalBackendNotAvailableError() else: return cls._version def __init__(self): """Initialize a wrapper around ImageMagick for local image operations. Stores the ImageMagick version and legacy flag. If ImageMagick is not available, raise an Exception. """ self.version() # Use ImageMagick's magick binary when it's available. # If it's not, fall back to the older, separate convert # and identify commands. if self._legacy: self.convert_cmd = ['convert'] self.identify_cmd = ['identify'] self.compare_cmd = ['compare'] else: self.convert_cmd = ['magick'] self.identify_cmd = ['magick', 'identify'] self.compare_cmd = ['magick', 'compare'] def resize(self, maxwidth, path_in, path_out=None, quality=0, max_filesize=0): """Resize using ImageMagick. Use the ``magick`` program or ``convert`` on older versions. Return the output path of resized image. """ path_out = path_out or temp_file_for(path_in) log.debug('artresizer: ImageMagick resizing {0} to {1}', displayable_path(path_in), displayable_path(path_out)) # "-resize WIDTHx>" shrinks images with the width larger # than the given width while maintaining the aspect ratio # with regards to the height. # ImageMagick already seems to default to no interlace, but we include # it here for the sake of explicitness. cmd = self.convert_cmd + [ syspath(path_in, prefix=False), '-resize', f'{maxwidth}x>', '-interlace', 'none', ] if quality > 0: cmd += ['-quality', f'{quality}'] # "-define jpeg:extent=SIZEb" sets the target filesize for imagemagick # to SIZE in bytes. if max_filesize > 0: cmd += ['-define', f'jpeg:extent={max_filesize}b'] cmd.append(syspath(path_out, prefix=False)) try: util.command_output(cmd) except subprocess.CalledProcessError: log.warning('artresizer: IM convert failed for {0}', displayable_path(path_in)) return path_in return path_out def get_size(self, path_in): cmd = self.identify_cmd + [ '-format', '%w %h', syspath(path_in, prefix=False) ] try: out = util.command_output(cmd).stdout except subprocess.CalledProcessError as exc: log.warning('ImageMagick size query failed') log.debug( '`convert` exited with (status {}) when ' 'getting size with command {}:\n{}', exc.returncode, cmd, exc.output.strip() ) return None try: return tuple(map(int, out.split(b' '))) except IndexError: log.warning('Could not understand IM output: {0!r}', out) return None def deinterlace(self, path_in, path_out=None): path_out = path_out or temp_file_for(path_in) cmd = self.convert_cmd + [ syspath(path_in, prefix=False), '-interlace', 'none', syspath(path_out, prefix=False), ] try: util.command_output(cmd) return path_out except subprocess.CalledProcessError: # FIXME: Should probably issue a warning? return path_in def get_format(self, filepath): cmd = self.identify_cmd + [ '-format', '%[magick]', syspath(filepath) ] try: return util.command_output(cmd).stdout except subprocess.CalledProcessError: # FIXME: Should probably issue a warning? return None def convert_format(self, source, target, deinterlaced): cmd = self.convert_cmd + [ syspath(source), *(["-interlace", "none"] if deinterlaced else []), syspath(target), ] try: subprocess.check_call( cmd, stderr=subprocess.DEVNULL, stdout=subprocess.DEVNULL ) return target except subprocess.CalledProcessError: # FIXME: Should probably issue a warning? return source @property def can_compare(self): return self.version() > (6, 8, 7) def compare(self, im1, im2, compare_threshold): is_windows = platform.system() == "Windows" # Converting images to grayscale tends to minimize the weight # of colors in the diff score. So we first convert both images # to grayscale and then pipe them into the `compare` command. # On Windows, ImageMagick doesn't support the magic \\?\ prefix # on paths, so we pass `prefix=False` to `syspath`. convert_cmd = self.convert_cmd + [ syspath(im2, prefix=False), syspath(im1, prefix=False), '-colorspace', 'gray', 'MIFF:-' ] compare_cmd = self.compare_cmd + [ '-define', 'phash:colorspaces=sRGB,HCLp', '-metric', 'PHASH', '-', 'null:', ] log.debug('comparing images with pipeline {} | {}', convert_cmd, compare_cmd) convert_proc = subprocess.Popen( convert_cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, close_fds=not is_windows, ) compare_proc = subprocess.Popen( compare_cmd, stdin=convert_proc.stdout, stdout=subprocess.PIPE, stderr=subprocess.PIPE, close_fds=not is_windows, ) # Check the convert output. We're not interested in the # standard output; that gets piped to the next stage. convert_proc.stdout.close() convert_stderr = convert_proc.stderr.read() convert_proc.stderr.close() convert_proc.wait() if convert_proc.returncode: log.debug( 'ImageMagick convert failed with status {}: {!r}', convert_proc.returncode, convert_stderr, ) return None # Check the compare output. stdout, stderr = compare_proc.communicate() if compare_proc.returncode: if compare_proc.returncode != 1: log.debug('ImageMagick compare failed: {0}, {1}', displayable_path(im2), displayable_path(im1)) return None out_str = stderr else: out_str = stdout try: phash_diff = float(out_str) except ValueError: log.debug('IM output is not a number: {0!r}', out_str) return None log.debug('ImageMagick compare score: {0}', phash_diff) return phash_diff <= compare_threshold @property def can_write_metadata(self): return True def write_metadata(self, file, metadata): assignments = list(chain.from_iterable( ('-set', k, v) for k, v in metadata.items() )) command = self.convert_cmd + [file, *assignments, file] util.command_output(command) class PILBackend(LocalBackend): NAME = "PIL" @classmethod def version(cls): try: __import__('PIL', fromlist=['Image']) except ImportError: raise LocalBackendNotAvailableError() def __init__(self): """Initialize a wrapper around PIL for local image operations. If PIL is not available, raise an Exception. """ self.version() def resize(self, maxwidth, path_in, path_out=None, quality=0, max_filesize=0): """Resize using Python Imaging Library (PIL). Return the output path of resized image. """ path_out = path_out or temp_file_for(path_in) from PIL import Image log.debug('artresizer: PIL resizing {0} to {1}', displayable_path(path_in), displayable_path(path_out)) try: im = Image.open(syspath(path_in)) size = maxwidth, maxwidth im.thumbnail(size, Image.Resampling.LANCZOS) if quality == 0: # Use PIL's default quality. quality = -1 # progressive=False only affects JPEGs and is the default, # but we include it here for explicitness. im.save(py3_path(path_out), quality=quality, progressive=False) if max_filesize > 0: # If maximum filesize is set, we attempt to lower the quality # of jpeg conversion by a proportional amount, up to 3 attempts # First, set the maximum quality to either provided, or 95 if quality > 0: lower_qual = quality else: lower_qual = 95 for i in range(5): # 5 attempts is an arbitrary choice filesize = os.stat(syspath(path_out)).st_size log.debug("PIL Pass {0} : Output size: {1}B", i, filesize) if filesize <= max_filesize: return path_out # The relationship between filesize & quality will be # image dependent. lower_qual -= 10 # Restrict quality dropping below 10 if lower_qual < 10: lower_qual = 10 # Use optimize flag to improve filesize decrease im.save(py3_path(path_out), quality=lower_qual, optimize=True, progressive=False) log.warning("PIL Failed to resize file to below {0}B", max_filesize) return path_out else: return path_out except OSError: log.error("PIL cannot create thumbnail for '{0}'", displayable_path(path_in)) return path_in def get_size(self, path_in): from PIL import Image try: im = Image.open(syspath(path_in)) return im.size except OSError as exc: log.error("PIL could not read file {}: {}", displayable_path(path_in), exc) return None def deinterlace(self, path_in, path_out=None): path_out = path_out or temp_file_for(path_in) from PIL import Image try: im = Image.open(syspath(path_in)) im.save(py3_path(path_out), progressive=False) return path_out except IOError: # FIXME: Should probably issue a warning? return path_in def get_format(self, filepath): from PIL import Image, UnidentifiedImageError try: with Image.open(syspath(filepath)) as im: return im.format except (ValueError, TypeError, UnidentifiedImageError, FileNotFoundError): log.exception("failed to detect image format for {}", filepath) return None def convert_format(self, source, target, deinterlaced): from PIL import Image, UnidentifiedImageError try: with Image.open(syspath(source)) as im: im.save(py3_path(target), progressive=not deinterlaced) return target except (ValueError, TypeError, UnidentifiedImageError, FileNotFoundError, OSError): log.exception("failed to convert image {} -> {}", source, target) return source @property def can_compare(self): return False def compare(self, im1, im2, compare_threshold): # It is an error to call this when ArtResizer.can_compare is not True. raise NotImplementedError() @property def can_write_metadata(self): return True def write_metadata(self, file, metadata): from PIL import Image, PngImagePlugin # FIXME: Detect and handle other file types (currently, the only user # is the thumbnails plugin, which generates PNG images). im = Image.open(syspath(file)) meta = PngImagePlugin.PngInfo() for k, v in metadata.items(): meta.add_text(k, v, 0) im.save(py3_path(file), "PNG", pnginfo=meta) class Shareable(type): """A pseudo-singleton metaclass that allows both shared and non-shared instances. The ``MyClass.shared`` property holds a lazily-created shared instance of ``MyClass`` while calling ``MyClass()`` to construct a new object works as usual. """ def __init__(cls, name, bases, dict): super().__init__(name, bases, dict) cls._instance = None @property def shared(cls): if cls._instance is None: cls._instance = cls() return cls._instance BACKEND_CLASSES = [ IMBackend, PILBackend, ] class ArtResizer(metaclass=Shareable): """A singleton class that performs image resizes. """ def __init__(self): """Create a resizer object with an inferred method. """ # Check if a local backend is available, and store an instance of the # backend class. Otherwise, fallback to the web proxy. for backend_cls in BACKEND_CLASSES: try: self.local_method = backend_cls() log.debug(f"artresizer: method is {self.local_method.NAME}") break except LocalBackendNotAvailableError: continue else: log.debug("artresizer: method is WEBPROXY") self.local_method = None @property def method(self): if self.local: return self.local_method.NAME else: return "WEBPROXY" def resize( self, maxwidth, path_in, path_out=None, quality=0, max_filesize=0 ): """Manipulate an image file according to the method, returning a new path. For PIL or IMAGEMAGIC methods, resizes the image to a temporary file and encodes with the specified quality level. For WEBPROXY, returns `path_in` unmodified. """ if self.local: return self.local_method.resize( maxwidth, path_in, path_out, quality=quality, max_filesize=max_filesize ) else: # Handled by `proxy_url` already. return path_in def deinterlace(self, path_in, path_out=None): """Deinterlace an image. Only available locally. """ if self.local: return self.local_method.deinterlace(path_in, path_out) else: # FIXME: Should probably issue a warning? return path_in def proxy_url(self, maxwidth, url, quality=0): """Modifies an image URL according the method, returning a new URL. For WEBPROXY, a URL on the proxy server is returned. Otherwise, the URL is returned unmodified. """ if self.local: # Going to be handled by `resize()`. return url else: return resize_url(url, maxwidth, quality) @property def local(self): """A boolean indicating whether the resizing method is performed locally (i.e., PIL or ImageMagick). """ return self.local_method is not None def get_size(self, path_in): """Return the size of an image file as an int couple (width, height) in pixels. Only available locally. """ if self.local: return self.local_method.get_size(path_in) else: # FIXME: Should probably issue a warning? return path_in def get_format(self, path_in): """Returns the format of the image as a string. Only available locally. """ if self.local: return self.local_method.get_format(path_in) else: # FIXME: Should probably issue a warning? return None def reformat(self, path_in, new_format, deinterlaced=True): """Converts image to desired format, updating its extension, but keeping the same filename. Only available locally. """ if not self.local: # FIXME: Should probably issue a warning? return path_in new_format = new_format.lower() # A nonexhaustive map of image "types" to extensions overrides new_format = { 'jpeg': 'jpg', }.get(new_format, new_format) fname, ext = os.path.splitext(path_in) path_new = fname + b'.' + new_format.encode('utf8') # allows the exception to propagate, while still making sure a changed # file path was removed result_path = path_in try: result_path = self.local_method.convert_format( path_in, path_new, deinterlaced ) finally: if result_path != path_in: os.unlink(path_in) return result_path @property def can_compare(self): """A boolean indicating whether image comparison is available""" if self.local: return self.local_method.can_compare else: return False def compare(self, im1, im2, compare_threshold): """Return a boolean indicating whether two images are similar. Only available locally. """ if self.local: return self.local_method.compare(im1, im2, compare_threshold) else: # FIXME: Should probably issue a warning? return None @property def can_write_metadata(self): """A boolean indicating whether writing image metadata is supported.""" if self.local: return self.local_method.can_write_metadata else: return False def write_metadata(self, file, metadata): """Write key-value metadata to the image file. Only available locally. Currently, expects the image to be a PNG file. """ if self.local: self.local_method.write_metadata(file, metadata) else: # FIXME: Should probably issue a warning? pass
#!/usr/bin/env python # -*- coding: utf-8 -*- """Web presentation DataGroup, UserGroupPerm classes""" from django import template #from django import http from django.shortcuts import render_to_response # , redirect, get_object_or_404get_list_or_404, HttpResponse from django.utils.translation import ugettext as _ #from django.utils.decorators import method_decorator #from django.views.decorators.cache import cache_control #from django.views.decorators.cache import never_cache #from django.views.decorators.csrf import csrf_protect from django.contrib.auth.decorators import login_required from django import forms from django.contrib.admin import widgets from django.contrib import messages #from django.db import transaction #from django.db.models import Q #import datetime from .views import general_context, class_by_name # , classes_desktop from .dataviews import datalist_create # use_obj_read, #------------------------------------------------------------------------------- class AdvSearchForm(forms.Form): """Dynamic Search form for a advanced searching""" chfields = [('nofields', '----'), ('created_by', 'created_by'), ('classname', 'classname'), ('name', 'name'), ('description', 'description')] chtypes = [('notypes', '----'), ('equals', 'is equal to'), ('notequals', 'is not equal to')] negate = forms.BooleanField(label="Not", required=False) fields = forms.ChoiceField(label="Search", choices=chfields, required=False) types = forms.ChoiceField(label="Condition", choices=chtypes, required=False) seach_text = forms.CharField(label="Search Text", max_length=90, required=False) and_cond = forms.BooleanField(label="And", required=False) or_cond = forms.BooleanField(label="Or", required=False) def __init__(self, linecount, *args, **kwargs): super(AdvSearchForm, self).__init__(*args, **kwargs) for ind in range(1, linecount): self.fields['negate_%d' % ind] = forms.BooleanField(label="Not", required=False) self.fields['fields_%d' % ind] = forms.ChoiceField(label="Search", choices=self.chfields, required=False) self.fields['types_%d' % ind] = forms.ChoiceField( label="Condition", choices=self.chtypes, required=False) self.fields['seach_text_%d' % ind] = forms.CharField( label="Search Text", max_length=90, required=False) self.fields['and_cond_%d' % ind] = forms.BooleanField(label="And", required=False) self.fields['or_cond_%d' % ind] = forms.BooleanField(label="Or", required=False) #------------------------------------------------------------------------------- @login_required #@cache_control(must_revalidate=True, max_age=3600) #@csrf_protect def advsearch(request, linecount=1): """Advanced Search Form and search context rendering""" lcount = int(linecount) if request.POST.has_key('cmd-add') and \ request.POST['cmd-add'] == 'Add another boolean chart': lcount += 1 form = AdvSearchForm(lcount) # data={'fields':'classname'} else: form = AdvSearchForm(0) #group by 6 elements fllist = [] cnt = 0 elemlist = [] for field in form: cnt += 1 elemlist.append(field) if cnt == 6: cnt = 0 fllist.append(elemlist) elemlist = [] if elemlist: fllist.append(elemlist) context_dict = general_context(request, 'Advanced Search', 'Advanced Search Data') context_dict.update({'linecount': str(lcount)}) context_dict.update({'form': form}) context_dict.update({'fllist': fllist}) return render_to_response('advsearch_form.html', context_dict, template.RequestContext(request)) #------------------------------------------------------------------------------- class BaseSearchForm(forms.Form): """General search form""" created_on_from = forms.DateTimeField( label="Created date from (YYYY-MM-DD hh:mm:ss)", required=False, widget=widgets.AdminSplitDateTime) created_on_to = forms.DateTimeField( label="Created date to (YYYY-MM-DD hh:mm:ss)", required=False, widget=widgets.AdminSplitDateTime) data_type_list = [(elem.classname, elem.classname) for elem in class_by_name('ClassDeskTop').objects.all()] #TODO: classname not in (['Classes', 'LinkType', 'DeskTop', # 'UserGroupPerm', 'DataGroup']) classname = forms.ChoiceField(label="Type of Data", choices=data_type_list, required=False) #TODO: ? form validation: created_on_to should be later created_on_from #------------------------------------------------------------------------------- @login_required #@cache_control(must_revalidate=True, max_age=3600) #@csrf_protect def search(request): """Simple Search Form and search context rendering""" dt_list = [] mform = '' kwargs = {} if request.method == 'GET': form = BaseSearchForm(request.GET) #show data form if 'Details' button was pressed before if (len(request.GET) > 7 and request.GET.has_key('classname') and request.GET['classname'] and request.GET['classname'] != 'Base'): mform = forms.models.modelform_factory( class_by_name(request.GET['classname']))() if form.is_valid(): if (request.GET.has_key('add-details') and request.GET['add-details'] == u'Details' and form.cleaned_data['classname'] != 'Base'): mform = forms.models.modelform_factory( class_by_name(form.cleaned_data['classname']))() if (request.GET.has_key('search') and request.GET['search'] == 'Search'): #fill search parameters dictionary from base serch form for elem in form.cleaned_data.iteritems(): if elem[0] == 'created_on_from' and elem[1]: kwargs.update({ 'created_on__gte': elem[1] }) elif elem[0] == 'created_on_to' and elem[1]: kwargs.update({ 'created_on__lte': elem[1] }) elif elem[0] == 'classname' and elem[1] != 'Base': kwargs.update({ 'classname': elem[1] }) if mform: for elem in mform.fields.keys(): #class name and form are not appropriate to each other if not elem in request.GET.keys(): messages.add_message(request, messages.WARNING, _(u"To find all available for you %s data " u"click on 'Search' button." u"To add search parameters for %s data click" u" on 'Details' button.") % ( form.cleaned_data['classname'], form.cleaned_data['classname'])) mform = '' kwargs = {} break if request.GET.has_key(elem) and request.GET[elem]: #fill search parameters dictionary from form by type if elem == 'name' or elem == 'description': kwargs.update({elem + '__icontains': request.GET[elem]}) else: kwargs.update({elem: request.GET[elem]}) if kwargs: model = class_by_name('Base') if kwargs.has_key('classname'): model = class_by_name(kwargs['classname']) baselist = model.objects.filter(**kwargs).exclude( classname__in=['Classes', 'DataGroup', 'UserGroupPerm']) dt_list = datalist_create(request, baselist) if not dt_list: messages.add_message(request, messages.INFO, _('Result list is empty')) else: form = BaseSearchForm() context_dict = general_context(request, 'Search', 'Search Data') context_dict.update({'form': form, 'mform': mform, 'data_list': dt_list}) return render_to_response('search_form.html', context_dict, template.RequestContext(request))
import networkx as nx import matplotlib.pyplot as plt G=nx.Graph() G.add_node(1) G.add_node(2) G.add_node(3) G.add_edge(1,2) G.add_edge(2,3) G.add_edge(3,1) print(G.nodes) #print the name of edges nx.draw(G) plt.show()
from pyvi import ViTokenizer path = "document1.txt" f = open(path,"r",encoding="utf-8") e = f.read(); s_tt= ViTokenizer.tokenize(e) fo = open("final.txt","w",encoding="utf-8") fo.write(s_tt) f.close() fo.close()
import unittest from katas.kyu_6.simple_sentences import make_sentences class MakeSentencesTestCase(unittest.TestCase): def test_equals(self): self.assertEqual(make_sentences(['hello', 'world']), 'hello world.') def test_equals_2(self): self.assertEqual(make_sentences( ['Quick', 'brown', 'fox', 'jumped', 'over', 'the', 'lazy', 'dog']), 'Quick brown fox jumped over the lazy dog.') def test_equals_3(self): self.assertEqual(make_sentences(['hello', ',', 'my', 'dear']), 'hello, my dear.') def test_equals_4(self): self.assertEqual(make_sentences(['one', ',', 'two', ',', 'three']), 'one, two, three.') def test_equals_5(self): self.assertEqual(make_sentences( ['One', ',', 'two', 'two', ',', 'three', 'three', 'three', ',', '4', '4', '4', '4']), 'One, two two, three three three, 4 4 4 4.') def test_equals_6(self): self.assertEqual(make_sentences(['hello', 'world', '.']), 'hello world.') def test_equals_7(self): self.assertEqual(make_sentences(['Bye', '.']), 'Bye.') def test_equals_8(self): self.assertEqual(make_sentences(['hello', 'world', '.', '.', '.']), 'hello world.') def test_equals_9(self): self.assertEqual(make_sentences( ['The', 'Earth', 'rotates', 'around', 'The', 'Sun', 'in', '365', 'days', ',', 'I', 'know', 'that', '.', '.', '.', '.', '.', '.', '.', '.', '.', '.', '.', '.']), 'The Earth rotates around The Sun in 365 days, I know that.')
import sys import os import math import tempfile sys.path.insert(0, 'scripts') sys.path.insert(0, os.path.join("tools", "trees")) sys.path.insert(0, os.path.join("tools", "print")) sys.path.insert(0, os.path.join("tools", "families")) import saved_metrics import fam import pickle from aligned_printer import AlignedPrinter import experiments as exp import subprocess def get_runs(datadir, run_tag): runs = [] runs.append("true.true") if (run_tag == "all"): successful_runs = fam.get_successful_runs(datadir) for run in successful_runs: if (not "ultiple" in run and not "true.true" in run): runs.append(run) else: runs.append(run_tag) return runs def get_trees(runs): trees = [] for run in runs: trees.append(run + ".geneTree.newick") return trees def write_kfdistance_input_files(datadir, trees, trees_file): with open(trees_file, "w") as writer: writer.write("\n".join(trees)) writer.write("\n") def run_kfdistance(families_dir, trees_file, output_dir): command = [] command.append("R") command.append("-f") command.append(exp.treedist_R_script) command.append("--args") command.append(families_dir) command.append(trees_file) command.append(output_dir) print(" ".join(command)) subprocess.check_call(command) def extract_kfdistance(kf_output_dir, families, runs): kf_cells = {} paired_runs = [] for run in runs: paired_runs.append("true.true - " + run) for family in families: per_run_rkf = {} kf_cells[family] = per_run_rkf print("family " + str(family)) kf_file = os.path.join(kf_output_dir, family) print(kf_file) with open(kf_file) as reader: kf_distances = reader.readline()[:-1].split(" ") print(kf_distances) assert(len(kf_distances) == len(runs)) for i in range(0, len(kf_distances)): kf_cells[family][paired_runs[i]] = [float(kf_distances[i]), 1.0] return kf_cells def save_kf_cells(datadir, kf_cells, rooted): output = fam.get_raw_kf_cells_file(datadir, rooted) pickle.dump(kf_cells, open(output, "wb")) def load_kf_cells(datadir, rooted = False): return pickle.load(open(fam.get_raw_kf_cells_file(datadir, rooted), "rb")) def get_run_key(m1, m2): return m1 + " - " + m2 def get_kf_to_true(cells, run_name): return cells[get_run_key(fam.get_run_name("true", "true"), run_name)] def print_metrics(datadir, metric_dict, metric_name, benched_run): printer = AlignedPrinter() saved_metrics.save_dico(datadir, metric_dict, metric_name) for run_key in metric_dict: run = run_key.split(" - ")[1] suffix = "" if (benched_run == run): suffix += "\t <-- " printer.add("- " + run_key + ":", str(metric_dict[run_key]) + suffix) printer.sort_right_float() printer.display() print("") def export_metrics(datadir, benched_run, kf_cells, runs): total_rkf = {} families_number = len(kf_cells) run_keys = [] for run in runs: run_keys.append("true.true - " + run) for run_key in run_keys: total_rkf[run_key] = 0.0 for family in kf_cells: family_kf_cells = kf_cells[family] for key in family_kf_cells: total_rkf[key] += (family_kf_cells[key][0] / family_kf_cells[key][1]) average_rkf = {} for key in run_keys: average_rkf[key] = total_rkf[key] / families_number print("Average KF:") print_metrics(datadir, average_rkf, "average_kf", benched_run) def analyze(datadir, run_tag, benched_run = ""): temp_dir = tempfile.mkdtemp(dir = datadir)#tempfile.TemporaryDirectory() analyze_dir_name = temp_dir#.name print("analyze directory " + analyze_dir_name) trees_file = os.path.join(analyze_dir_name, "trees.txt") families_file = os.path.join(analyze_dir_name, "families.txt") kf_output_dir = os.path.join(analyze_dir_name, "kfdistances") os.mkdir(kf_output_dir) families_dir = fam.get_families_dir(datadir) families = fam.get_families_list(datadir) runs = get_runs(datadir, run_tag) print("Runs: " + str(runs)) trees = get_trees(runs) write_kfdistance_input_files(datadir, trees, trees_file) run_kfdistance(families_dir, trees_file, kf_output_dir) kf_cells = extract_kfdistance(kf_output_dir, families, runs) if ("all" == run_tag): save_kf_cells(datadir, kf_cells, False) export_metrics(datadir, benched_run, kf_cells, runs) if __name__ == '__main__': if (len(sys.argv) < 3): print("Syntax: families_dir run=all [benched_run]") exit(1) print(" ".join(sys.argv)) datadir = sys.argv[1] run = sys.argv[2] benched_run = "" if (len(sys.argv) > 3): benched_run = sys.argv[3] analyze(datadir, run, benched_run)
import torch import torchvision import torch.nn as nn import numpy as np import torchvision.transforms as transforms # ================================================================== # # Table of Contents # # ================================================================== # # 1. Basic autograd example 1 (Line 25 to 39) # 2. Basic autograd example 2 (Line 46 to 83) # 3. Loading data from numpy (Line 90 to 97) # 4. Input pipline (Line 104 to 129) # 5. Input pipline for custom dataset (Line 136 to 156) # 6. Pretrained model (Line 163 to 176) # 7. Save and load model (Line 183 to 189) # ================================================================== # # 1. Basic autograd example 1 # # ================================================================== # # Create tensors. # x = torch.tensor(1 , requires_grad=True) # w = torch.tensor(2, requires_grad=True) # b = torch.tensor(3, requires_grad=True) # Build a computational graph. # y = w * x + b # # # compute gradient # y.backward() # Print out the gradients. # print(x.grad) # print(w.grad) # print(b.grad) # ================================================================== # # 2. Basic autograd example 2 # # ================================================================== # # Create tensors of shape (10, 3) and (10, 2). ''''' x = torch.randn(10,3) y = torch.randn(10,2) # Build a fully connected layer. linear = nn.Linear(3,2) print( 'w:',linear.weight) print( 'b:' , linear.bias ) # Build loss function and optimizer. criteration = nn.MSELoss() optimizer = torch.optim.SGD(linear.parameters() , lr=0.01) # Forward pass. pred = linear(x) # Compute loss. loss = criteration(pred,y) print( 'loss:', loss.item) # Backward pass. loss.backward() # Print out the gradients. print ('dL/dw: ', linear.weight.grad) print ('dL/db: ', linear.bias.grad) # 1-step gradient descent. optimizer.step() # Print out the loss after 1-step gradient descent. pred = linear(x) loss = criteration(pred,y) print('loss after 1 step optimization: ', loss.item()) ''''' # ================================================================== # # 3. Loading data from numpy # # ================================================================== # # x = np.array([[1,5] , [2,4]]) # # print(x) # # Convert the numpy array to a torch tensor. # y = torch.from_numpy(x) # print(y) # z = y.numpy() # ================================================================== # # 4. Input pipline # # ================================================================== # # Download and construct CIFAR-10 dataset. train__dataset = torchvision.datasets.CIFAR10(root='./pytorch/dataset',train = True ,transform=transforms.ToTensor,download=True) # Fetch one data pair (read data from disk). images ,label = train__dataset[0] print(images.size) print(label) # Data loader (this provides queues and threads in a very simple way). train_loader = torch.utils.data.DataLoader(train__dataset , batch_size = 64 , shuffle = true) # When iteration starts, queue and thread star # # t to load data from files. data_iter = iter(train_loader) images , label = data_iter.next() # When iteration starts, queue and thread start to load data from files. fj
from typing import Optional, Tuple from esipy import EsiClient from waitlist.utility import outgate from waitlist.utility.config import banned_by_default from waitlist.utility.sde import add_type_by_id_to_database from waitlist.storage.database import Constellation, SolarSystem, Station,\ InvType, Account, Character, Ban, Whitelist, CharacterTypes from waitlist.base import db import logging from waitlist.utility.swagger import get_api from waitlist.utility.swagger.eve import get_esi_client from waitlist.utility.swagger.eve.search import SearchEndpoint, SearchResponse from threading import Lock from waitlist.utility.outgate.exceptions import ApiException, ESIException from waitlist.utility.outgate import character, corporation, alliance logger = logging.getLogger(__name__) """ Lock for checking existance of a character and creating it """ character_check_lock: Lock = Lock() def get_constellation(name: str) -> Constellation: return db.session.query(Constellation).filter(Constellation.constellationName == name).first() def get_system(name: str) -> SolarSystem: return db.session.query(SolarSystem).filter(SolarSystem.solarSystemName == name).first() def get_station(name: str) -> Station: return db.session.query(Station).filter(Station.stationName == name).first() def get_item_id(name: str) -> int: logger.debug("Getting id for item %s", name) item = db.session.query(InvType).filter(InvType.typeName == name).first() if item is None: item_data = get_item_data_from_api(name) if item_data is None: return -1 # add the type to db current_type: InvType = db.session.query(InvType).get(item_data.type_id) # Was it only renamed? if current_type is not None: item = InvType(typeID=item_data.type_id, groupID=item_data.group_id, typeName=item_data.name, description=item_data.description, marketGroupID=getattr(item_data, 'market_group_id', None)) db.session.merge(item) db.session.commit() logger.info(f'Updated {item}') else: item = add_type_by_id_to_database(item_data.type_id) db.session.commit() logger.info(f'Added new {item}') return item.typeID def get_item_data_from_api(name: str) -> Optional[any]: """Tries to get api data of an item with this name from Search API""" search_endpoint = SearchEndpoint() search_response: SearchResponse = search_endpoint.public_search(name, ['inventory_type'], True) result_ids = search_response.inventory_type_ids() if result_ids is None or len(result_ids) < 1: return None esi_client: EsiClient = get_esi_client(None, True) api = get_api() for result_id in result_ids: type_result = esi_client.request(api.op['get_universe_types_type_id'](type_id=result_id)) if type_result.data.name == name: return type_result.data return None # load an account by its id def get_account_from_db(int_id: int) -> Account: return db.session.query(Account).filter(Account.id == int_id).first() # load a character by its id def get_char_from_db(int_id: int) -> Character: return db.session.query(Character).get(int_id) def create_new_character(eve_id: int, char_name: str) -> Character: char = Character() char.id = eve_id char.eve_name = char_name char.is_new = True db.session.add(char) db.session.commit() return char def get_character_by_id_and_name(eve_id: int, eve_name: str) -> Character: with character_check_lock: char = get_char_from_db(eve_id) if char is None: logger.info("No character found for id %d", eve_id) # create a new char char = create_new_character(eve_id, eve_name) return char def get_character_by_id(eve_character_id: int) -> Character: """ :throws ApiException if there was a problem contacting the api """ with character_check_lock: character: Character = get_char_from_db(eve_character_id) if character is None: logger.info("No character found in database for id %d", eve_character_id) char_info = outgate.character.get_info(eve_character_id) character = create_new_character(eve_character_id, char_info.characterName) return character def is_charid_banned(character_id: int) -> bool: if character_id == 0: # this stands for no id in the eve api (for example no alliance) return False return db.session.query(Ban).filter(Ban.id == character_id).count() == 1 def is_charid_whitelisted(character_id: int) -> bool: if character_id == 0: return False return db.session.query(Whitelist).filter(Whitelist.characterID == character_id).count() == 1 def get_character_by_name(eve_name: str) -> Optional[Character]: try: eve_info = outgate.character.get_info_by_name(eve_name) if eve_info is None: return None return get_character_by_id_and_name(eve_info.id, eve_name) except ApiException: return None def get_character_type_by_id(char_id: int) -> Tuple[CharacterTypes,int]: """ :returns the character type and how many potential ESI error where created """ try: char_info: APICacheCharacterInfo = character.get_info(char_id) return CharacterTypes.character, 0 except ESIException: pass # no such char try: corp_info: APICacheCorporationInfo = corporation.get_info(char_id) return CharacterTypes.corporation, 1 except ESIException: pass # no such corp all_info: APICacheAllianceInfo = alliance.get_info(char_id) return CharacterTypes.alliance, 2 def get_char_corp_all_name_by_id_and_type(char_id: int, char_type: CharacterTypes) -> str: if char_type == CharacterTypes.character: return character.get_info(char_id).characterName if char_type == CharacterTypes.corporation: return corporation.get_info(char_id).name if char_type == CharacterTypes.alliance: return alliance.get_info(char_id).allianceName raise ValueError('Unknown Character type supplied') def is_char_banned(char: Character) -> Tuple[bool, str]: try: if is_charid_whitelisted(char.get_eve_id()): return False, "" if char.banned: return True, "Character" char_info = outgate.character.get_info(char.get_eve_id()) if is_charid_whitelisted(char_info.corporationID): return False, "" if is_charid_banned(char_info.corporationID): return True, "Corporation" if char_info.allianceID is not None: if is_charid_whitelisted(char_info.allianceID): return False, "" if is_charid_banned(char_info.allianceID): return True, "Alliance" if banned_by_default: return True, "Everyone Banned by default" else: return False, "" except ApiException as e: logger.info("Failed to check if %d was banned, because of Api error, code=%d msg=%s", char.get_eve_id(), e.code, e.msg) return False, "" except Exception: logger.error("Failed to check if %d was banned", char.get_eve_id(), exc_info=1) return False, ""
from common import * import base64 ####file encrypt part def encrpty_file(file_path, pubkey): log.debug("-------") cipher_text = b'' max_length = int(get_max_length(pubkey)) if pubkey: cipher_public = Crypto.Cipher.PKCS1_v1_5.new(pubkey) with open(file_path, 'r', encoding='UTF-8') as f: while True: message = f.read(max_length) if message != "": #cipher_text = cipher_text + base64.b64encode(cipher_public.encrypt(message.encode('utf-8'))) cipher_text = cipher_text + cipher_public.encrypt(message.encode(encoding='utf-8')) else: break # update file with open(file_path, 'wb') as f: f.write(base64.b64encode(cipher_text)) with open(file_path, 'rb') as f: message = f.read() #log.log_raw(message) else: win32api.MessageBox(0, "error", "Error",win32con.MB_ICONWARNING) return False return True ###start # Create the blockchain and add the genesis block def block_chain_flow(): private_key = get_key.get_private_key_strs() ## store key @ block 0 blockchain = [create_genesis_block(private_key)] previous_block = blockchain[0] blockchain_len = 1 a = input("are you want to add another device? y :yes n :No:") while True: if (a == 'y'): mac_id = input("input your mac_id, please input numbers only:") block_to_add = next_block(previous_block, mac_id) blockchain.append(block_to_add) previous_block = block_to_add blockchain_len = blockchain_len + 1 a = input("are you want to add another device? y :yes n :No:") else: #log.log_out("add done๏ผŒblocks below:") break save_blockchain(blockchain, blockchain_len) ## block chain check check = block_chain_check(blockchain, blockchain_len) if check: pubkey = get_key.get_public_key() if pubkey: encrpty_file(file_need_encrpty_test, pubkey) log.log_out("file encrpty done! file:" + file_need_encrpty_test) else: log.debug("check fail") return False if __name__ == "__main__": block_chain_flow()
import argparse import os import pandas as pd from utils import download_incidents, create_folder, video_to_frames __author__ = 'roeiherz' VIDEO_PATH = "/data/Accidents1K/Videos" INDEX_PATH = "/data/Accidents1K/accident_index.csv" IMAGE_PATH = "/data/Accidents1K/Images" def get_video_links(index_path): """ This function returns the data :param output_dir: :return: """ df_index = pd.read_csv(index_path) video_links = list(df_index['video link'].unique()) return video_links if __name__ == "__main__": """ This Script downloads videos and using video2dir code to parse multiple videos to images """ parser = argparse.ArgumentParser() parser.add_argument('--local', help='input directory of videos', action='store', default=False) parser.add_argument('--download', help='input directory of videos', action='store', default=False) parser.add_argument('--video', help='input directory of videos', action='store', default=VIDEO_PATH) parser.add_argument('--index', help='index file path', action='store', default=INDEX_PATH) parser.add_argument('--image', help='output directory of videos', action='store', default=IMAGE_PATH) args = parser.parse_args() # Use Local params if args.local: args.video = "/Users/roeiherzig/Datasets/Accidents/Videos/" args.index = "/Users/roeiherzig/Datasets/Accidents/accident_index.csv" args.image = "/Users/roeiherzig/Datasets/Accidents/Images/" args.download = True # Download Incidents if args.download: download_incidents(input_file=args.index, output_dir=args.input) # Check directory exists if not os.path.exists(args.video): print('Can not find videos directory: {}'.format(args.video)) exit(-1) # Video Path video_path = args.video # Image path img_path = args.image # Get files files = os.listdir(video_path) # files = ['412563fe-ce68-4c17-92ce-b8770d6fb140.mov'] print('Number of files: {} from input directory'.format(len(files))) for base_name in files: try: # Process only if its a video if '.mov' in base_name or '.mp4' in base_name: # video file in_dir = os.path.join(video_path, base_name) # Without extension out_dir = os.path.join(img_path, os.path.splitext(base_name)[0]) if os.path.exists(out_dir): print("Dir {} already exists".format(base_name)) continue create_folder(out_dir) print('{} --> {}'.format(video_path, out_dir)) video_to_frames(in_dir, out_dir, fps=5) except Exception as e: print("Error in incident {} with {}".format(base_name, str(e)))
#SevenDigitsDrawV2.py import turtle as p import time as t #import turtle,time def drawGap(): #็ป˜ๅˆถๆ•ฐ็ ็ฎก้—ด้š”,ๆฏๆฎตๆ•ฐ็ ็ฎกไน‹้—ดไธ่ฟž็ปญ p.penup() p.fd(5) def drawline(draw): #็ป˜ๅˆถๅ•ๆฎตๆ•ฐ็ ็ฎก drawGap() p.pendown() if draw else p.penup() p.fd(40) drawGap() p.right(90) def drawDigit(digit): #ๆ นๆฎๆ•ฐๅญ—็ป˜ๅˆถไธƒๆฎตๆ•ฐ็ ็ฎกๅนถๅฐ†ๆตท้พŸๅณ็งป20ไธชๅƒ็ด  drawline(True) if digit in [2,3,4,5,6,8,9] else drawline(False) drawline(True) if digit in [0,1,3,4,5,6,7,8,9] else drawline(False) drawline(True) if digit in [0,2,3,5,6,8,9] else drawline(False) drawline(True) if digit in [0,2,6,8] else drawline(False) p.left(90) drawline(True) if digit in [0,4,5,6,8,9] else drawline(False) drawline(True) if digit in [0,2,3,5,6,7,8,9] else drawline(False) drawline(True) if digit in [0,1,2,3,4,7,8,9] else drawline(False) p.left(180) p.penup() p.fd(20) def drawData(data): #่Žทๅพ—่ฆ่พ“ๅ‡บ็š„ๆ•ฐๅญ— p.color('red') for i in data: if i =='-': p.write('ๅนด',font=('Arial',18,'normal')) p.color('green') p.fd(40) elif i=='=': p.write('ๆœˆ',font=('Arial',18,'normal')) p.color('blue') p.fd(40) elif i=='+': p.write('ๆ—ฅ',font=('Arial',18,'normal')) else: drawDigit(eval(i)) #้€š่ฟ‡eval()ๅ‡ฝๆ•ฐๅฐ†ๆ•ฐๅญ—ๅญ—็ฌฆไธฒๅ˜ๆˆๆ•ดๆ•ฐ def main(): p.setup(800,350,200,200) #p.hideturtle() #็ป˜ๅˆถๅผ€ๅง‹ๅ‰้š่—ๆตท้พŸ p.penup() p.fd(-300) p.pensize(5) #drawData('20190505') drawData(t.strftime('%Y-%m=%d+',t.gmtime())) #ไธ่ƒฝ็”จtime.๏ผŒไผšๆŠฅ้”™ p.hideturtle() #ๅœจ็ป˜ๅˆถๅฎŒๆˆๅŽ้š่—ๆตท้พŸ p.done() main()
# coding: utf-8 # $\newcommand{\xv}{\mathbf{x}} # \newcommand{\Xv}{\mathbf{X}} # \newcommand{\yv}{\mathbf{y}} # \newcommand{\zv}{\mathbf{z}} # \newcommand{\av}{\mathbf{a}} # \newcommand{\Wv}{\mathbf{W}} # \newcommand{\wv}{\mathbf{w}} # \newcommand{\tv}{\mathbf{t}} # \newcommand{\Tv}{\mathbf{T}} # \newcommand{\muv}{\boldsymbol{\mu}} # \newcommand{\sigmav}{\boldsymbol{\sigma}} # \newcommand{\phiv}{\boldsymbol{\phi}} # \newcommand{\Phiv}{\boldsymbol{\Phi}} # \newcommand{\Sigmav}{\boldsymbol{\Sigma}} # \newcommand{\Lambdav}{\boldsymbol{\Lambda}} # \newcommand{\half}{\frac{1}{2}} # \newcommand{\argmax}[1]{\underset{#1}{\operatorname{argmax}}} # \newcommand{\argmin}[1]{\underset{#1}{\operatorname{argmin}}}$ # # Assignment 3: Activation Functions # Damian Armijo # ## Overview # In this assignment, you will make a new version of your ```NeuralNetwork``` class from the previous assignment. For this new version, define the activation function to be the Rectified Linear Unit (ReLU). # # You will compare the training and testing performances of networks with tanh and networks with the ReLU activation functions. # ### NeuralNetworkReLU # Start with the ```NeuralNetwork``` class defined in ```neuralnetworksA2.py```. Define a new class named ```NeuralNetworkReLU``` that extends ```NeuralNetwork``` and simply defines new implementations of ```activation``` and ```activationDerivative``` that implement the ReLU activation function. # ### Comparison # Define a new function ```partition``` that is used as this example shows. # In[1]: import numpy as np import matplotlib.pyplot as plt get_ipython().magic('matplotlib inline') X = np.arange(10*2).reshape((10, 2)) T = X[:, 0:1] * 0.1 # In[2]: import random def partition(X, T, seeding,shuffle = False): nRows = X.shape[0] rows = np.arange(nRows) if(shuffle): np.random.shuffle(rows) nTrain = int(nRows * seeding) trainRows = rows[:nTrain] testRows = rows[nTrain:] Xtrain, Ttrain = X[trainRows, :], T[trainRows, :] Xtest, Ttest = X[testRows, :], T[testRows, :] return Xtrain, Ttrain, Xtest, Ttest # In[ ]: X # In[ ]: T # In[ ]: Xtrain, Ttrain, Xtest, Ttest = partition(X, T, 0.8, shuffle=False) # In[ ]: Xtrain # In[ ]: Ttrain # In[ ]: Xtest # In[ ]: Ttest # If ```shuffle=True``` is used as an argument, then the samples are randomly rearranged before the partitions are formed. # In[ ]: Xtrain, Ttrain, Xtest, Ttest = partition(X, T, 0.8, shuffle=True) # In[ ]: Xtrain # In[ ]: Ttrain # In[ ]: Xtest # In[ ]: Ttest # You will use the ```energydata_complete.csv``` data for the following comparisons. Load this data using pandas, then create matrix $X$ using all columns except ```['date','Appliances', 'rv1', 'rv2']``` and create $T$ using just ```'Appliances'```. Write python code that performs the following algorithm. # In[3]: import pandas # Reading in file via pandas, and putting values into T(target) and X(inputs) data = pandas.read_csv('energydata_complete.csv') T = data[['Appliances']] T = np.array(T) X = data.drop(['date','Appliances', 'rv1', 'rv2'], axis=1) X = np.array(X) # Getting labels for T and X names = data.keys() Xnames = names[3:27] Tnames = names[0:2] Xnames = Xnames.insert(0, 'bias') print(X) print(T) # In[4]: def rmse(A, B): return np.sqrt(np.mean((A - B)**2)) # - For each of the two activation functions, ```tanh```, and ```ReLU```: # - For each hidden layer structure in [[u]*nl for u in [1, 2, 5, 10, 50] for nl in [1, 2, 3, 4, 5, 10]]: # - Repeat 10 times: # - Randomly partition the data into training set with 80% of samples and testing set with other 20%. # - Create a neural network using the given activation function and hidden layer structure. # - Train the network for 100 iterations. # - Calculate two RMS errors, one on the training partition and one on the testing partitions. # - Calculate the mean of the training and testing RMS errors over the 10 repetitions. # In[5]: import neuralnetworksA2 as nn # In[9]: def meanFromData(V): tanhMeanTrain = V[:,0].mean() tanhMeanTest = V[:,1].mean() reluMeanTrain = V[:,2].mean() reluMeanTest = V[:,3].mean() return tanhMeanTrain, tanhMeanTest,reluMeanTrain,reluMeanTest; # In[10]: #ReLU activation import pandas as pd errors = [] hiddens = [0] + [[nu] * nl for nu in [1,2,5,10] for nl in [1,2,3,4]] V = np.zeros(shape=(2,4)) for hids in hiddens: for x in range(2): Xtrain, Ttrain, Xtest, Ttest = partition(X, T, 0.8, shuffle=True) nnet = nn.NeuralNetwork(Xtrain.shape[1], hids, Ttrain.shape[1]) nnet.train(Xtrain, Ttrain, 100) stack = [rmse(Ttrain, nnet.use(Xtrain)), rmse(Ttest, nnet.use(Xtest))] nnetrelu = nn.NeuralNetworkReLU(Xtrain.shape[1], hids, Ttrain.shape[1]) nnetrelu.train(Xtrain, Ttrain, 100) stack.extend([rmse(Ttrain, nnet.use(Xtrain)), rmse(Ttest, nnet.use(Xtest))]) V = np.vstack([V,stack]) tanhMeanTrain,tanhMeanTest,reluMeanTrain,reluMeanTest = meanFromData(V) errors.append([hids, tanhMeanTrain,tanhMeanTest,reluMeanTrain,reluMeanTest]) errors = pd.DataFrame(errors) print(errors) plt.figure(figsize=(10, 10)) plt.plot(errors.values[:, 1:], 'o-') plt.legend(('tanh Train RMSE','tanh Test RMSE','ReLU Train RMSE', 'ReLU Test RMSE',)) plt.xticks(range(errors.shape[0]), hiddens, rotation=30, horizontalalignment='right') plt.grid(True) # You will have to add steps in this algorithm to collect the results you need to make the following plot. # # Make a plot of the RMS errors versus the hidden layer structure. On this plot include four curves, for the training and testing RMS errors for each of the two activation functions. Label both axes and add a legend that identifies each curve. # # As always, discuss what you see. What can you say about which activation function is best? # ## Grading and Check-in # Your notebook will be run and graded automatically. Test this grading process by first downloading [A3grader.tar](http://www.cs.colostate.edu/~anderson/cs445/notebooks/A3grader.tar) and extract `A3grader.py` from it. Run the code in the following cell to demonstrate an example grading session. You should see a perfect execution score of 60 / 60 if your functions and class are defined correctly. The remaining 40 points will be based on the results you obtain from the comparisons of hidden layer structures and the two activation functions applied to the energy data. # # For the grading script to run correctly, you must first name this notebook as `Lastname-A3.ipynb` with `Lastname` being your last name, and then save this notebook. Your working director must also contain `neuralnetworksA2.py` and `mlutilities.py` from lecture notes. # # Combine your notebook, `neuralnetworkA2.py`, and `mlutilities.py` into one zip file or tar file. Name your tar file `Lastname-A3.tar` or your zip file `Lastname-A3.zip`. Check in your tar or zip file using the `Assignment 3` link in Canvas. # # A different, but similar, grading script will be used to grade your checked-in notebook. It will include other tests. # In[2]: get_ipython().magic('run -i A3grader.py') # In[1]: import neuralnetworksA2 as nn nnet = nn.NeuralNetwork(1, 10, 1) nnetrelu = nn.NeuralNetworkReLU(1, 5, 1) da = nnetrelu.activation(-0.8) print(da)
for str in open("C:/Users/dinesh kumar/Documents/text1.txt"): print(str,end="")
""" Author : Lily Data : 2018-09-18 QQ : 339600718 ็ง‘้ขœๆฐ Kiehl's Kiehls-s ๆŠ“ๅ–ๆ€่ทฏ๏ผšๅพฎไฟกๅ…ฌไผ—ๅท๏ผŒๆ‹ฟๅˆฐprovince็š„id,ๅšไธบๅ‚ๆ•ฐ๏ผŒ่ฏทๆฑ‚city็š„id,ๆ นๆฎcityid่ฏทๆฑ‚stores็š„ๆ•ฐๆฎ getProvince๏ผˆpost,json๏ผ‰:http://wx.kiehls.com.cn/KStart/GetProvince getCity๏ผˆpost,json,ๅ‚ๆ•ฐ๏ผšproId๏ผ‰:http://wx.kiehls.com.cn/KStart/GetCity getStore๏ผˆpost,json๏ผŒๅ‚ๆ•ฐ๏ผšcity_id: 37,longitude: ,latitude: ๏ผ‰:http://wx.kiehls.com.cn/Shoppe/GetShopList ๆณจๆ„๏ผšๅœจๆต่งˆๅ™จๆ‰“ไธๅผ€๏ผŒไผšๆ็คบ---Server Error in '/' Application. """ import requests import re import datetime import json filename = "Kiehls-s" + re.sub('[^0-9]','',str(datetime.datetime.now())) + ".csv" f = open(filename, 'w', encoding='utf-8') f.write('StoreId,WebChatId,Content,Name,Country,Code,state,BusinessTime,Map,thumb,Address,Phone,City,Dist,Province,Lng,Number,Lat,Price,Recommended,Characteristic,Introduction,BranchName,category,product1,product2,product3,url,PanoramaUrl,ComplexDefualts,PassWord,CounterMobile,TrailId,FailedPasswordCount,LastLoginTime,\n') pro_url = 'http://wx.kiehls.com.cn/KStart/GetProvince' city_url = 'http://wx.kiehls.com.cn/KStart/GetCity' store_url = 'http://wx.kiehls.com.cn/Shoppe/GetShopList' provinces = requests.post(pro_url).text provinces_json = json.loads(provinces) for pro in provinces_json: print(pro) data = {"proId":pro["AreaId"]} citys = requests.post(city_url, data=data).text print(citys) citys_json = json.loads(citys) for ct in citys_json: print(ct) cityname = ct['AreaName'] cityid = ct["AreaId"] store_data = {"city_id": cityid, "longitude": "", "latitude": ""} stores = requests.post(store_url, data=store_data).text stores_json = json.loads(stores) for store in stores_json["shopperList"]: print(store) for s_k, s_v in store.items(): v = str(s_v).replace(',', '๏ผŒ').replace('\n', '').replace('\r','') f.write(v + ",") f.write('\n') f.close()
# Enter script code keyboard.send_keys("<f6>8")
from django.contrib.auth.models import User from django.db import models class Profile(models.Model): user = models.OneToOneField(User, on_delete=models.CASCADE) nickname = models.CharField(max_length=20, default='') class Meta: ordering = ['nickname'] def __str__(self): return self.user.username
import keras import pyfor from keras_retinanet import models from keras_retinanet.utils.image import read_image_bgr, preprocess_image, resize_image from keras_retinanet.utils.visualization import draw_box, draw_caption from keras_retinanet.utils.colors import label_color import matplotlib.pyplot as plt import cv2 import os import numpy as np import time # set tf backend to allow memory to grow, instead of claiming everything import tensorflow as tf #parse args import argparse import glob #DeepForest from DeepForest.evalmAP import _get_detections #Set training or training mode_parser = argparse.ArgumentParser(description='Prediction of a new image') mode_parser.add_argument('--model', help='path to training model' ) mode_parser.add_argument('--image', help='image or directory of images to predict' ) mode_parser.add_argument('--output_dir', default="snapshots/images/") args=mode_parser.parse_args() def get_session(): config = tf.ConfigProto() config.gpu_options.allow_growth = True return tf.Session(config=config) # set the modified tf session as backend in keras keras.backend.tensorflow_backend.set_session(get_session()) #load config DeepForest_config = config.load_config() # adjust this to point to your downloaded/trained model # load retinanet model model = models.load_model(args.model, backbone_name='resnet50', convert=True, nms_threshold=args.nms_threshold) labels_to_names = {0: 'Tree'}
import math i = 5 j = 2 * i j = j + 5 print(i) print(j) j = j - i print(j) print(7 / 2) print(7 / 3.5) print(8 + 2.6) print(9 // 5) print(9 % 5) print(3 ** 4) print(math.sqrt(36)) print(math.log2(2)) print(math.log2(4)) i = 5 print(type(i)) i = 7 * 1 print(type(i)) j = i / 3 print(type(i)) print(type(j)) i = 2 * j # Not recommended to change the type of variables in a program print(type(i)) print('True or False is: ', True or False) print('False or True is: ', False or True) print('True or True is: ', True or True) print('False or False is: ', False or False) print('True and False is: ', True and False) print('False and True is: ', False and True) print('False and False is: ', False and False) print('True and True is: ', True and True) print('Not applied to True gives us: ', not True) print('Not applied to False gives us: ', not False) def divides(m, n): return n % m == 0 def even(n): return divides(2, n) def odd(n): return not divides(2, n) print(divides(5, 25)) print(divides(3, 5)) print(even(2)) print(even(45)) print(odd(3)) print(odd(28))
def addfruit(fruit1,price1): fruit_dict={} i=0 while i!=len(fruit1): try: if fruit1[i].lower() not in fruit_dict: fruit_dict.update({fruit1[i]:price1[i]}) i+=1 else: i+=1 raise ValueError except: if ValueError: print(f"Error : {fruit1[i]} is allready in dict") return fruit_dict
class Solution: def twoCitySchedCost(self, costs: List[List[int]]) -> int: l = len(costs)//2 costs = sorted(costs, key=lambda i: abs(i[1]-i[0])) n1 = n2 = tcost = 0 for i in range(len(costs)-1,-1,-1): if costs[i][0] < costs[i][1]: if n1<l: tcost += costs[i][0] n1 += 1 else: tcost += costs[i][1] n2 += 1 elif costs[i][0] > costs[i][1]: if n2<l: tcost += costs[i][1] n2 += 1 else: tcost += costs[i][0] n1 += 1 else: tcost += costs[i][0] return tcost
# -*- coding: utf-8 -*- from django.contrib import admin from app.customer.models import Customer class CustomerAdmin(admin.ModelAdmin): model = Customer admin.site.register(Customer, CustomerAdmin)
import numpy as np import os import csv Tainan_city_id = '467410' Tainan_city_id2= '467411' Tainan_county_id = '467420' Dataset=[] labellist=['stno','yyyymmdd', 'PS01', 'PS02', 'PS03', 'PS04', 'PS05', 'PS06', 'PS07', 'PS08', 'PS09', 'PS10', 'TX01', 'TX02', 'TX03', 'TX04', 'TX05', 'TX06', 'TD01', 'TD02', 'TD03', 'TD04', 'TX07', 'TX08', 'TX09', 'VP01', 'VP02', 'VP03', 'VP04', 'VP05', 'RH01', 'RH02', 'RH03', 'RH04', 'RH05', 'WD01', 'WD02', 'WD03', 'WD04', 'WD05', 'WD06', 'WD07', 'WD08', 'WD09', 'PP01', 'PP02', 'PP03', 'PP04', 'PP05', 'PP06', 'SS01', 'SS02', 'GR01', 'GR02', 'GR03', 'VS01', 'CD01', 'SD01', 'ST01', 'ST02', 'ST03', 'ST04', 'ST05', 'ST06', 'ST07', 'ST08', 'ST09', 'ST10', 'ST11', 'ST12', 'EP01', 'EP02', 'EP03', 'TG01', 'TS01', 'TS02', 'TS03', 'TS04', 'TS05', 'TS06', 'TS07', 'TS08', 'TS09', 'TS10'] for year in range(1958,2018): dir_path="C:\\Users\\User\\Desktop\\BS\\TyphoonData\\"+str(year)+"\\WeatherData" for file in os.listdir(dir_path): if file.find('_stn') == -1: Path=os.path.join(dir_path,file) with open(Path,'r') as f: with open('./label.txt','a') as wb: label=[] feature=[] dic={} data = f.readlines() for Data in data: if Data.find('stno') !=-1: label=Data.split() for d in label: if d == 'ST02': label.remove('ST02') if Data.find(Tainan_city_id) !=-1 or Data.find(Tainan_city_id2) !=-1: feature=Data.split() #for info in d_list: #wb.write(info+" ") #wb.write('0\n') for i in range(1,len(label)): dic[label[i]]=feature[i-1] Dataset.append(dic) with open('./newdata.txt','w') as dt: writer=csv.writer(dt,delimiter='\t') writer.writerow(labellist) for year in range(len(Dataset)): for label in labellist: if label in Dataset[year]: dt.write(Dataset[year][label]+'\t') else: dt.write('-9999\t') dt.write('\n') #print(Dataset)
#!/usr/bin/env python # Copyright 2017 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import logging import unittest import environment import tablet import utils shard_0_master = tablet.Tablet() shard_0_replica1 = tablet.Tablet() shard_0_replica2 = tablet.Tablet() shard_0_rdonly = tablet.Tablet() shard_0_backup = tablet.Tablet() shard_1_master = tablet.Tablet() shard_1_replica1 = tablet.Tablet() shard_2_master = tablet.Tablet() shard_2_replica1 = tablet.Tablet() # shard_2 tablets shouldn't exist yet when _apply_initial_schema() is called. initial_tablets = [ shard_0_master, shard_0_replica1, shard_0_replica2, shard_0_rdonly, shard_0_backup, shard_1_master, shard_1_replica1, ] shard_2_tablets = [shard_2_master, shard_2_replica1] all_tablets = initial_tablets + shard_2_tablets test_keyspace = 'test_keyspace' db_name = 'vt_' + test_keyspace def setUpModule(): try: environment.topo_server().setup() _init_mysql(all_tablets) utils.run_vtctl(['CreateKeyspace', test_keyspace]) utils.Vtctld().start(enable_schema_change_dir=True) except Exception as setup_exception: # pylint: disable=broad-except try: tearDownModule() except Exception as e: # pylint: disable=broad-except logging.exception('Tearing down a failed setUpModule() failed: %s', e) raise setup_exception def _init_mysql(tablets): setup_procs = [] for t in tablets: setup_procs.append(t.init_mysql()) utils.wait_procs(setup_procs) def _setup_shard_2(): shard_2_master.init_tablet('replica', test_keyspace, '2') shard_2_replica1.init_tablet('replica', test_keyspace, '2') # create databases, start the tablets for t in shard_2_tablets: t.create_db(db_name) t.start_vttablet(wait_for_state=None) # wait for the tablets to start shard_2_master.wait_for_vttablet_state('NOT_SERVING') shard_2_replica1.wait_for_vttablet_state('NOT_SERVING') utils.run_vtctl(['InitShardMaster', '-force', test_keyspace + '/2', shard_2_master.tablet_alias], auto_log=True) utils.run_vtctl(['ValidateKeyspace', '-ping-tablets', test_keyspace]) def _teardown_shard_2(): tablet.kill_tablets(shard_2_tablets) utils.run_vtctl( ['DeleteShard', '-recursive', '-even_if_serving', 'test_keyspace/2'], auto_log=True) for t in shard_2_tablets: t.reset_replication() t.set_semi_sync_enabled(master=False) t.clean_dbs() def tearDownModule(): utils.required_teardown() if utils.options.skip_teardown: return teardown_procs = [] for t in all_tablets: teardown_procs.append(t.teardown_mysql()) utils.wait_procs(teardown_procs, raise_on_error=False) environment.topo_server().teardown() utils.kill_sub_processes() utils.remove_tmp_files() for t in all_tablets: t.remove_tree() class TestSchema(unittest.TestCase): def setUp(self): shard_0_master.init_tablet('replica', test_keyspace, '0') shard_0_replica1.init_tablet('replica', test_keyspace, '0') shard_0_replica2.init_tablet('replica', test_keyspace, '0') shard_0_rdonly.init_tablet('rdonly', test_keyspace, '0') shard_0_backup.init_tablet('backup', test_keyspace, '0') shard_1_master.init_tablet('replica', test_keyspace, '1') shard_1_replica1.init_tablet('replica', test_keyspace, '1') # create databases, start the tablets for t in initial_tablets: t.create_db(db_name) t.start_vttablet(wait_for_state=None) # wait for the tablets to start for t in initial_tablets: t.wait_for_vttablet_state('NOT_SERVING') utils.run_vtctl(['InitShardMaster', '-force', test_keyspace + '/0', shard_0_master.tablet_alias], auto_log=True) utils.run_vtctl(['InitShardMaster', '-force', test_keyspace + '/1', shard_1_master.tablet_alias], auto_log=True) def tearDown(self): # kill all tablets tablet.kill_tablets(initial_tablets) for t in initial_tablets: t.reset_replication() t.set_semi_sync_enabled(master=False) t.clean_dbs() utils.run_vtctl(['DeleteShard', '-recursive', '-even_if_serving', test_keyspace + '/0'], auto_log=True) utils.run_vtctl(['DeleteShard', '-recursive', '-even_if_serving', test_keyspace + '/1'], auto_log=True) def _check_tables(self, tablet_obj, expected_count): tables = tablet_obj.mquery(db_name, 'show tables') self.assertEqual( len(tables), expected_count, 'Unexpected table count on %s (not %d): got tables: %s' % (tablet_obj.tablet_alias, expected_count, str(tables))) def _apply_schema(self, keyspace, sql, expect_fail=False): return utils.run_vtctl(['ApplySchema', '-sql=' + sql, keyspace], expect_fail=expect_fail, auto_log=True) def _get_schema(self, tablet_alias): return utils.run_vtctl_json(['GetSchema', tablet_alias]) def _create_test_table_sql(self, table): return ( 'CREATE TABLE %s (\n' '`id` BIGINT(20) not NULL,\n' '`msg` varchar(64),\n' 'PRIMARY KEY (`id`)\n' ') ENGINE=InnoDB') % table def _alter_test_table_sql(self, table, index_column_name): return ( 'ALTER TABLE %s\n' 'ADD COLUMN new_id bigint(20) NOT NULL AUTO_INCREMENT FIRST,\n' 'DROP PRIMARY KEY,\n' 'ADD PRIMARY KEY (new_id),\n' 'ADD INDEX idx_column(%s)\n') % (table, index_column_name) def _apply_initial_schema(self): schema_changes = ';'.join([ self._create_test_table_sql('vt_select_test01'), self._create_test_table_sql('vt_select_test02'), self._create_test_table_sql('vt_select_test03'), self._create_test_table_sql('vt_select_test04')]) # apply schema changes to the test keyspace self._apply_schema(test_keyspace, schema_changes) # check number of tables self._check_tables(shard_0_master, 4) self._check_tables(shard_1_master, 4) # get schema for each shard shard_0_schema = self._get_schema(shard_0_master.tablet_alias) shard_1_schema = self._get_schema(shard_1_master.tablet_alias) # all shards should have the same schema self.assertEqual(shard_0_schema, shard_1_schema) def test_schema_changes(self): self._apply_initial_schema() self._apply_schema( test_keyspace, self._alter_test_table_sql('vt_select_test03', 'msg')) shard_0_schema = self._get_schema(shard_0_master.tablet_alias) shard_1_schema = self._get_schema(shard_1_master.tablet_alias) # all shards should have the same schema self.assertEqual(shard_0_schema, shard_1_schema) # test schema changes os.makedirs(os.path.join(utils.vtctld.schema_change_dir, test_keyspace)) input_path = os.path.join( utils.vtctld.schema_change_dir, test_keyspace, 'input') os.makedirs(input_path) sql_path = os.path.join(input_path, 'create_test_table_x.sql') with open(sql_path, 'w') as handler: handler.write('create table test_table_x (id int)') # wait until this sql file being consumed by autoschema timeout = 10 while os.path.isfile(sql_path): timeout = utils.wait_step( 'waiting for vtctld to pick up schema changes', timeout, sleep_time=0.2) # check number of tables self._check_tables(shard_0_master, 5) self._check_tables(shard_1_master, 5) def test_schema_changes_drop_and_create(self): """Tests that a DROP and CREATE table will pass PreflightSchema check. PreflightSchema checks each SQL statement separately. When doing so, it must consider previous statements within the same ApplySchema command. For example, a CREATE after DROP must not fail: When CREATE is checked, DROP must have been executed first. See: https://github.com/vitessio/vitess/issues/1731#issuecomment-222914389 """ self._apply_initial_schema() self._check_tables(shard_0_master, 4) self._check_tables(shard_1_master, 4) drop_and_create = ('DROP TABLE vt_select_test01;\n' + self._create_test_table_sql('vt_select_test01')) self._apply_schema(test_keyspace, drop_and_create) # check number of tables self._check_tables(shard_0_master, 4) self._check_tables(shard_1_master, 4) def test_schema_changes_preflight_errors_partially(self): """Tests that some SQL statements fail properly during PreflightSchema.""" self._apply_initial_schema() self._check_tables(shard_0_master, 4) self._check_tables(shard_1_master, 4) # Second statement will fail because the table already exists. create_error = (self._create_test_table_sql('vt_select_test05') + ';\n' + self._create_test_table_sql('vt_select_test01')) stdout = self._apply_schema(test_keyspace, create_error, expect_fail=True) self.assertIn('already exists', ''.join(stdout)) # check number of tables self._check_tables(shard_0_master, 4) self._check_tables(shard_1_master, 4) def test_schema_changes_drop_nonexistent_tables(self): """Tests the PreflightSchema logic for dropping nonexistent tables. If a table does not exist, DROP TABLE should error during preflight because the statement does not change the schema as there is nothing to drop. In case of DROP TABLE IF EXISTS though, it should not error as this is the MySQL behavior the user expects. """ self._apply_initial_schema() self._check_tables(shard_0_master, 4) self._check_tables(shard_1_master, 4) drop_table = ('DROP TABLE nonexistent_table;') stdout = self._apply_schema(test_keyspace, drop_table, expect_fail=True) self.assertIn('Unknown table', ''.join(stdout)) # This Query may not result in schema change and should be allowed. drop_if_exists = ('DROP TABLE IF EXISTS nonexistent_table;') self._apply_schema(test_keyspace, drop_if_exists) self._check_tables(shard_0_master, 4) self._check_tables(shard_1_master, 4) def test_vtctl_copyschemashard_use_tablet_as_source(self): self._test_vtctl_copyschemashard(shard_0_master.tablet_alias) def test_vtctl_copyschemashard_use_shard_as_source(self): self._test_vtctl_copyschemashard('test_keyspace/0') def _test_vtctl_copyschemashard(self, source): # Apply initial schema to the whole keyspace before creating shard 2. self._apply_initial_schema() _setup_shard_2() try: # InitShardMaster creates the db, but there shouldn't be any tables yet. self._check_tables(shard_2_master, 0) self._check_tables(shard_2_replica1, 0) # Run the command twice to make sure it's idempotent. for _ in range(2): utils.run_vtctl(['CopySchemaShard', source, 'test_keyspace/2'], auto_log=True) # shard_2_master should look the same as the replica we copied from self._check_tables(shard_2_master, 4) utils.wait_for_replication_pos(shard_2_master, shard_2_replica1) self._check_tables(shard_2_replica1, 4) shard_0_schema = self._get_schema(shard_0_master.tablet_alias) shard_2_schema = self._get_schema(shard_2_master.tablet_alias) self.assertEqual(shard_0_schema, shard_2_schema) finally: _teardown_shard_2() def test_vtctl_copyschemashard_different_dbs_should_fail(self): # Apply initial schema to the whole keyspace before creating shard 2. self._apply_initial_schema() _setup_shard_2() try: # InitShardMaster creates the db, but there shouldn't be any tables yet. self._check_tables(shard_2_master, 0) self._check_tables(shard_2_replica1, 0) # Change the db charset on the destination shard from utf8 to latin1. # This will make CopySchemaShard fail during its final diff. # (The different charset won't be corrected on the destination shard # because we use "CREATE DATABASE IF NOT EXISTS" and this doesn't fail if # there are differences in the options e.g. the character set.) shard_2_schema = self._get_schema(shard_2_master.tablet_alias) self.assertIn('utf8', shard_2_schema['database_schema']) utils.run_vtctl_json( ['ExecuteFetchAsDba', '-json', shard_2_master.tablet_alias, 'ALTER DATABASE vt_test_keyspace CHARACTER SET latin1']) _, stderr = utils.run_vtctl(['CopySchemaShard', 'test_keyspace/0', 'test_keyspace/2'], expect_fail=True, auto_log=True) self.assertIn('schemas are different', stderr) # shard_2_master should have the same number of tables. Only the db # character set is different. self._check_tables(shard_2_master, 4) finally: _teardown_shard_2() if __name__ == '__main__': utils.main()
url = 'https://opendart.fss.or.kr/api/list.xml'
import pyspark from pyspark import SparkConf, SparkContext import collections conf = SparkConf().setAppName("SalaryAnalysis") sc = SparkContext(conf = conf) # Detroit Open Data file located https://data.detroitmi.gov/Government/Mayoral-Appointee-Salaries/fwu6-4nb5 lines = sc.textFile("hdfs://cluster-b435-m/wsu/Mayoral_Appointee_Salaries.csv") #lines.take(5) # Get total no. of mayoral employees lines.count() # Get total no. of distinct titles sc.textFile("hdfs://cluster-b435-m/wsu/rows.csv")\ .map(lambda line: (line.split(',')[2], line.split(',')[2]))\ .distinct()\ .count() # How many departments are there? sc.textFile("hdfs://cluster-b435-m/wsu/rows.csv")\ .map(lambda line: (line.split(',')[3], line.split(',')[3]))\ .distinct()\ .count() # Sum total city salaries paid to employees lines.map(lambda x: float(x[4])).reduce(lambda a, b: a+b) # Employees with annual salary >= $200,000 filter1 = lines.filter(lambda x: x[4] >= 200000) filter1.count() # Employees with annual salary >= $150,000 filter2 = lines.filter(lambda x: x[4] >= 150000) filter2.count() # Average total salary for police department filter3 = lines.filter(lambda x: x[3] == "Police") filter3.reduce(lambda x, y: x + y, filter3[3]) / filter3.count() # How many departments receive ADDITIONAL GRANT SUPPORT? filter4 = lines.filter(lambda x: x[6] > 0).count() # Highest and lowest city salaries highSal = lines.map(lambda x: x[4]) \ .max() lowSal = lines.map(lambda x: x[4]) \ .min() salFilter = lines.filter(lambda x: x[4]) # List individual with highest salary topSal = salFilter.filter(lambda x: x[1] == highSal) \ .map(lambda x: x[0]) .collect() # List individual with lowest salary bottomSal = salFilter.filter(lambda x: x[1] == lowSal) \ .map(lambda x: x[0]) .collect()
import os import sys import pygame import requests from inoutbox import get_key, display_box, ask, main question = 'https://geocode-maps.yandex.ru/1.x/?apikey=40d1649f-0493-4b70-98ba-98533de7710b&geocode=ะะฒัั‚ั€ะฐะปะธั&format=json' resp = requests.get(question) if resp: resp = resp.json() cords = resp["response"]["GeoObjectCollection"]["featureMember"][0]["GeoObject"]["Point"]["pos"] response = None map_request = f"http://static-maps.yandex.ru/1.x/?ll={','.join(cords.split())}&spn=20,20&l=sat" response = requests.get(map_request) if not response: print("ะžัˆะธะฑะบะฐ ะฒั‹ะฟะพะปะฝะตะฝะธั ะทะฐะฟั€ะพัะฐ:") print(map_request) print("Http ัั‚ะฐั‚ัƒั:", response.status_code, "(", response.reason, ")") sys.exit(1) map_file = "map.png" with open(map_file, "wb") as file: file.write(response.content) pygame.init() screen = pygame.display.set_mode((600, 450)) while pygame.event.wait().type != pygame.QUIT: display_box(screen, 'tratata') ask(screen, 'ask') # screen.blit(pygame.image.load(map_file), (0, 0)) # pygame.display.flip() pygame.quit() os.remove(map_file)
from models.data_types import ComplexDataType class Method(ComplexDataType): def __init__(self, name, description, result_type_name=None, deprecated=False): super(Method, self).__init__(name, description, deprecated) self._result_type_name = result_type_name self._permissions = {} @property def result_type_name(self): return self._result_type_name @result_type_name.setter def result_type_name(self, value): self._result_type_name = value @property def permissions(self): return self._permissions def add_permission(self, permission): self._permissions[permission.role] = permission def get_permission(self, role): return self._permissions[role] class ImplMethod(Method): def __init__(self, name, description='', result_type_name=None, deprecated=False): super(ImplMethod, self).__init__(name, description, result_type_name, deprecated) self._frequency = None self._auth_required = True self._private_fields = {} self._is_private = False self._request_limit = None self._time_limit = None self._query_fields = {} @property def is_private(self): return self._is_private @is_private.setter def is_private(self, value): self._is_private = value @property def auth_required(self): return self._auth_required @auth_required.setter def auth_required(self, value): self._auth_required = value @property def frequency(self): return self._frequency @frequency.setter def frequency(self, value): self._frequency = value @property def request_limit(self): return self._request_limit @request_limit.setter def request_limit(self, value): self._request_limit = value @property def time_limit(self): return self._time_limit @time_limit.setter def time_limit(self, value): self._time_limit = value def add_private_field(self, field): self._private_fields[field.name] = field def get_private_field(self, field_name): return self._private_fields[field_name] def private_fields(self): return self._private_fields def add_query_field(self, name, field): if name in self._query_fields: self._query_fields[name].append(field) else: self._query_fields[name] = [field] def get_query_fields(self, name): return self._query_fields.get(name, []) def get_query_names(self): return self._query_fields.keys()
# -*- coding: utf-8 -*- ''' NAPALM Probes ============= Manages RPM/SLA probes on the network device. :codeauthor: Mircea Ulinic <mircea@cloudflare.com> & Jerome Fleury <jf@cloudflare.com> :maturity: new :depends: napalm :platform: linux Dependencies ------------ - :mod:`napalm proxy minion <salt.proxy.napalm>` .. versionadded:: Carbon ''' from __future__ import absolute_import # Import python lib import logging log = logging.getLogger(__file__) try: # will try to import NAPALM # https://github.com/napalm-automation/napalm # pylint: disable=W0611 from napalm import get_network_driver # pylint: enable=W0611 HAS_NAPALM = True except ImportError: HAS_NAPALM = False # ---------------------------------------------------------------------------------------------------------------------- # module properties # ---------------------------------------------------------------------------------------------------------------------- __virtualname__ = 'probes' __proxyenabled__ = ['napalm'] # uses NAPALM-based proxy to interact with network devices # ---------------------------------------------------------------------------------------------------------------------- # property functions # ---------------------------------------------------------------------------------------------------------------------- def __virtual__(): ''' NAPALM library must be installed for this module to work. Also, the key proxymodule must be set in the __opts___ dictionary. ''' if HAS_NAPALM and 'proxy' in __opts__: return __virtualname__ else: return (False, 'The module napalm_probes cannot be loaded: \ napalm or proxy could not be loaded.') # ---------------------------------------------------------------------------------------------------------------------- # helper functions -- will not be exported # ---------------------------------------------------------------------------------------------------------------------- # ---------------------------------------------------------------------------------------------------------------------- # callable functions # ---------------------------------------------------------------------------------------------------------------------- def config(): ''' Returns the configuration of the RPM probes. :return: A dictionary containing the configuration of the RPM/SLA probes. CLI Example: .. code-block:: bash salt '*' probes.config Output Example: .. code-block:: python { 'probe1':{ 'test1': { 'probe_type' : 'icmp-ping', 'target' : '192.168.0.1', 'source' : '192.168.0.2', 'probe_count' : 13, 'test_interval': 3 }, 'test2': { 'probe_type' : 'http-ping', 'target' : '172.17.17.1', 'source' : '192.17.17.2', 'probe_count' : 5, 'test_interval': 60 } } } ''' return __proxy__['napalm.call']( 'get_probes_config', **{ } ) def results(): ''' Provides the results of the measurements of the RPM/SLA probes. :return a dictionary with the results of the probes. CLI Example: .. code-block:: bash salt '*' probes.results Output example: .. code-block:: python { 'probe1': { 'test1': { 'last_test_min_delay' : 63.120, 'global_test_min_delay' : 62.912, 'current_test_avg_delay': 63.190, 'global_test_max_delay' : 177.349, 'current_test_max_delay': 63.302, 'global_test_avg_delay' : 63.802, 'last_test_avg_delay' : 63.438, 'last_test_max_delay' : 65.356, 'probe_type' : 'icmp-ping', 'rtt' : 63.138, 'last_test_loss' : 0, 'round_trip_jitter' : -59.0, 'target' : '192.168.0.1', 'source' : '192.168.0.2' 'probe_count' : 15, 'current_test_min_delay': 63.138 }, 'test2': { 'last_test_min_delay' : 176.384, 'global_test_min_delay' : 169.226, 'current_test_avg_delay': 177.098, 'global_test_max_delay' : 292.628, 'current_test_max_delay': 180.055, 'global_test_avg_delay' : 177.959, 'last_test_avg_delay' : 177.178, 'last_test_max_delay' : 184.671, 'probe_type' : 'icmp-ping', 'rtt' : 176.449, 'last_test_loss' : 0, 'round_trip_jitter' : -34.0, 'target' : '172.17.17.1', 'source' : '172.17.17.2' 'probe_count' : 15, 'current_test_min_delay': 176.402 } } } ''' return __proxy__['napalm.call']( 'get_probes_results', **{ } ) def set_probes(probes): ''' Configures RPM/SLA probes on the device. Calls the configuration template 'set_probes' from the NAPALM library, providing as input a rich formatted dictionary with the configuration details of the probes to be configured. :param probes: Dictionary formatted as the output of the function config(): :return: Will return if the configuration of the device was updated. Input example: .. code-block:: python probes = { 'new_probe':{ 'new_test1': { 'probe_type' : 'icmp-ping', 'target' : '192.168.0.1', 'source' : '192.168.0.2', 'probe_count' : 13, 'test_interval': 3 }, 'new_test2': { 'probe_type' : 'http-ping', 'target' : '172.17.17.1', 'source' : '192.17.17.2', 'probe_count' : 5, 'test_interval': 60 } } } set_probes(probes) ''' return __proxy__['napalm.call']( 'load_template', **{ 'template_name': 'set_probes', 'probes': probes } ) def delete_probes(probes): ''' Removes RPM/SLA probes from the network device. Calls the configuration template 'delete_probes' from the NAPALM library, providing as input a rich formatted dictionary with the configuration details of the probes to be removed from the configuration of the device. :param probes: Dictionary with a similar format as the output dictionary of the function config(), where the details are not necessary. :return: Will return if the configuration of the device was updated. Input example: .. code-block:: python probes = { 'existing_probe':{ 'existing_test1': {}, 'existing_test2': {} } } ''' return __proxy__['napalm.call']( 'load_template', **{ 'template_name': 'delete_probes', 'probes': probes } ) def schedule_probes(probes): ''' Will schedule the probes. On Cisco devices, it is not enough to define the probes, it is also necessary to schedule them. This method calls the configuration template 'schedule_probes' from the NAPALM library, providing as input a rich formatted dictionary with the names of the probes and the tests to be scheduled. :param probes: Dictionary with a similar format as the output dictionary of the function config(), where the details are not necessary. :return: Will return if the configuration of the device was updated. Input example: .. code-block:: python probes = { 'new_probe':{ 'new_test1': {}, 'new_test2': {} } } ''' return __proxy__['napalm.call']( 'load_template', **{ 'template_name': 'schedule_probes', 'probes': probes } )
def add_arguments(parser): parser.add_argument( "-d", "--data_file", required=True, help="file or dir containing training data" ) parser.add_argument( "-o", "--out_file", required=True, help="file where to save training data in rasa format", ) parser.add_argument("-l", "--language", default="en", help="language of the data") parser.add_argument( "-f", "--format", required=True, choices=["json", "md"], help="Output format the training data should be converted into.", ) return parser
from collections import deque import random import numpy as np class DataMemory(): def __init__(self, max_len=50000): super(DataMemory, self).__init__() self.max_len = max_len self.memory = deque() def add(self, s_t, a_t, r_t, s_n, terminal): self.memory.append((s_t, a_t, r_t, s_n, float(terminal))) if len(self.memory) > self.max_len: self.memory.popleft() def gen_minibatch(self, batch_size=32): minibatch = random.sample(self.memory, batch_size) s_t, a_t, r_t, s_n, terminal = zip(*minibatch) s_t = np.concatenate(s_t) s_n = np.concatenate(s_n) r_t = np.array(r_t).astype(np.float32).reshape(batch_size, 1) terminal = np.array(terminal).astype(np.float32).reshape(batch_size, 1) return s_t, a_t, r_t, s_n, terminal
# -*- coding: utf-8 -*- """ Created on Thu Oct 27 12:48:05 2016 @author: wattai """ import numpy as np import matplotlib.pyplot as plt def gauss_ludgendle(N_iter): a0 = 1. / np.sqrt(2) b0 = 1. s0 = 1. t0 = 4. pis = [] for i in range(N_iter): a1 = np.sqrt(a0*b0) b1 = (a0 + b0) / 2. s1 = s0 - t0 * (b1 - b0)**2 t1 = 2. * t0 a0 = a1 b0 = b1 s0 = s1 t0 = t1 pi = ((a0 + b0)**2) / s0 pis.append(pi) return np.array(pis) def borwein_4d(N_iter): a0 = 6. - 4. * np.sqrt(2) y0 = np.sqrt(2) - 1. pis = [] for i in range(N_iter): y1 = ( 1 - ( 1 - y0**4 )**(1/4) ) / ( 1 + ( 1 - y0**4 )**(1/4) ) a1 = a0 * (1. + y1)**4 -( 2.**(i+3.) * y1 * (1. + y1 + y1**2) ) y0 = y1 a0 = a1 pi = 1 / a0 pis.append(pi) return np.array(pis) if __name__ == "__main__": N_iter = 5 pis_gauss = gauss_ludgendle(N_iter) pis_bor = borwein_4d(N_iter) print("gauss pi: " +str(pis_gauss)) print("borwein pi: " +str(pis_bor)) print("true pi: " +str(np.pi)) print("error: " +str(abs(np.pi-pis_gauss[N_iter-1]))) print("error: " +str(abs(np.pi-pis_bor[N_iter-1]))) n = np.arange(N_iter) plt.figure() plt.plot(n, (np.pi - pis_gauss), color="red") plt.plot(n, (np.pi - pis_bor), color="blue")
import recommendations from math import sqrt #import pydilicious #import maybe #ไฟฎๆ”น่ฟ‡็š„python3็š„็‰ˆๆœฌไธ”ๅˆ ้™คไบ†ๅบŸ่ฏ็š„ใ€‚ import noway #ๆ„Ÿ่ง‰่ฐƒ็”จget_popularๅ‡ฝๆ•ฐๆ‰€็”จๅˆฐ็š„้ƒจๅˆ†้ƒฝๅœจ่ฟ™ไบ†ใ€‚ ##็ฌฌไบŒ็ซ ๅŽ้ข็š„ๅ†…ๅฎน่ฟ˜ๆ˜ฏๅฏไปฅ็ปง็ปญๅš็š„ใ€‚www ''' print(critics['Lisa Rose']['Lady in the Water']) critics['Toby']['Snakes on a Plane'] = 4.5 print(critics['Toby'])#่พ“ๅ‡บ็š„้กบๅบๆ˜ฏ้šๆœบ็š„ๅ”‰ใ€‚ a = 1/(1+sqrt(pow(4.5-4,2)+pow(1-2,2))) print(a) b = recommendations.sim_distance(recommendations.critics, 'Lisa Rose', 'Gene Seymour') print(b) c = recommendations.sim_pearson(recommendations.critics, 'Lisa Rose', 'Gene Seymour') print(c) k = recommendations.topMatches(recommendations.critics, 'Toby', n=6) print(k) g = recommendations.getRecommendations(recommendations.critics, 'Toby') print(g) movies = recommendations.transformPrefs(recommendations.critics) mm = recommendations.topMatches(movies, 'Superman Returns') #print(mm) ww = recommendations.getRecommendations(movies, 'Lady in the Water') print(ww)''' a = noway.get_popular(tag = 'programming') print(a)#42้กตใ€‚ๆˆ‘็œŸ็š„ๆ˜ฏๆ— ่ƒฝไธบๅŠ›ๅ•ฆใ€‚
from multiprocessing import Pool from indigox.config import INIT_WITH_GA, NUM_PROCESSES from indigox.exception import IndigoUnfeasibleComputation from indigox.misc import (BondOrderAssignment, graph_to_dist_graph, electron_spots, electrons_to_add, locs_sort, HashBitArray, graph_setup, node_energy, bitarray_to_assignment) class LocalOptimisation(BondOrderAssignment): def __init__(self, G): self.init_G = G def initialise(self): self.G = graph_to_dist_graph(self.init_G) self.target = electrons_to_add(self.init_G) self.locs = locs_sort(electron_spots(self.init_G), self.G) if INIT_WITH_GA: self.init_a = HashBitArray(len(self.locs)) self.init_a.setall(False) base_energy = self.calc_energy(self.init_a)[1] all_locs = list(range(len(self.locs))) while self.init_a.count() < self.target: energy_diffs = {} for i in all_locs: self.init_a[i] = True energy_diffs[i] = (self.calc_energy(self.init_a)[1] - base_energy) self.init_a[i] = False min_i = min(energy_diffs, key=lambda x: energy_diffs[x]) self.init_a[min_i] = True base_energy += energy_diffs[min_i] all_locs.remove(min_i) else: self.init_a = HashBitArray(len(self.locs)) self.init_a.setall(False) self.init_a[:self.target] = True if self.init_a.count() != self.target: raise IndigoUnfeasibleComputation('Can only optimised when all ' 'electrons are placed in the initial guess.') def run(self): self.initialise() min_ene = self.calc_energy(self.init_a)[1] seen = {self.init_a : min_ene} current_min = [self.init_a] min_round = min_ene + 1 # So the while loop is entered, round_mins = current_min[:] # regardless of min_ene value. pool = Pool(processes=NUM_PROCESSES) while abs(min_round - min_ene) > 1e-10: min_ene = min_round current_min = round_mins[:] a = current_min[0] results = pool.imap_unordered(self.calc_energy, (n for n in self.neighbours(a) if n not in seen), chunksize=8) for n, n_ene in results: seen[n] = n_ene if n_ene - min_round < -1e-10: min_round = n_ene round_mins = [n] elif -1e-10 < n_ene - min_round < 1e-10: round_mins.append(n) pool.terminate() bitarray_to_assignment(self.init_G, current_min[0], self.locs) return self.init_G, seen[current_min[0]] def calc_energy(self, a): graph_setup(self.G, a, self.locs) ene = sum(node_energy(self.G, n) for n in self.G) return a, round(ene, 5) def neighbours(self, a): for source in set(self.locs): i = self.locs.index(source) i_count = self.locs.count(source) i_loc = i + a[i:i+i_count].count() - 1 if not a[i:i+i_count].count(): continue for target in set(self.locs): if source == target: continue j = self.locs.index(target) j_count = self.locs.count(target) j_loc = j + a[j:j+j_count].count() if j_count == a[j:j+j_count].count(): continue b = a.copy() b[i_loc] = False b[j_loc] = True yield b
try: # try/except block raise IndexError # raise the exception except IndexError: # catch the exception print('got the exception') print('continuing')
from unittest import TestCase import search class TestSearch(TestCase): def test_search_by_name_should_return_empty(self): contact_data = [ { "city": "Rennes", "name": "Ivan Riley", "country": "Burkina Faso", "company": "Nonummy Fusce Ltd", "job_history": [ "Apple Systems", "Google" ], "email": "tincidunt.orci@convallisdolorQuisque.co.uk" }, { "city": "San Miguel", "name": "Ignatius Tate", "country": "Saudi Arabia", "company": "Etiam Ligula Consulting", "job_history": [ "Apple Systems", "Cakewalk" ], "email": "vitae@metusInnec.org" }, { "city": "Saint-Remy", "name": "Nyssa Hammond", "country": "Mozambique", "company": "Dui Nec Tempus Inc.", "job_history": [ "Chami", "Cakewalk" ], "email": "dolor@adipiscingelitEtiam.org" } ] result = search.search_by_name('blah', contact_data) assert len(result) == 0 def test_search_by_name_should_return_one_result(self): contact_data = [ { "city": "Rennes", "name": "Ivan Riley", "country": "Burkina Faso", "company": "Nonummy Fusce Ltd", "job_history": [ "Apple Systems", "Google" ], "email": "tincidunt.orci@convallisdolorQuisque.co.uk" }, { "city": "San Miguel", "name": "Ignatius Tate", "country": "Saudi Arabia", "company": "Etiam Ligula Consulting", "job_history": [ "Apple Systems", "Cakewalk" ], "email": "vitae@metusInnec.org" }, { "city": "Saint-Remy", "name": "Nyssa Hammond", "country": "Mozambique", "company": "Dui Nec Tempus Inc.", "job_history": [ "Chami", "Cakewalk" ], "email": "dolor@adipiscingelitEtiam.org" } ] result = search.search_by_name('Nyssa', contact_data) assert len(result) == 1 def test_search_by_name_should_return_one_result(self): contact_data = [ { "city": "Rennes", "name": "Ivan Riley", "country": "Burkina Faso", "company": "Nonummy Fusce Ltd", "job_history": [ "Apple Systems", "Google" ], "email": "tincidunt.orci@convallisdolorQuisque.co.uk" }, { "city": "San Miguel", "name": "Ignatius Tate", "country": "Saudi Arabia", "company": "Etiam Ligula Consulting", "job_history": [ "Apple Systems", "Cakewalk" ], "email": "vitae@metusInnec.org" }, { "city": "Saint-Remy", "name": "Nyssa Hammond", "country": "Mozambique", "company": "Dui Nec Tempus Inc.", "job_history": [ "Chami", "Cakewalk" ], "email": "dolor@adipiscingelitEtiam.org" } ] result = search.search_by_name('i', contact_data) assert len(result) == 2 def test_search_should_return_empty(self): contact_data = [ { "city": "Rennes", "name": "Ivan Riley", "country": "Burkina Faso", "company": "Nonummy Fusce Ltd", "job_history": [ "Apple Systems", "Google" ], "email": "tincidunt.orci@convallisdolorQuisque.co.uk" }, { "city": "San Miguel", "name": "Ignatius Tate", "country": "Saudi Arabia", "company": "Etiam Ligula Consulting", "job_history": [ "Apple Systems", "Cakewalk" ], "email": "vitae@metusInnec.org" }, { "city": "Saint-Remy", "name": "Nyssa Hammond", "country": "Mozambique", "company": "Dui Nec Tempus Inc.", "job_history": [ "Chami", "Cakewalk" ], "email": "dolor@adipiscingelitEtiam.org" }, { "city": "Saint-Remy", "name": "Nyssa Hammond", "country": "Mozambique", "company": "Dui Nec Tempus Inc.", "job_history": [ "Chami", "Cakewalk" ], "email": "dolor@adipiscingelitEtiam.org" } ] result = search.search_by_all_fields('_', contact_data) assert len(result) == 0 def test_search_should_return_duplicate(self): contact_data = [ { "city": "Rennes", "name": "Ivan Riley", "country": "Burkina Faso", "company": "Nonummy Fusce Ltd", "job_history": [ "Apple Systems", "Google" ], "email": "tincidunt.orci@convallisdolorQuisque.co.uk" }, { "city": "San Miguel", "name": "Ignatius Tate", "country": "Saudi Arabia", "company": "Etiam Ligula Consulting", "job_history": [ "Apple Systems", "Cakewalk" ], "email": "vitae@metusInnec.org" }, { "city": "Saint-Remy", "name": "Nyssa Hammond", "country": "Mozambique", "company": "Dui Nec Tempus Inc.", "job_history": [ "Chami", "Cakewalk" ], "email": "dolor@adipiscingelitEtiam.org" }, { "city": "Saint-Remy", "name": "Nyssa Hammond", "country": "Mozambique", "company": "Dui Nec Tempus Inc.", "job_history": [ "Chami", "Cakewalk" ], "email": "dolor@adipiscingelitEtiam.org" } ] result = search.search_by_all_fields('Nyssa Hammond', contact_data) assert len(result) == 2 def test_search_should_return_london_contact_only(self): contact_data = [ { "city": "Rennes", "name": "Ivan Riley", "country": "Burkina Faso", "company": "Nonummy Fusce Ltd", "job_history": [ "Apple Systems", "Google" ], "email": "tincidunt.orci@convallisdolorQuisque.co.uk" }, { "city": "San Miguel", "name": "Ignatius Tate", "country": "Saudi Arabia", "company": "Etiam Ligula Consulting", "job_history": [ "Apple Systems", "Cakewalk" ], "email": "vitae@metusInnec.org" }, { "city": "Saint-Remy", "name": "Nyssa Hammond", "country": "Mozambique", "company": "Dui Nec Tempus Inc.", "job_history": [ "Chami", "Cakewalk" ], "email": "dolor@adipiscingelitEtiam.org" }, { "city": "London City", "name": "Nyssa Hammond", "country": "Mozambique", "company": "Dui Nec Tempus Inc.", "job_history": [ "Chami", "Cakewalk" ], "email": "dolor@adipiscingelitEtiam.org" } ] result = search.search_by_all_fields('London City', contact_data) assert len(result) > 0 and result[0]["name"] == "Nyssa Hammond"
import logging import aioisotp logging.basicConfig(level=logging.DEBUG) network = aioisotp.SyncISOTPNetwork(channel='vcan0', interface='virtual', receive_own_messages=True) server = network.create_sync_connection(0x456, 0x123) with network.open(): client = network.create_sync_connection(0x123, 0x456) client.send(b'123456789') payload = server.recv(1) assert payload == b'123456789'
import twitter from twitter.stream import TwitterStream, Timeout, HeartbeatTimeout, Hangup from twitter.oauth import OAuth from twitter.oauth2 import OAuth2, read_bearer_token_file from twitter.util import printNicely from string import ascii_letters import os import re import string import sys # XXX: Go to http://dev.twitter.com/apps/new to create an app and get values # for these credentials, which you'll need to provide in place of these # empty string values that are defined as placeholders. # See https://dev.twitter.com/docs/auth/oauth for more information # on Twitter's OAuth implementation. API_KEY = '***' API_SECRET = '***' OAUTH_TOKEN = '***' OAUTH_TOKEN_SECRET = '***' DEFAULT_HASH = "e" auth = twitter.oauth.OAuth(OAUTH_TOKEN, OAUTH_TOKEN_SECRET, API_KEY, API_SECRET) query = DEFAULT_HASH count = 10000 twitter_api = twitter.Twitter(auth=auth) def make_tweet(text, time, lat, lon): """Return a tweet, represented as a Python dictionary. text -- A string; the text of the tweet, all in lowercase time -- A datetime object; the time that the tweet was posted lat -- A number; the latitude of the tweet's location lon -- A number; the longitude of the tweet's location >>> t = make_tweet("just ate lunch", datetime(2012, 9, 24, 13), 38, 74) >>> tweet_words(t) ['just', 'ate', 'lunch'] >>> tweet_time(t) datetime.datetime(2012, 9, 24, 13, 0) >>> p = tweet_location(t) >>> latitude(p) 38 """ return {'text': text, 'time': time, 'latitude': lat, 'longitude': lon} def tweet_words(tweet): """Return a list of the words in the text of a tweet.""" t = tweet['text'] return t.split() def tweet_time(tweet): """Return the datetime that represents when the tweet was posted.""" return tweet['time'] def tweet_location(tweet): """Return a position (see geo.py) that represents the tweet's location.""" return make_position(tweet['latitude'], tweet['longitude']) def tweet_string(tweet): """Return a string representing the tweet.""" location = tweet_location(tweet) return '"{0}" @ {1}'.format(tweet['text'], (latitude(location), longitude(location))) def extract_words(text): """Return the words in a tweet, not including punctuation. >>> extract_words('anything else.....not my job') ['anything', 'else', 'not', 'my', 'job'] >>> extract_words('i love my job. #winning') ['i', 'love', 'my', 'job', 'winning'] >>> extract_words('make justin # 1 by tweeting #vma #justinbieber :)') ['make', 'justin', 'by', 'tweeting', 'vma', 'justinbieber'] >>> extract_words("paperclips! they're so awesome, cool, & useful!") ['paperclips', 'they', 're', 'so', 'awesome', 'cool', 'useful'] >>> extract_words('@(cat$.on^#$my&@keyboard***@#*') ['cat', 'on', 'my', 'keyboard'] """ i = 0 if type(text) == str: while i<len(text): if text[i] not in ascii_letters: text = text.replace(text[i], " ") i+=1 return text.split() else: def remove_from_list(string): if string[i] not in ascii_letters: string = string.replace(text[i], "") return string return [remove_from_list(word) for word in text] # Look for data directory PY_PATH = sys.argv[0] if PY_PATH.endswith('doctest.py') and len(sys.argv) > 1: PY_PATH = sys.argv[1] DATA_PATH = os.path.join(os.path.dirname(PY_PATH), 'data') + os.sep if not os.path.exists(DATA_PATH): DATA_PATH = 'data' + os.sep def load_sentiments(file_name=DATA_PATH + "sentiments.csv"): """Read the sentiment file and return a dictionary containing the sentiment score of each word, a value from -1 to +1. """ sentiments = {} for line in open(file_name): word, score = line.split(',') sentiments[word] = float(score.strip()) return sentiments word_sentiments = load_sentiments() def make_sentiment(value): """Return a sentiment, which represents a value that may not exist. >>> positive = make_sentiment(0.2) >>> neutral = make_sentiment(0) >>> unknown = make_sentiment(None) >>> has_sentiment(positive) True >>> has_sentiment(neutral) True >>> has_sentiment(unknown) False >>> sentiment_value(positive) 0.2 >>> sentiment_value(neutral) 0 """ assert value is None or (value >= -1 and value <= 1), 'Illegal value' if value is None: return (False, value) else: return (True, value) def has_sentiment(s): """Return whether sentiment s has a value.""" return s[0] def sentiment_value(s): """Return the value of a sentiment s.""" assert has_sentiment(s), 'No sentiment value' return s[1] def get_word_sentiment(word): """Return a sentiment representing the degree of positive or negative feeling in the given word. >>> sentiment_value(get_word_sentiment('good')) 0.875 >>> sentiment_value(get_word_sentiment('bad')) -0.625 >>> sentiment_value(get_word_sentiment('winning')) 0.5 >>> has_sentiment(get_word_sentiment('California')) False """ # Learn more: http://docs.python.org/3/library/stdtypes.html#dict.get return make_sentiment(word_sentiments.get(word)) def analyze_tweet_sentiment(tweet): """ Return a sentiment representing the degree of positive or negative sentiment in the given tweet, averaging over all the words in the tweet that have a sentiment value. If no words in the tweet have a sentiment value, return make_sentiment(None). >>> positive = make_tweet('i love my job. #winning', None, 0, 0) >>> round(sentiment_value(analyze_tweet_sentiment(positive)), 5) 0.29167 >>> negative = make_tweet("saying, 'i hate my job'", None, 0, 0) >>> sentiment_value(analyze_tweet_sentiment(negative)) -0.25 >>> no_sentiment = make_tweet("berkeley golden bears!", None, 0, 0) >>> has_sentiment(analyze_tweet_sentiment(no_sentiment)) False """ average = make_sentiment(None) i = 0 analyzed = 0 count = 0 tweet_text = extract_words(tweet_words(tweet)) while i<len(tweet_text): if has_sentiment(get_word_sentiment(tweet_text[i])): analyzed = analyzed + sentiment_value(get_word_sentiment(tweet_text[i])) count = count + 1 i = i + 1 if analyzed == 0: return make_sentiment(None) return make_sentiment(analyzed/count) def main(): query_args = dict() query_args['track'] = query stream = TwitterStream(auth=auth) tweet_iter = stream.statuses.filter(**query_args) #tweet_iter = stream.statuses.sample() tweets = [] # Iterate over the sample stream. for tweet in tweet_iter: # You must test that your tweet has text. It might be a delete # or data message. if tweet is None: print("-- None --") elif tweet is Timeout: print("-- Timeout --") elif tweet is HeartbeatTimeout: print("-- Heartbeat Timeout --") elif tweet is Hangup: print("-- Hangup --") elif tweet.get('text'): senti = analyze_tweet_sentiment(tweet) if (tweet.get('coordinates') != None): curr = [tweet.get('coordinates'), senti] tweets.append(curr) #print(tweets) else: print("-- Some data: " + str(tweet)) if __name__ == '__main__': main()
# Generated by Django 2.0.7 on 2018-07-31 09:11 from django.db import migrations, models import django.utils.datetime_safe class Migration(migrations.Migration): dependencies = [ ('post_app', '0008_comment_comment'), ] operations = [ migrations.AlterField( model_name='file', name='created_date', field=models.DateTimeField(default=django.utils.datetime_safe.datetime.now), ), migrations.AlterField( model_name='link', name='created_date', field=models.DateTimeField(default=django.utils.datetime_safe.datetime.now), ), migrations.AlterField( model_name='text', name='created_date', field=models.DateTimeField(default=django.utils.datetime_safe.datetime.now), ), ]
#!/usr/bin/env python from manimlib.imports import * # To watch one of these scenes, run the following: # python -m manim example_scenes.py SquareToCircle -pl # # Use the flat -l for a faster rendering at a lower # quality. # Use -s to skip to the end and just save the final frame # Use the -p to have the animation (or image, if -s was # used) pop up once done. # Use -n <number> to skip ahead to the n'th animation of a scene. # Use -r <number> to specify a resolution (for example, -r 1080 # for a 1920x1080 video) extra_accel = lambda point: 0.0 # use to simulate feedback/feedforward class State: def __init__(self, position, velocity): self.theta = position self.omega = velocity # noinspection PyAttributeOutsideInit class PendulumCirclingOrigin(Scene): CONFIG = { "extra_accel_": lambda point: 0.0, "point_vector_max_len": 6.0, "show_state_point_vector": True, "hide_pendulum": False, "pendulum_config": { "initial_theta": 60 * DEGREES, "length": 2.0, "damping": 0, "top_point": ORIGIN, }, "vector_field_config": { # "max_magnitude": 2, "delta_x": 0.5 * 1.5, "delta_y": 0.5 * 1.5, # "x_max": 6, "length_func": lambda norm: 0.6 * sigmoid(norm) # "color_by_arc_length": True, # "colors": [BLUE_E, GREEN, YELLOW, RED] }, "coordinate_plane_config": { "x_max": 5 * PI / 2, "x_min": -5 * PI / 2, "y_max": 5, "y_min": -5 } } def construct(self): global extra_accel extra_accel = self.extra_accel_ self.state = State(self.pendulum_config["initial_theta"], 0.0) self.plane = NumberPlane(**self.coordinate_plane_config) self.create_pendulum_but_dont_add() self.create_vector_field() self.create_point_and_vec() self.add_pendulum() # self.wait(20) self.wait(5) def add_pendulum(self): self.add(self.pendulum) def get_evolving_trajectory(self, mobject, color=WHITE): trajectory = VMobject() trajectory.start_new_path(mobject.get_center()) trajectory.set_stroke(color, opacity=1) def update_trajectory(traj): point = mobject.get_center() if get_norm(trajectory.points[-1] == point) > 0.05: traj.add_smooth_curve_to(point) trajectory.add_updater(update_trajectory) return trajectory def create_vector_field(self): plane = self.plane plane.add(plane.y_axis.get_labels()) plane.x_axis.add_numbers(direction=DL) plane.add(plane.get_axis_labels("\\theta", "\\omega")) vector_field = self.vector_field = VectorField(self.pendulum_function, **self.vector_field_config) self.vector_field.sort(get_norm) self.add(plane, vector_field) def create_point_and_vec(self): pendulum: Pendulum = self.pendulum state_point = Dot().set_color(GREEN) state_point.add_updater( lambda point: state_point.move_to((np.array((self.pendulum.get_theta(), self.pendulum.get_omega(), 0.))))) def draw_vector_and_move_state_point(): # Create a dot to represent our current state in state-space state_point_pos = state_point.get_center_of_mass() state_point_at_t = state_point_pos # Create a vector representing xdot at tour current point in state-space xdot_at_t = self.vector_field.func(state_point_at_t) multiple = np.clip( get_norm(xdot_at_t), -self.point_vector_max_len, self.point_vector_max_len ) # vector = Vector(xdot_at_t / multiple) vector = Vector(xdot_at_t / multiple) vector.shift(state_point_pos) vector.set_color(GREEN) # return our point + vector mobj # vector.s(state_point_at_t) return vector self.state_point = state_point self.trajectory = self.get_evolving_trajectory(state_point) if (self.show_state_point_vector): state_vector = always_redraw(draw_vector_and_move_state_point) self.add(state_vector) self.add(self.trajectory, self.state_point) def pendulum_function(self, point): x, y = self.plane.point_to_coords(point) return pendulum_vector_field_func(np.array((x, y, 0.)), L=self.pendulum_config['length']) def create_pendulum_but_dont_add(self): pendulum = self.pendulum = Pendulum(**self.pendulum_config) pendulum.add_theta_label() pendulum.add_velocity_vector() pendulum.start_swinging() pendulum = self.pendulum background_rectangle = Rectangle(height=6, width=6, opacity=1.0, color=GREEN) \ .set_fill(color=BLACK, opacity=1.0) \ .shift(DOWN * 0.5) pendulum.add_to_back(background_rectangle) pendulum.scale_in_place(0.5) if (self.hide_pendulum is False): pendulum.move_to(TOP + LEFT_SIDE + (RIGHT + DOWN) * 0.25, aligned_edge=pendulum.get_corner(UP + LEFT)) else: pendulum.move_to((TOP + LEFT_SIDE) * 1.1, aligned_edge=pendulum.get_corner(DOWN + RIGHT)) def pendulum_vector_field_func(point, L=3, g=9.8): x, y = point[:2] x_dot = np.array([[0, 1], [-g / L, 0]]) @ (np.array([[math.sin(x)], [y]])) a_dot_x = np.array([x_dot[0, 0], x_dot[1, 0], 0.0]) # x, y = point[:2] extra_acceleration = extra_accel(np.array((x, y))) # a_dot_x = np.array([ # y, # -np.sqrt(g / L) * np.sin(x) - mu * y, # 0., # ]) # print("normal: %s, extra: %s" % (a_dot_x, extra_acceleration)) return a_dot_x + extra_acceleration # return np.array([1, 0, 0]) class Pendulum(VGroup): CONFIG = { "length": 2, "weight_diameter": 0.5, "initial_theta": 0.3, "omega": 0, "damping": 0.1, "top_point": 2 * UP, "rod_style": { "stroke_width": 3, "stroke_color": LIGHT_GREY, "sheen_direction": UP, "sheen_factor": 1, }, "weight_style": { "stroke_width": 0, "fill_opacity": 1, "fill_color": GREY_BROWN, "sheen_direction": UL, "sheen_factor": 0.5, "background_stroke_color": BLACK, "background_stroke_width": 3, "background_stroke_opacity": 0.5, }, "dashed_line_config": { "num_dashes": 25, "stroke_color": WHITE, "stroke_width": 2, }, "angle_arc_config": { "radius": 1, "stroke_color": WHITE, "stroke_width": 2, }, "velocity_vector_config": { "color": RED, }, "theta_label_height": 0.25, "set_theta_label_height_cap": False, "n_steps_per_frame": 100, "include_theta_label": True, "include_velocity_vector": False, "velocity_vector_multiple": 0.5, "max_velocity_vector_length_to_length_ratio": 0.5, } def __init__(self, **kwargs): super().__init__(**kwargs) self.create_fixed_point() self.create_rod() self.create_weight() self.rotating_group = VGroup(self.rod, self.weight) self.create_dashed_line() self.create_angle_arc() if self.include_theta_label: self.add_theta_label() if self.include_velocity_vector: self.add_velocity_vector() self.set_theta(self.initial_theta) self.update() def create_fixed_point(self): self.fixed_point_tracker = VectorizedPoint(self.top_point) self.add(self.fixed_point_tracker) return self def create_rod(self): rod = self.rod = Line(UP, DOWN) rod.set_height(self.length) rod.set_style(**self.rod_style) rod.move_to(self.get_fixed_point(), UP) self.add(rod) def create_weight(self): weight = self.weight = Circle() weight.set_width(self.weight_diameter) weight.set_style(**self.weight_style) weight.move_to(self.rod.get_end()) self.add(weight) def create_dashed_line(self): line = self.dashed_line = DashedLine( self.get_fixed_point(), self.get_fixed_point() + self.length * DOWN, **self.dashed_line_config ) line.add_updater( lambda l: l.move_to(self.get_fixed_point(), UP) ) self.add_to_back(line) def create_angle_arc(self): self.angle_arc = always_redraw(lambda: Arc( arc_center=self.get_fixed_point(), start_angle=-90 * DEGREES, angle=self.get_arc_angle_theta(), **self.angle_arc_config, )) self.add(self.angle_arc) def get_arc_angle_theta(self): # Might be changed in certain scenes return self.get_theta() def add_velocity_vector(self): def make_vector(): omega = self.get_omega() theta = self.get_theta() mvlr = self.max_velocity_vector_length_to_length_ratio max_len = mvlr * self.rod.get_length() vvm = self.velocity_vector_multiple multiple = np.clip( vvm * omega, -max_len, max_len ) vector = Vector( multiple * RIGHT, **self.velocity_vector_config, ) vector.rotate(theta, about_point=ORIGIN) vector.shift(self.rod.get_end()) return vector self.velocity_vector = always_redraw(make_vector) self.add(self.velocity_vector) return self def add_theta_label(self): self.theta_label = always_redraw(self.get_label) self.add(self.theta_label) def get_label(self): label = TexMobject("\\theta") label.set_height(self.theta_label_height) if self.set_theta_label_height_cap: max_height = self.angle_arc.get_width() if label.get_height() > max_height: label.set_height(max_height) top = self.get_fixed_point() arc_center = self.angle_arc.point_from_proportion(0.5) vect = arc_center - top norm = get_norm(vect) vect = normalize(vect) * (norm + self.theta_label_height) label.move_to(top + vect) return label # def get_theta(self): theta = self.rod.get_angle() - self.dashed_line.get_angle() theta = (theta + PI) % TAU - PI return theta def get_unbounded_theta(self): return self.rod.get_angle() - self.dashed_line.get_angle() def set_theta(self, theta): self.rotating_group.rotate( theta - self.get_theta() ) self.rotating_group.shift( self.get_fixed_point() - self.rod.get_start(), ) return self def get_omega(self): return self.omega def set_omega(self, omega): self.omega = omega return self def get_fixed_point(self): return self.fixed_point_tracker.get_location() # def start_swinging(self): self.add_updater(Pendulum.update_by_gravity) def end_swinging(self): self.remove_updater(Pendulum.update_by_gravity) def update_by_gravity(self, dt): theta = self.get_theta() omega = self.get_omega() if (theta > 3): ohno = 4 nspf = self.n_steps_per_frame for x in range(nspf): d_theta = omega * dt / nspf d_omega = pendulum_vector_field_func(np.array((theta, omega, 0.)), L=self.length)[1] * dt / nspf theta += d_theta omega += d_omega self.set_theta(theta) self.set_omega(omega) return self class UnstableFeedForwardAtHorizontal(PendulumCirclingOrigin): CONFIG = { "extra_accel_": lambda point: np.array((0.0, 4.9, 0.0)), "pendulum_config": { "initial_theta": 60 * DEGREES, }, } class FeedbackWithArmAtHorizontal(PendulumCirclingOrigin): CONFIG = { "extra_accel_": lambda point: ( np.array((0.0, 4.9, 0.0)) + np.array((1.0 * (PI / 2.0 - point[0]), 1.0 * (0.0 - point[1]), 0.0))), "pendulum_config": { "initial_theta": 30 * DEGREES, }, "show_state_point_vector": False, "hide_pendulum": True } def construct(self): global extra_accel extra_accel = self.extra_accel_ self.plane = NumberPlane(**self.coordinate_plane_config) self.create_pendulum_but_dont_add() self.create_vector_field() self.create_point_and_vec() self.add_pendulum() # self.wait(20) self.wait(4) class DotWithState(Dot): def __init__(self, n_steps_per_frame, length, gravity, plane: NumberPlane, point=ORIGIN, state=None, **kwargs): Dot.__init__(self, point=point, **kwargs) if state is None: self.state = State(point[0], point[1]) else: self.state = state self.n_steps_per_frame = n_steps_per_frame self.length = length self.gravity = gravity self.plane: NumberPlane = plane def get_state(self): return self.state def get_theta(self): return self.state.theta def get_omega(self): return self.state.omega def set_theta(self, theta): self.state.theta = theta def set_omega(self, omega): self.state.omega = omega def update_position(self): x, y = self.plane.point_to_coords(np.array((self.state.theta, self.state.omega, 0.0))) self.move_to([x, y, 0]) def start_swinging(self): self.add_updater(DotWithState.update_state_by_gravity) def update_state_by_gravity(self, dt): theta = self.get_theta() omega = self.get_omega() nspf = self.n_steps_per_frame for x in range(nspf): d_theta = omega * dt / nspf d_omega = pendulum_vector_field_func(np.array((theta, omega, 0.)), L=self.length)[1] * dt / nspf theta += d_theta omega += d_omega self.set_theta(theta) self.set_omega(omega) self.update_position() return self class ShowMultipleFeedback(PendulumCirclingOrigin): CONFIG = { "gravity": 9.8, "extra_accel_": lambda point: ( np.array((0.0, 0.0, 0.0)) + 0 * np.array(((0 - point[0]), (0 - point[1]), 0.0))), "show_state_point_vector": False, "hide_pendulum": True, "n_steps_per_frame": 100 } def construct(self): global extra_accel extra_accel = self.extra_accel_ self.plane = NumberPlane(**self.coordinate_plane_config) self.create_vector_field() self.create_and_add_points() self.wait(10.0) def create_and_add_points(self): # create 10 points between -5 and 5 on x and -3 and 3 on y dot = DotWithState(self.n_steps_per_frame, self.pendulum_config["length"], self.gravity, self.plane, point=np.array((2, 1, 0))) trajectory = (self.get_evolving_trajectory(dot, color=WHITE)) dot.start_swinging() self.add(trajectory, dot) for x in np.arange(-7, 7.1, 2.0): for y in np.arange(-4, 4.1, 2.0): dot = DotWithState(self.n_steps_per_frame, self.pendulum_config["length"], self.gravity, self.plane, point=np.array((x, y, 0))) trajectory = self.get_evolving_trajectory(dot, WHITE) dot.start_swinging() self.add(trajectory, dot)
from django.conf.urls import include, url from . import views urlpatterns = [ url(r'^$', views.QuestionIndexView.as_view(), name='qa_index'), url(r'^question/(?P<pk>\d+)/$', views.QuestionDetailView.as_view(), name='qa_detail'), url(r'^question/(?P<pk>\d+)/(?P<slug>[-_\w]+)/$', views.QuestionDetailView.as_view(), name='qa_detail'), url(r'^question/answer/(?P<answer_id>\d+)/$', views.AnswerQuestionView.as_view(), name='qa_answer_question'), url(r'^question/close/(?P<question_id>\d+)/$', views.CloseQuestionView.as_view(), name='qa_close_question'), url(r'^new-question/$', views.CreateQuestionView.as_view(), name='qa_create_question'), url(r'^edit-question/(?P<question_id>\d+)/$', views.UpdateQuestionView.as_view(), name='qa_update_question'), url(r'^answer/(?P<question_id>\d+)/$', views.CreateAnswerView.as_view(), name='qa_create_answer'), url(r'^answer/edit/(?P<answer_id>\d+)/$', views.UpdateAnswerView.as_view(), name='qa_update_answer'), url(r'^vote/question/(?P<object_id>\d+)/$', views.QuestionVoteView.as_view(), name='qa_question_vote'), url(r'^vote/answer/(?P<object_id>\d+)/$', views.AnswerVoteView.as_view(), name='qa_answer_vote'), url(r'^comment-answer/(?P<answer_id>\d+)/$', views.CreateAnswerCommentView.as_view(), name='qa_create_answer_comment'), url(r'^comment-question/(?P<question_id>\d+)/$', views.CreateQuestionCommentView.as_view(), name='qa_create_question_comment'), url(r'^comment-question/edit/(?P<comment_id>\d+)/$', views.UpdateQuestionCommentView.as_view(), name='qa_update_question_comment'), url(r'^comment-answer/edit/(?P<comment_id>\d+)/$', views.UpdateAnswerCommentView.as_view(), name='qa_update_answer_comment'), url(r'^search/$', views.QuestionsSearchView.as_view(), name='qa_search'), url(r'^tag/(?P<tag>[-\w]+)/$', views.QuestionsByTagView.as_view(), name='qa_tag'), url(r'^profile/(?P<user_id>\d+)/$', views.profile, name='qa_profile'), url('^markdown/', include('django_markdown.urls')), url(r'hitcount/', include('hitcount.urls', namespace='hitcount')), ]
""" Executed from loop_swap_protocol folder """ import loop_align_updates as la import pickle from pyrosetta.rosetta.core.pack.task import TaskFactory from pyrosetta.rosetta.core.pack.task.operation import \ OperateOnResidueSubset, RestrictAbsentCanonicalAASRLT from pyrosetta.rosetta.protocols.grafting import CCDEndsGraftMover from pyrosetta.rosetta.protocols.minimization_packing import PackRotamersMover # Load data with open('protease_db_3.pkl', 'rb') as o: db_dict = pickle.load(o) # Set poses query_pose = pose_from_pdb('tev.pdb') subject_name = '1lvm' subject_pose = pose_from_pdb('aligned_pdbs/{}.pdb'.format(subject_name)) lvm_dat = db_dict['1lvm'] # All anine-swap the start pose sf = get_fa_scorefxn() tf = TaskFactory() restriction = RestrictAbsentCanonicalAASRLT() restriction.aas_to_keep('A') selection = ResidueIndexSelector('1-{}'.format(subject_pose.total_residue())) tf.push_back(OperateOnResidueSubset(restriction, selection)) pt = tf.create_task_and_apply_taskoperations(subject_pose) prm = PackRotamersMover(sf, pt) all_A_pose = Pose(subject_pose) prm.apply(all_A_pose) all_A_pose.dump_pdb('self_swaps_1lvm_test/1lvm_all_A.pdb') # Put in loops for loop_name, loop in lvm_dat.loop_maps.items(): print(loop_name) # Setting up poses swapped_pose = Pose(query_pose) loop_pose = Pose(all_A_pose, loop.N_outside_overlap_residue.subject_pose_number, loop.C_outside_overlap_residue.subject_pose_number) loop_pose.dump_pdb('self_swaps_1lvm_test/loop_{}_loop_only.pdb'.format(loop_name)) # Setting up CCDEndsGraftMover ccdgm = CCDEndsGraftMover() ccdgm.set_insert_region(loop.N_splice_residue.query_pose_number, loop.C_splice_residue.query_pose_number) ccdgm.set_piece(loop_pose, loop.N_overlap_size, loop.C_overlap_size) # Applying mover and scoring and dumping the pose ccdgm.apply(swapped_pose) sf(swapped_pose) pp.dump_pdb('self_swaps_1lvm_test/loop_{}_tev_insert.pdb'.format(loop_name))
# -*- coding: utf-8 -*- """Tests for pyss3.cmd_line.""" from pyss3.cmd_line import SS3Prompt, main from pyss3.server import Server from pyss3.util import Evaluation from pyss3 import SS3 from os import path import pyss3.cmd_line import pyss3.util import pytest import sys MODEL_NAME = "cmd_test" DATASET_FOLDER = "dataset" DATASET_FOLDER_MR = "dataset_mr" ArgsParserError = "1 2 3 4" PYTHON3 = sys.version_info[0] >= 3 dataset_path = path.join(path.abspath(path.dirname(__file__)), DATASET_FOLDER) dataset_path_mr = path.join(path.abspath(path.dirname(__file__)), DATASET_FOLDER_MR) def test_ss3prompt(mocker, monkeypatch): """Test the Command-Line.""" if PYTHON3: monkeypatch.setattr('builtins.input', lambda: 'Y') mocker.patch.object(SS3Prompt, "cmdloop") # not working in Python 2 # mocker.patch("pyss3.cmd_line.STOPWORDS_FILE", "tests/ss3_models/ss3_stopwords[%s].txt") # mocker.patch( # "pyss3.util.EVAL_HTML_OUT_FILE", # "tests/ss3_models/ss3_model_evaluation[%s].html" # ) # replaced by: html_file_original = pyss3.util.EVAL_HTML_OUT_FILE pyss3.cmd_line.STOPWORDS_FILE = "tests/ss3_models/ss3_stopwords[%s].txt" pyss3.util.EVAL_HTML_OUT_FILE = "tests/ss3_models/" + html_file_original Evaluation.__cache__ = None Evaluation.__cache_file__ = None Evaluation.__clf__ = None Evaluation.__last_eval_tag__ = None Evaluation.__last_eval_method__ = None Evaluation.__last_eval_def_cat__ = None main() SS3.__models_folder__ = "tests/ss3_models" cmd = SS3Prompt() cmd.do_train(dataset_path + " file") # do_new cmd.do_new(MODEL_NAME + "_train_folder") cmd.do_train(dataset_path_mr + " 3-grams") cmd.do_train("non-existing 3-grams") cmd.do_train(dataset_path_mr) # no test documents cmd.do_train(ArgsParserError) # do_new cmd.do_new(MODEL_NAME) # do_save evaluations - empty result history case cmd.do_save("evaluations") # do_train cmd.do_train(dataset_path + " 3-grams file") cmd.do_train("non-existing 3-grams file") cmd.do_train(dataset_path) # no test documents cmd.do_train(ArgsParserError) # do_next_word cmd.do_next_word("android") cmd.do_next_word('') # doesn't work ยฏ\_(ใƒ„)_/ยฏ if PYTHON3: mocker.patch("matplotlib.pyplot.show") # do_test cmd.do_test(dataset_path + " file") cmd.do_test(dataset_path + " file") # cache cmd.do_test(dataset_path + " file unknown") # def_cat=unknown cmd.do_test(dataset_path + " file xxx") # def_cat=xxx cmd.do_test(dataset_path + " file s .5 p") # IndexError cmd.do_test(dataset_path + " file s .5 l 'a'") # BaseException cmd.do_test("not-a-directory") cmd.do_test(dataset_path) # no documents cmd.do_test(dataset_path_mr + " file") # no documents cmd.do_test(dataset_path_mr) # unknown categories cmd.do_test(ArgsParserError) # do_k_fold cmd.do_k_fold(dataset_path + " file 3-grams 3-fold") cmd.do_k_fold(dataset_path + " file 3-grams 3-fold") # cache cmd.do_k_fold(dataset_path + " file 3-grams 3-fold xxx") cmd.do_k_fold(dataset_path_mr + " 3-grams 3-fold xxx") cmd.do_k_fold(ArgsParserError) # do_grid_search cmd.do_grid_search(dataset_path + " file 3-fold unknown p [.2] l [.2] s [.2]") cmd.do_grid_search(dataset_path + " file 2-grams unknown p [.2] l [.2] s [.2]") cmd.do_grid_search(dataset_path + " file 2-grams xxx p [.2] l [.2] s [.2]") cmd.do_grid_search(dataset_path_mr + " 2-grams p [.2] l [.2] s [.2]") cmd.do_grid_search(ArgsParserError) # do_evaluations mocker.patch("webbrowser.open") cmd.do_evaluations("info") cmd.do_evaluations("save") cmd.do_evaluations("plot") # do_load cmd.do_load(MODEL_NAME) if PYTHON3: cmd.do_evaluations("remove p " + str(SS3.__p__)) cmd.do_evaluations("remove test s .2 l .2 p .2") cmd.do_evaluations("remove test") cmd.do_evaluations("remove 3-fold") cmd.do_evaluations("otherwise") cmd.do_evaluations(ArgsParserError) # do_classify cmd.do_classify(dataset_path + "/food.txt") monkeypatch.setattr('sys.stdin.readlines', lambda: 'nice food!\n') cmd.do_classify("") cmd.do_classify(ArgsParserError) # do_live_test mocker.patch.object(Server, "set_testset") mocker.patch.object(Server, "serve") cmd.do_live_test("path") set_testset_from_files = mocker.patch.object(Server, "set_testset_from_files") set_testset_from_files.return_value = True cmd.do_live_test("path") set_testset_from_files.return_value = False cmd.do_live_test("path") cmd.do_live_test("") cmd.do_live_test(ArgsParserError) # do_learn cmd.do_learn(ArgsParserError) cmd.do_learn("food 3-grams %s/food.txt" % dataset_path) # do_update cmd.do_update('') # do_info cmd.do_info("all") cmd.do_info("evaluations") # do_debug_term cmd.do_debug_term("android") cmd.do_debug_term('') # doesn't work ยฏ\_(ใƒ„)_/ยฏ # do_plot cmd.do_plot("evaluations") if PYTHON3: cmd.do_plot("distribution food") cmd.do_plot("distribution") cmd.do_plot("distribution non-existing") cmd.do_plot(ArgsParserError) # do_set cmd.do_set("s .5") cmd.do_set(ArgsParserError) # do_get cmd.do_get("s") cmd.do_get("l") cmd.do_get("p") cmd.do_get("a") cmd.do_get("otherwise") cmd.do_get(ArgsParserError) # do_save cmd.do_save("model") cmd.do_save("evaluations") mocker.patch.object(SS3, "save_cat_vocab") mocker.patch.object(SS3, "save_vocab") cmd.do_save("vocabulary") cmd.do_save("vocabulary food") cmd.do_save("vocabulary invalid-category") cmd.do_save("stopwords") cmd.do_save("stopwords .01") mocker.patch.object(SS3, "get_stopwords").return_value = [] cmd.do_save("stopwords") cmd.do_save(ArgsParserError) # do_load cmd.do_load(MODEL_NAME) # do_clone cmd.do_clone(MODEL_NAME + "_backup") cmd.do_clone(MODEL_NAME + "_copy") # do_rename cmd.do_rename(MODEL_NAME + "_renamed") if PYTHON3: cmd.do_rename(MODEL_NAME) mocker.patch("pyss3.cmd_line.MODELS", [MODEL_NAME]) cmd.do_new(MODEL_NAME) cmd.do_load(MODEL_NAME + "_copy") cmd.do_rename(MODEL_NAME) # do_license cmd.do_license("") # do_exit with pytest.raises(SystemExit): cmd.do_exit("") cmd.complete_info("", 0, 0, 0) cmd.complete_save("", 0, 0, 0) cmd.complete_load("", 0, 0, 0) cmd.complete_train("", 0, 0, 0) cmd.complete_test("", 0, 0, 0) cmd.complete_live_test("", 0, 0, 0) cmd.complete_learn("", 0, 0, 0) cmd.complete_set("", 0, 0, 0) cmd.complete_plot("", 0, 0, 0) cmd.complete_grid_search("", 0, 0, 0) cmd.complete_evaluations("", 0, 0, 0) main() pyss3.util.EVAL_HTML_OUT_FILE = html_file_original
"""Config flow for Toggl integration.""" import logging import voluptuous as vol from homeassistant import config_entries, core, exceptions from .const import DOMAIN # pylint:disable=unused-import _LOGGER = logging.getLogger(__name__) DATA_SCHEMA = vol.Schema({"token": str}) class TogglHub: """Hub for TogglPy """ def __init__(self, token): """Initialize.""" self.token = token async def authenticate(self, token) -> bool: """Test if we can authenticate with the host.""" return True async def validate_input(hass: core.HomeAssistant, data): """Validate the user input allows us to connect. Data has the keys from DATA_SCHEMA with values provided by the user. """ hub = TogglHub(data["token"]) if not await hub.authenticate(data["token"]): raise InvalidAuth # If you cannot connect: # throw CannotConnect # If the authentication is wrong: # InvalidAuth # Return info that you want to store in the config entry. return {"title": "Toggl"} class ConfigFlow(config_entries.ConfigFlow, domain=DOMAIN): """Handle a config flow for Toggl.""" VERSION = 1 CONNECTION_CLASS = config_entries.CONN_CLASS_CLOUD_POLL async def async_step_user(self, user_input=None): """Handle the initial step.""" errors = {} if user_input is not None: try: info = await validate_input(self.hass, user_input) return self.async_create_entry(title=info["title"], data=user_input) except CannotConnect: errors["base"] = "cannot_connect" except InvalidAuth: errors["base"] = "invalid_auth" except Exception: # pylint: disable=broad-except _LOGGER.exception("Unexpected exception") errors["base"] = "unknown" return self.async_show_form( step_id="user", data_schema=DATA_SCHEMA, errors=errors ) class CannotConnect(exceptions.HomeAssistantError): """Error to indicate we cannot connect.""" class InvalidAuth(exceptions.HomeAssistantError): """Error to indicate there is invalid auth."""
import numpy as np def dict_median_scores(dict_list): median_dict = {} for key in dict_list.keys(): value = dict_list[key] value_arr = np.array(value) if np.isnan(value_arr).any() == True: median_dict[key] = np.nan else: #append_low = np.percentile(value_arr, 2.5) append_mid = np.median(value_arr, axis=0) #append_upp = np.percentile(value_arr, 95.7) median_dict[key] = append_mid return median_dict
from django.shortcuts import render , redirect , get_object_or_404 from django.http import HttpResponse, Http404 from django.contrib.auth.models import User from .models import Note from django.contrib import messages from django.template.loader import get_template from django.http import HttpResponse from .script import check_ip from django.views.generic import View from notes_app.utlis.pdf import Render # Create your views here. def algorithm_analysis(request): query_ip = request.GET.get("query_ip") query_user = request.GET.get("query_user") query_pass = request.GET.get("query_pass") # query = request.GET.getlist('myvar') if query_ip and query_user and query_pass: print(query_ip, query_user, query_pass) run_script = check_ip("192.168.1.1", "Randa-114", "1223334444") result = run_script.dict() print(run_script) return Render.render('pdf/pdf.html', result) return render(request, "notes.html", context={"userinput": query_ip}) def all_notes(request): all_notes = Note.objects.all() context = { 'all_notes' :all_notes , } return render(request , 'notes.html' , context)
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Feb 7 20:34:37 2020 @author: adeela """
# coding: utf-8 # Python script created by Lucas Hale # Standard Python libraries from typing import Optional # http://www.numpy.org/ import numpy as np # https://github.com/usnistgov/atomman import atomman as am import atomman.lammps as lmp import atomman.unitconvert as uc from atomman.tools import filltemplate, aslist # iprPy imports from ...tools import read_calc_file def diatom_scan(lammps_command: str, potential: am.lammps.Potential, symbols: list, mpi_command: Optional[str] = None, rmin: float = uc.set_in_units(0.02, 'angstrom'), rmax: float = uc.set_in_units(6.0, 'angstrom'), rsteps: int = 300) -> dict: """ Performs a diatom energy scan over a range of interatomic spaces, r. Parameters ---------- lammps_command :str Command for running LAMMPS. potential : atomman.lammps.Potential The LAMMPS implemented potential to use. symbols : list The potential symbols associated with the two atoms in the diatom. mpi_command : str, optional The MPI command for running LAMMPS in parallel. If not given, LAMMPS will run serially. rmin : float, optional The minimum r spacing to use (default value is 0.02 angstroms). rmax : float, optional The maximum r spacing to use (default value is 6.0 angstroms). rsteps : int, optional The number of r spacing steps to evaluate (default value is 300). Returns ------- dict Dictionary of results consisting of keys: - **'r_values'** (*numpy.array of float*) - All interatomic spacings, r, explored. - **'energy_values'** (*numpy.array of float*) - The computed potential energies for each r value. """ # Build lists of values r_values = np.linspace(rmin, rmax, rsteps) energy_values = np.empty(rsteps) # Define atype based on symbols symbols = aslist(symbols) if len(symbols) == 1: atype = [1, 1] elif len(symbols) == 2: if symbols[0] != symbols[1]: atype = [1, 2] else: atype = [1, 1] symbols = symbols[:1] else: raise ValueError('symbols must have one or two values') # Initialize system (will shift second atom's position later...) box = am.Box.cubic(a = rmax + 1) atoms = am.Atoms(atype=atype, pos=[[0.1, 0.1, 0.1], [0.1, 0.1, 0.1]]) system = am.System(atoms=atoms, box=box, pbc=[False, False, False], symbols=symbols) # Add charges if required if potential.atom_style == 'charge': system.atoms.prop_atype('charge', potential.charges(system.symbols)) # Get lammps units lammps_units = lmp.style.unit(potential.units) # Define lammps variables lammps_variables = {} # Loop over values for i in range(rsteps): # Shift second atom's x position system.atoms.pos[1] = np.array([0.1 + r_values[i], 0.1, 0.1]) # Save configuration system_info = system.dump('atom_data', f='diatom.dat', potential=potential) lammps_variables['atomman_system_pair_info'] = system_info # Write lammps input script lammps_script = 'run0.in' template = read_calc_file('iprPy.calculation.diatom_scan', 'run0.template') with open(lammps_script, 'w') as f: f.write(filltemplate(template, lammps_variables, '<', '>')) # Run lammps and extract data try: output = lmp.run(lammps_command, script_name=lammps_script, mpi_command=mpi_command) except: energy_values[i] = np.nan else: energy = output.simulations[0]['thermo'].PotEng.values[-1] energy_values[i] = uc.set_in_units(energy, lammps_units['energy']) if len(energy_values[np.isfinite(energy_values)]) == 0: raise ValueError('All LAMMPS runs failed. Potential likely invalid or incompatible.') # Collect results results_dict = {} results_dict['r_values'] = r_values results_dict['energy_values'] = energy_values return results_dict
import itertools data = [] """ Process inputData.txt and put it into the data array. """ with open("inputData.txt", "r") as infile: for line in infile: data.append(int(line)) valid_permutations = {} def checkIfValid(permutation): return sum(permutation) == 150 """ Main loop This is the best explanation I could come up with: 1. For every possible amount of containers (e.g. if there are 4 containers, try 1, 2, 3, and 4) 2. And for every possible combination of that amount of containers """ for i in range(0, len(data)): for permutation in itertools.combinations(data, i): if checkIfValid(permutation): """ This was the logic that was modified. """ if len(permutation) not in valid_permutations: valid_permutations[len(permutation)] = 1 else: valid_permutations[len(permutation)] += 1 print("Answer: " + str(valid_permutations[min(valid_permutations)]))
from struct import * import numpy as np # I considered using multiprocessing package, but I find this code version is fine. # Welcome for your version with multiprocessing to make the reading faster. # from joblib import Parallel, delayed import multiprocessing import time import os import argparse from open3d import * from progressbar import ProgressBar # from astropy.nddata.utils import block_reduce # parallel processing for samples from joblib import Parallel, delayed def voxel2pcd(file_npy, dir_tar_pcd, type='partial'): voxels = np.load(file_npy) pcd = PointCloud() if type is 'partial': coordinate = np.transpose(np.where(voxels == 1)) pcd.points = Vector3dVector(coordinate) colors_cat = np.transpose(np.tile(voxels[voxels == 1], ( 3, 1))) pcd.colors = Vector3dVector(colors_cat) else: coordinate = np.transpose(np.where(voxels > 0)) pcd.points = Vector3dVector(coordinate) colors_cat = np.float32(np.transpose(np.tile(voxels[voxels > 0], ( 3, 1))))/12 pcd.colors = Vector3dVector(colors_cat) # Save name_start = int(file_npy.rfind('/')) name_end = int(file_npy.find('.', name_start)) write_point_cloud(dir_tar_pcd + file_npy[name_start:name_end] + '.pcd', pcd) class ScanFile(object): def __init__(self, directory, prefix=None, postfix='.bin'): self.directory = directory self.prefix = prefix self.postfix = postfix def scan_files(self): files_list = [] for dirpath, dirnames, filenames in os.walk(self.directory): for special_file in filenames: if self.postfix: if special_file.endswith(self.postfix): files_list.append(os.path.join(dirpath, special_file)) elif self.prefix: if special_file.startswith(self.prefix): files_list.append(os.path.join(dirpath, special_file)) else: files_list.append(os.path.join(dirpath, special_file)) return files_list def scan_subdir(self): subdir_list = [] for dirpath, dirnames, files in os.walk(self.directory): subdir_list.append(dirpath) return subdir_list if __name__ == "__main__": parser = argparse.ArgumentParser(description='Parser added') parser.add_argument( '-s', action="store", dest="dir_src", default="/media/wangyida/D0-P1/database/SUNCGtrain_3001_5000", help='folder of paired depth and voxel') parser.add_argument( '-tv', action="store", dest="dir_tar_pcd", default="/media/wangyida/D0-P1/database/SUNCGtrain_3001_5000_depvox", help='for storing generated npy') parser.add_argument( '-dt', action="store", dest="data_type", default='partial', help='for storing generated npy') parser.print_help() results = parser.parse_args() # folder of paired depth and voxel dir_src = results.dir_src # for storing generated npy dir_tar_pcd = results.dir_tar_pcd data_type = results.data_type # scan for voxel files scan_npy = ScanFile(directory=dir_src, postfix='.npy') files_npy = scan_npy.scan_files() # making directories try: os.stat(dir_tar_pcd) except: os.mkdir(dir_tar_pcd) # save voxel as npy files pbar = ProgressBar() num_cores = multiprocessing.cpu_count() Parallel(n_jobs=num_cores)(delayed(voxel2pcd)(file_npy, dir_tar_pcd, type=data_type) for file_npy in pbar(files_npy)) # below is the normal procedure for processing """ for file_npy in pbar(files_npy): voxel2pcd(file_npy, dir_tar_pcd, type=data_type) """
import nltk from nltk.collocations import * from nltk.metrics import BigramAssocMeasures import operator import string import math measures = BigramAssocMeasures() l_ru = [] with open("text_ru.txt", 'r', encoding="utf-8") as f: for line in f: for w in nltk.word_tokenize(line.lower()): if w not in string.punctuation: l_ru.append(w) l_en = [] with open("text_en.txt", 'r', encoding="utf-8") as f: for line in f: for w in nltk.word_tokenize(line.lower()): if w not in string.punctuation: l_en.append(w) freq_ru = nltk.FreqDist(l_ru) sort_fr_ru = freq_ru.most_common() finder_ru = BigramCollocationFinder.from_words(l_ru) t_ru = finder_ru.nbest(measures.student_t, 100) freq_en = nltk.FreqDist(l_en) sort_fr_en = freq_en.most_common() finder_en = BigramCollocationFinder.from_words(l_en) t_en = finder_en.nbest(measures.student_t, 100) with open("collocations_ru.csv", 'w', encoding="utf-8") as coll: for i in t_ru: coll.write("{}; {}; {}\n".format("t", i[0]+" "+i[1], round(finder_ru.score_ngram(measures.student_t, i[0], i[1]),2))) for m in t_ru: coll.write("{}; {}; {}\n".format("chi^2", m[0]+" "+m[1], round(finder_ru.score_ngram(measures.chi_sq, m[0], m[1]),2))) for n in t_ru: coll.write("{}; {}; {}\n".format("log-likelihood", n[0]+" "+n[1], round(finder_ru.score_ngram(measures.likelihood_ratio, n[0], n[1]),2))) for q in t_ru: coll.write("{}; {}; {}\n".format("pmi", q[0]+" "+q[1], round(finder_ru.score_ngram(measures.pmi, q[0], q[1]),2))) with open("collocations_en.csv", 'w', encoding="utf-8") as coll: for i in t_en: coll.write("{}; {}; {}\n".format("t", i[0]+" "+i[1], round(finder_en.score_ngram(measures.student_t, i[0], i[1]),2))) for m in t_en: coll.write("{}; {}; {}\n".format("chi^2", m[0]+" "+m[1], round(finder_en.score_ngram(measures.chi_sq, m[0], m[1]),2))) for n in t_en: coll.write("{}; {}; {}\n".format("log-likelihood", n[0]+" "+n[1], round(finder_en.score_ngram(measures.likelihood_ratio, n[0], n[1]),2))) for q in t_en: coll.write("{}; {}; {}\n".format("pmi", q[0]+" "+q[1], round(finder_en.score_ngram(measures.pmi, q[0], q[1]),2)))
from django.db.models import Sum from django.utils import timezone from .models import Commission from apps.jobs.models import Jobs class CommissionManager(object): """ Manager for commission calculations """ def getCommUser(self, user): """ Returns commission amount due for the user """ commissions = Commission.objects.filter( handyman=user, is_paid=False ) comm = 0.0 for commission in commissions: comm += float(commission.amount.amount) return [comm, commissions] def addCommission(self, job): for handyman in job.handyman.all(): amount = (0.2 * float(job.fee.amount))/job.handyman.count() commission = Commission(job=job, amount=amount, handyman=handyman) Commission.save(commission) def updateCommission(self, job): commissions = Commission.objects.filter(job=job) for commission in commissions: commission.amount=0.0 commission.save() for handyman in job.handyman.all(): amount = (0.2 * float(job.fee.amount))/job.handyman.count() if Commission.objects.filter(job=job, handyman=handyman): commission=Commission.objects.get(job=job, handyman=handyman) commission.amount=amount commission.save() else: commission = Commission(job=job, amount=amount, handyman=handyman) Commission.save(commission) def removeCommission(self, job): commissions = Commission.objects.filter(job=job) for commission in commissions: commission.amount=0.0 commission.save() def setCommPaid(self, user): """ Sets commission flag as true for the user """ Commission.objects.filter( handyman=user, is_paid=False ).update(is_paid=True, paidout_date=timezone.now()) return True def getTotalCommUser(self, user): """Returns the total commission paid """ commissions=Commission.objects.filter(handyman=user, is_paid=True) return "Rs.{:,.2f}".format(commissions.aggregate(Sum('amount'))['amount__sum'])
def leiaInt(): red = "\033[1;31m" print('-' * 20) while True: n = str(input('Digite um nรบmero: ')) if n.isnumeric(): n = int(n) print(f'Voce digitou o nรบmero {n}') break else: print(f'\033[0;31;mERRO! Digite um nรบmero inteiro vรกlido\033[m') leiaInt()
import datetime import hashlib import json import rsa from flask import Flask, jsonify, request import json import requests keys_list = {} threshold_value = 60 class Blockchain: def __init__(self): self.chain = [] self.create_block(proof=1, previous_hash='0', value=0) def create_block(self, proof, previous_hash, value): result = get_chain_add(str(value)) block = {'index': len(self.chain) + 1, 'timestamp': str(datetime.datetime.now()), 'proof': proof, 'previous_hash': previous_hash, 'key' : str(result["public_key"]), 'encrypted_data' : str(result["value"])} self.chain.append(block) return block def print_previous_block(self): return self.chain[-1] def proof_of_work(self, previous_proof): new_proof = 1 check_proof = False while check_proof is False: hash_operation = hashlib.sha256( str(new_proof**2 - previous_proof**2).encode()).hexdigest() if hash_operation[:4] == '0000': check_proof = True else: new_proof += 1 return new_proof def hash(self, block): encoded_block = json.dumps(block).encode("utf-8") return hashlib.sha256(encoded_block).hexdigest() def chain_valid(self, chain): previous_block = chain[0] block_index = 1 while block_index < len(chain): block = chain[block_index] if block['previous_hash'] != self.hash(previous_block): return False previous_proof = previous_block['proof'] proof = block['proof'] hash_operation = hashlib.sha256( str(proof**2 - previous_proof**2).encode()).hexdigest() if hash_operation[:2] != '00': return False previous_block = block block_index += 1 return True def get_chain_add(value): publicKey, privateKey = rsa.newkeys(512) keys_list[str(publicKey)] = privateKey enc = rsa.encrypt(value.encode(), publicKey) return {'value': str(enc, encoding='latin-1'), 'public_key' : str(publicKey)} if __name__=="__main__": app = Flask(__name__) blockchain = Blockchain() # Mining a new block @app.route('/mine_block', methods=['POST']) def mine_block(): list_value = request.get_json() send_data = [] for x in list_value: previous_block = blockchain.print_previous_block() previous_proof = previous_block['proof'] proof = blockchain.proof_of_work(previous_proof) previous_hash = blockchain.hash(previous_block) block = blockchain.create_block(proof, previous_hash, x["value"]) body = {"message": "A block is MINED", "index": block['index'], "timestamp": block['timestamp'], "proof": block['proof'], "previous_hash": block['previous_hash'], "key" : block['key'], "encrypted_data" : block['encrypted_data']} send_data.append(body) return jsonify(send_data), 200 # Display blockchain in json format @app.route('/get_chain', methods=['GET']) def display_chain(): response = {'chain': blockchain.chain, 'length': len(blockchain.chain)} return jsonify(response), 200 # Check validity of blockchain @app.route('/valid', methods=['GET']) def valid(): valid = blockchain.chain_valid(blockchain.chain) if valid: response = {'message': 'The Blockchain is valid.'} else: response = {'message': 'The Blockchain is not valid.'} return jsonify(response), 200 @app.route('/getkey', methods=['GET']) def getkey(): return jsonify(keys_list), 200 #calculation part def get_gain(current): if (current >= 90): return 9 elif (current >= 80): return 8 elif (current >= 70): return 7 elif (current >= 60): return 6 elif (current >= 50): return 5 elif (current >= 40): return 4 elif (current >= 30): return 3 elif (current >= 20): return 2 else: return 1 def calculate_avg(list): value = 0 sum = 0 for x in list: energy = rsa.decrypt(bytes(x["encrypted_data"], encoding='latin-1'), keys_list[x["key"]]).decode() value += get_gain(int(energy)) * int(energy) sum += get_gain(int(energy)) return (value)/ (sum) @app.route('/calculate', methods=['POST']) def add_gusess(): list_block = request.get_json() value = calculate_avg(list_block) return {"avg": value, "threshold" : threshold_value} # Run the flask server locally if __name__=="__main__": app.run(host='127.0.0.1', port=5000)
from common import * from database import * from format import * from site import *
import stat from typing import Dict from pathlib import Path class FileStat: filename: str relname: str size: int mtime: int FileStatDict = Dict[str, FileStat] class LocalFileStat(FileStat): """ Local filestat """ def __init__(self, root: str, path: Path): stat_output = path.stat() self.filename = str(path) self.relname = path.relative_to(root).as_posix() self.size = stat_output.st_size self.mtime = stat_output.st_mtime class RemoteFileStat(FileStat): """ Remote filestat from stat command on Linux + some specific flags """ def __init__(self, root, stat_output, delim): columns = stat_output.split(delim) self.filename = columns[0] self.relname = Path(self.filename).relative_to(root).as_posix() self.size = int(columns[1]) self.mtime = int(columns[2])
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'form.ui' # # Created by: PyQt5 UI code generator 5.11.3 # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore, QtGui, QtWidgets class Ui_mainWindow(object): def setupUi(self, mainWindow): mainWindow.setObjectName("mainWindow") mainWindow.resize(1057, 777) self.centralwidget = QtWidgets.QWidget(mainWindow) self.centralwidget.setObjectName("centralwidget") self.verticalLayoutWidget = QtWidgets.QWidget(self.centralwidget) self.verticalLayoutWidget.setGeometry(QtCore.QRect(170, 480, 704, 232)) self.verticalLayoutWidget.setObjectName("verticalLayoutWidget") self.verticalLayout = QtWidgets.QVBoxLayout(self.verticalLayoutWidget) self.verticalLayout.setContentsMargins(0, 0, 0, 0) self.verticalLayout.setObjectName("verticalLayout") self.up_btn = QtWidgets.QPushButton(self.verticalLayoutWidget) font = QtGui.QFont() font.setPointSize(25) self.up_btn.setFont(font) self.up_btn.setObjectName("up_btn") self.verticalLayout.addWidget(self.up_btn) self.save_btn = QtWidgets.QPushButton(self.verticalLayoutWidget) font = QtGui.QFont() font.setPointSize(25) self.save_btn.setFont(font) self.save_btn.setObjectName("save_btn") self.verticalLayout.addWidget(self.save_btn) self.pushButton = QtWidgets.QPushButton(self.verticalLayoutWidget) font = QtGui.QFont() font.setPointSize(25) self.pushButton.setFont(font) self.pushButton.setObjectName("pushButton") self.verticalLayout.addWidget(self.pushButton) self.cause_name = QtWidgets.QLabel(self.centralwidget) self.cause_name.setGeometry(QtCore.QRect(40, 50, 491, 71)) font = QtGui.QFont() font.setPointSize(18) self.cause_name.setFont(font) self.cause_name.setObjectName("cause_name") self.keyword = QtWidgets.QLabel(self.centralwidget) self.keyword.setGeometry(QtCore.QRect(400, 270, 281, 51)) font = QtGui.QFont() font.setPointSize(22) self.keyword.setFont(font) self.keyword.setObjectName("keyword") self.horizontalLayoutWidget_2 = QtWidgets.QWidget(self.centralwidget) self.horizontalLayoutWidget_2.setGeometry(QtCore.QRect(770, 50, 220, 61)) self.horizontalLayoutWidget_2.setObjectName("horizontalLayoutWidget_2") self.horizontalLayout_2 = QtWidgets.QHBoxLayout(self.horizontalLayoutWidget_2) self.horizontalLayout_2.setContentsMargins(0, 0, 0, 0) self.horizontalLayout_2.setObjectName("horizontalLayout_2") self.label_3 = QtWidgets.QLabel(self.horizontalLayoutWidget_2) font = QtGui.QFont() font.setPointSize(15) self.label_3.setFont(font) self.label_3.setObjectName("label_3") self.horizontalLayout_2.addWidget(self.label_3) self.keyword_cnt = QtWidgets.QLabel(self.horizontalLayoutWidget_2) font = QtGui.QFont() font.setPointSize(15) self.keyword_cnt.setFont(font) self.keyword_cnt.setObjectName("keyword_cnt") self.horizontalLayout_2.addWidget(self.keyword_cnt) self.horizontalLayoutWidget = QtWidgets.QWidget(self.centralwidget) self.horizontalLayoutWidget.setGeometry(QtCore.QRect(50, 380, 984, 85)) self.horizontalLayoutWidget.setObjectName("horizontalLayoutWidget") self.horizontalLayout = QtWidgets.QHBoxLayout(self.horizontalLayoutWidget) self.horizontalLayout.setContentsMargins(0, 0, 0, 0) self.horizontalLayout.setObjectName("horizontalLayout") self.currency_btn = QtWidgets.QPushButton(self.horizontalLayoutWidget) self.currency_btn.setBaseSize(QtCore.QSize(0, 0)) font = QtGui.QFont() font.setPointSize(25) self.currency_btn.setFont(font) self.currency_btn.setIconSize(QtCore.QSize(20, 20)) self.currency_btn.setObjectName("currency_btn") self.horizontalLayout.addWidget(self.currency_btn) self.proper_btn = QtWidgets.QPushButton(self.horizontalLayoutWidget) font = QtGui.QFont() font.setPointSize(25) self.proper_btn.setFont(font) self.proper_btn.setObjectName("proper_btn") self.horizontalLayout.addWidget(self.proper_btn) self.relevant_btn = QtWidgets.QPushButton(self.horizontalLayoutWidget) font = QtGui.QFont() font.setPointSize(25) self.relevant_btn.setFont(font) self.relevant_btn.setObjectName("relevant_btn") self.horizontalLayout.addWidget(self.relevant_btn) self.error_btn = QtWidgets.QPushButton(self.horizontalLayoutWidget) font = QtGui.QFont() font.setPointSize(25) self.error_btn.setFont(font) self.error_btn.setObjectName("error_btn") self.horizontalLayout.addWidget(self.error_btn) self.backLabel = QtWidgets.QLabel(self.centralwidget) self.backLabel.setGeometry(QtCore.QRect(310, 150, 491, 71)) font = QtGui.QFont() font.setPointSize(14) self.backLabel.setFont(font) self.backLabel.setObjectName("backLabel") mainWindow.setCentralWidget(self.centralwidget) self.menubar = QtWidgets.QMenuBar(mainWindow) self.menubar.setGeometry(QtCore.QRect(0, 0, 1057, 26)) self.menubar.setObjectName("menubar") mainWindow.setMenuBar(self.menubar) self.statusbar = QtWidgets.QStatusBar(mainWindow) self.statusbar.setObjectName("statusbar") mainWindow.setStatusBar(self.statusbar) self.retranslateUi(mainWindow) self.relevant_btn.clicked.connect(mainWindow.set_word_relevant) self.pushButton.clicked.connect(mainWindow.selectTxtFilePath) self.proper_btn.clicked.connect(mainWindow.set_word_proper) self.currency_btn.clicked.connect(mainWindow.set_word_currency) self.up_btn.clicked.connect(mainWindow.up_word) self.save_btn.clicked.connect(mainWindow.save_word) self.error_btn.clicked.connect(mainWindow.set_word_error) QtCore.QMetaObject.connectSlotsByName(mainWindow) def retranslateUi(self, mainWindow): _translate = QtCore.QCoreApplication.translate mainWindow.setWindowTitle(_translate("mainWindow", "่ฟ™ๆ˜ฏไธ€ไธชๆ•ฐๆฎๆ ‡ๆณจ่ฝฏไปถ")) self.up_btn.setText(_translate("mainWindow", "ไธŠไธ€ไธช๏ผˆ็‚น้”™ๆ—ถ็”จ๏ผ‰(u)")) self.save_btn.setText(_translate("mainWindow", "ไฟๅญ˜๏ผˆ้€€ๅ‡บๅ‰ไฟๅญ˜!!!๏ผ‰(s)")) self.pushButton.setText(_translate("mainWindow", "้€‰ๆ‹ฉๆ–‡ไปถ")) self.cause_name.setText(_translate("mainWindow", "ๆกˆ็”ฑ")) self.keyword.setText(_translate("mainWindow", "ๅ…ณ้”ฎ่ฏ")) self.label_3.setText(_translate("mainWindow", "ๅบๅท๏ผš")) self.keyword_cnt.setText(_translate("mainWindow", "0")) self.currency_btn.setText(_translate("mainWindow", "้€š็”จ่ฏ(1)")) self.proper_btn.setText(_translate("mainWindow", "ไธ“ๆœ‰่ฏ(2)")) self.relevant_btn.setText(_translate("mainWindow", "ๅ…ณ่”่ฏ(3)")) self.error_btn.setText(_translate("mainWindow", "้”™่ฏฏ(4)")) self.backLabel.setText(_translate("mainWindow", "ไธŠไธ€ๆญฅๆ“ไฝœๅ†…ๅฎน"))
"""@package ScipyMinimize This package implements the minimize optimisers from SciPy. @author Dr Franck P. Vidal, Bangor University @date 5th July 2019 """ ################################################# # import packages ################################################### from scipy import optimize from Solution import Solution from Optimiser import * ## \class This class implements the simulated annealing optimisation method class ScipyMinimize(Optimiser): ## \brief Constructor. # \param self # \param aCostFunction: The cost function to minimise def __init__(self, aCostFunction, aMethodName, tol, initial_guess = None): super().__init__(aCostFunction, initial_guess); # Name of the algorithm self.full_name = aMethodName; self.short_name = aMethodName; self.max_iterations = -1; self.verbose = False; self.tolerance = tol; self.best_solution_set = []; self.solution_set = []; def setMaxIterations(self, aMaxIterations): self.max_iterations = aMaxIterations; def run(self): options = {'disp': self.verbose}; if self.max_iterations > 0: options['maxiter'] = self.max_iterations; if self.tolerance > 0: options['ftol'] = self.tolerance; options['tol'] = self.tolerance; if self.initial_guess == None: self.initial_guess = self.objective_function.initialRandomGuess(); # Methods that cannot handle constraints or bounds. if self.short_name == 'Nelder-Mead' or self.short_name == 'Powell' or self.short_name == 'CG' or self.short_name == 'BFGS' or self.short_name == 'COBYLA': result = optimize.minimize(self.objective_function.minimisationFunction, self.initial_guess, method=self.short_name, options=options, callback=self.callback); elif self.short_name == 'L-BFGS-B' or self.short_name == 'TNC' or self.short_name == 'SLSQP': result = optimize.minimize(self.objective_function.minimisationFunction, self.initial_guess, method=self.short_name, bounds=self.objective_function.boundaries, options=options, callback=self.callback); else: result = optimize.minimize(self.objective_function.minimisationFunction, self.initial_guess, method=self.short_name, bounds=self.objective_function.boundaries, jac='2-point', options=options, callback=self.callback); self.best_solution = Solution(self.objective_function, 1, result.x) def evaluate(self, aParameterSet): return self.objective_function.evaluate(aParameterSet, 1); def runIteration(self): if len(self.best_solution_set) > 1 and len(self.solution_set) > 1: self.best_solution = self.best_solution_set.pop(0); self.current_solution_set.append(self.solution_set.pop(0)); def callback(self, xk): solution = Solution(self.objective_function, 1, xk); if self.best_solution == None: self.best_solution = solution; if self.best_solution.getObjective() < solution.getObjective(): self.best_solution_set.append(self.best_solution) else: self.best_solution_set.append(solution) self.solution_set.append(solution); def update(self, i): # This is the first call if i == 0: # Run the minimisation self.run(); super().update(i); print(i)
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Oct 23 15:45:45 2017 @author: dgratz """ from readFile import readFile import re from glob import glob import numpy as np import matplotlib.pyplot as plt s = re.compile('/') u = re.compile('_') datadir = 'D:/synchrony-data/AllConnAndRand/' conns = list(map(lambda x: float(s.split(x)[-1]), glob(datadir+'0/*'))) data = np.zeros((2,26,20)) files = glob(datadir+'*/*/cell*dt0.tsv*') for file in files: temp = readFile(file) fnames = s.split(file) uparts = u.split(fnames[-1]) (row,col) = tuple(map(lambda x: int(x),filter(lambda x: x.isdigit(),uparts))) conn = float(fnames[-2]) connPos = conns.index(conn) simNum = int(fnames[-3]) data[col,connPos,simNum] = np.min(temp['cell'+str(row)+'_'+str(col)+'/vOld/cl'][-10:-1]) plt.figure(0) vOld_cl_line = np.zeros(shape=(2,26)) vOld_cl_line[0,:] = np.mean(data[0,:,:],axis=1) vOld_cl_line[1,:] = np.mean(data[1,:,:],axis=1) vOld_cl_error = np.zeros(shape=(2,26)) vOld_cl_error[0,:] = np.std(data[0,:,:],axis=1) vOld_cl_error[1,:] = np.std(data[1,:,:],axis=1) plt.errorbar(conns,vOld_cl_line[0,:],yerr=vOld_cl_error[0,:],alpha=0.7) plt.errorbar(conns,vOld_cl_line[1,:],yerr=vOld_cl_error[1,:],alpha=0.7) plt.xscale('log') plt.title('vOld/cl') files = glob(datadir+'*/*/cell*dss0.tsv*') for file in files: temp = readFile(file) fnames = s.split(file) uparts = u.split(fnames[-1]) (row,col) = tuple(map(lambda x: int(x),filter(lambda x: x.isdigit(),uparts))) conn = float(fnames[-2]) connPos = conns.index(conn) simNum = int(fnames[-3]) data[col,connPos,simNum] = temp['cell'+str(row)+'_'+str(col)+'/vOld/peak'] plt.figure(1) vOld_peak_line = np.zeros(shape=(2,26)) vOld_peak_line[0,:] = np.mean(data[0,:,:],axis=1) vOld_peak_line[1,:] = np.mean(data[1,:,:],axis=1) vOld_peak_error = np.zeros(shape=(2,26)) vOld_peak_error[0,:] = np.std(data[0,:,:],axis=1) vOld_peak_error[1,:] = np.std(data[1,:,:],axis=1) plt.errorbar(conns,vOld_peak_line[0,:],yerr=vOld_peak_error[0,:],alpha=0.7) plt.errorbar(conns,vOld_peak_line[1,:],yerr=vOld_peak_error[1,:],alpha=0.7) plt.xscale('log') plt.title('vOld/peak') files = glob(datadir+'*/*/cell*dss0.tsv*') for file in files: temp = readFile(file) fnames = s.split(file) uparts = u.split(fnames[-1]) (row,col) = tuple(map(lambda x: int(x),filter(lambda x: x.isdigit(),uparts))) conn = float(fnames[-2]) connPos = conns.index(conn) simNum = int(fnames[-3]) data[col,connPos,simNum] = temp['cell'+str(row)+'_'+str(col)+'/vOld/min'] plt.figure(2) vOld_min_line = np.zeros(shape=(2,26)) vOld_min_line[0,:] = np.mean(data[0,:,:],axis=1) vOld_min_line[1,:] = np.mean(data[1,:,:],axis=1) vOld_min_error = np.zeros(shape=(2,26)) vOld_min_error[0,:] = np.std(data[0,:,:],axis=1) vOld_min_error[1,:] = np.std(data[1,:,:],axis=1) plt.errorbar(conns,vOld_min_line[0,:],yerr=vOld_min_error[0,:],alpha=0.7) plt.errorbar(conns,vOld_min_line[1,:],yerr=vOld_min_error[1,:],alpha=0.7) plt.xscale('log') plt.title('vOld/min') files = glob(datadir+'*/*/cell*dss0.tsv*') for file in files: temp = readFile(file) fnames = s.split(file) uparts = u.split(fnames[-1]) (row,col) = tuple(map(lambda x: int(x),filter(lambda x: x.isdigit(),uparts))) conn = float(fnames[-2]) connPos = conns.index(conn) simNum = int(fnames[-3]) data[col,connPos,simNum] = temp['cell'+str(row)+'_'+str(col)+'/caI/peak'] plt.figure(3) caI_peak_line = np.zeros(shape=(2,26)) caI_peak_line[0,:] = np.mean(data[0,:,:],axis=1) caI_peak_line[1,:] = np.mean(data[1,:,:],axis=1) caI_peak_error = np.zeros(shape=(2,26)) caI_peak_error[0,:] = np.std(data[0,:,:],axis=1) caI_peak_error[1,:] = np.std(data[1,:,:],axis=1) plt.errorbar(conns,caI_peak_line[0,:],yerr=caI_peak_error[0,:],alpha=0.7) plt.errorbar(conns,caI_peak_line[1,:],yerr=caI_peak_error[1,:],alpha=0.7) plt.xscale('log') plt.title('caI/peak')
#Created on February 23, 2017 #@author: rspies@lynkertech.com # Python 2.7 # This script creates an horizontal bar chart of station data availability # for precip/temp data sites import os import numpy as np import datetime from datetime import timedelta import matplotlib.pyplot as plt import matplotlib.dates as mdates plt.ioff() os.chdir("../..") # change dir to \\AMEC\\NWS maindir = os.getcwd() ############ User input ################ variable = 'temp' # choices: 'ptpx' RFC = 'APRFC_FY2017' fxgroup = 'NWAK' plot_stations = 'all' # choices: 'all' or 'pxpp_input' ### pxpp_input will ignore the stations in the ignore_file and not plot networks = ['nhds_daily','raws_hourly'] # choices: 'raws_hourly','asos_hourly','nhds_daily','nhds_hourly','scan_hourly','CONAGUA' workingdir = maindir + os.sep + 'Calibration_NWS'+ os.sep + RFC[:5] + os.sep + RFC + os.sep + 'MAP_MAT_development' + os.sep +'station_data' figname = workingdir + os.sep + 'station_summaries' + os.sep + 'data_timeline_plots' + os.sep + RFC + '_' + fxgroup + '_' + variable + '_' + plot_stations + '.png' yearstart = 1960; yearend = 2016; # start and end years for plotting ######################################## ########## define data timeline figure ### fig, ax1 = plt.subplots(figsize=(11,9)) plt.title(variable.upper() + ' Station Data Availability Timeline',fontsize=14) basins_list = []; count = 0 years = mdates.YearLocator() # every year for network in networks: print '\n**** ' + network + ' stations:' timestep = network.split('_')[1] ignore_sites = [] if network[:4] == 'raws' or network[:4] == 'asos' or network[:4] == 'scan': card_dir = workingdir + os.sep + network +os.sep + 'cardfiles_' + variable + os.sep + fxgroup + os.sep station_file = workingdir + os.sep + 'station_summaries' + os.sep + fxgroup + '_' + network[:4] + '_summary_' + variable + '_' + timestep + '.csv' ignore_file = workingdir + os.sep + network + os.sep + fxgroup + '_ignore_stations.csv' if network[:4] == 'nhds' or network[:4] == 'usgs': if variable == 'temp' and network == 'nhds_daily': card_dir = workingdir + os.sep + network[:4] + '_' + timestep +os.sep + 'tamx' + os.sep + 'cardfiles' + os.sep + fxgroup + os.sep station_file = workingdir + os.sep + 'station_summaries' + os.sep + network[:4] + '_summary_tamx_' + timestep + '_' + fxgroup + '.csv' else: card_dir = workingdir + os.sep + network[:4] + '_' + timestep +os.sep + variable + os.sep + 'cardfiles' + os.sep + fxgroup + os.sep station_file = workingdir + os.sep + 'station_summaries' + os.sep + network[:4] + '_summary_' + variable + '_' + timestep + '_' + fxgroup + '.csv' ignore_file = workingdir + os.sep + network + os.sep + fxgroup + '_ignore_stations.csv' if network[:4] == 'CONA': card_dir = workingdir + os.sep + 'CONAGUA' + os.sep + variable + os.sep + 'cardfiles' + os.sep + timestep + os.sep station_file = workingdir + os.sep + network.split('_')[0] + '_summary_' + variable + '_' + timestep + '.csv' ignore_file = workingdir + os.sep + network.split('_')[0] + '_all' + '_ignore_stations.csv' if variable == 'temp': cards = [f for f in os.listdir(card_dir) if os.path.isfile(os.path.join(card_dir, f)) and f.endswith('.tmx')] else: cards = [f for f in os.listdir(card_dir) if os.path.isfile(os.path.join(card_dir, f))] print cards ## read list of stations to ignore if plotting only pxpp input sites if plot_stations == 'pxpp_input': read_ignore = open(ignore_file,'r') for site in read_ignore: ignore_sites.append(site.rstrip('\n')[-4:]) read_ignore.close() for card in cards: if card.split('-')[1].upper() not in ignore_sites: print card count += 1 if network[:4] == 'raws' or network[:4] == 'asos': csv_read = open(card_dir + '\\' + card, 'r') data = []; date = [] ### read card file formatted .txt files lists line_count = 0 for line in csv_read: if line_count >= 7: # ignore header lines if line_count == 8: sep = line.split() ### parse date columns month = str(sep[1])[:-2] year = str(sep[1])[-2:] if int(year) <= 17: year = int(year) + 2000 # assume years <= 17 are in the 2000s else: year = int(year) + 1900 hour = int(sep[2]) day = 1 full_date = datetime.datetime(year,int(month),int(day),int(hour)) date.append(full_date) data.append(float(sep[-1][-10:])) else: sep = line.split() if len(sep) > 0: # ignore blank lines if variable == 'temp': full_date += timedelta(days=1) else: full_date += timedelta(hours=1) date.append(full_date) data.append(float(sep[-1][-10:])) line_count += 1 csv_read.close() if network[:4] == 'nhds': csv_read = open(card_dir + '\\' + card, 'r') data = []; date = []; last_month = 13; mday_count = 1 ### read card file formatted .txt files lists line_count = 0 for line in csv_read: if line_count >= 3: # ignore header lines sep = line.split() if len(sep) > 0: # ignore blank lines if len(sep) < 4 and len(sep[-1]) < 10: # some QME files (from RFC) may not have gage/basin id as 1st index sep.insert(0,'0000') ### parse date columns month = str(sep[1])[:-2] year = str(sep[1])[-2:] if int(year) <= 17: year = int(year) + 2000 # assume years <= 17 are in the 2000s else: year = int(year) + 1900 if timestep == 'daily': day = str(sep[2]) if len(sep[-1]) > 10: # check for large streamflow values that get combined with day column day = str(sep[2])[:-10] if month != last_month: last_month = month mday_count = 1 for each in sep[3:]: day = mday_count full_date = datetime.datetime(year,int(month),int(day)) date.append(full_date) data.append(float(sep[-1][-10:])) mday_count += 1 if timestep == 'hourly': if line_count == 3: month = str(sep[1])[:-2] year = str(sep[1])[-2:] if int(year) <= 17: year = int(year) + 2000 # assume years <= 17 are in the 2000s else: year = int(year) + 1900 day = 1; hour = 1 full_date = datetime.datetime(year,int(month),int(day),int(hour)) for each in sep[3:]: date.append(full_date) data.append(float(each)) full_date += timedelta(hours=1) line_count += 1 csv_read.close() Q_mask = np.ma.masked_less(data,0) # mask values less than 0 to ignore #Q_mask = np.ma.masked_invalid(np.asarray(discharge)) # mask missing and 'nan' instances date_mask = np.ma.masked_where(np.ma.getmask(Q_mask) == True, date) # mask dates containing missing discharge data Q_data = np.ma.compressed(Q_mask).tolist() # create list with only valid dishcharge data final_date = np.ma.compressed(date_mask).tolist() # create list with corresponding date if len(final_date) != len(Q_data): print 'WARNING -- Date and Discharge Data not the same length' basin_gauge = card.split('.')[0].upper() # basin/gage name basins_list.append(basin_gauge) day_count = str(len(Q_data)) # number of valid daily data values start_date = str(min(final_date)) # date of first measurement end_date = str(max(final_date)) # date of last measurement #new_summary.write(basin_gauge+','+day_count+','+start_date+','+end_date+','+mean_Q+',' #+str(max_Q)+','+str(min_Q)+','+sd+','+date_max+','+date_min+'\n') ###### create plot of dates of data availability print 'Adding site data to plot...' y_pos = [count] * len(final_date) ax1.plot(final_date, y_pos, '|',mew=0.5,ms=14) print 'Adding plot attributes...' ax1.xaxis.set_major_locator(mdates.YearLocator(5)) ax1.xaxis.set_minor_locator(years) plt.yticks(range(1,len(basins_list)+1),basins_list) plt.xlabel('Date (1960-2016)') plt.ylabel('Station ID') plt.ylim(0,len(basins_list)+0.5) plt.xlim(datetime.datetime(yearstart,1,1), datetime.datetime(yearend,1,1)) plt.savefig(figname, dpi=200,bbox_inches='tight') plt.close() print 'Completed!!'
""" Placeholder for a synthetic field. """ class SyntheticField: """ Placeholder for a synthetic field. """ def __init__(self): """ Store all the parameters for later usage, as well as reference to a synthetic generator. """ def make_sampler(self): """ Create a sampler to generate pseudo-locations. """ def load_seismic(self): """ Create a synthetic seismic slide. """ def make_mask(self, src=('horizons', 'faults')): """ Make segmentation mask. """ _ = src def show(self): """ A simple slide visualization. """ def __repr__(self): pass def __str__(self): pass
import numpy as np e = np.array([11,2,3,4,5,6,12,23,8,21]) print(np.max(e)) print(np.min(e)) print(np.median(e)) print(np.std(e))
l,u=map(int, input().split()) li=[] for i in range(l+1,u): if i%2==0: li.append(str(i)) print(" ".join(li)) #prasad
import math from pyspark import SparkContext, SparkConf import sys import time import multiprocessing from pyspark.mllib.recommendation import ALS, Rating import heapq start_time = time.time() # Model based cf def model_base_cf(rdd, train_rdd, test_rdd, user_enum, bus_enum): # Training ratings_train = train_rdd \ .map(lambda s: Rating(user_enum[s[0]], bus_enum[s[1]], float(s[2]))) rank = 3 num_iter = 20 model = ALS.train(ratings_train, rank, num_iter, 0.265) # Evaluation test_features = test_rdd \ .map(lambda s: (user_enum[s[0]], bus_enum[s[1]])) prediction = model \ .predictAll(test_features) \ .map(lambda s: ((s[0], s[1]), s[2])) ratings_test = test_rdd \ .map(lambda s: Rating(user_enum[s[0]], bus_enum[s[1]], float(s[2]))) rate_pred = ratings_test \ .map(lambda s: ((s[0], s[1]), s[2])) \ .join(prediction) \ .cache() # Filling users in test and not in training into prediction by default rating, 3 d_rating = float(3.0) rdd_u = rdd.map(lambda s: (user_enum[s[0]], (bus_enum[s[1]], float(s[2])))) rp_u = train_rdd.map(lambda s: (user_enum[s[0]], (bus_enum[s[1]], float(s[2])))) rate_pred_u = rdd_u.subtractByKey(rp_u) \ .map(lambda s: ((s[0], s[1][0]), (s[1][1], d_rating))) # Filling businesses in test and not in training into prediction by default rating, 3 rdd_b = rdd.map(lambda s: (bus_enum[s[1]], (user_enum[s[0]], float(s[2])))) rp_b = train_rdd.map(lambda s: (bus_enum[s[1]], (user_enum[s[0]], float(s[2])))) rate_pred_b = rdd_b.subtractByKey(rp_b) \ .map(lambda s: ((s[1][0], s[0]), (s[1][1], d_rating))) # Combine all rate_pred_diff = rate_pred_u.union(rate_pred_b) rate_pred = rate_pred.union(rate_pred_diff) return rate_pred ############################################################# # User based cf def user_base_cf(case_num, train_rdd, test_rdd, user_enum, bus_enum): # Business to user map bus_user_map = train_rdd \ .map(lambda s: (bus_enum[s[1]], [user_enum[s[0]]])) \ .reduceByKey(lambda x, y: x + y) \ .collectAsMap() # User information user_bus = train_rdd \ .map(lambda s: (user_enum[s[0]], [bus_enum[s[1]]])) \ .reduceByKey(lambda x, y: x + y) user_rating = train_rdd \ .map(lambda s: (user_enum[s[0]], [float(s[2])])) \ .reduceByKey(lambda x, y: x + y) \ .map(lambda s: normalize_rating(s)) user_bus_rating = user_bus.join(user_rating) \ .map(lambda s: ((s[0], s[1][0]), (s[1][1][0], s[1][1][1]))) # User to business map user_bus_map = user_bus.collectAsMap() # User and business to ratings map user_bus_rating_map = user_bus_rating \ .flatMap(lambda s: expand_ratings(case_num, s)) \ .collectAsMap() # Test Features test_features = test_rdd.map(lambda s: (user_enum[s[0]], bus_enum[s[1]])) # Take top n number of cos similarities # 13, 1.091 top = 13 # Prediction prediction = test_features \ .map(lambda s: predict_rating(case_num, s, user_bus_rating_map, user_bus_map, bus_user_map, top)) rate_pred = test_rdd \ .map(lambda s: ((user_enum[s[0]], bus_enum[s[1]]), float(s[2]))) \ .join(prediction) return rate_pred ############################################################# # Item based cf def item_base_cf(case_num, train_rdd, test_rdd, user_enum, bus_enum): # User to business map user_bus_map = train_rdd \ .map(lambda s: (user_enum[s[0]], [bus_enum[s[1]]])) \ .reduceByKey(lambda x, y: x + y) \ .collectAsMap() # Business information bus_user = train_rdd \ .map(lambda s: (bus_enum[s[1]], [user_enum[s[0]]])) \ .reduceByKey(lambda x, y: x + y) bus_rating = train_rdd \ .map(lambda s: (bus_enum[s[1]], [float(s[2])])) \ .reduceByKey(lambda x, y: x + y) \ .map(lambda s: normalize_rating(s)) user_bus_rating = bus_user.join(bus_rating) \ .map(lambda s: ((s[1][0], s[0]), (s[1][1][0], s[1][1][1]))) # User and business to ratings map user_bus_rating_map = user_bus_rating \ .flatMap(lambda s: expand_ratings(case_num, s)) \ .collectAsMap() # User Information bus_user_map = bus_user.collectAsMap() # Test Features test_features = test_rdd.map(lambda s: (user_enum[s[0]], bus_enum[s[1]])) # rmse = 10 # rate_pred = None top = 6 # while rmse > 0.9: # start_time = time.time() # Prediction prediction = test_features \ .map(lambda s: predict_rating(case_num, s, user_bus_rating_map, user_bus_map, bus_user_map, top)) rate_pred = test_rdd \ .map(lambda s: ((user_enum[s[0]], bus_enum[s[1]]), float(s[2]))) \ .join(prediction) # print("prediction: ", str(time.time() - start_time)) # # RMSE # rmse = evaluate_rmse(rate_pred) # print("Top: ", top) # top *= 2 return rate_pred # Record data def record_data(data, output_file, user, business): output_file.write("user_id, business_id, prediction\n") # Model-based cf data_list = data.collect() for line in data_list: output_file.write(user[line[0][0]] + "," + business[line[0][1]] + "," + str(line[1][1]) + "\n") # Create user and item dictionaries associate with their index in input list def create_user_item_dict(user_list, item_list): user_enum = dict() for i, u in enumerate(user_list): user_enum[u] = i bus_enum = dict() for i, b in enumerate(item_list): bus_enum[b] = i return user_enum, bus_enum # Print the RSME of predicted ratings def evaluate_rmse(rate_pred): rmse = math.sqrt(rate_pred .map(lambda s: ((s[1][0] - s[1][1]) ** 2)) .mean()) print("RMSE: " + str(rmse)) return rmse # Normalize rating for each user def normalize_rating(data): # Field could be user or business field = data[0] ratings_old = data[1] ratings_avg = 0.0 # Get average rating for r in ratings_old: ratings_avg += float(r) ratings_avg /= len(ratings_old) return field, (ratings_old, ratings_avg) # Expand the map for each business with one user def expand_ratings(case_num, data): user = data[0][0] busis = data[0][1] ratings = data[1][0] avg_rating = data[1][1] expand_list = list() if case_num == 2: # User based cf for i, b in enumerate(busis): expand_list.append(((user, b), (ratings[i], avg_rating))) elif case_num == 3: # Item based cf for i, u in enumerate(user): expand_list.append(((u, busis), (ratings[i], avg_rating))) return expand_list def predict_rating(case_num, test_fea, ubr_map, ub_map, bu_map, top_n): user = int(test_fea[0]) busi = int(test_fea[1]) # Business in testing but not in training if busi not in bu_map and user not in ub_map: return (user, busi), 3.0 elif busi not in bu_map: # Average of the other businesses that the user rated return (user, busi), float(ubr_map[(user, ub_map[user][0])][1]) elif user not in ub_map: # Average of the business rating from other users return (user, busi), float(ubr_map[(bu_map[busi][0], busi)][1]) else: # Business in training as well field_list, co_rate = list(), list() field_avg = 0.0, 0.0 if case_num == 2: # User based cf field_list = ub_map.get(user) field_avg = float(ubr_map[(user, field_list[0])][1]) co_rate = bu_map[busi] elif case_num == 3: # Item based cf field_list = bu_map.get(busi) field_avg = float(ubr_map[(field_list[0], busi)][1]) co_rate = ub_map[user] cos_sims = get_cos_sims(case_num, co_rate, field_list, field_avg, ubr_map, ub_map, bu_map, user, busi, top_n) rate_pred = get_rating_pred_cs(case_num, cos_sims, ubr_map, field_avg, user, busi) return rate_pred # Get cos similarities def get_cos_sims(case_num, co_rate, field_list, rate_avg, ubr_map, ub_map, bu_map, user, busi, top_n): cos_sims = list() rate_avg_2 = 0.0 bus_co_rate_len = 0 # Find cos similarities of the co-rated users or business for f in co_rate: other_field_co_rate = set(field_list) if case_num == 2: other_field_co_rate &= set(ub_map[f]) rate_avg_2 = ubr_map[(f, ub_map[f][0])][1] elif case_num == 3: # # Skip the users who did not rate on business # if ubr_map.get((user, busi)) is None: # continue other_field_co_rate &= set(bu_map[f]) bus_co_rate_len = len(other_field_co_rate) rate_avg_2 = ubr_map[(bu_map[f][0], f)][1] num_cs, den_cs_1, den_cs_2 = 0.0, 0.0, 0.0 # Calculate the numerator and denominator of each cos similarity for of in other_field_co_rate: r_1, r_2 = 0.0, 0.0 if case_num == 2: if of != busi: r_1 = float(ubr_map[(user, of)][0]) - rate_avg r_2 = float(ubr_map[(f, of)][0]) - rate_avg_2 elif case_num == 3: if of != user: r_1 = float(ubr_map[(of, busi)][0]) - rate_avg r_2 = float(ubr_map[(of, f)][0]) - rate_avg_2 num_cs += r_1 * r_2 den_cs_1 += r_1 ** 2 den_cs_2 += r_2 ** 2 # Calcualte cos. similarity cos_sim = num_cs / math.sqrt(den_cs_1 * den_cs_2) if num_cs != 0 else 0 # Memory-Based improvement if case_num == 3: # if cos_sim <= 0.0: # continue # Case Amplification # cos_sim *= abs(cos_sim) ** 1.5 # Default Voting cos_sim *= 0 if bus_co_rate_len < 60 else 1 cos_sims.append((f, cos_sim, rate_avg_2)) # Take top n cos similarities cos_sims = heapq.nlargest(top_n, cos_sims, key=lambda s: s[1]) return cos_sims # Get the rating prediction from cos. similarities def get_rating_pred_cs(case_num, cos_sims, ubr_map, rate_avg, user, busi): num_w, den_w, r = 0, 0, 0.0 # Get weights for cs in cos_sims: field_cs = cs[0] cos_sim = cs[1] rating_cs = cs[2] if case_num == 2: # User based cf # rating_cs is average rating of business coloumn for every other users r = float(ubr_map[(field_cs, busi)][0]) - rating_cs \ if ubr_map.get((field_cs, busi)) is not None else 0.0 elif case_num == 3: # Item based cf # r is the rating of business for every other user r = ubr_map.get((user, field_cs))[0] num_w += r * cos_sim den_w += abs(cos_sim) # Weighted rating rating_pred = rate_avg if den_w != 0: if case_num == 2: # User based cf rating_pred = rate_avg + num_w / den_w elif case_num == 3: # Item based cf rating_pred = num_w / den_w # Round ratings # if rating_pred < 1.0: # rating_pred = 1.0 # elif rating_pred > 5.0: # rating_pred = 5.0 # else: # rating_pred = round(rating_pred, 1) return (user, busi), rating_pred # Main Execution # Run Configurations train_path = sys.argv[1] test_path = sys.argv[2] case_id = int(sys.argv[3]) output_path = sys.argv[4] # Level of Parallelism - Recommended by Spark # http://spark.apache.org/docs/latest/tuning.html#level-of-parallelism cpu_num = multiprocessing.cpu_count() task_per_cpu = cpu_num * 3 # Spark Configurations # conf = SparkConf().setAppName('HW3 - Task 1').setMaster('local[*]') conf = SparkConf() \ .setAppName('HW3 - Task 2') \ .setMaster('local[*]') \ .set('spark.executor.memory', '8g') \ .set('spark.driver.memory', '8g') sc = SparkContext(conf=conf) # Data Input distFile_train = sc.textFile(train_path) \ .coalesce(task_per_cpu) \ .map(lambda s: s.split(",")) distFile_test = sc.textFile(test_path) \ .coalesce(task_per_cpu) \ .map(lambda s: s.split(",")) # Beheading headers = distFile_train.first() rdd_train = distFile_train.filter(lambda s: s != headers).cache() rdd_test = distFile_test.filter(lambda s: s != headers).cache() # All users and businesses from both training and testing rdds rdd = sc.union([rdd_train, rdd_test]).cache() users = rdd.map(lambda s: s[0]).distinct().collect() busis = rdd.map(lambda s: s[1]).distinct().collect() # Constructing dictionaries for users and business index user_enum, bus_enum = create_user_item_dict(users, busis) rst = None # Model Based CF if case_id == 1: rst = model_base_cf(rdd, rdd_train, rdd_test, user_enum, bus_enum) elif case_id == 2: # User Based CF rst = user_base_cf(case_id, rdd_train, rdd_test, user_enum, bus_enum) elif case_id == 3: # Item Based CF rst = item_base_cf(case_id, rdd_train, rdd_test, user_enum, bus_enum) if rst is not None: # Data output with open(output_path, "w") as op: record_data(rst, op, users, busis) print("Duration: " + str(time.time() - start_time)) # if rst is not None: # # RMSE # evaluate_rmse(rst)
from typing import ( List, Dict, Text, Any, Optional ) from rasa.shared.core.events import Event, UserUttered class UserBotUttered(): def __init__(self, last_message:UserUttered, bot_predict_event:Optional[Text] ) -> None: """ Crea un evento que contiene el mensaje que recibio el bot y el evento que predice el bot para dicho mensaje """ self.message_user = last_message self.bot_predict_event = bot_predict_event def get_message_user(self) -> UserUttered: return self.message_user def get_bot_predict(self) -> Text: return self.bot_predict_event def set_bot_predict(self, bot_predict): self.bot_predict_event = bot_predict
#coding:utf-8 #!/usr/bin/env python from game.routine.pet import pet from game.routine.skill import skill from game.routine.equipment import equipment class luck: @staticmethod def check(usr, card, petConf): """ ๆฃ€ๆต‹็ผ˜ """ petInfo = petConf[card['cardid']] luckid = [] for l in petInfo['luck']: luckid, cardid, equipmentid, skillid = luck.analyse(l) if luck.has_card(usr, cardid): if luck.has_equipment(usr, card, equipmentid): if luck.has_skill(usr, card, skillid): luckid.append(luckid) return luckid @staticmethod def analyse(luck): """ ๅˆ†ๆž """ luck = luck.split('_') cardid = [] equipmentid = [] skillid = [] luckid = '' for l in luck: if l.startswith('pet'): cardid.append(l) elif l.startswith('sk'): skillid.append(l) elif l.startswith('eqp'): equipmentid.append(l) elif l.startswith('y'): luckid = l return luckid, cardid, equipmentid, skillid @staticmethod def has_card(usr, cardid): """ ๆœ‰ๅก็‰Œ """ inv = usr.getInventory() teamCardid = [] for cid in inv.team: if cid: card = inv.getCard(cid) teamCardid.append(card['cardid']) for cid in cardid: if cid not in teamCardid: return False return True @staticmethod def has_equipment(usr, card, equipmentid): """ ๆœ‰่ฃ…ๅค‡ """ inv = usr.getInventory() equipid = [] for eq in card['slot']: if eq: equipid.append(eq['equipmentid']) for eqid in equipmentid: if eqid not in equipid: return False return True @staticmethod def has_skill(usr, card, skillid): """ ๆœ‰ๆŠ€่ƒฝ """ inv = usr.getInventory() skid = [] for sk in card['sk_slot']: if sk: skid.append(sk['skillid']) for sid in skillid: if sid not in skid: return False return True
from fastapi import FastAPI, File, UploadFile from fastapi.responses import FileResponse,Response from pydantic import BaseModel import io from io import BytesIO import numpy as np from PIL import Image import shutil import os os.environ["CUDA_VISIBLE_DEVICES"]="-1" import tensorflow as tf from object_detection.utils import label_map_util from object_detection.utils import visualization_utils as viz_utils app = FastAPI() detect_fn = tf.saved_model.load('saved_model') category_index = label_map_util.create_category_index_from_labelmap("label_map.pbtxt",use_display_name=True) def load_image_into_numpy_array(data): """Load an image from file into a numpy array. Puts image into numpy array to feed into tensorflow graph. Note that by convention we put it into a numpy array with shape (height, width, channels), where channels=3 for RGB. Args: path: the file path to the image Returns: uint8 numpy array with shape (img_height, img_width, 3) """ return np.array(Image.open(io.BytesIO(data))) def predict(image): # The input needs to be a tensor, convert it using `tf.convert_to_tensor`. image_np = load_image_into_numpy_array(image) input_tensor = tf.convert_to_tensor(image_np) #print(input_tensor.shape) # The model expects a batch of images, so add an axis with `tf.newaxis`. input_tensor = input_tensor[tf.newaxis, ...] # input_tensor = np.expand_dims(image_np, 0) detections = detect_fn(input_tensor) # All outputs are batches tensors. # Convert to numpy arrays, and take index [0] to remove the batch dimension. # We're only interested in the first num_detections. num_detections = int(detections.pop('num_detections')) detections = {key: value[0, :num_detections].numpy() for key, value in detections.items()} detections['num_detections'] = num_detections # detection_classes should be ints. detections['detection_classes'] = detections['detection_classes'].astype(np.int64) image_np_with_detections = image_np.copy() viz_utils.visualize_boxes_and_labels_on_image_array( image_np_with_detections, detections['detection_boxes'], detections['detection_classes'], detections['detection_scores'], category_index, use_normalized_coordinates=True, max_boxes_to_draw=200, min_score_thresh=.50, agnostic_mode=False) #print(detections) return Image.fromarray(image_np_with_detections) @app.post("/uploadfile/") async def create_upload_file(image: UploadFile = File(...)): img_data = await image.read() predicted_image = predict(img_data) output = BytesIO() predicted_image.save(output, 'png') return Response(output.getvalue(), media_type='image/png')
import tensorflow as tf print(tf.__version__) hello = tf.constant("Hello Tensorflow") print(hello) sess = tf.Session() # ์‹คํ–‰ ํ›„ ๊ฒฐ๊ณผ๊ฐ’์ด bytes ํƒ€์ž…์ด๋ฏ€๋กœ decode ํ•„์š” result = sess.run(hello) print(result) print(result.decode()) a = tf.constant(10) b = tf.constant(20) _a, _b = sess.run([a, b]) print(_a, _b)
import json def read_dict(db_name): try: #little ducktyping -- catches both file not found and file empty (incase it was erased) with open(db_name, 'r') as f: print("updating db...db_name") return json.load(f) except (FileNotFoundError, ValueError): print("creating db...") return init_pairing_dict(student_arr) def write_dict(db_name, data): with open(db_name, 'w+') as f: json.dump(data, f)
from django.urls import path from jobs.api.views import (JobOfferDetailAPIView, JobOfferListCreateAPIView) urlpatterns = [ path("jobs/", JobOfferListCreateAPIView.as_view(), name="job-list"), path("jobs/<int:pk>/", JobOfferDetailAPIView.as_view(), name="job-detail"), ]
""" https://leetcode.com/problems/number-of-subarrays-with-bounded-maximum/ We are given an array nums of positive integers, and two positive integers left and right (left <= right). Return the number of (contiguous, non-empty) subarrays such that the value of the maximum array element in that subarray is at least left and at most right. Example: Input: nums = [2, 1, 4, 3] left = 2 right = 3 Output: 3 Explanation: There are three subarrays that meet the requirements: [2], [2, 1], [3]. Sliding Window Method """ from typing import List class Solution: def numSubarrayBoundedMax(self, nums: List[int], left: int, right: int) -> int: # print (nums) # print (left, right) dp = [0] * len(nums) k = 0 start = -1 end = -1 max_index = 0 for i in range(len(nums)): # print ("===========") # print (i, nums[i]) if left <= nums[i] <= right: end = i dp[i] = end - start elif nums[i] > right: start = i end = i elif nums[i] < left: print("CHECK") dp[i] = end - start # print (dp) return sum(dp) nums = [2, 1, 4, 3] left = 2 right = 3 print ("Input - Nums {}, Left {}, Right {}".format(nums, left, right)) ans =Solution().numSubarrayBoundedMax(nums, left, right) print ("Solution - {}".format(ans)) nums = [2, 9, 2, 5, 6] left = 2 right = 8 print ("Input - Nums {}, Left {}, Right {}".format(nums, left, right)) ans = Solution().numSubarrayBoundedMax(nums, left, right) print ("Solution - {}".format(ans)) nums = [73, 55, 36, 5, 55, 14, 9, 7, 72, 52] left = 32 right = 69 print ("Input - Nums {}, Left {}, Right {}".format(nums, left, right)) ans = Solution().numSubarrayBoundedMax(nums, left, right) print ("Solution - {}".format(ans)) nums = [876,880,482,260,132,421,732,703,795,420,871,445,400,291,358,589,617,202,755,810,227,813,549,791,418,528,835,401,526,584,873,662,13,314,988,101,299,816,833,224,160,852,179,769,646,558,661,808,651,982,878,918,406,551,467,87,139,387,16,531,307,389,939,551,613,36,528,460,404,314,66,111,458,531,944,461,951,419,82,896,467,353,704,905,705,760,61,422,395,298,127,516,153,299,801,341,668,598,98,241] left = 658 right = 719 print ("Input - Nums {}, Left {}, Right {}".format(nums, left, right)) ans = Solution().numSubarrayBoundedMax(nums, left, right) print ("Solution - {}".format(ans))
import json import logging import time import certifi import urllib3 class BitbucketApiBindings: """ Wraps Bitbucket API functions. """ def __init__(self, rate_limit: int): self.__rate_limit = rate_limit def form_bitbucket_request(self, url: str) -> urllib3.response: """ Creates new bitbucket request and returns the response. :param url: The url to call. :return: The response resulting from the request. """ time.sleep(3600/self.__rate_limit) http = urllib3.PoolManager(cert_reqs='CERT_REQUIRED', ca_certs=certifi.where()) return http.request('GET', url) def get_repo_substring(self, url, provider): """ Gets the repo-substring (i.e. url: https://bitbucket.org/osrf/gazebo -> returns: osrf/gazebo :param url: URL to get the substring from. :param provider: Part to cut off from the front. :return: the substring formatted as {<user>|<organization>}/{repository_name} """ project_string = url.split(provider)[1] # This is okay since Mercurial does not have an extension on the back of remote urls. project_string = project_string.split(".git")[0] return project_string def get_stargazer_count(self, repo_url): """ Gets the "stargazer" count for github. Used watchers since stargazers do not exist in Bitbucket. :param repo_url: URL to the repository. :return: the amount of watchers on the repository, -1 if request failed. """ project_string = self.get_repo_substring(repo_url, "https://bitbucket.org/") response = self.form_bitbucket_request( "https://api.bitbucket.org/2.0/repositories/" + project_string + "/watchers") if response.status == 200: data = response.data decoded = json.loads(data.decode('utf-8')) return decoded["size"] return -1 def get_next_url(self, result): """ Gets the URL for the next page. :param result: URL for the next page. :return: The next url, or empty string, if no next string is available. """ if "next" in result: return result["next"] else: return "" def get_issues_api_string(self, repo_url): """ Returns API url to call for issues associated with the repository. :param repo_url: Repository URL to get issues from. :return: API URL for retrieving an issue list. """ project_string = self.get_repo_substring(repo_url, "https://bitbucket.org/") return "https://api.bitbucket.org/2.0/repositories/" + project_string + "/issues" def get_pull_requests_api_string(self, repo_uri): """ Returns API URL to call for (open) pull requests associated with the repository. :param repo_uri: Repository URL to get pull requests from. :return: API URL for retrieving pull request list. """ project_string = self.get_repo_substring(repo_uri, "https://bitbucket.org/") return "https://api.bitbucket.org/2.0/repositories/" + project_string + "/pullrequests?state=OPEN" def get_values(self, api_url) -> iter: """ Gets the values field from an Bitbucket API result (used for e.g. pull requests, issues, etc..) :param api_url: API url to call. (see *_api_string) :return: Yield returns the values from the Bitbucket API. """ next_url = api_url while next_url != "": response = self.form_bitbucket_request(next_url) if response.status != 200: logging.info("[Bitbucket API Connector]: Could not reach " + next_url + ", request returned " + str(response.status)) next_url = "" else: result = json.loads(response.data.decode('utf-8')) if "values" in result: for value in result["values"]: yield value next_url = self.get_next_url(result)
import cv2 import random import numpy as np import matplotlib matplotlib.use("TkAgg") from matplotlib import pyplot as plt import os grayscale_max = 255 def load_image(filename): image = cv2.imread(filename, cv2.IMREAD_GRAYSCALE) return image def show_image(title, image): max_val = image.max() # image = np.absolute(image) image = np.divide(image, max_val) # cv2.imshow(title, image) #cv2.imwrite(title+str(random.randint(1, 100))+'.jpg', image*grayscale_max) cv2.imwrite(os.path.join(path_image,str(random.randint(1, 100))+'.jpg'),image*grayscale_max) def add_padding(input, padding): rows = input.shape[0] columns = input.shape[1] output = np.zeros((rows + padding * 2, columns + padding * 2), dtype=float) output[ padding : rows + padding, padding : columns + padding] = input return output def add_replicate_padding(image): # zero_padded = add_padding(image, padding) # size = image.shape[0] top_row = image[0, :] image = np.vstack((top_row, image)) bottom_row = image[-1, :] image = np.vstack((image, bottom_row)) left_column = image[:, 0] left_column = np.reshape(left_column, (left_column.shape[0], 1)) image = np.hstack((left_column, image)) right_column = image[:, -1] right_column = np.reshape(right_column, (right_column.shape[0], 1)) image = np.hstack((image, right_column)) return image def euclid_dist(a, b): distance = np.linalg.norm(a - b) return distance def get_search_bounds(column, block_size, width): disparity_range = 25 left_bound = column - disparity_range if left_bound < 0: left_bound = 0 right_bound = column + disparity_range if right_bound > width: right_bound = width - block_size + 1 return left_bound, right_bound def search_bounds(column, block_size, width, rshift): disparity_range = 75 padding = block_size // 2 right_bound = column if rshift: left_bound = column - disparity_range if left_bound < padding: left_bound = padding step = 1 else: left_bound = column + disparity_range if left_bound >= (width - 2*padding): left_bound = width - 2*padding - 2 step = -1 return left_bound, right_bound, step # max disparity 30 def disparity_map(left, right, block_size, rshift): padding = block_size // 2 left_img = add_padding(left, padding) right_img = add_padding(right, padding) height, width = left_img.shape # d_map = np.zeros((height - padding*2, width - padding*2), dtype=float) d_map = np.zeros(left.shape , dtype=float) for row in range(height - block_size + 1): for col in range(width - block_size + 1): bestdist = float('inf') shift = 0 left_pixel = left_img[row:row + block_size, col:col + block_size] l_bound, r_bound, step = search_bounds(col, block_size, width, rshift) # for i in range(l_bound, r_bound - padding*2): for i in range(l_bound, r_bound, step): right_pixel = right_img[row:row + block_size, i:i + block_size] # if euclid_dist(left_pixel, right_pixel) < bestdist : ssd = np.sum((left_pixel - right_pixel) ** 2) # print('row:',row,' col:',col,' i:',i,' bestdist:',bestdist,' shift:',shift,' ssd:',ssd) if ssd < bestdist: bestdist = ssd shift = i if rshift: d_map[row, col] = col - shift else: d_map[row, col] = shift - col print('Calculated Disparity at ('+str(row)+','+str(col)+') :', d_map[row,col]) return d_map def mean_square_error(disparity_map, ground_truth): # ssd = np.sum((disparity_map - ground_truth)**2) # mse = ssd/(ground_truth.shape[0]*ground_truth.shape[1]) mse = np.mean((disparity_map - ground_truth)**2) return mse def consistency_map_mse_l(d_map_left, d_map_right, left_ground_truth): rows, cols = d_map_left.shape consistency_map = np.zeros((rows, cols)) for r in range(rows): for c in range(cols): left_pixel = d_map_left[r, c] if cols > c - left_pixel > 0: right_pixel = d_map_right[r, int(c - left_pixel)] else: right_pixel = d_map_right[r, c] if left_pixel == right_pixel: consistency_map[r, c] = left_pixel else: consistency_map[r, c] = 0 sum = 0 for r in range(rows): for c in range(cols): if consistency_map[r, c] != 0: sum = sum + (left_ground_truth[r, c] - consistency_map[r, c]) ** 2 mse_c_left = sum / (rows * cols) return mse_c_left, consistency_map def consistency_map_mse_r(d_map_left, d_map_right, right_ground_truth): rows, cols = d_map_right.shape consistency_map = np.zeros((rows, cols)) for r in range(rows): for c in range(cols): right_pixel = d_map_right[r, c] if c + right_pixel < cols: left_pixel = d_map_left[r, int(c + right_pixel)] else: left_pixel = d_map_left[r, c] if right_pixel == left_pixel: consistency_map[r, c] = right_pixel else: consistency_map[r, c] = 0 sum = 0 for r in range(rows): for c in range(cols): if consistency_map[r, c] != 0: sum = sum + (right_ground_truth[r, c] - consistency_map[r, c]) ** 2 mse_c_right = sum / (rows * cols) return mse_c_right, consistency_map def main(): #l = load_image('im0.png') #r = load_image('im1.png') # loading the images one by one from the folder filename='MiddEval3/trainingQQ' path_image='images' #file_list=[] for(curdir, subsHere, filesHere) in os.walk(filename): for files in filesHere: l=load_image('im0.png') r=load_image('im1.png') d_map_lr_3 = disparity_map(l, r, 3, True) show_image('D_Map_lr_block3_', d_map_lr_3) # Disparity Maps # d_map_lr_3 = disparity_map(l, r, 3, True) # show_image('D_Map_lr_block3_', d_map_lr_3) #d_map_rl_3 = disparity_map(r, l, 3, False) #show_image('D_Map_rl_block3_', d_map_rl_3) #d_map_lr_9 = disparity_map(l, r, 9, True) #show_image('D_Map_lr_block9_', d_map_lr_9) #d_map_rl_9 = disparity_map(r, l, 9, False) #show_image('D_Map_rl_block9_', d_map_rl_9) return main()
import pandas as pd import sys outf = sys.argv[1] score_df = pd.DataFrame() fids, pids, scores = [], [], [] with open('plink.profile', 'r') as r: lines = r.readlines() for line in lines[1:]: words = line.split() fids.append(words[0]) pids.append(words[1]) scores.append(float(words[-1])) score_df['FID'] = fids score_df['PID'] = pids score_df['Score'] = scores score_df.to_csv(outf, index=False)
import random PATTERNS = [ (1000000000000000, 'xxxxx'), (-1000000000000000, 'ooooo'), (10, ' xx '), (-10, ' oo '), (10, ' x x '), (-10, ' o o '), (10, ' x x '), (-10, ' o o '), (100, ' xx '), (-100, ' oo '), (-3300000, ' ooo '), (1100000, ' xxx '), (-3000000, ' ooo '), (1000000, ' xxx '), (-3000, 'xooo '), (1000, 'oxxx '), (-3300000,' oo o '), (1100000,' xx x '), (-3000000,' oo o '), (1000000,' xx x '), (-300000000000,' oooo '), (100000000000,' xxxx '), (-3000000,'oooo '), (1000000,'xxxx '), (-3000000,' oooo'), (1000000,' xxxx'), (-3000000000,'oo oo'), (1000000000,'xx xx'), (10,' x ') ] class Board: SIZE = 15 def generate_rows(self): rows = [] for i in range(self.SIZE): row = [] for j in range(self.SIZE): row.append(0) rows.append(row) return rows def generate_diagonals(self): diagonals = [] delka = 1 for i in range(self.SIZE): diagonal = [] for j in range(delka): diagonal.append(0) diagonals.append(diagonal) delka += 1 delka = 14 for i in range(self.SIZE - 1): diagonal = [] for j in range(delka): diagonal.append(0) diagonals.append(diagonal) delka -= 1 return diagonals def __init__(self): self.rows = self.generate_rows() self.columns = self.generate_rows() self.diagonals_descending = self.generate_diagonals() self.diagonals_ascending = self.generate_diagonals() def row_to_string(self, row): output = '' for i in row: if (i == 0): output += ' ' if (i == 1): output += 'x' if (i == -1): output += 'o' return output def evaluate_row(self, row): string_row = self.row_to_string(row) total_score = 0 for pattern in PATTERNS: score, p = pattern if p in string_row: print(f'found pattern {p} in {row}') total_score += score #total_score = total_score + score return total_score def evaluate_position(self): total_score = 0 for row in self.rows: total_score += self.evaluate_row(row) for col in self.columns: total_score += self.evaluate_row(col) for desc in self.diagonals_descending: total_score += self.evaluate_row(desc) for asc in self.diagonals_ascending: total_score += self.evaluate_row(asc) return total_score def new_turn(self, row, column, player): self.rows[row][column] = player self.columns[column][row] = player ascending_diagonal_number = row + column if (row + column < self.SIZE): self.diagonals_ascending[ascending_diagonal_number][column] = player else: self.diagonals_ascending[ascending_diagonal_number][self.SIZE - 1 - row] = player descending_diagonal_number = self.SIZE - 1 - row + column if (descending_diagonal_number < 15): self.diagonals_descending[descending_diagonal_number][column] = player else: self.diagonals_descending[descending_diagonal_number][row] = player #self.print_all() def get(self, row, col): return self.rows[row][col] def print_all(self): print('rows') for row in self.rows: print(row) print('cols') for col in self.columns: print(col) print('desc') for d in self.diagonals_descending: print(d) print('asc') for d in self.diagonals_ascending: print(d) class Player: def __init__(self, player_sign): self.sign = 1 self.opponent_sign = -1 self.name = 'Stepan' self.board = Board() random.seed(17) def pick_random_valid_turn(self): while True: row = random.randint(0, 14) col = random.randint(0, 14) if (self.board.get(row, col) == 0): return (row, col) def pick_best_turn(self): best_score = -float('inf') best_turn = None for row in range(15): for col in range(15): if (self.board.get(row, col) != 0): continue self.board.new_turn(row, col, self.sign) score = self.board.evaluate_position() if score > best_score: best_turn = (row, col) best_score = score self.board.new_turn(row, col, 0) return best_turn def play(self, opponent_move): if opponent_move != None: row, col = opponent_move self.board.new_turn(row, col, self.opponent_sign) #my_turn_row, my_turn_col = self.pick_random_valid_turn() my_turn_row, my_turn_col = self.pick_best_turn() self.board.new_turn(my_turn_row, my_turn_col, self.sign) return my_turn_row, my_turn_col
# encoding: utf-8 ''' This application does a simple NVE+Langevin LAMMPS simulation of spherocylinder-like rods (defined in a .cfg file) using the "lammps_multistate_rods" library. The initial locations of the rods are at SC lattice points defined by the input params, and their orientations are randomly determined at each insertion point. The simulation will stop automatically when two beta-state (ID=1) rods occur. Created on 16 Mar 2018 @author: Eugen Roลพiฤ‡ ''' import os import argparse parser = argparse.ArgumentParser(description='Program for NVE+Langevin hybrid LAMMPS'\ ' simulation of spherocylinder-like rods, using the'\ ' "lammps_multistate_rods" library.', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('cfg_file', help='path to the "lammps_multistate_rods" model configuration file') parser.add_argument('run_file', help='path to the run configuration file') parser.add_argument('simlen', type=int, help='the max length of the simulation') parser.add_argument('--seed', type=int, help='the seed for random number generators') parser.add_argument('--out', type=str, default=None, help='name/path for the output folder (defaults to cfg_file path w/o ext)') parser.add_argument('-o', '--output_freq', type=int, help='configuration output frequency (in MD steps);'\ ' default behavior is after every batch of MC moves') parser.add_argument('-s', '--silent', action='store_true', help="doesn't print anything to stdout") args = parser.parse_args() if not args.cfg_file.endswith('.cfg'): raise Exception('Model configuration file (first arg) has to end with ".cfg"!') if not args.run_file.endswith('.run'): raise Exception('Run configuration file (second arg) has to end with ".run"!') if args.seed is None: import time seed = int((time.time() % 1)*1000000) print "WARNING: no seed given explicitly; using:", seed else: seed = args.seed if args.out is None: output_folder = os.path.splitext(args.cfg_file)[0] else: output_folder = args.out #======================================================================================== #from mpi4py import MPI #TODO make MPI work... from lammps import PyLammps import lammps_multistate_rods as rods if not os.path.exists(output_folder): os.makedirs(output_folder) run_filename = os.path.splitext(os.path.basename(args.run_file))[0] sim_ID = '{:s}_{:d}'.format(run_filename, seed) dump_filename = sim_ID+'.dump' dump_path = os.path.join(output_folder, dump_filename) log_filename = '{:d}.lammps'.format(seed) log_path = os.path.join(output_folder, log_filename) run_args = rods.rod_model.Params() execfile(args.run_file, {'__builtins__' : None, 'True' : True, 'False' : False, 'None' : None}, vars(run_args)) out_freq = args.output_freq if args.output_freq != None else run_args.run_length py_lmp = PyLammps(cmdargs=['-screen','none']) py_lmp.log('"'+log_path+'"') model = rods.Rod_model(args.cfg_file) simulation = rods.Simulation(py_lmp, model, seed, output_folder) py_lmp.units("lj") py_lmp.dimension(3) py_lmp.boundary("p p p") py_lmp.lattice("sc", 1/(run_args.cell_size**3)) py_lmp.region("box", "block", -run_args.num_cells / 2, run_args.num_cells / 2, -run_args.num_cells / 2, run_args.num_cells / 2, -run_args.num_cells / 2, run_args.num_cells / 2) simulation.setup("box") simulation.create_rods(box = None) # DYNAMICS py_lmp.fix("thermostat", "all", "langevin", run_args.temp, run_args.temp, run_args.damp, seed)#, "zero yes") simulation.set_rod_dynamics("nve") py_lmp.neigh_modify("every 1 delay 1") py_lmp.timestep(run_args.dt) # RANDOMISE INITIAL CONFIGURATION simulation.deactivate_state(0, vx_eps=5.0) py_lmp.command('run 10000') simulation.activate_state(0) py_lmp.reset_timestep(0) # GROUPS & COMPUTES if hasattr(run_args, 'label_fibrils'): fibril_group = 'beta_patches' beta_active_patch_types = sorted(filter(lambda t: (t in model.active_bead_types) and\ (t not in model.body_bead_types), model.state_bead_types[1])) py_lmp.variable(fibril_group, 'atom', '"' + '||'.join(['(type == {:d})'.format(t) for t in beta_active_patch_types]) + '"') py_lmp.group(fibril_group, 'dynamic', simulation.rods_group, 'var', fibril_group, 'every', out_freq) fibril_compute = "fibril_ID" if hasattr(run_args, 'fibril_cutoff'): fibril_cutoff = run_args.fibril_cutoff else: fibril_cutoff = 0 i = -1 for t1 in beta_active_patch_types: i += 1 for t2 in beta_active_patch_types[i:]: try: int_key = model.eps[(t1,t2)][1] except: continue int_range = model.int_types[int_key][1] cutoff = model.bead_radii[t1] + model.bead_radii[t2] + int_range*2/3 if cutoff > fibril_cutoff: fibril_cutoff = cutoff py_lmp.compute(fibril_compute, fibril_group, 'aggregate/atom', fibril_cutoff) # OUTPUT py_lmp.thermo_style("custom", "step atoms", "pe temp") dump_elems = "id x y z type mol" try: dump_elems += " c_"+fibril_compute except: pass py_lmp.dump("dump_cmd", "all", "custom", out_freq, dump_path, dump_elems) py_lmp.dump_modify("dump_cmd", "sort id") py_lmp.thermo(out_freq) # RUN... if model.num_states == 1 or run_args.mc_moves == 0: raise Exception("Multiple states need to exist and MC moves need to be made for fibrils to grow!") mc_moves_per_run = int(run_args.mc_moves * simulation.rods_count()) py_lmp.command('run {:d} post no'.format(run_args.run_length-1)) #so output happens after state changes remaining = args.simlen - run_args.run_length + 1 while True: success = simulation.state_change_MC(mc_moves_per_run)#, replenish=("box", 2*model.rod_radius, 10)) TODO base_count = simulation.state_count(0) beta_count = simulation.state_count(1) if not args.silent: print 'step {:d} / {:d} : beta-to-soluble ratio = {:d}/{:d} = {:.5f} (accept rate = {:.5f})'.format( (i+1)*run_args.run_length, args.simlen, beta_count, base_count, float(beta_count)/base_count, float(success)/mc_moves_per_run) if beta_count >= 2: to_next_output = out_freq - (args.simlen - remaining)%out_freq py_lmp.command('run {:d} post no'.format(to_next_output)) break elif remaining / run_args.run_length > 0: py_lmp.command('run {:d} post no'.format(run_args.run_length)) remaining -= run_args.run_length else: py_lmp.command('run {:d} post no'.format(remaining)) break
from prettytable import PrettyTable from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score import utils class Evaluator(object): @staticmethod def evaluate_multi_class(y_preds, y_truths): pred_labels = set(y_preds) true_labels = set(y_truths) all_labels = pred_labels.union(true_labels) print(pred_labels, true_labels) label2idx, idx2label = {}, {} for i, label in enumerate(all_labels): label2idx[label] = i idx2label[i] = label preds = [label2idx[p] for p in y_preds] truths = [label2idx[t] for t in y_truths] accuracy = accuracy_score(truths, preds) individual_precision = precision_score(truths, preds, average=None) individual_recall = recall_score(truths, preds, average=None) individual_f1 = f1_score(truths, preds, average=None) micro_precision = precision_score(truths, preds, average="micro") micro_recall = recall_score(truths, preds, average="micro") micro_f1 = f1_score(truths, preds, average="micro") macro_precision = precision_score(truths, preds, average="macro") macro_recall = recall_score(truths, preds, average="macro") macro_f1 = f1_score(truths, preds, average="macro") result = { "accuracy": accuracy, "individual_precision": individual_precision, "individual_recall": individual_recall, "individual_f1": individual_f1, "micro_precision": micro_precision, "micro_recall": micro_recall, "micro_f1": micro_f1, "macro_precision": macro_precision, "macro_recall": macro_recall, "macro_f1": macro_f1, "label2idx": label2idx, "idx2label": idx2label } header = ["label", "accuracy", "precision", "recall", "f1"] csv_content = [] table = PrettyTable(header) for label, idx in label2idx.items(): row = [label, "", str(individual_precision[idx]), str(individual_recall[idx]), str(individual_f1[idx])] table.add_row(row) csv_content.append(row) macro_row = ["macro", accuracy, macro_precision, macro_recall, macro_f1] micro_row = ["micro", "", micro_precision, micro_recall, micro_f1] table.add_row(macro_row) table.add_row(micro_row) csv_content.append(macro_row) csv_content.append(micro_row) utils.write_csv(csv_content, header, "evaluation.csv") print(table)
# plotting two line diagrams on the same x-axis but different y-axis # especially useful when you want to superimpose ratio/ percentage against absolute numbers import numpy as np import matplotlib.pyplot as plt import pandas from textwrap import wrap from matplotlib.ticker import FuncFormatter import locale locale.setlocale(locale.LC_ALL, 'id_ID.UTF8') ## force matplotlib to use TrueType fonts plt.rcParams['pdf.fonttype'] = 42 # necessary if you want to use relative path but your project isn't in Python $PATH import sys, os, inspect currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) parentdir = os.path.dirname(currentdir) sys.path.insert(0, parentdir) berkasData = currentdir +'\\bab_05_02_dataPlotAKI.csv' judulDiagram = 'Angka Kematian Ibu' sumbuY = 'Jumlah' tickerSumbuY = np.arange(0,510,100) tickerSumbuY2 = np.arange(0,21,5) sumbuX = 'Tahun' berkasSimpan = currentdir +'\\bab_05_02_plotAKI.pdf' # read data file colnames = ['tahun','aki', 'kematian'] data = pandas.read_csv(berkasData, names=colnames, sep=';') tahun = data.tahun.tolist() aki = data.aki.tolist() kematian = data.kematian.tolist() # setting up x locations for the groups and width of the bars ind = np.arange(len(tahun)) # actually just remnant from other bar diagrams, you can safely ignore this #width = 0.25 # make the plots fig, ax = plt.subplots() garis1 = ax.plot(ind, aki, marker='.', color='royalblue', label='AKI') ax2 = ax.twinx() garis2 = ax2.plot(ind, kematian, marker='.', color='#cc0000', label='Jumlah Kematian') # add some text for labels, title and axes ticks ax.set_title(judulDiagram) ax.set_yticks(tickerSumbuY) # yticks can be set to auto ax.set_ylabel('AKI per 100.000 kelahiran') formatter = FuncFormatter(lambda y, pos: "{:n}".format(y)) # use round to get significant decimal #formatter = FuncFormatter(lambda y, pos: "{:n}".format(round(y,2))) ax.yaxis.set_major_formatter(formatter) # set secondary yticks ax2.set_yticks(tickerSumbuY2) ax2.set_ylabel('Jumlah kematian') ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['left'].set_visible(False) ax2.spines['top'].set_visible(False) ax2.spines['right'].set_visible(False) ax2.spines['left'].set_visible(False) ax.set_xticks(ind) ax.set_xticklabels(list(tahun), fontsize='small', ha='center') ax.set_xlabel(sumbuX) box = ax.get_position() ax.set_position([box.x0, box.y0 + box.height * 0.1, box.width, box.height * 0.9]) # legend workaround for 2-vert axis line diagram kolomLegen = ['AKI','Jumlah Kematian'] ax.legend((garis1[0], garis2[0]), kolomLegen, fontsize='x-small', loc='upper center', bbox_to_anchor=(0.5, -0.15), fancybox=True, shadow=True, ncol=2) # make labels for plots for i, txt in enumerate(aki): ax.annotate('{:n}'.format(txt), (ind[i],aki[i]+0.5)) for i, txt in enumerate(kematian): ax2.annotate(txt, (ind[i],kematian[i])) # finishing pyrfig = plt.figure(1) pyrfig.set_figwidth(8) pyrfig.set_figheight(5) # tight_layout to make consistent size # adjust subplot to make room for legend fig.subplots_adjust(bottom=-0.15) plt.tight_layout() # uncomment following two lines to save figures plt.savefig(berkasSimpan) plt.close(pyrfig) # uncomment following lines to generate figures on screen # plt.show()
import numpy as np import matplotlib.pyplot as plt from sklearn.naive_bayes import MultinomialNB def values_to_bins(data, bins): return np.digitize(data, bins) - 1 train_images = np.loadtxt('data/train_images.txt') # incarcam imaginile # incarcam etichetele avand # tipul de date int train_labels = np.loadtxt('data/train_labels.txt').astype(int) # image = train_images[1, :] # prima imagine test_images = np.loadtxt('data/test_images.txt') # incarcam imaginile # incarcam etichetele avand # tipul de date int test_labels = np.loadtxt('data/test_labels.txt').astype(int) # corespunzator # Atentie! In cazul nostru indexarea elementelor va # incepe de la 1, intrucat nu avem valori < 0 # returneaza pentru fiecare element intervalul # for num_bins in range(1, 11): # print(f"Num bins {num_bins}") # # returneaza intervalele # bins = np.linspace(start=0, stop=255, num=num_bins) # train_to_bins = values_to_bins(train_images, bins) # test_to_bins = values_to_bins(test_images, bins) # naive_bayes_model = MultinomialNB() # naive_bayes_model.fit(train_to_bins, train_labels) # print(naive_bayes_model.score(test_to_bins, test_labels)) bins = np.linspace(start=0, stop=255, num=5) train_to_bins = values_to_bins(train_images, bins) test_to_bins = values_to_bins(test_images, bins) # image = np.reshape(test_to_bins[0], (28, 28)) # plt.imshow(image.astype(np.uint8), cmap='gray') # plt.show() naive_bayes_model = MultinomialNB() naive_bayes_model.fit(train_to_bins, train_labels) confusion_matrix = np.zeros((10, 10)) for index, prediction in enumerate(naive_bayes_model.predict(test_to_bins)): # if prediction != test_labels[index]: # plt.title(f"{test_labels[index]} a fost identificat ca {prediction}") # plt.imshow(np.reshape(test_images[index, :], (28, 28)).astype( # np.uint8), cmap='gray') # plt.show() confusion_matrix[test_labels[index]][prediction] += 1 print(confusion_matrix)
TESTAPI_ID = 'testapi_id' CSRF_TOKEN = 'csrf_token' ROLE = 'role' TESTAPI_USERS = ['opnfv-testapi-users']
from .models import * from django.shortcuts import * from django.views import View from django.http import HttpResponse, HttpRequest def check_if_int(number): try: return int(number) except Exception: return None def create_person(request): person = Person() name = request.POST.get("name") surname = request.POST.get("surname") description = request.POST.get("description") person.name = name person.surname = surname person.description = description if name and surname: person.save() def create_phone(request, id): phone = Phone() phone.number = request.POST.get("number") phone.type_number = request.POST.get("type_number") phone.person_phone= Person.objects.get(pk=id) if phone: phone.save() class AddPerson(View): def get(self, request): return render(request, "formatki/addPerson.html") def post(self, request): create_person(request) return HttpResponse("Dodano nowy kontakt") class PersonEdit(View): def get(self, request, id): person = Person.objects.get(pk=id) context = { 'person': person } return render(request, "formatki/modifyPerson.html", context) def post(self, request, id): person = Person.objects.get(pk=id) person.name = request.POST.get("name") person.surname = request.POST.get("surname") person.description = request.POST.get("description") person.save() return HttpResponse("Wprowadzono zmiany") class PersonDetails(View): def get(self, request, id): person = Person.objects.get(pk=id) context = { 'person': person } return render(request, "formatki/dataPerson.html", context) class AllPerson(View): def get(self, request): persons = Person.objects.all() context = { 'persons': persons, } return render(request, "formatki/allPersons.html", context) class PersonDelete(View): def get(self, request, id): context = {'person': Person.objects.get(pk=id)} return render(request, "formatki/deletePerson.html", context) def post(self, request, id): if request.POST.get('decision') == 'yes': person = Person.objects.get(pk=id) person.delete() return redirect('/') class AddPhone(View): def get(self, request, id): return render(request, "formatki/addPhone.html") def post(self, request, id): create_phone(request, id) return HttpResponse("Dodano nowy telefon") class AddAdress(View): def get(self, request, id): return render(request, "formatki/addAdress.html") def post(self, request, id): city = request.POST.get("city") street = request.POST.get("street") house_number = request.POST.get("house_number") apartment_number = request.POST.get("apartment_number") person_adress = Person.objects.get(pk=id) Adress.objects.create(city = city, street = street, house_number=house_number, apartment_number=apartment_number, person_adress=person_adress) return HttpResponse('Dodano nowy adres') class AddEmail(View): def get(self, request, id): return render(request, "formatki/addEmail.html") def post(self, request, id): email = request.POST.get("email") email_type = request.POST.get("email_type") person_email = Person.objects.get(pk=id) Email.objects.create(email=email, email_type=email_type, person_email=person_email) return HttpResponse ('Dodano adres email') class modifyAdress(View): def get(self, request, id): return render(request, "formatki/modifyAdress.html") def post(self, request, id): city = request.POST.get("city") street = request.POST.get("street") house_number = request.POST.get("house_number") apartment_number = request.POST.get("apartment_number") person_adress = Person.objects.get(pk=id) Adress.objects.create(city=city, street=street, house_number=house_number, apartment_number=apartment_number, person_adress=person_adress) return HttpResponse('Zmieniono adres') class modifyPhone(View): def get(self, request, id): return render(request, "formatki/modifyPhone.html") def post(self, request, id): create_phone(request, id) return HttpResponse('Zmieniono telefon') class modifyEmail(View): def get(self, request, id): return render(request, "formatki/modifyEmail.html") def post(self, request, id): email = request.POST.get("email") email_type = request.POST.get("email_type") person_email = Person.objects.get(pk=id) Email.objects.create(email=email, email_type=email_type, person_email=person_email) return HttpResponse ('Zmieniono adres email') class AddGroup(View): def get(self, request): return render(request, "formatki/addGroup.html") def post(self, request, id): name = request.POST.get("name") person = Person.objects.get(pk=id) Group.objects.create(name=name, person=person) return HttpResponse ('Stworzono nowฤ… grupฤ™')